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Abstract

Two classes of new iterative methods for solving systems of linear inequalities are
considered in this report. In the first class of methods, a group of violated constraints are
identified and a surrogate constraint is derived by taking a convex combination of these
violated constraints. Each iterate is obtained by making an orthogonal projection from the
current iterative solution onto the surrogate constraint. The second class of methods
belongs to modified Newton's method and it can find least squares solution of linear
inequalities. These methods can be implemented very efficiently, especially when the

systems are large and sparse. Convergence proofs are provided.
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1. INTRODUCTION

We are concerned with a system of linear inequalities:

AxSb (1.1)

where A is an m x n matrix and b is an m-vector. We are interested in finding a feasible
solution x for system (1.1). Solving a system of linear inequalities is a fundamental
problem in linear optimization and it has many applications. These applications include
linear programs [22], and in particular, the problem of image reconstruction from
projections [7]. The image reconstruction problem has arisen in a large number of scientific
fields. In medical science, computerized tomography reconstructs the images of cross-
sections of the human body by processing data obtained from measuring the attenuation of
X-rays along a large number of lines through the cross-section. Other image reconstruction
problems include remote sensing [13], seismic tomography [3] and industrial

nondestructive testing.

There are basically two approaches which could be used to solve the system (1.1). The
first approach is to transform the linear inequality system (1.1) to a linear programming
problem and then use well-established methods such as Karmarkar's method [21] or the
simplex method to solve the resulting linear program. Usually this approach is not

applicable to the image reconstruction problems due to the following two difficulties.

The first difficulty is the special environment within which the problem has to be
solved. This environment is characterized by:
(i) the immense dimension of the system (1.1); for example, n > 105 and m is even greater.

(ii)the sparsity of the A matrix; usually the sparseness of matrix A is less than 1% and the



sparsity structure of A varies greatly from matrix to matrix so it is impossible to take
advantage of any structure pattern of sparsity.

(iii)the poor conditioning of matrix A;

(iv)the restrictions on computer power; usually image reconstruction problems are solved
by small, dedicated on site computers and the objective is to obtain approximate results in a
relative short period of time.

Most linear programming algorithms require matrix manipulations, such as factorization,
projection and etc. Since it is difficult to take advantage of the sparsity patterns of the A
matrix, sparse factoring techniques can not be used. Using conjugate gradient type
methods to do the matrix manipulations is also not an option since it is very difficult to find

a preconditioning technique to preprocess this kind of A matrix.

Another difficulty is that system (1.1) may be inconsistent. It is then often desirable to
find a least squares solution [16], but most linear programming algorithms can not be used

to find least squares solutions.

The second approach involves using iterative methods to solve system (1.1). Most of
the iterative methods are derived from the relaxation method for linear inequalities (Agmon
Motzkin and Schoenberg [1954])[1][20] and Kaczmarz's method[17] for linear equations.
There are numerous special implementations of the relaxation method which are called
Algebraic Reconstruction Techniques (ART) [7][9]. Another method is derived from
Cimmino's algorithm [10] for linear equations. Y. Censor, T. Elfving [1982] [8] and A.R.
De Pierro, A.N. Iusem [1985] [11] developed a Cimmino type algorithm for linear
inequalities. Other iterative methods for linear inequalities include Magasarian's SOR type
methods [18]. Those iterative methods always work with the original data and most of
them do not need matrix manipulations. The basic computation steps in iterative methods

are extremely simple and easy to program. Because of those advantages, all linear



inequality solvers which are used in image reconstruction are iterative methods. However,
the rates of convergence of those iterative algorithm are usually slow [25] and therefore, it

often takes hours to solve a single image reconstruction problem.

In this report we propose two classes of new iterative algorithms for solving (1.1)
which are sparsity preserving and have finite convergence properties. Therefore, this paper
is divided to two parts and each part describes one class of methods. The first class of
methods is called 'surrogate constraint methods'. There are three different surrogate
constraint methods in this paper designed to tackle image reconstruction problems. The
second class of methods is a revised version of S. P. Han's method for finding the least
squares solutions of linear inequalities [16] which belongs to the class of modified

Newton's method [24].

In section 2 we introduce the surrogate constraint methods and define notations used in
PART I. Sections 3,4 and 5 describe the first, second and third surrogate constraint
algorithms, respectively. Section 6 presents the geometric interpretation of the surrogate
algorithms and Section 7 presents their extension to linear equations. Section 8 introduces
the second class of methods and defines notations used in PART II. Section 9 describes
the method. Convergence proofs and geometric interpretations for this method are
presented in section 10 and some computational results are presented in section 11. Some

theorems and their proofs are summarized in the Appendix.



PART I
THE SURROGATE CONSTRAINT METHODS

2. INTRODUCTION TO
SURROGATE CONSTRAINT METHODS

In their classical papers Agmon [1] and Motzkin and Schoeberg [20] introduced the
relaxation method to solve the system of linear inequalities. The method is called
relaxation' method because constraints in the system (1.1) are considered one at a time. At
each iteration a violated constraint is identified and an orthogonal projection is made onto
this constraint from the current iterative solution. So it is also called the 'successive
orthogonal projection' method. Bregman [1965, 1967] [5] [6], Eremin [1965] [12] and
Gubin et al. [1967] [15] extended this ' successive orthogonal projection’ method to
general convex feasibility problems. Making an orthogonal projection onto a single linear
constraint is computationally inexpensive. However, when solving a huge system of linear
inequalities, which may have hundreds of thousands of constraints, considering only one
constraint at a time would lead to slow convergence. Instead, we would like to process a
group of constraints at a time. But making an orthogonal projection onto a group of

constraints is computationally expensive.

In PART I we will introduce a class of methods which are able to process a group of
violated constraints at a time but retain the same computational simplicity as the relaxation
method. This class of methods is named as 'surrogate constraint method' since at each
iteration, a group of violated constraints is identified and a 'surrogate constraint’ is derived
from those constraints. An orthogonal projection is then made onto this surrogate constraint
from then current iterative solution and the process is repeated until a feasible solution is

found.



In order to describe the surrogate constraint methods precisely, it is necessary to define

some notations and list the assumptions made for PART L.

Assumptions and Notations

Notations:

A;: i-th row of matrix A.

a;; : (i,j)-th element of matrix A.

K= {xIAx £ b}, the feasible solution set of (1.1)

b;: i-th element of b vector.

Assumptions:
IA;ll; =1 for all i=1, ..., m.
System (1.1) is feasible, i. e. K+ & in section 3,4 and 5,

Additional Notations:

I <{1,...,m}, is an index set.

Hi= {xIAjx=b; }, wherei€{1,...,m}

Ki= {xI1A;xSb; }, where i€{l,...,m}

Ki = (MK };eg. K is a convex set and Ky # @, since Ky O K.

d(x, Hj ) = minimum Euclidean distance from x to H; .

d(x ,Kj ) = minimum Euclidean distance from x to K;. Note that
d(x K;) =0, if x€K ; otherwise,

dix Ki)= dix H;).
ox)=  sup  d(x, Kj)

i€(1 ..m}

d(x, K) =minimum Euclidean distance from x to K.



Here we define the length of the binary encoding of all problem data in (1.1) as:

L= Z Z log(lal +1) + 2 log(lb;| +1) + log nm + 2 (2.1)
i i

In sections 3,4 and 5 a;; and b; are required to be integers. This is not a serious restriction
even if we require llAjll; =1 for all i, since we can simply determine L first and then

rescale the problem.

Two lemmas which will be used in the convergence proofs are as follows:

LEMMA 2.1. If the system (1.1) is feasible, then there is a feasible solution % with /Qj/ S
2t j=1,..n.

LEMMA 2.2. If the system: Aix<bi+2T(i=1,.,m) 2.2)

has a solution, then system (1.1) is feasible.

For the proofs of these lemmas, see [14] [22]. It is well known that if we are able to find a
solution x for system (2.2), then there exists a procedure with polynomial complexity
which can construct a feasible solution for (1.1) from x. So theoretically, if an algorithm is
able to find a solution for (2.2) in a finite number of steps, then the algorithm is also a finite

algorithm for solving linear inequality (1.1) [22].

3.THE FIRST ALGORITHM
(Basic Surrogate Constraint Method)

The first algorithm is called 'basic surrogate constraint method', in which at each

iteration all violated constraints are identified and a 'surrogate constraint' is derived by



taking a convex combination of these violated constraints. An orthogonal projection is
made onto the surrogate constraint from the current iterative solution and this process is

repeated until a feasible solution is found.

Additional Notations

1=1(x) = {il Aix -b;>2 ")

Ar=(Ai)er

by = (b)ier

[I(x)!, the cardinality of the index set I(x), it is assumed that lI(x)| = q.

T =(Ty,...,Ng), isa weight vector consisting of positive real numbers satisfying:

7;> 0 for all i=1 to q and ini= L.

=1
Surrogate Constraint: A surrogate constraint for the system Ax < b is the constraint of
the following form: T Arx S 7by .

Surrogate Hyperplane: Hg= {xIr A;x = rb; }.
3.1. Algorithm 1 (Basic Surrogate Constraint Method).

Initialize: Set x° = 0eR™, and k=0; start.

StepI: IfAx* Shbis feasible, stop. x* is the solution of system (1.1).

Step2:  Determine the index set I= I(xk) ,

and select a weight vector . Compute:

Lk A(m A -mby )(m Ap)
I Al

(3.1)

where 0< A <2.



Set k=k+1, and go to Step 1.

Remark 3.1. Apparently, in every iteration of this surrogate constraint algorithm, if the

relaxation parameter A is equal to 1, then the new point x*! is the orthogonal projection of

the current point X to the surrogate hyperplane Hs. ( See FIG. 3.1)
Surrogate

FIG 3.1 Illustration of the Surrogate Constraint Method

Remark 3.2. ( Recommended choices of the &t vector):
(1) Weight by error.

The quantity ;= Aixk - b; , denotes the Euclidean distance from the current point x
to K ,for each i€ I(xk ). Since larger r; corresponds to greater infeasibility with respect to
K|, it may be desirable to make =; proportional to r;. Therefore the following formula for

computing the T vector is recommended:



I

T clearly, m; >0 and ini= 1.

i =T
Zri i=1

iel

(2) Weight equally.
m o=t
1 q ¢

(3) Convex combination of the two methods:

T = y W S (1- 7\,)% , where 0 <A < 1.

2n

iel
3. 2. Convergence Results.

DEFINITION 3.1. A sequence {xk }}; ; is called strictly Fejer-monotone with respect

to the set K if for every x€K:

k

I x < ik -x) forallk>0. (3.2)

It is easy to check that every Fejer-monotone sequence is bounded.

THEOREM 3.2. Any sequence {x}:= ; generated by Algorithm 1 is strictly Fejer-

monotone with respect to K, provided that FeK forallk>0.

PROOF: VxeK we define ek =x* - x . Then

10



" " A (m Ay xS - by )(T Ap)

e = e - and:
lirc Al
R = e 4 Wl A x - by 11 n & Arx’ - an Sm Ap) &
liw Agl® lire Al
_ ke Ml AL - by i
i A
(1[ AI X ‘EbI ) k
TA) X -X
Il Al (A (" -x)
2 k 2
k2  Allm Ay x™ - zby Il
= leI® + .
llrc Al
(7t Arx* - by ) K
TAX -7bi- TA(x +n
Il Al (A [- WALX by
2 k 2
k2 A’llm A x™ - by |l
= lefl’ + L1
lirc Agll

2;\.”75 AIX - ﬂbl “ + (TC AIX - ﬂbI )(TCAI X - ﬂ:bI )
lire Al Il Agl>

Since m A; x> nb; and ® A;x< by, we have

(7C AI X - TCbI )(TCAI X - ﬂ;bI )
lire Aqll?

< 0. Therefore it follows that

i Ap x* - by II?
lirc Aqll*

k2

12 < neki? - A - A) eIl (3.3)

Q.E.D.

11



Recall that ¢(x) = sup dix, K; )
i€{1 ..m}
THEOREM 3.3. Any sequence{x"]y. ; generated by Algorithm 1 has the property:
lim ¢(x*)=0

PROOF: Fejer-monotonicity implies that the sequence{llekll};l is monotonically
decreasing, thus converging. It follows from (3.3) that lim (& A; x5 - nby) =0

Since ;> O for all i, which implies that 1im (A;x* - b,) =0 foralli€ L.
k=oo

Therefore 1im ¢(x*)= 0.
k=oo

Q.E.D.

LEMMA 3.4: If K+ D anif the sequence{xk };; | satisfies the conditions
(i) {x* }.; is Fejer-monotone with respect to K, and
(i) lim ¢(x*)=0

k=oo

then xk =>xe K

PROOF: Follows from Lemma 5 and Lemma 6 of Gubin et al.[15]
THEOREM 3.5. Algorithm I converge to a point x € K in a finite number of iterations.

PROOF: It follows from Theorem 3.2, Theorem 3.3, and Lemma 3.4. that Algorithm 1
converges to a point x € K . From Lemma 2.1 it follows that lle’ll < 2“/yn, If at
iteration k, A; x~ - bj< 2° L for all ie {1,...,m} then, from Lemma 2.2 the system is
feasible and we found a solution for (2.2). A solution for (1.1) can be constructed from X~

by an polynomial procedure. So if we assume that A; x* - b;> 2" L' for all k, it follows

that

12



o}
and I ALl < IclplArl, < I llAflE - (inf)lﬁ (22 layj12 )12
=1

iel Fl

1A xll,
Xl

where [A;ll, = sup
X

lAflle is the Frobenius norm of A; and

IAfE - (Zi lay;i2 )12

iel =l

L
It follows that e I% < liekIi% - A2 - 7»; 2

Therefore, Algorithm 1 converges within k steps where

k=q.22L-2/n_2-2L g2 42

A2 -2)2 2L = 2e- A)-n

4.THE SECOND ALGORITHM
(Sequential Surrogate Constraint Method)

<q

Q.E.D.

In many applications requiring the solution of linear inequalities, the coefficient

matrices of (1.1), that is, the A matrices, are often very large ( m and n are of the

magnitude 105 or more ) and sparse (less than 1% of entries are nonzero). If the system

13



(1.1) is to be solved by the computer on site, working on the whole matrix A is almost
impossible. So, it is preferable to work on one small subset of constraints of (1.1) at a
time. Specifically, the matrix A can be partitioned into p submatrices, and the right-hand-

side vector b can be partitioned into p subvectors, as follows

Al bt
A=|A | and b=]bi @4.1)
AP b

where Al is a matrix with m; rows and n columns, bt has m; rows , fori=1to p, and
p
dmo=m .
i=1

Now we will show that the surrogate constraint method can be used to solve the system

(1.1) by successively solving the subproblems, AixSbi ,i=1top in cyclic order.

4.1 Notations:
I =T (x) = (ilAix-bi >2° %} for i=ltop

g =i |, the cardinality of I .
m = (m, ..., Tm ) fori=1 top, where T >0 ifjel and m =0 if j€1i .

and )7 =1 foralli=1top.
jell

The surrogate constraint of the i-th subproblem is
ni Aix S ni bi
And the surrogate hyperplane of the i-th subproblem is

ni Alx =xi bl

14



4.2 Algorithm 2 (Sequential Surrogate Constraint Method)

Initialize:

Set x° = 0eRY, and k=0: start.

Step 1. Doi=1top while Ii (xk)#Q for at least one i€ { 1,...,p}.

If the index set i =i (xk) #9D for subproblem i, then

select a weight vector mi , and compute

xk+l - xk . Mk

where d* =

where 0 <A <2.

(wi AixE . gipi )(7tiAi)T

limi All2

4.2)

Else if the index set Ii =Ti (xk )=@ for subproblem i, then

k+1
X

Endif

k

=X

Set k =k+1, nexti, continue.

Step 2: IfIi (xk) =D for all the subproblems Aix< bi , i=1 to p, then

x* is a feasible solution, stop.

Subproblem
1

xk+1

Subproblem
2

xk+2

x ktp-l

Subproblem
p

xk+p

15



FIG 4.1 Diagram of the Sequential Surrogate Constraint Method

4. 3. Convergence.

LEMMA 4.1. Let T'eR" be the half space corresponding to the inequality cTx < cTc,.

Let z be an element of R" such that z €I and whose projection on I coincides with cy.

Then the inequality ||y - z;/| < ||y - 2|/ is satisfied , where zy = z - Mz - ¢p) for 0<A<2 andy

is an arbitrary element of I

PROOF: See [1] [12].
' «—
ZA \
-4 Jc0 > 7
/ -
lly-zll ./ -
Sy
I \ N
-
yb Ily-zll

FIG. 4.2 Illustration of Lemma 4.1

COROLLARY 4.2. Let I be the half space corresponding to the inequality m Aix <

wbi,or wAix S Ai(xk -d ), for each i=1 to p in Algorithm 2. Let x; = - ad

where 0<A<2.Then, [|y-x3 /| </ly-xJ|,Vy€eD.

LEMMA 4.3. [f [={x/ mi Aix S7 bi = 6 Ai(x* - d&* ) | thenK < .

16



PROOF: Recall that K ={xIAx S b}, clearly Vx €K, i Aix Sni bi has to be satisfied

for any i=1 to p. Hence the result follows.

Surrogate Hyperplane Hs

FIG 4.3 Interpretation of Lemma 4.3.

THEOREM 4.4.Vx €K, // x-X**! | < || x - X* || in Algorithm 2.

PROOF: It follows immediately from Corollary 4.2. and Lemma 4.3.

THEOREM 4.5. Any sequence{xk }:; ; generated by Algorithm 2 has the property:
lim ¢(x*)=0
k=0

PROOF: Theorem 4.4 implies that the sequence{ Ixk- xll}:=1 is monotonically decreasing,

thus converging. It follows from (4.2) that

lim (i Aix* - i bi) =0 for each subproblem AixS bi fori= 1 to p, since for each
k=o°

subproblem n} is strictly positive for all j€ I' and which implies that

lim (AX* -b}) =0 forall je I and for all subproblem AixSbi , i=1top.

k=eo

Therefore 1im ¢(x*)= 0.
k=o°

17



Q.E.D.

THEOREM 4.6. Algorithm 2 converges to a point x € K in a finite number of

iterations.

PROOF: It follows from Theorem 4.4, Theorem 4.5 and Lemma 3.4 that Algorithm 2
converges to a point X € K . From Lemma 2.1 and let's define e =x* - x , where x€K,
it follows that:

le’< 25 . T (x¥)# D for i-th subproblem , then

gl kg (m AR - mibi)(miA)!

= e - and
limi ALlZ

imi Aixk - i bi |
liri All2

12 < 1M1 - A2 - A)

After a complete scan of all p subproblems if Ii (xk) =(J foralli=1top, then x* is a
feasible solution for the problem and we are done. So we assume that there exists at least

one subproblem i, i€ {1,...,p}, for each complete scan of all p subproblems, such that

I x)# D, and we assume that Max ITi (x*)l =g, It follows that
i

7 1A - bl ( ini)-Z Log-b
=1

and

Il
ImiAll < Nl lpAily < i A g <iﬁf>m<22 la )12
=l

iel Fl
<q

18



Hence

-L
e < kP . M2 M2

for every p iteration .

Therefore, Algorithm 2 converges within k steps where

Pﬂ‘ZZL-Z/n-Z-Q'L .,24L-2
k = < P9z
A2 -2)2 "%t = AM2-MA)n

Q.E.D.

5. THE THIRD ALGORITHM
(Parallel Surrogate Constraint Method)

The surrogate constraint method can also be implemented to work on ALL of the

subproblems, AixSbi , fori=1to p of (1.1) SIMULTANEOUSLY . This is particularly

good for the computers with parallel processors.
5.1 Algorithm 3 (Parallel Surrogate Constraint Method)

Initialize: Set x° = 0e IRn, and k=0; start.

Step I: Do while Ii (x*)# @ for atleastone i€ (1,...,p}.
For all i=1 to p,
IfI (x)# D, then
determine the index set Ii = Ii (x*), and select a weight vector i ,

define: P;(x*) =x* - d¥

c (mi AiXE - i bl )(miAhT

where d° = — (5.1
lli A2

19



Step 2:

Else, I (x*) =@ , define P;(x") = x*
Endif
Compute P;(x*) for all i =1 to p simultaneously on parallel

Processors.

p
Define P(x*) =2 1, Pi(x*), and Pa(x*) =1+ AP - D);

i=1

P
where Z T =1, 1:1>2'L>0 for all i such that Ii (xk)# %)
i=1

and 0 <A< 2.

Compute: X< = P;‘(xk )

If I (x*) = @ for all the subproblems AixS bl , i=1 to p, then

x is a feasible solution, stop.

Subproblem 1
Subproblem 2 k
Take convex
combination
Parallel processing 7

Subproblem p

FIG 5.1 Diagram of the Parallel Surrogate Constraint Method




5. 2. Convergence.

THEOREM 5.1. Vx K /2 -x < /)5 - x |} in Algorithm 3.

PROOF:

P . .k .o . T
k+1 K k (i Aix” - i bl )(miA)
x+=Px(x)=x-7»ZTi ——

=1 It Al

Let: ek= xk - X, then

p .k C g c T

k1 k (ni Aix" - mi bi )( niA)

e =€ - A : 5.2
; b i Al G2

T; (i Aix® - i bi)
llei A2

Let B; = and it is clear that B; >0, foralli=1top

and let: T=(B; ! ,...,B; ni ,...,Bp7P) € RI*m
Then: (1)T= (€)T- ATA and:

12 = 1k + A2TAATTT - 2ATAe"

p . .k C g
ni Aix" - nti bi
= NI +x2|rrA||2-2xz ci( Ty )lniAi(xk - x)]
i=1
S (mi Aix¥-mibi)
= 1P HAATAR -2AY, G IRARE - b))
i=1

21



p . .k Lo
i Ai - i bi
+27»2 T ( z T )[ni(Aix-b)]
i=1

limi Al
5 (mi Aix* - i bi)
< IeI® + (A2 -21)2 T AT [ri(AIx* - b))
i=1
= 1Ie¥1? - AQ2-A)(ITAI (5.3)
< Nl
Q.E.D.

THEOREM 5.2. Any sequence{xk };; ; generated by Algorithm 3 has the property:
lim ¢(x)=0

k=co

PROOF: Theorem 5.1 implies that the sequence{ |ka-xll}:=1 is monotonically decreasing,

thus converging. It follows from (5.2) and since i > O for all i such that Ii (xk) + O,

then:

lim (xi Ak - qi bi) =0 for each subproblem AixSbi,i=1 to p, since for each
k=

subproblem n} is strictly positive for all j¢ I' and which implies that

lim (A}xk - bji-) =0 forall je I and for all subproblem AixSbi , i=1top.

K=o

Therefore 1im ¢(x¥)= 0.
k=oe

Q.E.D.

THEOREM 5.3. Algorithm 3 converges to a point x € K in a finite number of

iterations.

22



PROOF: It follows from Theorem 5.1., Theorem 5.2. and Lemma 3.4. that Algorithm 3
converge to a point x € K. From Lemma 2.1 it follows that
121 < 2L'1/\fﬁ. Let x€K and define €* = x* - x , if T (xk) # O for at least one

subproblem, say, the i-th subproblem , then from (5.2) and (5.3) we get

k+1

I 2 < 1IeKI? - A2 - ) |ITAIR

P . -k .o
limi AixS - i bi |2
= k12 -2 -2 : —
( ); k I Al

lini Aixk - gi bi |
liri Al 112

< leki2 -a2-N 1

If Ii (xk) =@ forall i subproblems i = 1 to p, then xX is a feasible solution for the
problem and we are done. So we assume that there exist at least one subproblem i,
i€ {1,...,p}, such that Ii (xk)# D again we assume that A; XX - b; >22° L' for all k

and assume Max Ii (x) | =q then

7 iAIXK - mibi> ( ini y2 L=2-L and
=l

1
I iAill < I i Al < I i Al = (inf )12 (ZZ a2 < g
=1

iel Fl

It follows that

- 2L
2 - M2 - qu for every p iterations. Therefore, Algorithm 3

k+1”2

lle < liek

converges within k steps where

23



p-q2 2L 2y g 2L g7 8L-2
k= < 1
A2 - 2)2 "4k = A(2-A)n

Q.E.D.

Remark 5.1. It is preferable to choose 7; in the following way:

P
Ifi (x) =9, thent; =0, Else 7; >0 forallTi (x)# @ andz % =1 andif

i=1

I (x)=9 foralli=1top, stop.

6. GEOMETRIC INTERPRETATIONS
FOR SURROGATE CONSTRAINT METHODS

It is clear from Lemma 4.3 that the surrogate hyperplanes Hgin Algorithms 1, 2 and 3
are actually separating hyperplanes which separate the current iterative solution X from the
feasible solution set K. So the surrogate constraint methods can also be called 'successive
separating hyperplane projection ' methods. It is clear from theorem 4.4 that all surrogate
constraint methods possess Fejer-monotone property, which means:
d(xk+1, K) < d(xk, K) for every iteration. In Algorithm 1 (basic surrogate constraint
method) all violated constraints are identified and the resulting surrogate constraint contains
the information on all violated constraints. In Algorithm 2 (sequential surrogate constraint
method) only a subset , I€ {1,...,m}, of constraints are visited, so the resulting surrogate
hyperplane Hjis actually the separating hyperplane which separates Ky from x* | and
K;=K. In general, the smaller the subproblem, that is, the smaller the I, the less
information contained in the surrogate hyperplane, and the smaller the improvement at

every iteration of the surrogate constraint method and vice versa. ( See FIG. 6.1 ). On the

other hand, the smaller the subproblem, the less computational work needed to construct a

24



surrogate constraint (including scaning and identifying violated constraints), hence the

cheaper for every iteration of the surrogate constraint method.

Hs

Surrogate Hyperplane
of Algorithm 1

Hs

Surrogate Hyperplane
of Algorithm 2

FIG. 6.1 Comparison of Surrogate Hyperplanes Generated by
Algorithm 1 and Algorithm 2.

The rate of convergence for all surrogate constraint methods depend on the choice of

the T vector. A 'better' T vector can make a larger improvement for each iteration of the

surrogate constraint method. ( FIG. 6.2)
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S H 1
urrogate typerplane Surrogate Hyperplane

»

k+1
X

Good improvement
due to a proper
surrogate hyperplane

Poor improvement
due to an improper
surrogate hyperplane

(a) m vector is chosen by 'weight by error'  (b) & vector is chosen by 'weight equally'

FIG 6.2 The Effect of a Different Choice of 1 Vector on the Performance

of the Surrogate Constraint Methods

The geometric interpretations of Algorithm 3 (Parallel Surrogate Constraint Method) are
summarized in FIG. 6.3. In this example three surrogate hyperplanes are derived from 3
subproblems and orthogonal projections are made simultaneously onto these three
surrogate hyperplanes. These three projection points are denoted by the three vertices of the
shaded triangle. The new iterative solution x*! will be somewhere inside the triangle,

depending on the choice of the T vector.
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Surrogate
Hyperplanes

FIG. 6.3. Geometric Interpretation of Algorithm 3

(Parallel Surrogate Constraint Method)

Now let's compare the surrogate constraint methods, that is, Algorithm 1, 2 and 3 in
this report, with the relaxation method for solving linear inequalities. The relaxation
method is also called the 'successive orthogonal projection method', in which at each
iteration an orthogonal projection is made from current iterative solution x* onto an
individual convex set K;. However, K; only contains the information of one constraint .
Sometimes the projection on K offers little improvement in reducing the distance from the
iteration point x* to set K. On the other hand, the surrogate hyperplane contains the
information of more than one violated constraint, so it would generate a better new iterative

solution than that of the relaxation method. ( See FIG. 6.4 )
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Surrogate

\ Hyperplane ~
\\ N

K
N\ :)2}
\ NN
Origind ~ \ > N\ |
Constraifés N\ > _ N N\

NN

\

New Point by
Surrogate
Constraint
Method

New Point by
Relaxation
Method

FIG. 6.4. Comparison of the Surrogate Constraint Method
with the Relaxation Method

We could try to make successive orthogonal projections from current point X to set

K;, where I is an index set and Ky = {MK; };e denotes a group of constraints and

{mKI}=K. When [II = 1, K1 denotes one constraint, and the successive orthogonal

projection approach is equivalent to the relaxation method. If Il > 1, then Ky denotes a

polytope. In this case, making an orthogonal projection from current point x* to set Kjis

simply to find the nearest point in polytope Kj to current iterative solution x* , which is

very expensive even when Ipl =2. In the surrogate constraint methods, instead of making

orthogonal projections onto set Kj, the projection is made onto the separating hyperplanes

H;,. The projections onto the hyperplanes are easy to calculate and the computational work

for constructing those hyperplanes Hg is very small.
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The Cimmino's method for linear inequalities identifies all violated constraint.
Othogonal projections are made simultaneously onto all violated constraints from the
current iterative solution and then a convex combination of those projection points will be

the new iterative solution. ( See FIG. 6.5)

k+1
X

somewhere &\
on this line

FIG. 6.5. Geometric Interpretation of Cimmino's Method.

Cimmino's method can be implemented on computers with parallel processors.
However, when dealing with huge linear inequalities, with many violated constraints,
making projections onto all violated constraints is expensive and time consuming. On the
other hand, by using the parallel surrogate constraint method, the number of subproblems
can be chosen by the user, and only one projection is made onto the surrogate hyperplane
for each subproblem. Thus, the amount of computational work is much less than that of the

Cimmino's method.

7. EXTENSIONS TO LINEAR EQUATIONS

It is very easy to modify Algorithm 1, 2 and 3 to solve a system of linear equations

Ax=b (7.1)
by substituting (5.1) with the following equivalent systems of linear inequalities
AxSb
-AxS-b (7.2)
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and applying Algorithm 1, 2 and 3 to (7.2).

Many of the classical iterative methods, such as the successive approximation method,
the Gauss-Seidel method, SOR method, and the steepest descent method, may not always
converge for an arbitrary coefficient matrix A. Some methods require A to be positive
definite or diagonal dominant, otherwise those methods would have to be applied to the
system ATA = ATb. In the case of successive approximations, convergence requires that

the spectral radius of an approximation matrix be less than one.

Whereas the surrogate constraint methods only require that the system (7.1) be
feasible. This is one advantage of the surrogate constraint methods over the classical

iterative methods.

The surrogate constraint methods for solving linear equations will be presented as
follows:

Algorithm 1.1 (Surrogate Constraint Method for Linear Equations)

Initialize: Set x0 = (e IRn, and k=0; start.

Step I: If IA x* - bl £ ¢ is feasible, where € is a predetermined small

positive number, stop. x* is the solution of system (2.5).

Step 2. Otherwise, partition the rows of the matrix A into 3 sets, Aj, A, and

Aq , such that

IA; x* - bl Se
k
Agx < bg -€

Aq x* > by +¢€
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Select 2 sets of weight vectors, nll and !l such that:

I m I 1
mi >0,n; >0and 2 T +m; = 1.
ie UM

The surrogate constraint for this problem is

i i I i
i Amxk-m Anxk=m bm - i b

Then, compute

111 k I k I I I II T
AM(rny Amx -®m; Apx -® b + mibn)(mi Amr-mi An)

11 II
I Am - wi Agl?

where 0 <A <2. Setk=k+1 and go to step 1.

Algorithm 2.1 (Sequential Surrogate Constraint Method for Linear

Equations)
Initialize: ~ Set x” =0€R", and k=0; start.
Step 1. Partition the rows of the matrix Al into 3 sets, A} , Ain and Aim

foralli=1top such that

AL - b lSe
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AL < b e

Ax* > b +e

Select 2 sets of weight vectors, nl and I such that:

I m o m
i >0,n; >0and z m +ni = 1.
ieTulll

The surrogate constraint for the i-th subproblem is
I O, ; I ; I ;
T Ax* -mAIx“ = m by -Tibyg
Define Ii (x*) = IIVII for alli = 1 to p.
Step 2: Doi=1top while I (xk);é @ for at least one i€ { 1,...,p}.
If the index set i = Ii (x*)# @ for subproblem i, then
select a weight vector mti , and compute
K kg gk

where dk =

II,i k O,i _k i I I IT i \T
(A" - nlAy x* - Al + iy )i Al - wi Al

m I
lIm; Ay - 73 A 12

and 0 <A <2.
Else if the index set i =i (xk)= @ for subproblem i, then
ktl _ _k
X =X

Endif

Set k =k+1, nexti, continue.
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Step 3. If I (x*) =D for all the subproblems Aix =bi , i=1 to p, then

x* is a feasible solution, stop.

Algorithm 3.1 (Parallel Surrogate Constraint Method for Linear

Equations)
Initialize: Set x° = 0eR™, and k=0; start.
Step 1. Partition the rows of the matrix Ai into 3 sets, Al , Al and Al

foralli=1top such that

A} X -byISe
Ai k i
o X <ql'8

A > By +e

Select 2 sets of weight vectors, nll and #I such that:

I m I 1Im
i >0,m >0and Z i +ni = 1.
iellulll

The surrogate constraint for the i-th subproblem is
m I I I
mi ALx* -mALx* = m bl -miby
Define I (x*) = [IVII for all i = 1 to p.

Step 2: Do while Ii (x*) # D for at least one i€{1,...,p}.

For all i=1 to p,
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Ifi (x)# D, then
determine the index set Ii = Ii (xk), and select a weight vector i ,
define: Pi(xk) =xf - ¢~

where dk =

III,i _k O, _k i I1,i I I .\T
(nVAXS - niA x® - mlby + 7l ) Afy - T AY)

m ; II
I Al - mi A 12

Else, I (x)=9 , define P;(x") =x*
Endif
Compute P;(x*) for all i =1 to p simultaneously on parallel

Processors.

P
Define P(x*) =Z 5, Pi(x*), and Py(x*) =1+ - D)

i=1

where Y T =1,7i>2 >0 forallisuchthatli (x)# @

-

i=1
and 0 <A< 2.

Compute: X<t = P)w(xk )

Step 3: IfIi (xk) = for all the subproblems Aix =bi , i=1 to p, then

x* is a feasible solution, stop.
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PART II
THE LEAST SQUARES SOLUTION
OF LINEAR INEQUALITIES

8. INTRODUCTION AND NOTATIONS

If the feasibility of system Ax < b is unknown, it is often desirable to find a vector x

that satisfies the system in the least squares sense. In other words, we are interested in a

vector X that minimizes the quantity II(AX - b),/I2, where (A X - b),. is the m-vector whose
i-th element is max {(Ax - b);,0}. The definition of the least squares solution of linear
inequalities and the necessary and sufficient condition for vector x to be least squares

solution are given as follows:

DEFINITION 8.1. A least squares solution % of Ax < b is a vector which minimizes
T
fx) = Ax-b)+(Ax-b): = 5 /(Ax - b4/ .

LEMMA 8.2. x is a least squares solution of the system Ax < b if and only if:
Al (Ax-b), =0 (8.1)

PROOF: It follows directly from the facts that f(x) is differentiable and convex and its
gradient V(x) is AT (Ax-b), .[16]

Q.E.D.

In order to find a least squares solution for system (1.1), we can simply try to use an

unconstrained minimization method to minimize the function:

_1 T _1 2
£(x) = (Ax-b)+(Ax-b), = I(Ax - b),
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However, the function f(x) is not twice differentiable and the powerful Newton's methods

are not applicable.

One approach is to solve the above problem iteratively, at any iteration point x, using

the following function

f(x) = %(Ax-b)f(Ax-b)I =3 I(Ax - byl

as substitute for f(x), where I is an index set and I=I(x)= {ilA;x 2 b;}. Clearly, ?(x) is

twice differentiable and Newton's method may be applicable.

This approach has been studied by S.P. Han [16]. Though iterative in nature, Han's
method is a very fast method for linear inequalities. When applied to linear inequalities
with a full dimensional feasible set, that is, Dim(K) = n, it often produces an solution in a
very few number of iterations. The number of iterations required to find a solution is
almost independent of the dimension of the problem. Some computational experiment
results on Han's method are summarized in Section 11. Han's method is also a finite
iterative method; it will find a least squares solution for system (1.1) in a finite number of

iterations even if the entries in matrix A or the b vector are real numbers.[16]

The major problem of Han's method is the substitution of f(x) with ?(x). Han's method
finds the new iterative solution by taking a full Newton step from the original iterative
solution x in the Newton direction for ?(x). However, since ?(x) equals to f(x) only in the
neighborhood of the original iterative solution x, many originally satisfied constraints in
Ajx S by might be violated at the new iterative solution, where J is an index set and J =
{1,....m}\. This hampers the performance of Han's method when the feasible set is lower

dimensional, that is, when Dim(K) < n.
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One possible alternative is to treat Ayjx S by as a constraint set for f(x). A ' barrier '
function , B(J,x), would be designed to measure the violation of those constraints. Now it
is possible to minimize the function f(x) = ?(x) + B(J,x) by Newton's method. This is

the basic idea behind the fourth algorithm (Revised Han's Method).

Notations and Assumptions

(Aix - b;)+ =max {(Aix - by), 0};
(Ax - b); = m-vector whose i-th element is (A;x - b;)+
£(x) = J(Ax-b). (Ax-b), = 3 llAx - 1), 2
I=I(x)= {ilA;jx 2 b; }
=J(x)= {ilAjx <b;} = {1,....m\
Il = cardinality of I

IJI = cardinality of J and we assume that Jl=q

Ar={Ai}¢;
Ay ={Aj) ¢
br = {bi}.¢,
by = {bi};;

W= diag(w;) € R1*9, where w; 20 for all i.
Hr = {/MH; };e;. Hi is aconvex set if the system A; y = by is consistent; otherwise,
H; = @.

dmin = Min d(x, Hy ) je1.

d(x Hyp)=infll &-x l, , where Risa least-squares solution of the system Ay = by .
2

d(x, K1 ) =minimum Euclidean distance from x to Ky .
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9. THE REVISED HAN'S METHOD

Algorithm 4 (Revised Han's Method)

Initialize: Set: xO = (e an, and k=0; start.

Step 1: If (Axk -b), = 0, then x* is a feasible solution ,or,
if AT(Axk -b), = 0, then x* is aleast squares solution of the

system AxSb, stop. Otherwise, go to step 2.

Step 2: Detect I= I(xk), and J=] (xk), and solve the system:
AR = by 9.1)
WA; &= WA x¥ 9.2)

in a least squares sense.

Step 3. Let: d= & -x*,and 8(A)= f(x* + 21 d").
Do a line search to find optimal step size: A by minimizing the function

8 ().

Step 4: Letx*! = x* + X d*. Set k=k+1, and go to step 1.

Remark 9.1. Since the function 6 (A) = f( XX+ d“) is convex, piecewise quadratic

and of one variable, the optimal stepsize A can be accurately and efficiently computed [19].

Remark 9.2. Algorithm 4 with W=0 is exactly Han's method. To begin the discussion of
Algorithm 4 and its convergence proofs, we will analyze some properties of Han's Method

as follows.
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LEMMA 9.1. x**1.x*= o] (At - ) 9.3)

in Algorithm 4.[16]

Al denote the pseudo-inverse of A; . The pseudo inverse of any matrix B,i.e. X =B", is
the unique matrix X satisfying the following Moore-Penrose conditions:

(a) BXB =B; (b) XBX =X: (c) (BX)! =BX; (d) (XB) = XB (9.4)
There are many efficient methods for solving large, sparse systems of least squares
problems, such as system (9.1), (9.2)[23]. An iterative method which is developed by
Paige and Saunders is based on the bidiagonalization procedures of Golub and Kahan. It
is analytically equivalent to the standard method of conjugate gradients, but possesses more
favorable numerical properties. The method, also called algorithm LSQR, is derived by
applying the well-known method of Lanczos process. In this method, the matrix A is
used only to compute products of the form Av and ATu for various vectors v and u. Hence,

the sparsity of the matrix A can be fully exploited.

Remark 9.3. Newton's Method for solving a system of m equations (nonlinear) in n

variables:

81(X1..,Xp) =0

gm(X1,..05Xp) =0
or
gx)=0
for the case of m=n, is given by:
xk+l = xk - g'(xk )lg(xk) (k=0,1,...)
where g'(xk ) is the derivative of g at xk, represented by the matrix of partial derivatives(the

Jacobian matrix). If the nonsingularity of g'(xk ) cannot be assumed for every xk, and in
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particular, if the number of equations is different from the number of variables, then it is
logical to use the generalized inverse of g'(xk ). This is then called the modified Newton
method [24]. We will show that Han's method is a modified Newton's method for solving
g(x)=V£xX) = 0, since:

Vi )= AT(AXS - b), = AT (Arx* - b) = ATA[x* - ATy

and

(Vi) = ALA;

xk+l = xk . g'(xk )-1g(xk ) with the use of the generalized inverse implies:

xk+l = xk . (A'Ir Ap )+A;r (A1 X~ - br)

T T
Anditis wellknown that:  Af = (A1 A1 )"AI

So:
xk+l = xk - AT (Arx* - by) and this is equivalent to solving the system:

Ap xk+l = br

in a least squares sense. Hence Han's method is equivalent to modified Newton's Method.

Remark 9.4. At each iteration of Algorithm 4, the current iterative solution x* has the

following properties:

A xS 2 by
ijk<b1

If we use the above modified Newton method, that is, Han's method, then the new iterative

solution xk+! is not the exact new iterative solution desired. While we want minimize f(x)
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= %(Ax-b):l:(Ax-b)+ . We would be actually minimizing f(x) = %(Ax-b)'lr(Ax-b)I. At the new

iterative solution xk*! some of the constraints in Aj X< by could be violated. To remedy

this, we could impose some penalty for approaching the boundary of Aj xk < by from

inside. One way to do this would be to add a barrier function to T(xk), for example, a

logarithm barrier function B(<",J), where B(x*,J) = ) log(z;) and 7 =b;- A; x* for
ieJ

all i €J. Thus we now minimize F(x*) + B(x"J) .

This approach, however, has the following deficiencies:

1). Since B(x,)) is a log function, there are some implementation difficulties.

2). If x approaches the boundary of Aj x£by from inside, then B(x,J) =ec. This may be

too restrictive, since the original system may not be feasible. Adding this logarithm barrier

function may prevent us from finding the least squares solution of the linear inequalities.

So, we may want a 'soft’ barrier function that imposes only moderate penalties when x
approaches the boundary of Ay x < by from inside. This is exactly why we include:

WA; y= WA; x* 9.2)
into system (9.1). It is equivalent to adding a soft barrier function B(x,J) to T(x) of the
following form:

B(xJ) = (Ay x - Ay x* )TW2(Ar x - Ay x°)
This is also called the weighted least squares method. Since (9.1) and (9.2) is usually an
overdetermined system, a least squares solution may not satisfy all equations. Also, in
general, the smaller the weight for a particular equation, the larger the error. If the current
iterative solution is close to the boundary Hj, we assign a larger weight w; for j-th
equation, and if the current iterative solution is far away from the boundary Hj, we assign
a smaller or zero weight w; to the j-th equation. In such a way we can impose the

appropriate penalties when x approaches Hj.
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10. CONVERGENCE PROOFS AND
GEOMETRIC INTERPRETATIONS
OF REVISED HAN'S METHOD

10.1. Convergence Results:
LEMMA 10.1. Vi(xt) = - (AlA; + WoATA; )d*

PROOF: From Lemma 9.1:
Vi) = AT(AX® - b), = Al (Arx* - by) = ATA[ x* - ATy

The normal equation of (9.1) and (9.2) is the following:

T T T T
(ATA; + WA AN + d5) = Alby+ W2ATAX® (10.1)
But (10.1) is equivalent to:

T, T T
ATA; K - Albp = WEATAKS - W 2ATAXE - (ATA; + W2 A Ap)dS

Hence: VE(xS) =- ( ALAp + WA Ap)dX (10.2)

Q.E.D.
COROLLARY 10.2: (VAx*))Td*=-jja &P - wa; d* P
LEMMA 10.3.[16] For any u,v in R", )/ Vi) - Viv) )| < JJAI ) u - v))
LEMMA 104. If x° is the initial guess of the iterative solution, then
IVAE)R S S1APR°) for all kin Algorithm 4.
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PROOF: From Corollary 10.2 it is clear that d¥is a descent direction and since x**! is
obtained by performing an optimal line search on f(x), it follows that f(xk+1) < f(xk) for all
k. And from Lemma 8.2 V£(x*) = AT(AX* - b), , it follows that

IVES) 12 < IATIRN (AX® - b), IP =% AN 26(x*) < %IIAII 26x%)

THEOREM 10.5: Let {xk } be generated from any starting point by the Algorithm 4 .
Then , either Vf(x*) =0 for some k<oo, or lim Vf x*)=0

k=20
PROOF: We first note that if Vf(xk) =0then x* is a least squares solution of the system
and we are done. Hence, we assume that x¥ is not a solution and Vf(xk )# 0. This also

implies that the index set I(xk ¥ J.

Define: ¢y = lIAIP
cp = max I ATA + WA A;E Yl
I
2 (V)T
T2 nd* 112

Then it follows that
1

(x5 + A d) - f(x5) =h JVf( £+ th dTd* de
1

=R VEeE)Tde + J((Vf( o+t hod® ) - Vexk )Td* Hdr
From Lemma 10.3. VE(x* +t & d* )- VE(x*) £ dhian?idi
it follows that
1
fOxX + A d) - f(x¥) SAIVERE)Td + ¢ Ak Ojtdt

_ (Vf(xk)T dk)2
2 d* 112
Also from (10.2) it follows that

N | S>>

Vf(xk)T dk -

& =- (ATA; + W2AAXE )T Vi)

Hence
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IR S AT AL+ WAATAE )HI2 1VEGE) IR

Sy IVERK) 12

Therefore we have

VST d 2
2, 5 VeI

()£ + A d¥) 2
Since X is the optimal step size and x** = x* + X d*, we have

IVEE)T kiR

FX5) - (5T Yy 2 (k) i (S + 4 d5) 2
() - () -1 ) 2; ¢ IVEK )R

Since the sequence {f(xk )} is monotone decreasing and bounded below, we have:

1 2“ IVERE)T ¥ 112

s S - >
>;((x) (02 I T

Which implies that

lim IVEG*)Td 12
e IVEE)E

From Lemma 10.4 IV£&*) 12 < %HAII 26x®) . Thus itis bounded, which implies:
lim V) €12 = 0
k=00

since
IVEE) TR 12 = 1A d¥I2 + WAy €12

Therefore

limA;d® =0 and 1limWA; d* =0
k=o° k=00
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It follows from VE() =- ( ALA[ + W2ATA; )d¥ that  lim V(<) =0
k=oc

Q.E.D.
10.2 Geometric Interpretation of Algorithm 4.
10.2.1. Geometric Interpretation of Han's Method

Some preliminaries are needed before we formally give the geometric interpretation of

Han's method.

LEMMA 10.6. In Han's method, let % = &+ d , then Xis the closest least squares

solution of the system Ajy = by to the point ** in 2-norm.

PROOF: See theorem 3.2 of [16]

COROLLARY 10.7. // & |}, = dx* H; )

THEOREM 10.8. If the system A;y = by is consistent, and letX = X+ d° where R is

k
the solution of (9.1). Then X €K . In addition, 2; = - (%Q'— )= !
i

forall i € i [Ax>b)

PROOF: If the system A; y = by is consistent, any least squares solution for the system A;
y = by is also a feasible solution to Ay = by . Since R is a least squares solution to Ay =
br , then it is also a feasible solution to A;y = by, Also, if the system A;y = by is
consistent, then Hy # @ and & € Hy. since Hy € Kj . It follows thatX € K , since Hj

€ Ky . Also substitution of y=% = x* +d* into A,y =by, for alli € {ilA;x>b;}, yields
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Ax* - b,
Ak= Aixk +Aidk = b; forallie€ {ilA;x>b;}. Hence A; = -(_lﬂﬁ_ ]= 1 for
1
all i€ {ilA;x>b;}.
Q.E.D
Remark 10.1. During the process of solving system (9.1), the consistency of the

system A; y = by can be automatically determined by checking whether the residual is equal

to zero or not.

In Han's method we know that x*"' = x* + A d*, we may treat:
& o K 4 dk
A20 (10.3)
as a half line from x* to x** . When the system Ay = by is consistent, then A, s,
VA <1, and when A =1, A Xt = b; ,forall i€f{i lAixk>bi}. In other words, when
A=1, the end point K hits all the hyperplanes {Hj},;¢ simultaneously along the half
line (10.3). This is also thé geometric interpretation of Han's method when the system A;y

= by is consistent. ( See FIG. 10.1).

k+1
X

FIG. 10.1 Geometric Interpretation of Han's Method when

the System A; y = by is Consistent
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The results for the case where A; y = by is inconsistent are given as follows. The proofs

of the Theorems are summarized in the Appendix.

THEOREM 10.9. If the system A;y = by Is inconsistent, let R=x+ d , Where
% is the solution of (9.1). Then Alﬁc\ ¥ by In other words, there exists at least one i€,
such that ;X< b;

Theorem 10.9 indicates that if the step length A = 1, then at the new iterative solution

xk+1, at least one originally violated constraint is now satisfied.

COROLLARY 10.10. If the system A;y = by is inconsistent, then 31 such that
k

0<AS1,and A= Min[A————-;—"x ™ db : ).e ; Let: # = X+ 2d*, and for i such that:
- Aj
. A,-xk - bi . , k+1
Min WL L is achieved, there mustbe: Ajx "~ =b; .
- A; ‘

When the system A; y = by is inconsistent, we can conclude from the definition of the

‘least squares solution' of A;y =by, X is in the GRAVITATIONAL CENTER of the set
{YHj},e; . (See FIG. 10.2)
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k+1

FIG. 10.2. Geometric Interpretation of Han's Method when

the System A; y = by is Inconsistent

10.2.2. Geometric Interpretation of Algorithm 4

The comparisons of the geometric interpretation between Han's method and Algorithm 4

are illustrated in FIG. 10.3.
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a)
New Point by
Han's
Method
xK
xk+1
b)

@ New Point by
Revised Han's

Method

@ Constraint 1 @ Constraint 2

FIG. 10.3. Comparisons Between Han's Method and Algorithm 4.

In FIG. 10.3 a), at current iterative solution xk, only constraint 2 is violated. For Han's

k1 will be perpendicular to constraint 2. The

method, the new search direction towards x
originally satisfied constraint 1 will soon be violated when moving towards constraint 2.
The 'soft barrier' on constraint 1 of Algorithm 4 will make it less likely to for the new

iterative solution x**! to cross constraint 1, asillustrated in FIG. 10.3 b).

11. NUMERICAL RESULTS ON LINEAR INEQUALITIES

The Han's method described in Section 10 has been tested for many randomly
generated problems. The search direction d is computed by using algorithm LSQR. The

method is very satisfactory in CPU time and number of iterations, where the number of
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iterations refer to the number of times to compute a new d by LSQR. For each test problem

a point with IAT (Ax - b)+I? £ 10-20 is found. The number of iterations is usually much

less than the size of the problem and almost kept constant as problem size grows.

In the following table 11.1, Rows is the number of inequalities and Columns is the

number of variables. The computation is done in an IBM 3090 system at the University of

Michigan.
TABLE 11.1
Computational Results for Han's Method
Problem Size Number of Total Average
LSQR
Iterations ISJtsegsR Stgls
Rows Columns
100 100 3 69 23
200 100 7 167 24
200 200 3 94 31
1000 1000 5 243 49
2000 2000 9 416 46
4000 2000 12 457 38
4000 4000 8 277 35
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APPENDIX

This Appendix provides some proofs for Section 10.
LEMMA A.1. (Gordan's theorem of the alternatives)[21]
B'x=0
x>0 (I) By >0 (II)
Either (1) or (II) has solutions but not both.

LEMMA A.2. The system:
B"Bu=B"
Bu>v

v>0 (A.1)

has no feasible solution.

PROOF: Suppose (A.1) has a feasible solution, let
L=Bu-v>0
then, (A.1) is equivalent to:
BTu =0
H>0 (A2)
If (A.2) has a solution, by Lemma A.1, Bu > 0 has no solution.
Which contradicts Bu > v > 0 . Hence, (A.2) has no feasible solution.

Q.E.D.

THEOREM A.3. If the system A}y = by is inconsistent, and let R=x+ & , Where

% is‘the solution of (9.1). Then R €K, .

PROOF: Since the system A;y = by is inconsistent, it follows that
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Min (Il A (x° - d ) - by I ) = Il Ajx" - &) - byl® # 0

Also, the solution of this least squares problem , d* , must satisfy the following normal

equation:

T T
ATA[d"= AT(AK® - by)

Now assume that: %€ K, , and since Ay = by is inconsistent, then:
ArR= AxF-Ad*< by

In other words, the following system:

T T
ALA; & = AT(AK® - by)

Ad> (A" - by)

(A" - by)> 0

is feasible. But Lemma A.2 has shown that the above system can not have a feasible
solution, which leads to a contradiction. Hence X € K .

Q.E.D

Theorem A.3. indicates that when A;y = by is inconsistent, the geometric picture of the

Algorithm 4 is quite different from that when A; y = by is consistent. Now we will show
that & =x¥ - d must hit or cross at least one of the hyperplanes {Hi},e; .

LEMMA Ad. Let y and z are both m-vector, in addition,y > 0, and z < 0, If yTz % 0,

then 3e >0, such that:

2
Iy +ezlf <yl

PROOF: Define f(c)= (y+€2)" (y+e2)=llyll? + 22"y + 221zIi?

T
Solve ¢ for af(e) =0, yields: €= i,; >0
de lizIl

T 2
Substitute € into f(e), yields: f(e)=llyll® - "Z” ”” < Iyl
Z
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Q.E.D.

THEOREM 10.9. If the system A;y = by is inconsistent, and let% = X+ d* where
% is the solution of (9.1). Then A,’J? ¥ by In other words, there exists at least one i€,

such that A X< b;

PROOF: From Lemma 10.6. & is a least squares solution to system A;y =Dbyr. Assume
that: A;X> by Pick up any ye Ky, and consider 8d=y-& # 0, then:
ABd=A;y-AjR.Since: A;y £ by and AR >by It follows: Add <0. Consider the
system: IIA((& +€8d) - by 2= AR - by +€eABd)I®, Since: A;R-by > 0 and ASd <O.
From the result of Lemma A.4, 3¢ >0, and X = & + €8d, such that:

IAR - by I2< AR - by II?, which contradicts} isa least squares solution of A;y = by .
So: AI’)E # br. And it immediately follows that there exists at least one i€ I, such that A; R
<b

Q.E.D.

COROLLARY 10.10.  If the system A; y = by is inconsistent, 3. such that 0< A< 1,
k
A= Min(&’EA—.d%-‘— )e ;. Let: = e d , and for i such that:
- A

k
Min(A‘x—A—-(-i-%‘— )‘e | isachieved, there must be: A; Aap
- Aj
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