THERMODYNAMIC PROPERTIES
FOR ENGINE COMBUSTION
SIMULATIONS

Yun }/}@o
Department of Mechanical Engineering and Applied Mechanics
University of Michigan, Ann Arbor

July 9, 1989
UM-MEAM-90-07

The properties of gases in combustion environments are complex issues dealing with
chemical kinetics and equilibrium. A large number of species are present and the detailed
chemistry is not always known particularly for fuel rich mixtures. The following discus-
sion presents a suitable approach to model compositions and properties of hydrocarbon
fuel air mixtures and their combustion products for engine combustion simulations.

The most accurate and detailed analysis up to now is to use a full thermodynamic
equilibrium model including a huge number of species and reactions. The NASA equilib-
rium programs [4] and [11] are readily available for this purpose and are well documented.
But the complexities and the substantial computer time involved in such models make
it prohibitive to use them in engine simulation models, where computational time limits
are critical. On the other hand, even those detailed equilibrium programs cannot pre-
dict some kinetics controlled engine combustion phenomena such as knock, particulate
formation and flame speed with a reasonable accuracy. For such processes a simpler
equilibrium model coupled with the submodels describing those particular kinetics is
preferred which presents a compromise between accuracy and simplicity.

The properties of premixed fuel air mixtures needed for gasoline engine simulations
have been computed within a limited equivalence ratio range using simpler models as
shown by Hires [7] and Olikara [10]. The simplest model is to assume a complete com-
bustion for lean mixtures and include the consideration of equilibrium of the water gas
reaction for rich mixtures. At higher temperatures effects of other dissociation reactions
become important and they must therefore be included.

Non-homogeneous mixtures in spray combustion processes could have a wide range
of fuel air ratio variations. It may change from pure vaporized fuel to pure air from one
location to another. There may be over rich or lean mixtures beyond the combustible
limits and partial burn is sometimes encountered. Soot formation often occurs in fuel
rich regions. In order to cover all those possibilities, the present model extends the fuel
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air ratio to the full range of 0 < ¢ < o0 'in contrast with the previous models [7] and
[10]. The model also includes the consideration of combustion progress limit and allows
partially burned mixtures to exist. These are done by a simplified model without going
into detailed complex chemistry for fuel rich mixtures. It also includes the possibility to
take into account of soot formation effects on the properties.

1 Hydrocarbon Air Combustions

Mixtures of hydrocarbon fuels and air are considered as they are applicable for many
combustion processes. The general reactant mixture can be described on the basis of
one mole of oxygen

€ CxHyOzNw + Oz + PNy
where the coefficients are |

1 The molar N:O ratio of the air.
¢  Equivalence ratio, (ms/mq)/(ms/mq)o.

€  Stoichiometric mole fuel oxygen ratio.

X  The number of C atoms in fuel molecules.
Y  The number of H atoms in fuel molecules.
Z  The number of O atoms in fuel molecules.
w The number of N atoms in fuel molecules.

A limited number of species are considered for combustion products. According to the
computation results [3] using the NASA program [11], the important species presented
in products are listed as

1 2 3 4 5 6 7 8 9 10 11
c0,, H,0, CO, Hy, Oy, N, OH, NO, O, H, Fuel.

provided the equivalence ratio ¢ < 3. At low temperatures the list can be simplified
further to neglect OH, NO, O, H radicals since they would have significant effects only
when T' > 2000[K]. The list has been kept as small as possible in order to simplify the
computation. A more comprehensive analysis must be done to include other radicals,
soot and cracked fuels.

Assume a complete combustion for a stoichiometric mixture (¢ = 1), the reaction is
then can be described as

€ CxHyOzNw + O3 + YNy = n1C03 + naHy0 + ngNy (1)



The mole fuel oxygen ratio € can be determined from the balances of C, H, O atoms

4

TIX+v-2Z (2)

The sections below discuss the models for low temperature range and high tempera-
ture range separately. Comparisons between them are also made to show their differences
and the applicable range for each method.

2 Low Temperature Range

2.1 Chemistry at low temperature

At low temperature ( T < 2000[K] ), chemical dissociation effects on the properties
are small, only the water gas reaction will be considered. Combustion processes could
be described as

e 9 CxHyOzNw + O3+ YNy —
n1002 + ’n2H20 + ’I'L3CO + n4H2 + n502 + 'n,eNz + (1 - B)€¢CxHyOZNW (3)
where

n; Moles of species ¢ per mole of O reactant.

B The burned mass fraction of the fuel, or the progress variable.

Consider the burned and unburned gases separately, n; can be determined by using
following assumptions

e For lean mixtures (0 < ¢ < 1), CO, H; can be neglected.

e For rich mixtures (1 < ¢ < ¢Pmaz), O2 can be neglected. and ng = C will be
determined from the water gas reaction.

e For over-rich mixtures (¢ > @maz), CO2 and H20 burn to form CO, H,, extra fuel
is left without burning.

The results for unburned gas B = 0 and burned gas B = 1 are listed in Table 1

For a mixture of the unburned and burned gases (0 < B < 1), the mole fraction y;
can be expressed using the mass fraction z; as

o miMi

where the M; is the molecular weight of ith species.

(4)



Species B=1 B=0

i 0<¢<1 1< ¢ < bmaz Pmaz < ¢ | 0<¢$<o0
CO, epX epX - C 0 0
H,0 legy LegV-20—14C 0 0
co 0 c 2 0
H, 0 20¢-1)-C =7 0
o)) 1-¢ 0 0 1
Ny ¥+ seoW )+ se¢W b+ 1y P
Fuel 0 0 €p— X_EZ 120

Total |(X+3Y+iW)ed | (X+3iY+iW)eg | 2rtl=2 1+ed+

nr +(1-¢)+9 +¢ +ed + 9

Table 1: Number of Moles n; for Mixtures with B =1and B =0

Let us consider a mixture composed of two components: unburned gas ‘U’ and burned
gas ‘B’ the mole fraction of each component can be expressed as a function of burned
fuel mass fraction B

. 1-B
MB . —_ MU
Y =B, B Yo=TEB, B (5)
MU MB MU MB

The mole fraction of each species can be computed as

_ o _ (1= B)(niy) + B(nig) _ ni
Yi = ytva + yszB —' (1 _ B)("TU)+ B(nTB) = nr (6)

It can also be derived, from another point of view, by dividing the total reactant per
mole of O3 in equation 3 into two parts. Let the amount B(e¢Cx Hy Oz Nw + O2+ ¢ N2)
of reactant be completely burned, the remaining (1 — B)(e¢Cx HyOzNw + Oz + 9 N3)
stay completely unburned, then mix them as two non-reacting components.

The water gas reaction mentioned above is the reaction

COz + Hy = CO + Hy0 (7)



Species 0<¢<1 1< ¢ < bmas bmac < ¢
CO;, ¢¢XB (e¢X — C)B 0
H,0 %aﬁYB [3e¢V-2(p-1)+C]B 0
co 0 CB X
H, 0 [2(¢-1)-C]B ==
0, 1- B¢ 1-B 1-B
N, Y+ 5e¢WB ¥+ 5e¢WB Y+
Fuel (1 — B) e¢(1 - B) b — 25
Total | (X+1Y4+iW)edB | (X+3Y+iW)edB iw-ip
nr | Htle-(4)Blg+¢ | +(1-B)(1+eg)+y | +1-B+eg+y

Table 2: Number of Moles n; for a Mixture with 0 < B <1

which is assumed to be in equilibrium at the given T'. The equilibrium constant K is a
function of temperature and it is approximated to fit the JANAF Table [9] as

1000

K(T) = exp(2.743 - 1.761Z — 1.6112% + 0.28032%);  Z = = (8)

The relation between the equilibrium constant and partial pressures of species

_ PooPuyo _ CliedY — 2(¢— 1) + C] )
- P002PH2 (€¢X - C)[2(¢ - 1) - C]

K(T)

gives a quadratic equation for C

(1- K)C? + {%eqﬁY Z 2= 1)+ [2Ad— 1) + dX]K}C - 26X($- 1)K =0 (10)
Introducing following transformations for convenience

§=3epY —2(¢—1)

o=2¢-1)+epX

a=21-K) (11)
B=6+0K

v =2eX(¢~1)

5



equation 10 can be simplified as

%(724-[30—71(:0 | (12)

To be physically meaningful, C is solved by taking only the positive root as

Bt VB + 207K
[4

(13)

In order to determine the maximum equivalence ratio @mq, in the products, the
physical constraint that the number of moles for each species cannot be negative is
applied, which results following conditions for C

C < edX [CO,]
C > 2(¢-1)-Lepy (H,0] (14)
C >0 [c0]
C < 2Ap-1) 1]

The results for octane CgHig, which has € = 0.08, are plotted in the Figure 1. The
possible C — ¢ solutions have to be located within the shaded area. When ¢ approaches
®maz, C has to be under the [CO,] line and above the [H;0] line. In the limit, we have

€¢mazX = Cmaz; = (2X - Z)€¢ma:c -2 (15)
which gives

2 2X
Pmaz = xX-2) Cmaz = Xz (16)

When ¢ > ¢4z, the reaction can be described as

€¢ma.1:CXHYOZNW + 02 + ¢N2 + €(¢ - ¢max)CxHyOZNW —

1
CrnazCO + [2(¢maz - 1) - Cmaa:]H2 + (1/) + §€¢WBmaz)N2 (17)
+(1 — Bmaz)f¢CXHYOZNW

where the underlines denote the extra fuel left over. Noting the analysis also imposes a
constraint for B at the large fuel-air ratio range

I 6 < bz
Bmaz - _ngﬂl ¢ 2 ¢maz (18)
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B B < Bz
Bunas B> Bas (19)

The valid B range is shown as the shaded area on Figure 2.

2.2 Partial derivatives of composition at low temperature

The partial derivative of QE-‘ is nonzero when 1 < ¢ < @pqz, Where it is

(?n, oC
o7 = TABli] (57) B (20)
with TAB=[-1, 1, 1,-1, 0, 0, 0 ]

The partial derivative of C with respect to T' can be obtained from equation 8 and
equation 13 using the chain rule

0C 0CdK
9T ~ 9K aT 2)
The first partial derivative on the right hand side is
2 _
0C C*-aC+y (22)

oK aC + 0

noting j—;’é = -2, EI'B? =0, d % = 0 and equation 12 have been used to simplify the result.

Getting the second part is straight forward

K o dZ
T = K(-1.761 — 3.222Z + 0.8409Z )dT (23)
And also using equation 13 and 4% %% = O’Zg (2+eX)K-(2-3¢Y ), & 7 = 2eX(2¢9-1)
0C 2KeX(2¢-1)-[(2+ eX)K - (2- 1Y)|C (24)

9 - aC+p

The other partial derivatives needed in the computation are listed in Tables 3 and 4.
Obviously, these tables are obtained by operating on Table 2.

The derivative of B with respect to ¢ in Table 3 can be derived from equations 18
and 19

% (25)

OB —Qﬁi B Z Bma,:c and ¢ 2 ¢ma:z:
- 0 otherwise



Species 0<¢<1 1< ¢ < bmas $maz < ¢
CO, ¢XB (X -%5)B 0
H,0 iy B (3ey -2+ £5)B 0
co 0 5B (#5)%
N 0 (2-%)B ()2
0, -B 0 _6_{3.
e 3WB 3WB ()%
R | d1-B) 41-5) ()8
Ony | (X+1Y+iW)eB | (X+1Y+1iW)eB (AerEpr=2)2n
¢ +e—(1+¢)B +¢(1 - B) te-2B
Table 3: Partial Derivative of n with respect to ¢
Species 0<¢<1 1< ¢ < bmaz Pmac < ¢
CO, €¢X ¢X - C 0
H,0 lepy 1edV-2(4-14C 0
co 0 - cC 2
H, 0 2A¢—-1)-C -
02 —¢ -1 -1
N, LW LegW e
Fuel —€¢ —ed —3iz
dng (X+3Y+3W)ed (X+3Y+4W)es WAY4W=2 )
0B —(1+¢)¢ ~(1+¢€g)

Table 4: Partial Derivative of n with respect to B




2.3 Basic thermodynamic properties at low temperature

Combustible mixtures and their products inside engine combustion chambers could
be treated as an ideal gas.

On a mole basis (denoted by an over-bar)

R =8.31434 [kJ /kmol K] (26)
b= (yihi) (kJ/kmol] (27)
3= (vid) [kJ/kmol K] (28)

R
R = i (mT)R [kJ /kg K] (29)
(L ! -

M= (e mTZ( ) I/ke]  (30)

3 1 (5 P
= ) (nis) E[n, k '170 ) [kJ/kg K] (31)

where mr is the total mass per mole of O,.

mr = €My + Mo, + Y M, (32)

It is a conserved quantity for both reactant and product and is a function of ¢ only
for given fuel and air compositions. It has a derivative

= GMf (33)

The molecular weight of a fuel in above equations is

My =12.01X + 1.008Y + 16.00Z + 14.007W (34)
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2.4 Partial derivatives of properties at low temperature

From expressions in section 2.3 it is easy to show

L1OR _
ROT —
B =0
1R _ 1 (9nry_ L (3mr) (35)
RO ¢ np\ O¢ mp\ 8¢
19R _ L(ﬂz)
R3B — nr\ 0B
& = = YlER] + o Tlni( 53]
» =0 (36)
Oni om
g_};g =',,‘};E[( L) )hz]_‘n_f}' Tf)
2 = L Y55k
and
98 = L v {(Z2)(s - Bln(ud)} + 2 Tlni(5)]
25 _ _R
ZI.SJ' _ lP Oni\[z0 Rl P S (Omr (37)
55 = LA - Rin(yig))} — o (55)
a8

5 = 2 {35 - Rin(wif)]}

Q|

The last terms in equations 36.1 and 37.1 are related .to the frozen specific heat
which will be given in equation 84.1. The first terms in those equations are are nonzero
only when 1 < ¢ < ¢par and %ﬁ are given in equation 20 The other required partial
derivatives can be found in section 2.2.

Proceeding up to now, we have had all necessary information to calculate the required
thermodynamic properties and their derivatives at low temperature for computations.
The calculated results from the low temperature model are given later together with the
results from the high temperature model and comparisons are made there.

3 High Temperature Range

3.1 Chemistry at high temperature

At high temperature ( T' > 2000[K] ), chemical dissociation effects have to be taken
into account. The basic approach is based on the method developed by Olikara and
Borman [10] where a rapid means for thermodynamic property calculation is presented
compared to the extensive NASA program [4] in which a large number of species are
considered. In order to simplify the matter further, only the species of importance
because of dissociation are included. These species are OH, NO, O, H (see [3]), provided

11



the equivalence ratio ¢ < 3, beyond which solid carbon will be formed in the products.
Thus the species list in the program is terminated at ¢ = 11.

The hydrocarbon-air combustion process described in equation 3 could be expanded
as

€pCx HyOzNw + Oq + Y N2 — 1yCO3 + ny Ho0 4+ n3C0O + ngHy + 502 + ng Ny

+n70H 4+ ngNO + ng0 + nyoH + (1 - B)€¢CXHYOZNW (38)

where the nomenclature is the same as before and the stoichiometric fuel oxygen mole
ratio € is given in equation 2.

Atom balancing yields

C: BedpX (y1 + y3)nr

H:  BegY = (292 + 2ys + y7 + p10)nT (39)
O: 2+4+BepZ = (Qu+y2+ys+2ys+yr+ys+ye)nr

N: 2+ BegW = (296 + ys)nT

Also the constraint that the mole fractions of all species add up to unity must be
satisfied

- l)ep = Zyt - 1)n (40)
In order to solve for the 11 unknowns ( nr,¥;,¢ = 1,...,10 ), 6 more equations are

-needed which may be derived from the consideration of equilibriums among the products.

Following 6 major dissociation reactions are considered in the program

1/2

10, =H Ky = mil'}—
R P1/2
%02 =0 K2 = myj—

Hz + %02 = H,0
€0 +10, = CO,

K3=w%"“"175

Ys' Ys (41)
Ky = =7

4 Y5
1{5 = v y; ;2P1 /2
1(6 = v3 y; §2P1 /2

Equilibrium constants in equation 41 are curve fitted to the JANAF Thermochemical

Table [9] in the form

T
log K; = Ajln —— 1000

+ % +Ci+ DT + ET? (42)



where T is in [K], P in equation 41 is in [atm]. The coefficients A;, B;,C;, D;, and E;
are listed in Table 7 for the temperature range 300 < T < 5000K.

Rearranging the expressions for equilibrium constants, the mole fractions of the
species ¢ = 1,2,7,8,9,10 can be expressed as functions of the mole fractions of the
species ¢ = 3,4,5,6

Y1 = C1y3y;/2 Ci = KGP%
Y2 = 023/43/;/2 Cy = K5P2
yr = C'sy:/zygl,/z Cs = K4 (43)
ys = Cayayi/? Ci=Ky
v =Csys” Cs = P~
Y10 = Cey}i/z Cs=K,P2
fining
D = Be¢
dy =2y + DW
dy=2+D7
dy = DX (44)
dy=1+B(X -1)
ds = BX

equation 39 and equation 40 can be manipulated into a homogeneous form so that the
nt term is cancelled out

Y +y3)— X224+ 2ya+ y7 + y10) = 0

di(2y1+ v2 + Y3+ 2y5 + yr + ys + Yo) — d2(2y6 + ys) = 0

di(y1 +y3) — da(2ys + y8) = 0

di(pr +y3) +ds(ve+va+ys + v+ v+ s+ Yo+ y0—1)=0

Utilizing equation 43, equation 45 can be expressed symbolically as functions of ys,
Y4, Ys, Ye only

(45)

fj(y3ay4ay5ay6) =0, (.7 = 1’2a3a4) (46)

If we have an approximate solution [y3,¥%,¥5,%s] , where n denotes the approxi-

mation after the nth correction, reasonably close to the real solution of equation 46, a
further correction can be made by

Yt =gt + A (i=3,4,5,6) (47)

until the correction terms are smaller than a prescribed error allowance, which is the so
called Newton Raphson iteration scheme.
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The correction terms could be generated by a Taylor expansion of equation 46 about
a known vector. Neglecting the second and higher order partial derivatives we get a set
of linear equations for Ay

fi+(

of;
0y3

0
)

Or writing in matrix notation

[A][Y] = [F]

where [F] = [ f], [Y] = [Ay] and [4] = [§].

For convenience, defining following partial derivatives

so that

0v; . )
Dy =22, (i=1,2,7,8,9,10; j = 3,4,5,6)
0y;
_ 1/2 1 -1/2
Dy3 = Cry; Dis = 3C1y3y5
Day = Cays Dys = 5023143/5_1/2
Dry = 1Cay; i Drs = 1Csyy*y;""
Dgs = 1Cayg Pyl Dss = 3Caytl2y; 2
Dgs = %053/5_1/2 Dioq = %Ceyzl/z

Elements in the [A] matrix can then be expressed as

Ay =Y(Diz+1)

Ay = —X(2D24 + 2 + D74 + D1o4)
A13 =Y D5 — X(2D2s + Drs)

A14 = 0

Ay = dy(2D13+1)

Az = di(Das + Dra)

A2z = d1(2D15 4+ Das + 2+ D75 + Dgs + Dgs) — da Dss
Azg = dyDgs — da(2 + Dgs)

Azt = di(Di3 + 1)

Az =0

Asz = dy.Dy5 — d3Dgs

Azg = —d3(2 + Dgg)

Ag = dy(Dy3+1)

Agy = ds5(Daa + 14 D14 + Dioa)

Agz = dyDys + ds(Das + 1 4 D75 + Dgs + Dos)
Asq = ds(14 Dsgg)

14

f; of; of; .
A —)A —)A —)Ays ~ 0, =1,2,3,4 48
)Ays + ( y4) y4+(8y5) y5+(8ys) Ye (J ) (48)

(49)

1)



The solution of the matrix equation 49 by means of the Gaussian elimination gives
the Ay required in equation 47. After the independent variables y3,ys,¥s, s in the
iteration are corrected, the dependent variables are updated using equation 43 at every
step until the convergence criteria are satisfied.

- 3.2 Initial estimate

It is necessary to make an initial estimation for the iteration described above since it
is not self starting. A low temperature model, where only the 6 species CO2, H,0, CO,
H;, O4, N, are considered, is found to give a remarkably good initial estimation.

The simplified equation reads

Be¢Cx HyOzNw + 02+ Ny — n1COq 4+ naH20 + n3CO + ngHy + 1502 + ng Ny (52)
The C balance Be¢pX = (y; + y3)nt with equations 43 and 44 give
DX

Y3 =———p— (53)
(14 Crys Hng
The H balance BedY = (2y3 + 2y4)nr with equations 43 and 44 give
DY
(54)

Ys =
2(1+ Czy;p)nT

Insert above relations into the O balance Be¢pZ + 2 = (2y1 + y2 + ys + 2ys5)nT, a
nonlinear equation for ys is derived

1
fs=D[X(1+g)+ §Y92 - Z]+2(ysnr—1) =0 (55)
with

1
! -
f5 - 2D[Clgl + 20292] yg/g +2nT (56)

so that ys can be iterated to a given accuracy

o = g7 - (%)” (57)
5

The function g is defined as

g = _Cﬁ;/z_ gl = _912__
1+ Ci?/;/ 2 ' 20:'1/?/2

and the total mole number nr can be taken from Table 2 as a first approximation.

(58)

15



The mole fraction for nitrogen ys can be estimated as

_ P+ 3DW
=-—

Ye (59)

The results of computed composition are shown in Figures 3 - 6. Having the compo-
sition available, we pursue further to calculate the partial derivatives of mole fractions.

3.3 Partial derivatives of composition with respect to T' and P
at high temperature

The independent derivatives are obtained by solution of the matrix equation that
results from differentiating equation 48

df;
5§-+

In matrix notation

(0435 01\ 0us

9f;\9ys , Of; 0ys _
ovs) 0t oy 0e T By oe T (o)

Gy oe T (aye 0e =

0, (7=1,2,3,4) (60)

[A] [Y’E] = [F7E] (61)

where £ could be T, P, ¢, or B, [Fy¢] = [_%Et]’ Ye] = [%2‘] and [A] is identical to that

used in equation 49. The elements %5[ on the right hand side can be evaluated from
differentiating equation 45

ot = V&5 - XRE (G + £ (5 + 8 (5P
= algGH+ @ EE £+ £GP
- #(57)
%= ag(3) - a8
& =43 (%)
+GEGRHEG RGN RGO+ RER (6
=5 - XREER) + 453
AL ACRR AR AC D)
P = (5)
9 = A (53) + 42 (53) + £ (58) + (5%

3
The required partial derivatives of C' with respect to T' and P are

16
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Figure 3: Combustion Product Compositions as Functions of ® (P = 30 [atm])
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at high temperature
The partial derivatives of the mole fractions with respect to ¢ and B are similar,

except with 0/0¢,0/0B replacing 0/0T,0/0P. Noticing only the parameter D is a

3.4 Partial derivatives of composition with respect to ¢ and B
function of ¢ but none of C; is, the expressions are therefore much simpler



Il

0

an

3B

%‘% =(@)W2pn + 1y +ys+2ys +yr+ys +v9) —

8 = ()W (y1 + ) — X(206 + vs)]

%% = -y —y3— Xyu

where

aD oD
e 459} 9B

and the partial derivative 28 ¢ is given in equation 25, where
®maz 18 set to be approximately equal to 3 to prevent the
fractions.

The other partial derivatives of mole fractions are

%% = (%)[W(Zyl +y2+y3+2ys + y7 + Ys + vo) — Z(2y6 + Y3)]
%% = (B2) W (y1 + y3) — X(2y6 + vs)]
S = (8B)(-v1 - 93— Xyn)

Z(2ys + Y3)]

=€p (67)

the equivalence ratio limit
presence of negative mole

3 = Dis()+ Dus(5) S = Dua(38)+ Dis(38)
82 = Dau(%4)+ Das(32) %2 = Dyy(34)+ Das(38)
%2 = Du(38) + Drs(35) % = Dr(%)+ Drs(2%) -
% = Dgo(32) + Dss(32) 88 = Das(38) + Dss(2%)
3 8 ) 3
¢ = Dos(3%) 58 = Dos(3%)
3 3 9
% =Diu(3) 3= Duod(3H)
3.5 Basic thermodynamic properties at high temperature
The required thermodynamic properties in engine combustion simulations are
R=L [kI/kg.K] (69)
= M g.
1 —.
h=<r Y (yihi) (kJ/ke] (70)
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§=— Z [kJ/kg K] (71)

The equivalent molecular weight M of the mixture in above equations is

M= (yM;) (72)
and it has derivatives
oM 6y,‘ )
S = DG @

The entropy 3; in equation 71 should include both temperature contribution and
pressure contribution under the partial pressure P; = y; P of the species “:”.

, — P

5 =3 — Rln(=

Si=3]— Rln( Po) (74)
So that equation 71 can be written as

s = 57 Sl - Blngs)] - Ria() (79)

3.6 Partial derivatives of properties at high temperature

The partial derivatives of properties can be derived from section 3.5 as

1R 1.,0M

RoE M(6§ (76)
on_ hou 1oy O

0. oM a, _R,QP

a—z ""ASZ_ = S5 y (3 -Rlng)+— Z 95t e (@

Enthalpy h; and entropy 3; are oﬁly functions of T and they can be found from

equation 84 as Z'-,, and %ﬂ Therefore, the last term in equation 77 and the third term in
equation 78 will vanish except when £ = T. The last term in equation 78 is finite only
when ¢ = P.
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3.7 Relations between F and ¢

The representations of the fuel mass fraction F' and the equivalence ratio ¢ are

exchangeable. Their relations can be derived from the definitions

__m o= Lma)
ma +my’ (),

A simple manipulation gives

and

T (1-F)+F.9

where F, is the stoichiometric fuel mass fraction

F o= EMf
°T 6Mf+MOQ +¢MN2

The derivatives have a correlation

9 _1-F 1 9
aF =R )(l—F)2 ¢

4 Results and Discussion

(79)

(80)

(81)

(82)

(83)

The calculated results for properties using the both methods are shown in Figures 7

12.

1. Unlike other available programs which will predict a unrealistic negative species
concentration when the equivalence ratio ¢ > 3, the present program is capable of
covering the entire fuel mass fraction range 0 < F' <1 (0 < ¢ < o0 ) at an expense
of neglecting the solid carbon formation under fuel rich conditions (Figure 10 and
11). It preserves the original fuel structure in order to simplify the calculation. If
one is interested in modeling fuel cracking or soot formation, an additional sub-
routine is needed to carry out the calculations of corresponding reaction equations.
This capability is crucial in stochastic Diesel combustion modeling since we are
often confronted with computing the properties of fuel rich elements due to the
heterogeneous nature of the combustion process. Suppose a pure air element could
always be found to mix with, the sequence of the resulting equivalence ratio from

a pure octane fuel element would be ¢ = 00,15.03,5.01,2.15,1.00,.
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2. The dissociation effects on properties become important starting about 7 = 2000
[K], (Figure 7, 8) The rapid increases in h and Cp are mainly due to the shift-
ing of composition from C Oy, H20 to high enthalpy containing radicals, such as
OH,NO,O0, H (Figure 4, 13.b). The maximum deviation of the calculated specific
heat from the simple routine happens at around T' = 4000[K]. Beyond which, the
effect of the decrease of CO3, Hy0 (Figure 4), which have large specific heats (Fig-
ure 13.a), dominates, that is, the decrease of the frozen specific heat dominates,
although the concentrations of radicals O, H still keep increasing. This provides us
an opportunity to save some computer time by using the simple routine if one is
only interested in energy balance with the exception of near the TDC range where
the peak temperature is too high to neglect the dissociation effects. Also, because
of the lacking of the initial conditions to start calculation, simulation programs
usually run for several cycles using guessed initial conditions until some conver-
gence criteria are reached. The convergence process can be sped up by using the
simple routine in pre-convergence cycles.

3. The pressure effects are small compared with effects of the other three independent
variables T', F', B. Increasing the pressure actually reduces the effects of dissoci-
ation reactions (Figure 7, 8). It helps in some degree when the simple routine is
used in pre-convergence cycle calculations because high gas temperature near the
TDC is always associated with the peak pressure. The simple routine is totally in-
dependent of pressure since the pressure dose not appear in the water-gas reaction
equilibrium equation, and all derivatives with respect to pressure therefore vanish
in the simple routine. '

4. In some range of fuel rich region, increasing the progress variable B gives an en-
dothermic reaction instead of a exothermic one (Figure 9.b, 11.a). The reason for
those phenomena is that the maximum utilization of the oxidizer is allowed in the
program. The definition of the B is the mass fraction of the burned fuel over the
total available fuel, and there is no restriction on the available oxidizer. Therefore
in a fuel rich case, small B allows fuel to find more oxidizer and the actual air fuel
ratio of the products will be closer to the stoichiometry until the oxidizer is used
up. This in turn gives more energy release. As the B increases, more and more fuel
is put into reaction, this will cause a shift of the actual air fuel ratio towards to the
richer input value, the reaction will be endothermic. If a totally unmixed model is
desirable, such as in SI engine simulations, multizone modeling, the program can
be called twice setting B = 1 and B = 0, then combining the results using the
mixing rule according to the fractions of the both burned and unburned gases. The
corresponding results are shown in Figure 12.
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Figure 13: Curve Fitting of the JANAF Table Data

5 Thermodynamic Properties for Elements

A simultaneous polynomial fitting of the specific heat -C’—p, enthalpy » and entropy
3° to the JANAF Table [9] data is used to evaluate those thermodynamic properties as
functions of temperature at the reference pressure P, = 1 [atm]. The functions employed
are

=a; + a T + (13T2 + a4T3 + a5T4

T 272 T3 4
o+ 2 +3 +— +5T+T

(84)

sl oy Bls =il

lnT+a2T+—T2+ T3+%T4+a7

the enthalpy & and entropy 3° are related to C,p as

Bi= / C,dT;

P
- [Ga
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Figure 14: Fuel Thermodynamic Properties
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The coefficients are listed in Tables 5 and 6. There are two sets of coefficients to cover
both low temperature range (300—1000[K]) and high temperature range (1000—5000[K])
because it was found long ago that the thermal properties tend to have characteristic
knees around 1000 [K]. Thus a single polynomial fit may not give a good reproduction
of the original data, the pinned polynomials used here give relative low deviations. The
results of the fitting are shown in the Figure 13.

Other alternate polynomials for fuel properties are found in Ferguson [3] or Hey-
wood [6]. Since most thermodynamic data tables cover temperature ranges too low
for combustion calculations, those polynomials, when extrapolated to higher tempera-
tures, will give improper results, especially for —C—'p curves (see Figure 15). To overcome
this inconvenience, the coefficients in the Table 6 were calculated using the Woihoit’s
method [13] which forces _C—’,, curves to approach asymptotically the correct classical
upper values at T

6 Transport Properties

A simple approach for computing transport properties for working fluids is assume
that they can be represented by the values for air. Approximate correlations fitted to
air data could be used

T1.5
= -6 __—
p=1468x10 T 1104 [Pa 5] (85)
kW
= -7 m0.748 kW
A=365x10""T [m K (86)

The principal advantage of these correlations is computation speed. For such ap-
proximations the properties vary as function of temperature only, but not vary with gas
composition and pressure. The measured property dependence can only be explained by
more sophisticated models.

A more rigorous treatment of gas transport properties based on more realistic in-
termolecular potential energy models can be found in Hirschfelder el at. [8], which also
presents methods for computing the transport properties of mixtures of gases. The pro-
cedures used in our program to compute the transport properties are basically based on
those techniques.

According to the Chapman-Enskog theory [1], the viscosity and thermal conductivity
of a pure monatomic gas may be written as

i = 2.6693 x 1076 V:;Aé [Pa 5] (87)
Pk ]
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Figure 17: Integral Function for Transport Properties

- VTIM; kW
A = 8.3224 x 10 20 el

(88)

where M is the molecular weight, o is the molecular diameter in [A], and ( is the
dimensionless integral of order unity dependent on the details of the force interaction
during a collision. For the Lennard-Jones interaction, which assumes the potential energy
¢ is a function of the distance r separating two molecules, ¢; = 4 ¢; [(Z)!? — (£)], the
integral function is given by Hattikudur [5] and may be curve fitted as

0; = 1155701462 | (,3945¢~06672T" | 9 05~ 2168T¢ (59)

where T™* is a dimensionless temperature scaled by the Boltzmann’s constant k¥ and the
maximum energy of interaction during the collision €

Ti* = - (90)

A partial list of the interaction parameters is given in Table 8. When values of ¢ and

€ are not known, they may be estimated from the properties of the fluid at the critical
point

1
~ 0.77T; o~ 84153 ~ 113.75(=)3

>l e
o83
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From equation 87 and 88, the monatomic gas relation between A and p is

15 5
Ai = - Rimi = ECviﬂi (91)

Although the viscosity formula was derived for monatomic gases, measurements show
it is remarkably good for polyatomic gases as well. The thermal conductivity model
dose not take into account the vibrational and rotational energy exchange in collisions
between polyatomic molecules which contribute to energy transport in gases of interest
in engines. Comparisons with experimental data show some discrepancy for polyatomic
gases. Eucken [2] proposed an empirical correction expression

5
Ai = (Cp; + 7 RiJus (92)

The monatomic formula is a special case of equation 92 because C, = %R for
monatomic gases. Equation 92 also gives a simple method of estimating the Prandtl
number

Cpp _ Cp
X~ C,+125R

which is in good agreement for monatomic and diatomic gases but less satisfactory for
more complex gases.

A semiempirical formula for the viscosity of a multicomponent gas mixture was pro-
posed by Wilke [14]

Pr=

(93)

ytut yz
pr S Yk A Y = 94)
=1 2= 9% Z i=1 y,‘I’,, (
in which
1, M1
(14 (&)2(34)¢]
ij = fe (95)

M;\i
%&ﬂ+ﬁﬂ2
In the case of reacting mixtures, that are mixtures in which, compositions shift with
temperature and pressure, as opposed to frozen mixtures, there is also a contribution
due to the dissociation and recombination as molecules fluctuate back and forth in the

temperature gradient driving the heat flux. In order to take into account this effect
following approximation could be used

Do = A2 (96)

where C), is the equilibrium specific heat and C, is the frozen specific heat. The results
are given in Figures 18 and 19.
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A APPENDIX: COEFFICIENTS
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_emperature Range

300 < T < 1000 [K ]

|

a3

a4

as

.a6

a7

.83465E-05
.57805E—-05
.54314E-05
.81007E-05
.12532E-04
.12596E —-04
.21813E-04
.13469E-04
.71701E-05

32672E-05
-.21823E-05

—-48251E-08
-12578E-07
—.21260E-07
-.29215E-07
-37015E-07
—44284E-07
-54234E-07
-58321E-07
—87932E-08

-.16375E-07
~.34845E-07

.83841E-13
45863E—11
92433E-11
12673E-10
.15256E-10
18722E-10
.20809E-10
.26347TE-10
.23906E—11

73522E-11
18421E-10

-.10027E+05
-11239E+05
-13955E+05
-17126E+05
—.20038E+05
-22927E+05
—.26003E+ 05
-.28873E+05
—25353E+05

—29674E+4-05
.89179E + 04

44047E 401
.14432E4-02
.19355E 402
.18349E 402
.18773E+02
.20881E+02
.17509E+4-02
.21120E+4-02
11233E4-02

18271E+402
.37036E+02

_ “emperature Range

1000 <

T < 5000 [ K

]

a3

a4

as

ag

a7

—.27888E-05
—45573E-05
—.62839E-05
—~.78760E—-05
-.35333E-05
-.35307E-05
-11120E-04
~.12878E-04
-.30503E-05

-.35144E-05
—.65489E 05

40232E-09
67250E-09
91794E-09
.11502E-08
—-57422E-09
—-.54662E - 09
.17132E-08
.17911E-08
.43588E - 09

42572E-09
.98388E - 09

—.20206E-13
-.35982E-13
-48124E-13
—-60251E-13

15159E-12

14789E-12
-.96212E-13
-.88109E—-13
-22247E-13

-15468E-13
—53417E-13

—-10162E+05
—12718E+405
—16465E+05
—.20519E+05
—.25537E+405
—.30738E+05
-.33679E+05
-36113E405
—.26158E+05

—-.31944E+05
40879E+ 04

.75069E+01
-.52395E4-01
-17844E+-02
—-.32140E 402
-.63729E 402
—.95832E+02
—.94335E+02
—-.89323E 402

.23782E+01

—-16427E+02
—.43938E+02

-=icients for Fuel Thermodynamic Properties
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i A B C D E
K, .432168E+00 | —.112464E+05 .267269E+01 | —.745T44E—-04 .242484E-08
Ky .310805E+00 | —.129540E+05 321779E4-01 | —.738336E—04 .344645E—08
K3 150879E-01 | —.470959E+04 .646096E+-00 272805E—05 | —.154444E—08
K4 | —.141784E400 | —.213308E404 .853461E400 .355015E—04 | —.310227E—-08
Ky | —.752364E+00 .124210E4-05 | —.260286E+4-01 .259556E—-03 | —.162687E—07
K¢ | —.415302E-02 .148627E+05 | —.475746E401 124699E—03 | —.900227E—08
Table 7: Coefficients for the Equilibrium Constants
Species o [A]  ¢/k [K] | Species o [A]  ¢/k [K]
CO, 3.996 190.0 CH, 3.822 137.0
H,0 2.641 809.1 CyHg 4418 230.0
co 3.590 110.0 C3Hg 5.061 254.0
Hy 2.915 38.0 C4Hyp 5.341 313.0
0, 3.433 113.0 CsHy 5.769 345.0°
N, 3.681 915 CeHiy 5.909 413.0
OH 3.147 79.8 CsHis 7.451 320.0
NO 3.470 119.0 CeHs 5.270 440.0
0 3.050 106.7
H 2.708 37.0

Table 8: Collision Parameters
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