NEW ITERATIVE METHODS FOR
LINEAR INEQUALITIES

Kai Yang
Department of Industrial and Operations Engineering
University of Michigan
Ann Arbor, Michigan 48109
Katta G. Murty
Department of Industrial and Operadons Engineering

University of Michigan
Ann Arbor, Michigan 48109

Technical Report 90-9

March, 1990
Revised September, 1990

NEW ITERATIVE METHODS FOR
LINEAR INEQUALITIES

Kai Yang and Katta G. Murty

Department of Industrial and Operations Engineering
University of Michigan
Ann Arbor, Michigan 48109

March, 1990
Revised, September, 1990

Abstract

New iterative methods for solving systems of linear inequalities are presented. Each
step in these methods consists of finding the orthogonal projection of the current point onto
a hyperplane corresponding to a surrogate constraint which is constructed through a
positive combination of a group of violated constraints. Both sequential and parallel

implementations are discussed.

Key words: Linear inequalities, Surrogate constraint, Iterative methods,
Sequential and Parallel Implementations.

1. INTRODUCTION

We consider the problem of finding a feasible solution x €R" to a system of linear
inequalities:

AxSb (1.1)
where A€R™" and be R™ . Large scale versions of this problem have many applications.

Some recent applications include image reconstruction from projections [5], which is
becoming an important problem in many scientific fields. In medical science,
computerized tomography reconstructs the images of cross-sections of the human body by
processing data obtained from measuring the attenuation of X-rays along a large number of
lines through the cross-section. Other image reconstruction problems arise in remote
sensing [11], seismic tomography [2] and industrial nondestructive testing.

There are basically two approaches which could be used to solve the system (1.1). The
first approach is to transform the linear inequality system (1.1) to a linear programming
problem and then use well-established methods such as Karmarkar's method [15] [17] or
the simplex method to solve the resulting linear program. These methods require matrix
operations which are often impractical for the large scale systems that arise in applications
such as image reconstruction. Also, in these applications the A matrix tends to have a
special structure [5] which is hard to exploit in these methods.

The second approach involves using iterative methods. They always work with the
original data and most of them do not need matrix manipulations. The basic computation
step in them is extremely simple and easy to program. Because of these advantages, the
linear inequality solvers employed in image reconstruction are most often iterative methods.
One class of iterative methods are derived from the relaxation method for linear inequalities
(Agmon, Motzkin and Schoenberg [1954]) [1] [16] and Kaczmarz's method [14] for linear
equations.The word 'relaxation' in the name refers to the fact that they consider one
constraint at a time, so in each step, all but one constraint are relaxed’. At each iteration a
violated constraint is identified and an orthogonal projection is made onto it from the
current point. So they are also called 'successive orthogonal projection' methods. Bregman
[1965, 1967] [3] [4], Eremin [1965] [10] and Gubin et al. [1967] [13] extended this '
successive orthogonal projection’ idea to find a point in a convex set defined by a system
of inequalities involving convex functions. Making an orthogonal projection onto a single
linear constraint is computationally inexpensive. However, when solving a huge system,
considering only one constraint at a time would lead to slow convergence. Instead, it is
better to process a group of constraints at a time. But making an orthogonal projection onto
the affine space corresponding to a group of constraints is computationally expensive. The
amount of work for this projection grows as a cube of the number of constraints in the
group.

Another class of iterative methods are derived from Cimmino's algorithm [8] for linear
equations. Y. Censor, T. Elfving [1982] [6] and A.R. De Pierro, A.N. Iusem [1985] [9]
developed a Cimmino type algorithm for linear inequalities. This method makes orthogonal
projections simultaneously onto each of the violated constraints from the current point and
takes the new point to be a convex combination of those projection points. Cimmino's
method can be implemented very easily on parallel computers. However, when dealing
with large systems, with many violated constraints, making projections onto every violated
constraint is computationally expensive.

In this paper we propose a class of new iterative algorithms called 'surrogate constraint
methods'. They are able to process a group of violated constraints at a time but retain the
same computational simplicity of the relaxation method and at the same time they are highly
amenable to parallel implementations. In each iteration, a 'surrogate constraint' is derived
from a group of violated constraints. The current point is orthogonally projected onto this
surrogate constraint treated as an equation and the process is repeated until a feasible
solution is found. We discuss three different surrogate constraint methods.

Section 2 defines notation. Sections 3, 4 and 5 describe various algorithms.
Section 6 compares these methods with relaxation methods and provides some
computational results. Section 7 presents the extension of these methods to solve linear
equations.

2. NOTATION AND ASSUMPTIONS

A =(a;), b=(b;), and A; denotes the ith row vector of A. We assume that all
this data is integer and A; # O for all i. We let K denote the set of feasible solutions of

(1.1) and we assume that K+ &

I <{1,...,m}, denotes an index set, which identifies a subset of the constraints.
Ki= {xIAx Sb; }, is the half space corresponding to the ith constraint.
H; = {xIAjx=Db; }, is the hyperplane corresponding to the boundary of the ith constraint.

Ki= (MK }ieq. K1 #3, since K2 K.
IS| = Cardinality of the set S.

Ap = the [Ilxn matrix with rows A;, i€l.

br = (b;, i€I), a column vector.

Iixll: the Euclidean norm of the vector x, Il = 4 ['x}

d(x, H;) = minimum Euclidean distance from x to H; .
d(x ,Kj) = minimum Euclidean distance from x to K;. Note that d(x ,K;) =0, if xeKj;
otherwise, d(x ,Kj) = d(x ,H;).

0(x)= sup d(x Kj)
ie{l,...m
d(x ,K) = minimum Euclidean distance from x to K.

Here we define the length of the binary encoding of all problem data in (1.1) as:

L =ZZ |-1+10g(|aij| +1)-| +Z r1+log(|bi| +1)1 + |-1+lognm-‘ +2 (2.1)
i i .

The following lemma [12, 18] will be used in the convergence proofs.

LEMMA 2.1. If the system (1.1) is feasible, then there is a feasible solution % with [3j] <
2bonj=1,.n

Without any loss of generality we assume that first, each row of A is normalized so that
lIA;ll=1 for all i = 1 to m. This has no effect on K, or K; or H;, but makes it easier to write
down the projections of points on hyperplanes H; and prove the convergence. Clearly, a

point x€ K iff ¢(x) = 0. In practice, we are usually interested in getting an approximate
solution for (1.1) within some tolerance. Given a tolerance € > 0, a point x is said to be
'feasible to (1.1) within tolerance €' if (x) <&, or in other words, we want to find a point
x€ Ke={x: Axx < b;+eforalli=1tom}. Clearly ife = 0, K=K .1

3.THE BASIC SURROGATE CONSTRAINT METHOD

In this method, at each iteration, the next point is some point in the line segment
joining the current point and its reflexion in the hyperplane corresponding to a surrogate
constraint which is a nonnegative combination of all the constraints violated by the current

point. The actual point selected in this line segment depends on a parameter A in the

algorithm, which can be set by the user anywhere between 0 and 2 (A = 1 corresponds to
the orthogonal projection).

When x is the current point, let I = I(x) = {i: Ajx - b;> 0}. For a given point x, the
problem of finding the set I(x), the index set of violated constraints at x, is highly amenable
to parallel implementation. If I(x) # &, The row vector & = (x;: i€ I(x)) denotes a positive
vector of weights. Given such x and =, the surrogate constraint defined by them is:

(m Ap)x £ (mbp) and the corresponding surrogate hyperplane is H={x: (T Apx = (by)}.
Also, without any loss of generality, we assume that the T vector is normalized so that

zni = 1. This has no effect on the following algorithms, so this assumption is purely
i€ I(x)
for the sake of simplifying some statements.

Algorithm 1: Basic Surrogate Constraint Method

Initialization: Let x’€R™ be some initial point (it could be 0, or some known near
feasible point). Go to Step 1.

General Step k+1: Let x* be the point obtained at the end of the previous step. Check
whether A; x* S b;holds for all i = 1 to m, and identify the index set, I = I(x¥), of

violated constraints. If Iy = &, xX is feasible to (1.1), terminate. Otherwise, select a
weight vector (k) = (nl-f ;,1 € Iy) and compute:

A (m ()ALX" - m(kby (T (KAL)
lin (k)AIkII2

(3.1)

11t is well known that if € = 2" and a solution x is found to be feasible with tolerance € = 2-L | then there
exists a procedure with polynomial complexity which can construct a true feasible solution for (1.1) from
this approximate solution x. [12] [18]

where 0< A <2, go to next step.

Remark 3.1. IfA =1, X1 will be the orthogonal projection of the current point X~
on the surrogate hyperplane H,. (See FIG. 3.1)

Surrogate
Hyperplane
\\
\
KON
AR YN\
\
Violaed
Cons\trainﬁ k
\ N A X
N\ N \ NN
\ \\
\\C\
\

.

FIG 3.1 Illustration of a Step in the Surrogate Constraint Method with A=1

Computationally, the most cxpehsive piece of work in this method is that of finding the

index set of violated constraints, I(xk), in each step. As mentioned above, this can be
implemented for parallel computation very easily. This is one of the major advantages of
these surrogate constraint methods.

Remark 3.2. Recommended choices of the weight vector m : The following are some
of the rules that can be used to select the vector of weights in each step.
(1) Weight by error:

The quantity r;= (Aixk - b;), is the Euclidean distance from the current point X to
K ,for each i€ I(xk). Since larger r; corresponds to greater infeasibility with respect to
K, it may be desirable to make 7; proportional to r;, for all i€ I(xk), that is:

(2) Weight equally: in this rule, &; = lllﬁ , for i€ I(xk).
(3) Convex combination of the two weights given above:

T, = O - (1- (X)%kl where 0 < o< 1, for iGI(xk).

>

For the sake of simplicity, all our convergence proofs will be based on the assumption
that the weight vector &t = (m;: i€ I(xk) is selected so as to satisfy w; >y for all i€ I(xk),
when x* is the current point, where Y is some predetermined small positive quantity.

Convergence Results.

DEFINITION 3.1. When K% &, a sequence {xk}:; ; in R™ is called strictly Fejer-

monotone with respect to the set K if for every xK:
I < -x)l forallk>0. 32)

Every Fejer-monotone sequence is bounded if K+ &, since IxE - x Il is always positive
and monotonically decreasing with K.

THEOREM 3.1. If K# O, any sequence {x};:: ; 8enerated by Algorithm 1 is strictly

Fejer-monotone with respect to K, provided that ek forallk > 0.

PROOF: Select any point x€ K. Define e =x*-x,k=0,1, .., for simplicity we
denote m(k) by m and Iy by I. Then, if 1# &

k T
] A
ek+1 - ck) ,7\- (n AIX 7Cb21 n 1) . and:
Iim Al
2 k 2 k
. Arx* - b
P = e ¢ AEAIX mb)” gy @AIX DB)y ok
i Agll I Ayl
v2 AXm AxE - b))
= 1N + s
I Aql

PTaC: Arx* - mby)

I Al (x4 (- x)

2 k 2
k2 + M@ AIX - 7by)
I Al

G Arx* - by)

i A (m A" - Ty - T Arx +7by)

}»2(75 AI Xk - 7th)2
Il Agi®

=[NP +

2A(n Apx* - by)? . o (T A x* - by)(TA7x - Wby)
Il Al llrc Agl®

Since T A; x> nb; and m A;x <mby, we have

5, (T Ar x* - by Y(MA[x - by)

3 < 0. Therefore it follows that
Il Afll

(t A;x* - mby)?

. k”2
liw Al

(3.3)
|

lle

12 < ek - A2 - A)

THEOREM 3.2. If K# O, then any sequence[xk}:= ; 8enerated by Algorithm 1 has the

property:
Lim ¢(x5=0
ko0

PROOF: Fejer-monotonicity implies that the sequence{llekll};l is monotonically

decreasing. Since the sequence lleM is positive and bounded below thus it converges.

Which implies that 1im el = 1im lle¥I. It follows from (3.3) that
ke ko0

lim (7 (K)Apx" - n(k)by) =0. Since m(k) >y forall i€l(x*), and z n¥ =1and
ke
€1

also since Ay x“- by, >0 foralli € I, this implies that either Lim (Ax*-b;) =0 for

allie Iy, or at some K < oo, I(xE) = (. Therefore
lim@xS) = sup dx*K;) =0
koo ie(l,..m]}

1€y, ..,

LEMMA 3.1: If K+ D, anifthe sequence{xk}; ; Satisfies the conditions
(i) {xk} ,Z 1 is Fejer-monotone with respect to K, and
(i) lim ¢x") = 0

k00

k
then x" convergestoanx € K

PROOF: Follows from Lemma 5 and Lemma 6 of Gubin et al.[13]

In practice, we are more interested in finding a point x€ K¢ quickly. We will show if we
set I(x) = {i: Ajx - b;> ¢} in Algorithm 1, then Algorithm 1 converges to a point x€ K¢ in a
finite number of iterations if K# &.

THEOREM 3.3. If K+ &, and we set I(xk) ={i: A,-xk- b;> €} in Algorithm 1, then it
converges to a point x € K in a finite number of iterations.

PROOF:
) First we show that for any x€ K if x“¢ K , then [IX**! - x Il < IIX* - x Il for all k > 0.This

follows directly form the fact that if ‘g K¢, then I(xk) # @ so Algorithm 1 will not
terminate, from (3.3) we have

k 2
12 < liekii? -x(z-m(“ Arx - ;‘bl)
Il Al

k“2

lle

Hence the result follows.
IT) Then we show that in this case any sequencc{xk}:=1 generated by Algorithm 1 has the

property: lim ¢(xk) < €. This follows from that fact that the sequence{llekll}:=1 is
k00

positive and monotonically decreasing thus it converges. So: 1im e = 1im lle"i .
ke ke

So it follows from (3.3) that 1im (& (k)AIkxk - 7t(k)b1k) =(. Butsince 7 (k) >0 and
ko0
z 1 =1 and also since Ax* - b> € for all i € I, this implies that m(k)A; x* -
i€ I
n(k)bIk> g as long as Iy # @ which contradicts 1im (= (k)AIkxk - n(k)blk) =0. So
ke

there must exist k < oo, such that I(xE) = &, Which implies at iteration k, <b(xlz) =

sup d((xi , Ki) <e. Inother words, xk e K.
ie(l,..m}

III) Bounds on k : It follows from II) that the sequence of points {xk} produced by

Algorithm 1 converges to a point xke Kg . Let e*=x"- x, where x€ K, from Lemma 2.1,
we have ¥l < 211\, If at iteration k, I(x¥) # @, A,x* - b, > & for all ieI(x¥), it

follows that 7 Ay x* - by > (ZEi){rinéP(Aixk-bi)} > (Yme>e
€1, k €1,

n
and Il AL Il < IRIALN < e AL — (an)l/Z(ZZIaijﬂ) 2 < m

.)
iEIk ielkj

AL xl -
where IlAIkIIZ =sup Wkll- IIAIka is the Frobenius norm of A = (ZZ lay;l2) 112 .
X iek Fl

k12 o k2 A2 - A)e?
It follows that lle™ II* <lle”lI” - —7

2 2L-2

Therefore, Algorithm 1 converges within k steps where kS ————
nA(2 - A)-€2

|
4.THE SEQUENTIAL SURROGATE CONSTRAINT METHOD

In many applications requiring the solution of linear inequalities, the coefficient matrix
of (1.1), that is, the A matrix, is often very large (m and n are of the magnitude 105 or
more) and sparse (less than 0.1% of entries are nonzero). If the system (1.1) is to be
solved by the computer on site, working on the whole matrix A is almost impossible. So, it
is preferable to work on one small subset of constraints of (1.1) at a time. Specifically, the
matrix A can be partitioned into p submatrices, and the right-hand-side vector b can be
partitioned compatibly into p subvectors, as follows

Al bl
A=|A| and b=|b 4.1)
AP b |

where Alis a mxn matrix, bt has m;rows, fort=1top, and

p

Emt=m.

t=1
Now we will show that the surrogate constraint method can be used to solve the system

(1.1) by successively applying on the subsystems, Ax Sbt, t=1top in cyclic order.

For any x€ R", define I¥(x) = {i: ith constraint in t-th subsystem is violated by x }. We

denote by nt = (ntl, vy ntmt), the weight vector for the t-th subsystem, t = 1 to p. When

the current point is x*, and we have to operate on the t-th subsystem next, we will set nit >0

if i€ I‘(xk) , 0 otherwise. Then the corresponding surrogate constraint for the t-th
subsystem is: T!Ax S mibt , and the surrogate hyperplane of the t-th subsystem is:
H; = {x: A% =mibt }.

The algorithm goes through major cycles. In every major cycle, each of the p subsystems
is operated on once, in serial order t =1 to p.

10

Algorithm 2: Sequential Surrogate Constraint Method

Initialization is the same as in Algorithm 1. Considers a major cycle. In this major cycle,
operate on subsystems in the order t =1 to p.

Let x* be the current point and let the t-th subsystem be the one to be operated next. Find
It (x5) .
IfIt (xk) = define ! = x* and go to the next subsystem with x~ ~ , if t <p.
If t = p, this completes the major cycle. If there is no change in the current point throughout

this major cycle, then the current point is feasible to (1.1), terminate. Otherwise, go to the
next major cycle with the current point.

k+1

If I‘(xk) # I, select a weight vector nt and define 1 = K agk

whore ko (WARE- mibt) (tAY "
A

and 0 < A <2. With xk+l, go to the next subsystem if t < p, or to the next major cycle if t =
p.

4.2)

X xk+l xk+2 x ktp-l Ltp

Subsylfstem | Subs;zlstem - Subsgstem

FIG 4.1 Diagram of the Sequential Surrogate Constraint Method

Convergence Results

LEMMA 4.1. Let %eR" and CT a row vector in R" . Let T be the half space
{x: CTx < CTc9}.If z € Iis such that its orthogonal projection on T'is c°. Then :
Iy -2l </ly-zlf forallyeTCand z3 = z- Mz - °)for 0<A<2.

PROOF: See [1] [10].

11

- G > 7
[-
ly-z)l / g
Ny
/ - g \ N
[Ily-zll

FIG. 4.2 Illustration for Lemma 4.1

Suppose the point 1 i obtained by operating on the t-th subsystem with x" as the
current point. Then from Algorithm 2, = K _Ad® for some 0 <A <2, with d* as

defined in (4.2). The surrogate hyperplane at this iteration is H; = {x: T!Ax =n'bt }, and
X< - d¥ isthe orthogonal projection of x* onto Hts . So: 1ttAt(xk &)= zwtbt. Also

recall that K ={xIAx £ b}, clearly for all x€ K, mtAx S ntbt has to be satisfied for any t =
1 to p. Using the above arguments and Lemma 4.1 the following Lemma 4.2 follows
directly.

LEMMA 4.2. Suppose the point ¥*1 is obtained by operating on the t-th subsystem

with x* as the current point. Let I* be the half-space corresponding to the surrogate
constraint in this step, mAx S nibt= WAIR" - d°). Then
Ny- (-2)< lly-2) forall 0<A<2andforallyeI’. Also K CI'.

t

H;
I

FIG 4.3 [Illustration for Lemma 4.2.

12

THEOREM 4.1. In Algorithm 2, if X" 4 ¥, then for all x €K, [x - ¥) < [/ x - X)) .

PROOF: Follows directly from Lemma 4.2.

THEOREM 4.2, If K< O, any sequence{xk}:’= ; 8enerated by Algorithm 2 has the

property:
Lim ¢(x)=0
k—)oo

PROOF: For any x€K, Theorem 4.1 implies that the sequence{llxk- xll}:zl is

monotonically decreasing, thus it converges. So if t(k) denotes the subsystem operated
upon when x* is the current point, and 7 the weight vector used in that step, then

1im (p0ARKE - b)) = 0 . Since nﬁ(k) > 0 for all i€I*®) (xk) and sums to one
k00

over these i, and Ag(k) x* - bi® >0 forall ieIt® (xK) , this implies that either

Lim(A® x* - b®) =0 forall iel® (xk) or there exist a T < oo such that at major
koo

cycle T, If(xk) = for all t = 1 to p. Therefore: 1im ¢(xk)= 0 [|
k00

THEOREM 4.3. If K< @ and, we define Ix") = {i: Ax* - b'> €}, then Algorithm
2 converges to a point x € K in a finite number of major cycles.

PROOF: As in the proof of Theorem 3.3, and from Theorem 4.1 we know that if

x“¢ K¢, then for all x €K, Il x - X*! 1<l x - x* Il. Define ¢* =x* - x, since lle¥ll is
monotonically decreasing and bounded below so it converges. Which implies that

lim 1" = 1im lleMIl. But this happens only if there exists an r < o such that at
ko ko0
major cycle r , It(xk) = & for all t = 1 to p. Otherwise for all k there exists a subsystem t

such that Ii(xk) # &, then mAX* - n'bt>e hence limlle“l# 1im Il , a

ke ke
contradiction. So Algorithm 2 must converge to a point in K in a finite number of major
cycles.

Now we derive a bound on T. From lemma 2.1 it follows that: lie”ll < 2L'1/\/_r_1. If at the
begining of major cycle r, the current point xk¢ K¢, there exists at least one subsystem t,

and at least one constraint in it, such that Aﬁxk - b} > €. So a change of point must occur in

some step in this major cycle. Let t be the subsystem operated on in that step, and x%,x5*!

the point at the begining and end of this step, and xt the weight vector used. So,

tAty & _ mtht tAtyT
B & (TtAX® - ttht)(mHAY)

et = 3 Thus:
[t Al

13

(TAIX® - Tibt)2
A

e % < NeBl? -A2-) . As in the proof of Theorem 3.3, we get:

A2 - A)e?
m?2

le8 112 < lIe8I? - . From this it follows that Algorithm 2 converges within r

m2-2 2L-2
nA(2 - A)-g2

major cycles where r =
|

5. PARALLEL SURROGATE CONSTRAINT METHOD

The surrogate constraint method can also be implemented to work on ALL of the

subsystems, Atx £ bt , for t =1 to p of (1.1) SIMULTANEOUSLY . This is particularly
suited for parallel computation. This algorithm generates one new point in each step and an
operation is carried out with the current point on each subsystem in a parallel manner.

Algorithm 3: Parallel Surrogate Constraint Method

Initialization is the same as in Algorithm 1.

General Step k+1: Let x* be the point obtained at the end of the previous step.
Do the following for each subsystem, Ax £ bt , for t =1 to p
parallelly. Find I'x") as in Algorithm 2. IfI'x") =@ , define Py(x*)=x* .
IFI(5) # O, select the weight vector ntt as in Algorithm 2, and
define: P(x*)=x* - d*
where d¥ = (WA - n‘b;)(Ay
Il Al

IFIx*) =@, forallt=1top, thenx® is feasible to (1.1),
terminate. Otherwise,

(5.1)

P
Define P(x*) =Z TP (x*),
t=1
where 1, are nonnegative numbers summing to 1 with t¢ >0 for
all t such that I'x") # @
Define x**! = x¥ + AP(xX) - x*) where 0 <A <2 (5.2)

14

Subsystem 1

Subsystem 2 k il
X
K / Take convex
‘—> X _ combination
Parallel processing /
Subsystem p
le Y

FIG 5.1 Diagram of the Parallel Surrogate Constraint Method

Convergence Results

P p
LEMMA 5.1. Let VER" fort=1top,andV = Z 7 Vi, where 2 T =1and

t=1 t=1

‘ p
O0s g S1forallt=1top,pisapositive integer, then [[V/[2 S 2 % [V
t=1

PROOF: By induction on p. Forp=2, V=1,V + 1,V where 11+ 1, =1,7; 20 and 1,
20. So IIVI2=1| Vi + 12V, 2=1 %"Vl”2 + t%“Vz"z + 21?1’172(V1)TV2 . So,

‘Cl”V1||2+ 12||V2”2 - IvI2 ='t1"V1||2+ ‘C2"V2”2 -T %||V1“2 - T%”Vz”z - 2’511?2(V 1)TV2

=0 (1-T)IV 12+ 1o(1-)IIV4I2 - 2131(V)TV,
=0 TlIV1I2+ T IVaI2 - 27110(V)TV,
:1112”\’1- V2“2 20.

It follows that IIVII2 £ 141IV4112+ 1,1IV,lI2 . Hence the assertion is valid for p = 2.
Induction Hypothesis: Assume that the assertion is valid for p - 1. We will prove that the

p 1
assertion is also valid forp. Let V = Z T Vi =itt Vi+ 1, Vp = (1-1p) V+ T,Vp where

t=1 t=1

1
T
—V,. From the above argument,

V=
=1 1-Tp

15

-1 p
IVIRS ¢ IVyJR + (1t V I2 STIVIR + (1-1) Y — IVIR= Y gV
TpllVp Tp TpllVp Tp 1
t=1 *° t=1

by the induction hypothesis. So, the assertion is valid for all finite—positive integers p.
' |

THEOREM 5.1. In Algorithm 3, if ¥ 4 5%, then for all x €K, [/ x - X") <)} x - 2").
PROOF:

p
Kok }‘Z T (mAKE - ntbt)(ntAt)T
e~ Ay

Let: e®= x® -x, then

p k T
z tAtx < - tbt) (AL
t=1

€ = ¢
limt Al

Let VI =

’

A% - mbt) Ay S man® -) meanT
Al et Al

P
itis clear that V=) 7, Vs
t=1

Then: (e")T= (X)T- AVT and:

2 = MR +A2vTY - vTek

P k
tAL - mtht
197 +a2vie - 21y, BE ‘:Tw’;t”fb) 7t AGE -)]
t=1

P k
tAt - mtht
2 +azvie - 20y, I’Tn;”znb) [t (A" - bY)]
t=1
T(TAK" - 7ithY)

+ 2\ 5
(It Al

t=1

[mt (A% - bY]

16

p K)
> Vv E T(TA™ - bt
< ||Ck||2 + l2 Il ||2 =20 [(X 275)

t=1 It All

=0eNP + AZUVIZ <20) g IV,

P
t=1

p
From Lemma 5.1 we have: A2 IVIZ < A2 Z 7 V{2, So

t=1

p
1< 2 < neki? - x(z—x)z LIVIE < NI (5.4)

t=1

THEOREM 5.2. If K+ O, any sequence[xk}:= ; &enerated by Algorithm 3 has the
property:

Lim ¢(x")=0

ko0

PROOF: For any x€K, Theorem 5.1 implies that the sequence[llxk-xll}:=1 is

monotonically decreasing, thus it converges. It follows from (5.4) that

P k 2
tAtL - mtht
limz Tt AX 21tb) -0
e I It Al
Since T; >0 for all t such that It(xk) # J, and the T, sum to 1, the above implies that

lim(TAKE - ntbt) =0 for all such t . Since for each subsystem 11:1F are strictly positive
ke

for all j& Ix") and sum to 1, this implies that either 1im (A" - b}) =0 forall
ko0

j€ I'(x*) and for all subsystems, t=1to p or there exists a kK < oo such that It(xk) =&
forallt=1top. Therefore 1im o(x*)=0.
ke

|
For the sake of simplicity, our following finite convergence proofs will be based on the

assumption that T, are all equal for all t = 1 to p, that is, T, =-;— for all t. In practice, a

17

different choice may yield better computational performance, this has to be determined in a
computational experiment.

THEOREM 5.3. If K+ &, and we define I‘(xk) = {i: Azxk - bf> €} in Algorithm 3 ,
then it converges to a point x € K¢ in a finite number of steps.

PROOF: As in the proof of Theorem 3.3, and from Theorem 5.1 we know that if

x“¢ K, then for all x €K, Il x - "' Il < Il x - X II. Define e =x* - x, since lle“Il is
monotonically decreasing and bounded below so it converges. Which implies that

lim Il"Y = 1im Nle"ll. But this happens only if there exist a K < oo such that at kth
ke e

iteration, I(Xk) = for all t = 1 to p. Otherwise for all k there exists at least one
subsystem t such that I%(xk) # & then TAKS - mbt> ¢ Since el < lleMI? +

It A ke Ko
contradiction. So Algorithm 3 must converge to a point in K.

P k 2
tA L - rtht
(73-2?»2 LAY T d this implies that 1imlle¥ll # 1im lle"™Il, a
t=1

From lemma 2.1 it follows that: lle’ll < 2X"Vn. If Ix¥) # @ for at least one
subsystem, say, the t-th subsystem , then from (5.3) and (5.4) we get

. P k 2
tAt: - mtht
2 < ek -x(z-x)z LWAx_ - T'b)
o Al
tA te K _ mrtht)2
< MR a2 -y HEAX - TDY
It Al
TR S §
Since: T‘_p <=

7 tAKE - bt > (Zni).e=s,and ITAU < It iplAtl, < InthlAtE < m
i

- 2
2 ke MM

It follows that lle —m3

Therefore, Algorithm 3 converges to a point in K¢ within k steps where
3592L-2
ks o2
nh(2 - 1)-€?
|

A different parallel method
In the parallel method discussed above, we obtained for the t-th subsystem a
surrogate constraint

18

T tAKX S wtbt (5.5)
and a point Pt(xk) by projecting x* onto this surrogate hyperplane, for each t =1 to p such
that I‘(xk) # . And the new point x*! is derived from a weighted average of these

Pt(xk). So this method can be viewed as a Cimmino type method using groupsof
constraints instead of individual constraints, and surrogation within each group. Another
parallel method would just obtain the surrogate constraint (5.5) for each subsystem t such

that I‘(xk) # . Then it would take a positive combination of all such surrogate constraints
generated, leading to a surrogate constraint for the entire original system (1.1). If the

weight assigned to t is 8, > 0, this constraint will be:

Z S (mtA%) S Z d; (ntbt) (5.6)
te {F(xk)e @) te {x)e @)

The point P(xk) is then defined to be the orthogonal projection of x* onto (5.6) treated as an

equation, and the next point x¥ is obtained as in (5.2) using this P(xk). This method is
essentially Algorithm 1 using a parallel implementation for identifying all the violated
constraints, with a different processor examing the constraints in each subsystem.

6. COMPARISONS WITH EARLIER METHODS

The rate of convergence for all surrogate constraint methods depend on the

choice of the w vector. A 'better' © vector can make a larger improvement , see Figure
6.1.

H 1
Surrogate Hyperplane Surrogate Hyperplane

»

k+1
X

Poor improvement Good improvement
due to an improper due to a proper
surrogate hyperplane surrogate hyperplane

(a) ® vector is chosen by 'weight by error' (b) & vector is chosen by 'weight equally'

FIG 6.1 The Effect of the © Vector on the Performance
of the Surrogate Constraint Methods
Now let's compare the surrogate constraint methods, that is, Algorithm 1, 2 and 3
in this report, with the relaxation method for solving linear inequalities. In the relaxation

19

Surrogate
Hyperplane ~q,

AN
KO
D NN
Origiml > N\
Constraités N\ . N

New Point by
Surrogate
Constraint
Method

New Point by
Relaxation
Method

FIG. 6.2 Comparison of the Surrogate Constraint Method
with the Relaxation Method

method at each iteration an orthogonal projection is made from current point x* onto an
individual K; for some i. However, K| only contains the information of one constraint .
Sometimes the projection on K; offers little improvement in reducing the distance from the

iteration point x* to set K. On the other hand, the surrogate hyperplane contains the
information of more than one violated constraint, so it is expected to generate a better new
point than the relaxation method. (See FIG. 6.2)

Cimmino's method for linear inequalities identifies all violated constraints in each
iteration. Othogonal projections are made simultaneously onto all violated constraints from
the current point and the new point is a convex combination of those projection points.

(See FIG. 6.3)

k+1

X
/ K/ 7 somewhere | K
on this line

FIG. 6.3. Geometric Interpretation of Cimmino's Method.

Computational experiments have been carried out to compare the sequential surrogate
constraint method (Algorithm 2) with the version of the relaxation method that processes
the inequalities in cyclical order. We give below our preliminary computational results on
randomly generated large sparse problems carried out on the IBM 3090-400/VM main
frame computer at the University of Michigan. The problems are generated in such a way
that the system would have an interior feasible solution. The sequential surrogate

20

constraint method is implemented using in each step the weights suggested in (3) of

Remark (3.2) with o =0.2. The value of A for both methods was taken to be 1.7.

The results are listed in Table 6.1. Five test problems were generated in each
dimension. The speedup of surrogate constraint method over the relaxation method ranged
from 30 to 60. The speedup increases as the problem size increases.

TABLE 6.1
Comparison of the Relaxation Method and Algorithm 2
(Sequential Surrogate Constraint Method)

Problem Sparsity Relaxation Sequential Surrogate
Size of the Method Constraint Method
Problem

Rows |Columns

5000 | 2500 2.0 105001 49 | 17.04
5000 | 5000 1.0 10675| 52| 23.49

10000 | 2500 | 1.0 22375 6.3 | 45.11

34 0.511 2500

3.2 0.544 | 2500
2.7 0.806 | 2000

B]] DN

10000 | 5000 0.4 209851 5.9 | 54.06 3.7 1.146 | 2000

10000 | 10000 | 0.4 23125) 7.1 | 84.22| 5 2.8 1.371 2000

18000 5000 | 0.5 |41125| g4 |21300] 9 | 34 3332 | 2000

18000 9000 [0.2 [44750[93 [255.13] 9 | 38 [4002 | 2000

Five test problems were generated for each dimension and the accuracy = 10

* Average number of projections + Average CPU time (seconds)

Number of subsystems ## Number of rows in each subsystem
** Number of sweeps ~ Number of major cycles

In the relaxation method, in each sweep, all the constraints are examined once from top
to bottom. The average number of sweeps before termination varied from 5to 10 among
the problem sizes. Since the current point changes after each projection, it is not possible
to implement a sweep in this method in a parallel fashion.

In the sequential surrogate constraint method, in each major cycle, the number of
projections made is at most equal to the number of subsystems. In each major cycle, each
constraint is examined once, but as explained earlier, this work can easily be parallelized.
Also, the number of major cycles needed in the surrogate constraint method is much less
than the number of sweeps needed in the relaxation method to achieve the same accuracy.

These computational results are very encouraging. More extensive experimentation is
necessary to determine the strategies to implement the surrogate constraint methods for

obtaining the best performance, things such as the best choice for the weight vector in each
step, etc.

21

7. EXTENSIONS TO LINEAR EQUATIONS

It is very easy to modify Algorithm 1, 2 and 3 to solve a system of linear equations

Ax=b (7.1)
by applying them on the following equivalent systems of linear inequalities
AxSb
-AxS-b (7.2)

Many of the classical iterative methods, such as the successive approximation method,
the Gauss-Seidel method, SOR method, and the steepest descent method, may not always
converge for an arbitrary coefficient matrix A. Some methods require A to be positive
definite or diagonal dominant, otherwise those methods would have to be applied to the

system ATAx = ATb. In the case of successive approximations, convergence requires that
the spectral radius of an approximation matrix be less than one.

Whereas the surrogate constraint methods only require that the system (7.1) be
feasible. This is one advantage of the surrogate constraint methods over the classical
iterative methods.

For each i, system (7.2) has both the constraints Ajx Sb;and Ajx 2 b; .When x¥ is the

current point, if Aixk =b; , both these constraints are satisfied. Otherwise, Aixk # b;, and
exactly one of the constraints in the above is violated, while the other one is satisfied.
Thus, when x¥ is the current point, the set of violated constraints in (7.2) includes at most
one of the constraints from the pair A;x £ b; and A;x 2 b; .Using this, simplifications can
be made in executing Algorithm 1, 2 or 3 on the system (7.2).

Acknowledgements: We are grateful to a refree for pointing out the result in Lemma
5.1 and its importance in the proof of Theorem 5.1.

REFERENCES

[1] AGMON,S., The Relaxation Method for linear Inequalities, Canadian Journal of
Mathematics 6 (1954), 382-392

[2] ANDERSON, D.L;DZIEWONSKI,A.M., Seismic Tomography, Sci. Amer. 251
(1984) 58-66

[3] BREGMAN,L.M.; The Method of Successive Projection for Finding a Common Point
of Convex Sets, Soviet Mathematics Doklady 6, 6 (1965), 688-692

[4] BREGMAN,L.M., The Relaxation Method of Finding th mmon Point of Convex

Sets and Its Application to the Solution of Problems in Convex Programming, U.S.S.R.
Computational Mathematics and mathematical Physics 3 (1967), 200-217

[5] CENSOR,Y. ; HERMAN,G.T., On Some Optimization Techniques in Image
Reconstruction From Projections, Applied Numerical Mathematics 3 (1987) 365-391

22

NIVERSITY OF MICHIGA

[6] CENSOR,Y. ; ELFVING, T., New Method for Linear Inequalities, Linear Algebra and
Its Applications 42, 199-211 (1982)

[7] CENSOR,Y. , Row-Action Methods for Huge and Sparse Systems and Their
Applications, SIAM Review, Vol 23, No. 4, Oct. 1981, pp 444-466.

[8] CIMMINO,G. Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari,
Ricerca Sci. (Roma), Ser. Il, Anno IX, 1 (1938) 326-333

(9] DE PIERRO,A.R.; IUSEM,A.N., A Simultaneous Projections Method for Linear
Inequalities, Linear Algebra and Its Applications 64, 243-253 (1985)

[10] EREMIN,LL, The Relaxation Method of Solving System of Inequalities with Convex
Function on the Left Sides, Soviet Mathematics Doklady 6, (1965), 219-222

[11] FLEMING,H.E., Satellite Remote Sensing by the Technique of Computerized
Tomography, J. Appl. Meterorology 21 (1982) 1538-1549

[12] GACS,P.; LOVASZ,L., Khachivan's Algorithm for Linear Programming, Report
STAN-CS-79-750, Department of Computer Science, Stanford University, (1979)

[13] GUBIN,L.G.; POLYAK,B.T. AND RAIK,E.V. The Method of Projections for
Finding the Common Point of Convex Sets, U.S.S.R. Computational Mathematics and
Mathematical Physics 6 (1967), 1-24

[14] KACZMARZ, S., Angenherte Auflosung von Systemn Linearer Gleichungen, Bull.
Internat. Acad. Polon. Sci. Lett. A. 35 (1937) 355-357

[15] KARMARKAR, N.; A New Polynomial Algorithm for Linear Programming,
Comninatorica, 4 (1984) 373-395

(16] MOTZKIN, T.S.; SCHOENBERG,I.T., The Relaxation Method For Linear
Inequalities, Canad. J. Math. 6 (1954) 393-404

[17] MURTY, K.G., Linear Complementarity, Linear and Nonlinear Programming, 1988,
Heldermann Verlag Berlin.

[18] MURTY, K.G., Linear Programming, 1983, John Wiley & Sons.

[19] TELGEN, J., Relaxation Methods for m of Linear In lities, European
Journal of Operational Research 9 (1982), 184-189

23

