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CHAPTER I

INTRODUCTION

Problems concerning the dynamics of thermal processes possessing
characteristics attributed to capacitance (specific heat and density) and
resistance (heat transfer coefficient) are continuously arising in engi-
neering practice where temperature control is necessary.

The controllability of the output is decided by the dynamic
characteristics of the system subjected to various external disturbances.

The dynamic response of a fluid flowing through an insulated
pipe subjected to a step, and sinusoidal disturbance on inlet temperature
were investigated by J. W. Rizika(9), P. Profos(zo) and Y. Takahashi(7’8).
The dynamic response of the same system with a step and linear change in
the rate of heat generation were studied by Professors J. A. Clark and
V., S. Arpaci in a series of technical papers.<l’2’3) This thesis is the
extension of their work on a similar heat exchanger but differing in that
the rate of heat generation from the internal heat source is sinusoidally
time dependent. The heat exchanger and the fluid are considered as a sys-
tem. The fluid temperature, the wall temperature and the fluid-wall tem-
perature difference are taken as the outputs, corresponding to variations
of internal heat generation, which are considered as the input or disturb-
ance., The previouS‘work(l’2’3) have presented the solutions to the étep
and ramp response while this work reports the investigation of the fre-
quency response of the wali temperature, fluid temperature and fluid-wall

temperature difference owing to the periodic disturbance in the rate of

-1-



heat generation. In case both the fluid inlet temperature and the rate
of heat generation change the results on the outputs are superposable
because of the linearity in the entire system.

The understanding of the dynamic characteristics of a physical
system is necessary in order that it be able to be controlled. The
response of a dynamic system may be found by imposing a disturbance at
one point in the system, holding all variables but one constant. The
disturbance may be a step, sinusoidal, linear, or an exponential function
with respect to time, and the corresponding response is called step,
sinusoidal or frequency, ramp, exponential response, respectively.

In general, it is preferable to express the dynamic behavior
of a system by means of a step, and-or frequency response.

Step response is recommended because of its clearness in repre-
sentatlon and fullness of physical significance. Also it is sometimes
easier to impose experimentally. bThe experimentally determined response
can be approximated by a suitable mathematical expression which then can
be used to determine the dynamic characteristics of the system to other
disturbances.

Steady-periodic response or frequency response is important for
two reasons:

1) If the response of a linear system ".to sinuscidal imputs of
all frequencies is known, it is possible to know the response of the sys-
tem to any other type of disturbance on the input, since any arbitrary
function, according to the Fourier theorem, can be synthesized by super-

imposing an infinite number of sine waves of different frequencies.



If the arbitrary function is periodic in time, one can use a
Fourier series of sine waves to represent it; if the function is not
periodic, a Fourier integral is used to represent it.

2) Frequence response is also extremely helpful in predicting
the stability of a closed-loop system, if the frequency response of an
open-loop system is known.

Furthermore, frequency response may also be determined experi-
mentally by simply applying all frequencies and then plotting the trans-
fer locus as a function of frequency.

This powerful method of frequency-response study was originally
and thoroughly developed for use in feedback amplifier design and subse-
quently has been widely applied to the servomechanism as well as process
control fields., It is now realized that servomechanism and the control
of heat exchangers are basically the same and therefore the method of
study used in servomechanism can be applied directly to heat exchanger
by merely changing in terminology and point of view or emphasis.

The investigation of the dynamic behavior in the transient-
periodic state has often been ignored since it is usually a more compli-
cated problem and the period will deéay after a certain time-interval
followed by the steady-periodic state. Two convenlent ways to determine
the rapidness of the decay of the transient periodic-state are: (a) to
measure the time required for the amplitudes of the transient periodic
oscillation of temperatures to reach 99 percent of that of the steady-state
oscillation. (The specification of 99 per cent 1s admittedly somewhat
arbitrary.) (b) to measure the logarithmic increment which may be de-
fined as the natural logarithm of the ratio of any two successive ampli-

tudes.



The research was conducted in the Heat Transfer and Thermodynamics

Laboratory of the Department of Mechanical Engineering.



CHAPTER II

GENERAL THEORY

The operating conditions of a system may be divided into three
time regiemes: steady state, quasi-steady state and transient state as
shown in Figure 1.

Steady-state exlsts for a system when the disturbance (or input)
and output quantities are both constant with time. A system is under the
quasl-steady state, when the disturbance changes so slow that the output
follows with the change without any disturbance on the equilibrium of the
entire system. A system is under the transient state when the relation-
ship between the input and the output is different from the relationship
that would exist under steady or quasi-steady states for the same system.

Transient state of a system under the sinusoidal disturbance

may further be divided into steady-periodic and transient-periodic states.

As the sinusoidal disturbance is imposed on the system, the system starts
to respond, the output being oscillatory with growing amplitude but due
to the inertness the system generally possesses, it is not sinusoidal.

The system at this period is said to be under the transient-periodic

state although each period of the oscillations may not be the same. After
a certaln time, the output will finally become sinusoidal, perhaps with
an altered amplitude and a phase shift relative to the disturbance. The

system is then in the steady-periodic state.
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A. Dynamic Response at Steady-Periodic State

In the field of Automatic control, the method of Laplace trans-
form is very widely applied to initial=-value problems of linear ordinary
differential equation with constant coefficients since the Laplace trans-
form is defined as an operation on a function defined for T > 0. But in
"Operational Methods in Applied Mathematics" Oxford University Press, by
H. S. Carslaw and J. C. Jaeger, they had shown it is also applicable to
linear partial differential equations with coefficients that are inde-
pendent of T and with boundary conditions partially described as initial-
value conditions in T.

For example, for dynamic-response problems of heat exchangers
expressed by a linear partial differential equation with two independent
variables length x and time T, T can be removed from the original equa-
tion by applying the Laplace transformation. The resultant equation con-
taining s, the Laplace variable, as a parameter is a linear ordinary dif-
ferential equation having a single independent variable x, and may be
solved by using the remaining boundary conditions.

For simplicity, a second order system is taken as an example.
Its response characteristics may be expressed by a linear partial differ-
ential equation in y as a function of x and T having constant coefficients,
as Equation (l), below. The following method of analysis is general and
can be applied to any linear system of a higher order expressed by two
independent variables and possessing coefficients that are independent
of T, Any two specific quantities in the solution of the transformed

equation are compared, still bear a linear relation. If one



of them is considered to be a disturbance and the other an output, the
ratio of output to disturbance is still the function of the parameter
s, the Taplace variable, (29)

Consider such a linear transfer system* of the second order

which can be expressed by the equation

Y 2 o 3 _ o@ Jd% (1
¢ + 3L+ G2 v GSE + GREGY=DP +DSL PRS- )

with initial conditions as required by a later transformation of Equation

(1) into the Laplace variable,

Yx,0=4,

o

38 (§0)=gw
T

where y is the output due to ¢, the input or transient disturbance which

is a function of T. Cl"“C6 and Dl,,.,D3 are constant coefficients.
Since the equation is linear, the principle of superposition

of solutions applies. Let y =y + yp, where y; is a complementary and

Yo is a particular solution of the equation. Physically, the complimen-

tary solution signifies the effect of initial disturbance on output, thus

it may also be called the steady-state component of the output. The

¥ A transfer system is defined as an arrangement in which any physical
quantity ¢ - the input to the system - is converted into a second
quantity y - the output - which bears a unique relation to the first.eo)



particular solution signifies the transient effect of the disturbance on
output, thus may be called the transient component of the output.

Upon the substitution of the general solution y = ¥y * Yo, into
the original equation as well as into its initial and boundary conditions,
two equations are obtained, one expressing the steady-state, the other
the transient behavior of the system, each having its own initial and
boundary conditions.

The steady-state component ¥y1 i1s the solution of the homogeneous

equation
34, Cs ag, +C ﬂL_'_ Sg: + C a_éh C g =0 (2)
C‘ax‘ 25xoT  33ce C4 55T Tred ’

with the initial conditions:
3 (%,0)= 80

oY, <x)0)‘8

°

34,0 _
ste ~do

The transient component yo is the solution of the non-homogeneous

equation

nggz +Ca<98; + (32 oY, +G‘<9'<’]a +C5 3d: +Q82-D¢+Dg$

153z T it T2 +D3d‘»g (3)
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with the boundary conditions:

gz(x)o ) =O
4. &,0)
aT

3Y.(X,0)
oT?

=0

=0

To solve the Equations (2) and (3) by the Laplace transform,
we multiply both sides of the equations by e 5T and integrate each term

from 7 = 0 to T = . By terms, this gives the following set of equations,

L(E4)=44
[axav:] atgx.] g&_o_+ ir,

[a'tz] =S+ 8
2844
oxX ]~ dx

(3¢ ]=-4,+53

L(41=4

L[$)=¢

L(j—iﬁj -$(0)+5 =P

L[%] =-410)-sp+5*¢ =52P
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Upon substitution of the above set into Equations (2) and (3)
they become ordinary differential equations with x as the independent

variable, as follows,

oL, vo 48 - ), (4 -, 2§ ) CED 46, (455 )46, G o

dx dx

C;j—if +C;S dé‘lg+c35 5+C4d Z+C558‘,_+Cg§] D¢+DS¢+‘D‘38CP

Rearranging the above equations, one obtains

C-Zgl +(cs+&) +<cng+c s+C)di=GY O+c335+c530+c?_ dde ()

rigi +(C25+C¢) d5'+ (G S*+Css+Cs) 82:(D.+ D=S+'D3Sz)(£ (5)

Equations (4) and (5) may be expressed in the form of
dj
Azdxﬁ‘A (DT + A0 =B(S) (6)

which bas & general solution

hes)x %X B(S)
Y=g(s)e  fE)e +ﬂ§3 (7)
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where E,(s) and Ex(s) are coefficients which must be determined by the
boundary conditions and pl(s) and pg(s) are roots of the corresponding

homogeneous differential equation:

a3 ao3inog=0 - (8)

For the higher order system, the differential equation after

Laplace transformation is of the n-th order and can be expressed as

An(S)%*AM(S)%_ﬁ——““- +A T =B (9)

Then the solution of the homogeneous equation

-—

d"%s dmgl ________ ¢ y -
An(S) o+ Aui() Tt + A4, =0 s (10)

may be found by using the exponential expression

= PS)L

di=e (11)

Upon the substitution of ¥1 1into the homogeneous equation, the equation

is convg;ted into an algebraic equation

An(S)Fn<5)+An-| (S)‘DM(S)* --------- -f-Ao(S):O . (12)
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Now if pl(s), pz(s), oo pn(s) be the n roots of Equation (12),

then the complementary solution will be

1 fn(S)z.
5= )% v e

The particular solution of Equation (9) is found by inspection

to be
] BO)
gZ - Ao(s)

Therefore the general solution to Equation (9) can be expressed by
5“%,"'32 (13)

The constants Cy(s), Co(s), ..., Ch(s) must be determined by the boundary
conditions.
One then obtains a complete solution by an inverse Laplace trans-

formation of ¥, as,

4=+ (14)

In general, if a physical system is stable, the transient effect
of y; will decay after a considerable time and only y, constitutes the
complete description of the dynamical behavior of the system. In other
words, the initial disturbance* has no effect on the dynamic behavior of
the system subsequent to T = 0. Therefore, only Yo, the transient effect
needs to be considered. This happens when the poles of the complementary

solution are all located to the left of the imaginary axis on s-plane.

* " The initial disturbance is the disturbance caused by the initial
steady-state.
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The solution of Equation (5) can be expressed by

[atw]

- D,+D25+D332 I = -(S . Y 1
2—bc.D,:'+(CZS+'C4)D;(+<C352+CSS+C6) d) F ) ¢ ( 5)

where F(s) i1s called the transfer function of the system., Physically it
1s the ratio of the Laplace transform of an output and the Laplace trans-
form of its disturbance, and completely defines the dynamic performance
of the system.

The performance of a system may be described elther by a scalar

or by a vector performance operator as shown in Figure 2.(32)

1. Secalar Performance Operators

If a system is free from inertness, (for instance heat capacity
and thermal resistance in thermal systems), the output is directly propor-

tional to its input without delay in response. This may be expressed by
gz’=(:q> )

where C 1s the proportionality constant. However, the system generally
possesses a -certain inertness, which creates an extended period of re-
sponse, Then the direct proportionality between y and ¢ represents only
the finally attained steady-state. For those systems having inertness,
the previous equation must be replaced by

32 = F(Dr)cb )
where yo is a scalar output quentity and ¢, a Bcalar input quantity. The
symbol (DT) represents a function of the differential operator Dy = d/dT
operating on § at all orders of differentiation. F(D;) is called the

system operational function.
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Figure 2. The Scalar and Vector Performance Operations
of a System.
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2. Vector Performance Operators

The vector performance of the system is described by an equation
&=F(s)-¢

The vector output quantity §é is equal to the product of the
- fo. - ,
transfer function F(s), and the vector input quantity, ¢, This definition
has an advantage over the scalar performance operator in that it describes

not only magnitude changes but also phase relationships.

3. Frequency Response

If the disturbance B(7) is sinusoidal, it may be written by
wC
&(T) ‘—‘§e‘ ’ (16)

where ¢ is the amplitude and ®w is the circular frequency. Since the sys-
tem is linear, after a sufficilent time, the output yo, will become sinu-
soidal with the same frequency as the disturbance but with a different
amplitude and a phase-shift relative to the disturbance ﬂ. Let Y be the

amplitude and & the phase-shift, then the output may be written as

31 -Ye LWT=0x) (17)

It must be emphasized that Equation (17) holds only at steady-
periodic state at which Y is the function of length x and frequency @ and
is periodic in time over the interval En/w. From Equation (17) the follow~-

ing are obtained:
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3%~

L(w‘c-—tx.)
>< )c
3%. _dY Lwe-00)
Stoe—ax (twe

Substituting these equations into Equation (5), one obtains
\ : . (U=
(Ca dsz“C (z,w)dYJr Cg(uw)"‘Yw“%i—Zﬂ Cs (L) Y4 G Y] etn)

=[D&+D,ew& + Dty E ] €C

or
CEa(re™) + Clund(ve g (e Dr e L (S
+G o) (YE DG, (€ = DE+ DLw)E + BEw0)' P (16)

One finds, therefore, the solution expressed by Equation (17) is correct

since the time function el¥®T vanishes. By solving Equation (18) for the

unknown gquantity Ye -10 one obtains

yex D + D (zw) + DyGuw?

D =CQ} +[€2(L\¢0)+C4JDX+ C3(w)* Cs wa)'f' Cb =fF (&40) (19-a)
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Combining Equation (15) with the Laplace transformations of Equations (16)

and (17), yields

4, Y% D +D.5 + D; §?

%) = 19-b
b & CQIH+(GCSH)DC S5+ (19-v)

Equations (19-a) and (19-b) are identical if s = iw. For the
frequency response of a system represented by an ordinary differential
equation, the literature in the fields of cybenetics(29), control engi-

28)

neering(3o) and servomechanisms( have demonstrated the principle of

substituting s in F(s) by iw. There have been many papers(u’5’6’7’8’20’22’26>
treating the frequency response of the system expressed by a partial differ-
ential equation by the same principle. It is believed that the previous
derivation is the first attempt to prove the applicability of the principle
to the system with two independent variables x and T.

The complex gquantity Ye'iQVQ is a function of x, the system con-
stants and the angular frequency w. F(iw) is generally called the trans-
fer function of frequency response. From the above analysis if one knows
the function F(s) of any system, called the system transfer function in
Equation (15), one may find F(i®w) as a function of frequency ® by merely

substituting s = iw. Now from Equation (19-a)

Flw)= lﬁ(dw)le—L“ (20)

where,

122 4%1 (1)
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The absolute value of F(iw) forms the amplitude-ratio response
function. The term O represents the angular difference in phase (or phase
shift) between Y and ¢ resulting from an oscillation or the disturbance
of frequency @ imposed on the system.

It must be noted_that the output due tgrasinusoidal disturbance
1s given by the pure imaginary component of the complex solution
'55 = ?(imfﬁ} since the sinusoidal disturbance is expressed by the pure

imaginary component of @ = 0el®T, Tnerefore

o=l E CC)| B sim (we-0c) (22)

with

o = éwz"{-l'”—[’f(—@l} (23)

Re [Flew)]

If the frequency @ of a disturbance decreases towards zero, that is, the
system tends to the quasi~steady process, the disturbance §(7) approaches
a constant value equal to ¢, which is independent of time. The quantity
represented by F(s) at s = 0, expressed by F(0), 1s the ratio of output
to disturbance under the quasi-steady process at @ = O, Takahashi points
out in Reference 8 that for a two-fluid heat exthanger, F(0) signifies.
the cold-side heat exchanger effectiveness, if F(i&) 1s defined as the
ratio of the outlet temperature amplitude of the cold fluid and the inlet
temperature amplitude of the hot fluid. For the problem of one fluid
flowing along an insulated solid wall, F(iw) is defined as the ratio of

the inlet and outlet temperature amplitudes of the same fluid, thus F(0)

is equal to unity.
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L. Representations of Sinusoidal Performance Characteristics

The response of a system to a sinusoidal disturbance ¢ = PsinuwT
is, in general terms, yp = Ysin(wr-q). The relationship between two or
more sinusoidal variations of the same frequency (both disturbance and
outputs) is important and may be shown on the rotating vector diagram.

By the complex angle convention the phase angle is positive for counter-
clockwise angular displacement meaning that the phase shift shown is
actually negative.

In order to visualize the response characteristics, it is much
more descriptive to show it on the Bode type diagram by plotting the
amplitude and phase-shift versus frequency since it is known that the
output function is sinusoidal. Furthermore, the amplitude and phase-
shift are a function of frequency so that a periodic steady-state sinu-
soidal response may be considered in the frequency domain rather than the
time domain. For a system composed of several transfer elements in series,
the transfer function of the system is equal to the product of the trans-
fer function of the components.

The sinusoidal performance characteristics of a system can also
be represented by a polar diagram in a complex plane, which is called
transfer locus. It is represented by a polar plot with amplitude-ratio
and phase-shift shown in vector form with frequency as a parameter. It
shows the real and imaginary parts of the frequency function as projec-
tions on the real and imaginary axes of a vector with a length proportional
to the amplitude-ratio and making an angle with the clockwise direction

of the real axes, equal to the phase-shift.
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The transfer locus of any system uniquely describes the dynamic
characteristics of the system. If two physical systems have identical
transfer loci, the systems must be dynamically equivalent even though
they belong to different categories of energy systems, such as, a mechani -
cal syétem and a pheumatic one.

5. Parameters Affecting the Decay Time
of the Transient Periodic State

For the system represented by an ordinary differential equation,
the transient response is determined by the roots of the characteristic
equation of the system. For the system expressed by a partial differen-
tial equation, the response is determined by the real part of the poles
(which determings the time constants) of the system transfer function,

]
Fls)=2
é

CcT

The inverse Laplace transformation of l/s+C gives e~ If the transfer

function has poles -Cy, -Co, ~03, «sey 1Ts inverse Laplace transform

gives the components e”ClT, e'CeT, e~C3T

5y ++o . If the real part of

all the poles of F(s) are negative.in’sign, the transient-periodic state
vanishes with increasing values of time. The time required for the tran-
sient period to decay is inversely proportional to the magnitude of these
negative valued real parts of these poles of F(s), which lie to the left
of the imaginary axis on the s-plane. Therefore for the rapid decay in
the transient period, these poles should lie as far to the left of the
imaginary axis as possible. On the other hand, should the poles of F(s)

fall to the right side of the imaginary axis on the s-plane, the time

constant will be positive and the response of the system will be ever
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increasing in time. OSuch a condition is dynamically unstable. Domains

of both stable and unstable systems are shown in the s-plane in Figure 3.

6. Relationship Between Step- and Frequency-Responses

For a linear transfer system, its transfer function may be expressed

by the ratio of output to its disturbance both in Laplace transform nota-

tion as
Fesy=2- (24)
If the system is subject to a step-change in disturbance
) =0 for O >T >~
and,
Dc)=F for @ >T >0

Or, in lLaplace transform notation,

& =0 for g >5>-0
and,
¢_ :gﬁ for a>s >0
Then the transfer function for step change may be expressed by
- é:ﬁep
S) =
F jék?

and by inverse transformation,

\

FA0]
_ o
Hoted T =2',?i/ 232 ™Y (25)
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Now if s = iw, then

¢ — y
s w) Sy,
St = e .%U. e Gw)

ene )
-4
or
20
Foeer@__y [ _Flw) 4Ty, (26)
> 2wy o 20

Here ystep/® is the ratlo of output to the disturbance of a system sub-
Jected to a step change in some input quantity, or disturbance. The
function F(iw) is the transfer function of the system for frequency re-
sponse. Therefore, Equation (26) represents the relationship between
the step-response and the frequency response of the system.*

According to the Fourier theorem, any function, periodic or
non-periodic may be resolved into a series of harmonic oscillations, if
the function is single-valued and sectionally continuous. Therefore a
step function disturbance @(7) may be resolved into a series of individual

harmonic oscillations as follows:

P =) B ()T (27)

n ==

where ¢n(&h) is the amplitude of the Fourier oscillation of frequency .
Here D) =0 for C >2T>-Q0 »

and, &) =& for >T >0 -

See Reference 22 for its application.
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According to the Fourier integral, Equation (27) may be written as

@ ,
D) :/ D (e, ) e D, (28)

-00

where
) v p _Z&%€&%7
B, ) =57 | Bre)e @
o
Hence, @7(5%):0 for O >T >-a
)
and @, () :2—;—‘(7”—2 for @ >T >0 " (29)

From Equation (29), one obtains the following relationship

277¢n/(1/n)8‘ __/ (20)
@ Wn i

Equation (30) is an imaginary quantity whick may be interpreted
as vector of magnitude Qﬁgﬁn(&h) / ® and having a constant phase angle of
/2 for each frejuency, ¢y. Equation (20) shows 2ufy(wn)i/0 vs. w,* to
be a continuous hyperbolic curve. Substituting Equation (29) into Equa-

tion (28], one obtains

\

20 20

D) et4t
LS h) (31)

B e

\

¢a

The right side of Equation (31) equals to unity*¥, which satisfies and

is consistent with the imposed condition that §(7)/® =1 for 0< T < w .

#  Reference 20, page 28, the curve is called frequency spectrum of the

step function.
*#% Reference 20, page 42 to Lk,
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Differentiating Equation (26) and substituting ¢/2mwi = @(w)

obtained from Equation (30) yields,

e <2 <flew)Plw) “Gw (32)
Equation (32) shows the relationship between the component disturb-
ance and its corresponding component output. The step response ygstep
due to the disturbance @(t) is the Fourier integral of the individual
harmonic oscillation expressed by Equation (32).

Equation (26) and (31) show that both the output and its disturb-

ance for a step-response contain all frequencies ranging from -« to o,
although the minus frequencies are physicaliy meaningless., Therefore, it
is concluded that since the transfer function completely defines a system,
both step- and frequency-response completely characterize the dynamic
behavior or the frequency relationships of the system. Furthermore there
is only one corresponding step-response for each frequency response and

vice versa.

B. Dynamic Behavior at the Transient-Periodic State

The complete solution of the dynamic response of a system with
a sinusoidal disturbance must include its dynamic behavior under the
transient- as well as the steady-periodic state. In this case ¢(T) = PsingT
and the transient periodic response may be found by substituting the Laplace
transform of $(7), ® = ¢/1+s2, into Equation (15) and performing the in-

verse Laplace transformation, as follows,

32 =F (5)

&HD
/
;2:2_77'2_ C ;(Q)J2+/ d\? (33)
(1)
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where £ 1s chosen in the s-plane to lie to the right of any singularity

of F(s) ®2 . The results of this operation of inverse transformation
1+s

is usvally given in most text books or mathematical tables on operational

mathematics for various forms of the function F(s) The product of

1+g2
transformed functions may be treated by the method of convolution, that

is, a technigue of the inverse transformation for product of functions.



CHAPTER III
GENERAL THEORY APPLIED TO THE SINUSOIDAL
RESPONSE OF THE HEAT EXCHANGERS WITH ONE FLUID

A. Analysis

The physical system analyzed is shown in Figure 4. This con-
sists of a circular tube through which a coolant flow steadily, and in
the solid walls of which energy is generated. In the steady state, all
of this energy appears as a flow of heat at the interface between coolant
and solid causing the coolant to increase in enthalpy ( and temperature )
as it flows through the tube. The outside surface of the tube is adiabatic.
During the transient, however, both the tube-wall material and the coolant
experience local temperature excursions, the magnitude of the former and
their difference being evaluated here as a function of distance and time.
A circular tube has been selected for convenience in comparison of theory
and experiment. Where a non-symmetrical geometry is involved in the
analysis, such as a triangular flow cross section, the results may be re-
duced to an area=-to-volume ratio and to a degree of approximation, can
be used for other geometry for which the restraints on the solution apply.
The solution will be valid as presented for flow inside circular tubes
and between parallel plates.

The following assumptions are imposed on the solution:

a, The fluid temperature and velocity are constant across the

flow cross section.
b. The duct wall temperature does not depend on radius. Valid

for thin-walled metallic systems.

-28-
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Axial heat conduction is negligible in both fluid and duct
walls and heat flows only to the coolant. This is a
reasonable assumption when the Peclet number exceeds 100
The outer surface is adlabatic.

The heat-transfer coefficient is constant with length and
time.

The fluid is incompressible and all fluid properties are
constant. The flow channel has constant area.

Energy (heat) generation within the walls is constant with
length but is time-dependent.

The temperature of the fluid entering the duct ty(T)is a
function of time and equal to tg + tg  (T). At the initial

steady-state, it is constant and equal to toa

With these assumptions, the application of the First law of

Thermodynamics and the law of conservation of mass for an incompressible

fluid to the system shown in Figure 4-b produces the following two dif-

ferential equations, one for the duct wall, the other for the fluid. De-

tails of this derivation are outlined in Appendix A.

Wall

~(-t)ra )= a2 (34)

Fluid

(e-f)=03§£ +d¢§;§— (35)
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For a circular tube and in generalized terms the constants are written:

gl !

Tenk (PG)K,

_OOG‘)W()G )'7. /

=

S
95 2h K (36)
n SELU _u

4“2 K

R =+ DBz

" is the initial uniform volumetric heat-generation rate and

where Pyo
¢(T) is the arbitrary time-variant volumetric heat generation rate
function, having a zero value at zero time, which introduces the tran-
sient into the system. As shown in Chapter II and Appendix A both
functions ©(x,7) and t(x,T) may be split into two components one being
a steady-state part @l(x,o) and tq(x,0) the other of the transient
comporent QE(X,T) and tE(X,T)s The dynamic characteristics of the sys-
tem is completely governed by’the‘tfansient component and is free from
the initial effect. Therefore it is necessary only to carry out de-

tailed mathematical analysis of the transient components.

Hence the governing differential equations become

Wall:

G- @)(%51' «f’ (37)

Fluid:

O-1%, % 37— Ll(a ) (38)



Applying the method of Laplace transform to Equations (37) and
(38)and solving for 5é and Eé with the appropriate boundary conditions,

expressed by Equations (A-21), (A-22) and (A-23), one obtains

~S(HS+RYKE s+
- - +M +Es
1Y — (RO ] oo

—s(hs+iE X —S(hs+ Y

S H+Hs
Y _ 7% £ I ( @-e (NO
LT G ) (s ] |

_shst ik gt
H'%S [ ""‘,‘%S

'Rse > ! [

oD o T s+ K H%Se .

Eé, §é and éEé represent the outputs due to two independent disturbances

Eg‘and § as shown schematically in Figure L-c.

B. Frequency Response

If the temperature of the fluid entering the duct is constant

and equal to t, Equations (39), (40), and (41) reduce to

s(—-—:3*""‘?%"“)}0C
l+%s (M-Q)

7 A |
Sddoracar
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and

ta(x,’/‘):[’};gx{l Sin (Wr-0g, ) (49)

=)
are in the forms of Equations (16) and (17) respectively, according to

Equation (21), one can express the amplitude-ratio response of the fluid

temperature as

(’\. W=w
|F(ew)|= I_?;‘ ' (50)
w
But
q
A—(%)—Kii = t'*()ﬁ, T)— t‘(x) O) :[’]:Q(.)]w=o k (51)

where tlf(x,T) is the steady-state fluid temperature at x for

+ 0, or the maximum fluid temperature corresponding to w = 0,

Twzw .
|E(w >| T( e (52)

Similarly, one obtains the following relationships for the wall

temperature and the fluid-wall temperature Qifference.

S “Weir) B 3
PiwNw

'F(?,LU) I - Jw-w [@X))w—w (@ (x)]

Am) I 3 PR CIN (5)
4 24) 0T,

é(zw)!

V’?‘),,Kw
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For fluid uemperature.

|Fw)|= (o U1 z[ e
T e RN TS

CJ 4 Mw

+[”ﬁ;@' +Cos (Y +tan -~ M >

+&nﬁ+bn;%iﬂ

J

0 Mo . | l
o oL M < B
Al [H-(%) Jitie s [H K ]e H 1;) '&‘%in(ma)z
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0. ﬁ_cg{l_'_(Mw)z o ; I\/} {
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For fluid-wall temperature difference

s BB || Et]ew

F, )= = 2 2
.t(’l.w)l E&Toi")]-»=o #(% [[ %}:ﬁ'jZ][H_ Mw Jes (_.%4_%1{9 )+(M+2)
' LI 7% #,Mes oMo %
o E2 [l i"-g_;_ﬂﬂ 5
'@* K JF (M2
5 Mt Mw
w(-(fle | 005( - TEE TR
AT ECRY VHtan —Se———
O{E#aﬁ‘b(_%%? Ji42) BT (60)

o (1+ (497 5L |

(—%»L Hy ) + ()

Here 5 and 7 are defined in Equatidns (C-15) and (C-lé), Appendix C.
Temperatures at the transient-periodic state will decay after

some time and only the steady-state temperatures remain. Temperatures

and fluid-wall temperature difference at the steady-periodic state are

represented by the followlng equations:

toom=| Fw)(Fge),_, Sin(07-0<¢ ) (61)
Qe )R], ST WT-0¢,) (62)

ot G (4T . ST 07 05, ) (63)
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The significance of these results and their comparison with experiment

is discussed later in section D.

N

C. Response in Transient-Periodic State

The complete solutions for t2,92 and Axg may be obtained by
performing the inverse transformation on Equation (42), (43), and (4L).
It must be noted that 6(x,T) - 0(x,0) and t(x,7) - t(x,0) are identical
with 6,(x,7) and to(x,T) since 9(x,0) = 9, (x,0) and t(x,0) = t1(x,0).

The nature of the mathematical attack on this problem produces
solutions for @o(x,7), to(x,”) and Ats(x,T) in two domains of physical
time:

Case 1. A physical time following the introduction of the
transient which is greater than zero but equal to or less than X/u

Case 2. A physical time T is greater than x/u.

Cage 1 1 E_TU/X >0

Wall temperature

f o S

G0 7)-0(x,0) M A
|+( ’f‘é"—)

i) TR

JJ [ (ﬁ?‘*i)z]*[‘*ﬁ*(%zrw ” Wt 'T#Z +(%)z (64)

l+(%‘)e 7

Fluid-wall temperature difference

| K

28(%,7)-at(2.0) . R I'M')VF,' T e ol B
A(%) *W_%':wj)?lﬁ +[1 T,R_m) Sin. w/—JCanW (65)
“h -
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Fluid temperature

—(M‘H)%t | Mt
tT)E(%50) _ ‘5’1@’ & w) M
“_(%A) KX K&(MH) +(M+l) %—) S:rz[w/ fan(-%@-ﬂ}

(66)

Case 2 Tu/x >1

Wall temperature

=
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4 Kx) M+ H I+
A (%) K (_KJj
S

% ( (KX) M(KT*)J,WLA B sm[wr %an<A9)] (67)
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Fluid-wall temperature difference

T4 00) L3 I[ém)ér TR £ AEMT)

2’4) l+(—“"@’f
AR 5f“FvT’ifa5'(‘§¢)] (7o)

A= %Cos“{%ﬁn %&é}%[ o /;47-‘:,14)

—)A(g_*’ %’%] (71)
o= st 1 A G )

‘%’é/‘ % (3 g'f%‘)} (72)

Fluid temperature
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_% [
wX e +
W uln U COSQZ-II)T“ '11_' ? [M \'f'M*,}

B = -Cos' - %L)< (_%)l\w
(K 47 M) M) (K",%M) (75)

where, Ay, Bg, A, B, Apt and Bay are defined in Equations (68), (69),
(11), (12), (74) and (75).

The envelopes formed by the points of the maximum amplitudes of
the temperatures and temperature difference may be obtained by substituting
sines equal to +1.0 into Equations (64), (65), (66), (67), (70) and (73).
Let ©,, T, and AT, be the upper envelope and ©., T. and AT. lower envelope
emplitudes. The equations obtained by substituting sine = +1.0 give the
upper envelope of the amplitudes while sine = -1.0 give their lower en-
velopes. With these definitions and substitutions, the following equations
for these envelopes are obtained.

Case 1 1> Tu/x>0

Wall temperature

(@, )s- _ M I W (Mﬂ)lij %ﬁm (i)
S08) (+ix) - O '“%X)l MH)Z +(3)°
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Fluid-wall temperature difference

M KT
Tt M T
e e [+ |

(77)
Fluid temperature
M ~(HDEE Ml [T i]
Mo B | e = S|+
2 08) i E&‘.(MH)[ l+(%'— !+(—%§'—)’- J
| (78)

Case 2 Tu/x > 1

Wall tempera*ture

| | -(MH}ﬁ: » X
65 a%]ﬁ@"m@w—){ Wfﬁv) c { ET)

)i
) jA—BJ -

Fluid-wall temperature difference




Lo

Fluid=temperature

M+f)1{7.- ,%

M
A(R) ke T KX(MH)[ 4+(—“,§'[’L') G %
h U K.

it
—(_(ﬁrf(// (K") M(%)] +/A (81)

After the transient-periodic state has vanished, the steady-periodic

oscillations of the temperatures will be observed. The envelope will bte
symmetric about the abscissca (time axis) and has a magnitude expressed
by €, ATm and T . These may be expressed by the following eguations
obtained from Equations (79), (80) and (81) by substituting T = « and
T% = w,

Wall temperature

@), . MiAc,Bo ()
i)~ ORGE)

Fluid-wall temperature difference

2 2

{AT,Q('X)J-;-; - —_%(L At Bueo (82)

- T
UG,

Fluid temperature

M 2
{TM(’KJ'G-,-— _+ %Atw‘i—Btw (811-)




Ejuations (82), (83) and (84) also represent the frequency re-
sponse (amplitudemratio) of the fluid and wall temperatures and the
fluid=wall temperature difference., They are identical with those pre-
viously obtained by using lf(i&ﬂla The corresponding phase=shift may
be obtained from Equations (67), (70) and (73) [or from Equations (E-2k),
(E-27), and (E-30)] as follows:

Wall temperature

_wx,, B, ;
o, = - ttan —Aﬁ) (86)

-1 B(-oe
e (61)
~ A
t t oo
£Qys By Alty s BAt , At and By may be obtained from Equations (48,

(A9), (711), (72), (74) and (75) by substituting 7% = o , or directly from

Equations (E-25), (E-26), (E-28), (E-29), (E-31) and (E-32) as follows:

mum+cnwx

A < 5///) 1‘;(% (_B‘;—
-4; tJ ‘
e R S 7 I
+H5g) LR
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By =05 FH ﬁﬂ]e (7_‘57’7 s )

L ()

l+(£’,%r—-)

M+I%( A{%_% g,m,%} (89)

/44690_ COJ w%'ILS//? C{)X{_e [Mf’/%-(/(’l’ o2, MK(U)

®
ALY )

Gt gz“”w-“fwé’ﬁ[ Gl )-g e(%oe%@ﬂ (1)
A, =Sin¥ , (481 o5, sin o —%— ”("1—%)1%!}
too TL_ " (M-H) My 'LT‘" ing @Tl e

G () o (= (02)

o
T

I+( *éu)i

s o3 4 (45) % (5o

Using the results for the steady periodic response, the condi-
tions corresponding to the maximum amplitudes (®+ and @_, etc.) of the
transient-periodic oscillation to reach 99 per cent of the steady=-state

value (B, etc.) are expressed as follows:
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Case 1 1 E,TU/X‘E,O

Wall temperature

—(M+|)l<’_"
(667, 2099+ XS il (9%)
: IMt] |2 +H\2 | (M2
o) &8 ()
Fluid-wall temperature difference
) %
AT b= 99|+ ———— (95)
! T Y |
4T, (0] | ( i )
Fluid temperature
_(MH)%_
[Tt o9 - —C (96)

[W:Q(xﬂ )

Case 2 Tw/x > 1

Wall temperature

(MH)},%T- K —(MH)]S-’-
T € ﬂ%( 7 he) ﬁ‘ﬂ,
6607) b _ g9 '%}— S G *M“L) ()

[@_(x)] W

(97)



I

Fluid-wall temperature difference

kr -Kx - Mﬂ)-pr
—(M-H e Z 2
[AT(’X’T)] 4 :099: M % [ ( ) M(%)]tJAA‘t*'BAt (98)

4T.®)) h: +B:

Atac

Fluid temperature

'("”')Ja —(MH)# |
[m)] +,- _oqg {i’-') +€Kzﬂ (B e Jﬂ AE (99)
@) m

D. Dynamic Response of the Heat Exchanger
Having a Zero Wall-Fluid Heat-Capacity Ratio

For a heat exchanger with zero wall-fluid heat-capacity ratio,
(M = 0), the transfer function of the fluid temperature may be obtained
from Equation (45) by substituting from the identity (o Cp)wky = o COVK/,

and setting M ecual to zero. It yields

_s&
;:( ) = L, J=c (100)
/’CPVudD >

Substituting s by i%, Equation (100) becomes

= sm‘% (Cos |) (101)



.

The absolute value of Equation (101) is

iﬁt(iw)': QI{%J (Sin YK)% (Cos | P :I/.g‘ 2(1-Cos4X) (102)

9
Since quﬁ %i.@ = é_(_.,r{A‘) (—K%) = [Tw(X)]w=o 3

Equation (102) expresses the ratio of the temperature amplitude-ratio at

& = to @ = 0., Therefore, one may express Equation (102) as

(T8 Jup=eo _12(-Gs %) (102)

['Ta\o(x)] w=0 ) %

Fquation (102) is the amplitude~ratio response of the fluid temperature.

The corresponding phase-shift may be obtained from Equation (101) as

—Cps X
o = (B (10%)
t ST

Response 1n the transient-periodic state may be obtained as follows by

substituting M = O into Equation (A4} and (73). It must be noted that s

Kx/u = M wafu‘and for M = 0, s is egqual to zero. From.(G-l?), (6-18),
and (G-19) tie functions yo(Kx/u, Kv#/M), y7(K2/u, KT%/M, M:/K) and
w8(Kx/u, KT*/M, M@/K} are identically zero for M = O.

Case 1 1> 1u/x >0

60T _ '”Si’f(w’ ) (105)

Vi X
yad &
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Case 2 Tu/x >1

ta(%) ]2( COS 1/ 1-CoS 'U- ( €
NG LGI/! T e X 106,
@x Sin WX /
___77
Since(Vm/pCle ox/u)is equal to (t, ) and Equation (10%) is
W / 200 =0

in the same form as Equation (22), one obtains

’ [’Eo(x)on _JZE"‘COS _u'l):(—) (lO?)

(108)

The results for the dynamic response of the heat exchanger with zero heat
capacity ratlo are also derived independently in Appendix F.

The dimensionless frequencies am/u for the maximum and minimum
amplitude-ratios of the fluid temperature may be obtained by differentiating
Equation {10%) with respect to ux/u and setting it equal to zero. A di-

mensionless freguency satisfying the equation

WX o -n X wx 5 _
is the one corresponding to either a maximum or a minimum amplitude-~ratio

evaluated by Equation (103).
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To explain the phenomena of resonance in the amplitude-ratio
and phase-shift of the fluid temperature, one may imagine a fluid parti-

cle entering the heat exchanger when the time-dependent power input (or

n

heat generation) is p,"(7) = p,

+ 0 sinwt', as shown in Figure 5. After
the particle travels through the heat exchanger for a time interval of T,

the heat balance on the particle can be expressed as

PeVZE V[ +& sintwr-w7) (120

where wT' may be called the inlet lag of the fluid particle, Figure 5.

Integrating Equation (110) from wr=0 to @r=wr, yields

tm-t,= P;VVA+§g[w[wsw7ﬁw5(w9‘-w9")] : (111)
Now, for the case of w=0,
oot = P U, 7 DU T ’ (112)
wzo /DC?Y/> /oqur
and for the initial steady-state
t(7)-¢ F&g‘&;_ (113)

T3

where tl(T) is the steady-state component of the particle temperature.

From Equations (111), (112) and (113), one obtains then

t,(= )=t 07) Ef{}“ [Cosw/—-cw(m,-WJ s (11L)
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and

(r)=t, (T)-t,(7) /5-5,}‘{% : (115)

a

Dividing Equation (114) by Equation (115), one obtains the
amplitude-ratio of the temperature of the fluid particle as observed by

an observer attached to the particle, as follows,

ta(7T) _ CoSw - coS (w7=w7”)

fzw=o7—) - @7

_lea-coswr) in[ortar (1=Coswr J (116)

w7 Si NUJ"
or
{ CbS 177
Z.Z(T) fg () S [w"TJ— {:—an ) (114“
4 }:7 4 (T
w= w=0 Jmgx
WETE
Eor) ] B(-cosar) '
-4 / (118)
(7] - 7 /
[tzw =0 Jmox Qw17
It is seen from Equation (117) that to(7)/tpu-g equals {EE(F’/“B O/de ’
when
I
vl 7T, <F‘COSQ) £ 1 om 119]
7 = L 17—+{—an SnwT Tor + sign, (119)
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and

=l /~-COs Wz

for - sign 120
S s &t ( )

Wi'=3Z 21 tar,

where n = 0, 1, 2, ...
It is also seen from Equation (117), that (1) = t1(7) when

qumtan'l{lwcosxTYsinuT) = 0, that is
wW7= 277  and Wr-2W7T =207 (121)

Eouation (118) is *he envelope of the temperature oscillations
of the fluid particles of the different inlet lags.

The transfer function of the wall temperature of the heat ex-
changer with zero wall-fluid heat capacity ratio, {M=0) may be obtaired
from Equation (4A) by substituting from the identity (pCp)wKw = oCpVK/V,,

ard setting M equal tozzero. It yields

- Sx
/‘;(S): & :JKK l/+§<~\, @H] (122}
- X
() )
Substituting s by i» into Equation (122), one obtains
. —2wX
gl 2
za)(/+K&) ~
K -'(COSLL / )
K A2 Syvaereer-a A )
— (AJXJ uj Q_% ____.;_51}’) E) %-;-J//’I% (122)
/+ 7

Therefore, the amplitude-ratio and phase=-shift of the wall temperature



can be expressed as

LE'&du

o=tar (LS & (125)

SN “UX

Oba®| ot L -
:'élonj ‘}:E%kéx%% >+<K+&”1L) (124)

These results are shown in Figure 25-b and 26-b. The wagll-
fluid heat capacity ratio M is defined as the ratio (pCp)WVW/pCpV or
&s K/K,. M =0 could exist for (i) K, equal to infinity [or (nCp), = O]
but K is finite, that is, the fluld has a finite heat capacity, and
(i1) Ky equals to infinity and (pCp) is egual to infirity. Egjuations
(124) and (125) express *he dynamic response for case (i). For case

(11) Equations (124) and (125) become
/o) = (126)

oG =0 (127)

For some limiting cases, Equations (124) and (125) can be reduced as

follows:
. — \ / 7 .
L 777 i (3@%: (128)
Ww—>co V% /’*%“ . v
L7 &g =0 (129)
W—>00

Equations (128) and (129) indicate that the amplitude-ratio of
the wall temperature is asympotic to l/ﬁ#Kx/u)and its phase-shift asymp-

totic to zero with increase in the frequency @, as shown in Figures 25-%



~5k...

and 26-t. For large values of K, Pouations (124) and (125) become

(- as )
= XAy

/‘ — / ‘/t' 2
“é'::, |4 (=) = (120)
Z
wx
S O — ,LA;’(/- s T (121)
ey “ i S e v -

Equations (130) and (131) are identical with Equations (103) and (104)
indicating that the amplitude-ratio and phase=shift are function of

:x/u alone. Physically, Equations (102), (104), (130) and (121) signify
that the amplitude-ratio and phase-shift of the fluid and wall tempers -
ture are the same providing that the heat capacities of both fluid and
11l are zero. For small values of Kx/u, Eguations (12&) and (125} mey

be simplified =as

Limy ifgtew)| = (122
%0

Lim X =0 (123)
o

/[“;f \/S) :/ (lﬂ&)
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Therefore the amplitude-ratio and phase-shift of the fluid-wall tempera-

ture difference can be expressed as
12, ¢w)| =l (135)
oG, =0 (136)
A discussion of these results is found in the next section.

E. Discussion of Theoretical Results

The constant M has been defined as follows®

v Oz _(PCely b=V _ (PCV)y
vy = 0& - /OCP C_cf pCPV

-~ botal heat capacity of wall material
total heat capacity of fluid

(127)

i
X

where

= fluid time constant

h(&)
K ~BG

41 @),
K= Pt

= wall time constant
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M is a heat-capacity ratio depending on geometry as well as materials.
For the usual materials and geometry it may be expected that M will
vary from near zero for water-steel systems with thin metal walls to

something in excess of 1000 for similar air-steel systems.

1. Freguency Response

According to the definition of the transfer function for the
wall and fluid temperatures, and the fluid-wall temperature difference,
as shown by Equations (45), (46) and (47), the amplitude-ratio all are
unity at s = 0, and zero at S = o as shown in Table I. These same re-
sults are obtained from Equations (55), (57) and (59) for w = 0.

Under the quasi-steady process, that is, w A 0, the response
of the transient component of the fluid temperature, to, the wall tem-
perature, ©2, and the fluid-wall temperature difference, Mty, are com-
pletely in phase with the time-wise variation iﬁ the rate of internal
heat generation within the wall. Their amplitudes under the condition

of a zero frequency oscillation as shown earlier in regard to Equations

(51), (53) and (54) are:

T, == = W (138)

0, - ZLE) . 20)s) 139

kT, = ({O%V' — = “9*) (140)
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TABLE I

ASYMPTOTIC VALUES OF THE TRANSFER
FUNCTIONS AT s=0 AND s=e

Transfer Function s= S=0c0
ff(s) 1 0
Fé(s) 1 0
FA¢<S> 1 0

TABLE IT

ASYMPTOTIC VALUES OF THE AMPLITUDE-RATTOS AND
PHASE-SHIFTS AT w=0,0 AND M=0,w

Ww=0 W=c M=0 * M=o
|ﬁ£(iw)| 1 0 Resonance 0
|Fg(1w) | 1 0 Resonance 0
|Fpr (10) | 1 0 1 0
at 0 taﬂ-l(—glé%igz~0 Resonance 0
1-e~“cosy
Qg 0 /2 Resonance 0
aAt 0 /2 0 0
TABLE III

ASYMPTOTIC LIMITS OF THE TEMPERATURE-RESPONSE FUNCTIONS FOR
THE VALUES OF w=0,0 AND M=0,e IN THE FIRST TIME DOMAIN

Function M=0Q * M=0o w=0 =00
_telx,T) 1-cosar o L 0
AMa/h) Kx ax

h u u
( 1-coswr+gs L nwr
ISR 5 0 1 0
A(Q/M( Kx L (14 B
h l+ﬁ—> K u
atp(x,7) 51 00T 0 1 0
A@éZA
h

*  See Table IV
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where, ® is the transient amplitude of power input to the wall, which

can be expressed as

b :A<%X—\A7)w (141)

Here A(q/A) 1s the increase in the steady-state heat flux, and (A/7),
is the ratio of the wetted area of the wall to the volume of the wall.
Alq/A)/h 1s the incresse in the steady-state value of the fluid-wall
temperature difference, and Kx/u is the product of a fluld time constant
K and a fluld transit time x/u.

The asymptotic values of the amplitude-ratio of the fluid and
wall temperatures and the fluid-wall temperature difference as shown in

Equations (55), (57) and (59) are&ll unity at w

i

O and zero at w = =,
For the zero wall-fluid heat capacity ratio, (M = O),.the amplitude-ratio
of the fluid and wall temperature has a phenomenon of resonance as will
be shown later. At the very large values of heat capacity ratio M, those
vaelues for the fluld and wall temperatures and the fluid-wall temperature
difference all approach zero.

In the case of finitg wall-fluid heat capacity ratio, M, the
phase-shift of the fluid and wall temperatures and the fluid-wall tempera-
ture difference as shown in Equations (56), (58) and (60) are all zero at
zero frequency. At very large values of w, those of the wall temperature

and the fluid-wall temperature difference approach m/z while that of the

fluid temperature as shown in Equation (56) becomes equal to tan=-1(E_Siul),

l-e ‘cosy
which oscillates about a phase shift of 180 degrees. The phase-shift of
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the fluid temperature possesses resonance phenomenon for all values of

M as will be discussed later, although those of the wall temperature

and the fluid-wall temperature difference also resonate at large Kx/u. At
large values of M all the phase shifts approach zero. These are shown

in Table II.

The frequency response characteristics of the wall and fluid
temperatures and the fluid-wall temperature difference as shown in
Equations (55) - (60), are all functions of four dimensionless parameters:
M, Mm/K, Kx/u.and &M/u, of which M@/K is not independent since there exists
the relationship My/K = (M)(@x/u)//(Kx/u). Typical theoretical results
for M = 0.561, K; = 2470 is plotted on the Bode type diagram (amplitude
ratio versus frequency) in Figures 6, 7 and 8 and are shown by the solid
line. Also shown are experimental results which will be discussed later.
The wall and fiuid temperatures and the fluid-wall temperature difference
are given in Figures 9 and 10 for a complete range of the dimensionless
parameters. These theoretical results predict the phenomena of resonance
in the amplitude~-ratio and phase-shift which is characteristics of a dis-
tributed parameter system having periodic, distributed disturbances. In
such a case the amplitude-ratio ultimately dec?eases to zero with in-
creasing frequency, although it passes through points of resonance.

The theoretical results for the frequency response of the wall
temperature and the fluid-wall temperature differences are shown in Figures
9%, 9c, 10b and 10c. These results are similar to those of the fluid
temperature, discussed below, except for the phase angle of the fluid-wall
temperature difference shown in Figure 10c which is unique in that it has
characteristics of phase advance at large Kx/u.

The effects of the parameters M, Kx/u and wx/u on the amplitude-

ratio, first resonance amplitude~ratio, phase-shift and first resonance
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phase-shift of the fluid temperature are shown in Figures 9-a, 10-a, 11 and
12. These figures indicate that at a small value of Kx/u, an increase
in the heat capacity ratio causes a continuous decrease in the amplitude-
ratio and increase in the phase-shift. The amplitude-ratic at the first
resonance decreases its magnitude considerably accompanied by decrease
in its resonance frequency for change in M from zero to 0.5. As M in-
creases from 0.5 the first resonance amplitude-ratio decreases continu-
ously at constant resonance dimensionless frequency wx/u. On the con-
trary, the phase-shift at the first resonance increases abruptly accom-
panied by increase in the resonance frequency for change in M from zero
to 0.1. With M greater than 0.5 the magnitude of the first resonance
phase-shift is practically constant with constant resonance frequency.
At high Kx/u an increase in the heat capacity ratio causes a decrease
in the amplitude-ratio and increase in phase-shift. The first resonance
amplitude-ratio decreases gradually accompanied by the continuous de-
crease in the resonance frequency for increase in M. The first resonance
phase-shift increases considerably at lower M and then increases very
gradually for M of greater than unity. This change in the magnitude of
the first resonance phase-shift with increase in M is accompanied by the
continuous decrease in the resonance frequency. For heat capacity ratio
of higher than 10 the magnitude of the resonance amplitude-ratio becomes
essentially zero. Similar effects on the phase-shift and resonance phase-
shift are observed except the resonance of the phase-shift at the heat
capacity ratio of 10 is still finite.

The effects of Kx/u on the amplitude-ratio and phase-shift at

the first resonance may be seen from Figures 11 and 12. Here the first
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resonance amplitude-ratio continuously increases as Kx/u increases but
the first resonance phase-shift increases from zero with increase in
Kx/u and then decreases with further increase in Kx/u, until zero at
Kx/u equal to infinity. Physically speaking, as the heat-capacity ratio
1s increased the heat capacity of the wall relative to the fluid is in-
creased. Consequently, it is equivalent to the increase in the inertness
of the system to damp its dynamic characteristics thus causing a decrease
in both the amplitude-ratio and the resonance amplitude-ratio, an in-
crease in phase-shift and the resonance phase-shift, and the shifting of

the resonance frequency to a lower value.

2. Response at the Transient-Periodic State

The dynamic behavior of the wall and fluid temperature and the
fluid-wall temperature difference as shown in Equations (64) through (75)
are all functions of six dimensionless parameters M, M@/K, Kx/u, wx/u,
KT/M and wT among which the parameters Kx/u and wT are not independent,

since

ke M) and T =( /;_/”E M?ug)

As the system reaches its steady-periodic state the dynamic behavior

becomes independent of the parameter KT/M and wr, as already discussed

in part 1.

Transfer functions expressed by Equations (45), (46) and (47)
demonstrate that the Laplace variable s = - K/M is the multiple poles of
the infinite order and s = - lﬁ% is the singular poles, of the wall and

K
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fluid temperatures and the fluid-wall temperature difference. Physically

k_h&), _ra
M (PCr), (PGV), e

where (pCpV)W is the wall heat capacity, l/hA the surface resistance,

and M/K the capacity lag. Therefore the transient state (under any kind
of disturbance) of the wall and fluid temperatures and fluid-wall tem-
perature difference decay exponentially with two products: of a physical

+
time T and the wall time constant K/M and of a physical time T and MM£ .
K

The principle is discussed in References 28 and 29.

Owing to the relative complexity of the equations governing the
time domain Tx/u > 1 the effects of the various physical parameters on
the dynamic characteristics of the wall temperature, the fluid temperature
and the fluid-wall temperature difference 1is briefly discussed in the time
domain 0 < %/ < 1 for the sinusoidal transient in g(r).

For a small value of the heat capacity ratio M, Equations (64), (65)

and (66) approaches

to ) [-CoSwT (143-a)
‘Ag3§35%¥_ LWz

C.(T)  _ |~CoswT | Sinw7 (143-b)
A_(_%)(H%é) %(,J,KI%) 1+ KX

=Sihw 7T (For K=0 on/)/) (143-c)

At20¢T) o

a0A) T SwY o
h

in case K=0 the amplitude-ratio of the wall temperature 9, oscillates be-
tween two values, maximum value +1 and minimum value -1. No transient-

periodic state exists, since for small M, the heat capacity of the wall
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relative to the fluid is small and the wall responds rapidly to power
transients. For large values of M the amplitude-ratio of the wall
temperature approaches zero. The amplitude-ratio of the wall tempera-
ture is unity at @ = O and approaches zero with increase in frequency
for a fixed M but increases with Kx/u. The results for the response of
the fluid temperature for a small M are discussed in the following sec-
tion. But for the fluid-wall temperature difference, the same responses
as the wall temperature are observed for M = 0, M = ©» and ® = »., The
asymptotic limits of the temperature response functions for the values
of M =0, and W = » are given in Table IIT.

The envelopes as indicated in Equations (76), (77) and (78)
formed by the points of the maximum amplitudes of the fluid and wall
Ttemperatures and the fluid-wall temperature difference in the first time
domzin are shown in Figures 13, 1k, 15, 16, 17 and 18. The envelopes of
the maximum amplitude of the wall and fluid temperatures and wall-fluid
temperature difference in the dimensionless forms is a function of ME£
and ® but is independent of x in this domain as shown by equations if
Figures 13-18. Figures 19, 20, 21, 22, 23 and 24 show the time required
for the envelopes of the transient-periodic oscillation of the wall and
fluid temperatures and the fluid-wall temperature difference in the first
time domain to reach the 99 per cent of their steady state values.

3. Dynamic Response of the Heat Exchanger
Having a Zero-Wall-Fluid Heat-Capacity Ratio

For a heat exchanger having a zero heat-capacity ratio M, Equa-
tion (lOb) indicates that the fluid temperature has a lag of K/E with

respect to the power input in the time domain 1 E_Tu/x > 0. In this time
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domain, the amplitude-ratio of the fluid temperature becomes zero periodi-
cally in 2 at wr = 2nn, where n = 0, 1, 2, ..., with a constant maximum

2 w:
amplitude-ratio Of?EE_ at constant T? as indicated in Equation (105).

u
The amplitude-ratio is a function of w, x/u and T and the maximum value

of the amplitude-ratio, a function of wx/u. For this case of M = 0, the
amplitude-ratio of the fluid temperature becomes a function of just one
parameter wx/u, as indicated in Equations (103) and (104) or (107) and
(108) and does not exhibit a transient-periodic characteristic. Equations
(103) and (104), which show the response of the amplitude-ratio and phase-
shift, are also presented graphically in Figures 25-a and 26-a. They demon-
strate that the fluid temperature amplitude-ratio decreases from unity to
zero and the phase-shift increases from zero to 180 degrees for changes
in the dimensionless frequency wm/u from zero to 2n. As the dimensionless
frequency wm/u increases from 27, the amplitude ratio increases from zero,
reaches a maximum when wx/u is of the order of 3w and then decreases to
zero at kn. During the same period of the frequency change, the phase-
shift increases from zero to 180 degrees. The phenomenon of resonance
occurs every 2n interval of the dimensionless frequency, with consecutive
decrease in the magnitudes of the resonance amplitude-ratios, and repeats
in the phase-shift change from zero to 180 degrees. A dimensionless fre-
quency wx/u satisfying Equation (109) is the one corresponding to either
a maximum or minimum amplitude-ratio, which could be evaluated by Equa-
tion (103).

The phenomenon of resonance of the fluid temperature in a heat
exchanger having M = O may be explained as follows: The internal heat

sources of the heat exchanger generate an uniformly distributed sinusoidally
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time variant heat energy having a frequency w. Imagine a fluid particle

which enters the heat exchanger at T = O at which time the heat generation

1A

o T sinT', as shown in Figure 5. The change in

is given by p," = p
the thermal state of the particle is graphically shown in Figure 27. The
temperature amplitude-ratio of the particle changes as a function of wr!,
which may be called the inlet lag and &wr, where T is the elapsed time
after the particle has entered the heat exchanger, as shown in Equation
(116). Figure 27 demonstrates that for a zero inlet lag wv', the tempera-
ture amplitude-ratio of the fluid particle increases following the increase
in heat generation and reaches its maximum at the dimensionless time
wrT > ﬁ/2 and less than = after the heat generation rate reaches its maxi-
mum. It then decreases reaching zero at wr = 27 when the heat generation
returns to its mean value. As the particle travels further along the heat
exchanger, the temperature amplitude-ratio of the particle repeat periodi-
cally in 2=, with a gradual decrease in its maximum values.

Physically speaking this is due to the fact that temperature
t(t) of the particle at wr = 2m, 4x, ... is equal to the steady=-state
component of its temperature tl(T)a In other words, the transient compo-
nent of its temperature,tg(T) equals to zero, since there is no net in-
crease or decrease in the enthalpy of the particle. At wr = 2m, Ln,
the total heat generation during each period is equal to the heat gen-
erated by its steady-state component during that period, therefore, the
temperature of the fluid particle at @r = 2m, 4, ... must be equal to
that of the steady-state component t,(7). Figure 11 also shows that the
temperature amplitude-ratio of the particles having different values in

wr' have zero values at wr = 2m, bx, ... . This could be confirmed by



TABRLE IV

SUMMARY OF EQUATIONS FOR DYNAMIC RESPONSE
OF HEAT EXCHANGERS HAVING M=0

(a) 1> Ttu/x>0
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Equation (121), which indicates that the temperature of the particle
t(1) is equal to the temperature of the steady-state component tl(T)
when wT = 2nn irrespective of its inlet lag wf. This is a result of
the total heat generation during each 2n period being equal to its
steady-state heat generation and consequently there is no net change in
enthalpy for all the fluid particles. Since x/u is the physical time
required for a fluld particle flowing at a velocity u to traverse the
distance x, the dimenslonless time @wT can be expressed by am/u. Con-
sequently one may conclude that the transient components of the fluid
temperature, or the amplitude-ratio is equal to zero at wm/u = 2n, 4n,
6%y voo o

If one substitutes wr by w% in Figure 27, the envelope of the
temperature amplitude-ratio formed 5y the particles having different in-
let lags is identical with the amplitude-ratio response of the fluid tem-
perature shown in Figure 25 -a.

L. Frequency Response of the Heat Exchanger Having
the Sinusoidal Thlet Fluid Temperature*

The frequency response characteristics when the internal heat
generation is held constant and a sinusoidal disturbance is given to the
inlet fluid temperature is obtained as follows from Equation (39) by

substituting ¢ = Q,
- Ses+i)ex
I T
{}zzfoe kS

The transfer function is defined as

{1k

T _sihs+ R
Fs)=75 s (h5)

E*‘:

* See Reference 7, 8 and 20.
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Upon the substitution of s = iw into Equation (145), one obtains

P G0 N0 AT
Fiw)=€ %['”M%)Z] e At T%@?J

According to Equations (20) and (21), the amplitude-ratio and phase-shift
relationship between the temperature of the fluid at the outlet and inlet

is the maximum value of Equation (146) which is expressed as

iy (1—”2‘“]
Teo®) _ Emax (6 T)-t(x,0) _ o R (1)
¥ (o T) —
bogd o o

and

X

Jwx, MY 48

The limiting value of the amplitude-ratio at @ = ® can be ob-

tained frof Equation (147) as

IT;')o (X) ‘% SIS
LI i tf"— = e /
W-rm  Omax

The amplitude~ratio and phase=-shift responses indicated by

Equations (147) and (1L8) are also graphically presented in Figures

2&.”'&) JLO ""fe
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Figure 28-b. Phase-Shift Response of the Fluid Temperature with

Inlet Fluid Temperature as the Sinusoidal Disturbance
for M = 0.1.
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These figures demonstrate that the system is also of the distributed
parameter type where the amplitude-ratio approaches a limiting value
e"KX/u for increase in frequency and the phase-shift increases indefi-
nitely with increasing frequency. Figure 28-a shows the amplitude-ratio
decreases with increase in Kx/u and Mm/K. Decrease in the amplitude-
ratio with increase in Nm/K is very rapid at the small values of Mm/K

K%/U_ pigures 28-b to -f show that the

then asymptotic to a constant e
phase-shift increases with increase in Kx/u, M and NUVK. It is interest-
ing to note that the phase-shift at the large values of M has one "resonance"
which was also indicated in Reference 20. Profos(eo) dealt with the dy-
namic characteristics of the steam superheater and pointed out that when

the system consists of a light gas (Low pressure steam) and a metal tube
(i.e., large value of M) the phase-shift has a "resonance."™ The dynamic
characteristics of the wall temperature and the fluid-wall temperature
difference are investigated as follows by substituting ¢ = 0 into Equation

(40) and (L1).

Wall Temperature

- 1+58

_%§5(%5+g?)
3 €
€=t s (150)

Fluid wall temperature-difference

st
cop JE R

o ToE ©

A 3 = (151)

¥ Reference 4 has the same form of the phase-shift response in which
they ignored the possibility of one "resonance" at the high values
of the wall-fluid heat capacity ratio.
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The transfer functions for the wall temperature and the fluid-wall tem-
perature difference are defined as

Wall temperature

- vy

-, Qe

Feld)==2¢ = MS (152)
& I+ R

M M+l
- at,  # ’%‘5('+1”:%T
S)=z === =~
fap (5) T s e (153)

Substituting s = iw into Equations (152) and (153), one obtains

ke () R
—IEK /.E LW )

F/)/ v\-._/\__() =
@ /+MI’L<OU ()
_KX @%ﬁf qwie MWX -l Mw (154)
e 7y ST gy e (%)
|+ (de)a
and iw  dt]
A%_LZU —%(L\MJ<W+¥Z—)
/C_ (z¢0) = - — O I+
O g ©
- ('Y%L)z “ —| M(,o ' (155)
[+ (M)

Thus one finds the amplitude-ratio and phase-shift of the wall temperature

and fluid-wall temperature and their relationship with those of the fluid



-107-

temperature as follows:

Wall temperature

()
ATse :%%___e-%ﬂw%))z]:,%@w _ %
e J‘ (M)’ tomex HERS

(157)

(158)

Equations (156) through (159) are graphically presented in

Figures 28-g to -m. It must be noted that this work and Reference 20

are physically different. The heat exchangers in this work have constant

heat generation while Reference 20 investigates those heated isothermally

by steam, although the differential equations governing the dynamic

characteristics and the external disturbance are identical.
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CHAPTER IV

EXPERIMENTS

The dynamic characteristics of a physical system may be deter-
mined experimentally, without even writing its equations. This can be
done by simply applying all frequencies from very low to very high and
recognizing the fact that the ratio of steady output with a sinusoidal
input of frequency & to the input is equal to the frequency response
F(im).

The determination of frequency response has been applied to
problems ranging from simple to complicated systems. The method is recom-
mended to be used when there exists a lack of accurate information of its
characteristics or the systems are too complicated to theoretically calcu-

late the frequency response.

A. Experimental Apparatus

The apparatus as shown in Figure 29-a consisted of a horizontal
water-cooled electrically heated 304 stainless steel tube BWG 16 (0.495 in.
I.D., 5/8 in. 0.D.), 3 ft. in length. Electrical current connections
were copper connectors silver-soldered at each end of the tube to which
power leads were attached. The hydrodynamic calming section which pre-
ceded the test section was 3 ft. and on it a 304 stainless steel tube 34
inch length 1 in. ID and 1—1/8 in. OD was mounted concentrically. A stream
of cooling water taken from the same water supply as the coolant flowed
through the concentric space in order to maintain the coolant temperature
as uniform as possible up to the inlet of the test section. The tube be-

tween the test section and the hydrodynamic calming section was reduced

-115-
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in cross sectional area in order to reduce axial heat conduction loss
from the heat generating section. A schematic drawing of the system
is shown in Figure 29-b.

A once-through water system was used to avoid the necessity
of recirculation loops, heat exchangers, and pumps. Water was supplied
directly from the city water lines through a water softener and its flow
rate through the test section was regulated by a control valve and was
measured by a calibrated sharp-edge orifice with a manometer using a
2.00 specific weight indicating liquid. Electric power was dissipated
in the stainless-steel tube to provide the source for internal heat gen-
eration. In order to produce a sinusoidal heat generation, a four bar
linkage as shown in Figure 29-c was designed to oscillate the auto trans-
former input of a 50 kw Germanium Rectifier. The four bar linkage was
driven by three phase induction motor, through a 3/4 hp hydraulic speed
control and a 10-1 Boston reduction gear. The locations of the wall
and fluid thermocouples are shown in Figure 29-d. Fluid thermocouples
were located at the beginnings of the unheated hydrodynamic calming sec-
tion, and the test section, at the end of the test section and at the
location immediately after a mixing baffle. The fluid thermocouple at
the end of the test section was mounted as in Figure 29-e so that it can
traverse the tube cross-section to measure the temperature profile.

Seven wall thermocouples whose positions are shown in Figures
29-f and 29-g, were spot-welded directly on the tube-wall by a condenser
discharge process. The DC voltage picked up by those wall thermocouples
during a sudden increase in test section voltage were carefully cali-

brated using a Minneapolis-Honeywell Visicorder at several recording
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X — FLUID THERMOCOUPLES

X — WALL THERMOCOUPLES SPOT—WELDED TO TUBE

I"FIBER GLASS INSULATION
WITH ALUMINUM FOIL

SHIELDING HYDRODYNAMIC CALMING SECTION
TEST SECTION
" COOLING WATER IN

_____ 3_6_ 9 r SHARP-EDGE
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Figure 29-d4. Detail of Test Sectlon and Hydrodynamic Entrance Section.
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Figure 29-e. Fluid Thermocouple Mount and Mixing Baffle.
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Test Section and Welded Wall Thermocouple.

Figure 29-f.
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Welded Wall Thermocouple.

Figure 29-g.
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speeds. All fluid and wall thermocouples were made from 20 gage iron
and constantan thermocouple wires and were chosen because of their higher
thermal emf per degree of temperature difference. The response of the
water thermocouples were corrected analytically for their inherent lag,
which was not significanf. Two 24 gage copper wires were connected to
the ends of the test section the other two wires connected to a DC shunt
for purposes of measuring the potential drops across the test section and
the shunt. All thermocouple lead wire, and test section and shunt volt-
age leads were connected to double-throw copper knife switches with one
side connected to a precision laboratory potentiometer (L&N 8662) for the
steady-state readings and with the other side to a Minneapolis-Honeywell
Visicorder (Mbdel 1012) for the transient as well as steady-state record-
ings. A mixing baffle of negligible heat capacity was installed just up-
stream from the outlet fluid thermocouple as in Figure 29-e. It was found

in the previous experiments(l’2’3)

that measuring the coolant bulk tem-
perature by means of a single, stationary thermocouple in the center of
the stream provided a source of uncertainty which required a correction
to obtain the bulk temperature.

The pressure drop across the test section were measured by a

calibrated draft gage with a 2.00 specific weight indicating liquid.

B. Test Procedure

Three major experimental programs were scheduled: steady=-state
transient-periodic state and steady-periodic state.
The steady-state heat transfer experiments consisted of several

runs with Reynolds number ranging from 10,000 to 25,000, in which both
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heat transfer and pressure drop data were obtained. Temperatures were
measured by the potentiometer and at the same time recorded by the
Visicorder with the object of checking the calibrations of its galvanome-
ters.

The experimental program of the steady periodic-state response
included the freguencies ranging from 0.85 to 50 cycles per minute. Ap-
proximately 5 to 10 minutes were allowed for the attainment of steady
state as determined by the Visicorder recofdings,

For the transient periodic-state response, the starting posi=-
tions of the four-bar linkage was set at the mean power output, followed
by a sudden starting of the driving motor. The range of freguencies was
limited to 20-25 cpm to prevent damage to the transformer shaft and the

hydrauvlic speed control.

C. An«lysis of Data

In the experimental investigation of the processes of heat ex-
change the local heat transfer coefficient along the test section is

rejuir-d., The local heat transfer coefficient is defined as

%)
A
b = Ak (160)
e X
where [ /A, is the local heat flux evaluated from the equation

(9)534/2(IJQ2 (161)

— )2

A )x (ndz\) S

The current I is obtained from the measured voltage drop across the DC
shunt, 5, is the local electrical resistivity and = is the 'wall thick-

ness. Figure 20 shows a typical curve of the local heat flux distribu-

tion indicating that the heat flux is practically constant except at the
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thermal entrance region where the values are lower. The local inner-
wall temperature ©;, shown in Figure 31 is obtained from the measured

temperature of the outer-wall which is insulated,

6, = 02/1 {’—d 1(r? r)J (162)

This is the equation for a hollow tube being heated by passing electric
current through it, under the assumption that ky is independent of r.
The variation of the temperature of the water along the length

of the pipe could be determined by computation using the equation

C/ Hd dx Q
b=t j chp )

From the computations, curves are constructed showing the variation of

the water temperature along the length of the test section for each run.
The most typical one is shown in Figure 31.

After the curves for the temperature variation of the water
and of the wall along the test section are obtained, the local heat
transfer coefficients are computed from Equation (160). The dimension-
less local heat transfer coefficients are shown in Figure 30.

The integrated mean heat transfer coefficient is defined as

X
hm=%f hdx (164)
0]

These computations allow constructing curves showing the variation of the
integrated mean heat transfer coefficients along the length of the test

section. Figure 32 shows the variation in dimensionless form.
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In the experimental investigation of the transient behavior
of the test section, temperatures as well as voltages are recorded by
the Visicorder. Fourteen galvanometers used were of Heiland type No.

M 40-120 with an undamped voltage sensitivity of 7.00 in/mv (or 0.143
mv/in) and nominal coil resistance of 21.4 ohms, A 120 ohm demping re-
sistor was used in series with the galvanometer circuit. Each of the
galvanometer circuits was calibrated in terms of deflection versus

emf at its open terminals by using two precision potentiometers one to
supply emf to the galvanometer the other to measure the emf supplied.
Total resistance of each complete external thermocouple circuit was
measured by a Wheatstone Bridge. The relationship between the DC volt-
age applied to the galvanometers and the corresponding (open circuit)
thermal emf generated by the thermocouples was calculated for each cir-
cuit,

Each thermocouple was calibrated at the liquid nitrogen, steam
and tin points. Due to the fact that the voltage applied to the test
section is DC and the wall thermocouples were spot welded to the wall
surface, the Visicorder would record the thermal emf as well as DC pick-
up. A step input in DC voltage was applied to the test section and the
sudden deflection of the galvanometer at that moment was measured.

Figure 33 shows the calibrations of DC voltage pickup by the
wall thermocouples, which indicates the direct proportionality of the
galvanometer deflection with DC voltage supplied to the test section.
The wall thermocouples located at stations 6 and 9 showing no such DC
pick up. The temperatures then are obtained after these several correc-

tions to the recordings are made.
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D. Results and Discussion

The hydrodynamic condition of the experiment is that the velocity
distribution is fully established but the temperature profile is uniform

at the entrance of the heated section.

1. Steady-State

The wall temperature distribution is shown in Figure 31. The
gradient shown at the entrance is due to the formation and thickening
of a thermal boundary layer. The drop in the wall temperature at the
tube exit is due to conduction heat losses to the bus bar and the pres-
sure tap.

Figure 30 indicates that the local heat transfer coefficient
continuously decreases along the length of the test section up to a
length to diameter ratio of 24 from the entrance for Reynolds numbers
ranging from 10,000 to 35,000. The temperature profile downstream from
this point is practically developed. The local heat transfer coeffi-
cients are independent of x when x/di is greater than 2k.

Figures 32 and 34 show the comparison between the present re-
sults and that previously obtained by Aladev(32> for the constant wall
temperature and Hartnett(BB) for constant heat flux. Aladyev shows the
thermal entrance length is approximately hOdi'while Hartnett indicates
1t should be 12d; for the same ranges of the Reynolds Number. The pres-
ent results show a fully developed condition exists at X/di of 24, which
falls between the results of Aladyev and Hartnett.

The integrated mean heat transfer coefficients also decrease

with increase in distance from the heated entrance, up to a length of
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x/d12=45, where the thermal conditions are practically stablized. Aladyev
gives a higher value of 50, while Hartnett, a lower one of approximately
30 for this condition. The experimental integrated mean heat transfer
data correlated as shown in Figure 36 are 10 per cent lower than that

predicted by McAdams' Equation (9-10b), Reference 37.

2. Steady-Periodic State

Figure 37-a demonstrates a typical result for comparisons be-
tween the actually recorded changes in the voltage and current applied
to the test section, the water bulk temperature at x = 3 ft., and the
wall temperature at x = 2.825 ft., and their theoretical sinusoidal
changes. The applied voltage and current have flat tops, higher values
at the first half period and lower values at the last half one, probably
due to the four bar linkage itself and the generation of the induced
voltage in the transformer while it is sinusoidally oscillating. It is
estimated that this small discrepancy in the voltage and current would
produce negligible error on the results as a whole. Appendix H shows
the principle of the mechanism and its error estimation. It must be
stressed here that the four bar linkage can produce an approximately
sinusoidal angular displacement only on the transformer shaft.

Figure 37-b is a typical visicorder recording of the frequency
response. The response recordings of the wall thermocouples at stations
No. 6 and 9 (0g and 99), which are free of the DC pick-up, are almost
purely sinusoidal although the other wall thermocouples having a DC pick-
up are less sinusoidal in their response. This is due to the fact that

the magnitude of the DC pick-up by each wall thermocouple are different
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Oscillographic Record of Frequency Response.

Figure 37-b.
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with different voltage applied to the test section. For this reason,

the frequency response of the wall temperatures shown in Figures 7 and

8 are investigated at stations No. 6 and 9 only. Figﬁres 7 and 8 show
the frequency response characteristics of the wall temperatures at

Kx/u equal to 0.161 and 0.302. Figures 7 and 8 indicate that the experi-
mental results of the wall temperature amplitude-ratio falls below the
theoretical results, particularly at high frequency. The phase-shift
response on the contrary is higher than but almost parallel to the
theoretical one, and agree fairly well at the high frequency.

This discrepancy is probably due to the heat capacity lag of
the wall thermocouples. The wall thermocouple at station No. 9 is close
to the bus bar on one side and the pressure tap on the other. The un-
certainty estimations for confidence limits on the mean of 95% are
evaluated for the amplitude—ratio and phase-shift of the wall and fluild
temperature by the method of Reference 36. The uncertainty intervals
increase with increase in frequency, since at high frequency the gal-
vanometer deflections corresponding to the temperature amplitude and
mean temperature become very small.

For the wall temperatures at Kx/u = 0.161 and @ = 50 cycles
per minute, the uncertainty intervals of the amplitude-ratio response
i1s + 35.3 per cent, and for the phase-shift response it is + 34.3 per
cent of their corresponding mean values for 95% confidence in the mean.
At Kx/u = 0.302 those values decrease to + 2k.L per cent and + 34.3 per
cent, respectively.

The frequency response of the water bulk temperature, shown
in Figures 6-a and -b is measured at station ll,vlocated after the mix-

ing baffle and corresponds to that at test sectlon exit. The experimental
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results of both amplitude-ratio and phase-shift responses agree well
with their theoretical curves. The uncertainty intervals are also shown
for 95% of confidence in the mean. The heat transfer coefficient used
in the theoretical computation is the integrated mean value where fluid
properties are based on the film temperature.

Resonance phenomena both in the amplitude-ratio and phase-
shift response of the water temperature occur at the frequencies of 95
cycles per minute for the former and 80 cycles per minute for the latter.

Owing to the increasing percentage in uncertainty interval at
high frequency and the difficulties in making a physical measurement as
the thermal emf of the temperature amplitude at the first point of
resonance is the order of 1 to 3 microvolts for operating conditions
shown in Figure 6-a, which is lower than the output noise level of the
ordinary DC amplifier, these experimental data have not been extended
to sufficiently high frequencies in this thesis to demonstrate the
resonance indicated by the theoretical computations because of the physi-
cal restrictions of the experimental apparatus. However, it is believed
to be possible to obtain the resonance phenomena experimentally by pro-
viding a longer test section (approximately 4 times longer than the pres-
ent one with the same diameter) and using a different fluid-wall system

having a smaller heat-capacity ratio M.

3. Transient Periodic-State

The typical transient-periodic state responses of water and
wall temperatures are shown in Figures 38 and 39. Figure 38 shows the

experimental data of the water bulk temperature response to agree very



%o o *£69°0 = M/
‘gT2°0 = . d/°d ‘olng = ™I ‘196°0 = W ‘T2L’0 = n/xy 3®
aamaeaadus], IoqeM JO osuodssy 91BIG-OTPOTISI AUSTSUBI], ‘gf aanITg

W
N+

2l 9l Sl bl €l el H ol 6 8 L 9 S 14 € 4 | (o) Sl

|
—
/ _
N
7 JJOTIANT 4 |
\ Az:b&uazup IN3ISNVYL _

AN )
. . R _ AN . - . \Ad\aﬂk

AMOIHL A8 et

N 7
JYNLVHIANIL LNIISNVYL /O/ \o\

. | o o0~ | -3
o ¢
& 8|2
) 3dOT3AN3 ™N +

3UNLVYIWIL INIISNVHL s
*
]
't

3
SLINIW3UNSV3IN ._ﬁzus_:_mmxm — o
|
NIVWOQ 3WIL 1Syid 3HL dO
NOILVYND3 A8 G3WHO4 3IdOT3IANT — — - — _
N ] '3
- - - - - - - - .g\.JlI\\.l
s N oo I
I > X1 > |/—
z_n |
1T ]
S



"gTe 0 = /M

‘g2 0 = 4/ ‘olwz = ™ ‘T96°0 = W ‘TOT 0 = n/xy 3%
sanjetadws] TTeM JO ssuodsay 9383G-OTPOTJIS JUSISUBLL, 6§ oInSTg
W
Sy (N+1)
pA| 9l Gl bi €l 2l I Ol 6 8 2z 9 S v ¢ r4 i (0]
“ —I
X S~ 1 |
\ | | 3 | | | | | | W |
/ D N
'
0]
5 =11
: AMO3HL A8 ® \ﬁ .
JUNLVY3IHW3L ANIISNVML
y \W\ ,
V’e tw\ . |
NMV// .
N
3d013AN3 X
JHNLVY3IdNIL LIN3ISNVYL
2
SIN3IW3IHMNSVIN TTVLN3IWINICEX3 o < _Mk\
NIVWOQ 3WIL 1S¥ld 3IHL 40 NOILvND3 A8 Q3IWH04 3IdJOT13ANI — — _Axlh OMmM__
N NN NN NS NN NN SN SN NN N |

[ gy |
ol
8 la

=

‘@'
D=
8 |4

_—Iull\l-



-1h2-

well with the theoretical curve in this state. The experimental results
of wall temperature response shown in Figure 39 fall fairly well on the
theoretical curve, except that the phase-shift is larger. The physical
time intervals in the first time domain for the both responses are very

short but the recordings show they agree well with the theoretical cal-

culations.



CHAPTER V

CONCLUSION

It is concluded from this study thats
1. In the steady turbulent flow of a flulid in a pipe with steady uni-
formly distributed heat sources, the local values of the heat transfer
coefficients decrease along the length of the pipe practically up to
a section of the distance x = 24d4; from the start of heating where the
velocity profile of the flow is fully developed. The thermal-entry
length is a function of the Reynolds number Re (based on the film tem-
perature) and decreases with increase in the latter, but starting from
X = 24di the local heat transfer coefficients become independent of x/d.

The integrated mean heat transfer coefficient decreases with
increase in the relative length of the pipe. The length of the thermally
stabilized section for the mean heat transfer coefficient is a function
of Re and decreases with increase in the latter. The integrated mean
heat transfer coefficient become practically independent of x/d starting
from x = 45di.
2, The freguency=-response characteristics of the wall and fluid tempera-
tures and the fluid-wall temperature difference have been analyzed, =nd
it has beenxshown that those response characteristics are functions of
four parameters M, Kx/u, N&/u,and &m/u, among which one is the dependent
parameter. The frequency-response characteristics of the fluid and wall

temperatures, and fluid-wall temperature difference exhibit the phernomena

=143
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of resonance in amplitude-ratio and phase-shift. For a system of zero
wall-fluid heat capacity ratio (M=0) the dynamic characteristics depend
upon parameters wx/u and Kx/u, and the phenomena of resonance in amplitude-
ratio and phase-shift occur periodically in intervals of 2xn in wx/u.
Resonance occurs at ﬁx/u = 3n/2, 5m/2, Tn/2, etc. for the amplitude~ratio
and wx/u = 2m, 4x, 6m, etc. for the phase-shift, for the fluid tempera-
ture only. For the wall temperature the points of resonance depends on
Kx/uo The amplitude-ratio decreases and the phase-shift increases with
increase in heat capacity ratio. These results are found in Figures 9,
10, 11, 12, 25 and 26.

3. The transient-periodic state of the response of the wall and fluid
temperatures and the fluid-wall temperature difference are functions of
four parameters, M, KT/M, Mm/K, and wT, of which @r is dependent in the
first time domain. In the second time domain these temperatures are
functions of six parameters, M, Kv/M, Mu/K, @r, Kx/u and ax/u of which

two parameters &m/u,and wT are dependent. The transient-periodic state,
in general, decays exponentially. The dynamic behavior of the wall and
fluid temperatures and the fluid-wall temperature difference are confined
within defineable envelopes.

4. From this study it is concluded that resonance phenomena in the
amplitude-ratio and phase-shift are the characteristics of distributed-
parameter systems under distributed disturbances. These results are con-
trary to those of Paynter(El) who classified these systems in the category
of those having monotonic characteristics. The method of approximating
the process characteristics by means of stochastic processes* as suggested

by him in Reference 1 is undesirable in this instance.

* Bee Reference 1 for Paynter's comments on the generalized percolation
problemn.
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APPENDIX A

DERIVATION OF THE BASIC DIFFERENTTAL EQUATIONS*

The system analyzed is shown in Figure 4 and consists of a
constant-diameter circular tube through Which‘a fluid (coolant) is
pumped steadily and in the walls of which energy is dissipated.

With the assumptions and conditions-as indicated in Chapter
III, two differential equations, one for the wall and ane for the fluid,
may be derived from the First Law of Thermodynamics and the law of con-

servation of mass for an incompressible fluidgl)

Fluid
a(Pe) 3(Phw) _hC,n_ .
57 * sx G (07t) (4-2)

Wall

a((g/f;e)w____%cr (Q_t)+ RI('O+ C‘P(f/—) (A-2)

Where

2

a flow wetted cross-sectional area (ﬁrl

for circular tube)

¢ wetted perimeter (Qﬁri for circular tube)

a' gross-sectional area of duct wall (ﬂrog-mrig for circular
tube)
p. " initial volumetric heat generation rate

¢(T) arbitrary transient in volumetric heat generation rate
e internal energy per lbm in absence of the effects of motion,

capillarity, and so forth

* See Reference 2.
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Equations (A-1) and (A-2) may be reduced to the following

O-% = PCPCI(_t /OCEOLL@%) (A-3)
PCPY" at)+ LG M(&é) (A-)

'R’ 67') 1%( (8-5)

Equation (A-L) is for circular tube geometry and (A-5) is for generalized
geometry. Both are equivalent to Equation (35).

For the wall, Equation (A-2) msy be rearranged to

-0-t)+ el + i) < ELed(82) (1-6)
~ _(Pel 65 150

-6~ t)+ 2T, [ @h-)] T (37_) (A-7)

% _t)+@c'_@f[gg+¢(¢)] L (____ (2-8)

Equation (A-7) is for circular-tube geometry and (A-8) is for
generalized geometry. Both are equivalent to Equation (34).

For this particular problem, it is convenient to partition
both temperatures ©(x,t) and t(x,T) into transient and steady-state com-

ponents at this point. It is defined that

Q%) = € (%,0)+ B, (x,T) (A-9)

t (6,7 = 4,0,0) + T, % T) (A-10)
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Where Ql and t; are the steady-state and 6, and to the tran-
slent components. For the steady-state conditions, @7 and t; satisfy
the following differential equations which are Equations (A-5) and (A-8)

with all time derivatives and ¢(T) set egual to zero,

©-t)=x (66 ) (A-11)

(A-12)

-(0-t,)+ GTC;)_ P” =0

With the introduction of assumption g, one obtains from Equa -~

tions (A-11) and (A-12)

q
£ (x,0) = G + %)Ff Cx (A-13)
x,0) = 4_‘(}4)0 +(q4\)o (A-14)
Q,( ) to WG Cx -~

where (a/A)o 1s the initial steady-state heat flux at 70, to 1s the
temperature of the fluid entering the duct at the initial steady-state
7=0. Substitution of Equations (A-9) and (A-10) into Equations (A-5)
and (A-8), and subtracting Equations (A-11) and (A-12) from the results

give

)+ K gjgc (A1)

Ot =% (5

-0,-t, )+(7"éTLEW Dir) = ;}—W ( 3%22) (A-16)
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These equations are the same as Equations (37) and (38) and are subjected
to the following initial and boundary conditions. Since the initial and

boundary conditions are

0 x,0)=0,(x,0) (A-17)

t(x,0)=t,(%,0) (A-18)

£(0,7) =t Lot (4-19)
and

£, (0,0) = t, (A-20)

the boundary conditions for the transient components become

Q3<X)O) = O (A-El)
£,(x,0) =0 (A-22)
@7 =t5(T) , t(0m) =0 if +(0,7)<t, (1-23)

Equations (A-13) and (A-14) show both 0, and t; are independent of T,
the dynamic characteristics of the system is free of the initial effect
due to ©7 and t; and the transient components constitute the complete
dynamic behavior.

The response equations for the fluid and wall temperatures may

be found from Equations (A-15) and (A-16) a

0203 atZ 04@(_&X,+(02+a3)&t2 @7{:(:2 = Q, ¢ (A~2M-)
a0, 3@; 0,0, 90 +(0.:+0)32. 0,38 =a @1 00.8Z (25



APPENDIX B

DERIVATION COF TRANSFER FUNCTIONS

Apply the method of lLaplace transform to Equation (A-24) and
its initial condition tg(x,O)zo, one obtains a subsidiary equation for the

fluid temperature as

6&«LS+Ddiz+5(bs+h){2:aﬁb (B-1)
The general solution of Equation (B-1) is

— S(b.S+by)x _
{ :C e A4 (140.S) -{-_a.!?i____ ‘{:B-E\)
2 ™ S(hS+h)
where the integration constant ¢y 1s determined by the boundary con-
ditions. There are three different sets of the boundary conditicns,

(1), (ii) and (iii) below, which are:

(i) The inlet fluid teﬁperature is kept constant, i.e, Eé = 0, and
energy (heat) generation within the walls is constant with length but is

time dependent. FEquation (B-2) then becomes

-S(b,Sth )x
o T4 (1+0;5) {5-3)
JC ¢s(szer ) { J -3

Substituting Equation (B-3) intc the Laplace transform of Equation (A-167,

gives an equation for the transformed wall temperature as

_ S(b:stb )x

- - / Q¢(/+ﬂ25) }
& ¢6(Qs+b,) %S5 €

=150~
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(ii) The temperature of the fluid entering the duct is time-de-
pendent and the energy generation within the wall is constant with length

and time, that 1is 5 = 0, For this case Equation (B-2) becomes

- - s(bStb)x
‘é Ga(1+A2S)

(B-5)
Substituting into the laplace transform of Equation (A-16) with ¢ = 0,
gives for the wall,
. — S(baStb)x.
Q -éO e a“'("*'aaS) (B-—6)
e |+6125

(iii) For the general case, both the inlet fluld temperature and

the energy generation in the wall are time-dependent, that iS'ﬁ and Eé*

are the disturbances. Equations for ?3-2 and o may be found by principle

of superposition. By superposing Equations (B-3) with (B-5) and (B-L4) with

(B-6), one obtains

éf_(a&(;b_g) _ 5(baSth)X
* U2 g (17025 )
B-
and
- _ 5(b,St+b,)X S(sz+ b)x
Q_ _ Zéo* e 34—21%125 5+ = a I, S— e G4.(+0,5) (B-8)
2 1+0:5 S(sz‘»"b,)[ 3 /+ﬂé$
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Subtracting Equaticns (B-8) by (B-7), yields

- _szSHa)x - _s(b stb)x
ALZ Q r Qad 'éo*e Z%Zl )+¢O/ 03+02 e s (1+d25 )

Le* [+Q2S b,Stb 1+Q>S

(B-9)

The dynemic response due to the disturbance on the fluid inlet

temperature t ¥

; / .
o was investigated by Prgfos(20)9 Takahashi(7> and Rizikacﬁll)

The response to a step increase in heat generation a with constant fluid
inlet temperature (Eg@: 0), was studied, by Clark and Arpaeio(l’2’5> Since
the two processeé are linear in nature, their individual dynamic responses
are superposable in the output, that is the wall and fluid temperatures
and fluid-wall temperature difference,

If the tsmperature of the fluid entering the coolant channel is

constant and equal to t,, then Equations (B-7), (B-8) and (B-9) become

e(des) /2-10

L 5(b3+b)[/ e J¢ )
a [ _g(bz&‘b))

N 4 (Hdz8 oy P

&= 5,55 &"““’33‘/:0 =C J@ ‘211

4,

'B-12)

az B g‘sl;lf Zzﬁ.?‘))XJ ¢—'

Qm[ ' rasc
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By rearranging Equations (B-10), (B-11) and (B-12), one cbtains

- S(bszbl 2)(
Z: 4y [ e %(+a,S) (8-13)
¢@x “hx 5(5+ZL) l ’
— 5(beSthJx
Qe / { o/ - Ge (1425 (B=1is)
¢0,(/+7) b (,+_.)5(5+__,_) 9" s -
_ _S(ba Stk )X
4t / e 3&2#9,_55 \
D0 hbrE ) *rs C (8-15]

At zero frequency a heat balance of the system gives the following re-

lationships
q
Sax “A)x L« ‘ : 1
0‘;-“ = TE 7 = LL, (x)- Z;(X,O/ :[/EOCX)szo (5-16)

*
Za0r8)- 00 %) 096000010 e o
4(% o
\.{Dal = M-F)A“ = tl*\/x/\— -(J..-I (X)O> :[A Toofx)]w= (8-18)
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where t%(x), o*(x) and Am{(x) are the steady-state fluid and wall

temperatures and fluid-wall temperature difference at x for p§ = p;o + 0,

But P(T) = & simnwr, for sinuscinal input disturbances (heat generation),

hence
D7) %;5 = [7;(o<jw=0 J’//?a/z'_ {B-19)
- Z) = w7 (B-2
Dir)a(Hg;) [@“’(X)wa SInw7 (B-20)
@/r)a, =[47;° <x)]w=a SN 7 {B-21)

If Equations (B-19), (B-20) and (B-21) are taken as the disturbances

7 s - alX : X | .
ingtead of ¢\T)5 then ¢ —aﬂgyﬁnal(l + §E> and a a] are the Laplace trans-
form of the disturbances. Since t,, O, and Aty are the Iaplace transform
of the outputs, Eguations (B-13), (B-14) and (B-15) may be defined as
the transfer functions of the fluid and wall temperatures and the fluid-
wall temperature difference, which are designated by Fi(s), ?é(s) and

Fp(8).



APPENDIX C

FREQUENCY RESPONSE*

According to the general theory in Chapter II the transfer
funetions of frequency response of the fluid and wall temperatures and
the fluid-wall temperature difference can be obtained as follews by re-
placing s by iw in the transfer functions expressed by Equations (B-13),
(B-14) and (B-15.

Fluid temperature

E (t0)- SGg)] g
'b(uu)‘ b‘x(zw)(w+@ [-€ =iFt(uu),e (c-1)

where

| 5

%
(w,)i ” ]l—(-é_ywm( [+t _%_J [ +Cos(4)‘+{u,7)' EEU'Q)I _
- Fay B f:

&
| ey s )
O( %CH l'+é9J_) +5m(k+i’an‘—b§”9j

W

Gw) x "
o T (C-b)

*See Chapter III, Section A.
=155~
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and

Jz b,+szzUU2)uJ X

X (c-5)
I+(guw)y? U4
wall temperature
-Gu)(bwtb ) x 2
- / [ e d(Haw) ‘,‘ )I _
Tw) = Hayiw- € =1F, @) € (c-6)
Fy @) bz</+§,)<zwx@w+_gi) ? 1+ 322 ¢

where

50 ), j(a;(&) ~eto)'+ (waib ) [[( 85(”’022 )
Jl%uf(ﬁx (+dfw)el —azw)+<l+ —L%)z

S/, 22
Sin(rvi e H C-0.0)(1+ai)
-El- —'az. m-azw 3’(’4‘%

| zb %
+as(V+tan 2 Be )]

Ig{_}—aew (c-7)
+00)e (Hazw) LY
4 -1 ﬁo—gacjﬁ(l*ﬁ SOH. " Ezoo_zw) (c-8)
O =tan % eS(1+0:w?) < L]
A ) ey
W I’y T 2




mlS'?_,

Fluid-wall temperature difference

_(zwggtzzco +b;)
/ [G Q- A H'QZLU.))j

+
0w

E (Lw)= =|E. % (c-9)
P2 b+ ) Fe@ole

where

"<-w)! 5 + a0 Jr (B )[ fm(raiw)e”
S oo | Fhe T 1 T

s
b_vaiw \[ 2,0z
—sin (Y +tar] gt AW )Jf[ _aywaivt)e

Ty (E——y N,

i

A
. +Cl,
+COS<3""tan| Zg) )J (c-10)
—F:_+,
and
Q"(Hdng)e ——-10,w
= (o5 (Yt tan 222 )
O( — tan ff—f‘—-ﬂ%wﬂi’t—‘lﬂ) ( N by (6-11)

b
azz.(o H‘OZUJ)e <3’+{an +02w)
Byraeaf (B l) B
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At the steady-periodic state, the oscillations of the fluid and

wall temperatures and fluid-wall temperature difference may be expressed as

t,(%) :[TOO(X)](U:(U SINo7T=CX, ) (c-12)
0 (xT) = [@M(@J Sin (=04, ) (c-15)
‘ wW=wW
and
A%, 7T) = [4 mx)]wzim (Wr-0¢, ) (C-14)

Equations (B-19), (B-20), and (B-21) are in the forms of
Equation (16) and Equations (C-12), (C-13) and (C-1%) are in the forms of
Equation (17). Therefore according to Equation (21), Equations (c-2),
(C-7) and (C-10) are the amplitude-ratios of the f£luid and wall temperatures
and fluid-wall temperature difference, which express the ratio of the
amplitude at @ = w to w = 0. Equations (C-3), (C-8), and (C-11) express
the phase-shift, of the fluid and wall temperature and fluid-wall tempera-
ture difference respectively. Substituting the following physical para-
meters, into Equations (C-2), (C-3), (C-7), (c-8), (c-10) and (C-11) one
obtains equations for circular-tube geometory, which are identical with

Equations (55), (56), (57), (58), (59) and (60).

X MUD 2
CS: %E—-@ (c-15)
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X _kx
a;‘ U

-1 MW
a3 =4 K

(c-16)



APPENDIX D

INVERSE LAPLACE TRANSFORMATION OF EQUATIONS (B-11) AND (B-12)

In order to obtain the whole transient solutions of the wall
temperature and fluid-wall temperature difference, the inverse Laplace
transformations must be performed on Equations (B—ll) and (B-l2), which

can be rewritten as:

8 -ghodo-Ge e b0 o

ALZ F (5)¢(5)+ S ‘6 L € Fls(ojgs(d)gﬁ(s) D-2)

where the lLaplace-transformed functions Fl5’ Fiys F15, and Fig and its

inverse transformed functions G are listed in the following table:

F(S) G(T) Restriction
b\ St Qs 5 T
By 203 2o T >0
//_-3 d(bZ)S(S-f'-E:) G}a | dz [ >U
T
- b | _p 7~
CI o Gy G IC e
| BT
fi; fEﬁi%I CE; e 720
X

=160~
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Hence the transformed equations in physical domain of x and T
which are the solutions to the differential Equations (3#) and (35), and
for the boundary and initial conditions of Equations (A-21) and (A-22) are
found to be*:

Case 1 0< I;-S 1
wall temperature

Q=g [ee)|gie e >3

Fluid-wall temperature difference

T > ¥
At (r) = 9% e#z ¢($)e E:/.{ (D-L)
[4]

wall temperature

7.*

PPy VR S

Fluid-wall temperature difference

X N7
AL (,T) = ab (T4 d‘éji(’: Z(G—e% & (6)

*¥See Reference 3.
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where

A’:EE;/¢(7)€62 az (D-7)

>
77 () :J¢(2)JZ-A(?) (D-8)

T3 (p-9)

¢(T) = arbitrary time-variant volumetric heat generation rate

Special Case of Transient in ﬁ(T) Being Sinusoidal in Time

In the case P(7) be represented by a sinusoidal function of

time such as
Zer)=E SinwT ; (p-10)

Equations (D-3), (D-4), (D-5), (D-6), (D-7) and (D-8) become
u

Case 1 1 >1

— >0
X—-

wall temperature

0, =4 f @vmw[ 22 '%(T'E)Jdﬁ

&k (1) / JPM -a_é / _5— _
0(/4-1)@ “ha(+ —)[ Lol C( (E_)z bmS'"u)Hé’ Co;a)z] (D-11)
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Fluid-wall tenmperature difference

a _b
At6r) | /+a§ 10 \Cimr ¥ s e .7
45 L@ /+(7%))z ‘ba—b)&nw/ CoSWT+HE (D-12)
Fluid-temperature
LT _a, | 1[4 5T
a?x :bz)xl—CosaJ"*/( [ <z/)uf‘cafw/+e ‘ (D-13)
a;@ ! l Ew)
Case 2 ™2 >1
< 2
b (" by
Aem=¢ ? @5//’%0Z€ dz
_ WP b 57
S/nw/ oSW7+ e (D-14)
e

77(7) = / BSinwzdz- N\E)

- 5 {=Coswr) WP
G

é’-snw/ —-CoSW7T+C e ] (D-15)
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wall temperature

x b ¥
o7 _ G €% [ w5
9RD(+E,) aD(+E,) bw(rk) 15” 972 T(B_)T% 2,

—'% (/F)D@COSQDT*+5/‘naJT*) %(J‘,q*’Q)
\b,w 2
<EcLo SinWTECasaw 7)Y (S, 9% )J (5.16)

Fluid-wall temperature difference

by
46_“2(?4915): Afe(’/‘)+ ’ H a; eq‘[aa 1= 74, r*)
574 el [V

E;DS/rw/ ~cosaw 7 )§//'(J 7*¥R)
b cosa07% SinwT™ 05,9 Q)J (51
"o e 5-17)

Fluid temperature

b,qae
tZ s ! {TZ(N) 4 _ F
0,9(5(@) apXC:V'Q bau)x_ [ w(d)q*) H‘( > %(r J‘*)

Qb o *
Coswr dE—slnwrﬂgg@q,Q)

”%%sf{“@w)*“”’

e g s & cosorl s a*o\m N
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The function in these eqﬁations are defined. The functions
Vo*%(s,q%) and ) (r,y*) are identical with those have been presented in
Reference 3. These functions are also presented here in Figures 40 and

ﬁl. ¢7(s,q,9) and ¢8(s,q,9) are new functions which have been computed

and presented in Figures;h2~5q.fi The numerical solutions and their

elementary properties are presented in Appendix’iG.
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¥ See References 1, 2, and 3



_ ¢, q¥)
- /e o) (D-20%¥)

%—(1,7‘*,60) —Lf ae_[[ >/JCoSwE,d§

k 7-*
| z (afb)j‘ OZ£KCcS<OEd£
—O?'k=o (K')Z

I*

oo )K de _z K
:Z < e z°coc2z0Z
' @)

** See References 1,2,3 and 9
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1 =(%a) | 'g‘atk

_a-%ozk—,)za ¢ ®EsinwEde

=:O (%)): jo gc_zz’(smﬂzdz
D:%cf 27 sinQzdz

= 505,9%0) (0-22)

The variables given in Equations (D-19) through (D-21) are defined

_ a3X _ | kx
Y_ 0204 WU.
q:l—ﬁ 5—_x'_—k_x_
X_I_[(T- Q-—aw—M—@ (D-23)
7 T K e



APPENDIX E
DERIVATION OF EQUATIONS FCR THE
TRANSIENT-PERIODIC GSCILIATIONS OF TEMPERATURES
It will be shown in Equations (E-2), (E-3), (E-4),(E-11),
(E-14), and (E-17) that Equations (D-11), (D-12), (D-13), (D~163, (D-17)

and (D-18) may be expressed in a general form as follows:

LYY, ETRY, Sin (wrap) (1)

where 7 1s a constant and Yy, Yo, Yz and ¢ are functicns of x, w ard .

The envelope formed by Vo Yl + Y2 Sl Y5 is tangent to the curves
expressed by Equation (E-1). However the points of tangency fall siightliv
to the left of the point of maximum amplitude of the furction yo. seneraily
this discrepancy is negligible, and the amplitude a% the point of tangency
may be taken equal to the maximum amplitude. This envelope erncloses all

the possible cscillations of the temperature change.

A, FEquations for the Transient-Pericdic Osecillation of Tewperature

Case 1 1 > f; >0

By rearranging Equations (D-11), (D-12), and (D-13), one cbtains the
equations for the transient-pericdic oscillation of the fluid snd wall

temperatures and the fluid-wall temperature difference as follows:

7;7
Om  _ |
a(+EYD  BW(FE) ["fm)

+J(%'i bbal ) [’+&+<bzwj)25 ~tan _0_3__(5_—“4_)_ .

n {r)u)/-fﬁﬂ 3
+(25) % B

(L Fau |

=170=



~171-

Fluid-wall temperature difference

buw

2(T) —%tr
Ea o MR I

Fluid temperature

_b
bar) g e +£LJ (5t

b
o atn| ey Sy ook l) e

Equations for the temperature amplitude in the transient period
1> I% > 0 may be obtained from Equations (E-2), (E-3) and (E-4) by sub-

stituting sine by + 1 and - 1 as follows:

wall temperature

-
[@(XJT)]+,-= | Ui Jp i (ka +E) T (£-5)
a(vE)E bE) “'B‘L) @s)

Fluid-wall temperature‘differenee

e T4 J A
a'@ CIZU.) H—(-BJ-)JI ‘ (E~6)

Fluid temperature

+
/\

—%%q~ b b\
[T(X7~)]+)- _ da [,.. & + b (5 (E-7)
X b,wxl s~ T+ B

ag 2
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Casge 2 Tu
x 21
Since
—~—_ %, X
[ =/ +U (E~8)
Coswr = CoswTcos Y- sinwThos X (E-9)

Sited7 —j,/vw’/‘%cu’ wk+ CoJged 7~ J//? gx

by substituting Equaticns (E-9) and (E-10) into Equations (D-16), /D-17)
and {D-18), one cbtains:

wall temperature

é;béx, - / & %@ E;%%T
amf)d bwo»fa;)] I+’

¥
X g o b |
Al - B e
'+(EU>

+’ Aea+ B; §,‘n_'[co’/“t fdﬁ%— %}J (E-11)
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cos (UX+5”7 @

where AQ ‘__S//) Xy —TBET)E (f&) 2L

&) (1 *
B mosaa)

‘b s 9%39
<bw8/n Ut .coS A

B, —cas———-+;;7£17y

@),
t ,+<_i Ik [bw 2690)- (594

Fluid-wall temperature difference

y ! %q.
A%,(é o 02“{"*'(?‘&7)7’[ % <74D )

+’ Adf-regj Sm[w"f ton '(‘%)}}

where

Aoy 'cOs“Msm X1 ‘%%(59*@) Wquu)]

t

(E-12)

(E-13)

(E-14)

(E-15)

B= b ¢ Y -Cos G+E a[—%(ﬂﬂ ’f@}%% (Sﬂ’fQ)J (-16)

AT
L I ]
) ’
Fluid temperature
¢ _bl/r
2 X
L% ) =Gs |- ef 2+604[ 2 x5;q*)
T bwx| (2
T -

b ¥
-f&.q—

ey

)

- & 1Y) */\A?Biﬁm[wﬁfdﬁ("/%)]J

(E-17)
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where
o
Ap=sin ““J%‘H/(wa' F (f’—'% G 15 ,+(%)zl[(f5)z i *f’i]
405,050 %62 /s (59% )J (-18)
where
’X
cwX | b, X a
B,=-cos%g EY b.)< Singg ﬁoswx>+;+(b. l[ )”*aj

% P+ &) GPEQ)

B-19;

Equations for the temperature amplitude in the transient period Z‘vi 1
may be obtzined from Equations {E-11), (E-14) and (E-17) by substituting
sine by + 1 and - 1 as follows:

wall temperature

,r —.J.

@(wh— _ I[_;_ 7.C 2 'm[ ~ o
a’(“’%}i bw 1%4)1* H—(gl.) ?/%;CU __LE;;\E( g j-.-—B F-20)

Fluid-wall temperature difference

- I"r\ X b, % 1
[AT\(X T)] 9= l [ -52' a q_ 'B‘Z’T * > 3 | \
a’é + pope 16 ot c 4G X)tJAAtJ“Bat (E-21)
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Fluid temperature

b

2

TxsT) +o- _ O J‘ (<
%@ b,wxl +

= € &[5y

2

|+( b, )2 %(C (r*j]i'lAtz-l-B: (E-22)

B. Equations for the Steady-Periodic Oscillation of Temperature
After the transient-periodic state, the oscillation of the
temperatures become steady. These occur at large values of T (infinite)

at which e'KT and e“KT*’became essentically zero. Hence

% P
—e %M oo)-1-€ 2“2 (8-23)

Substituting T = o, T* = » and Equation (E-23) into Equations
(E-11), (E-1%) and (E-17). The following equations for the oscillations
of the temperatures in the steady-periodic state are obtained:

wall temperature

@2(%;'7') _ ' —/ B, ]
57/(/+U-)@ bw(:+a.)JL +B 9”{“ 'W—fan( 6‘:)} (E-24)
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dhere A =SNG +<’b—) (R cos e sin')
‘e 4(%))[ Q)+ (S u)} (E-25)
)—*—(Bb—ul-j) w a J 3 oy J
4q.
WX, B2 b wx wx
Bro COSM —’-Hz—jfiujr)z(b Sin ces )
-4/ b,
+ L*_(sz_)[b. (/’(5— =Q)-%4 (s Q)J (B-26)
[+ (Ew-

Fluid-wall temperature difference

A-te(x"r) ’ 2 - _ BA B0
Y I aaul(H( w)] ’A IB Sn[wz wx tan(A:o)J E-27]

where

AAtm—bIZUCO‘SwX+S 0—+e%%(5¢0 (S‘ OOQ)J (£-28)

Bdf;b%sm%— -5 Yy ¢ F% (50s-L3 15 NQ)} on

Fluid temperature

‘tz xT) : o~ X "__BEQ } . .
ax?i? boox é “t B v:r)[w/-fc—fan ( Atm) (E-30)
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where

A, =SinR- w‘fwros WX, sin LL)

a
- 7 (25) % 5=Q) (E-51)

= b, cox 29
Bt = -CosE |+(\°_Lb)( SINTL =3 'L/L)

[0 2]

e‘E
+(Ejﬁ)2

X
b

kb' +I+Q—J>/f( )

ko0

The amplitude-ratio and phase-shift responses can be found from Equaticns
(E-24), (E-27) and (E-30) as follows:

wall temperature

JAQi + B{eo

(E-33)
had(1+4)

|Fyaw)| =
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X —Z+ *‘aﬂl( ’—929') (E-3L)
Boo Ag

)

Fluid-wall temperature difference

!F (200 JAAtoo+ BA'boo (E"BE’)
N e |
RS
_ Q__)?_C ‘L -l i BAtm { )
Og”— u e ( AA-boo ) E-36)
Fluid temperature
‘Ft/ow | - lAZocw“‘thoo (E-37)

04

B
_wx ~—15519 (g3
. =75 +tan (E-38)

{r

Equations {E-33) through (E-38) are identical with Equations {55), (56)5

(57), (58), (59) and (60) by u sing s = iw.



APPENDIX F
DERIVATION OF EQUATIONS FOR THE DYNAMIC RESPONSE OF A HEAT
EXCHANGER WITH ZERO WALL-FLUID HEAT-CAPACITY RATIO
The first law of thermodynamics in a heat exchanger with zero

wall-fluid heat-capacity ratio can be expressed as follows:

pad )G + PuaGrgtdx =a'dx B(r) (-1)
t It _ (5-2)
"I PCPVPX
where p;(T) = p;o + o(1) = p;o + & cos(ar-n) and 1 is a constant.

The steady-state component of the fluid temperature can be

obtained from Equation (F-2) as

% (F-3)

Ee¢

PCPV

From Equations (F-2) and (F-3), one obtains an equation for the transient

component of the fluid temperature as

3t ot
o7 o) R )

=179
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performing the Laplace transformation on Equation (th) it yields,

dtz Vo & )

With the same boundary conditions as Equations (A-21), (A-22) and (A-23),

one obtains

X
t. PCPV<' e (5-6)

For the constant inlet fluid temperature, Equation (F-6) reduces tc

boopir(-e

A TSVA [-C (F-7)
Substituting

A S O i |

y/é - ‘:f)szmzcos ? + @524_602 Sin 7 (r.8)

into Equation (F-7), gives

w y
= Cos”) — 2127 ..
"2 TpG /SISt T ( 5‘+wJ 7 (-9)

performing the inverse Laplace transformation on Equaticn (Fm9)5 yields
two solutions as follows

i 1>

sl 3

>0

to1-60)= i (B Ronur+ Gi-coser) e
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sl 3
v
}__’

t(XqT)“t:(X: )—%\/\;\} [COS }75/ YT %j(/—CO\S‘éU'I‘)

—COSY kL SID 1~ * ]
7 &ﬂw/'+&)7OCO&WT)

DV, [cos77 % [-as%
pva[ SN jZ(/ cos )Ca wrtan j”wX)J

- X
JMﬂ o W) i pm 4o 71=C0S B

BV [26co w*? /I
= Bea ‘3€i;5 EZ&"—?7 /7\;2;%%f)J (F-11)

For zero fregquency, Equation (F-LL) reduces to

@ter&ta _ DVw

oT o) PGV

(F-12)
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Solving Equation.(lez), one cbtains two soluticns as

i 1>T>0
- B\LT
tuu:o( / )"t (O)-’—' W (F“‘IE)
ii IE-E 1

ST Q?V@ Q5VQSF*L djb/ it (F-
t,! (X D~ t,0)= AT =TonY, PCZ\}T (F-14)

Dividing Equations (F-10) and (F-11) by (F-13) and (F-1k), yields

1 1>™>9p

t0)-40) .. CosTPIinw7y; Siny (-coswr) (F-12)
A TONEEZ “r

it >0
é(X) T)—tl (7(>O) - JE(I—CO.Y%j Coslwr 77 '{6'/7‘/// @5%” (F-16;
LT t0) S i

Equations (F-15) ard (F-16) express the cscillstion of the
fluid tepperature in the two time domains,beside that Equstion {F-16) alsc

demonstrates the responses of the amplitude-ratio snd paase-shift as

[T <")} w=l) = EQ_COS%
[-oo(’X) "7‘)173
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- WX
O(t - tan <I—C()S__ur) (F-18)

Sin%g

In case the abserver is on the fluid particle and again p; = Pyo

+ & cos(wr-n-2) where A is the inlet lag of the particle, the analysis as
shown below follows.

Heat balance of the particle, gives
PCPV = R V[ + B, cos(wrp-2) (F-19)

Rearranging Equation (F-19) as

dt = F—Q‘%Xﬁd" WCOS(wTﬁ—?\)dT (F-20)

and integrating it from T =0 to T = T, one obtains

t1)-t, = ff;CDV 2% Coi)(m}‘)‘ /"07‘4—%\4’—%( ’.V(p.co 7)(F-21)

At a steady-state, heat balance gives

Fevet - By, (722
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Integrating Equation (F-22), yields

t, (’r) “to = gOCPV\A\//I

For zero frequency, Leat balance is
at -
PGyt = (i )y,

and

)— t-o :( xc’; '*'é)VwT
o 7 PGV

From Equations (F-21), (F-23) and (F-25), one finds

tm-t ()= %V“\; [C"S G2 )s a7 Slilbica )camf‘J

and

T

t (1)-tr) =Bl

Dividing (F-26) by (F-27), one obtaius

(-t COS('VW\)S!H(U’(‘ sin 'q+>\) (l cos wT)
=™ -t (T, ) wtT wT

Wc [-7_,_ A=t (1I=CoswT J

. SinwT

(F-23)

(F-24)

(F-25)

(F-26)

(F-27)

(F-28)
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Equation (F-28) shows that

to-tm  _ 4 lelecosw)

szgT7-t}CT) WwT
when

7+A: N+ tan" (’-ﬁ—swu(r’(r—) for + sign
and

7+X=@“+UTH“&MA<E§%%%§;> for - sign
where

Equation (F-26) shows that t(7) equals to tl(T) when

Wr=anm  and  WT-2(p4A) = (2n+) 7T

(F-29)

(F-30)

(F-31)

(F-32)

Equations (124) and (125) for the wall temperature may be derived inde-

pendently directly from the energy equations as follows:

Taking the wall as a system, heat balance may be expressed as

~hA@-t)+V, B (=0
Since

hA(Q-t)=Vu I,

(F-33)

(F-34)
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one obtains the eguation governing the transient component from Equation

(F-33) and (F-34) as

tz “hA ¢{») (F=35)

performing the Laplace transformation on Equation (F-35), yields

6.-t, =,—7\§WV5 (F-26)

Substituting (F-6) into (F-36), one finds

&, gwc?js( € +VW¢+JC*€ (F-37)

For the constant fluid inlet temperature, (F-B?) reduces to

G by )
Since K = hA/QCpV, and by rearranging Equation (F-28), one obtains
—_ -S
Q: 1 [m &%) J .
= T3 ; (F-29)
§5(,+Kx) 5

Since

V. d (4 Kx) — A(iﬁ)<{+&<> =@ ) . (P40}

and ¢(T) = ¢ sinuT Equation (F-39) expresses the transfer function of the
wall temperature. By substituting s = i®w into Equation (F-39), the

amplitude~ratio and phase-shift of the wall temperature may b= obtained
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as

K ,
lfg (Lw) ,:ﬁ%f(zos_@f-l)z-}—(%+ sin %i—g)a (F-k1)
I e
-— \.Cfn e (F-ll-Q)
0(9 (% +3in -('-&1)

Equations (135) and (136) for the fluid-wall temperature difference may

also be obtained from Equation (F-35) as

At :F\u/% lay (F-43)
6%2 =SinWwT (F-bk)
W

hA

wd _2() _ i
o = (AT,.,)wso (F-45)

From Equations (F-44) and (F-45), it is evident that

r&(w)[ - (F-46)

and

o =0 (F-47)



APPENDIX G

NUMERICAL SOLUTIONS OF FUNCTIONS \{;7(s,q},52) AND 11;8(s,q,§2)

Two functions q;7(s,q,§2) and yg(s,q,5) are defined as

= ok (94 -

/7 (S’C‘;)Q):kz' —i—‘-)-;j ZKG ZCOSQZdZ (G-1)
=0 ’ Q

%(S (}Q) Z (K,)l -ZSH’)QZC{Z (G-2)

By integrating the two functions \J,r7(s,q,9,) and qf8(s,q,,f2) term by term,

one obtains two infinite series

K

A C]QLZD’: AK(K’)‘ (6=3)

|<

%(SQQ s<Q<l)2 (G-4)

with thelr coefficients expressed as follow:

)
A, = T (M)

B =g Q1)

A =

H_Qz[ "QB )‘*‘qM]
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Ao =gz [ 2h-Q8 )+ TM |

i

B, =i [2(8+Q4)-9N]

A = e (3 (4008 41

kQJ“

83 :TJEZ,— [3<BZ+QAI)'C,3N ]

or expressed in recurrence formula,

/AK = ,JT{,<MK-|;Q&_.) ‘*‘qu J

K H.Q?[K(BK |4QAK a) qKNJ

M=(DsinQq-cosQq )e_q

N = (cesQq+ sin0q)é"

it yields

(G-8)

Substituting Equations (G-5) and (G-6) into Equations (G-3) and (G-4),

%(5 q,Q) Z (K!)’(H-Q‘)[ (AK,OB 9 Qg“,»,Qq_qu)?J(F&)

%9.0) Z(<;)(,+Qz) [’<<E> +0QA ) -ﬂ(QCoSQ%-SmQ‘l) J(F 10)
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Certain known elementary properties of the two functions may be recorded

here for reference:

_%’ @)
9&(5) co()) = lQZ(COSH__(F—QSmS (G-11)

‘/’ (8¢ ‘Q>'|—_Q—;<Q Cas ———ﬁm’) ) (G-12)

Equations (G-11) and (G-12) are obtained by integrating Equations (G-1)

and (G-2) term by term from zero to infinite.

oo sk - Jex
‘7’?(5)@,0) =Z (,i,)zfzke ZdZ = % (9 ) (G-13)
k=0 \""'/
%(S,C,',O) =C (G-14)
,f7(s)oo,o): %*(3)00) =es (G-15)
3[/8 (S.c20)=0 (G-16)

Y.(c,9,(2) =0 (G-17)
5 (0,9,Q2)=0 (6-18)

#,(0.9,0)= Y. (0.4 ) =0 (6-19)
S 4 ;O—q S [
é’qSLv(S)q)O): ¢ L (<-Fq_) (G-20)

) _ -(5+9)
€% (5,9,00+6 Y5 (5,9, o)+ To(elsa)=| (6-21)



wel3eIq MOTL

sex'vbx ‘I Wb ug

HONNd

S .Cm w " =Y
W.EU “ [ =0

S,}17y 40 H3EWNN = d

(228
BEX
StX _ i
obX To " e 8EX + bbX
6eX vbx
' vi*mnxlw I-N)Z #1175 +:|v:au_*xHT¢nx" £ N7, % 9€X= LEX + SbX= Na*9EX =
5! L |, . N
~ a 9eX LEX StX 8eX
1#X % SEX +_..:|v:otd|:|x§”_‘ xw*vnxu wh- N #EYX =
< —
AZ SEX £bX
e.’
cex»(1EX+2E€X 4 T)= w.c.+ ! (X + 1) %bEX = 0Z:= (2ex—=1T5) wbEX= oa-=
—® = PEX > —> —»
2bX 0% SbX oa X
EEX#(2EX —IEXI )= 8- 0E X809 = OE X UiSH w
. — P e >a e b4
X geX 2ex 1€X oex




For the numerical evaluations of the two functions, the flow

diagram and the program for IBM 704 computer have been worked out as

follow:

Program for IBM TO4 computer

£ W

\O

10,
11.
12,
13.
1k,
15.
16,

@ N Oy W\

* Compile Fortran, print SAP execute
Dimension C(50), D(2000), X(50), Y(50), Z(2000)
Write output tape 6, 36

Format (8 HlResults)

Read input tape 7, 34, NC, NX, NY, (c(1), I=1, NC), (X(I), I=1, NX),
(x(1), 1-1, NY)

DO 32 J2 =1, NY

X(30) = yv(J2) * x(J1)

X(31) = stn F (X(30))

X(32) = Cos F (X(30))

X(33) = 1./2.7182818 ** x(J1)

x(k1) = (¥(32) * x(31) - x(32) * X(33)
x(k2) = (v(J2) * x(32) + X(31) * X(33)
X(34) =1./(1. + v(32) * ¥(J2)

z(1) = x(34) * (1. + x(41))
X(45) = 2z(1)

D(1) = X(34) * (¥(J2) - x(42))
x(44) = p(1)
X(43) =1
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17. K=1

18.  x(43) = x(43) * Fk
19. X(53) * x(71) ** K

20, Z(k+1) = X(34) * (Fx*(X(K) - Y(32)*D(X)) + x(35)*x(k1))

)

21. D(K+L) = X(34)*(FK*(D(K) + Y(J2)*Z(K)) - X(35)*x(42))
22, X(36) = c(J0)**K/(X(43)*x(L3))
23. X(37) = X(36) *2(k+1)
2h. x(h5) =x(45) + X(37)
25. Xx(38) = X(36)*D(k+1)
26, X(44) = x(44) + x(38)
27. K = K+l

FK = FK+1

28. x(39) = x(37)/x(k5)
29. IF (ABSF(X(39))-0.001) 30,30,18
30, X(k0) = x(38)/x(kk4)
31. IF(ABSF(X(40))-0.001) 32,32,18
32. Write Output tape 6,35, JO, C(JO), J1, X(J1), J2, Y(J2), x(4k4), x(45)
35 Format (3H C(I3, 2H) = E12.5, 4H X(I3,2H) - 12.5, 4H ¥(13,2H) =
El12.5, 8H X(44) = E12.5, 8H X(45) = E12.5)

33. GO to 1

End (1,1, 0, 1, 0)

Parts of the results are presented graphically in Figures hz-Sz;for

€ =0,),.0.5,=L.0; I.5, and 2.0,. Both the results of IBM §50 and 7Ok

for the program.are available atithe Heat Transfer and Thermodynamics
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Laboratory, North Campus, upon the request. The combinations of the

variables s, q and Q are:

il

s = 0.1; 0.5; 1.0; 1.5; 2.0; 2.5; 3.0; 3.5; 4.0; 4.5; 5.0;

5.55 6.0; 6.5; 7.0; 7.5; 8.0; 8.55 9.0; 10.0,

q = 0.1; 0.2; 0.3; 0.4; 0.5; 0.6;5 0.7; 0.8; 0.9; 1.0; 1.2;
1.4; 1.6; 1.8; 2.0; 2.4; 2.8; 3.2; 3.6; 4.0; 5.0; 10.0,

€ =0.1; 0.2; 0.45 0.6; 0.8; 1.0; 1.2; 1.h; 1.6; 1.8; 2.0;

2.k; 2.8; 3.2;5 3.6; 4.0; 5.0; 6.0; 8.0; 10.0.
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BRI

¢7(s,q,9) = kgb sk/(k].-)2 Of zke=2 cosQzdz

s = x/ah, q= T/a2, Q= agw

11/
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Figure 42. Y7 versus &, s = 0.1.
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Figure 45, \{;7 versus Q, s = 1.0 (g = 1.2 o w).
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APPENDIX H
DESIGN OF A FOUR-BAR LINKAGE TO PRODUCE THE SINUSOIDAL
ANGULAR DISPLACEMENT OF THE TRANSFORMER SHAFT

The callbration of the 50 kw Rectifier shows that the voltage
output is a linear function of the angular displacement of the transformer
shaft. The four-bar linkage is designed to give the transformed shaft a
sinusoidal angular displacement in order to obtain a sinusoidal voltage
output from the rectifier. The relationship between the power output
px"' of the rectifier and the angular displacement B of the transformer

shaft is as follow:

P(T) _ _f—f _ _2‘"_2 (E-1)
R" E°

Assumpting the electrical resistance of the test section is

constant, Equation (H-1) becomes

h 1 2
=k Beo e 1B (Pxo 3 o (B2
—, 2 x”ul;Iw 8(-&,,)0//7(407.-1-,6 PX ,an"_ ( )

or

2143 Po sinwr (8-3)
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Where 5%", E and B are the mean (or initial) values of power input Py
E voltage output and the angular displacement B. Equation (H-3) is a
good approximation for p,."/py" < 0.23.

In Figure 58, 0pA1Bi0) is the position of the four-bar linkage
at rest, corresponding to the position when B is at B. As the linkage
changes its position to 0oApBo0), the following relationship holds if

A1B; is sufficiently long compared with OBy -

AzKZ = BZH& <H-)+>
C.ASinwr=0, B, SinfQ (8-5)
Then

B =sim 8‘2'5‘:: wr

—Q_ZA <~ OZAI _i OA e - -6
= 048' W 0, a)sm 575 (028 )sm Wi+ (8-6)

This relation holds for (OpA1/OyBif < 1. If Oph1/O4By is small,

Equation (H-6) may be simplified as

Bir = D%' sinw? (8-7)

[
Therefore, if the ratio of power amplitude to the initial power is equal

to or less than 0.23 and the ratio of OpA; to OyBy is small, an approxi-

mately sinusoidal heat generation may be obtained in the test section.



=213~
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Figure 58. Four-Bar Linkage Designed to Produce
the Sinusoidal Angular Displacement
of the Transformer Shaft.
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