ALGORITHMS FOR SINGLE MACHINE SCHEDULING PROBLEMS
MINIMIZING TARDINESS AND EARLINESS

Candace A. Yano
Yeong-Dae Kim

Department of Industrial & Operations Engineering
The University of Michigan
Ann Arbor, Michigan 48109-2117
Technical Report 86-40

October 1986

ALGORITHMS FOR SINGLE MACHINE SCHEDULING PROBLEMS

MINIMIZING TARDINESS AND EARLINESS

ABSTRACT

Most scheduling research has been done with one criterion, but in some situations two or
more criteria should be considered at the same time. In this paper, single machine
scheduling problems with the objective of minimizing the sum of tardiness and earliness
are considered. An algorithm for the optimal completion times of jobs is developed, and
some properties of optimal sequences are discussed. These properties are used to develop
both optimal and heuristic procedures. Computational results for problems with up to 40

jobs are reported.

ALGORITHMS FOR SINGLE MACHINE SCHEDULING PROBLEMS

MINIMIZING TARDINESS AND EARLINESS

In many practical scheduling problems, costs arising from both earliness and
tardiness of the individual jobs must be minimized. For example, in production systems in
which there are shipping dates for orders, inventory carrying costs are incurred if jobs are
finished earlier than the shipping dates, and shortage costs (penalty costs or backorder
costs) are incurred if jobs are finished later than the shipping dates. To minimize total
costs, tardiness and earliness of jobs should be minimized. In this paper earliness and
tardiness are defined as max(di- Ci’ 0) and max(Ci- di’ 0) respectively, where di is the due

date and Ci is the completion time of job i.

There has been some research for the single machine scheduling problems with
multiple performance criteria related to inventory carrying costs and shortage costs.
Emmons(1975a) develops a branch-and-bound algorithm for the bicriterion scheduling
problem in which minimizing the number of tardy jobs is the primary objective and
minimizing mean flow time is the secondary objective. Emmons(1975b) also gives some
properties of solutions for the problems with the dual criteria of mean flow time and
maximum penalty, where the penalty reflects ’the cost of completing a job at a certain
time. Later, Van Wassenhove and Gelders(1980) consider the bicriterion problem to
minimize holding cost and maximum tardiness. The set of efficient points is characterized
and a pseudo-polynomial algorithm to enumerate all these points is given. These objectives
are combined as a single objective which is a convex combination of the two in Sen and
Gupta(1983). Algorithms to generate efficient points are developed for multicriterion
performance measures in other research such as Van Wassenhove and Baker(1982) for
time/cost trade-offs, Lin(1983) for mean tardiness and mean flow time, and Nelson et
al.(1986) for mean flow time, maximum tardiness, and number of tardy jobs.

Very few papers have been published which consider tardiness and earliness.

Sidney(1977) presents an optimal algorithm where the objective is to minimize the
maximum of the costs of earliness and those of tardiness, where the costs are
nondecreasing functions of earliness and tardiness, respectively. Following this, a. more
efficient algorithm was developed for the same problem by Lakshminarayan et al.(1978).
In these two papers earliness is defined as the difference between the target start time and
the actual start time. Townsend(1978) develops a branch-and-bound procedure for the
objective of minimizing total penalty, where the penalty of each job is expressed as a
quadratic function of completion time. Since tardiness plus earliness is a piecewise linear
convex function of completion time, his problem is similar to ours in some sense. Using a
similar bounding technique Gupta and Sen(1983) presents a branch-and-bound and a
heuristic algorithms for minimizing a quadratic function of job lateness. Here they do not
allow machines to be idle. Differently from the others, Panwalkar et al.(1982) consider the
problem in which the due dates are decision variables. They develop a polynomial
algorithm to find the due dates and the sequence to minimize the costs resulting from due
dates, earliness, and tardiness.

In this paper two problems are considered, which are n/1/T+E and n/l//
Z(riTi+ eiEi). Here n/m/A/B indicates the scheduling problem in which n, m are the
numbers of jobs and machines respectively, A is the flow discipline, and B is the
performance criterion. Ti and Ei refer to the tardiness and the earliness of job i, and T
and ¢, are their weights. Therefore these problems are single machine scheduling
problems with objectives of minimizing mean tardiness plus earliness (ri= ei=1 for all i),
and minimizing weighted sum of tardiness plus earliness where the weights of tardiness
and earliness of each job are different, respectively. The first problem is a special case of
the second. Note that the mean tardiness problem is a subset of the second problem but it
is unrelated to the first. The relationships among these and other related problems are
shown in Figure 1. A special case of the n/ V/T+E problem, which is n/ 1/T+E with equal

due dates, has been discussed in Kanet(1981), Sundararaghavan and Ahmed(1984), and

Bagchi et al.(1986). Even though this problem may not occur frequently in practice, it
may be important from a theoretical perspective. If this problem is NP-complete, all the
problems mentioned in this paper are NP-complete since this problem is a special case of
the others.

Section 1 presents an algorithm for determining completion times of jobs for a given
sequence. In Se.ction 2, some properties of optimal job sequences for the n/1/T+E problem
are discussed and a branch and bound algorithm and a heuristic algorithm are presented.
Section 3 discusses the general problem, i.e., n/ 1//Z(TiTi+ eiEi), and computational results

are presented in Section 4. Finally some concluding remarks appear in Section 5.

1. DETERMINING OPTIMAL COMPLETION TIME
FOR EACH JOB IN A SEQUENCE

When a sequence is given, an optimal schedule can be obtained easily by using a
linear program(LP), since the technical constraints(precedence relationships) are all given.
An LP formulation is

Min Z(Ei+Ti)
st. d —C.=E. —-T., foralli
i i i i

C i=2ton

0~ %i-1 =P
Ci’ Ei’ Ti =0, foralli
where (i) is i-th job in the given sequence, P is processing time for the i-th job, and
the other notation is the same as before.
Earliness and tardiness of a job can be expressed by the difference between the completion
time and the given due date for the job as in the first constraint. The second constraint
assures that no more than one job can be processed on the machine at any time. Since a
sequence is given, disjunctive constraints are not necessary. Note that there are 3n

variables and 2n-1 constraints in this LP formulation. However, the best known algorithm

for LPs requires pseudo-polvnomial time.

A more efficient algorithm which is strongly polynomial is presented here. The
following notation is used in this algorithm. Throughout the remainder of this section
subscript i refers to the i-th job in the given sequence.

P, processing time for the i-th job in the sequence
di : due date of the i-th job in the sequence
Ci : completion time of i-th job in the sequence
Si : slack time(machine idle time) between job i and job i+ 1
5 =C41 P41~ 6
Gi : gradient of T+E (tardiness plus earliness) of job i when job i is moved 1 unit time

later

D.=max(d - C.,,0)
i i i

TG : gradient of T+E of a partial sequence when the job being considered is moved 1
time unit later at a stage of the algorithm

et e {the first job in partial schedule at any stage of the algorithm
i—-1
u, z P, the earliest possible time job i can start
k=1
Note that TG for any partial sequence with no inserted idle time between jobs is a
nondecreasing step function of the completion time, and therefore the sum of earliness and
tardiness for the partial sequence is piecewise linear convex‘ as long as there is idle time
following the partial sequence.
Now the algorithm can be stated. In this algorithm, the jobs are considered in
reverse order of the given sequence. Using Gi and TG, we shift jobs as late as possible

without increasing T+E. This provides more time for the jobs which are to be placed prior

to them.

Algorithm 1.
(0) Initialization

Let Cn=dn, s=Cn—pn, G =1, TG=G_, S =o.
Let j=n-1, and goto (1).

(1) If j =0, goto(4).

Ifj>o0, ifszdj, go to (2),
ifs<dj,let Dj=dj—s, j=s, G =-1,
TG=TG+GJ., and go to (3) .

(2) Let C.=d., s=C.-p., .=s—-d., G =1.
J J J J J J J
ResetTG=Gj.
Let j=j—1,and goto(l).

B) TG>0,let j=j—1,and goto(1).
If TG = 0, shift jobs to right until further shifting is not possible without
making TG positive, and update values of Ci’ Di’ s, Gi’ TG if needed. Letj =
—1,and goto(l).

(4) If S1 = 0, stop. The resulting schedule is optimal. Otherwise, shift jobs to

right to make S1 = 0. Terminate. .

When we visit step 2, there is a positive slack time between job j and job j+ 1. At this time
we reset TG = Gj , since job j-1 would not be affected by the jobs after j. At step 3, if TG
> 0, we cannot reduce T+E of the jobs scheduled so far by shifting jobs to the right or
left. If TG < 0, shifting jobs to right does not increase (and may decrease) T+E of the
jobs scheduled. This shift increases TG. When the amount of shift is equal to Si> 0 for
some i, the slack time between jobs i and i+ 1 becomes 0 and TG should be recalculated by
adding the gradients of jobs in the partial sequence which includes job i and has no inserted
slack time between jobs.

Figure 2 shows how this algorithm works in a simple example. The given sequence
in this example is (1,2,3,4,5,6), and the problem data are shown as a figure at the top of

Figure 2. The rectangles denote jobs and their widths denote the processing times of jobs.

The following theorem shows the efficiency and optimality of this algorithm.

Theorem 1. Algorithm 1 obtains an optimal schedule when a sequence is given, and the

worst case computational complexity is O(n?).
Proof. Since the sequence is given, we can only shift jobs forward or backward
without changing the order. Consider any subset of jobs with no inserted slack time
between jobs in the solution resulting from Algorithm 1. Since I (Ei + Ti) for the
subset is piecewise linear convex, and in the solution the jobs in the subset have
been shifted up to the point where TG becomes positive (from zero or negative), we
cannot improve the solution by shifting the jobs in either direction. Therefore the
solution is optimal.
If job j is considered and we visit step 3, TG=0 . To find the amount of shift that
makes TG positive, we only have to find the minimum value among Sj +p and Di for
i=j, j+1,+++, j+p, where jobs j, j+1,+++, j+p are in the same subset described as
above. This needs effort of O(p) where p is not greater than n-j. After this we need
to update the values Ci , Di , Gi , TG, which needs O(n-j) effort at most. Therefore
every visit to step 3 needs O(n) effort. At step 4, if a shift is needed we can do it in
O(n) as follows. Calculate u, and Ci— p; and find k = min [i |ui < Ci - J. Reset
Ci = ui+ p; for i=1,2,+++ k-1. This needs O(k) effort, and k < n . Steps 1 and 2
need O(1) effort for each visit.
Every step can be visited at most n times in the entire algorithm. Therefore the
overall computational complexity of this algorithm is O(n®) in terms of basic

arithmetical operations such as additions, comparisons, or look-ups. ®

We now have an algorithm to determine the optimal completion times of jobs for a
given sequence. It can be used as a subroutine in determining good or optimal sequences

of jobs. In the next section we develop properties of the optimal job sequences.

2. ALGORITHMS FOR n/1//T+E PROBLEM
In this section, algorithms for the n/1/T+E problem are presented. Since a
polynomial algorithm has not been found for this problem, a branch-and-bound algorithm
and a heuristic algorithm are developed. First some properties of the optimal sequence of

Jobs which are useful for these algorithms will be discussed.
Lemma 2. If there is a conflict between 2 and only 2 jobs when the jobs are placed as
Ci=di for both jobs, and if pi< pj, then the following statements are true.
(Case 1) If di> dj’ then job j should precede job i.
(Case 2) If di< dj
(Subcase 2.1) If pi+. (dj - di) > pj, then i should precede j.
(Subcase 2.2) If pi+ (dj - di) < pj, let A = pj i (dj - di)'
IfA < dj - di’ i should precede j, otherwise, jshould precede i. (See Figure 3.)
Proof. Let TEij = Mini,j { Ti+Ei+Tj+Ej], where i precedes j.
Using algorithm 1 we can get TEij and TEji'
(Case 1) TEij= P~ (di - dj). TEji= p; ~ (di - dj)'
Since p;< pj, TEji< TEij'
(Case 2) TEij= pj - (dj - di)’ TEji= p,+ (dj - di)'
(Subcase 2.1) Since p;< pj, and di< dj’ TEjiz pjz TEij'
(Subcase 2.2) When A < dj - di’ TEij= A+ p;< pt (dj - di) =TE..

J

When A > dj - di’ TEij= A+ p;2 pi+ (dj - di) = TEji‘ L]

By considering all cases in the proof of Lemma 2, and by using Algorithm 1, the

following corollaries can be proven easily. They are, therefore, stated without proof.

Corollary 3. If there is a conflict between 2 jobs when the jobs are placed as Ci=d.1 for
both jobs, the sum of tardiness and earliness is not less than the time during which the two

jobs overlap.

Corollary 4. In the same situation as in corollary 3, there may be alternate optimal

schedules and there exists an optimal schedule such that either Ci=di or Cj=dj .

These properties are useful in getting bounds for subproblems in the B&B algorithm.
The next property can be used for pruning some subproblems. This property shows some
dominance rules of sequences by considering adjacent jobs in cases where both jobs should
be finished earlier than their due dates, or where both jobs are started after their due dates

because of succeeding or preceding jobs.
Lemma 5. In adjacent jobs i and j,
(1) If there is a constraint such that t= max (Ci’cj) < min (di’dj)’
then i should precede j when pi> pj, and j should precede i when pi< pj'
(2) If there is a constraint such that min (si,sj) = max (di’dj)’
then i should precede j when pi< pj, and j should precede i when p,> pj.
(8) If there is a constraint such that min (si,sj) + min (pi,pj) = max (di’dj)’
then i should precede j when pi< pj, and j should precede i when pi> pj,
where s, is the start time of job i. (See Figure 4.)

Proof.

(1) TEji= dj - di+ P+ 2(d.l -t),
TE.=d. —d.+ 2d. - t) + p,
VI i j
&TE..— TE..= p. — p.. Hence the results follow.
ij) S S

TE.=2(t = d) + 2p. + d. — d.) + p,,
(2) TE = 20— d) + 2p, + (& = d) +p,

TE.=2(t -d,) + 2p. + . = d) + p,
n J J J 1 1

&TE..— TE..= p. — p.. Hence the results follow.
} o1t
(3) TEij= t + p; = di+ t + pi+ pj - dj’
TE.=t+p+p —d+t+p —d,
) pJ P 1 pJ J
TEij— TEji= P, ~ pj. Hence the results follow. .

Now a branch-and-bound algorithm using the above properties can be stated. Each
node of the branching tree is associated with a partial sequence which will be placed at the
end of the whole sequence. That is, a node at the p-th level of the tree corresponds to a
partial sequence <p>,<p-1>,<p-2>,...,<1>, where <i> represents i-th job from the
end, and one of the remaining n-p jobs is to be selected for <p+1>. Let J be the set of
all jobs, o be a partial sequence being placed at the end of the sequence, and PS be the

set of jobs in ¢ .

Algorithm 2. (A branch-and-bound algorithm)

Branching

Select a node with the least lower bound in branching tree for branching.

Bounding
(1) Bound B1 for jobs in PS

B1 is the optimal solution (minimum value of Z(Ti+Ei)) obtained from
Algorithm 1 for the sequence ¢ under the constraint that the earliest

possible start time of the first job in PSis I P instead of 0.
ieJ\PS

(2) Bound B2 for job in J\PS

B 9 is the sum of the time intervals during which two or more jobs overlap,
when we place all the jobs in J\PS to satisfy Ci= di' This bound can be

justified by Corollary 3

Then the lower bound of the node associated with the partial sequence ¢ will be
B= B1+ B2 .

Prunin
If there is any adjacent pair of jobs i, j in the partial sequence ¢, such that
min[Si’sj] + min[Py pj] 2 max(di’ dj], prune that partial sequence. This

can be justified since there always exists a better sequence ¢* which is

identical to ¢ except for the order of jobs i and j. [

To improve the efficiency of the algorithm the lower bounds need to be
sharper(larger). The following lemma and the argument following it help to improve the

lower bound BZ'

Lemma 6. If there are conflicts among 2 or more jobs when a set of jobs is placed as Ci=

di for all i in the set, the sum of tardiness and earliness is not less than I (k-
k=2
l)tk, where t‘k is the length of time during which k jobs overlap.

Proof. It is obvious that the optimal objective function value for a set of jobs is not
less than the sum of the objective value of the subsets of jobs which make the set
itself. We can divide a set of jobs into several subsets which are separated at times

when there are no overlapping jobs (such as at tg in Figure 5).
From the above statement, we only have to prove that

h, -h
z (Ti +E) =2 I (k-l)tk

ieJ, Yok=2
in an arbitrary subset of jobs, Jh, divided as mentioned above. We first prove that

for any sequence (1),(2),« ¢+ «,(r) of jobs in Jh

min r(T+E) 2 p ..+ p +”'+p(r'(d(r)-d).

(2) ")) (1)

10

r
Consider jobs (2),+++.(r) as one job A with processing time z Pg) - and due date
=2
d(r)' Then T+E for jobs (1),(2),++-,(r) is not less than T+E for jobs (1) and A.

This is because T+E for jobs (2),+++,(r-1) are all nonnegative and T+E for job (r) is
equal to T+E for job A. By Corollary 4, for two adjacent jobs (1) and A, a schedule

where either C(1)= d(l) orC Azd(r) is optimal. In both cases T+E for jobs (1) and

r
A is not less than l_Z2p()~ (d(r)- d(l)). Next we prove that
r
TE = p(2)+ .+ Py ~ (d(r) - d(l)) = k£2(k 1)tk.
r
Since there is no idle time, kﬁltk = p(l) + (d() d(l))
Then
r
= I P TRy T T dy)
r
= IR T dy)
r
= 5 k-t + Ztk Py ~ (dgy ~ dpy)
r r
> Zk-l) since Zt 2p, +(d_ —d._)
NP s LR EP T e T

The above is true for every sequence of r jobs considered.

This completes the proof. .

The above property is described pictorially in Figure 5, where there are two subsets

divided by time tg. Conceptually, Lemma 6 says that jobs must be shifted far enough

forward or backward in time from their respective due dates to satisfy the constraint of at

most one job on the machine at a given time. The lower bound on T+E gives the minimal

amount of shifting to accomplish this on the assumption that each subset of jobs can be

considered separately. In general, shifting in one subset will affect other subsets, so that

the given bound may not be achievable.

11

If TG and s which result from Algorithm 1 are used. the lower bound B, can be
improved as follows. Consider the case where (1) there are jobs not in PS whose due date
is greater than s, and (2) TG resulting from the optimal timing for PS is greater than 0.

The last k jobs (with largest due time) of J\PS and the optimal schedule for the jobs in PS
k
incur T+Enolessthan I (d
i=1
J\PS, and k is the minimum value of TG and n,, the number of jobs in J\PS whose due

<>~ S), where <i> is the i-th job from the end in

date is greater than s. This bound can be justified as follows. If k = TG, either the k last

Jobs in J\PS should move to the left up to the time s, or jobs in PS should move to right,
k
both of which incur T+E of no less than £ (d
i=1
Lemma 6 can be used to calculate T+E on the jobs not considered yet. Here the set of

L . ver i 1 ,
<>~ S) . Moreover in this case

jobs in PS can be considered as a job whose due date is CPS’ the completion time of the

jobs in PS, and processing time is CPS- s. Ifk = n, k last jobs in J\PS should be move

k
to the left, which incurs T+E of no less than Z(d
i=1

<i>"s)
Since the above algorithm requires exponential time in the worst case, we cannot
guarantee that it is computationally tractable for larger problems. Therefore a heuristic
algorithm is presented here. This algorithm uses the properties in Lemmas 2 and 5 to
construct a good sequence, and uses Algorithm 1 to find an optimal timing for the
sequence. By comparing all pairs of jobs using the results of Lemma 2, we can obtain
rough information about the priority of each job, i.e., how many jobs should precede it.
These priorities can give a good initial sequence which will be examined using dominance

criteria of Lemma 5 and will be changed if needed.

Algorithm 3. (A heuristic algorithm)

Let a; be the label of job i.

(1) Compare jobs i and j, for all possible combinations of 2 jobs, using the simple

rule in Lemma 2.

12

If 1 precedes j, let e =a - 1, aj = aj + 1.

if j precedes i, let a =a + 1, a.j =aj -1.

else, no change in a, aj.
(2) Sort the jobs in ascending order of ai’s. This will be the initial sequence.

(3) Obtain the optimal timing for the sequence resulted from (2) using Algorithm 1.

(4) Check the conditions for dominance in Lemma 5 for adjacent pairs of jobs, and
change the order if needed. Check whether T+E can be reduced when the
adjacent jobs are interchanged, and change the order if needed.

(5) For the sequence resulting from (4), obtain optimal timing using Algorithm 1.

Terminate. ®

At stgp (4), the pairwise comparison of interchange can be done in two directions,
forward and backward. In forward comparisons, k-th job is compared with (k+ 1)th job,
(k+2)th job, + - , until it cannot be changed any more, for k=n-1,n-2,+++,1. In backward
comparisons k-th job is compared with (k-1)th job, (k-2)th job, .- , until‘ it cannot be
changed for k=2,3,+-+,n. Since this requires O(n®) effort, and the other steps also require
at most O(n?) effort, the overall computational complexity of this heuristic algorithm is

O(n?).

3. n/l//Z(riTi+ eiEi) PROBLEM

In this section the general problem, n/ 1//Z(riTi+ eiEi) will be discussed. As in the n/
1//T+E problem, a special case of this problem, the optimal schedule(timing) for a given
sequence can be obtained by solving an LP. Algorithm 1 can also be modified to solve this
problem with O(n2log n) effort.

The needed modifications are:

a) In step (0), G_= 1 should be changed to G = T

13

b) In step (1), Gj= — 1 should be changed to sz s :
¢) In step (2), Gj= 1 should be changed to Gj= i

Getting an optimal sequence for this problem is even harder than for the case of .=
€= 1, for alli. From Lemmas 2 and 5, and Corollaries 3 and 4, a loose lower bound for

Z(riTi+ eiEi) can be presented. That is, a lower bound B2 for jobs in a set J\PS is,

B,=1 t, {z min(r;,e.) — max.[min(r,,e)]},
[A] lew

where w is any set of overlapping jobs in J\PS, and tw is the length of time during which
Jobs in w overlap, if all the jobs in J\PS are placed as Ci= di' For example, in Figure 5,
one of wis (2,3,4) and t(2’3’4)= t32. Note that the terms in braces correspond to k — 1,
and t(‘J corresponds to te of Lemma 6. The lower bound B1 for jobs in PS can be calculated
by the same method as in Algorithm 2. A heuristic algorithm which will not be presented

in this paper can be developed using a method similar to Algorithm 3.

4. COMPUTATIONAL RESULTS

A set of problems has been generated randomly for our experiment. The due dates
follow a uniform distribution from 0 to a given maximum due date. The processing times
have been generated from the uniform distribution such that the machine loads, i.e., the
sum of these processing times divided by the maximum due date, would be between 0.6
and 1.3. The algorithms were coded in FORTRAN and run on the Amdahl 470V/8.

The results are given in Tables 1 and 2. Table 1 contains the problems in which
machine load is greater than 0.9, while Table 2 contains those where the machine load is
less than 0.9. As can be seen in the tables, when the machine load was high (=0.9) the
branch-and-bound algorithm could not solve the 30 job problems and could solve less than
half of eight problems with 20 jobs. However‘, when machine load was low(<0.9), it could

solve 5 out of 8 problems with 30 jobs. When machine load is high; earliness rarely

14

occurs, therefore the problem would look like 2 mean tardiness problem. From this point
of view, our algorithm works better in the situations where earliness may be important,
i.e., where machine load is not near 100%.

In the problems where the optimal solution was found by the branch-and-bound
algorithm, over 90 percent of the solutions from the heuristic algorithm were optimal
solutions. In most of the other problems, the heuristic solution is same as the incumbent
solution obtained by the branch-and-bound algorithm after a CPU time of 30 seconds. In
only two problems was the heuristic solution proved to be suboptimal. The minimum
lower bound among the subproblems left in the stack is also given in the tables. Even
though this minimum lower bound is better than the incumbent solution in some problems,
it is likely to increase as more branching occurs. This difference between the minimum
lower bound and the incumbent solution is higher in larger problems since the depth of the
branch and bound tree was limited by CPU time. Thus, the minimum lower bounds may
not be indicative of optimal objective values.

In summary, the heuristic procedure appears to provide optimal or near-optimal

solutions in a fraction of the CPU time of the optimal procedure.

5. CONCLUSION

Scheduling decisions are generally affected by a number of costs. In this paper,
scheduling problems which can be used in production and inventory planning have been
discussed. The problem involving tardiness and earliness as dual criteria needs not only a
sequénce but also an optimal timing of the sequence. A polynomial algorithm has been
developed for determining the optimal completion times of jobs for a given sequence. A
branch-and-bound algorithm and a heuristic algorithm have been presented to obtain the
schedule (sequence and timing). For a set of randomly generated problems, the heuristic
algorithm performed extremely well.

There are two directions for future research on this problem. One is to develop a

15

good(polynomial) algorithm for these problems. The other is to prove NP-completeness of
the problem, n/1/T+E with equal due dates, and to develop a more efficient B&B
algorithm or an heuristic algorithm. In addition, extension of the results to multiple
machine problems would be very useful for real applications. These problems would cover
the cases where jobs have different penalties for earliness and tardiness, which occur

frequently in reality.

REFERENCES

Bagchi, V., R.S. Sullivan, and Y.L. Chang, 1986. Minimizing Mean Absolute Deviation of
Completion Times about a Common Due Date. Naval Research Logistics Quarterly,
Vol.33, pp.227-240.

Baker, K.R., 1974. Introduction to Sequencing and Scheduling. Wiley, New York.

Emmons, H., 1975a. One Machine Sequencing to Minimize Mean Flow Time with
Minimum Number Tardy. Naval Research Logistics Quarterly, Vol.22, No.3, pp.585-
592.

Emmons, H., 1975b. A Note on a Scheduling Problem with Dual Criteria. Naval Research
Logistics Quarterly, Vol.22, No.3, pp.615-616.

Garey, M.R. and D.S. Johnson, 1979. Computers and Intractability A Guide to the Theory
of NP-Completeness, Freeman.

Gupta, S.K. and T. Sen, 1983. Minimizing a Quadratic Function of Job Lateness on a
Single Machine. Engineering Costs and Production Economics, Vol.7, pp.187-194.

Kanet, J.J., 1981. Minimizing the Average Deviation of Job Completion Times about a
Common Due Date. Naval Research Logistics Quarterly, Vol.28, No.4, pp.643-651.

Lakshiminarayan, S., R. Lakshmanan, R.L. Papineau, and R. Rochette, 1978. Optimal
Single-Machine Scheduling with Earliness and Tardiness Penalties. Operations
Research, Vol.26, No.4, pp.1079-1082.

Lin, K.S., 1983. Hybrid Algorithm for Sequencing with Bicriteria. Journal of Optimization
Theory and Applications, Vol.39, No.1, pp.905-924.

Nelson, R.T., R.K. Sarin, and R.L. Daniels, 1986. Scheduling with Multiple Performance
Measures: The One-Machine Case. Management Science, Vol.32, No.4, pp.464-479.

Panwalkar, S.S., M.L. Smith, and A. Seidmann, 1982. Common Due Date Assignment to

Minimize Total Penalty for the One Machine Scheduling Problem. Operations
Research, Vol.30, No.2, pp.391-399.

16

Sen, T. and S.K. Gupta, 1983. A Branch-and-Bound Procedure to Solve a Bicriterion
Scheduling Problem. IIE Transactions. Vol.15, No.1, pp.84-88.

Sen, T. and S.K. Gupta, 1984. A State-of-Art Survey of Static Scheduling Research
Involving Due Dates. OMEGA The Int. JI. of Mgmt. Sci. Vol.12, No.1, pp.63-76.

Sidney, J.B., 1977. Optimal Single Machine Scheduling with Earliness and Tardiness
Penalties. Operations Research, Vol.25, No.1, pp.62-69.

Sundararaghavan, P.S. and M.U. Ahmed, 1984. Minimizing the Sum of Absolute
Lateness in Single-Machine and Multimachine Scheduling. Naval Research Logistics
Quarterly, Vol.31, pp.325-333.

Townsend, W., 1978. The Single Machine Problem with Quadratic Penalty Function of
Completion Times: A Branch-and-Bound Solution. Management Science, Vol.24, No.5,
pp.530-534.

Van Wassenhove, L.N. and L.F. Gelders, 1980. Solving a Bicriterion Scheduling
Problem. European Journal of Operational Research, Vol.4, No.1, pp.42-48.

Van Wassenhove, L.N. and K.R. Baker, 1982. A Bicriterion Approach to Time/Cost

Trade-offs in Sequencing. European Journal of Operational Research, Vol.11, No.1,
pp.48-54.

17

Table 1. Computational Results. (Machine load is >.9)

No. Heuristic Branch and Bound
of , CPU . CPU # of sub- |min lower
jobs | Solution | timg * | Solution [ying® | propiems |bound
188 .002 188 1.016 1653
10 112 .002 112 .089 92
225 .003 225 .786 1305
95 .002 95 206 315
327 .004 327 ** | > 30. 16345 241
15 316 .004 316 ** | > 30. 17238 241
220 .004 220 31.876 1 30124
288 .004 288 .601 517
131 .007 131 **| > 30. 18657 120
110 .006 110 ** | > 30. 17099 76
110 .006 110 5.438 4354
20 75 .006 75 ** | > 30. 20075 55
69 .006 69 2313 1846
113 .006 113**| > 30. 15325 74
278 .006 278 ** | > 30. 16068 192
257 . .005 257 56.549 1| 44417
209 010 209 ** | > 30. 12584 63
174 010 174** | >30. 13134 122
30 732 012 732* | >30. 12396 289
386 011 386 **| > 30. 10686 184

* CPU time in seconds on Amdahl 470V/8 system
** indicates that itis not verified as optimal (it is current incumbent solution)
+ These problems were run for more than 30 seconds to get an optimal

solution since the solution obtained after 30 seconds was very close
to the lower bound.

Table 2. Computational Results. (Machine load is <.9)

No. Heuristic Branch and Bound
of ,
jobs | Sdlution C;I;L; * | Solution ctzll:nl;) ﬁr?)fblsel:rt\g rg\cl)r;nlé)wer
48 .002 48 074 66
10 30 .002 30 223 108
51 .002 51 318 289
59 .002 59 .205 48
15 35 .003 35 187 194
53 *** .003 51 590 473
18 .005 18 .554 437
188 .005 188 37.826 t 30875
120 .005 120 779 609
20 124*+ | 005 123 933 776
130 .006 130 7.953 6139
99 .005 99 4.906 3926
127 .005 127 12.443 10223
354 .006 354 ** | > 30. 19330 269
61 .009 61 2.819 1216
91 .009 91 1.757 841
67 .009 67 ** > 30. 13819 48
30 152 .009 152 **| > 30. 13900 107
158 .009 158 19.723 10060
121 .009 121 8.911 4609
119 .010 119 4.924 2108
303 010 303 *| > 30. 14590 188
100 015 100 **| > 30. 8610 47
216 015 216 **| > 30. 8654 176
40 659 .016 659 **| > 30. 8105 225
471 016 471 **| > 30. 7510 192

* CPU time in seconds on Amdahl 470V/8 system
*+ indicates that it is not verified as optimal solution (current incumbent solution)
*** indicates that it is not equal to optimal solution
T This problem was run for more than 30 seconds to get an optimal solution.

N/M// S (7 Ti+&Ei)

N/1//T+E N/1/di=d/T+E

Figure 1. Relationships among the problems

(Problem)

(given sequence is 1,2,3,4,56)

(Algorithm)

JOB 6

JOB 5

JOB 4

JOB3

JOB 1

Figure 2. An example for Algorithm 1.

TG

n
—a

TG=0

TG=2

TG=1

TG=1

TG=0

TG=2

Visited
Steps

Step 0
Step 1

Step 3

Step 1
Step 3

Step 1
Step 2

Step 1

Step 3

Step 1
Step 3

Step 4

(j,i) : Better

(i,j) : Better

(b) di< dl and P, +(d]-di) > pj
j
= (i,j) Better

(j,i) : Better
(d) di< dj s P, +(dl-dl)<pl ,and A>B

Figure 3. Pictorial view for Lemma 2.
(Solid lines denote T+E)

Q.
Q.

1 2
» —
N 21)
1
1
-2 (1,2) :Better
(8 max[C, C,] <min[d , d,]: LPT
d, 4,
; —

B | e :Beter

B 2

— 2
(c) min[s1, sz]+min[p1,p2] > max[d 1’d2] : SPT

Figure 4. Properties for pruning. (Lemma 5)
(Solid lines denote T+E for 2 jobs.)

22

82= (t21+ t22+ t23+t24) +2(t31+t32+t33)+ 3 t41

Figure 5. Lower bound (Bz) for T+E of the jobs in J\PS.

