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ABSTRACT

The partial differential equations governing transient heat
transfer in a heat exchanger are solved analytically for an arbitrary
space- and time-variation in internal heat generation, which remains
space-time separable as expressed by y(x) @(r). The heat exchanger
consists of thin solid plates through which a coolant flows. The
coolant inlet temperature and all physical properties of the solid
plate and coolant are taken as constant. The results include the re-
sponse of the coolant and solid temperatures. Part I of the paper pre-
sents the general mathematical analysis. Part II deals with the limit-
ing cases such as (i) zero solid-coolant heat capacity ratio, (ii) in-
finite heat transfer coefficient, and (iii) infinite heat transfer
coefficient and time-dependent coolant velocity. Heat exchanges to
which these results apply include the electrical heater, a chemical
reactor in which a chemical reaction occurs within the solid walls and

the convection cooled heterogeneous nuclear reactor.
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Introduction

The coupled partial differential equations governing transient
heat transfer in heat exchangers having internal heat sources, including
nuclear reactors, were solved by many authors. Since a large number of
papers and books having important bearing on heat-exchanger dynamics have
been revieved in References 1 and 2, only new literature or other perti-
nent papers will be discussed.

Yang(B’ ky 5) has studied the step- and frequency-responses of
a single-solid, single-fluid heat exchanger resulting from the following
disturbances: (1) the uniformly distributed, internal heat generation
in the solid wall, (2) the uniform wall temperature, (3) the uniformly
distributed internal heat generation in the flowing fluid, (&) the fluid
inlet temperature and (5) the appropriate combinations of (1), (2), (3),
and (4). The resonance phenomenon in the frequency response 1s also
physically interpreted., Doggett, et ale,(6’ 7) have solved the thin plate
problem for axially unreflected and reflected cores with sinusoidal space-
and exponential time-varying power density. Yang(8? 9) has presented a
general analysis for the step- and frequency-responses of the solid and
coolant temperatures of heat exchangers having sinusoidal space-dependent
internal heat generation. Bonilla, et alo(lo), present analytical solu-
tions for the response of a nuclear reactor to step change in time with
the spatial distribution in power density arbitrary. All these studies
just mentioned and References 1 and 2 have assumed that the heat transfer

coefficient between the solid and coolant is constant with axial distance
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and time., The validity of the assumption has been experimentally verified
by Yang(ll) for the uniform heat flux distribution and by Hall and Price 12
for the uniform, exponential and sinusoidal heat flux distributions. Hall
and Price have reached a conclusion that the consequences of ignoring the
effects of heat flux distribution shape on the heat transfer coefficient

are not likely to be large in present design of reactor. However, they

may become important in smaller reactors having a smaller length to diameter
ratio for the cooling channels.

In the present paper the transient heat transfer in heat ex-
changers having an arbitrary space- and time-dependent internal heat gener-
ation 1s analyzed under the assumption of constant heat transfer coeffi-
cient, The following limiting cases are also studied: (1) zero solid-
coolant heat capacity ratio, (ii) infinite heat transfer coefficient, and
(iii) infinite heat transfer coefficient and time-dependent coolant velocity.

The time-dependent rate of heat generation includes (l) arbitrary
time rate of change, (2) step-change, (3) sinusoidal-change, and (4) expo-
nential-change for the uniform and sinusoidal space dependency. The arbi-
trary space-dependent portion of heat generation {(x) in the interval
(0, L) is expanded in a Fourier cosine series. Due to the linearity of
the governing differential equations, the solution for an arbitrary (x)
is obtained by the superposition of the solutions for the uniform and
sinusoidal space dependency. This linearity of the problem also suggests

the convenience of the use of the principle of superposition, in particular

Duhamel's Integral, for both time- and space-dependent heat generations.,



Statement of Problem

The physical system analyzed consists of thin solid plates
through which a coolant flows with velocity w . Initially, both the
solid and coolant temperatures and the heat generation rate within the
solid are at steady states. At zero time, a certain change in heat
generation which may be expressed as y{x) @(7) is introduced. As
a consequence of this, a transient process is introduced in the temper-
atures of both the solid and the coolant. For purposes of mathematical
convenience, the following assumptions are imposed:

(a) The coolant temperature and velocity are represented

by a single value (lumped) at the flow cross section.

(b) The solid temperature does not depend on the distance

in the traverse direction, which is valid for suffi-
ciently thin plates.,

(c) The axial conduction is negligible in both coolant and

solid and heat flows only to the coolant., This is a
reasonable assumption when the Pecket number exceeds
100,

(d) The following quantities are constant and uniform
throughout: coolant flow area, heat transfer coeffi-
cient, inlet coclant temperature, and coolant and
solid properties,

Analysis

Application of an energy balance to the system produced the
following two differential equations to express the transient behavior

of the solid and coolant,



p”<X; T)V
. Solid - (0 -t) + = vl % (1)
h A K, ot
Coolant © -t - = ot + 2 ot (2)
K or K ox
with the initial and boundary conditions

e (x, o) =0
t (x, 0) =0 (3)

t (O, T) =0

The function P;(X, T) 1s the arbitrary time- and space-dependent

variation of heat generation in the solid and may be expressed as

1"

D {x, ) = v(x) §(r) (&)

Equations (1) and (2) are operated on using the Laplace transforma-
tion technique, The transformed equations in solid and coolant ﬁemperatures
are integrated with the appropriate initial and boundary conditions as out-
lined in Reference 9. The results for solid and coolant temperatures are

ag follows:

Solid

(s e-B(8)
Sx,s) » —MBle)y(x) . Mp(s)e (8)x 5 [A(x,5) - A(0,8)] (5)
(oCp) K{1+s/Ky)  (pCp) ull+s/Ky)

Coolant
= ) Ma(‘s>e'B<S)x _
t(x,s) = (9C), a(Lra/K) [A(x,s) - Ao,s)] (6)




where

and

with the integration constant omitted.

If y(x) , the space-dependent portion of heat generation, is
specified, then Equation (8) can be integrated and the transient tempera-
tures of the solid and coolant may be obtained by performing the inverse
Laplace transformation on Equations (5) and (6). The theory of Fourier
series indicates that y(x) , a bounded function continuous or section-
ally continuous in the interval (0, L), may be expanded in the sine or

cosine series. Let (x) be expanded in the cosine series as

( 2o i
(%) = — + an cos (nx
y(x) z t 4 oo n
or
ag © .
===+ ), an sin On(xo + x) (9)
2 n=l
where
22 e (10
o T g W
5 L
2 =2 [ vlx) cos 0, xax (1)
0
nsm
0, = (12)
and
hn4l
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The linearity of the problem suggests that the response to a
general transient resulting from pg(x, ) may be obtained by superposing

a
the solutions to the volumetric rates of heat generation =2 g(r) ,

2
a1 B{r) sin Q1 (xo + x), ap B(7) sin Qp (xg + x), -=--, a, #(7) sin
(xg + x), ===--. Then Equations (5) and {6) may be written as
Solid
o(x,s _f‘_ggo<x)s) + 020’ ap g(xjs) (l}-l-)
Bs) 2 Bls)  ml o F(s) ‘
Coolant
t(x,s) ~?EEO<X:S> ® t(x,s)
To) TE e em e )
where ,
Oo(x,s) . K . M [1- e"BKS)X] (16-2)
3(s) (pCp) (1+s/Ky) (pCp) l+s/Kw B(s)
to(x,s)  M[1-e"B(e)x] §
B(s)  (oCp) u(Lra/Kn)B(s) (16-0)
On(x,5) M sin On{xotx) M
B(s) "{pcp) (1+s/Ky) ¥ (pCp)wu(l+s/Kw) [B2(s)+0,°] {B )s4nf (xo+x)
- anosﬂn(xoﬂ()-—emB(S)x[—anosano+B(s)sinQn xo]} (17-2a)
El’l(xJS) M .
O (pCp)wu(l+s/Kw)[Bg(s)+0n2} {B(s)31nQn(xo+x)-anosQn(xo+x)
- e“B(S)X[-anosano+B(s)sinQn %01} (17-D)

for n = ly 2} 5', ————
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Equations (14) to (17) represent the response of the transformed
temperature at position x to the transformed time rate of change of heat
generation @(r) , that is, the transfer function between the two physical
quantities. Equation (16) refers to the case in which heat generation
p;(x, T) is time-dependent but space-independent, and Equation (17) is
for the case of a sinusoldal space-dependent variation in heat generation.
Therefore the response represented by Equations (14) and (15) may be
regarded as the superposition of an infinite number of responses result-
ing from the variations of heat generation, ZE g (r) , a1 (7)sinfq(xq+x),
aof(r)sins(xg+x), ---= , a B(7)sinQ (2 +x)......

The operation of the inverse Laplace transformation on Equations
(14) to (17) yields the response of the solid and coolant temperatures in

the physical domain of time and space. Due to the nature of the mathemat-

ical attack on this problem, solutionsare obtained for 6(x,r) and t(x,T)

in two time domains O < 7 < % and T > % . The results may be expressed
as
Solid
. ao
8(x,7) = 22 6g(x,1) + 3. anda(x,7) (18)
2 n=1
Coolant
8g 2
t(x,7) = ~ to(x,T) + gl a tn(x,7) (19)

where 6 (x,7) and t,(x,t) are respectively the transient solid and
coolant temperatures resulting from p;(x,T) = ¢(1) , which are given as

follows in Reference 1:
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(a) 05551
_K(M+l)( )
< ! Le M (20)
-Iﬁl’“’_ll( -7)
= M T e M ]a (21)
t(x,7) = (pcp>w(M+l) ({ ¢(§)[l £
() 21
_K(M+1 (=)
X,T) = M ! = M ' I ae
o(x, ) (eCa)_(e1) {{ ple) 1 + 5
- Ii}i ¥* - K-é-
] i{_ae U a(exeg) e Mo1g (eVRx/u Kye) ae b (22)
K(M+1)
& T -e TPy
t(x,'r) = (DCP)W(M"‘]-) {({ ¢§[
- Kx - ke
- i{—/[e b fT* I g (nane M 1o (2VEx/u Kye) at}(23)
where
K K
T - (M) 7 w(M+L)E
(r) = [ fage T [P () a (25)
and
T* = T - % (25)

@n(x,T) and tn(x,T) are respectively the transient solid and coolant

temperatures resulting from p;(x,T) = ¢(7)sinQ,(x +x) . The details of

the transform solution are described in Appendix 2,



_ B(r) M 2(M+1)-a C
gnI(X;T) = (pcp)w {KKW[G]_(T) + \/—H)-—aé— Ga(7)] * [G5(T) -‘\/—_ME:——E—E Gu(r)]
LMQyu
* Gg(71)sd - = T
g(T)sinQ (xo+x) T () Go(T)
* G (7)cosQ, (%o +x) + G6(T)sinQn(xo+x)} (26)
thr(x, 1) = () * [K[G, (T) 2(M+l)-a * '
nii4s i (pcp>w { \T) \/—m Go(T)] [GE(T)
- =S () Istnay( —
= L(7) 1sin@y (xg+x) - MQuu[Gy(T) + P o(1)]
* =g (1) cosf(xon)} (27)
g(r* - Kx 2-a
(0)  eprrl,T) = 6,7(x,7) + (pcp * {KQnue v[G () t s Go( %) ]
2 - Kx
*m Gy (T*) * G5(T*)COSQHXO-KKWG u [Gl(T*)
2(M+l)-a C
+\/’l_+<i-—az. GE(T*)] * [G5(T*) NI GL‘_(T*)]*G5(T*)SinQHXO}
| (28)
* - Kx 2~
typlx,T) = tnI(x,T) +(5%)—w_) * {KQnue U [Gy (%) +\/—EDTZ—2 Go(T*) ]
Kx
* [Gz(r*) + i:fcg Gu(T*)] * Gg(r*)cosq x,-Ke (G ()
2(M+1)-a
* Jio-az  Ga(m)] * [1 - (C-1)K Gs(r¥)
2
24d+C~
- (__:_C_C_)_IEE GA(T*)] * G5 *)sing X0 } (29)

La-c2
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where a, b, C and 4 are functions defined in Equations (46) and (47) and
G () ... Gg(r) are functions defined in Table I.

The product of transformed functions, such as Fj Fp, may be treated
by the method of convolution, a technique of the inverse transformation for

product of functions, i.e.,

6 (n)* oy(r) = [ 0(e) Gylre)ar = [ Ga(r-t) Gyledr  (50)

The convolution integral in Equations (26) to (29) are presented
in details in Appendix 2.

The lineality of the equations and boundary conditions also
suggests that the system response ©6(x,t) and t(x,r) can be obtained
employing Duhamel's superposition integral which is derived in Appendix 3.
This technique requires the solution for the response to a time-dependent

but space-independent heat generation. The results are as follows:

Rurl7) = VOIR (,m) + [ R (og,r) BED o (51-2)

or,
- viRe(o,7) + i) BT o (31-0)

or,

) aRT(g:’T)

d (31-
5 : 51-c)

=Mﬂ&®ﬁ)+5w@i

where - (x,7) and R_ (x,7) are the response of coolant or solid
temperatures to an arbitrary space- and time-dependent heat generation

and to an arbitrary time-dependent but space-independent heat generation

respectively.
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Special Cases

l. Zero Solid~Coolant Heat Capacity Ratio

If the solid-coolant heat capacity ratio is negligibly small,

the energy Equation (1) and (2) reduce to

Coolant ¢ 1 3t w(x)¢(T)VW

A R A S0 A S (32)
0x u or pCpVu
Solid
6 = t + w(X)¢(T)Vw (55)
hA

2. Infinite Heat Transfer Coefficient

If the heat transfer coefficient from solid to coolant is
infinite, the coolant and solid temperatures are always equal.

An energy balance on the system leads to the following equations.

3, w1 3t Y(g(r)Va

L
ox u or pCpu (54)

6 = t (35)

5., Infinite Heat Transfer Coefficient and Time-Dependent
Coolant Velocity

If the heat transfer coefficient between the coolant and the
solid is infinite and the coolant velocity varies with respect to time,

an energy balance gives

(e % | wx)p(n)vy
(NS + w1)E ”“;g_pv—“ (36)



=-]12=

Let
u(r) = uf(r) (38)
and
1 T o
A=— [ f£(r) dr (39)
M+l ©
then
ot _ ot o _ f(r) ot (ko)
ot oA OT M+l a4l
Substitution of Equation (40) into Equation (36) gives
3,13 sy )
dx  u O\ pCpVu

where

o(y) = 81 (42)

Inspection reveals that Equations (32), (34) and (L1) are the
first order linear partial differential equations of the same type.

Since the same initial and boundary conditions are imposed on
each case, the general solutions to Equations (34) and (41) will be in
identical form as that of Equation (32). The latter solution may be
readily obtained from the general case previously analyzed by merely
substituting M = O , The results in analytical form are presented in
Table II for various heat generation conditions. The response to an
arbitrary space- and time-dependent heat generation may be expressed in
similar forms as Equation (19), where to(x,7) and t,(x,7) refer

respectively to the solutions shown in lines 6 and 10 in Table II.
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Conclusion

Solutions for transient behaviors of the solid and coolant
temperatures resulting from an arbitrary space- and time-dependent varia-
tion of heat generation are obtained. The results for the solid-coolant
temperature difference At(x,t) may be formed from 6(x,T) - t(x,T) .
Transient local heat flux may be evaluated by multiplying At(x,r) by
the heat transfer coefficient.

Those solutions in the second time domain, T > % , might involve
two- and three- parameter functions such as WZ*: Wu soso Wlo in References
1 to 8 as the consequences of the convolution integrals. Should @() be
a complicated function of time, difficulties might arise from the integra-
tion of my(7) , wo(7) , Ap(r) and As(r) . For such case it would be
convenient to use the Duhamel's superposition integral for @(r) as

described in Appendix 3.



NOMENCLATURE

A = heat transfer area between the solid and the coolant, £t2,
a = function defined by Equation (46).
&, = Fourier coefficient defined by Equation (10).
an = Fourier coefficient defined by Equation (11).
B(s) =5+K- __5127__
u u 1+ s/Ky
b = function defined by Equation (L47).

C1...Cy= functions defined by Equation (Lk4).

C = function defined by Equation (L46).
Cp = specific heat of coolant, BTU/lbm °F.
Cp = specific heat of solid, BTU/1bm °F.
D = function defined by Equation (L48).
da = function defined by Equation (47).
E = function defined by Equation (49).

functions defined in Table I.

Fi(s)...Fg(s), Fj(s)
f( ) = function of.
Gy (7). Gg(7)s G; (v) = functions defined in Table I.

Gi(T)*Gj(T> = convolution integral of Gi(T) and GJ(T)v

h = heat transfer coefficient between solid and coolant, BTU/hraft2°Fo

I, = Bessel function of first kind and zeroth order.

K = hA/pCpV, reciprocal of coolant time constant, l/hr,

K, = hA/pCpVW), reciprocal of solid time constant, 1/hr.

L = axial length of heat exchanger, ft.

M = (pCpV)w/pCpV = %; , solid=coolant heat capacity ratio, dimensionless.
p"'(x,7) = ¥ (x)@(r) = volumetric rate of heat generation in the

transient state, BTU/hr.fto.

=lh=
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RX<XQT) = response of cooclant or soild temperatures to an arbitrary
space-dependent but time-independent heat generation, °F,
RT(X,T) = response of coolant or solid temperatures to an arbitrary

time=-dependent but space-independent heat generation, °F,
RXT(xfT)m responge of coolant or solid temperatures to an arbitrary
space- and time-dependent heat generation, °F.

s = Laplace variable, 1/hr.

ct
—
»
=

{

= transient component of coolant temperature, °F,
to(x,T) = transient coolant temperature resulting from pg(x,T) = @(r), F.
t,{x,T) = transient coolant temperature resulting from pl(x,T)

- @(7) sin 0 (x. + x), °F.

¢

u = coolant velocity, ft/hr,

v = volume of coolant, ftJ,

v, = volume of solid, ft2,

W = reciprocal period of the exponential transient, l/hr°

X = axial distance, ft.

X = (Mg;l)L: ft.

X1, Xp, e.e X, = commencing points of spacewise uniform heat generation
element for the derivation of the Duhamel's superposition in-
tegral, ft.

a = EEH or Egﬂ

5 Nbb-a2 Ky o \[ud-(f Ky

2

A9(T), Do(T), Az(7) = functions defined by Equations (58), (59) and (60).

6(x,T) = transient component of solid temperature, °F,
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6,(x,7) = transient solid temperature resulting from p (x,7) = g(7), °F.
On(x,7) = transient solid temperature resulting from p (x,t)

= @(r) Sin Qu(x, + x), °F.
A(x;s) = function defined by Equation (8).

A (x,8), Mo(x,8), A3(x,8) = functions defined in Table II.

A

function defined by Equation (39).

3

dummy variable.
7(1)s n7(1),.0,m(7) = functions defined by Equations (54), (55),

(56) and (57).

density of coolant, lbm/ftB,

0 =
oy = density of solid, lbm/ftJ.
T = time, hr.
T* =T = %7 hr.

G

—~
>

S’

]
oL
‘3

£(r)

¢(T) = time=-dependent portion of heat generation variation, BTU/hrofto
w(x) = space-dependent portion of heat generation variation, dimensionless,
On = 0%
L

w = angular frequency, rad/inu

(7) = Laplace transformed function.

Subscripts

I. refers to 0 < I2 <1 in general; O < MEI % < 1 for special case (2);

=3 = = =

0 S_é% <1 for special case (3).

II: refers to =>1 in general; T_ % >1 for special case (2);
X - M+l x —
A > 1 for special case (3).
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TABLE I

Laplace Transforms

G()
s + 2y '
2 2 Vlib-a2
Fi(s) = Gi(7) = e cos KT
(S n aKw)2 + (\/ll-'b‘-a.2 Kw)2 2
V)-I-b-&z KW aKyt
Fo(s) = N Go(T) =e” 72  sin L&E%E_ K7
b~ 2
(s v (R8T g
géKl CKwr
Fz(s) = Gz(t) =e 2 cos ~C% k1
3 T 5 > 2 w
(s )2 + ( thC KW)2
Kw - CKw’T
F,(s) = Gy(r) =e 2 sin‘“*dé'c2 K,
(s + ( &d;cg KW)2
Kx/u
1 ;K X
F5(s) = e J TNV Gs5(7) = e v IO(EJE-TEE K,7)
= G = W7
Fg(s) = — T 6(1) =e
- sx .
Fj(s)e u GJ(T) =0 when 7 < g
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TABLE IT

Some Respanses of Coolant Temperature for Special Cases (1), (2) and (3)

Special Cese (1)

Special Case (2)

Special Case (3)

Differential 3, 13 ¥Of(y 3, w3t y(B(o)vy 3t , 13t | y(x)B(r)w um_gévg
Bquation " uds” ocyn & 4 or pCpW 3w o aCpva £(r

Initial and t(x,0) =0, O(x,0) =0 t(x,0) = 0, ©(x,0) =0 t(x,0) =0, ©(x,0) =0

Boundary

Conditions t(0,7) = 0 £(0,r) = O t(0,7) =0

General Solution

x,0) = By o= BEa (x,8) - 4(0,8))
pCpVu

F(s)vy - M+l)sx

txy8) = e T (np(x,8) - A2(0,8))

o(s)vy - A%
(o) - %

T(x,8) = o

[45(x,8) - A5{0,8)]

(laplace transform with respect to \)

Definition of

M(xs) = ] e Tpx)ax

M+l)sx
fo(x,8) = [ ¢ ¥(x)ax

15(n8) = | Tylxex

Aq(x,8
o} W T Sy 2
ﬂ;it:aiy #(r) trleT) - oCpV gf Bledae trlxr) = pcpv(mljof Ble)at e =iy J #(e)ae
or vu(1)
(1) = 2 T den . S O Crlon) = ] goas
trr(x,T) T Ll 5 £)dg 1to) = 5 ¢ Sy o) =t Ly
u
M Vv T
vz -2 R pC;" T trlom) = GV T
#(r) =1 v “
trp(x,7) = '_pC;V E terlx,r) = p_c:V x
£ [=3 f (M+Lax
¥(x) =1 amplitude-ratio = va(l-cos ) amplitude-ratio = 2[1-cos T

$(r) = sinwr

wx
'

@x,
phase-shift = -tan™l (Acoe )

=3
sin

(M«-l)“;l_x

(23
phase-shift = -tan™t [L-cos(m) ¥
sin(Mel) ‘%

¥x) =1
$r) = &7

tyti) = i (&7 - D)

(e - T - §))

v
tIr(x,r) = EC‘;:W e

Yy wr
ty(x,r) = mpv VT (e¥7 - 1)

ol - wD)F

trplx,7) = Ve [ -
s pCp_TV WL W

W(x) = sinfly(x5+x)
arbitrary
$(+) or v(a)

tr{x,7) = %‘7 o} #(7-¢ )sintn(xorx-gu)ag

trzlx,T) = ;‘c% [0} $(r-8)in0n(xorx-tu)de

*
- of F(r¥-g)s1ngn (xo-u)as]

t1(x,7) = vty f (-t tann (xpex-su)as

trr(x,r) = av;;‘r'mm [o} #(7-4)ein0y(xo-tu)at

¥
-7 Fr*-t)eing,(x -gu)ds]

by
tr(x,\) = Ju v(A-t)eind,(xg+x-Eu)ds

pCpV o
ta06) & 20 1 T olaet)otang )
1x(%, EC;V o v(2A-§)8iny(xo+x-Eu)dg

- ¥ ste-pystain(o-twiae)

¥(x) = sinfy(x,+x)
o(r) =1

tr(x,7) = Egh;ﬁ [ cosf, (xg+x=Tu) ~co8y (x+x) ]

typ(x,7) = A [cos, - cosfin(xo+x)]
1l®T) = Gepvgg | ostnre "

Vi

tr(x,7) = o

M+l

tyr(x,7) = V. [cospxy - cosn(xg+x)]

pCpViinu

{cosfiy(xp#x = =I= u)-cosfiy(xy+x) ]

¥(x) = sin@,(x,+x)

#(+) = sinwr

Amplitude ratio = 1

[1-( n%:)z 1 cosfinXo~cosfin(xo+x) ]

+ { L. [81n0p(xo+x)-coB £ sinanxo] - sin S coannxo}zﬂ
nu T u

fipu

L (8108, (xp+x)-co8 uT:x sinfpxe] - sin “—?:— co8nXy

ﬂ [cosnn(xo:x)-cos %’5 cosfinXo8in z%x_]a

1/2

Fhase shift = san~l [
R

® =@ for special case (1)

cosfn(xo+x)=cos &% cosinxe +.‘%’£ Binfipxosin 9X

T

@ = (Ml)w for special case (2)

¥(x) = sinfp(x,+x)

Fr) = "7

Vy
t(x,m) = m [e""'sin[nn(xo+x)

- tan-l 9&3] - 8100 (x +x-ur)-tan-t 9{1'3]]

Vv

—GDV\/-T(S-)—Q te‘"un[nn(xoﬂ:)
p +(Bpu

t.n(-,-r) =

X,
- e 828 - "7 " Dgin(anro-tent 9&‘3)}

Vs
) D

o
- sin{fn(xgex - For) - tan” ;‘Eﬁf—ly]]

Wi
trr(x,7) As

=w[':- - (M+l

=1 _Qpu
ten wM+ll

[e‘" sin[0y(xo+x) = tan-1 v_(nag_lfl

- W,
;,cpv:/[w(ml)}E T (pu)? 1e stalf(x5+x)

) E] sinl0yxy-tan™l ;%]}
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TABLE IIT

Table for Derivation of the Duhamel's

Superposition Integral

Magnitude of space-
wise uniform heat

Commencing point
of spacewise uni-

Effect on the response R,(x,T)

generation element  form heat genera- at x

tion element
¥(0) 0 W(O)Rx(xﬂ')
v(x1) - ¥(0) x] [¥(x1) - ¥(0)] Rg(x-dx,7)
W(Xg) - 1~|f(xl) Xo [III(XQ) - ‘V(Xl):l Rx<X‘2dX;T)
¥(x5) - ¥(xp) X3 [V(x3) - 2(x0)] Ry(x-3dx,T)
¥(xy) - ¥(xyo1) Xp [W(xy) = ¥(xp-1)] Rye(x-ndx,T)




APPENDIX 1

Inverse Laplace Transformation of Eguation (17)

2

Bg(s) + Q7 which appears in the numerators of Equation (17)

may be written as

- 1 4 2
B2(s) + Qg T él)g (s +Cls5+C28 +st+Cu) (L43)
W
in which
2 2

C1 = 2(K+Ky) Co = (K+Ko)“+(Qqu) )
(44

C3 = 2Kw(Qu)2 Cy = (KWQnu)2

The fourth order factor sa+ClSB+Cgsg+st+Cu in Equation (43) may be re-

solved into factors as

5401 874C,5%40584C), = (8248 4DKG) (240K, 5+3K2) (45)
where
{g} - (M) ¥ J 1 (141) "M <9§3 °1 4 2 (46)
{g} =D+ E+ ‘[EDE—(M+1)M2((—Z%E)2 + 207 (47)
and
D = H(m1)? + W2 (Ig) %) (48)
B = bvp2 - 302 (k9)
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The substitution of Equations (7), (43) and (45) into Equation

(17) yields

— _ KKWE(S) 2(M+l) -a
8(x,s) —‘(pcp)w {(Fy(s) +m Fo(s)][F5(s)

- de%;é' Fi(s)] Fg(s)sinQpn(xo+x)

- Qnu[Kw_\/_ig—ﬁ: FE(S)MKW%—CE Fi(s)] cosQp(xy+x)

'y D-a 2
Q (F Fp(s) [ ——=—= Fi(s)]F5( 0
+ Quue e 1(s) + — 5(s) me u(s) 5(s)cosyx,
Kx 5X
ST T 2(1+l) -a
e e [Fy(s) +m Fg(s)][FB(s)
. Fi(s)]F=(s)sinQ, x, + 56(—8) sinQy (x,+x)} (50)
Ma-c2 4 5 n¥o KK, n\%o

Tixye) =88] f(p(s) + 20818 (o)) ps(s)

(eCp), Vip-a2
- c Fi(s)] sin0p(xo+x)
b -°

- Qnu[Fi(s) + % Fg(s)][g—ii:—c— F)(s)] cosp(xo+x)
W

- 2-8

+Qpue U e U [Fi(s) +
- Jlib-a2

Fo(s)][Fs(s)

Da -2 =22

+\/-lﬁ:g§ Fu(s)] Fs(s)cosnxy - e e U [F,(s)

2
L 2060)-8 o) )1 (omL)k T (s) - ot N

Vib-a2 Vha-c2 *

X F5(s) sinQ,x } (51)



D0

In Equations (50) and (51) the functions Fi(s)...Fg(s) are
Laplace transformed functions in the variables which have corresponding
original functions Gp(r)...Gg(7) in the variable T obtained by per-
forming an inverse transformation on the function F. The Laplace trans-
formed function F and inverse transformed function G appropriate to
Equations (50) and (51) are listed in Table I. The transformed equations
in the physical domain of x and T are found to be Equations (26) to

(29).



APPENDIX 2

Convolution Integral in Equations (26) to (29)

Inspection reveals that Equations (26) to (29) consist of the
convolution integrals to be discussed in the following. The evaluation
of the convolution integrals as defined by Equation (30) is quite straight-

forward. Let

o = Egﬂ, or ggﬂ (52)
5 Vlib-aKy or 4d -C=Kyy (53)
2 2
ad define
xi(7) = (e™¥Tsingr)¥(r) = [ P(r-8)e Hsinptae (554)
np(7) = (e™¥Tcospr)*p(r) = O} B(7-£)e *cospeat (55)
ws(1) =1 % @(r) = [ g(r-t)as (56)
(0]

r(r) = e H B(r) = I -)e oa (57)

28(7) = mq(1)%Gs(1) = mp(r)*eTI (2 =X K )
= fﬂl(Té S e ] Kyt )dE (58)
to(r) = ma(7)¥G5(7) = [ re(r-8)e "V Io(2 B gt )a (59)
La(7) = mz(7)*C5(T1) = O} n5<T-§)e'KW§ Io(2 %ng)dg (€0)
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Since the evaluation of convolution integrals indicates that

G1(7)*G

of e ¥Tsinfr and e™@T cosprT,

3(1), GL(r)*Gu(r), Go(7)*G3(r) eand Go(7)*Gu(T) are function

it is found

G T)*G5 (T)*(7)
Gy (7)*Gy(r)*p(T)
1 S - f[(e-aTsinBT)*¢(T);(e-aTCOSBT)*¢(T)]
(T)*G5 T)*¢(T) £ (1) (1)]
= (1) ,m(T
Go(7)*G)( (1) () ) ' ) (1)
Therefore
Gl(T)*G5(T)*¢(T)*G5(T)
Gy (7)*Gy (7)*B(7)*G5(T)
()% > - tlaa(1)¥s(r), me(r)¥os(r)]
()X (1) 9 (1) %65(7) - 2(81(7), 2p(r)] (62)
6y(r) 0, (1) ()56 (1)

Similarly one finds that 1 ¥ Gy(t)

of n1(r), mp(7) and x3(T).

1%Gy () %3 (7) *Gs(7)

*-¢(T) and 1 ¥ G2(T> * ¢(T) are function

Hence

= f[ﬂl(T)*G5(T):ﬂg(T)*G5(T):ﬂ5(T)*G5(T)]

1¥%Gp(7) ¥ () *Gs(T)

= 212y (7) (63)

(1),05(7)]

The convolution integrals of Gy(7)*Gs(t), Gy(7)*Gy(7), Go(7)*Gs(r) and

Go(T)*ay(T) with Gg(T) yield

G1(7)*G3(r)*Gs ()
Gy (1) *Gu(7)*Gg(T)
1 k 6 > = f[(e-aTsinBT)*G6(T), (e-aﬁcosﬁT)*G6(T)]
GE(T)*GB(T)*G6(T) = £(e ¥ singr, e Tcospr, e KWT)
’ ’ (64)

Go () %Gy, (1) *Gg(1) )
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Consequently

G1 (1) %Gz (7)*Gg () *8(7)
Gy (7)%Gy, () *Gg () %8 ()
G () %G5 () *Gg (1) ¥ (7)
Gy (7) %Gy () *Gg(7)*B(7)

L = f[(e ™ Tsingr)*B(r), (e Tcospr)

(1), e TWTx(1)] = £lny(7),10(r), (7))
(65)

The definition of m)(r) 1is nothing but Gg(7)*P(r). Special
cases for step change, sinusoidal change and exponential change in ¢(T)

are respectively given in References 6, 7, 8 and 9.



APPENDIX 3

Derivation of the Duhamel's Superposition Integral

The response to an arbitrary space- and time-dependent heat
generation W(X)¢(T) may be found from the results for an arbitrary
time-dependent but space-independent heat generation by the principle
of superposition. In terms of differential calculus this principle may
be derived as follows. V(x) may be resolved into a number of spacewise
uniform heat generation elements, each commencing at a different value
of x. These elements are shown in Table III.

The appropriate value of RXT(X,T)iS then the sum of the con-
tributions from the separate cases, each shown in the third column of

Table III.

R (x,7) = W(0)Ry(x,7) + ¥ Rylxeg,r) LLxa)=¥lm=1)] (o o 1y (66)

n=l Xn=Xp=-1

In the limit, as the number n of elements becomes infinite,

the definition of integral results in
ay
Ryr (%,7) = V(0)Rx(x,7) + f Ry(x-€,7) ——-l ag (67)

By using the method of integration by parts an alternative form may be

obtained as

E=x X Ry (x-E,7)
Rgr(%,7) = W(0)Rx(x,7) + [Ry(x-,7)v(e)], _ - [ w(8) —5r——d&  (68)

=0 o
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Since

ORy(x-E,7) _ _ ORy(x-t,7) (69)
Sk ox

one obtains,

aRX(X‘gyT)

~ e (70)

RX‘T(X’T) = WX)RX(O:'T) + of V(E)

This equation can be re=-arranged as follows by using its convolutive
property:

* ORx(&,7)

Rer (3,7) = V(x)Re(0,m) + [ ¥(x-8) — dg (11)

Similarly if RT(X,T), temperature response of the coolant and

solid to a unit step change in heat generation having arbitrary x-dependence,

is available, the response of coolant or solid temperatures to an arbitrary

time-dependent disturbance ¢(T) may be obtained by the Duhamel's Inte-

gral which results in

Rer(,7) = BO)R () + J Ro(ret) EiL (72)
or, in alternative forms
Rep ) = B()R,(0,0) + [ () TBTE (73)
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