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For many decades, the Vehicle Routing Problem (VRP) and its di�erent variants have
been studied and found applications in the real world. This paper brie
y surveys VRP
instances with applications to multi-objective Unmanned Aerial Vehicle (UAV) operations.
Focusing on multi-objective multi-UAV mission planning problems, we try to take advan-
tage of the literature in the VRP and its variants. We show that each military multi-UAV
mission has its corresponding VRP variant. We present a novel algorithm that relies on
an enhanced tree search algorithm to solve complex multi-UAV mission planning problems
with complex constraints. In simulation, we introduce examples for practical problem sizes
in military UAV applications.

I. Introduction

The VRP is faced every day by thousands of distributors worldwide and has signi�cant economic impor-
tance. In recent years, many service suppliers and distributors have recognized the importance of designing
e�cient distribution strategies to improve the level of customer’s service. The VRP arises naturally1 as a
central problem in the �elds of transportation, distribution and logistics. Some market sectors have reported
that utilization of computerized methods for transportation often results in signi�cant savings ranging from
5% to 20% in the total costs.2 In the last decade, new insights and algorithms have been obtained for the
classical determinstic VRP as well as for natural stochastic and dynamic variations of it. These new de-
velopments are based on theoretical analysis, combined probabilistic and combinatorial modeling, and lead
to new and e�ective algorithms and a deeper understanding of uncertainty issues in vehicle routing prob-
lems.3 The VRP is an NP-hard problem with many extensions such as the Vehicle Routing Problem with
Time Windows (VRPTW) and the Multiple Depot Vehicle Routing Problem (MDVRP). These extensions
easily lend themselves to Unmanned Aerial Vehicles (UAV) task assignment problems. Cosidering the VRP
applications, military UAV missions have emerged in the literature in the last decade.4{6 The UAV routing
problem is comparable to the Vehicle Routing Problem (VRP). The VRP optimizes the routes that several
vehicles should follow when delivering goods to a network of customers from a single place of origin, a depot.
When assigning UAVs, the customers are analogous to targets and the depot is the launch and landing site.
In,7,8 A VRPTW is developed to minimize both the total distance of the routes and the number of vehicles
by minimizing the summation of all chosen routes between customers in a supply delivery scenario. Joint
and overlapping tasks and limited time windows were imposed in.9 In,6 a MILP formulation for a wide
area search munitions team of UAVs to search and destroy various targets was implemented. Each target
required three distinct tasks to be executed in a speci�c order. In,4 a vehicle routing algorithm was applied
to an ISR type scenario using a small team of UAVs with speci�c emphasis on an urban environment.
Because the UAV task assignment problem is NP-hard, the size of the problem and thus the computational
e�ort increases exponentially. This issue is speci�cally investigated in.6 With �ve UAVs, four targets, and
three tasks per target the computation was terminated because of the excessive computation time.6 A prob-
lem formulation, therefore, must be created that is robust enough to examine a wide variety of scenarios
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and accommodate additional operator constraints, but must also be computationally e�cient. Focusing on
the VRP from the military multi-UAV task assignment perspective, there is a number of disparities. In,7,8

there is only one depot since the vehicles will be routinely traveling along their assigned routes. The combat
environment of the military in which the teams of UAVs will be operating will not necessarily be limited
to just one depot or launch site; the scenario may require multiple di�erent launch and landing sites. The
time windows of the VRPTW will also not necessarily need to be imposed, but an operator may choose to
impose various other timing constraints.
In this paper, we focus the discussion on military mission planning in which there might be heterogeneous
targets and UAVs, and perhaps not all the objectives must be accomplished nor all UAVs must be used.
For instance, an objective might be to cover a subset of the targets, assuming that some other criteria are
satis�ed, e.g. another partial task has been completed or a speci�ed amount of time has elapsed before
servicing this target. The mission planning algorithm should be able to decide when and which target to
service using perhaps a cautiously selected subset of the UAVs in order not to risk them all. Given these
speci�cations, solution methods are also required to plan the mission in an optimal way considering the
given constraints. In this paper, we propose an enhanced tree search based algorithm that yields the exact
solution for a broad subset of these combinatorial problems. We argue by examples that this algorithm can
handle the basic VRP-like mission as well as di�erent variations of it. We also employ a slightly generalized
version of Multiple Depot Vehicle Routing Problem with Time Windows (MDVRPTW), to which we add
certain technical and timing speci�cations, encoded as a set of linear constraints. We also present examples
of practical sizes with complex mission objectives and several temporal constraints in the paper.

The rest of this paper is organized as follows. In section II we formally introduce the basic Vehicle Routing
Problem de�nition, formulation, and classi�cation. A survey of di�erent VRP instances with applications to
military missions is discussed in section III. Our proposed methodology to solve di�erent complex military
UAV missions is presented in section IV. Section V introduce simulation results for example missions. The
paper ends with conclusion.

II. Basic VRP

The Vehicle Routing Problem (VRP) is one of the most challenging combinatorial optimization and
nonlinear programming problems. The interest in VRP is motivated by its practical relevance as well as by
its considerable di�culty. In this section, we introduce the basic VRP de�nition, formulation, classi�cation,
and most common solution techniques.

II.A. VRP De�nition

The Vehicle Routing Problem (VRP) (problem formulation) is a generic name given to a whole class of
problems in which a set of routes for a 
eet of vehicles based at one or several depots must be determined
for a number of geographically dispersed cities or customers. The objective of the VRP is to deliver a set
of customers with known demands on minimum-cost vehicle routes originating and terminating at a depot.
Numerous methods have been developed for searching the optimum solution for the problem, but even for
the smallest problems, �nding the global minimum for the cost function is computationally complex.

II.B. VRP Formulation

The VRP is a combinatorial problem whose ground set is the edges of a graph G = (V;E). The notation
used for this problem is as follows:

� V = fv0; v1; : : : ; vng is a vertex set of locations.

� E is the set of n cities.

� C is a matrix of non-negative costs or distances cij between customers vi and vj .

� Riis the route for vehicle i.

� m is the number or vehicles (all identical and traveling at constant speeds). One route is assigned to
each vehicle.
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When cij = cji for all (vi; vj) the problem is said to be symmetric. The VRP thus consists of determining
a set of m vehicles routes of minimal total cost, starting and ending at a depot, such that every vertex in V
is visited exactly once by one vehicle. The cost of a given route (Ri = v0; v1; : : : ; vn+1), where vi 2 V and
v0 = vn+1 = 0 (0 denotes the depot), is given by:

C(Ri) =

nX
i=0

ci;i+1 (1)

A route Ri is feasible if the vehicle stops exactly once at each customer’s location and the total duration of
the route does not exceed a pre-speci�ed bound D : C(Ri) � D. Finally, the cost of the problem solution is:

FV RP (S) =

mX
i=1

C(Ri) (2)

II.C. VRP Classi�cation

While the classical view of the VRP is static and deterministic, in many of the practical applications there
are signi�cant stochastic and dynamic components to the problem. Indeed, demands in many real life
logistics systems arrive randomly in time as well as in size. Thus multiple-vehicles routing is a continuous
process of collecting data, forming tours, and dispatching vehicles. The analysis of these stochastic and
dynamic VRPs provides structural insight into the e�ect on the global routing performance of the number,
speed, and capacity of vehicles employed, service region size, and the target locations distribution. For every
routing instance, there is a corresponding bin-packing instance.3 Thus we can say that VRP-this di�cult
combinatorial problem- conceptually lies at the intersection of these two well-studied problems:

� The Traveling Salesman Problem (TSP): Assuming that the capacity of the vehicles C is in�nite, we
can get an instance of the Multiple Traveling Salesman Problem (MTSP). A MTSP instance can be
transformed into an equivalent TSP instance by adjoining to the graph k � 1 (being k the number of
routes) additional copies of node 0 and its incident edges.

� The Bin Packing Problem (BPP): The existence of a feasible solution for a given instance of the VRP
is an instance of the BPP. The decision version of this problem is conceptually equivalent to a VRP
model in which all edge costs are taken to be zero (so that all feasible solutions have the same cost).

A feasible solution to the full problem is a TSP tour (in the expanded graph) that also satis�es the packing
constraints (i.e., the total demand along each of the k segments joining successive copies of the depot does
not exceed C).

II.D. Solution Techniques

Due to the NP-Hardness of the VRP, no exact algorithm can be guaranteed to stumble on optimal tours
within reasonable computing time when the number of cities is large. In,10 the K-tree method succeed in
solving a problem with 71 customers for the CVRP (Capacitated VRP, de�ned below). To treat larger in-
stances, or to obtain solutions faster, heuristic methods must be used. Heuristic methods perform a relatively
limited exploration of the problem’s search space and typically produce good quality solutions within modest
computing times.11{13 In the hope of obtaining a more e�cient or more robust procedure, metaheuristics
have been proposed. Metaheuristics are generally applied to problems for which there is no satisfactory
problem-speci�c algorithm or heuristic; or when it is not practical to implement such a method. In meta-
heuristics, the emphasis is on performing a deep exploration of the most promising regions of the solution
space. The quality of solutions produced by these methods is much higher than that obtained by classical
heuristics.14,15
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III. VRP Instances with Applications to Military Missions

Intrinsically, the VRP is a spatial problem. Focusing on military VRPs, temporal aspects of routing
problems have become increasingly important. Some of the most important instances are:

1. Capacitated VRP (CVRP): CVRP is a Vehicle Routing Problem (VRP) in which a �xed 
eet of deliv-
ery vehicles of uniform capacity must service known customers demands for a single commodity from
a common depot at minimum transit cost. That is, the CVRP is like the VRP with the additional
constraint that every vehicle must have uniform capacity of a single commodity.16 A bomber dropping
a certain number of bombs to attack ground or sea targets is a military example of this problem.

2. Multiple Depot VRP (MDVRP): A MDVRP requires the assignment of customers to depots. A 
eet of
vehicles is based at each depot. Each vehicle originates from one depot, services the customers assigned
to that depot, and returns to the same depot.17 The objective of the problem is to service all customers
while minimizing the number of vehicles and travel distance. This aspect of VRP is characteristic of
military problems where the vehicles can take-o� and land from one of multiple bases.

3. Stochastic VRP (SVRP): SVRPs are VRPs where one or several components of the problem are ran-
dom. Three di�erent kinds of SVRP are: Stochastic customers, Stochastic demands, and Stochastic
times.18 Uncertainty in targets’ locations, arrival times, or types are military examples of this type of
VRP.

4. Periodic VRP (PVRP): In classical VRPs, typically the planning period is a single day. In the case
of the Periodic Vehicle Routing Problem (PVRP), the classical VRP is generalized by extending the
planning period to M days.19 In a prototypical mission in a military setting, teams of Unmanned Aerial
Vehicles (UAVs) can be used for wide area surveillance or border patrol everyday. In these missions,
the UAVs must ensure continued coverage of a certain area.

5. Split Delivery VRP (SDVRP): SDVRP is a relaxation of the VRP wherein it is allowed that the same
customer be served by di�erent vehicles if it reduces overall costs. This relaxation is very important
if the sizes of the customer orders are as big as the capacity of a vehicle.20 This instance’s military
paradigm can represent a group of UAV cooperating to attack tactical targets or troop concentrations.

6. Vehicle Routing Problem with Time Windows (VRPTW): The VRPTW is the same problem as the
VRP with the additional restriction that in VRPTW a time window is associated with each customer,
de�ning an interval wherein the customer has to be supplied. The interval at the depot is called the
scheduling horizon.21 Rendering a detonator inoperative before it triggers an explosive device is a
conventional military example for VRPTW.

7. The Vehicle Routing Problem with Pick-up and Delivery (VRPPD): VRPPD is a VRP in which the
possibility that customers return some commodities is contemplated. So in VRPPD we need to take
into account that the goods that customers return to the delivery vehicle must �t into it. This restric-
tion make the planning problem more di�cult and can lead to bad utilization of the vehicles capacities,
increased travel distances or a need for more vehicles.22 A good illustration for this instance is a friendly
unit which is pinned down by enemy units and needs to be rescued.

Many other variants as Capacitated VRP with Time Windows (CVRPTW),23 Multiple Depot VRP with
Time Windows (MDVRPTW),24 Periodic VRP with Time Windows (PVRPTW)25 and more were also
studied in the literature in the last decades.
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IV. SOLUTION APROACH

In this section, we present an algorithm that is capable of handling di�erent VRP instances. We do
this in order to emphasize real issues in multi-UAVs mission planning. We propose an enhanced tree search
algorithm that minimizes the VRP’s cost function, as well as satis�es the conditions that relate to its instance
and additional technical speci�cations that relate to the UAV mission and its targets conditions.

IV.A. Vehicle Routing

The vehicle routing module is composed of two parts. The �rst one is a Graphical User Interface (GUI)
tool that represents the technical speci�cations for the UAV mission, as well as the conditions related to the
VRP instance that we are handling. The second part is the tree search algorithm. In which, we built the
tree representing the VRP and search it to minimize the cost function while satisfying the speci�cations.

IV.A.1. Technical Speci�cations Representation

Since the main goal of this module is to emphasize how to route a team of UAVs while satisfying some
technical issues related to their mission, we introduce a GUI tool. Using this GUI tool, the operator can
quickly create an environment for the mission by specifying the location of targets, UAVs, and any impassable
obstacles. Using Fig.1 commands, the human operator will be able to specify the mission requirements as
well. For example if the mission in a certain scenario is to service either target T4 or T1, using the "or"
command button the user will click on target T4 then hit the "or" button and again click on target T1.
Following these steps, the Karmen simulator26 will understand the mission requirement.

 
Figure 1. Speci�cation Commands User Interface

IV.A.2. Baseline Routing

Using a tree search algorithm, this module generates a strategy for the mission that minimizes a cost function
as well as satis�es the mission speci�cations. The cost function considered is a 
ight time minimization for
each UAV. For minimizing the 
ight time, the cost used is the total distance traveled by each UAV while
prosecuting the targets. Using Euclidean distance for estimating the path length of the tree branches, each
UAV will have an ordered list of the targets. Other distance functions may be used as well (for example,
Dubins distance).

1. Tree Representation:

For a certain number of UAVs U = f1; 2; : : : ; Nug performing tasks on a set of targets T = f1; 2; : : : ; Ntg,
the tree is constructed by generating nodes that represent the assignment of a vehicle i 2 U to a target
j 2 T at a speci�c time. The child nodes are found by enumerating all of the possible assignments that
can be made, based on the remaining targets and requirements of the mission. Nodes are constructed
until all combinations of vehicles and targets have been taken into account. Note that a branch of the
tree, from a root node to a leaf node, represents a feasible set of targets for the UAV. If two UAVs will
launch from the same site, they will have the same list of targets so they may work cooperatively on
these targets. For a scenario of three vehicles servicing four targets, Fig.2 shows a part of the subtree
related to U1. In order to represent all the possible assignments for this scenario, there should be
another two subtrees related to U2 and U3. The top node of each of these subtrees is connected to the
root node of the entire tree. Each node represents one assignment of a vehicle to a target where the
notation Sij denotes that vehicle i servicing target j.
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Figure 2. Sample of Feasible Assignment for One Vehicle and Four Targets

2. Search Algorithm: Our search algorithm is initiated by a Best First Search (BFS) algorithm27 that
provides an immediate feasible assignment. Figure 3 presents a 
ow chart of the proposed BFS algo-
rithm for our problem. It starts with the root node of the tree and the estimated cost of each child is
calculated by using the lower bound Euclidean distance between the assigned vehicle and its designated
target. The child node with the smallest estimate is selected and the cost of a 
yable trajectory to
perform the assignment is evaluated.

 

yes 

calculate Euclidean 
distances for child nodes 

select node with shortest 
Euclidean distance 

Leaf  node? 

Best First Search 

no 

Best First Search 

Figure 3. Best First Search Flow Chart

3. Incorporating Technical Speci�cations: After constructing the tree for a certain number of UAVs Nu

performing tasks on a set of targets Nt, the BFS algorithm returns the optimal 
yable trajectory for
this set of UAVs and targets. The simulator blocks or holds some of this set according to the mission
technical speci�cations. The simulator returns the �rst set of targets the UAVs can start with now.
This �rst set of targets includes all the targets which were entered using the Start button and targets
which are not conditioned at all. All other targets will be on hold temporarily. The UAVs involved in
the mission will service this set of targets according to their occurrence in the BFS trajectory. After
servicing one of these Start targets, this target will either block another one "if it was entered using
ThenDon0t button or using Or button" or release another one "if it was entered using Then button".

4. Optimal Path: To investigate possible real-time path planning strategies of the cooperative task as-
signment problem in agreement with the previous conditions, it is usually assumed that the UAVs
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y at a constant altitude and speed and we reduce the vehicle kinematics to a unicycle model with
constant forward velocity. With these assumptions, the kinematic planar equations are:

_x = V cos ; (3)

_y = V sin : (4)

where x and y are the UAV horizontal (latitude and longitude) coordinates; V is the linear velocity;
and  is the orientation. The objective is to generate a path for the UAV to follow, from a given
position (xi; yi) that ends at a given position (xf ; yf ). Assuming a negligible wind condition, the UAV
path must minimize the path length or the 
ight time - they are equal in this simpli�ed case.

5. Performance Index: Di�erent performance criteria can be chosen for the UAV. One performance crite-
rion that can be used is the cumulative distance traveled by the UAVs to perform all of the required
tasks,

J =

NuX
i=1

Di � 0 (5)

where Di is the distance traveled by UAV i 2 U from the beginning of the mission until �nishing its part
in the group task plan. The group objective is to minimize J subject to the assignment requirements
of the mission.

6. Combinatorial Optimization Problem: The problem is to minimize the cost function J of Eq.(5) by
optimizing the assignments of vehicles to targets. Let S = f1; 2; ::; Ncg be the set of stages in which
the assignment is made. Let xfl;i;jg20;1 be a decision variable that is 1 if at stage l 2 S vehicle i 2 U
services target j 2 T and is 0 otherwise. Let cXl�1

l;i;j be the distance traveled by vehicle i 2 U to service a

target j 2 T at a stage l 2 S, given the prior assignment history; rXl�1
l;i;j be the resource travel distance

required to service a target; and bi be the resource availability of vehicle i 2 U (total distance each
vehicle can travel). The mathematical formulation of the problem is:

min J =

NcX
l=1

NuX
i=1

NtX
j=1

c
Xl�1

l;i;j xl;i;j (6)

Subject to

NuX
i=1

NtX
j=1

xl;i;j = 1; l 2 S; (7)

NcX
l=1

NtX
j=1

c
Xl�1

l;i;j xl;i;j � bi i 2 U: (8)

In Eq.(6) we minimize the cost of the vehicle assignment subject to Eq.(7), which ensures that at each
stage, each vehicle i 2 U will have exactly one target j 2 T assigned. Equation (8) is to limit the
total resource requirement from each vehicle i 2 U to its capacity. After this ordered list of targets
is generated, the Karmen simulator will amend it according to the mission requirements passed from
the human operator. A new list of targets with their 
yable trajectories will be ready for the UAV.
Algorithm 1 shows the procedure for solving this problem to optimality.
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Algorithm 1: Searching MTL tree

for Ti = 1 to Nt do
switch fTi do

case Unconditional Ti
return fTi

= 1
case StartTi

return fTi
= 1

otherwise
return fTi = 0

for Ui = 1 to Nu do
build Tree for all fTi

= 1
Si;j(t); Si;j(t+ 1); : : :
for each branch Bi of the tree do

Bi = minUi

Pj=Na

j=1 Si;j ; Na 2 Nt

Assign TUi
from Bi

for each TU i 2 Nt do
fTUi

= 2

for Ti = Na to Nt do
switch fTi do

case Or Ti
return fTi

= 2
Go to 22

case Don0tTi
return fTi

= 2
Go To 22

case ThenTi
return fTi

= 1
Go To 15

otherwise
Go to 22

V. SIMULATION

In order to illustrate the framework presented in this paper, we consider three di�erent scenarios. A
�rst mission represents the basic VRP. UAVs with only targets with no constraints are used to illustrate
our tree search algorithm. A second scenario includes di�erent launch sites for the UAVs to represent the
algorithm handling MDVRP. A third example contains multiple-UAV launch sites with some timing and
technical constraints to focus on our algorithm solving the MDVRP with time windows and other technical
constraints.

V.A. Multi-UAV Mission as Basic VRP:

In this mission, We have three UAVs U1; U2; U3, one launch site L1, one landing site D1 and eight targets
T1; T2; T3; T4; T5; T6; T7; T8. Initial conditions of targets and UAVs can be seen as in Fig. (4). In our �rst
example, we are focusing on how our tree search algorithm works for the basic VRP. UAVs should visit
targets according to the shortest path cost function order list. When calculating the time required to travel
from one target to another, we used the Manhattan distance as in4 as a good measure of distance in urban
settings. The total mission time was 20 min. The servicing times for the targets were as given in table 1.
The algorithm was implemented in Matlab and run on a laptop computer equipped with a 1.8GHz processor
and 4GB RAM. The algorithm returned the solution in about 3.5 seconds, which included the initialization
time of the algorithm.
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Figure 4. Military Mission A as Basic VRP

Table 1. Servicing Times For Targets in Mission A.

UAV T1 T2 T3 T4 T5 T6 T7 T8

U1 8 12 17

U2 12 16

U3 19 16 13

 

Figure 5. Map of the Military Scenario B as MDVRP
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V.B. Multi-UAV Mission as MDVRP:

Let us consider a scenario with three UAVs, three launch sites L1; L2; L3, two landing sites D1; D2 and four
targets T1; T2; T3; T4. See Fig. 5 for the spatial distribution of the targets and the sites. The total mission
time was 20 minutes. The servicing times for the targets were as given in table 2. Notice that after U2

serviced T4 at 12 minutes, it traveled to land on D1 at 20 minutes. Also U1 serviced target T1 and target T3
then landed on D1 at 17 minutes. Here, we did not involve U3 and it will land on D2 at 19 minutes.

Table 2. Servicing Times For Targets in Mission B.

UAV T1 T2 T3 T4

U1 5 10

U2 6.5 12

V.C. Multi-UAVs in MDVRPTW-Like Mission

Figure 6. Map of Mission C

Let us consider another mission in order to illustrate the framework presented in this paper. Let us
consider a scenario with three UAVs U1; U2, and U3, two launch sites L1; L2; one landing site D1, and �ve
targets T1; T2; T3; T4; T5. See Fig.6 for the spatial distribution of the targets and the sites. The UAVs must
service targets T2; T3, and T4 as a group within the �rst 45 minutes and another UAV must service targets
T1 and T5 within 35 minutes. UAVs U1 and U3 are at launch site L2 so they should be launched from there.
U2 will be launched from L1. If U1 takes the second option (T1and T5), then it must land on D1 and it
should be the last UAV to land on the landing site D1. Furthermore, targets T2 and T3 must eventually be
serviced by U2 and servicing T3 cannot be done in the �rst 18 minutes, but target T5 should be serviced
before T3. After servicing T3, U2 should land on D1 but it cannot land on D1 until target T5 is serviced.
The mission in this case is to meet these speci�cations under the condition of limited 
ight time for each

Table 3. Servicing Times For Targets in Mission C.

UAV T1 T2 T3 T4 T5

U1 32 30

U2 26 34 17

UAV (60 minutes). The objective function was selected to be the total distance traveled by each UAV in
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order to minimize its 
ight time. The solution time of this mission was 45 minutes. The servicing times for
the targets were as in table 3. Notice that after U2 serviced T3 at 34 minutes, it traveled to land on D1 at
42 minutes. Also U1 serviced target T1 and then landed on D1 at 45 minutes.

VI. CONCLUSION

In this paper, we aim to show the correlation between the VRP with its di�erent instances and mili-
tary UAV missions. Motivated mainly by military multi-UAV operations, we introduce a brief survey on
the VRP instances and associate each instance with its corresponding hypothetical military mission. We
aspire to take advantageous of the large literature on the VRP and its instances in the �eld of multi-UAV
routing problems. Focusing mostly on solving complex multi-UAV mission planning problem with complex
constraints, we propose an algorithm that solves the problem to optimality. The expressive power of our
algorithm in handling complicated missions has been shown with three simulation examples. In the examples
we attach each mission to its corresponding VRP, seeking to open the road for further papers that discuss
this relationship and apply the ready made algorithms of the VRP to multi-UAV mission planning.
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