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Abstract

We investigate the problem of choosing optimal lot sizes in assembly systems when component
manufacturing or procurement yields, and possibly assembly yields, are random. For a single-
period setting, we analyze two different models. The first has multiple components with identical
yield distributions and costs, random demand and random yield in assembly. The second has two
components with non-identical yield distributions and costs, and possibly initial stock of one

component. We provide complete analyses of both models, as well as comparative statics for the

first.

1 Part of this work was done while the first author was visiting the Department of Industrial and
Operations Engineering, University of Michigan.



1. Introduction

This work analytically investigates some of the implications of yield randomness on component
lot sizing decisions in assembly systems. These problems arise frequently in electronic and
mechanical applications where, because of the nature of the manufacturing processes of the com-
ponents, the yield (i.e., fraction of units that are usable) of many of the components may be ran-
dom. Although a considerable amount of research has been done on lot-sizing when yields are
random (e.g. Sepheri et al. 1986, Mazzola et al. 1987, Gerchak et al. 1988, Lee and Yano 1988,
Henig and Gerchak 1989, Yano and Lee 1989 and references therein), relatively little has been

done on assembly systems.

Yao (1988) analyzes a single period model in which the objective is to minimize the cost
of producing components subject to a constraint on the probability of meeting a known demand
for the finished product. Singh et al. (1988) consider a related problem in which there is a con-
straint on the total number of components processed (because of limitations on processing capac-
ity) and the objective is to maximize the probability of meeting demand for a set of products.
Yano and Chan (1989) provide a heuristic for the problem of minimizing the sum of expected
holding costs for excess components and expected holding and shortage costs for the finished

product, assuming that demand and assembly yields are deterministic.

We analyze two single-period expected profit maximization models which trade off the
cost of production or procurement against the potential revenue from selling units of the
assembled product. Like Yao (1988) and Yano and Chan (1989), we assume that yields are sto-
chastically proportional to the lot size; that is, the distribution of the fraction good is assumed

insensitive to the lot size. We also assume a 100% inspection of components by a perfect



inspection process. While the model can take into account salvage values (or holding costs) of
excess assembled units, it does not take into account the salvage values of unassembled compo-

nents.

The first model we consider deals with products assembled of » components with identical
yield distributions and costs. There are three reasons for our interest in such symmetric model.
First, many electronic and mechanical devices as well as furniture, contain several non-
substitutable components of identical level of complexity and cost (e.g. 'left’ and ’right’ parts).
Second, as we are interested in the effect of the number of components on the optimal
component lot size and associated costs, we are naturally led to consider symmetric systems.
Third, we are able to obtain analytical, interpretable results for a fairly complex symmetric

model.

The second model we analyze has two components with nonidentical yield distributions

and costs, and possibly initial component stocks.
2. Multiple Components with Identical Yield Distributions and Costs

Suppose that for each component i, the random yield associated with a lot of size Q is
Y, =QP;, where P;,i =1,...,n are i.i.d. with common distribution H; let H = 1 — H. Each com-
ponent costs ¢ to produce and inspect, and there are no initial component inventories. Since opti-
mal component lot sizes will clearly be equal, the number of good sets available for assembly

will be Omin,P;, where the density of the random variable P = min, P, is

fp)=nh(p){Hp)}" ™. (1)



Demand X for the product is random with distribution G. The cost of assembling a unit of
the product is a, each unit sells for r, and has a salvage value of v. The assembly stage is imper-
fect, and the yield associated with a lot of size § is Ys =SZ, where Z is independent of the P,’s,
and has distribution E, with mean o.. We assume that 7ot > @ + nc/E (min, P;), so that some

positive production level will be worthwhile.

This is a two-stage decision problem. First, one selects the lot size for the components.
Then, given the number of resulting good sets, one decides how many units to assemble. Let us

first consider the latter decision.

Had there been an abundant supply of component sets, the problem of how many sets S to
assemble would be equivalent to a single-period single-item production problem with random

yield (Gerchak et al. 1988). The solution S to this problem, using our notation, is given by
f 2e(2)G(Sz)dz = (r —a)(r - v). (2)
0

Since the objective function of that problem is concave (Gerchak et al. 1988), if Qp sets are

available the optimal solution to the assembly problem is
$*=min(S,0p). 3)

Given Q and p, the corresponding expected profit excluding component manufacturing

costs, T, can be shown to equal
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Taking the expectation of (4) with respect to P, we have
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In the component lot sizing decision, we therefore seek the value of Q which maximizes the

overall expected profit
E(m)=-ncQ +E (m] Q). (6)

It can be shown that

Si
JE(m)/0Q =-nc +n(r—a)a A Qph(p){ﬁ(p)}""dp :

$iQ _ -1
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and that d*E (r)/dQ*® < 0. The optimal Q" is thus obtained by equating (7) to zero, and the asso-

ciated expected costs by substituting that Q into (5)-(6). The result is summarized in the follow-

ing.



Proposition 1

E(r) is concave, and the optimal Q" is the solution of

$iQ°
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where § is given by (2). The corresponding value of E (it) is
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How does Q" react to a change in n ? Assuming that the unit revenue, salvage value and

assembly costs do not change, then it follows from (8) that since {H(p %"~ is decreasing in n,
Q" (n) must be such that G {Q"(n)pz} be decreasing and §/Q "(n) increasing in n. Since G is an

increasing function, and § does not depend on , it follows that

Corollary

Q’(n) is decreasing in n.

I
Since our assumptions imply that the cost of producing a set of components is increasing in their

number, the profit margin becomes smaller, which makes the above result intuitive.



Some special cases of this model might be of interest. If assembly is perfect and free, and
the product has no salvage value, we have a single stage decision problem, and (8) and (9)

reduce to
[ oho) R TQ o =cr (10)
and

®? v ()dxdp (11).

Em=m | ho)AEY |
p= x

respectively. If n = 1 these reduce to the results in Gerchak et al. (1988).
3. Two Components with Non-Identical Yield Distributions and Costs

Suppose now that n =2, and that Y3’ = Q,P;, i = 1,2, where P\~H, and P,~H, are indepen-

dent. The unit component costs are ¢, and c, respectively. For simplicity, suppose that demand D

is given, and assembly is perfect and free. If we order Q; units of component type i, the density

of P(Q,, Q) = min(Q,P,, 0,P,) is
1(p) = h\(p/QH(p/Q)Q, + hy(pIQ)H (p1Q,)/Q,. (12)
Thus

E(m)=—¢,0,—c,0,+r{DH (DIQ)H,(D/Q,) + an{hl(P/Ql)ﬁz(p/Qz)/Q:

+hy(pIQ)H (pIQ)Q}dp}.  (13)



Some calculus establishes that

DI, _
0E(m)/0Q, =—c, +r ) ph,(p)H(Q,p/Q,)dp,

DIQ, _
BE(RYAQ, =—c, +7 f phy(p)H (Q,p/0, )b,
DIQ,
azE(n)/aQ3=-r{ f pzhl(p)hz(le/Q,_)dp/Qz+D2h,(D/Q,)H2(D /QZ)/Q,’} <0,
DiIg, _ :
a’E(n)/aQ§=—r{fo p’la(p)h«Q?p/Qodp/Ql+D’fa(D/Q»H1(D/QI)/Q§}<0, (14)

and that

DIQ, DIQ,

FE®O00, =10, [ ph(oIQpI0)dpI0} =10, , PheW@pI0)dpIR] (1)

{PEm)/OQ {FE ()]} - {(PEMYDQ,305) " = r*DXD*h,(DIQ)hDIQYT (DIQYH (D1Q,)I0}0}

DQ,

+h/(DIQ)H (DIQ,) i P’hy(p)h,(Q,p/Q,)dp/Q}

DIQ,

HDIQHDIQ) | pP*h(PIn@,pIQ)dpI0,  (16)

which is clearly positive. So we have



Proposition 2

E(m) is concave in (Q,,Q,) and the optimal lot sizes solve
DIQ, _
[ phF@ipiodp =i, (17

D/Q; — . .
[ oA ip10p = as) |

Suppose now that there is an initial stock of good units of one of the components (if there
are stocks of both, their minimum can be simply deducted from the demand). Without loss of

generality assume that initially /; =0 and 0 </, <D. Then

— — D —
E(m)=-c,Q,~¢c,Q,+r{DH (DIQ)H,{(D -1,)/Q,} +J; phy(p/IQ)H {(p - 1,)/Q,} dp/Q,

D —_
+L pho{(p - LYQ}H,(p/Q)dp/Qz}, (19)

and the optimality conditions are

D/ Q] IZIQ!

Ph(PHAQp ~LYQtdp = | - p(1+PIh(PI{(Qp ~LVQ}dp =cir  (20)
0 -hy, —
[ o0 +1y0ddp =cr. @n

4. Concluding Remarks



Our goal here was to pioneer the modeling of assembly systems with random component man-
ufacturing yields and random assembly yields in an unconstrained profit maximization setting.
We have modeled a symmetrical yet otherwise quite complex system, derived the optimality
conditions, and showed that the component order quantity decreases in the number of compo-

nents. We also analyzed a non-symmetrical two-component system with initial component stock.

It is interesting to note that what makes the lot sizing decisions for components here non-
separable (and thus difficult), is the fact that product shortages'are permitted. Had the (given)
demand been rigid, and repeated lots of each component would have to be produced until there
are enough units to satisfy demand, possibly incurring component type-specific setup costs with
each lot, the problem would be entirely separable. Of course, each component lot sizing deci-

sions then constitutes a dynamic program (e.g. Klein 1966).

The exact approach used here will probably not be practical for nonsymmetrical systems
consisting of more than two or three components. Also, extensions to multi-period situations will
' require explicit modeling of unmated components and their associated holding costs, a difficult
task in light of possible non-concavity of the objective function (Yano and Chan 1989). We nev-
ertheless believe that some basic design tradeoffs in assembly systems with random yields can be

made clearer even by idealized models like the ones discussed here.
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Abstract

We investigate the problem of choosing optimal lot sizes in assembly systems
when component manufacturing or procurement yields, and possibly assembly
yields, are random. For a single-period scenario in which component salvage
values of unmated components are zero, we analyze several different situations:
n components with identical yield distributions and costs, under several differ-
ent assumptions about demands, assembly yields, and assembly costs; and two

components with non-identical yield distributions and costs.



Introduction

This work analytically investigates some of the implications of yield randomness on
component lot-sizing decisions in assembly systems. These problems arise frequently
in electronic assembly'applications where, because of the nature of the manufacturing
processes for the components, the yield (i.e., fraction of units that are usable) of many
of the components may be random. Although a considerable amount of research has
been done on lot-sizing when yields are random (e.g., see references in Sepehri et al.
1986, Mazzola et al. 1987, Gerchak et al. 1988, Lee and Yano 1988), relatively little
has been done on assembly systems.

Yao (1988) analyzes a model in which the objective is to minimize the cost of
producing components subject to a constraint on the probability of meeting a known
demand for the finished product. Singh et al. (1988) consider a related problem in
which there is a constraint on the total number of components processed (because of
limitations on processing capacity) and the objective is to maximize the probability of
meeting demand for a set of products. Yano and Chan (1989) provide a heuristic for
the problem of minimizing the sum of expected holding costs for excess components
and expected holding and shortage costs for the finished product. They assume that
demand and assembly yields are deterministic. All three papers treat only the single-
period case.

We analyze several single-period expected profit maximization models which trade
off the cost of production or procurement against the potential revenue from selling
units of the assembled product. More specifically, we analyze several different sit-
uations: n components with identical yield distributions and costs, under various
assumptions about demand, assembly yields, and assembly costs; and two compo-
nents with non-identical yield distributions and costs.

Our primary (and critical) simplification is to ignore the salvage values (or holding

costs) of unassembled components. This simplification makes the resulting objective



functions concave, thereby permitting us to obtain simpler, interpretable expressions
as well as optimal solutions. However, the models can take into account salvage val-
ues of excess assembled units without sacrificing concavity of the objective function.
Like Yao (1988) and Yano and Chan (1989), we assume that yields are stochastically
proportional to the lot size (i.e., the distribution of the fraction good is insensitive
to the lot size). We also assume that there is 100% inspection by a perfect inspec-
tion process. Any cost associated with the inspection can be included in the unit
production or assembly cost.

In the next section we formulate and analyze models with n non-substitutable
components with identical yield distributions and costs. We start with a simple
scenario and gradually generalize it. The simplest scenario assumes known demand,
and a costless and perfect assembly stage. The second model permits demand to
be random. The third model adds positive assembly costs. Finally, we permit the
assembly stage to have a random yield.

In the following section we analyze a simple model for two components with non-
identical yield distributions and costs. We show that the bivariate objective is con-
cave, and derive two equations for finding the optimal lot sizes. We also consider the
effect of initial stocks on the solution to this problem.

We conclude by proposing further research directions in this area.

Multiple Components with Identical Yield Distributions and Costs

For each component ¢, the random yield associated with a lot of size Q is Yy = Q-
P;, where P;,i = 1,...,n arei.i.d. with common distribution H. Let H = 1—H. Each
component costs ¢ to produce, and each unit of the finished product sells for r, where
in order for the process to be profitable, one needs to assume that r > ne¢/ E(min; P;).
To aid in exposition, we shall start by modeling the simplest scenario and then
gradually add random demand, positive assembly costs and an assembly lot size

decision, and an imperfect assembly process to the model.

2



Simplest Scenario

Suppose that demand D is known, and that both the cost of assembly and all

salvage values are zero. Since component lot sizes clearly will be equal, the profit will

be

rD if @ min; P,>D

T = —nc@Q+
r@ min; P; if @ min; P, < D.

We note that
Pr[min; P; > p| = [H(p)]",

and the density of the minimum is

f(p) = nh(p)[H(p)* .

Thus it is easy to show that

E(r)= —ncQ+rD[H(D/Q)"

D/Q

+ rnQ /0 ph(p)[H(p)]""" dp.

Differentiating, we obtain

OB(x)/9Q = ~ne+rn [ ph(p) A ()" dp

0*E(r)/0Q* = —nrD*H(D/Q)[H(D/Q)I"/Q* < 0.

Thus we have

Proposition 1.1

E(r) is concave, the optimal lot size, Q*, satisfies

brer 7 (-1
/0 ph(p)[H(p)]" ™ dp = c/r,
and the corresponding optimal profit is
E*(m)=rDIHD/Q)". ||
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This result agrees with results on the single component problem in Gerchak et al.
(1986) in the special case where n =1 and there is no initial inventory.

How does Q* react to a change in n? Assuming that the unit revenue r does
not change, then since [H(u)]""! is decreasing in n, it follows from (7) that @*(n) is
decreasing in n. This is not surprising since if 7 remains unchanged, an increase in n
makes the product less profitable. If r is increasing in n, reflecting higher prices for

more complex products, ¢) might not decrease in n.

Random Demand
Suppose now that demand X is random with distribution G and G =1 - G. All

other assumptions remain the same. Then it is easy to show that

o]

B(x)= —ne@+ra{ [~ MHEI[" co(a)dald

0 =

+Q [ ph)H )] C(Qp)dp) (9

Differentiating, we obtain

OB(r)/0Q =n{-c+r [~ ph(v)A(p)"" G(Qp)dp) (10)
FE(m)/0Q = —nrQ [~ phip) AP 9(Qp)dp < 0. (1)

So we have

Proposition 1.2

E(7) is concave, the optimal lot size, Q*, satisfies

[ B C@ P =/ (12)

and at the optimum

*

ROEE] [ sg(a)dzld. | (13)

z=0

E*(m)y=rn Ljo

This result also agrees with results in Gerchak et al. (1988) on the single-component

problem in the special case where n = 1 and there is no initial inventory.
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If unit revenue does not change with n, then since [H(p)]*~! is decreasing in
n, Q*(n) must be such that G[@*(n)p] is increasing in n. Since G is a decreasing

function, it follows from (12) that @*(n) is again decreasing in n.

Positive Assembly Costs and Product Salvage Values

Suppose now that the cost of assembling a unit of the finished product is a, and
r > a 4 nc/E(min; P;) so it is profitable to make the product. Demand is random,
and the salvage value of an excess assembled unit is v. In this case, there are two
decisions: (1) the lot size for the components and (2) given the outcome of good units,
how many units of the finished product to assemble. Let us first consider the latter
decision.

There are Q min; P; = Qy sets of good components, and we wish to decide how
many, S, to assemble. As in an ordinary newsboy problem, the expected profit

(ignoring component manufacturing costs) is
E(ra) = (r— a)S + (v = r)SG(S) + (r — v) /0 * 2g(z)dz. (14)
The unconstrained solution to this problem is
G(S) = (r = a)/(r ). (15)
Since (14) is concave in S, the optimal solution to the assembly problem is
$* = min(S, Qy). (16)

It can be shown that the corresponding expected profit is to equal

K .
(r— v)/(; zg(z)dz if §$ <Qy
E*(7a|Q.y) = 4 (r - a)Qy + (v — r)QuG(Qy) (17)
Qu ~
+(r — v)/o zg(z)dz if S > Qy.

In the component production decision, we therefore seek the value of @ which

maximizes

E(r) = —ncQ + E™(7.|Q), (18)
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where E*(7,|Q) = Ey[E*(n,]Q,Y)]. It can be shown that

OB(r)/0Q = —net [ ylir—a)+ - nG@IE, (1)

from which it also follows that 82E(x)/8Q? < 0. Using (3), we thus have,
Proposition 1.3

E(r) is concave, the optimal lot size, %, satisfies

r=a) [ OG- =) [ A C Q@R =, (20)

0

where S is given by (15), and at the optimum,

G /QO” z9(z)dzdp}.|

(21)

We note that when a = v = 0, the result of Proposition 1.3 reduces to that of

B(x) = (r = o{HEIQ) [ wo(eda +n

p=0

Proposition 1.2, since in that case S = co.
Again, it can be shown that Q*(n) is decreasing in n, although the argument is

more complex.

Imperfect Assembly Process

Finally, we allow the assembly stage in the previous model to be imperfect. That
is ¥, = S Z, where Z has distribution £ and mean a. We assume that ra >
a +nc/E(min; P;) (i.e., it is profitable to produce).

Then the solution to the unconstrained assembly-stage decision is

/Ooo ze(2)G(82)dz = (r—a)a/(r—v) (22)

and

S* = min(S, Qy). (23)



The corresponding expected profit is

oo 52 ~
(r— v)/;=0 e(z) /x=o zg(z)dzdz if S <Qy
E*(ralQuu) = | (r - @)aQy — (r = 0)Qy [ 2¢(2)G(Qu2)dz (24)
+(r —v) /}:0 e(z) /:Zz zg(z)dzdz if $> Q.

By substitution of (24) into (18), it can be shown that
5/Q
OE(r)/0Q = —ne+(r—a)a [ yf(y)dy

=) [ uit) [ sele)G(QuaNdsdy

= zZ=

and that 0 E(r)/0Q* < 0. Using (3), we have
Proposition 1.4

E(7) is concave, and the optimal @* is the solution of

(=)o [ pAEG) o) [ ph)EE]™ [~ 2e(z)0(Q"p)dedp = .

- (25)

where S is given by (22). ||

Two Components with Non-Identical Yield Distributions and Costs

We shall now use the simplest scenario (deterministic demand and assembly yields,
zero assembly cost) to analyze the case of two components with non-identical yield
distributions and costs. Let Yy, = Q- P;, ¢ = 1,2, where P, ~ H, and P, ~ H, are
independent. Also suppose that demand D is known, and unit component costs are

c1 and ¢, respectively.

The density of min (Q1 P, Q2P,) is

i(p) = ha(p/Q1)Ha(p/Q2)/ Q1 + ha(p/Q2) Hi(p/ 1)/ Q2
Thus
E(r) = —aQi—aQ:+r{DH(D/Q1)H:(D/Q.)
b [ oo/ Q@0 Fip/@2)/Qu + halp/ Q) Es(0] Q1) Quld).

7



Some calculus establishes that

D/ _
OE®/0Qr = —ertr [ ph(p)HQup/Qa)d,

OB0Q = —eatr [ pha(p)F(Qip/Qu)dp
PEDOQ = r([ Php)h(Qup/Q:)dp/Q:
+ Dh(D/Q(D/Qr)/@t} <0
PE(r)[0QE = —rf / p*ha(p)h1(Q2p/ Q1)dp/ Q:
+ D?hy D/Qz)Hl(D/Ql)/QB} <0,
PE)/5Qu00: = Qi [ P (p)ha(QuplQ:)dp/Q:

/@2
= rQ, /oD ¢ p*ha(p)h1(Q2p/@1)dp/ Q3.

Some additional algebra establishes that the Hessian is positive definite, so we have:

Proposition 2.1

E() is concave in (@1, @2) and the optimal lot sizes solve

D/Q} _
[ phn) E(Qip/Q3dp = e

D/Q; I * *
L7 s B(@QiplQDdp = afr. |
We shall now analyze the effect of initial component stocks, I;, ¢ = 1,2, in this

model. Suppose that I; < I, < D. Then

E(r) = —ai@i =@ +r{DH((D - 1)/QAD - 1)/Q:)
D _
+ [ phillp = B)/QuA(p - 1)/Qaldp/Q:

D -
£ [ phal(p - B)/QI(p ~ 1)/Qildp/ Qs

After some tedious calculus, we obtain

aE(W)/an =-—c+ 7"/0(D-I2)/Q2 Ph2(P)Hl[(Q2P + 1, - Il)/Ql]dP,

and since [; < I, the other first partial derivative is more complex:

OB®)/0Qy = —atrl[ . ph(o)Ea{(Qup - B+ B)/Quldy

8



3 A(Iz—h)/Ql p2h1(p)h2[(Q1p -+ Il)/Qz]dp

3 /0(12—11)/(31 phl(p)hz[(le L+ 11)/Q2]dp}

Note that if I; = I, = I, the situation reduces to one with demand = (D — I) and
no initial stocks.

If 0 = I; < I, the simpler necessary condition becomes

/O(D"”/ % oh(p)EL(Qsp + 1)/Qildp = o

But since @] itself depends on I, not much can be said about the relation between

@5 and .

Concluding Remarks

One simplifying assumption that we made is zero salvage value (holding costs) of
unmated components. It was shown by Yano and Chan (1989) that inclusion of such
values renders the resulting models impractical for exact analytic treatment, even in
single-period models. Extensions to multi-period situations will require explicit mod-
eling of unmated components and their associated costs. Moreover, real-life problems
involving assembly systems with random component yields are likely to involve more
than two components, nonidentical yield distributions and costs. Undoubtedly, be-
cause of the complexity of these problems, practical approaches will require heuristic
procedures. Further research along these lines is needed. Nevertheless, insights from
simple models such as those analyzed here may provide the basis for good heuristics.

Finally, we have examined only pure make-to-plan (known demand) and make-
to-stock (random demand) situations. It would be of interest to study assemble-to-
order situations, where only a forecast of demand is known when component lot sizes

are selected, but final assembly is based upon actual orders.
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