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Abstract

Biological taxonomy is at the heart of species identifications. Such identifications are instrumental in biodiversity studies, ecolog-
ical assessment, and phylogenetic analysis, among other studies. Fuzzy measures and classification integration was used to analyze
shape groups of the diatom Asterionella using fuzzy Fourier shape coefficients and fuzzy morphometric measures. Based on this
analysis, six shape groups were determined with specimen membership assignments at or exceeding the crossover point (0.5). Fuzzy
average overlap values were approximately at or just over the crossover point, indicating similarity in developmental stages. In
further analysis, spatial and temporal data from specimen samples were used in conjunction with fuzzy membership assignment
values. Spatial and temporal variables were ranked and fuzzified based on the mode. The modes were then weighted by degree
of importance as determined by an expert in diatom research. The weighted fuzzy modes for each specimen in each shape group
were aggregated as a weighted sum. The normalized relative cardinality for each specimen defined the degree of suitability that a
specimen belonged to a shape group, and the expert evaluated the result. While morphological data specifies inheritance (shape)
and development (morphometry), spatial and temporal data were proxies for reproductive isolation. These biological principles
constrained and defined the direction of analysis and defined each shape group as a species to the degree specified by each specimen.
This fuzzy decision-making process provided a simple way to aggregate scant available data and a linguistic solution in a taxonomic
study understandable to a biologist.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In biological classification systems, prior to determining phylogenetic relationships, it is necessary to identify each
organism as having a sufficient number of differences for comparison purposes to other organisms that are similar on
a species or genus level. Being confident of the identity of an organism has important implications for researchers in a
wide variety of studies. One group of such organisms is the diatoms, and they are used as bioindicators of environmental
conditions such as lake acidification (e.g., [1]), eutrophication [11], hydrologic and climatic change in lakes (e.g., [8]),
and in oceans (e.g., [23]). These studies and others are of interest not only to ecologists, but also to those studying
biodiversity.
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One of the more difficult tasks is identification of such organisms that have few distinguishing morphological features.
Diatoms have siliceous frustules that fit together like a Petri dish, and they have many shapes and patterns. They range
in size from 3 to 300 �m and are found worldwide. They reproduce sexually, but the meiotic life cycle is unknown for
all but a few diatoms [22]. To complicate matters, mitotic division in diatoms results in size diminution and slight shape
distortions occur [16]. Sometimes, the identification of an ontogenetic (developmental) life cycle stage of one diatom
is easily mistaken to be a different species. Identification of a given diatom is sometimes difficult and encompasses
some degree of uncertainty.

Traditionally, diatom classification has been largely based on frustule morphology. Most often, diatoms are viewed in
fixed mounts on glass slides using a compound light microscope. Other forms of microscopy have been used to augment
morphological studies through studies of ultrastructure. Empirical data and measurement constitutes a large portion of
the evidence gathered when trying to determine the taxonomic status of a given diatom. As a result, a scientific name
of a diatom is a hypothesis to be tested. The species-naming process by a taxonomist occurs with reference to previous
work. Vague or incomplete historical documentation, scant or missing data, and qualitative or descriptive attributes
are some of the kinds of information that may be available to the taxonomist. Decision-making necessarily includes
uncertainties in relation to the available information at a given time.

At the outset, initial sorting and binning of diatom specimens is largely based on shape. Diatom shape is an inherited
property [15,16] and is considered to be a standard starting point in morphological studies. Shape descriptors may be
qualitative, but quantitative shape analysis has been used as a tool to determine the range of shape variation in a given
species or for comparisons of a taxon with type specimens.

2. Background on Asterionella, shape groups, and taxonomic sorting

What do we know from the historical record of species identification of Asterionella? The record is scant at best
[17,20]. If it exists, the biologist usually refers to the type specimen for each named species. In this case, only the
neotype of Asterionella formosa exists, was named by Körner [14], and is housed at the Botanical Gardens and Museum,
University of Berlin, and the taxon was originally described by Hassall [12]. No photographs exist, and contemporaries
of Hassall as well as some 20th century researchers relied on Hassall’s description without examining specimens
themselves. A few early drawings exist of specimen outlines only. Because of the lack of scrutiny of early work and few
subsequent studies detailing morphology of specimens, researchers in aquatic ecology, limnology, and paleolimnology
assign the neotype’s name to all specimens that resemble Asterionella. However, some researchers have questioned the
validity of species identifications of Asterionella, including Stoermer and Yang [25] and Stoermer and Ladewski [24].
Fuzzy biological taxonomic studies are a recent occurrence [17,21], although fuzzy multivariate analysis has been used
with regard to morphological variation and ecological gradients [19].

In previous studies [17,21], Fourier shape analysis of specimen outline was used on taxa from the araphid pennate
diatom genus Asterionella [18]. This genus has few morphological features, including striae, a labiate process, and a
sternum without a raphe. All species in this diatom genus have a bilobate shape (Fig. 1). For photographic images of
all the specimens used, see [17].

The multivariate statistical technique, principal components analysis (PCA), was used to ordinate fuzzified Fourier
coefficients defining each Asterionella shape outline. Fuzzification was accomplished by mean-correcting the coef-
ficients. From the first PCA of shape variance for each specimen, the resultant shape gradient in fuzzy PCA shape
space was subsectioned into seven groups. Circumscribed specimens were designated as shape groups, and overlap of
adjacent shape groups occurred to some degree. Since diatom shape is largely inherited, each shape group is, to some
degree, an indication of a distinct species. This initial sorting technique is used to reduce some of the arbitrariness in
taxonomic decision-making.

A second sorting of specimens within shape groups is then necessary. Sometimes, there is overlap between shape
groups, as there was in this case. Morphometric measures other than shape were used for this next sorting. Mea-
surable quantities common to all Asterionella are length, head pole width, mid-valve width, and foot pole width
(Fig. 1). (see [17] for more details). Combinations of these measures as ratios can be used as a numerical way to
distinguish specimens that look approximately alike. Two fuzzy measures were created using classification integration
[26,30]. They were used to determine degree of overlap and degree that specimens belonged to their assigned shape
group [17].
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Fig. 1. Generalized Asterionella bilobate shape with identifiers used in morphometric analysis.

Degree of overlap was quantified by a fuzzy measure. However, does the overlapped region represent similarity
between two separate species (two separate shape groups), or as a lower level taxonomic designation, such as similar
subspecies from the same species? Despite our results, we still cannot say to what degree each specimen is which
species. This is in large part because of the way in which diatoms vegetatively reproduce, viz., they undergo size
diminution, complicating the morphological differences in shape among some species.

Morphological data is usually collected with regard to dead, fixed specimens. Such data are compared to ranges
of values that are dictated by the fact that diatoms diminish in size as they vegetatively reproduce. During sexual
reproduction, diatoms may undergo auxosporulation and produce an initial cell that is morphologically somewhat
unlike its subsequently asexually produced cell. Specimens are obtained from samples collected at a particular depth
in the water column and along a transect delineated over the surface of the body of water. Locally, specimens from
the same sample spatially occur within a narrow range of water volume. Globally, specimens in different samples are
quite distant from each other, given their size on the scale of micrometers, occurring in a body of water such as Lake
Michigan, at a volume of approximately 5000 km3. What makes the taxonomic problem suitable for further fuzzy
analysis involves the availability of data about the samples from which the specimens were obtained.

Although there are different definitions as to what is meant by a “species”, one way to differentiate species is to
determine how spatial proximity plays a role with regard to reproductive isolation. The implication is that if two
specimens are “far enough” away from each other, they have less chance of combining their genetic material, thereby
signifying the potential of being (or becoming) separate species. Spatial dimension of reproduction is a dynamic process,
and in the long run, an everchanging one that is a part of natural selection. From an environmental perspective, if two
specimens were collected at different times of the year, then there is the potential that each specimen has a different
tolerance to say, temperature, and are therefore, potentially, different species. This data will comprise the basis of the
current study.

3. Synopsis on previous studies using classification integration and fuzzy measures

To reiterate, in previous studies [17,21], classification integration and fuzzy measures were used to determine two
types of membership for Asterionella specimens. The first way classification integration and fuzzy measures were used
was in measuring degree of overlap between shape groups, or to what degree members from each of two adjacent shape
groups contribute to overlap. The second way classification integration and fuzzy measures were used was in measuring
degree of membership for each specimen in its assigned shape group. Fuzzy measures were based on ratios using head
pole width, foot pole width, and mid-valve width or a combination to form membership functions on the interval [0, 1]
that were ordered. Widths of head pole, foot pole, and mid-valve region were interdependent with respect to shape of
Asterionella.

The crossover rule of 0.5 was used to determine degree of acceptability. That is, unless degree of overlap equaled or
exceeded 0.5, Asterionella shape groups were considered to be separate species to the degree the fuzzy classification
indicated. In addition, if each specimen’s fuzzy classification indicated a value of 0.5 or greater, then that specimen
remained in its assigned shape group.

3.1. Fuzzy measure overlap

Classification integration [30] was accomplished using Sugeno’s integral [26] to evaluate degree of agreement
between partial evidence and the level of importance of that evidence to determine fuzzy average overlap between
pairs of shape groups. For (X, F), a measurable space, where A = X ∈ F, g : F- > [0, ∞] is a fuzzy measure, let
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h :X → [0, 1] be a membership function where X is finite, then

E = −
∫

A

h(x) ◦ g(•), (1)

where h(x), a measurable function of partial evidence and g(•), an importance measure. To obtain the solution, E the
evaluation of a composition of functions [5,26,30] is calculated as

E = sup
a∈[0,1]

[a ∧ g (A ∩ Fa)] (2)

where {xi, . . . , xn} defines the ith to nth attributes head pole width, foot pole width, mid-valve width or some combi-
nation [17], ∨ and ∧ are the maximum and minimum operators, respectively [5,30], Fa� = {x|h(x)�a}, where A is a
fuzzy set of h(x) with respect to g for all a ∈ [0, 1], A = X, ∩ is the intersection, and sup is the supremum or least upper
to bound [26]. When g is a possibility measure, Eq. (2) (see [5])

E =
n∨

i=1

[h(xi)g ∧ (xi)] . (3)

Let �t be a membership function equal to the ratio of mid-valve width to head pole width. For each shape group, Si ,
partial evidence about xj is

ht (xj ) =
∑m

j=1�t (xj )

m
, (4)

where m is the total number of elements in a shape group, and h(xj ) is a fuzzy average [27]. For combinations of shape
groups, Si and Sl , with membership functions �t (xj ) and �t (xk), respectively, for all xj ∈ Si, xk ∈ Sl :

ht

(
xj,k

)= 1

m + q

⎧⎨
⎩

m∑
j=1

�t

(
xj

)+
q∑

k=1

�t (xk)

⎫⎬
⎭ , (5)

where m is the total number of xj elements in the ith shape group, Si , q is the total number of xk elements in the lth
shape group, Sl , and the result was a fuzzy average overlap [7,27] as partial evidence, h(xj, k), for a combination of
shape groups with commutativity [30].

The importance measure, g(•), is calculated as a possibility measure [30]. For each shape group, this measure is
based on the ratio of foot pole width to head pole width. For finite X, let S : X → [0, 1] be a membership function
on measurable space (X, P(X)) where P(X) is the power set of subsets (shape groups) and

∏
is a possibility measure.

Then,
∏

(�) = 0 and
∏

(X) = 1. For any Si of X,

∏(⋃
i=1

Si

)
= supi

∏
(Si) , (6)

where sup is the supremum or least upper bound [5,13,30,34], and g(•) = supi
∏

(Si). In addition, for combinations of
shape groups, g(x) for all xj ∈ Si, xk ∈ Sl

g
(
xj,k

)= �
(
xj,k

)= maxi,l min
(
�Si

(
xj

)
, �Sl (xk)

)
, (7)

where Si and Sl represent different shape groups, and the fuzzy set theoretic operators supremum and minimum are
utilized on possibility distributions �Si

(xj ) and �Sl
(xk)[5]. Properties of fuzzy measures are boundedness, monotonicity

[26,27], and subadditivity or lower semicontinuity [30].
Aggregation of partial evidence and importance measures provides the overall evaluation of a given shape group.

The value 0.5 was used as a crossover point to judge h(x), g(x), and E [30].

3.2. Fuzzy membership assignment

Classification integration was also used to determine the degree that a given specimen belonged to its assigned
group [17] as fuzzy membership assignment. In this case, the importance measure is calculated as Sugeno’s measure,
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g�-fuzzy measure. For two attributes for each shape group in which each specimen was considered, two measures were
calculated. One measure, g1, represents ratio of foot pole width to head pole width. The other measure, g2, represents
ratio of mid-valve width to head pole width.

Sugeno’s measure, g� as �(xi) [30] is

g� (X) = � (X) = 1

�

[
n

�
i=1

(1 + � · � ({xi})) − 1

]
(8)

for any � where

� ∈
(

− 1

sup �
, ∞

)
∪ {0} . (9)

If � > 0, then g is a belief measure; if −1 < � < 0, then g is a plausibility measure; if � = 0, then g is a probability
measure [5,30].

As a defining factor for each group, a ratio of normalized mid-valve width to foot pole width represents h(x) for
each specimen. Partial evidence represents the degree of consistency that a particular specimen belongs to a particular
group. Values equal to one indicate complete consistency that a specimen is assigned to the correct group. Values equal
to zero indicated that the specimen did not belong to that group. The crossover point was 0.5. For each specimen, fuzzy
membership assignment was 0.5 or greater, and g was calculated to be a plausibility measure.

3.3. Fuzzy morphological taxonomic decision-making

Overlap values were calculated between groups within a region of similar total variance from PCA. Two regions
were defined—one with shape groups I, II and III, and the other one with shape groups IV, V and VI. Generally, but
not exclusively speaking, each region defined two sets of specimens differentiated by geographic location. The first
one (shape groups I, II and III) included most of the specimens from Lakes Superior and Huron, Green Bay and other
areas of northern Lake Michigan. There were a few specimens from central and southern Lake Michigan as well. In the
second region (shape groups IV, V and VI), most of the specimens were from all of Lake Michigan (excluding Green
Bay), but also included a few specimens from Lakes Superior and Huron [17].

Results from fuzzy average overlap calculations were in the range of 0.53–0.60. The degree of overlap suggests
that paired comparisons of shape groups are as much similar as dissimilar (0.53–0.56), or are slightly more similar to
each other (0.55–0.60). That is, all fuzzy overlap values are similar. This measure somewhat indirectly embodies the
developmental stages of this diatom, in that shape of one species at one developmental stage may look like the shape of
another species at a different developmental stage (overlap). Fuzzy average overlap indicates to what degree specimens
from adjacent groups are similar and that biological sorting at the species level is not a simple sorting problem [17].

Each specimen’s shape group assignment was calculated to be from 0.49 (one case) to 0.73, with a degree of
plausibility (Sugeno’s measure) from 0.6 to 0.9. A check of each specimen’s plausible fuzzy assignment value at
approximately the crossover point indicates that specimen shape group assignment is correct to some degree [17].

At any point in a taxonomic analysis, an expert in the field can weigh in on outcomes for species designations.
Moreover, with additional evidence, a new fuzzy analysis may be useful. This additional evidence must be gleaned
from available historical sources. Such data includes information about sample collection location and when the sample
was collected. More specifically, data on latitude and longitude of the sample location, time of year when the sample
was collected, and general information about circulation patterns in the bodies of water from which the samples were
collected are available with reference to the diatoms used in fuzzy morphological analyses.

4. Purposes of this study

Previous morphometric studies were useful in finding fuzzy group boundaries and their properties (i.e., fuzzy average
overlap) and specimen fuzzy membership in groups. The current study focuses on adding new information to what has
already been done using techniques from fuzzy decision-making, including information fusion, expert systems, and
multiple criteria evaluation. I want to test the fuzzy biological taxonomic shape groups devised with respect to spatial
and temporal data and reassess the degree to which specimen assignment in groups is true and also in agreement with
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an expert in diatom research. That is, given the nature of the evidence and the uncertainties therein, I want to determine
to what degree that each specimen in its assigned shape group may be called a “species”. Results from this study will
provide a simple, understandable way to decrease arbitrariness in the taxonomic decision making process for biologists
by providing a useful, analytical tool for taxonomists when data is scarce, absent, or indirectly applicable.

5. Methods

Data on sample location as latitude and longitude, long-term circulation patterns in the Great Lakes [2], and the time
of year when specimen samples were collected are used. These data constitute four spatial and/or temporal variables.
Latitude and longitude are numerical values relating to the position of sample collection and are local variables. Long-
term circulation patterns are a composite of data with regard to time of year and position in the Great Lakes. The premise
of this data is that circulation patterns dictate whether regions of a given lake will incur water mixing, and thereby a
more likely chance that specimens would come in close proximity and interbreed. This is a regional or global variable.
Time of year is a monthly designation and considered to be a temporal variable on a local scale. The variables latitude,
longitude and time of year pertain to samples from which the specimens were collected have definite numerical or
categorical specificity. Long-term circulation patterns represent a composite of many years of data applied to regions
of the Great Lakes and are indirectly applicable to the regions where samples were collected. The data are more general
and are labeled as cyclonic, coastal, annual, or not applicable and are designated as 0, 1, 2, and 3, respectively. Sample
location and time of year collected are the factors that determine which categorical variable is given to that sample.

Each of these variables is characterized as a quintuple, (x, T, U, J, M), where x is the variable with the name defined
as the primary term, T is the set of linguistic values of x as terms, U is the universe of discourse, J is a rule of syntax
for generating terms of linguistic values of x, and M is a semantic rule indicating meaning of the linguistic values by
assigning a fuzzy set to the terms.

5.1. Ranking variables within categories

For each shape group, spatial and temporal data are ranked based on how frequently particular values appear in each
category. That is, the mode or relative maximum is used to represent the value that approximately occurs most often.
For example, if most of the specimens occur at approximately the same latitude, that value is assigned “most frequent”
and ranked as number one. The next most frequently occurring is assigned “more frequent” and ranked as number
two. The least frequently occurring is assigned “least frequent” and ranked as number three. If there is more than one
relative maximum within each category (bimodal), the expert decides which relative maximum to use. The premise is
that specimens that occur most closely together and/or at the same time of year are more likely to be the same species.
This premise places a biological meaning and constraint on the spatial and temporal data being used as ranked modal
values. The same process is used with regard to all variables and is the rule of syntax for generating linguistic values, J.
For the universe of discourse, U, that is spatial and temporal variables, where x is the primary term, for each variable,
the term sets for T are

T (frequent) = {least frequent, more frequent, most frequent} (10)

and are recursively determined as

T 0 = �,

T 1 = least frequent,

T 2 = least frequent, more frequent,

T 3 = least frequent, more frequent, most frequent. (11)

That is,

T i+1 = {frequent} ∪ more T i (12)



J.L. Pappas / Fuzzy Sets and Systems 157 (2006) 1687 –1703 1693

and

more T i = ∪
R∈T i

{more R}. (13)

Next, each specimen in each shape group is ranked per variable according to the rankings for the whole group. The
semantic rule, M(x), is that each variable rank is fuzzified as

v(R) = 1 − R∑
R

, (14)

where v(R) is the variable rank of x which defines the membership function �(x) of x, and R is rank of variable with a
value of 1, 2, 3, or 4. Ranking and fuzzification of each variable and each specimen is accomplished in the same way
for each shape group. This fuzzy ranking acts as a fuzzy restriction on x given the semantic rule, M.

5.2. Weighting of variables between categories

Values from classification integration for each specimen assignment to a shape group are used with the fuzzified
spatial and temporal data in a new fuzzy attribute matrix. The values for each category must be weighted to represent
their degree of importance in taxonomic decision-making. To determine the weights, the expert identifies the weights
using linguistic terms. The categories are ranked and a function is applied such that the calculated fuzzy values reflect
the expert’s opinion. The effect is to “weight” the categories with respect to each specimen per shape group.

The primary term is “important”, and linguistic modifiers or hedges used are “very”, “somewhat”, “slightly”, and
“not very”. Although morphological data is more important than spatial or temporal data, fuzzy specimen shape group
assignment values, which represent morphological data in this matrix are “not very important” since the linguistic
modifiers refer to spatial and temporal data only. However, morphological data still takes precedence since its fuzzy
value in the matrix must exceed those for spatial and temporal data (Stoermer, personal communication). The weightings
for values in this fuzzy matrix as the universe of discourse are determined by the term set

T (important) = {very∗, somewhat∗, slightly∗, not very∗}, (15)

where * represents the primary term. The rule of syntax for generating linguistic hedges is defined as

Very = x2,

Somewhat = 1 − (1 − x2),

Slightly = 1 − (1 − x3),

Not very = √
x, (16)

where Ã = {ai}, i = 1, . . . , n, is the fuzzy set for each row (specimen) of the matrix generated from the semantic rule
that orders the importance of each variable category with respect to the others as �

Ã
(x) : X → {0, 1}, ∀x ∈ X.

The normalized weighted fuzzy modal values, h(x), are calculated as

h(x) = hc(x)

maxai∈Chc(ai)
∀x ∈ X, (17)

where hc(x) is an approximate fuzzy histogram (see e.g., [29]) for the cth variable category of all C categories. That
is, the fuzzy membership values calculated from Eq. (16) as ai are normalized and the result is hc(x) for each category
for each specimen.

5.3. Fuzzy weighted attribute matrix and aggregation

Using the normalized weighted fuzzy attribute matrix, aggregation of the information is necessary to determine the
degree to which each specimen belongs to its assigned shape group. The method of aggregation chosen is the weighted
(ranking) sum. This aggregation operator is chosen because the categorical variables are independent of each other.
Morphological data is biologically based. Latitude, longitude, long-term circulation patterns, and time of year are
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measured independent of one another and on different scales. Linguistic modifier values are based on the mode for
each category per column independent of other categories, and the weighted sum for each row is independent of
other rows.

The rows in the weighted fuzzy attribute matrix are also suitability ratings (or weighted fuzzified rankings) [28]
for each specimen with respect to the variable categories for each shape group. A sum of suitability ratings for each
specimen would represent the total suitability [28] of that specimen in that shape group. Alternatively, the sum of the
values for each specimen represents a fitness value with respect to that shape group. This fitness value may indicate
the approximate optimum value that the specimen can attain with respect to that shape group.

For each shape group, the approximate optimum is defined as the mode for each category and is the fuzzy set
G(x) = {gj }, j = 1, . . . , m. A weighted sum of these values is the threshold against which each specimen is judged.
The weighted fuzzy mode threshold or threshold weighted sum is

|G (x)| =
m∑

j=1

gj , (18)

where x is the category modal value of latitude, longitude, long-term circulation pattern, and time of year, and by the
extension principle [32], the sum is a fuzzy addition.

For each specimen, the weighted sum is the relative cardinality [35] given as

‖A‖ = |A|
|G| , (19)

where |G| is the threshold weighted sum and |A|=∑x∈X�A(x) is the cardinality of each specimen. The relative cardi-
nalities are then normalized, and these values represent the degree that the specimen belongs to the shape group it was
assigned to given combined spatial and temporal factors and fuzzy morphological analytical results. The membership
is defined for the ith specimen in each shape group as

�weighted(xi) =
{

1 if xi = xmax,

0.5 < xi < 1 otherwise.
(20)

5.4. Expert evaluation

Expert evaluation is crucial in biological taxonomic decision-making. Dr. Eugene F. Stoermer from University of
Michigan is an expert in diatom research and has studied diatoms for over 40 years. The specimens used for this study
were viewed from strewn mounts on microscope slides and were collected from samples from the Great Lakes in the
1960s and 1970s and are a part of Dr. Stoermer’s research collection.

There are two types of data available to analyze the taxonomic problem. Initially, morphological analyses are the
accepted way to perform a taxonomic study. This type of analysis takes precedence over spatial and temporal data
analysis, but does not entirely supercede it (Stoermer, personal communication). Spatial and temporal data are useful
proxies with regard to reproductive isolation. In this study, Dr. Stoermer was consulted and made decisions on the
relative importance of morphological vs. spatial and temporal variables (Section 5.2), the relative importance among
spatial and temporal variables (Section 5.2), the modal value for a category when more than one relative maximum
exists (Section 5.2), linguistically express the degree of truth about the normalized fuzzy aggregation values for each
specimen (Section 5.3), and evaluate the final results.

5.5. Fuzzy decision set and linguistic truth-value approximation

Fuzzy weighted membership values for each specimen in each shape group are evaluated with respect to the degree
their membership is true. Since membership is already true to the degree 0.49 based on morphology alone, re-evaluation
with spatial and temporal data implies that membership values will be ai =[0.5, 1.0] for the ith specimen in each shape
group. A fuzzy truth set is devised from the membership values interval that is common for all shape groups. A linguistic
decision is generated by devising meaningful labels for the fuzzy truth set, and these labels are determined by linguistic
approximation using a semantic equivalence [32,33]. That is, I want to find a linguistic approximation that is close in
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meaning to the degree that each specimen’s assignment to a shape group is true and the degree of agreement expressed
by the expert.

For a fuzzy truth set, �, an equivalent set L is defined by

�L(a) = ��(�B(a)), (21)

where �B(a) is the degree of agreement of the results by the expert. The equivalent set is inclusively L (Truth) = {true,
mostly true, more or less true, not as true}. Additional linguistic terms may be used (e.g., see [3]). A fuzzy gradient
assessment table of intervals of suitability of specimen assignment, a, equivalent set of linguistic truth-values, and
expert’s degree of agreement is devised. A linguistic solution is presented of the results.

6. Results

Relative cardinality reflects the situation of each specimen per shape group with respect to what is actually known
about the specimens biologically and taxonomically. None of the specimens are actually completely excluded or
included in each shape group. The values are maximized in order of importance. By normalizing the values, a rescaling
is useful to indicate the degree to which each specimen belongs to its assigned shape group. The values normalized by
the fuzzy mode exhibit the “typicality” of each specimen in each shape group, and those specimens with values of 1.0
characterize each shape group.

For each shape group, fuzzy matrices were devised of specimen by category values, including spatial, temporal,
and morphological values. Fuzzy values based on the mode (as calculated from Eq. (14)) for each of the six shape
groups are presented in Table 1. Weighted fuzzy modal values (as calculated from Eq. (16)) are presented in Table 2.
Normalized weighted fuzzy modal values (as calculated from Eq. (17)), their sum (as calculated from Eq. (19)), and
the normalized sum (as calculated from Eq. (20)) are presented in Table 3.

From the fuzzy modal values in each category, there is a widespread departure between the spatial and temporal
values and the morphological values. From Table 1, fuzzy modes for spatial and temporal variables indicate a difference
in importance for each specimen in contrast to fuzzy morphological values. In some cases, fuzzy morphological values
are identical among all specimens in a given shape group (Table 1—shape groups 1, 3, and 5), whereas spatial and
temporal fuzzy modes are not. An interesting result is that since spatial and temporal variables are independent, latitude
and longitude fuzzy modes are mostly different within shape groups (Table 1—shape groups 2, 4, 5, and 6).

From Table 2, the relative level of importance between spatial and temporal variables is reflected in the weighting
applied. As previously stated, morphological values (local) take precedence over spatial and temporal values (global).
Subsequently, the order of importance across spatial and temporal values range from latitude and longitude to time of
year to long-term circulation pattern.

Normalized weighted modes in Table 3 reflect the relative position each specimen has to every other specimen in each
shape group. Those specimens with a value of 1.0 define their assigned shape groups. The sum, which is normalized
for each specimen, gives the value of suitability that the specimen has with respect to belonging to its shape group. A
value of 1.0 for a specimen characterizes the shape group morphologically, spatially, and temporally. Other specimens
relative to those members with a value of approximately 1.0 indicate the degree of suitability that these specimens have
in their assigned shape group.

For each shape group, the normalized weighted sum for each specimen was evaluated by the expert, and his judgment
was rendered as to the degree he agreed with the result. His evaluation was compiled as a solution to be viewed for
all shape groups. In this regard, and given the results from Eq. (20), the equivalence set of linguistic approximations
was assigned to four subsets on the interval [0.5, 1.0], and the results of the evaluation are presented in Table 4. The
expert’s degree of agreement was 1.0 (Stoermer, personal communication).

Four suitability intervals were devised, and each interval had a linguistic approximation from the equivalent set. Each
specimen was then assigned a linguistic approximation based on Table 4. The linguistic solution for all specimens in
all shape groups is given in Table 5.

By using 0.75 as a “crossover” point from the interval [0.5, 1.0], most of the shape groups have the majority of their
members in the “true” and “mostly true” categories. Shape groups 1, 3, and 4 have all but one member at or greater
than 0.75. Shape group 2 has two members and shape groups 5 and 6 have four members at less than 0.75.
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Table 1
Fuzzy modal values of spatial and temporal data and fuzzy morphological values for each specimen in its assigned shape group

Shape group Specimen Latitude Longitude Long term circulation Time of year Fuzzy morphological values

1 111 0.67 0.67 0.83 0.83 0.68
116 0.67 0.67 0.83 0.83 0.68
192 0.83 0.83 0.83 0.83 0.68
193 0.83 0.83 0.83 0.83 0.68
195 0.83 0.83 0.83 0.83 0.68
198 0.83 0.83 0.83 0.83 0.62
19F 0.83 0.83 0.83 0.83 0.68
19H 0.83 0.83 0.83 0.83 0.68
19T 0.83 0.83 0.83 0.83 0.68
391 0.50 0.50 0.67 0.67 0.68

2 O51 0.83 0.83 0.83 0.83 0.67
O52 0.83 0.83 0.83 0.83 0.67
115 0.67 0.67 0.67 0.83 0.67
11H 0.67 0.67 0.67 0.83 0.61
127 0.67 0.83 0.83 0.67 0.57
129 0.67 0.83 0.83 0.67 0.67
197 0.50 0.50 0.67 0.83 0.60
Aa4 0.83 0.83 0.50 0.50 0.66

3 118 0.67 0.67 0.83 0.67 0.60
142 0.67 0.67 0.67 0.67 0.60
764 0.83 0.83 0.83 0.83 0.60
767 0.83 0.83 0.83 0.83 0.60
768 0.83 0.83 0.83 0.83 0.60
76E 0.83 0.83 0.83 0.83 0.60

4 123 0.50 0.83 0.90 0.60 0.73
12E 0.50 0.83 0.90 0.60 0.72
135 0.67 0.83 0.80 0.90 0.73
136 0.67 0.83 0.80 0.90 0.68
137 0.67 0.83 0.80 0.90 0.73
148 0.67 0.67 0.90 0.70 0.73
14F 0.67 0.67 0.90 0.70 0.73
14H 0.67 0.67 0.90 0.70 0.73
191 0.50 0.50 0.60 0.60 0.61
A5 0.67 0.83 0.80 0.90 0.73
AT 0.83 0.83 0.70 0.80 0.73
Aa3 0.83 0.83 0.70 0.80 0.73
Aa5 0.83 0.83 0.70 0.80 0.73
Aa6 0.83 0.83 0.70 0.80 0.73
AaE 0.67 0.83 0.80 0.90 0.73

5 112 0.67 0.50 0.67 0.67 0.61
126 0.67 0.67 0.83 0.50 0.61
141 0.83 0.83 0.83 0.83 0.61
143 0.83 0.83 0.83 0.83 0.61
149 0.83 0.83 0.83 0.83 0.61
14W 0.83 0.83 0.83 0.83 0.61
199 0.67 0.50 0.67 0.67 0.61
Aa2 0.83 0.67 0.50 0.50 0.61

6 12T 0.50 0.83 0.67 0.50 0.63
131 0.83 0.83 0.83 0.83 0.63
132 0.83 0.83 0.83 0.83 0.63
133 0.83 0.83 0.83 0.83 0.63
134 0.83 0.83 0.83 0.83 0.63
144 0.50 0.50 0.67 0.50 0.63
194 0.50 0.67 0.50 0.67 0.63
196 0.50 0.67 0.50 0.67 0.63
A1 0.67 0.83 0.83 0.83 0.49
A4 0.67 0.83 0.83 0.83 0.63
A9 0.67 0.83 0.83 0.83 0.63
AW 0.67 0.83 0.83 0.83 0.63
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Table 2
Weighted fuzzy modal values of spatial and temporal data and fuzzy morphological values for each specimen in its assigned shape group

Shape Specimen Weighed Weighted Weighted long-term Weighted Weighted fuzzy
group latitude longitude circulation time of year morphological values

1 111 0.44 0.44 0.58 0.69 0.82
116 0.44 0.44 0.58 0.69 0.82
192 0.69 0.69 0.58 0.69 0.82
193 0.69 0.69 0.58 0.69 0.82
195 0.69 0.69 0.58 0.69 0.82
198 0.69 0.69 0.58 0.69 0.79
19F 0.69 0.69 0.58 0.69 0.82
19H 0.69 0.69 0.58 0.69 0.82
19T 0.69 0.69 0.58 0.69 0.82
391 0.25 0.25 0.30 0.44 0.82

2 O51 0.69 0.69 0.57 0.69 0.82
O52 0.69 0.69 0.57 0.69 0.82
115 0.45 0.45 0.30 0.69 0.82
11H 0.45 0.45 0.30 0.69 0.78
127 0.45 0.69 0.57 0.45 0.75
129 0.45 0.69 0.57 0.45 0.82
197 0.25 0.25 0.30 0.69 0.77
Aa4 0.69 0.69 0.13 0.25 0.81

3 118 0.45 0.45 0.57 0.45 0.77
142 0.45 0.45 0.30 0.45 0.77
764 0.69 0.69 0.57 0.69 0.77
767 0.69 0.69 0.57 0.69 0.77
768 0.69 0.69 0.57 0.69 0.77
76E 0.69 0.69 0.57 0.69 0.77

4 123 0.25 0.69 0.73 0.36 0.85
12E 0.25 0.69 0.73 0.36 0.85
135 0.44 0.69 0.51 0.81 0.85
136 0.44 0.69 0.51 0.81 0.82
137 0.44 0.69 0.51 0.81 0.85
148 0.44 0.44 0.73 0.49 0.85
14F 0.44 0.44 0.73 0.49 0.85
14H 0.44 0.44 0.73 0.49 0.85
191 0.25 0.25 0.22 0.36 0.78
A5 0.44 0.69 0.51 0.81 0.85
AT 0.69 0.69 0.34 0.64 0.85
Aa3 0.69 0.69 0.34 0.64 0.85
Aa5 0.69 0.69 0.34 0.64 0.85
Aa6 0.69 0.69 0.34 0.64 0.85
AaE 0.44 0.69 0.51 0.81 0.85

5 112 0.44 0.25 0.30 0.44 0.78
126 0.44 0.44 0.58 0.25 0.78
141 0.69 0.69 0.58 0.69 0.78
143 0.69 0.69 0.58 0.69 0.78
149 0.69 0.69 0.58 0.69 0.78
14W 0.69 0.69 0.58 0.69 0.78
199 0.44 0.25 0.30 0.44 0.78
Aa2 0.69 0.44 0.13 0.25 0.78

6 12T 0.25 0.69 0.30 0.25 0.79
131 0.69 0.69 0.58 0.69 0.79
132 0.69 0.69 0.58 0.69 0.79
133 0.69 0.69 0.58 0.69 0.79
134 0.69 0.69 0.58 0.69 0.79
144 0.25 0.25 0.30 0.25 0.79
194 0.25 0.44 0.13 0.44 0.79
196 0.25 0.44 0.13 0.44 0.79
A1 0.44 0.69 0.58 0.69 0.70
A4 0.44 0.69 0.58 0.69 0.79
A9 0.44 0.69 0.58 0.69 0.79
AW 0.44 0.69 0.58 0.69 0.79
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Table 3
Normalized weighted fuzzy modal values of spatial and temporal data and fuzzy morphological values for each specimen in its assigned shape group

Specimen Normalized Normalized Normalized Normalized Normalized SUM Normalized sum
weighted weighted weighted long-term weighted weighted fuzzy
latitude longitude circulation time of year morphological values

111–1 0.64 0.64 1.00 1.01 1.01 4.30 0.86
116–1 0.64 0.64 1.00 1.01 1.01 4.30 0.86
192–1 1.01 1.01 1.00 1.01 1.01 5.02 1.00
193–1 1.01 1.01 1.00 1.01 1.01 5.02 1.00
195–1 1.01 1.01 1.00 1.01 1.01 5.02 1.00
198–1 1.01 1.01 1.00 1.01 0.96 4.98 0.99
19F–1 1.01 1.01 1.00 1.01 1.01 5.02 1.00
19H-1 1.01 1.01 1.00 1.01 1.01 5.02 1.00
19T–1 1.01 1.01 1.00 1.01 1.01 5.02 1.00
391–1 0.36 0.36 0.51 0.64 1.01 2.89 0.57

O51–2 1.00 1.00 1.00 1.00 1.00 5.00 1.00
O52–2 1.00 1.00 1.00 1.00 1.00 5.00 1.00
115–2 0.65 0.65 0.53 1.00 1.00 3.83 0.77
11H–2 0.65 0.65 0.53 1.00 0.95 3.78 0.76
127–2 0.65 1.00 1.00 0.65 0.92 4.22 0.84
129–2 0.65 1.00 1.00 0.65 1.00 4.30 0.86
197–2 0.36 0.36 0.53 1.00 0.94 3.20 0.64
Aa4–2 1.00 1.00 0.22 0.36 0.99 3.57 0.71

118–3 0.65 0.65 1.00 0.65 1.01 3.96 0.79
142–3 0.65 0.65 0.53 0.65 1.01 3.49 0.70
764–3 1.00 1.00 1.00 1.00 1.01 5.00 1.00
767–3 1.00 1.00 1.00 1.00 1.01 5.00 1.00
768–3 1.00 1.00 1.00 1.00 1.01 5.00 1.00
76E–3 1.00 1.00 1.00 1.00 1.01 5.00 1.00

123–4 0.36 1.01 1.00 0.44 1.01 3.82 0.88
12E–4 0.36 1.01 1.00 0.44 1.00 3.81 0.87
135–4 0.64 1.01 0.70 1.00 1.01 4.36 1.00
136–4 0.64 1.01 0.70 1.00 0.97 4.32 0.99
137–4 0.64 1.01 0.70 1.00 1.01 4.36 1.00
148-4 0.64 0.64 1.00 0.60 1.01 3.90 0.89
14F–4 0.64 0.64 1.00 0.60 1.01 3.90 0.89
14H–4 0.64 0.64 1.00 0.60 1.01 3.90 0.89
191–4 0.36 0.36 0.30 0.44 0.92 2.38 0.55
A5–4 0.64 1.01 0.70 1.00 1.01 4.36 1.00
AT–4 1.01 1.01 0.47 0.79 1.01 4.28 0.98
Aa3–4 1.01 1.01 0.47 0.79 1.01 4.28 0.98
Aa5–4 1.01 1.01 0.47 0.79 1.01 4.28 0.98
Aa6–4 1.01 1.01 0.47 0.79 1.01 4.28 0.98
AaE–4 0.64 1.01 0.70 1.00 1.01 4.36 1.00

112–5 0.64 0.36 0.51 0.64 1.00 3.16 0.63
126–5 0.64 0.64 1.00 0.36 1.00 3.65 0.73
141–5 1.01 1.01 1.00 1.01 1.00 5.02 1.00
143–5 1.01 1.01 1.00 1.01 1.00 5.02 1.00
149–5 1.01 1.01 1.00 1.01 1.00 5.02 1.00
14W–5 1.01 1.01 1.00 1.01 1.00 5.02 1.00
199–5 0.64 0.36 0.51 0.64 1.00 3.16 0.63
Aa2–5 1.01 0.64 0.22 0.36 1.00 3.23 0.64

12T–6 0.36 1.01 0.51 0.36 1.00 3.25 0.65
131–6 1.01 1.01 1.00 1.01 1.00 5.02 1.00
132–6 1.01 1.01 1.00 1.01 1.00 5.02 1.00
33–6 1.01 1.01 1.00 1.01 1.00 5.02 1.00
134–6 1.01 1.01 1.00 1.01 1.00 5.02 1.00
144–6 0.36 0.36 0.51 0.36 1.00 2.60 0.52
194–6 0.36 0.64 0.22 0.64 1.00 2.87 0.57
196–6 0.36 0.64 0.22 0.64 1.00 2.87 0.57
1–6 0.64 1.01 1.00 1.01 0.89 4.54 0.90
A4–6 0.64 1.01 1.00 1.01 1.00 4.66 0.93
A9–6 0.64 1.01 1.00 1.01 1.00 4.66 0.93
W–6 0.64 1.01 1.00 1.01 1.00 4.66 0.93

Specimen number followed by a hyphenated shape group number. The sum and normalized sum are also indicated.
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Table 4
Fuzzy gradient assessment table of suitability intervals, equivalent set of linguistic truth-values, and expert’s degree of agreement

Suitability interval Truth-value Degree of agreement

0.500� a < 0.625 Not as true 1
0.625� a < 0.750 More or less true 1
0.750� a < 0.875 Mostly true 1
0.875� a < 1.00 True 1

7. Discussion

Morphological studies are incomplete in many ways, and morphology is not the only criterion for judging species
identification. Classification integration was useful in defining shape groups and their similarity with respect to fuzzy
average overlap and degree of membership per shape group. However, this is not entirely sufficient to make taxonomic
decisions.

Classification integration of morphological data determined that in six shape groups, specimen assignment was
plausible. The assignments were not necessarily unique or optimal, but plausibility was a sufficient basis as a beginning
with the intention of further analyses. To begin with, the number of shape groups was unknown and information
about the specimens was limited. From classification integration, the expected result of fuzzy average overlap values
at approximately the crossover value or slightly larger indicated similarity among pairs of shape groups. This is an
indication of developmental stages that are difficult to distinguish by morphological analysis alone.

The additional analyses using sample data was helpful in finding the degree of truth in specimen assignment to each
shape group. While morphology was indicative of inheritance (shape) and development (morphometry), sample spatial
and temporal data were useful as proxies for reproductive isolation.

From the results, most of the specimens are suitable in the shape group to which they were assigned, and characterized
the shape group. Those specimens in the “not as true” category might be candidates for re-evaluation. Specimens in
the “more or less true” category may or may not be re-evaluated. This largely depends on the purpose to which the
current results might be used in future research, or how the current results are received by the diatom taxonomy research
community. In any case, the results indicate that linguistic solution to the suitability of specimens in their assigned
shape groups is useful in taking the next step in taxonomic studies, which is to identify shape groups as species groups.

The entire analysis was directed toward determining the degree to which each shape group is a separate species. The
results from this analysis showed that six shape groups are the basis for six hypotheses, namely, each shape group can
be tested further with respect to species identification. That is, if a species is named for each shape group, each species
designation is a hypothesis subject to further testing. Such testing using fuzzy logic must be defined and constrained
by biological principles and any other possible types of biological information acquired.

Taxonomic decision-making using fuzzy analytical methods has many advantages. First, the aggregation method
chosen is simple. Spatial and temporal data used are independent and additive therefore, the usual pitfalls of using a
weighted sum were not realized. There are no interactions to be concerned with since the mode was used as the criterion
for evaluation. Second, the data used were constrained by biological information and expert opinion. This provides a
narrow range of options for meaningful fuzzy data analysis. Third, spatial and temporal data do not depend on being
ordered. A quasi-ordering occurs once the values are ranked in each category variable. Fourth, this analysis uses the
combination of local and global variables, although taxonomic solutions are local but become global. All the variables
are constrained by biological principles, viz., shape inheritance, morphological changes with respect to development,
and reproductive isolation that implies species differentiation. Fifth, linguistic solutions are readily recognizable and
accepted by biological taxonomists. In addition, more than four linguistic terms may be employed in the equivalent
set, and this provides for flexibility in arriving at a linguistic solution.

This study provides a way to do taxonomy that is recognizable and understandable to taxonomists, but reduces
the arbitrariness in species identification problems. Taxonomic decision-making is not an exercise in codifying an
individual’s preferences, since such decisions must rest on some sort of evidence no matter how little of it is available.
This study makes fuzzy decision making in taxonomy accessible to taxonomists, and taxonomists could assess one
another about their decisions. Linguistic solutions, such as those presented in Table 5, are highly acceptable in a field
such as biological taxonomy where numerical solutions are not typical or well understood. This study shows how fuzzy
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Table 5
Linguistic solution for each specimen in each shape group based on Table 4

Shape group Specimen Normalized SUM Linguistic solution

1 111 0.86 mostly true
116 0.86 mostly true
192 1.00 true
193 1.00 true
195 1.00 true
198 0.99 true
19F 1.00 true
19H 1.00 true
19T 1.00 true
391 0.57 not as true

2 O51 1.00 true
O52 1.00 true
115 0.77 mostly true
11H 0.76 mostly true
127 0.84 mostly true
129 0.86 mostly true
197 0.64 more or less true
Aa4 0.71 more or less true

3 118 0.79 mostly true
142 0.70 more or less true
764 1.00 true
767 1.00 true
768 1.00 true
76E 1.00 true

4 123 0.88 true
12E 0.87 mostly true
135 1.00 true
136 0.99 true
137 1.00 true
148 0.89 true
14F 0.89 true
14H 0.89 true
191 0.55 not as true
A5 1.00 true
AT 0.98 true
Aa3 0.98 true
Aa5 0.98 true
Aa6 0.98 true
AaE 1.00 true

5 112 0.63 more or less true
126 0.73 more or less true
141 1.00 true
143 1.00 true
149 1.00 true
14W 1.00 true
199 0.63 more or less true
Aa2 0.64 more or less true

6 12T 0.65 more or less true
131 1.00 true
132 1.00 true
133 1.00 true
134 1.00 true
144 0.52 not as true
194 0.57 not as true
196 0.57 not as true
A1 0.90 true
A4 0.93 true
A9 0.93 true
AW 0.93 true
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logic, approximate reasoning, and information fusion are what actually happen in solving a biological problem, viz.,
taxonomy and species identification.

From this study, there are issues that need to be explored further. One problem was how to determine which fuzzy
mode to use for each category. In this study, consultation with the expert was used. Solving this problem in a more
analytical way might be accomplished by creating a fuzzy measure to find the minimum distance between the “ideal”
for the category and each of the relative maxima. There is still the potential for ties among distance minima. Perhaps a
resampling method would be an alternative to use in choosing the relative minimum to use. Alternatively, a resemblance
measure based on a fuzzy histogram [29] might be devised to compare a specimen with what is “typical” for a given
shape group.

Another issue is that of independence of variables and method of aggregation [6]. In this study, the variables to
be aggregated were independent, and therefore additive. If variables used are not independent, then non-additive
aggregation is warranted. In this regard, the Choquet integral, among others, might be a suitable option [4,9,10]. This
study provided an initial solution to the problem of aggregating spatial and temporal data with morphological data.
Although the methods used here do not necessarily provide for a unique solution, given the scant evidence and analysis
of specimens relative to each other, the solution is a worthy starting point. In addition, there is the potential that another
expert would reassign specimens to different groups, or even weight the spatial and temporal variables differently. This
study is flexible in that amendments can be made to accommodate other types of taxonomic studies, or studies that
have a similar compilation of a variety of inputs. It can be adapted to include more than one expert or more than one
decision-making group. More than one expert may be consulted to contribute to the decision-making process. In this
case, the process would become more complex, but would be accommodated by some form of fuzzy group decision-
making [34]. In essence, the methods used here are simple, adaptable, and understandable to biological taxonomists,
especially with the incorporation of linguistic solutions.

It may be that reassigning suboptimal specimens to other shape groups would produce a more optimal solution.
By suboptimal I mean those specimens with a value of less than 1.00. Another scenario might be that some of the
specimens with suboptimal assignment do not belong to any of the shape groups. That is, some specimens may belong
to a yet-to-be described shape group. A fuzzy permutation program reassigning suboptimal specimens to other shape
groups and re-evaluating results until the more optimal solution is obtained might be useful. The permutation can be of
any type and crosschecked with other permutation methods (e.g., bootstrapping, jackknifing, Monte Carlo permutation).
Alternatively, fuzzy decision trees may be used [31].

Perhaps one way to refine results further would be to find relative densities for each shape group with respect to fuzzy
overlap values. If it could be determined which specimens contributed the largest degree to fuzzy average overlap, then
those particular specimens would be candidates for reassignment and testing, based on a newly devised fuzzy measure
for developmental stage.

Biological taxonomy is not a static enterprise since a scientific name is a hypothesis to be tested, so an optimal or
unique solution is not necessarily a realistic expectation. The current results are constrained by biological information,
starting with predefined shape groups from an earlier morphological study and incorporating expert opinion in the
decision making process. This provides a sense of validity to the enterprise of biological taxonomy that is not merely
opinion, albeit authoritative opinion.

Taxonomic studies are necessary precursors to phylogenetic analyses and reconstruction of phylogenetic relations
among taxa. This study has importance for other biological studies, in general, in that a formal way of assessing species
identification is a very important indicator of the species concept in biology and how that concept is applied. Another
adjunct study to this one includes exploring fuzzy position with respect to an organism and climate or habitat quality
since latitude and longitude are independent variables. This study is only the beginning of possibilities for applications
of fuzzy logic and decision-making to biological studies.

8. Conclusions

My study was conducted to show that biological taxonomic decision-making may be augmented by the use of fuzzy
sets and fuzzy decision-making. Information about specimens from the genus Asterionella was scant, and some of the
sample data was used as proxies for inferred biological information. Degree of suitability in specimen assignment to
shape groups was determined after initial sorting using classification integration of morphometric data. Degree of truth
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in specimen assignment, as given in Table 5, reflects acceptability of the results to an expert in diatom research. That is,
the degree to which each specimen is a species was determined using the methodology outlined in my study. Throughout
my study, biological principles of developmental stage or ontogeny (morphology and morphometrics), reproductive
isolation, and species concepts constrained the analysis to reflect a realistic way to conduct biological taxonomy.
Moreover, not only was a numerical result per specimen achieved, but also a linguistic solution was determined that
makes this study accessible to biologists.

In conducting biological taxonomic studies, researchers will never have all the morphotypes or “species” available for
empirical assessment. My study shows that given a limited amount of information and a limited number of specimens,
biological taxonomy using fuzzy decision-making can be accomplished to reflect a realistic portrayal of the state of
species designations at a given time.
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