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OPTIMAL FINITE AND INFINITE HORIZON POLICIES FOR
SINGLE-STAGE PRODUCTION SYSTEMS WITH RANDOM YIELDS

ABSTRACT

We analyze finite and infinite horizon problems for a single-stage production
system with deterministic demands and variable yields. It is shown that under certain
regularity conditions on costs and the yield rate distribution, the optimal policy is
multiplicative. That is the optimal input quantity is a real-valued multiple of the net
demand, and for each period the multiplier is independent of the inventory level. We
provide sufficient conditions for existence of these multipliers. The conditions for
existence are somewhat restrictive. It is shown, however, for the infinite horizon problem
that an optimal multiplier exists under much milder conditions. We present computational
results for a simple finite horizon example which show that the multipliers need not be
monotonic as a function of time. We also present results to illustrate the differences
between the optimal policy and a commonly-used heuristic procedure.

KEY WORDS: Inventory/Production--Reject Allowances



OPTIMAL FINITE AND INFINITE HORIZON POLICIES FOR
SINGLE-STAGE PRODUCTION SYSTEMS WITH RANDOM YIELDS

INTRODUCTION

Most production processes, unfortunately, do not make parts that are completely
defect-free. As a result, questions often arise regarding how many parts to input to a
process in order to satisfy a demand or a production target. Several variations of this
problem for single-stage production systems have been studied to date. Karlin (1958a)
shows that a single critical number policy is optimal (under certain mild conditions on
costs) for the single period problem with no setup costs. He also derives (1958b) steady-
state solutions for cases with specific demand distributions. Giffler ( 1960) addresses the
single period problem with a binary penalty for shortage (not per unit, as in most other
papers). Klein (1966) and White (1967) study scenarios in which a single demand can be
satisfied using multiple production runs and develop associated solution procedures.

Silver (1976) develops EOQ-based policies for inventory control under supply
uncertainty. Shih (1980) finds EOQ-based production policies, and optimal policies for a
single period when the yield rate (fraction acceptable) is invariant with the batch size.
Sepehri, Silver, and New (1986) develop heuristics for finding lot sizes when a single
demand can be supplied using multiple production runs with setup costs.

Gerchak, Vickson, and Parlar (1988) address the finite-horizon problem with
random demand and no setup costs, and have found that an order-up-to policy is not
optimal. In a related paper, Henig and Gerchak (1988) also show that the finite-horizon
dynamic programming value functions converge to the infinite horizon value functions.
Mazzola, McCoy, and Wagner (1987) develop optimal and heuristic algorithms for the
multi-period problem with setup costs. Their results indicate that heuristics in which lot-
timing is done first, and production quantities are set equal to yield-adjusted lot sizes,
perform quite well. Other papers are reviewed in a survey by Yano and Lee (1989).

We examine both the finite and infinite horizon problems with deterministic
demands using a dynamic programming approach. There are a variety of circumstances
where demands are deterministic, such as make-to-order situations and facilities supplying
component parts to assembly facilities which operate at a constant pace. We show that
under certain conditions, the optimal policy is multiplicative. That is, in each time period,
there is a multiplier such that the optimal input quantity is the net demand multiplied by this
multiplier. The results are extended to systems with time-varying costs and demands. We



also present results for the infinite horizon problem with constant demands and costs, and
with stationary yield rate distributions.

One can view our results as providing a relatively simple way of specifying optimal
policies over multiple periods under certain conditions (on costs and yield rate
distributions) when the lot-timing is already decided or when setup costs are sufficiently
small that production runs in each period are economically justified. In addition, unlike
some existing procedures, production rules can be specified without full knowledge of
future demands (or where applicable, their distributions). Our procedure essentially
requires only that demands to be satisfied in the imminent production run be known. This
fact, in conjunction with the simple form of the operating policy, make the procedure very
easy to implement, in contrast to the complicated procedures required to solve these
problems optimally under general conditions. While these procedures cannot contribute
directly to increasing the average yield rate or decreasing the variance, using such policies
can help to reduce the amount of "fire-fighting" so that time and resources can be dedicated
toward improving yields.

In the next section we describe and analyze the finite horizon problem with constant
demand, and present conditions for existence of optimal solutions. We then extend the
results to the problem with time-varying demands. We subsequently study the infinite
horizon problem. Results for a simple example are then reported. Finally, we present
some conclusions.

THE FINITE HORIZON PROBLEM

The finite horizon problem has N periods, indexed n =1,...,N. There is a known
demand in each period and all shortages are backordered. Production and inspection are
done in batches. It is assumed that all parts are inspected and that the inspection process is
perfect. Since all demand must be satisfied eventually, we take the revenue stream to be
essentially fixed. Our concem is that of minimizing the cost of meeting these demands.
We assume that all defective parts are disposed at no additional cost.

A variable cost is charged per unit of input, representing the cost of production and
inspection, and a per unit inventory holding cost is charged on inventory remaining at the
end of the peribd. A shortage cost per unit per period is charged, which reflects the cost of
maintaining a backorder for one period. At a minimum, this would represent the
opportunity cost of delayed revenue. It could also include the loss of customer goodwill
due to the delay and the cost of paperwork (or computer work) associated with backorders.



For the last period in the horizon, the inventory holding cost and shortage cost are
defined differently so as to reflect the true economics more accurately. The inventory
holding cost in the last period is the salvage cost (cash flow out due to disposal). If the net
salvage value is positive, this cost will be negative. The shortage cost in the last period
reflects the revenue lost per unit for all unsatisfied demand at the end of the horizon. Thus,
any deviation from the planned revenue is included as a cost. The objective is to minimize
discounted expected costs over the horizon. We will assume that it is profitable to produce
the product.

We assume that the yield rate distribution is stationary over time, continuous, and
twice-differentiable. By yield rate we mean fraction of the input quantity which is
acceptable. We also assume that it is invariant with the batch size. This assumption is
applicable either when the batch sizes are sufficiently large that small changes of the batch
size do not affect the yield rate distribution, or when various factors (e.g., quality of the
input material, environmental factors, equipment calibrations) tend to affect the entire batch
in the same way.

For simplicity, we initially assume that all costs and demands are constant over the
horizon (except for the last period). Later we explain how the analyses can be extended to
time-varying demands and costs.

The following notation is used throughout the paper:

N = number of periods in the horizon,

w = variable cost per unit of input,

h = inventory holding cost for periods 1,...,N-1,
hy = salvage cost in period N,

I = inventory available at beginning of period n,
T = shortage cost per unit per period in periods 1,..,N-1,
TN = shortage cost per unit in period N,

d = demand per period,

o = one-period discount factor, 0 <a < 1,

P = yield rate (random variable),

P = yield rate (actual), 0 <p <1,

f(e) = density of the yield rate,

F(s) = cumulative distribution of the yield rate,

Q, = input quantity in period n, and

Q, (@) = optimal input quantity in period n given L.



Let us define

C,(I,,Q)= discounted expected cost for periods n,...,N if initial inventory in
period n is [, and the decision is Q,
C(I) = minimum discounted expected cost for periods n,...,N
= min Cn(In,Qn), and
Qn
Q I, = optimal value of Q, given I

The dynamic programming recursion equations for d > I, are:

C,(,Q)=wQ, +7 j(gd'anQn (d-L - pQ,)f(p)dp

h (! - d+1)f(p)d
+ J( a1yq, P P

+a J.ol C..} (I +pQ, - f(p)dp,  n=1,...,N-1

and
Cn(InQn) = WQy + Ty J AN @ Ty~ pQuteIp

1 .
+hy I(d-IN)/QN (PQy - d + If(p)dp.

The cost functions represent variable production and inspection costs, expected
shortage costs, expected inventory holding costs, and for n < N, the discounted expected
cost in all subsequent periods.

If d < I, it is not necessary to produce. Since production costs are constant over
time, and the yield rate distribution does not change with the input quantity, normally there

is no incentive to produce earlier than necessary. We initially assume that this is true, but
later develop conditions on costs which guarantee that Q, =0ifd <I,n=1,..N.



The problem for period N (assuming d > Iy) is to

minimize  Cp(InyQy) = WQy + Ty j (gd'IN)/QN (d-Iy - pQu(p)dp

1 -
+hy j @100, POvd K.

The derivative with respect to Qy; is

ICN(InsQu)/AQy = W - Ty J’ éd'IN)/QN pf(p)dp + hy J(dll Y pf(p)dp
N

and Qf\'} is the value of QN which equates this to zero. Itis easily shown that Cy; is convex
SO QIfI 1s the unique global optimum. A condition for Q;, =0is dCy\ /0Qy 2 0 for all Qu 2
0. If d <Iy;, this is true if

w + hyE(P) 2 0,

or in words, if the variable production cost is greater than or equal to the salvage value of
the expected good output. Recall that period N is the end of the horizon, presumably when
the product is discontinued. Thus, this condition is not unreasonable. Indeed, if the
condition is not satisfied, one would want to produce an infinite amount.

Let By = (d-Iy) /Qn(N), where Qu(ly) is the optimal value of Qy given Iy. By
substitution into Cy (In:Qpp)» we get

C§ (In) = (d-I[(my + hy)F(By) - hyl-

This is obtained by observing that if dCy; /(dQy = 0, it must also be true that Q - dCy /0Qy
=0. A little algebra leads to the expression above. The reason that the variable cost term
does not appear in the optimal cost expression is that it is implicit in the value of By. Note
that F(BN) =0if Iy 2 d, since (d-Iy /QI:J (In) = -o= when Iy > d. Thus, this expression is
valid even when I, > d. To be precise, however,we will separate the cases of Iy < d and
Iy 2 d in the remainder of the paper.



Now Iy =Iy.; + pPQn.p - 4, s0 if Qy_q > 0 (because Iy ; < d), we have
CI: (In.p +PQn.p - D) = 2d-Tyq - PQu. I, + hy)F(By) - hy]
if p < (2d-Iy.)/Qy.; (.., if the actual yield is such that Iy < d). Otherwise
Cx (. +PQu.p - ) =hy(Iy g - PQyp - 20).
If QN-I =O, we have
Cf (I - ) = 2d-Ty [Ty + hy)F(Byp) - hy]
if Iy.; <2d. Otherwise

C§ (IN-I - d) = hN(IN-l - Zd).

We can now write

Cy (.1 +PQu.p - @) =-p [(my + hy)F(By) - hy]

if p <(2d - In.1)/Qp. 1> Otherwise

C;I‘(IN-I + pQN_l - d) = th

where C, +'1 denotes the derivative with respect to Q. ForIp,n=1,...,N-1

8C,(1,,Q)/BQ, = w - T j @L)Qn pitp)dp + b j <11-1,,> o, PO
n

+a Jol Co.) (1 +pQ, - Df(p)dp.



Therefore

ICN.1(IN.1 QN /OQ = W - T Jéd'IN-l)/ Qn-1 pf(p)dp

+h[! f(p)d
j( d )0y, PO

- 0 [y + h)F(By) - hy] J’ éZd-IN-l/QN-l pf(p)dp

+0oh 1 f(p)d
o NJ(M_IN_I)/QN_I pf(p)dp

=w+hE(P)- (1 +h) J (gd'IN-l)/QN-l pf(p)dp
- o [(my + hy)F(By) - hn] JéZd'IN-l/QN-l p(p)dp

hy | L £(p)dp. 1
o NJ(Zd'IN-x)/QN-l pf(p)dp 1)

It is easily shown that Cy_; is convex in Qy_;, and Cy_; is strictly convex for Q4
> 0. Therefore, if Qy_; > O is optimal, the optimal value of Qy_; satisfies the first order
condition. Observe that the optimal value of Qy_; depends upon both d-Iy_; and 2d-Iy ;.
As such, we cannot claim, in general, that there exists some Py_; such that Q] =
(d-In 1)/Bn.- On the other hand, if we can guarantee that (possibly after some initial
transient) [, <d for all n, then

Py Q)0 = - (VO prpip+n [ o pfCo)dp

- o [(my + hN)F(BN) - hy] E(P)



and the optimal policy would have the form Qy_;= (d-Iy.})/By.; for some unique By ;.
This would be true because (2d-Iy_;)/Qy.; Would always be greater than or equal to 1, so
the last term in (1) would vanish. For Iy ; >d, dCy_1/Qy.; Will be non-negative for all
Q. 20if

w + hE(P) - & [(my + hy)F(By)- hy) EP) 2 0.

This condition is that the variable production cost plus the cost of holding the expected
good output (fraction of a unit) is greater than or equal to the discounted expected saving
from reducing the net demand in period N by the expected output. We also have

Cyp (. = (d - I, [ + WEBy.p) - h]

+ 0 (2d - Ty.p) [(my + hyg) F(Byp) - By

Repeating this process, we find that

aCN.j (IN_j»QN.j)/aQN.j =w-T J.éd-IN'J') /QN'j pf(p)dp

h ! f(p)d
i J(d-IN_j)/QN_j pi(p)dp

i1
2z ok [(n + h)F(Byp)- h] E(P)

- ol [(my + hy) FBy) - b E®), j=1,. .., N-1 (2

and
* ) k-1
CN-j (IN-j) = k§1 af* (kd- IN_j)[(n + h)F(BN_j +k.1)- JE®)
+od [(j+1) d-TIyjll(my + hy) F(By) - by
Both of these relationships can be proved by induction, but the proofs are straight-

forward so we do not include them here. It is also easy to show that Cy; (Inj» Q) 18
convex in QN-j forj=0,. .. ,N-1,sothe Qg}, values are those which equate the first

partial derivatives in (2) to zero.



iy >d, BCN_j/QN_j will be non-negative and Qﬁ_jwill be equal to zero if

-1
w +hE(P) - :zl o [(r + h)F(By)- h] E(P)

- of [(my + hyy) F(By) - hy] E(P) 20. (3)

This says that the variable production cost plus the cost of holding the expected good
output exceeds the discounted expected saving from reducing the net demand by one unit in
period N-j+1 (i.e., the subsequent period) and all future periods. Thus, the condition in
(3) can be fairly restrictive for short time horizons and high discount factors (c. close to 1),
where the effect of 7y can make it optimal to produce in anticipation of demand in future
periods. There are, of course, other constraints such as production or storage capacity,
which might prevent this practice. It is also worthwhile to note that the condition (3) is
essentially a condition of no speculative motive for producing and holding inventory.
Hence, while it is restrictive in a purely economic sense, in concept, it is not substantially
different from assumptions commonly made in the inventory literature. We will show later

that this restrictive assumption applies only to finite horizon problems.
The solutions would be relatively easy to find under the conditions that I < d for all

n. The policy would be multiplicative in that C;} is equal to the net requirement, d-L,
multiplied by a factor 1/B. In the next section we develop and prove the sufficiency of
conditions on F(-) that will guarantee L < d for all n.

Conditions for Optimality of a Multiplicative Polic

We need to develop conditions to ensure that (after some initial transient) I <d for
all n. If one starts with Iy>d and condition (3) is satisfied, then the optimal policy would
be to set Q, = 0 until there is a positive net demand. One only needs to find Q’r“l from that

point until the end of the horizon.
Suppose that we have I, <d for some n. Since I

[,+pQ,-d<d

I, + pQ, - d, we need

n+l =

or

pQ,<2d-1,



forall I, <d. Now Q; =(d- L )/B, so we need

p(d-I)/B,<2d- 1,

or

p<fB,@d-L)/dIL).
Let p= maximum achievable value of p and p = minimum achievable value of p. Since p is
random, the inequality above holds only if

P <2B,2d - I)/(d-L). @)

Since we do not know B, and I a priori, this relationship must hold for all possible 3, and

In. We first investigate the value of (2d - Ip)/(d - I). This ratio is strictly increasing with
I, for Iy <d. Thus, one possible lower bound on this ratio can be obtained by taking the
limit as I--> - . A tighter bound is obtained by observing that the worst case value of I
< 0 (largest cumulative deficit) occurs when we set = pand the observed yield rate in

each period is p. If we start with I =0, a little algebra shows that this smallest value of I

18
n

-dZ(p-pk
k=1
Taking the limit as n — oo, we have

lim In =-d(- p/{1- (- DI

n-> oo
Letr=p-p. Then (4) is satisfied by all I if
p<B, 2
or B, > Pp(21) (5)

which are obtained by appropriate substitutions.

Clearly, (5) will be satisfied by all B if the right hand side is less than or equal to

zero. This, however, is a rather strong condition. Observe that we must have B, 2 p to

ensure that we are not intentionally producing now for subsequent periods. This, in
conjuction with (5), can be guaranteed if

10



pQr)2p

or equivalently, p2 p(2+p)/(1+p). (6)

We must also impose the condition

p<2p. (7
to ensure that we do not completely satisfy demand for the subsequent period by chance if
we choose B, = p and obsefve a yield of p. Thus, p/(2-r) is constrained to lie within a
particular range for each value of p. The range, plotted as a function of p, is shown in
Figure 1. Recall that these conditions are sufficient, not necessary, and require no
additional assumptions about the form of F(:), other than its domain of support. Thus,
while they appear to be strong, in practice they may not be problematic. One of the reasons
for such a strong condition is that a large number of backorders were allowed to accumulate
so as to allow complete generality of our results. Yet, in practice, such a large number of
backorders would not be permitted. Thus, much milder conditions would apply in
practice. Indeed, it is possible to show (and it follows directly from the above arguments)
that in the case of lost sales, we would have I 2 0, and the only condition would be (7),
which many real-world yield rate distributions satisfy. Of course, if the s are known,

we can check the much milder condition in (4) instead.
FIGURE 1

We have thus proved the following theorem:
Theorem 1: If conditions (3) and (7) are satisfied, and either

(a) there is complete backordering and p(2+p)/(1+p) < p < 2p, or
(b) there is complete lost sales,

the optimal policy has the form

(d-I)B,  iflp<d

*

0 otherwise

where 0 < < 1.

We should note that for the case of lost sales, the shortage costs must be modified
to account for lost revenue. Throughout the remainder of the paper, we will assume that

11



the optimal policy has the form described above. We next derive conditions in which the
B,, values are guaranteed to exist.

Conditions for Existence of the ﬁn Values

Simplifying (2) and equating it to zero, gives the first order conditions

B o
Jo pf(p)dp = {w + hE(P) - kE_LIa [( + h)F(By.)- hl E(P)
- o [(my + hy) F(By) - hy E@)}/(m +h), 0<j<N-1 (®)
and
Bx
[ pfP)dp = [w + hyE®))/(Ty + hy). 9)
0

To demonstrate that the B, values exist, we must show that there is a value of
B, 0 < B, <1, which solves (8) or (9). Two conditions on costs are needed:

(i) w<NE(P),
and

i1 .
(ii) w+hE(P)- k§1 o [(m + h)F(By.)- h] E(P)- o [(my + hyy) F(By) - hyd E(P) 2 0.

The first condition ensures that it is profitable to produce the product. The second

condition is a regularity condition on costs.
Observe that the left hand side of (9) is less than or equal to E(P) for all By. Itis

precisely equal to zero at By = 0 and equals E(P) at By = 1 . Furthermore, it is
monotonically non-decreasing in B. Thus, for By to exist, we only need the right hand

side of (9) to lie between 0 and E(P). Obviously it is non-negative, so we need

w + hy E(P) < (my + hyE(P)
or

w <y E(P)

which 1s, condition (i) above.
We need to show that By 2 0, which is equivalent to showing that the term in

braces in (8) is non-negative. This is the same as the condition in (3) which ensures that

* N
QN-j =0if In—j > dﬂ'j

12



If condition (i) is not satisfied, then a value of By sufficiently large to satisfy the
first order condition for period N does not exist. In other words Q;I < d-In, and it is not

profitable to satisfy demand. If condition (i) is not satisfied, a value of By sufficiently

small does not exist and one would want to input an infinite amount.

'FINITE HORIZON PROBLEM WITH TIME-VARYING DEMANDS AND COSTS

In the previous section, we discussed the necessary condition for optimality of a
multiplicative policy, i.e., I5< d for all n. When demands and costs are time-varying,
somewhat stronger conditions are needed. The first condition is that there is no speculative
motive for holding inventory:

wp + hy E(P) 2 o0 wpy1 (10)

where the subscript indexes the time period. This says that it is more expensive to produce
now and to hold the expected output than to incur the discounted cost of production in the
next period. This condition is clearly needed to ensure that production quantities are
limited, so that Iy <d,..

The second condition relates to requirements on F (-) which are similar to those for
the case of constant demand. We need

In+1=1In+pQn - dn <dp+1

pQn <dp +dn+1 - In.

or

Substituting Q, = (dn - In) /B, we have
p < B, (dn+1 +dn - In)/(dn - In). (11)

Suppose there is a maximum demand level, dpax, and a minimum level, dmin.
Then, by taking the limit of I as n-->e (as in the previous section) to obtain the smallest
possible value of Ip, and noting that the right hand side of (11) is decreasing with dp and
increasing with dp41, it is easy to show that a lower bound on the right hand side of (11) is

B, {dmin [1 - (p- DI+ dmax }/dmax

Since we must have all p less than this value, and B 2 p, one of the conditions for I <d,

forallnis

13



p <P {dmin [1 - (P- P)]+ dmax }/dmax- (12)

This condition imposes tighter restrictions on the range of p if dp fluctuates widely from
period to period and is identical to (4) when d,, = d for all n. As in the case of constant
demand, we must also ensure that we do not intentionally produce enough to satisfy

demand for two consecutive periods. Thus, we require that
(P/ P) dmax < dmin + dmax (13)

since otherwise we might choose 3 = p in a period in which demand is dmax and observe
a yield of p, thereby satisfying demand in the following period if it happens to be equal to
dmin.

Under conditions (12) and (13), a multiplicative policy is optimal. To ensure that
the By, values exist, we also require that

N-1

(b) wn + hy E(P) 2 e ok [(m, + h)F(By)- hy] + a1 [(my + hy)F(By)- hyD) E(P),
=n+

n=1l,. .. ,N-1

which are time-varying equivalents of (i) and (ii) in the previous section.
If all of the above conditions are satisfied, the optimal values of By satisfy

N-j )1
IO ﬁf(P)dP = [WN.j + hN—j E(P) - kél ak (TN * hN-k)F(BN-k)' hn.id E(P)
- [(my + hy)F(By)- hy] E(P)}/ (nN-j + hN-j)’ j=1,. . . ,N-1
and
By,
IO pf(p)dp = [wy + hy E(P))/ (my + hy)-

14



INFINITE HORIZON PROBLEM

We examine the infinite horizon problem with constant costs and constant demands.
Here, the conditions on costs for optimality of a multiplicative policy are much milder than
in the finite horizon problems, and they are discussed later in the section .

To find the optimal solution for the first period in an infinite horizon problem, we
can take the limit of (8) as N— «. We have

B oo
| pf(p)dp = {w +hE(P)- kzl ok [(n + h)F(B)- h] E(P)}/(r + h)
0 =

where [ denotes the optimal infinite horizon value. Simplifying, we get

B
[ pf(p)dp = {w + hE(P) -[0/(1-0)] [(x + h)F(B)- h] E(P)}/ (m + h). (14)
0

The left hand side of (14) is monotonically increasing in B while the right hand side is
monotonically decreasing in . Thus, if two functions intersect, they intersect in a unique
value of B. These functions will intersect if the right hand side is less than or equal to E(P)
for some 0 B < 1. Since the right hand side achieves its minimum at § = 1, let us
consider this value of B. The condition for a unique optimal value of P to exist is

{w + hE(P) - [a/(1-a)][(r + h)F(B)- h] E(P)}/ (m + h) < E(P).
Simplifying this, at f = 1 we get
(1-a) w < Tt E(P). (15)

This says that the opportunity cost of processing a unit in this period rather than next period
(i.e., loss in terms of discounted cash flow) must be less than the shortage cost which
would be saved from the expected output. In other words, this means roughly that it is
profitable to produce. In general, this is a very mild condition.

We next examine when Q =0 is optimal if I > d. To find f, we must solve the first
order condition

15



w +hE(P) - [/ (1-a)][(m + h)F(B)- h] E(P)
B
-(m+h) f pf(p)dp =0.
0

Let us assume that it is possible to ensure I < d for the remainder of the (infinite )
horizon, but that in the current period I > d. In this case B = (d-1)/Q <0 forall Q 20, so

the first derivative becomes
w + hE(P) - [a / (1-a)] h E(P) > 0.

Thus, one does not want to produce. Since this argument applies to all periods, the
only economic condition necessary to ensure that I <d is condition (15) .

We can now state the result, which we have just proved above:
Theorem 2: If conditions (6) and (7) are satisfied, and (1-a) w £ ® E (P), the optimal

infinite horizon policy is

@LYp  ifln<d
Q=

0 otherwise

where the unique value of B satisfies (14).

EXAMPLES

To illustrate characteristics of the optimal multipliers, we present examples to
illustrate two interesting results. We use a uniform yield rate distribution with E(P) = 0.90,
p = .80, and p= 1.0 to facilitate computation. Consider a problem with
w=9h =018 forn=1,.,N-1, hy= -10,n, =02forn=1,.., N,y = 18 and
o = 0.98. The parameters were chosen to be consistent with a profitable product produced
monthly, with no expected gain (or loss) due to salvaging the product at the end of the
horizon.

Using equation (9), we find By = 0.80 and F(By) = 0. Then, using equation (8),
we find By_; = 1.0, Byp = 0.991, By.3 = 0.9986, B4 =0.9996. It is already apparent
that the BN-j values need not be monotone. This arises principally because of the manner in

which discounting affects the right hand side of equation (8).

16



The optimal value of B for the infinite horizon problem is approximately 1.0. The
solutions for the infinite horizon problem appear to be converging toward this value
quickly. Itis interesting to note that the optimal solutions indicate that one should simply
input the net demand. This arises in spite of the apparent profitability of the product. The
discounted expected cost of the optimal solution is $49,000. Twenty-five simulation runs
using a rule-of-thumb policy in which one adjusts production quantities for average yield
losses give costs having a mean of $50,145 and a standard deviation of $371 . While the
two costs may not appear to.be significantly different, at least $44,100 of both costs is
attributable to non-controllable production costs (i €, the infinite horizon cost of inputting
just the stated demand in each period). Thus, using an optimal policy can reduce
controllable costs considerably, and the difference between the optimal and rule-of-thumb
policy is statistically significant in this example.

SUMMARY AND DISCUSSION

We have derived the form of optimal finite and infinite horizon policies for systems
with variable yield rates and deterministic demand under certain conditions on costs and the
yield rate distribution. The general form of the policy is

@B, ifl<d
Q; -

0 otherwise

where B, = B when the horizon is infinite. The policy is multiplicative in that the net
demand is multiplied by a factor 1/8, which is independent of d and L.

Setup costs can be incorporated in a heuristic fashion relatively easily. For an
infinite horizon problem with constant demands and costs, we can determine a production
interval using average yield rates and then set the time period for the production control
problem equal to this interval. For a finite horizon problem, one can determine a lot-timing
policy using average yield rates and yield-adjusted costs. Then, by scaling costs to reflect
the length of the time periods (where appropriate), one can use the model with time-varying
demands and costs to solve the production control problem. These are, of course,
heuristics, but are simple to implement. Further work needs to be done to evaluate this
proposed heuristic. Since McCoy, et al. have found that sequentially determining lot
timing then lot sizes performs well, one might expect that a similar sequential procedure
with optimal lot sizing (given the lot timing) would perform even better.

17



Additional work also needs to be done to incorporate uncertain demand. Some
recent work along these lines has been done by Gerchak, et al. Unfortunately, the
multiplicative property of the optimal policy does not extend to the case of uncertain
demand. There are, however, many instances where demand over a finite horizon is firm
or there is a deterministic production target in the current period. In these cases, the
procedure outlined in this paper can be used to find optimal solutions since it does not
require demand information beyond the current period. In addition, further research is
needed to extend approaches for single-period, multi-stage systems (i.e., Lee and Yano,
1988) to multiple periods.
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OPTIMAL FINITE AND INFINITE HORIZON POLICIES FOR
SINGLE-STAGE PRODUCTION SYSTEMS WITH RANDOM YIELDS

ABSTRACT

We analyze finite and infinite horizon problems for a single-stage production
system with deterministic demands and variable yields. It is shown that under certain
regularity conditions on costs and the yield rate distribution, the optimal policy is
multiplicative. That is the optimal input quantity is a real-valued multiple of the net
demand, and for each period the multiplier is independent of the inventory level. We
provide sufficient conditions for existence of these multipliers. The conditions for
existence are somewhat restrictive. It is shown, however, for the infinite horizon problem
that an optimal multiplier exists under much milder conditions. We present computational
results for a simple finite horizon example which show that the multipliers need not be
monotonic as a function of time. We also present results to illustrate the differences
between the optimal policy and a commonly-used heuristic procedure.

KEY WORDS: Inventory/Production--Reject Allowances



OPTIMAL FINITE AND INFINITE HORIZON POLICIES FOR
SINGLE-STAGE PRODUCTION SYSTEMS WITH RANDOM YIELDS

INTRODUCTION

Most production processes, unfortunately, do not make parts that are completely
defect-free. As a result, questions often arise regarding how many parts to input to a
process in order to satisfy a demand or a production target. Several variations of this
problem for single-stage production systems have been studied to date. Karlin (1958a)
shows that a single critical number policy is optimal (under certain mild conditions on
costs) for the single period problem with no setup costs. He also derives (1958b) steady-
state solutions for cases with specific demand distributions. Giffler ( 1960) addresses the
single period problem with a binary penalty for shortage (not per unit, as in most other
papers). Klein (1966) and White (1967) study scenarios in which a single demand can be
satisfied using multiple production runs and develop associated solution procedures.

Silver (1976) develops EOQ-based policies for inventory control under supply
uncertainty. Shih (1980) finds EOQ-based production policies, and optimal policies for a
single period when the yield rate (fraction acceptable) is invariant with the batch size.
Sepehri, Silver, and New (1986) develop heuristics for finding lot sizes when a single
demand can be supplied using multiple production runs with setup costs.

Gerchak, Vickson, and Parlar (1988) address the finite-horizon problem with
random demand and no setup costs, and have found that an order-up-to policy is not
optimal. In arelated paper, Henig and Gerchak (1988) also show that the finite-horizon
dynamic programming value functions converge to the infinite horizon value functions.
Mazzola, McCoy, and Wagner (1987) develop optimal and heuristic algorithms for the
multi-period problem with setup costs. Their results indicate that heuristics in which lot-
timing is done first, and production quantities are set equal to yield-adjusted lot sizes,
perform quite well. Other papers are reviewed in a survey by Yano and Lee (1989).

We examine both the finite and infinite horizon problems with deterministic
demands using a dynamic programming approach. There are a variety of circumstances
where demands are deterministic, such as make-to-order situations and facilities supplying
component parts to assembly facilities which operate at a constant pace. We show that
under certain conditions, the optimal policy is multiplicative. That is, in each time period,
there is a multiplier such that the optimal input quantity is the net demand multiplied by this
multiplier. The results are extended to systems with time-varying costs and demands. We



also present results for the infinite horizon problem with constant demands and costs, and
with stationary yield rate distributions.

One can view our results as providing a relatively simple way of specifying optimal
policies over multiple periods under certain conditions (on costs and yield rate
distributions) when the lot-timing is already decided or when setup costs are sufficiently

-small that production runs in each period are economically justified. In addition, unlike
some existing procedures, production rules can be specified without full knowledge of
future demands (or where apglicable, their distributions). Our procedure essentially
requires only that demands to be satisfied in the imminent production run be known. This
fact, in conjunction with the simple form of the operating policy, make the procedure very
easy to implement, in contrast to the complicated procedures required to solve these
problems optimally under general conditions. While these procedures cannot contribute
directly to increasing the average yield rate or decreasing the variance, using such policies
can help to reduce the amount of "fire-fighting" so that time and resources can be dedicated
toward improving yields.

In the next section we describe and analyze the finite horizon problem with constant
demand, and present conditions for existence of optimal solutions. We then extend the
results to the problem with time-varying demands. We subsequently study the infinite
horizon problem. Results for a simple example are then reported. Finally, we present
some conclusions.

THE FINITE HORIZON PROBLEM

The finite horizon problem has N periods, indexed n =1,...,N. There is a known
demand in each period and all shortages are backordered. Production and inspection are
done in batches. It is assumed that all parts are inspected and that the inspection process is
perfect. Since all demand must be satisfied eventually, we take the revenue stream to be
essentially fixed. Our concern is that of minimizing the cost of meeting these demands.
We assume that all defective parts are disposed at no additional cost.

A variable cost is charged per unit of input, representing the cost of production and
inspection, and a per unit inventory holding cost is charged on inventory remaining at the
end of the period. A shortage cost per unit per period is charged, which reflects the cost of
maintaining a backorder for one period. At a minimum, this would represent the
opportunity cost of delayed revenue. It could also include the loss of customer goodwill
due to the delay and the cost of paperwork (or computer work) associated with backorders.



For the last period in the horizon, the inventory holding cost and shortage cost are
defined differently so as to reflect the true economics more accurately. The inventory
holding cost in the last period is the salvage cost (cash flow out due to disposal). If the net
salvage value is positive, this cost will be negative. The shortage cost in the last period
reflects the revenue lost per unit for all unsatisfied demand at the end of the horizon. Thus,
any deviation from the planned revenue is included as a cost. The objective is to minimize
discounted expected costs over the horizon. We will assume that it is profitable to produce
the product.

We assume that the yield rate distribution is stationary over time, continuous, and
twice-differentiable. By yield rate we mean fraction of the input quantity which is
acceptable. We also assume that it is invariant with the batch size. This assumption is
applicable either when the batch sizes are sufficiently large that small changes of the batch
size do not affect the yield rate distribution, or when various factors (e.g., quality of the
input material, environmental factors, equipment calibrations) tend to affect the entire batch
in the same way.

For simplicity, we initially assume that all costs and demands are constant over the
horizon (except for the last period). Later we explain how the analyses can be extended to
time-varying demands and costs.

The following notation is used throughout the paper:

N = number of periods in the horizon,

w = variable cost per unit of input,

h = inventory holding cost for periods 1,...,N-1,
hy = salvage cost in period N,

I = inventory available at beginning of period n,
T = shortage cost per unit per period in periods 1,..,,N-1,
N = shortage cost per unit in period N,

d = demand per period,

a = one-period discount factor,0 <a <1,

P = yield rate (random variable),

P = yield rate (actual),0<p <1,

f(e) = density of the yield rate,

F() = cumulative distribution of the yield rate,

Q, = input quantity in period n, and

Q, @) = optimal input quantity in period n given L.



Let us define

C,(I,:Q,)= discounted expected cost for periods n,...,N if initial inventory in
period n is [ and the decision is Qn,
C;(In) = minimum discounted expected cost for periods n,...,N
= min C([,Qp), and
Qn
Qi(Iy) = optimal value of Q, given I

The dynamic programming recursion equations for d > I are:

C,(1,Q) =wQ, + 7 J (gd'anQn (d-L, - pQ)f(p)dp

h (! - d+L)f(p)d
+ J( a1yjq, PG iE)Pp

+a jol C..} (I +pQ, - Of(p)dp,  n=1,...,N-1

and
Cn(In:Qn) = WQy + TN j (N @1y - pQut(pdp

hy |1 - d + L)f(p)dp.
+ hy J.( d-1/Qx (PQN + I\pf(p)dp

The cost functions represent variable production and inspection costs, expected
shortage costs, expected inventory holding costs, and for n < N, the discounted expected
cost in all subsequent periods.

If d < Iy, it is not necessary to produce. Since production costs are constant over
time, and the yield rate distribution does not change with the input quantity, normally there

is no incentive to produce earlier than necessary. We initially assume that this is true, but
later develop conditions on costs which guarantee that Q, =0ifd <L, n=1,..,N.



The problem for period N (assuming d > Iy) is to

minimize  Cy(lyQu) = WQy + iy J’ (gd'IN)/QN (d-Iy - PQUf(P)dp

+hy[! -d + L)f(p)dp.
NJ G100, PQvd+ WX
The derivative with respect to Qy; is
ICN(INQu)/OQy = W - Ty J éd'IN)/QN pf(p)dp + hy J(d{IN)/QN pf(p)dp

and Qg} is the value of QN which equates this to zero. Itis easily shown that Cy; is convex
50 Qy is the unique global optimum. A condition for Qy = 0 is dCy /0Qy 2 0 for all Qy 2
0. If d < Iy, this is true if

w + hyE(P) 20,

or in words, if the variable production cost is greater than or equal to the salvage value of
the expected good output. Recall that period N is the end of the horizon, presumably when
the product is discontinued. Thus, this condition is not unreasonable. Indeed, if the
condition is not satisfied, one would want to produce an infinite amount.

Let By = (d-Iy) /Qn(y), Where Qu(Iy) is the optimal value of Qy given Iy. By
substitution into Cy (In,Qp)» we get

Cy () = (d-I[(my + b FByy) - hyl.

This is obtained by observing that if dCy; /(0Qy = 0, it must also be true that Q - dCy /0Qy
=0. Alittle algebra leads to the expression above. The reason that the variable cost term
does not appear in the optimal cost expression is that it is implicit in the value of By. Note
that F(By) = 0 if Iy > d, since (d-Iy) /QIfI (In) = -oo when Iy > d. Thus, this expression is
valid even when Iy >d. To be precise, however,we will separate the cases of Iy < d and
I 2 d in the remainder of the paper.



Now Iy =1y, +pQy.; - d, s0 if Q. ; > 0 (because Iy <d), we have
ng (In.p T PQu.p - d) = 2d-Iy; - pPQu. I, + hYF (Bpp) -yl
if p < (2d-Iy.1)/Qn.1 (€., if the actual yield is such that Iy <d). Otherwise
Cn (o +PQup - @) = hy(yg - PQyq - 2d).
If Qy.; =0, we have
if Iy.; <2d. Otherwise
Cﬁ (IN-]. - d) = hN(IN'l - 2d).

We can now write

CY (n.1 +PQu. - @) =- P [(my + hy)F(By) - hy]

if p < (2d - I} )/QN.p; Otherwise

CN*"(IN_I + pQN'l - d) = th

where C,; denotes the derivative with respect to Qp. ForIp,n=1,..,N-1

0C, 1 Q)00 = w - | @1)Qn ptp)dp +h j(ld_ln) . PrEXP

+a Iol C..} (1, +pQ, - Df(p)dp.



Therefore

0CN. 1IN QN./OQu =W - T Jéd'IN-l)/ Qn-1 pt(p)dp

h {1 f(p)d
+ j(d’IN-l)/QN-l pf(p)dp

- o [(my + h)F(By) - hy] Jézd'IN-l)/QN-l pf(p)dp

hy |1 f(p)d
+ O N-[(zd'IN-l)/QN-l pf(p)dp

=w +hE(P)- ( +h) J' (gd'IN-l)/QN-l pf(p)dp
- & [(myg + h)F(By) - hn] j(gzd'IN-l/QN-l pf(p)dp

hy |1 f(p)dp. 1
+ohy J(zd'IN-l)/QN-l pf(p)dp (1)

It is easily shown that Cy_j is convex in Qy_, and Gy is strictly convex for Qy
> (. Therefore, if QN-I > O is optimal, the optimal value of Qy;_; satisfies the first order
condition. Observe that the optimal value of Qy_; depends upon both d-Iy_; and 2d-Iy ;.
As such, we cannot claim, in general, that there exists some BN-I such that QN_’{ =
(d-Ipy 1)/Bn.- On the other hand, if we can guarantee that (possibly after some initial
transient) [, <d for all n, then

aCN-l(IN-l’QN-l)/aQN-I =W-T J’éd_IN-l)/QN-l pf(p)dp +h J(]A-IN 1)/QN_1 pf(P)dP

- o [(mog + hy)F(By) - hy] E(P)



and the optimal policy would have the form Ql\}“_l = (d-Iy.1)/By.; for some unique By ;-
This would be true because (2d-Iy;_;)/Qy. would always be greater than or equal to 1, so
the last term in (1) would vanish. For Iy >d, E)CN_I/QN_1 will be non-negative for all

Qu.p 20if
w + hE(P) - a [(Ty + hy)F(By)- hy] E() 2 0.

This condition is that the variable production cost plus the cost of holding the expected
good output (fraction of a unit) is greater than or equal to the discounted expected saving
from reducing the net demand in period N by the expected output. We also have

C[\}‘:l (n.p =@ - Ll + h)F(BN-l) - h]

0 (2d - Ty ) [y + hyy) (B - byl

Repeating this process, we find that

8CN_J- (IN-j’QN-j)/ aQN-j =wW-T J‘éd-IN-j)/ QN-] pf(p)dp

h! f(p)d
. J.(d-IN_j)/QN_j pi(p)dp

i1
Y ok [(r + h)F(By)- hl E(P)

- o [(my + hy) FBy) - E®), j=1,. .., N1 (2

and
Cy. R él o (k d- Iy )[(% + WF(By o)~ h] EP)
+ 00 [(+1) d-Ty ][y + by F(B) - hy]
Both of these relationships can be proved by induction, but the proofs are straight-

forward so we do not include them here. It is also easy to show that CN-j (IN_J-, QN_j) is
convex in QN-j forj=0,. . . ,N-1,sothe Qﬁj values are those which equate the first

partial derivatives in (2) to zero.



If IN_.J- >d, aCN-j/QN-j will be non-negative and Q;J_j will be equal to zero if
j-1
w +hE(P) - kzl ok [( + h)F(By)- h] E(P)

- ol [(my + hy) F(By) - hyd E(P) 20. (3)

This says that the variable production cost plus the cost of holding the expected good
output exceeds the discounted expected saving from reducing the net demand by one unit in
period N-j+1 (i.e., the subsequent period) and all future periods. Thus, the condition in
(3) can be fairly restrictive for short time horizons and high discount factors (a close to 1),
where the effect of my can make it optimal to produce in anticipation of demand in future
periods. There are, of course, other constraints such as production or storage capacity,
which might prevent this practice. It is also worthwhile to note that the condition (3) is
essentially a condition of no speculative motive for producing and holding inventory.
Hence, while it is restrictive in a purely economic sense, in concept, it is not substantially
different from assumptions commonly made in the inventory literature. We will show later

that this restrictive assumption applies only to finite horizon problems.
The solutions would be relatively easy to find under the conditions that I < d for all

n. The policy would be multiplicative in that Cﬁ is equal to the net requirement, d-1,
multiplied by a factor 1/B,. In the next sef:tion we develop and prove the sufficiency of
conditions on F(:) that will guarantee I < d for all n.

Conditions for Optimality of a Multiplicative Policy

We need to develop conditions to ensure that (after some initial transient) [ <d for
all n. If one starts with 1 > d and condition (3) is satisfied, then the optimal policy would
be to set Q,, = 0 until there is a positive net demand. One only needs to find Q;, from that

point until the end of the horizon.
Suppose that we have I <d for some n. Since I, =1 +pQ, - d, we need

[,+pQ,-d<d

or

pQ, <2d-1,



forall I, <d. Now Q7 = (d- [.)/B, so we need

p(d-In)/Bn <2-1

or

p < B, (2d - L)/(d-L,).
Let p= maximum achievable value of p and p = minimum achievable value of p. Since p s
random, the inequality above holds only if

p <2B,(2d - L)/(d-L). @)

Since we do not know B, and I a priori, this relationship must hold for all possible B, and

In. We first investigate the value of (2d - I))/(d - Iy). This ratio is strictly increasing with
In for In <d. Thus, one possible lower bound on this ratio can be obtained by taking the
limit as In--> - eo. A tighter bound is obtained by observing that the worst case value of I,
< 0 (largest cumulative deficit) occurs when we set B = pand the observed yield rate in

each period is p. If we start with Iy = 0, a little algebra shows that this smallest value of I,

I
n

-dZ(p-pk
k=1

Taking the limit as n — o, we have

lim In=-d(p- p)/(1- (p- pI.
n—> oo
Letr=p-p. Then (4) is satisfied by all I, if
p<B, 2
or B, > P21 (5)
which are obtained by appropriate substitutions.

Clearly, (5) will be satisfied by all B, if the right hand side is less than or equal to

zero. This, however, is a rather strong condition. Observe that we must have B, 2 p to

ensure that we are not intentionally producing now for subsequent periods. This, in
conjuction with (5), can be guaranteed if

10



p2n2p
or equivalently, p2 p2+p)/(1+p). (6)

We must also impose the condition

p<2p. (7)
to ensure that we do not completely satisfy demand for the subsequent period by chance if
we choose B, =p and observe a yield of p. Thus, p/(2-r) is constrained to Lie within a
particular range for each value of p. The range, plotted as a function of p, is shown in
Figure 1. Recall that these conditions are sufficient, not necessary, and require no
addinonal assumptions about the form of F(:), other than its domain of support. Thus,
while they appear to be strong, in practice they may not be problematic. One of the reasons
for such a strong condition is that a large number of backorders were allowed to accumulate
so as to allow complete generality of our results. Yet, in practice, such a large number of
backorders would not be permitted. Thus, much milder conditions would apply in
practice. Indeed, it is possible to show (and it follows directly from the above arguments)
that in the case of lost sales, we would have I, 2 0, and the only condition would be (7),
which many real-world yield rate distributions satisfy. Of course, if the s are known,

we can check the much milder condition in (4) instead.
FIGURE 1

We have thus proved the following theorem:
Theorem 1: If conditions (3) and (7) are satisfied, and either

(a) there is complete backordering and p(2+p)/(1+p) <p < 2p, or
(b) there is complete lost sales,

the optimal policy has the form

@I)B,  iflh<d

*

0 otherwise

where 0 < B < 1.

We should note that for the case of lost sales, the shortage costs must be modified
to account for lost revenue. Throughout the remainder of the paper, we will assume that

11



the optimal policy has the form described above. We next derive conditions in which the
B, values are guaranteed to exist.

Conditions for Existence of the ﬁn Values

Simplifying (2) and equating it to zero, gives the first order conditions

BN- j j-1 L
[ Pf(p)dp = {w +hE(P)- kzla [(m + h)F(By_)- h] E(P)
0 =
- [(my + hy) F(BN) -hy] ER)}(r +h), 0<j<N-1 8)
and

B
| pf(p)dp = [w + hyE(P))/(my + hyp)- 9)
0

To demonstrate that the B values exist, we must show that there is a value of
B, 0< Bn <1, which solves (8) or (9). Two conditions on costs are needed:

(i) w<nNE(P),
and

51 .
(i) w+hE®)- 3 ok [(m + h)F(Byy)- h] E(P)- o [(my + hyy) F(By) - hyd EP) 2 0.

The first condition ensures that it is profitable to produce the product. The second

condition is a regularity condition on costs.
Observe that the left hand side of (9) is less than or equal to E(P) for all . Itis

precisely equal to zero at By = 0 and equals E(P) at By = 1 . Furthermore, it is
monotonically non-decreasing in By. Thus, for By to exist, we only need the right hand

side of (9) to lie between 0 and E(P). Obviously it is non-negative, so we need

w + hy E(P) < (T + hy)E(P)
or

w <7y E(P)

which is, condition (i) above.
We need to show that By 2 0, which is equivalent to showing that the term in

braces in (8) is non-negative. This is the same as the condition in (3) which ensures that

Qi =0if I ;> dy

12



If condition (i) is not satisfied, then a value of By sufficiently large to satisfy the
first order condition for period N does not exist. In other words Q;I <d-I, and it is not

profitable to satisfy demand. If condition (ii) is not satisfied, a value of By sufficiently

small does not exist and one would want to input an infinite amount.

FINITE HORIZON PROBLEM WITH TIME-VARYING DEMANDS AND COSTS

In the previous section, we discussed the necessary condition for optimality of a
multiplicative policy, i.e., Iy <d for all n. When demands and costs are time-varying,
somewhat stronger conditions are needed. The first condition is that there is no speculative
motive for holding inventory:

wp + hnE(P)ZaWn+1 (10)

where the subscript indexes the time period. This says that it is more expensive to produce
now and to hold the expected output than to incur the discounted cost of production in the

next period. This condition is clearly needed to ensure that production quantities are
limited, so that I <d_..

The second condition relates to requirements on F (-) which are similar to those for
the case of constant demand. We need

In+1=1n+pQn - dn <dp+1

an < dn + dn+1 - In.

or

Substituting Q,, = (dy - In) /B, we have
P < B, (dn+1 + dn - In)/(dn - In). (11

Suppose there is a maximum demand level, dyax, and a minimum level, dmin.
Then, by taking the limit of I, as n-->e (as in the previous section) to obtain the smallest
possible value of I, and noting that the right hand side of (11) is decreasing with d, and
increasing with dp41, it is easy to show that a lower bound on the right hand side of (11) is

B, {dmin [1 - (p- DI+ dmax}/dmax

Since we must have all p less than this value, and B > p, one of the conditions for I, <d

forallnis

13



P <D {dmin [1 - (P- )]+ dmax}/dmax. (12)

This condition imposes tighter restrictions on the range of p if dp fluctuates widely from
period to period and is identical to (4) when dy = d for all n. As in the case of constant
demand, we must also ensure that we do not intentionally produce enough to satisfy

demand for two consecutive periods. Thus, we require that
(p/ P) dmax < dmin + dmax (13)

since otherwise we might choose B, = p in a period in which demand is dmax and observe
a yield of p, thereby satisfying demand in the following period if it happens to be equal to
dmin.

Under conditions (12) and (13), a multiplicative policy is optimal. To ensure that
the By, values exist, we also require that

(a) wy <myE(P) and
N-1

) wo+haE@)2 Tk (@ + hF(B)- iy + oM [y + b F(By- ) EP)
=n+

n=1,. .. ,N-1

which are time-varying equivalents of (i) and (ii) in the previous section.
If all of the above conditions are satisfied, the optimal values of By satisfy

N-j j-1
[ DRI = (v iy BP) - T, 0 (g + oy )F B B ECP)
0 =
— o {(my + B ) E@)Y (g + by, j=1,- - . ,N-1
and
By
I() pf(p)dp = [wy + hyy E(P)V/ (1 + hyy)-
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INFINITE HORIZON PROBLEM

We examine the infinite horizon problem with constant costs and constant demands.
Here, the conditions on costs for optimality of a multiplicative policy are much milder than
in the finite horizon problems, and they are discussed later in the section .

To find the optimal solution for the first period in an infinite horizon problem, we
can take the limit of (8) as N— o, We have

B oo
j PEE)p={w+hE®)- T o [(m + h)F(B)- h] E(P)}/(x + h)
0 =

where B denotes the optimal infinite horizon value. Simplifying, we get

B
[ Pf(p)dp = {w + hE(P) -[a/(1-00)] [(m + W)F(B)- h] E(P)}/ (m + h). (14)
0

The left hand side of (14) is monotonically increasing in B while the right hand side is
monotonically decreasing in B. Thus, if two functions intersect, they intersect in a unique
value of B. These functions will intersect if the right hand side is less than or equal to E(P)
for some 0 <P < 1. Since the right hand side achieves its minimum at = 1, let us
consider this value of B. The condition for a unique optimal value of B to exist is

{w + hE(P) - [a/(1-a)][(r + h)F(B)- h] E(P)}/ (m + h) < E(P).
Simplifying this, at = 1 we get
(1-0) w < 7t E(P). (15)

This says that the opportunity cost of processing a unit in this period rather than next period
(i.e., loss in terms of discounted cash flow) must be less than the shortage cost which
would be saved from the expected output. In other words, this means roughly that it is
profitable to produce. In general, this is a very mild condition.

We next examine when Q =0 is optimal if I > d. To find B, we must solve the first
order condition

15



v +hE(P) - [a/ (1-0)][(m + h)F(B)- h] E(P)

B
-(m+h)  pf(p)dp =0.
0

Let us assume that it is possible to ensure I < d for the remainder of the (infinite ),
horizon, but that in the current period I > d. In this case B = (d-1)/Q <0 for all Q 20, so

the first derivative becomes
w + hE(P) - [a/ (1-0)] h E(P) > 0.

Thus, one does not want to produce. Since this argument applies to all periods, the
only economic condition necessary to ensure that I <d is condition (15) .

We can now state the result, which we have just proved above:
Theorem 2: If conditions (6) and (7) are satisfied, and (1-a) w < & E (P), the optimal

infinite horizon policy is

(d-I,)/B ifIn<d
Q:l ) {

0 otherwise

where the unique value of P satisfies (14).

EXAMPLES

To illustrate characteristics of the optimal multipliers, we present examples to
illustrate two interesting results. We use a uniform yield rate distribution with E(P) = 0.90,
p = .80, and p= 1.0 to facilitate computation. Consider a problem with
w=9h =018 forn=1,.,N-1,hy=-10,t, =02 forn=1,.., N, ty =18 and
o =0.98. The parameters were chosen to be consistent with a profitable product produced
monthly, with no expected gain (or loss) due to salvaging the product at the end of the
horizon. )

Using equation (9), we find By = 0.80 and F(By) = 0. Then, using equation (8),
we find By_; = 1.0, By = 0.991, By3 = 0.9986, By 4 = 0.9996. It is already apparent
that the BN-j values need not be monotone. This arises principally because of the manner in

which discounting affects the right hand side of equation (8).
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The optimal value of {3 for the infinite horizon problem is approximately 1.0. The
solutions for the infinite horizon problem appear to be converging toward this value
quickly. It is interesting to note that the optimal solutions indicate that one should simply
input the net demand. This arises in spite of the apparent profitability of the product. The
discounted expected cost of the optimal solution is $49,000. Twenty-five simulation runs
using a rule-of-thumb policy in which one adjusts production quantities for average yield
losses give costs having a mean of $50,145 and a standard deviation of $371 . While the
two costs may not appear to be significantly different, at least $44,100 of both costs is
attributable to non-controllable production costs (i e, the infinite horizon cost of inputting
just the stated demand in each period). Thus, using an optimal policy can reduce
controllable costs considerably, and the difference between the optimal and rule-of-thumb
policy is statistically significant in this example.

SUMMARY AND DISCUSSION

We have derived the form of optimal finite and infinite horizon policies for systems
with variable yield rates and deterministic demand under certain conditions on costs and the
yield rate distribution. The general form of the policy is

A LB,  iflh<d
Q=

0 otherwise

where B, = B when the horizon is infinite. The policy is multiplicative in that the net
demand is multiplied by a factor 1/B, which is independent of d_ and I.

Setup costs can be incorporated in a heuristic fashion relatively easily. For an
infinite horizon-problem with constant demands and costs, we can determine a production
interval using average yield rates and then set the time period for the production control
problem equal to this interval. For a finite horizon problem, one can determine a lot-timing
policy using average yield rates and yield-adjusted costs. Then, by scaling costs to reflect
the length of the time periods (where appropriate), one can use the model with time-varying
demands and costs to solve the production control problem. These are, of course,
heuristics, but are simple to implement. Further work needs to be done to evaluate this
proposed heuristic. Since McCoy, et al. have found that sequentially determining lot
timing then lot sizes performs well, one might expect that a similar sequential procedure
with optimal lot sizing (given the lot timing) would perform even better.
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Additional work also needs to be done to incorporate uncertain demand. Some
recent work along these lines has been done by Gerchak, et al. Unfortunately, the
multiplicative property of the optimal policy does not extend to the case of uncertain
demand. There are, however, many instances where demand over a finite horizon is firm
or there is a deterministic production target in the current period. In these cases, the
procedure outlined in this paper can be used to find optimal solutions since it does not
require demand information beyond the current period. In addition, further research is
needed to extend approaches for single-period, multi-stage systems (i.e., Lee and Yano,
1988) to multiple periods.
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