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MULTI-PRODUCT CAPACITATED PRODUCTION PLANNING
WITH RANDOM DEMAND

ABSTRACT

Traditionally, production=-inventory models in which demand is random
have included shortage costs or customer service requirements to ensure that
production satisfies demand on a timely basis. 1In systems where supplier
facilities feed critical or bottleneck assembly facilities, anything less than
100% satisfaction of assembly needs may result in shutting down entire
production facilities. Thus, these traditional models will not provide
implementable results. The supplier facilities actually deal with this need for
100% service through a combination of safety stock and rescheduling.

We investigate the problem of determining planned production intervals and
safety stock quantities which provide the appropriate balance between inventory
costs and setup costs in a single machine, multi=-product fabrication system
facing highly uncertain demand. Capacity constraints and setup times are
additional complicating factors which we consider.

We develop a two=stage approach to the planning problem in this paper.
First, safety stock is optimized for each candidate planned production interval.
The distribution of actual production intervals resulting from the safety stock
decision is considered explicitly in this stage. This provides input to another
optimization problem in which jointly optimal planned production intervals are
selected so as to minimize total cost subject to a capacity constraint.

Computational results also are reported.



MULTI-PRODUCT CAPACITATED PRODUCTION PLANNING
WITH RANDOM DEMAND

1.0 INTRODUCTION

Many manufacturing firms using Material Requirements or Manufacturing
Resource Planning (MRP) systems have dual problems of frequent rescheduling and
excessive inventories because of uncertain demand. In the earlier years of MRP,
before the notion of safety stock became acceptable, many wondered about how to
deal with frequent rescheduling (see for example, Mather, 1977). More recently,
cyclic and "powers of two" fixed interval lot=-timing policies (see Caie and
Maxwell, 1981, and Roundy, 1984), have been proposed for situations with
deterministic demand. While such policies are useful goals, there are
occasions, particularly when demand and supply are highly uncertain, when
rescheduling is necessary and even desirable because of the nature of the
manufacturing process or customer service considerations.

Better forecasting and improved inventory data accuracy can reduce the
magnitude of the rescheduling=-inventory problem, However, unless demand and
supply uncertainty are virtually eliminated, costs can be reduced through an
appropriate balance of rescheduling and safety stock.

A typical problem that arises in make=-to=-order systems involves a critical
facility, which (effectively) cannot be stopped, and facilities supplying parts
to the critical facility. The critical facility may be a bottleneck process or
an automated, paced assembly line. Production of input parts is planned
according to forecasts, but forecast errors may be large. Thus, forecasts may
be revised dramatically, and similarly the production schedules. It is the
responsibility of the parts facilities to keep the critical facility operating
in spite of their own capacity limitations and complex resource allocation

problems. Overtime and extra shifts may be employed when necessary, but much of



the "real time" adjustment is done through rescheduling and safety stock.
Because of the complexity of mating parts which are inputs to the critical
facility, one cannot simply specify service objectives for each part. There are
two possible approaches. The more desirable approach is to treat satisfaction
of the dependent demand for parts as a hard constraint. The alternative is to
carefully coordinate production at all component facilities, so that the
critical facility can produce something, even if it is not specifically what it
had planned to produce. This is feasible in a make=-to-stock situation, but
cannot work in a make-to=order environment. In any event, the parts facilities
have a complex problem which must be solved frequently to handle dynamic
changes.

Little analytical work has been done on this problem. Askin (1981)
develops a heuristic approach for determining constant planned cycle lengths
with consideration of the effects of these cycle lengths on safety stock. This
approach permits shortages, and therefore requires no rescheduling. Graves
(1981) considers a multi=-product problem in which shortages are permitted and
penalties are charged for backorders. Bitran and Yanasse (1984) show that some
forms of the static capacitated production planning problem with stochastic
demand can be solved within 10% of optimality through solution of the
deterministic problem. Yano and Carlson (1986) develop a heuristic procedure to
determine safety stock quantities in a simple uncapacitated assembly system when
rescheduling occurs each period, but do not optimize the balance between safety
stock and rescheduling.

We investigate the setup cost-inventory holding cost tradeoff in
capacitated, dynamically changing single-machine systems with the objective of
understanding how costs and system characteristics affect this tradeoff. 1In

this paper we address the planning problem, that is, determining planned



production intervals and safety stock quantities consistent with them. This
must be done in view of capacity constraints and the necessity of rescheduling.
Detailed scheduling and rescheduling in a dynamic environment is a much more
complex problem. We are currently investigating it and will report on it in a
later paper. The reason for solving the planning problem is to take into
account aggregate tradeoffs and constraints first, so that there is opportunity
for rational decision-making in the dynamic problem. Without such planning, the
dynamic decisions primarily involve "putting out fires," which, in general, is
an extremely costly approach. In addition, we believe that the results of the
single=machine investigation will provide insight into multi-machine problems.
We note, however, that in the scenario described in the next section, there are
several facilities which have only one dominant or bottleneck machine, so the
results have many direct applications.

We describe the problem scenario which is the motivation for this work in
section 2. Model assumptions are detailed in section 3. An approach to the
steady-state problem is discussed in section 4, and related computational
results are included in section 5. We conclude with a summary and discussion in

section 6.

2.0 PROBLEM SCENARIO

The motivation for this research is a manufacturing system consisting of an
automated, paced assembly facility and several component fabrication facilities.
The finished product is semi-custom, with some standard parts and some options.
Demand for the finished product is uncertain, both in total volume and in option
mix.

Detailed component demand forecasts are transmitted from the assembly
facility to the component facilities weekly in a fashion similar to MRP product

explosions. Component demand quantities are firm for a very short horizon



(i.e., a day to a week), but the remaining information constitutes forecasts
only. Analysis of forecasts and actual demands for specific parts indicates
that forecasts for imminent periods are not much more accurate than forecasts
for periods farther out in the horizon, and that both have large (absolute and
relative) forecast errors.

Scheduling of component fabrication facilities is difficult. Some of the
facilties have long setup or changeover times, and in several cases, scrap
losses during setups and learning curve effects result in "out of pocket" setup
costs which are high. Thus, relatively long production runs are desired.
However, components are "ordered" by the assembly facility periodically, and the
frequency of shipment from each component facility is determined by
transportation and inventory considerations. Nearly all shipments are composed
of mixed parts. The combination of high setup costs and highly uncertain
component demands make adaptation by safety stock or rescheduling alone
uneconomical, if not infeasible.

The model developed in the next section can be viewed as relating to
planning of setups of one type (either major (family) or minor (item)) which are

not sequence dependent.
3.0 MODEL ASSUMPTIONS

To focus on the effects of uncertain demand, we make some assumptions in
this study which we hope to drop in future research. In this paper, we assume
that each item must be processed by only one (dominant) machine. We also assume
that the component facility has an infinite supply of input materials, so supply
uncertainty is not an issue. In reality, supply uncertainty appears to be a
serious problem in the scenario described above. However, this "supply

uncertainty" arises primarily because orders made by the component facility for



incoming parts and materials are no longer consistent with the revised schedule
at the assembly facility. Thus, supply is indeed a problem, but the source of
the problem is uncertain demand.

We assume that each component facility receives an "order" from the
assembly facility periodically and that it must supply those parts by the end of
the same period (i.e., with the next shipment) from current production or from
inventory. Thus, if inventory is insufficient, a production run is mandatory
(i.e., backorders are not permitted).

Since it is possible to produce many products (and in reasonable
quantities) in a shipping interval, the production plus transport leadtimes can
be treated as a constant for each component facility. In fact, we assume that the
production plus transport leadtime is less than one period, which is almost
essential to ensure 100% service. This is a strong assumption, but it is
satisified by all products in our application, and is true in a variety of
manufacturing environments.

We assume that setup times are positive and therefore affect capacity and
labor utilization. If setup times are very small, as in some highly automated
systems, the effects of rescheduling on capacity utilization are much less
severe, so that frequent rescheduling is not as problematic. We also assume
that setup times and setup costs are sequence independent.

Costs to be included in the model are: (i) setup costs, (ii) inventory
holding costs charged on average inventory, and (iii) overtime premium
costs (when overtime is permitted). Regular time costs and the non=premium
portion of overtime are treated as sunk costs since all demand must be
satisfied.

We assume that when overtime is permitted, an overtime premium fairly
reflects the penalty for exceeding normal capacity limits. Over the short term,

overtime and weekend work are the only practical workforce adjustments. There



is, of course, a limit on overtime capacity. Yet, addition of two hours to each
eight-hour shift on weekdays and extra shifts on both weekend days can increase
capacity of a two=-shift operation by 65%. Thus, within the usual limits of
demand fluctuations, overtime is effectively unconstrained. Nevertheless, the
actual schedule must satisfy this constraint in each period as well as
satisfying it on average.

The objective is to minimize expected total costs. There may, of course,
be rescheduling costs incurred beyond the necessary setup costs resulting from a
schedule change. On occasion, there is added inconvenience, but no true
additional costs. In other circumstances, it may be necessary to expedite
material inputs, which may then cause rescheduling at other supply facilities.
While it would be desirable to include these costs, they are usually so
difficult to quantify that we believe a better understanding of them is needed

before they can be included appropriately in this model.

4.0 THE CAPACITATED STEADY=-STATE PROBLEM

We will focus on stationary, but highly variable demand processes in this
study. The primary reason for taking this approach is that it is not the non-
stationarity that is responsible for the scheduling difficulties, but the
magnitude of the forecast errors. In fact, the one=week=ahead forecast errors
for some components are so high that it is difficult to distinguish between
forecast errors and non-stationarity. Thus, it is reasonable, at least
initially, to model the process as if it were stationary but highly variable.
We will assume here that demand has a normal distribution, but the approach can
be generalized to other distributions.

To facilitate scheduling at each component facility, it has been suggested

(see, for example, Elmaghraby, 1978 and Caie and Maxwell, 1981) that each



production run represent some constant time supply. Such a policy simplifies
the capacitated production planning problem to one of coordinating a number of
cyclic production schedules, one for each item. Even when demand is stochastic
and each production run may vary both in quantity and occasionally in terms of
cycle length (production interval), having a target cycle length can help in
production smoothing and in procurement of input materials. In addition, this
concept of a target cycle length is extremely helpful in analyzing the tradeoff

between setup costs and inventory holding costs.

Problem Formulation

Notation:
Si = setup cost for item i
hi = holding cost charged on end-of=period inventory of item i
A = overtime premium for equivalent of regular capacity
T4 = setup time for item i
Pi = processing time per unit of item i
Iit = inventory of item i at end of period t
Di = average demand per period for item i
03 = standard deviation of demand for item i for one period
ki = safety stock multiplier for item i, where the safety stock quantity
is k;/ ;=T o
n; = planned (or target) production cycle for item i (in periods)
Ny = actual production cycle length (in periods)

For notational simplicity, we drop the "i" subscripts in the following
development and re=-introduce them when needed later in the paper.

The objective criterion in this problem is minimization of average cost per
period, which we represent as average cost per cycle/average cycle length.

Since each production cycle for an item does not correspond to time between



adjacent regeneration points, this representation is not exact. However, since
the system regenerates infrequently, there are few practical alternatives.
Nevertheless, this approximate representation has been used successfully in many
other similar applications.

The system operates as follows. At the beginning of each period a random
demand dt is observed. If I_4 < d¢, @ production run is made to raise the
inventory position to dt + (n=1)D + k/n=1 ¢. In other words, if there is a
positive net requirement in period t, a production run is made for an n=period
supply plus safety stock. Observe that demand in the current period is known
before production is scheduled, whereas demand in the next n=1 periods is still
uncertain. Safety stock is represented as k{g:T o because there are n=1 periods
for which safety stock must provide protection.

We first derive the expected cost per cycle and the distribution of cycle
lengths for a single item as a function of the planned production cycle and the
safety stock quantity. First consider the average cycle stock as a function of
the planned production cycle and the actual cycle length. If we assume that
when an order is completed, the cycle stock on hand is brought up to a value of
nD (on average) and that demand occurs at a constant rate during the (actual)
cycle, then average cycle stock inventory is clearly nD/2 for any actual cycle
length., Similarly, the safety stock quantity does not depend upon the actual
cycle length since it is "optimized" for the planned cycle length. We can write
the cost per cycle as:

S + E(m)h(Dn/2 + k/n=1 o],
where E(n) is the expected cycle length.

We next derive the probability that the actual cycle length (denoted n) is
equal to T for some 0 < T < », and use this information to derive E(n).

Clearly, the actual cycle length will be T if there was sufficient stock to



cover demand through the first T periods of the cycle, but not enough to cover
demand in the (T+1)st period in the cycle. This is the same as the first
passage time of Brownian motion with a drift (with drift parameter u=D and
diffusion coefficient 02) occurring between time T-1 and T (see Karlin and
Taylor, 1975, p. 355). Since demand in the current period is known, we start
the next period with (n=1)D + k/n=1 o units of inventory. The actual cycle
length is the time required to use up this inventory plus one period (i.e., the
first period for which demand is known). Recall that demand is observed at the
beginning of the period, so that demand in the subsequent period can be viewed
as the difference between the state (inventory position) now and the state at

the beginning of the next period. Let z = (n=1)D + k/n=1 ¢. Then we can write

2 2
P[n =T] = [T ,,,,g:::, o~(2=Dt) /20 t 4¢
T=1 1) /21\'t3
(1)
E(n) =% J Pln=3j] (2)
3=0
E(cycle cost) = S + E(n)h[Dn/2 + k/n=1 o] (3)

The objective function is simply the ratio of equations (3) and (2). The
expression in (1) must be evaluated numerically because there is no closed form
representation of it.

For any value of n, we can attempt to optimize k using a one=dimensional
search procedure. In the Appendix we show that the average cost per period
is 1likely to be convex in k for fixed n. We also expect that for a given i the
cost per period (using the optimal safety stock quantity) is discretely convex
in n, and present numerical evidence of this relationship in the next section.
For the moment, let us assume that we can obtain a near=-optimal value of k for

each n, and can therefore express the expected cost per period as a function of



the planned cycle length alone.

We can now use this information to select jointly optimal planned cycle
lengths which satisfy the capacity constraint. Before continuing, it is
important to note that it is desirable from an administrative perspective to
make n an integer, since non=-integral planned cycle lengths are often extremely
difficult to implement. (It is difficult to tell a worker to produce a 3.7 week
supply). Moreover, it is difficult to coordinate production schedules for
products having non-integer production cycles. In the remainder of the paper,
we will assume that n is integer. Nevertheless, the expected cycle length, in
general, will not be an integer. For purposes of capacity planning, the
expected cycle lengths provide much more useful information than the planned

cycle lengths, since they indicate how often, on average, a setup will occur.

Finding Optimal Planned Production Intervals

To find the jointly optimal planned cycle lengths for each item given an

aggregate capacity constraint, we might formulate the problem as:

(P1) minimize I i ¢in¥in
i

1

subject to ; La;¥in <

1n
Ty, =1 ¥i

Yin € {0,1}, ¥ i,n

where Cip = expected cost per period of item i using planned cycle length n
Tin = expected cycle length of item i if it uses planned cycle length n
Pip = T; * PiTinDi = expected processing and setup time for one average
cycle of item i if it uses planned cycle length n
a =

in = 'in/Ty, = fraction of capacity devoted to item i if it uses planned

cycle length n
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1 if item i uses planned cycle length n
Yin

0 otherwise
The objective is to minimize expected total system cost per period subject
to (i) an aggregate capacity constraint, (ii) assignment constraints (one cycle
length for each item), and (iii) binary constraints on the assignments.
Observe that there is only one aggregate capacity constraint. Therefore,
it would be quite easy to relax this constraint using a Lagrange multiplier.

The problem then becomes (after rearrangement of terms):

(P2) minimize ? ﬁ (cin + Aain)yin - A

subject to L Yin = 1, ¥ 1
n

Yin € {0,1}, ¥ i,n
where A = Lagrange multiplier.

Given any value of A, we only need to find the cheapest n for each i since there
are no additional constraints on the YinS- Fortunately, in this application we
know the value of A == it is the cost of overtime for a one unit change in
capacity. Since capacity is measured in percentages of total capacity, A is

the equivalent cost of overtime for the entire regular time operation. This may
be a large value, but is reasonably easy to estimate. Thus, this problem can be
solved by inspection. Some computational effort is required to determine the
aj,s- However, the primary difficulty involves finding the optimal value of k
for each i and n. If one would like to satisfy the capacity constraint with no
overtime, the problem can be solved quite easily by searching for a value of A
such that the constraint is satisfied at equality. Any reasonable procedure to

do this (e.g., branch and bound in conjunction with subgradient optimization)
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would be acceptable since for a given A the problem can be solved by inspection.

Determining Candidate Planned Cycle Lengths

Although equations (1) = (3) are simple conceptually, it is not easy to
specify in advance the values of n for which the corresponding optimal ks should
be found. However, it would be reasonable to expect that values of n near the
optimal unconstrained deterministic problem (i.e., cycle implied by the economic
production quantity) would be advantageous. Since the system is assumed to be
capacity constrained, it is unlikely that smaller values of n would be chosen.
On the other hand, it is quite conceivable that an order cycle up to 2 or more
times the EPQ solution might be used since the relative cost penalty would be
small, but capacity utilization might be eased considerably. The choice of
candidate planned cycles lengths could vary from application to application and

Wwith other administrative considerations, such as ease of implementation.

Comparison with Deterministic Formulation

A deterministic problem can be formulated as P1 with appropriate

definitions modified. The values of Cy in the deterministic problem will tend

n
to be smaller than those of the stochastic problem for two reasons. First, E(n)
in the stochastic problem will tend to be less than n. This phenomenon is
illustrated in the next section. Secondly, there is no safety stock in the
deterministic problem.

In addition, since the expected cycle lengths are smaller than the planned
cycle lengths, the values of ain in the deterministic problem are smaller than
the corresponding values in the stochastic problem. Thus, a solution which is

feasible for the stochastic problem is feasible for the deterministic problem,

but not vice versa.
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5.0 CONVEXITY AND STABILITY ISSUES

We mentioned two conjectures in the last section that we discuss more fully
in this section:
(1) For fixed i and n, the expected cost per period is convex in k; and
(2) For fixed i, the values of Cip are discretely convex in n.
In the Appendix, we show that under reasonable assumptions, there is strong
analytical support for the first conjecture. The second conjecture cannot
be proved rigorously because the optimal value of k (for each i and n)
cannot be expressed in closed form. We performed an empirical study of this
relationship using parameters D = y = 200, h = 1.0, S = 100, 400, 900, or
1600, and o = 10, 30, or 50. The chosen values of S correspond to cycles of
1, 2, 3, or 4 periods, respectively, for the deterministic problem. Some
representative results appear in Figure 1. It appears reasonable to assume
that the Cin values are discretely convex in n for integer values of n.
This helps to limit candidate planned cycle lengths to those near to or
greater than the minimum-cost planned cycle length.

FIGURE 1

The results illustrated in Figure 1 also indicate that the Cin values are
much less sensitive to n (particularly to the right of the minimum point) than
would be predicted by the deterministic model. This has an important
implication: the penalties for deviating from the unconstrained solution (i.e.,
increasing the cycle times) to satisfy a capacity constraint are smaller than in
the deterministic problem. We also found that the unconstrained minimand was
at least as large as the solution indicated by the corresponding (deterministic)
EPQ, making the unconstrained optimal solution closer to capacity-feasibility
than the solution to the deterministic problem.

The results have some other interesting characteristics. We observed that

13



some safety stock was desirable for situations with low demand variability and
with planned cycles lengths not much larger than the EPQ would indicate. A
small quantity of safety stock can help to reduce the number of "short" cycles.
For situations with high demand variability and/or long planned cycles lengths
(relative to the EPQ), it is optimal to carry no safety stock. Unfortunately,
this leads to expected cycle lengths of an integer plus a half when the
distributions of the forecast errors are symmetric. This is possibly the most
difficult situation to deal with from a scheduling pespective since this
roughly means that it is equally likely that a "short" or a "normal" cycle will
occur. If this is true, then there is a 50% chance that the schedule for each
item may change, resulting in only a (0.5)N chance that an entire rotation can
be executed as planned.

This phenomenon led us to consider planned cycle lengths with the "integer
plus one half" characteristic. These alternatives have safety stock which is
disguised as additional cycle stock. Experimental results indicate that for
these planned cycle lengths, it is usually optimal to have no additional safety
stock, 1eadiné to an integer valued expected cycle length--and a relatively high
probability that the actual cycle length will be equal to the expected cycle
length. This makes scheduling easier, as well as making the schedule much
easier to adhere to. Of course, some planned cycle lengths of this type (e.g.,
1.5) are uneconomical and can be excluded from consideration. There are also
administrative and implementation considerations to be addressed.

Companies concerned about schedule stability might consider using planned
cycle lengths only of this type in the optimization problem in section 5. The
economic cost of the additional stability can be determined quite easily by

solving the problem in both ways.
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6.0 COMPUTATIONAL RESULTS

We attempted to gather usable data from the facilty described earlier in
the paper. Unfortunately, the only data readily available were for production
quantities, not "demand" quantities. The data collection effort was further
complicated by variable yield rates and stochastic setup times. (The time to
set up a machine increases if adjacent machines are also being set up at the
same time). While we intend to pursue modeling of and development of a
solution approach for the real problem, it seemed reasonable to "prove out" the
approach described in this paper as a rational first step in better planning.

We adapted some data from an example in Rogers (1958) by increasing the
demands and adding setup times so that the machine capacity would be a
constraint (see Table 1). For coefficients of variation of 0.1 and 0.3, we
determined optimal safety stock levels and the resulting Cip and ajn values. We
then used a simple trial-and-error approach te finding a value of A which would
make the solution capacity-feasible for each coefficient of variation. The
optimal solution for both problems is n* - (6,12,3,7,7). An almost-feasible
solution (using .01% more capacity than permitted) is n* = (6,11,3,7,7) and the
best powers-of-two policy is n* = (8,8,4,4,8) which incurs a penalty of
approximately 1.5% of total costs and uses 1% less capacity.

TABLE 1

7.0 SUMMARY AND CONCLUSIONS

We have developed a procedure to determine jointly optimal planned cycles
lengths and safety stock quantities for several products which are produced on
the same machine. The products have uncertain demand which must be satisfied
within a very short period of time. The solution procedure has two parts:
optimizing safety stock for each candidate planned cycle length for each

product; and selecting the minimum cost set of planned cycle lengths consistent
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with the capacity constraint.

Computational results indicate that the expected cycle lengths are shorter
than planned, even when optimal safety stock quantities are included. Thus, the
(unconstrained) optimal planned cycle lengths are generally longer than those
from a solution to the deterministic problem. That is, the optimal solution
compensates for the fact that the expected cycle lengths are shorter than the
planned cycle lengths.

Results also indicate that positive safety stock is optimal in situations
with low demand variability and if one chooses to use planned cycle lengths
which are small compared with the EPQ solution. In such situations a small
amount of safety stock can significantly reduce the number of "short" cycles.

In other cases, it is more economical to simply reschedule as needed. It was
also suggested that planned cycle lengths of the "integer plus one half" type
would lead to integer=-valued expected cycle lengths and a greater likelihood
that the actual cycle length would be equal to the expected cycle length. This
approach in which extra cycle stock serves as safety stock could lead to much
more stable schedules.

Further research is needed on the short=-term scheduling aspect of the
problem. Although the solution to the production planning problem may satisfy
aggregate annual capacity constraints, there is no guarantee that the various
production cycles will fit together well (even if everything occurs as planned).
Moreover, since the production cycles are random, it may occur by chance that
production requirements in any period far exceed capacity. Therefore, it may be
necessary to produce some products earlier than planned. We are currently
investigating methods for dealing with the short-term problem while taking into
account long=term capacity considerations which are reflected in the analyses

here.
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Additional research is also needed for multi=-product systems where demand

is uncertain but backorders are permitted, and for multi-machine problems.
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TABLE 1

Problem Data

Item S; h; d; (per day) Prod. rate (per day) Setup time (days)
1 50 .05 80 500 .15

2 75 .02 160 1000 .225

3 50 .10 320 800 .15

4 100 .20 40 2500 .30

5 150 .05 240 3750 .45
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APPENDIX

In this appendix, we show that under reasonable assumptions and for fixed

n, the cost per unit time is likely to be a convex function of k.

for fixed i1 and n, the expected cost per period is
h{nD/2 + k/ n=1 g] + S/E(n).

The first partial derivative of this with respect to k is
Wh-1 o = S JE(n)/dk/[E(n)1?

and the second partial derivative with respect to k is
- $32%E(n)/3 k% / [E(M12 + 25 $E(n)/ 9 k12 /[E(n)]°

To simplify the notation, let

T 2 2
a=3 T [ /35 g t22)"1 (2°Dt) /20t 4
J
T=1

T 2 2
b=1 T [ (/or o tT/3)71 o (2DV) /20t g
JT-l
It can be shown that
YE(n)/d k = vn=1 E(n) {D/c + o/[(n=1)D + k/n=1 ¢]}
= /n=1 [(n=1)D + k/n=1 01° a

and

32E(n)/9 K2 = (n=1) [(D2/02 + 2D/[(n=1)D + k/n=1 o]} E(n)

= 2[(n=1)D + k/n-1 0] ¢ a

+ [(n=1)D + k/n=1 ¢13 b/o

To show that (A=1) is convex, we need to show that

200 E(n)/0 kK1%/E(n) = #%E(n)/ 3k > 0
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This is extremely difficult to do because of the forms of a and b. Even if we
recognize that 4 E(n)/d k >0 (which is intuitively evident, since the runout

time is stochastically increasing with k), and that

o 2 2
a> [ o ¢ t2/2)1 e=(2Dt) /20t 4¢ (A-3)
Jo
= [(n-1)D + k=1 o7

b still remains in the formula. The inequality above arises from the fact that
each probability term (i.e., definite integral) in the expression for a is
multiplied by the upper limit of the integral, whereas in the right hand of (A=
3), t takes on values between the lower and upper limits.

The results so far with regard to convexity are inconclusive. If, however,
we make a few reasonable approximations to simplify the formulas, we can show
that 32 E(n)/ 9 kl is likely to be non=positive. Using the results of (A-2) and
(A=3), we have

JE(n)/dk < vn=1 {E(n)[D/o + 0/[(n=1)D + k/n=1 o]]

= [(n=1)D + k/n=1 0]} (A=14)

Now
[(n=1)D + k/n=1 ¢1/D = E(n) = c(k)
where c(k) is a decreasing function of k. (Observe that when k = 0, the expression
on the left hand side is equal to E(n) = 0.5, so ¢(0) = 0.5). Substituting this
into (A-Y4) we get
dE(M)/d k < ¢ E(n)/DLE(n) = c(k)] + c(k)D = (1’1/0)DE(n)
Note that the first term on the right hand side is decreasing as kK increases
since the ratio E(n)/[E(n) = c¢(k)] decreases as k increases. (The numerator of
the ratio increases, but the denominator increases more rapidly). Clearly, the

second term is decreasing in k since c(k) is decreasing in k. Also, the
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absolute value of the third term increases a k increases for ¢ > 1. Therefore,
the bound on the right hand side is decreasing in k. This fact, in conjunction
with the (reasonable) assumption that g E(n)/j) k > 0 make it likely that the

cost per unit time is convex in K.
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