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The paper addresses the problem of multiple UAV trajectory planning with dynamic 
targets. The problem is studied under the MILP framework, where how to express the 
nonlinear time-dependent cost function between two targets in a linear form makes the key 
difficulties. To solve the problem, the cost function between two nodes is determined using 
propotional guidance law to achieve shortest chasing time, then it is linearized with non-
uniform segmented time intervals to keep the problem solvable with MILP. To process the 
problem with obstacle avoidance, additional time intervals corresponding to blocked 
obstacle regions are introduced into the cost function. Target leaving time decision variable 
values fallen in the intervals are treated as infeasible by introducing new logic decision 
variables. Various simulation examples verify the proposed method. 

Nomenclature 
B1 = a large enough number used in MILP constraints 
cij = flying time from target i to target j; in the dynamic target case it is time-dependent 
K = number of UAVs 
n = number of targets 
N = total number of obstacle polygon vertices 
tj = the time the UAV leaving target j 
xij = 0-1 decision variable 
vi = target velocity 
vp = UAV speed 

I. Introduction 
lthough much effort has been made regarding the problem of cooperative UAV trajectory planning with static 
targets, research aiming at dynamic targets seems rare. The mixed integer linear programming (MILP) based 

approaches constitute an important class of solutions,1-5 due to the efficient software implementation and global 
convergence features of MILP algorithms. Among these, a general design scheme is to minimize the cost function 
containing performance (usually minimum time) and destination reaching decision variables, and the constraint part 
includes aircraft dynamics, obstacle avoidance and other constraints. These methods have been so mature that they 
can work well in complex conditions where multiple UAVs cooperation and miscellaneous task constraints are 
considered. The problem scale in these methods depends heavily on the aircraft dynamic state equation constraints, 
and a long planning horizon will generate too much decision variables to be implemented in nowadays linear 
programming software. To deal with the problem, the rolling optimization techniques are usually adopted, such as 
receding horizon control and predictive control.1,2 However, the selection of proper time horizon arouses the new 
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problem. Too short horizon will produce less optimized result, and long horizon will increase the problem scale. 
Obviously, the underlying complexity of this problem arises from the inherent coupling between the task assignment 
and the trajectory generation. Therefore, Ref. 3 proposed to decompose these two problems to gain much faster 
computation. Following the idea, task assignment becomes the key problem,4-6 for the trajectory planning after 
definite task assignment is a common problem and can be solved easily using MILP. However, most existing results 
only consider static targets, and the time-varying features of the targets prevent these methods to be extended to 
dynamic target situation.  

Compared with the situation where all targets are static, the dynamic version is fundamentally a time-dependent 
TSP problem and difficult to solve. Good approximation results have been achieved only in very limited cases.7-8 In 
recent years some researchers try to address the problem using intelligent optimization methods. Ref. 9 solves the 
problem with genetic algorithm, under the assumption that relative to the UAVs the targets are approximately fixed 
in position. Ref. 10 considers a more complex case with more constraints using PSO, however all vehicles in the 
problem are assumed to travel from one destination to another with the unit speed. Besides, no global convergence 
to the minimum is guaranteed in these methods.  

In the paper we address the problem of single and cooperative UAV trajectory planning with multiple dynamic 
targets, especially the task assignment problem, under MILP framework. The key idea is the non-uniformly 
piecewise linearization of the time cost between targets, and choosing proper constraint formulation to fit the 
problem in the MILP framework. The reminder is organized as follows: Section II studies the cases of single and 
cooperative UAVs for multiple dynamic targets without obstacle avoidance. Section III extends section II’s result to 
the case with obstacle avoidance. Conclusions are given in Section IV. 

II. Trajectory Planning without Obstacle Avoidance 
In this section, we address the problem of dynamic target assignment problem with single or cooperative UAVs 

when no obstacle avoidance is considered.  

A. Problem Formulation 
Consider a single or a team of UAVs executing searching and reconnaissance tasks against multiple dynamic 

targets, as shown in Fig. 1. The underlying problem is a moving target TSP and can be described as follows: 
Given a set of targets { }1, nG g g= " , each target gi moving at constant velocity vi=[ui, vi], and a UAV 

starting from the same origin at constant speed vp, find the shortest tour starting and ending at the origin, such that 
the vehicles visits all targets. 
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Figure 1. Demonstration of trajectory planning problem with dynamic targets 

 
To establish solvable MILP formulation, we augment the target space as follows. Let target 1 be the starting 

point of all UAVs, and introduce nodes n+1, n+2, " , n+K corresponding to returning points for each of the K 
vehicles respectively. Choosing decision variable 
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and  tj is the time when a UAV leaving node j, using the problem formulation techniques in Ref. 11, the problem can 
be formulated in a quasi-MILP form:  
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The objective function (1) minimizes the total flying time of all UAVs. Beside this, we can also consider 

minimizing the maximal flying time of all UAVs as the objective function, as shown in (11):  
 

{ }1,2,...,
min max n jj K

t +∈
  (10) 

Constraints (2) and (3) ensure that each target is reached once and only once. Constraints (2) and (3) ensure that 
each target is reached once and only once. Constraint (4) ensures that exactly K UAVs are used. Constraint (5) sets 
the starting time of all UAVs as the reference time. Constraints (6) compute the leaving time at node j, where cij is 
the chasing time cost and will be explained in detail below. Constraint (6) and (7) work together to eliminate 
possible subloops. 

B. Linearization of Time-Dependent Flying Cost 
If the flying cost cij in (6) is constant, the problem degrades to the common TSP problem and can be solved 

easily using MILP. However, for the dynamic targets the cost is obviously time dependent. Our task is (1) decide the 
expression of the time cost relative to current time decision variable; and (2) linearize the expression to make the 
problem solvable in the MILP framework. 

Now consider the first problem. Assume target i and j move with a velocity of ( ),xi yiv v and ( ),xj yjv v , repectively. 
At time ti and tj, the UAV reaches targets i and j in order at position P and T, as shown in Fig. 2. Let vp be the 
maximum UAV speed, it is easy to prove that (1) reaches the minimum only when the UAV flys at maximum 
speed,7 therefore we can assume it flys at constant speed vp. According to the propotional guidance law, UAV chases 
the target at the shortest time only when its velocity component along the PQ direction is equal to target j’s velocity 
component in that direction. Therefore, we have 

 
2 1

j i

PQ
t t

v v
− =

−
  (11) 

where i  stands for the Euclidean distance, and v2 and v1 are shown in Fig. 2.  
After simple geometric calculations we have 12 

( )ij j i pc t t v= − ⋅  
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Figure 2. Geometric demonstration of dynamic flying cost calculation. Two targets start at positions Oi and Oj,  
reach positions P and Q at time ti, and positions S and T at time tj. UAV leaves target i at time ti and reaches target j 
at time tj. v2 and v⊥  are UAV’s velocity component along PQ and its perpendicular direction.  
 
where  

  ( ) ( )0 0j i j i xj xi ix x x x x v v tΔ = − = − + −   (13) 

and  ( ) ( )0 0j i j i yj yi iy y y y y v v tΔ = − = − + −   (14) 
From (12)-(14) we know cij depends only on decision variable ti. Although the function is a complex nonlinear 
function, its shape like a quadratic function so much. To fit into the MILP framework, the function needs to be 
linearized. Consider its quadratic-like shape where the valley is curving and two sides are nearly linear, we use 
piecewise linearization method where the t axis is adaptively segmented into non-uniform intervals, as shown in Fig. 
3. More turning points means more precise result, however increase the computational burden. In the following 
simulation the point count is set to 6, which proves to be reasonable in most computation. 

C. Simulation Results 
The simulation was performed on PC platform with Intel Core2 CPU and 2G memory. The MILP problem is 

processed using and IBM OPL CPLEX.13 UAVs’ starting point is set to be the origin. All targets’ initial position and 
their velocity are randomized at the beginning of simulation. The time-dependent cost term is linearized using 
SLMTools in Matlab. 14 
1.  Single UAV 

First a simple case was considered: a single UAV with three dynamic targets. Initial simulation values are shown 
in Table 1, and UAV speed is set to 10.  

In OPL IDE, the problem was solved and the following decision variables are given: 

 

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎡ ⎤
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎣ ⎦

X ,  [ ]0 16.697 3.9103 12.289 23.375time =  
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a) Linearization with 3 turning points. Error can be 
easily observed at the second point. 

b) Linearization with 6 turning points. No obvious error 
can be observed. 

Figure 3. Time cost function linearization
 

Table 1. Initial values for the simulation of a single UAV with three dynamic targets 
 

 Target A Target B Target C 
Initial position (35, 12) (-30, 20) (-10, -42) 

Velocity (-0.8, -4.5) (1, 2.4) (-1, -1) 
 

The corresponding trajectory is O B C A O→ → → → , as shown in Fig. 4a). The final minimum value is 
* 23.375f = . Since only three targets are considered, the result can be easily verified using enumerating all feasible 

paths. Fig. 4b) shows the result for five dynamic targets, where the corresponding trajectory is O E C→ →  
A D B O→ → → → . Readers may refer to Ref. 12 for detailed parameters and verification process. 

 
 

a) Three dynamic targets b) Five dynamic targets 
Figure 4. Trajectory planning results for single UAV case 

 
2.  Cooperative UAVs 

To extend results above, multiple cooperative UAVs are now considered. In this case the objective function (10) 
is selected to better fit the requirement (minimum completion time). We first considered the case with 2 UAVs and 3 
targets. Initial simulation values and UAV speed settings are the same as in 1. The solved decision variables are 

UAV waypoint 
Target trajectory 
Target initial position 
UAV origin 
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0 1 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

X ,  [ ]0 9.4412 3.8620 4.9227 7.7140 13.527time =  

The final minimum value is * 13.527f = . Corresponding trajectories are O C A O→ → →  and O B O→ → , as 
shown in Fig. 5. The result has been verified to be the correct solution. Simulations containing more UAVs and 
targets (up to 10) were also performed and tested. 12 

 

 
Figure 5. Trajectory planning results for 2 UAVs and 3 dynamic targets case 

 

III. Trajectory Planning with Obstacle Avoidance 
Now consider the planning problem with obstacle avoidance, as shown in Fig. 6. Here the “obstacle” means 

polygonal zones in the workspace which the UAVs cannot traverse whereas the targets can. Therefore, it represents 
not only obstacles but also hazerous zones where the defence units exist.  

 

 
Figure 6. Demonstration of trajectory planning problem with obstacle avoidance 

A. MILP Formulation 
Compared with section II, the only difference is the introduction of obstacles. Observe that if a path connecting 

two targets is blocked by an obstacle, the feasible path between the two targets must contain one or more vertices of 



 

 
American Institute of Aeronautics and Astronautics 

 
 

7

the obstacle polygon. Therefore, by still choosing decision variables xij and tj, the problem can be formulation in the 
following MILP form:  
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Similar to section II, constraints (16) and (17) ensure that exactly K UAVs are used. Constraints (18) ensure that 

each target is reached once. Constraints (19) ensure that each obstacle polygon vertex is reached once at most. 
Constraints (20) ensure the next destination after reaching a target should be an unreached one. Constraints (21) 
ensure UAVs can’t leaving a vertex and return to that vertex. Constraints (22) ensure each UAV reach any vertex at 
most only once and leave that vertex. Constraints (23) ensure that if a vertex is reached by a UAV, a path leaving 
from that vertex must exist, and vice versa.  

B. Revised Cost Function for Obstacle Avoidance 
Although constraints (24) are the same as (6), we notice the former exert hidden constraints that any feasible 

path doesn’t cross the obstacle. One way to meet the constraints is to add additional segment intersection detection 
constraints. Unfortunately, by now we can’t find a linear algorithm to fit into the above MILP formulation. Another 
way is to process the cost function cij beforehand with additional intervals corresponding to blocked time segments. 
This method can not only meet the obstacle constraint, but save the computation by not adding additional constraints 
in the online MILP optimization process.  

Let’s demonstrate the method by a simple example. In Fig. 7a), the original path between target A and C crosses 
the obstacle triangle. Represent coordinates of the two terminals of the path segment as (x1, y1) and (x3, y3), then the 
corresponding line equation is: 

  1 1

3 1 3 1

x x y y
x x y y
− −

=
− −

  (29) 

The time that the path between target A and C reaches each vertex of the triangle can be calculated by substituting 
coordinates of the vertices to (29). Therefore, the constraints can be defined as: 
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where istart  and iend  are starting and ending time of vertex i’s corresponding region is crossed by the path segment, 
and ma is the number of times the segment is blocked by the obstacle polygons. In this example ma =1. The 
constraints means if 1ijx = , then the value of ti is not allowed to take within the designated interval.   

C. Simulation Results 
Still take the example used in section II with a triangle obstacle. Using proposed method we obtain the trajectory 

O C B D A O→ → → → →  ,  as shown in Fig. 7b). For the same problem with a rectangle obstacle, the trajectory 
is O B C A E O→ → → → → , as shown in Fig. 7c). It is shown by exhaustive evaluation that these solutions are 
the optimal solution.  

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) The solution is unfeasible after adding obstacle b) Solution trajectory using proposed method 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c) Solution trajectory using proposed method (rectangle obstacle) 
Figure 7. Trajectory planning results for 1 UAV and 3 dynamic targets with obstacle avoidance

IV. Conclusion 
Under the MILP framework, the paper proposes a solution to the cooperative UAV trajectory planning problem 

with dynamic targets. The approach minimizes the mission completion time or total path length, under the 
consideration of multiple UAVs, multiple dynamic targets, and obstacle avoidance. Simulation results demonstrate 
the feasibility of the proposed method in various conditions: single or multiple UAVs, with or without obstacle. 
Exhaustive calculation for simple case verifies the correctness of the result. 
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