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OPTIMAL POLICIES FOR A SERIAL PRODUCTION SYSTEM
WITH SETUP COSTS AND VARIABLE YIELDS

ABSTRACT

We investigate the problem of finding optimal policies for facilities-in-
series production systems in which process yields are variable and there are
positive setup costs at one or more stages of production. In addition to setup
costs, costs are incurred for each unit of unsatisfied demand and for work-in-
process and finished goods inventory. For one- and two-stage systems, it is
shown that the optimal policy has two critical numbers (s and S) at each stage.
If the available input quantity is larger than S, the optimal policy is to input
S. If it lies between s and S, it is optimal to input the entire quantity. If
the available input quantity is less than s, the optimal policy is not to
produce at that stage. We also discuss conditions in which the results might be

extended to systems with more than two stages.



OPTIMAL POLICIES FOR A SERIAL PRODUCTION SYSTEM
WITH SETUP COSTS AND VARIABLE YIELDS
INTRODUCTION

Recent concern about quality improvement and international competition in
the semiconductor industry has led to increasing interest in production control
for systems with high yield losses. The difficulty in controlling systems like
this is not high average yield loss. Rather, it is the variability of the yield
rate (i.e., the ratio of acceptable output to input) which makes scheduling and
inventory control difficult. It is important to note that such situations are
not peculiar to the semiconductor industry. Many microelectronic assembly
operations and chemical processes experience the same types of yield loss
problems.

Much of the research to date on variable yield has focused in single-item,
single-stage systems. Karlin (1958a, b) gives several results for the single-
and multi-period versions of the problem when there are no setup costs. 1In
papers by Klein (1966), and White (1967), the concern is one of finding sub-
batch sizes for an imperfect production process so as to meet a specified
production target. Yano (1986b) shows that the form of the optimal policy for
periodic review, single stage systems with known demand but without setup costs
has an optimal multiplier in each period. The optimal input quantity is equal
to demand multiplied by the optimal multiplier. Mazzola, McCoy, and Wagner
(1987) develop dynamic programming-based algorithms and EOQ-based heuristics for
the single-stage problem with setup costs and show that the heuristics perform
well. Sepehri, Silver, and New (1986) develop and test a heuristic for a
single-stage situation in which more than once production run can be used to
satisfy a single order and each production run incurs a setup cost. The paper

also includes a recent review of the literature on single-stage problems.



Recent work by Lee and Yano (1985) has shown that for serial production
systems with variable yield rates (but no setup costs), the optimal policy has
the single critical number form. That is, the optimal policy is to input the
critical quantity, Sn to stage n if the output of the preceding stage equals or
exceeds this value. Otherwise, the entire output of the preceding stage is sent
to stage n. Yano (1986a) extended these results to incorporate uncertain demand.

Many serial production systems with batch processing have been designed so
that the capacity at each stage, adjusted for (average) yield losses, is
approximately equal. Thus, in order to utilize capacity as fully as possible,
managers are inclined to avoid processing batches which are much smaller than
usual if a batch of "normal" size can be processed relatively soon instead.
These managers are behaving as if there were setup costs associated with
processing the batch at each stage, where the setup cost reflects the
opportunity cost of capacity utilization. In other situations there are real
"out-of -pocket" setup costs, which should be reflected in operating policy
decisions.

We address the problem of determining the optimal production policy for
serial production systems with variable yields, deterministic demand, and
positive setup costs. The decisions to be made are how much to input to each
stage of production. This deals with the short-term problem of coping with the
current situation as economically as possible. From a broader perspective, it
is also useful to know how best to operate a system so that one can accurately
estimate the system-wide effects of reducing setup costs or improving yields.
Our analyses make a step toward that end.

In the next section we discuss model assumptions and formulate the problem.
In the subsequent section we develop the form of the optimal policy for one-and

two-stage systems and suggest a solution procedure. We also briefly discuss

conditions in which the results can be extended to systems having three or more



more stages. Section 4 establishes conditions for existence of finite optimal
finite optimal solutions. The approach is extended to the case of random demand

in Section 5. Conclusions appear in section 6.

PROBLEM DESCRIPTION AND FORMULATION

We consider a serial production system in which the yield rate at each
stage of production may be stochastic. We assume that these yield rate
distributions are mutually independent, continuous, twice-differentiable, and
invariant with input batch size. (Generalization to probability mass functions
is straightforward). We also assume, without loss of generality, that the yield
rates are bounded above by 1.

We assume that there is a single known demand or production target for the
finished product, and that there is only one opportunity at each stage of
production to satisfy that demand. Production is done in a batch-type process at
each stage, where inspection begins after the production run is complete. We
assume that 100% inspection occurs at each stage and that the inspection
processes are perfect. We also assume that defective units are disposed at no
additional cost. This is a standard assumption when defective parts are not
reparable or are expensive to repair.

Costs to be included in the model are a shortage cost per unit of
unsatisfied finished product demand, inventory holding costs charged on excess
finished product inventory, and on work-in-process inventory which is not input
to the succeeding stage, and variable production and inspection costs at each
stage. The shortage cost reflects revenue lost if production of the finished
product is inadequate. If the product is produced to stock, then the inventory
holding costs can be viewed as the cost of holding the items until the next

production run. Since we are examining a single-period problem, the inventory

holding cost typically would be negative, reflecting the cash inflow due to



salvaging non-defective units.

Finally, we assume that there is a setup cost at each stage of production,
and that production proceeds on a lot-for-lot basis. In other words, there is
at most one setup permitted at each stage before the subsequent stage of
production is begun. This is typical in serial production systems since making
additional production runs at one stage would tend to delay production at
downstream stages. The delay could result from setup time as well as processing
time.

Let N denote the number of stages, and index the stages so that stage N

occurs first and stage 1 is done last. Also, let

Wo = variable production and inspection cost per unit at stage n
hn = inventory holding cost per unit of excess output at stage n
L = shortage cost per unit of unsatisfied demand

Pp = actual yield rate of stage n

£,(*) = density of the yield rate at stage n

D = demand or production target

In = on-hand inventory at stage n (having completed stage n)

Q, = input quantity to stage n

5(Q) =
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0 otherwise

setup cost at stage n

~
L}

—
-
~
+
]

positive part

=1
—~
\:
[ ]

expectation

Throughout the paper, we assume that
(a) hp,qy < wy +hy E(py), n=1,...,N; and
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The first condition states that it is no more expensive to hold an item at
stage n+1 than to process it and hold the expected output at stage n.
Generally, the L values are much larger than the absolute values of the hn
values, so condition (a) is very mild. In fact, it does not exclude
negative inventory holding costs, or negative echelon holding costs (i.e.,
hy = hpeq < 0). In section 6 we discuss what might be done if this condition

does not hold.

The second condition states that the expected total variable cost of
producing one unit is less than the shortage penalty. This condition
essentially ensures that it is profitable to produce the product. This is also
a very mild condition.

The problem that we investigate is dynamic in the sense that one does not need
to decide what to do at stage n until the outcome of stage n+1 is known. The
dynamic programming formulation below reflects this fact and incorporates it
into the decision process. For any initial inventory vector, I, the problem can

be formulated as a stochastic dynamic program with recursion equations:

C,(y,) = min {w,Q, + K, 6(Q,) +h, E(p,Q, + I, -D)F
0<Q, <y,
+h,(y, - Q)
+ 7 E(D-p,Q - I (2)
Cp(¥peq) = min {wy Q * Ky 8(Q)
0<Qp <Y 41

+

Aper Fper = Q)

+

ELCy (P, Q *+ I 1} (3)

where Yo = Pp Qn +I,,n= 2y000,N
and Cn(yn+1) = minimum expected cost for stages 1,...,n given available

input to stage n is Yn+1e



FORM OF THE OPTIMAL POLICY

Clark and Scarf (1960) showed that the form of the optimal policy for
a serial system with stochastic demand for the finished product (only) and
positive setup costs, is of the (s,S) type at each stage. We investigate
whether the optimal policy for the system under study has a similar form. We
initially consider one-stage systems and then extend the results to two-
stage systems. Finally, we discuss briefly conditions in which the results

might be extended to multi-stage systems.

3.1 One-Stage System

In this section we prove that the optimal policy for a one-stage system has
two critical numbers. We first formulate the problem. We then investigate how
C,(y,) varies as a function of y,. To do so, we must find the optimal value of
Q, for each value of y,. This development permits us to find the breakeven
point between producing and not producing for various values of y,, which leads
to a characterization of the optimal policy.

For the single-stage system, our objective would be to

minimize w, Q, *+ K, §(Q,) +h, E(p, Q, + I, - D'
0<Q, £V,
+h,(y, - Q)

+TED-p, Q -I)° (4)

For notational simplicity, let D' = D - I, (i.e., net demand). Clearly, if D' <
0, Q, = 0 is optimal since h, < w, +h, E(p,).
For the special case of Q, = 0, the cost is
- h, min(0, D') + h,y, + =(d")" (5)
The first term in the expression above simply accounts for inventory holding
costs of finished product units in excess of the demand. Note that (5) is a

linear function of y,.



In what follows, we will assume that D' > 0. We first derive the
unconstrained optimal solution for the problem, assuming that Q, > 0. We can
minimize the one-stage objective function by finding the target input quantity,
S,, satisfying

D'/S,
[ p,f,(p,)dp, = [h,E(p,) + w,-h,]/(7+h,) (6)
Jo
Equation (6) is a simplified form of the first order necessary condition. We
note that here, and throughout the paper, we use the fact that
a

1

[ pf,(p)dp, = E(p,) - J( © pfa(p,)dp,
0

Qa

where possible to simplify mathematical expressions.

It is easily shown that the objective function in (4) is convex in Q, so
satisfaction of the first order condition is sufficient for optimality. Let a,
= D'/S,. Then S, = D'/a, is the optimal input quantity provided S, units are
available, and provided Q, > O is optimal. Observe that it is not necessary to
find the optimal value of Q, for each possible D'. One only needs to find the
critical ratio a, = D'/S, which satisfies equation (6).

To establish the form of the optimal policy, we need to ascertain how the
minimum cost of the system changes with y, when Q, > 0. For y, > S,;, by
substituting (6) into (2) we can establish that for y, > S, (i.e., when there is
enough input material available to input the optimal target amount),

&)

C,ly,) = (m +n)D' [ f£,(p,)dp, + h,y, + K, - h,D' (7
0



To determine whether or not to produce when y, > S;, we must compare (5)
with (7). If (5) is smaller, it is better not to produce. Otherwise, it is

optimal to input a quantity equal to S,. Thus, the optimal policy is

1
S, =D'/a, if [ f£,(p,)dp, > K, / (m + h,)D"

a,

0 otherwise

This is derived by comparing equations (5) and (7) to find the breakeven point
between ordering and not ordering.

The next question to be answered is what should be done if y, < S, (i.e,
when the unconstrained solution cannot be achieved). Let us assume for the
moment it is optimal for Q, to be greater than zero. We mentioned earlier that
the objective function for the single-stage problem is convex in Q,. Thus, if
Q, is constrained to be positive but less than or equal to y, < S,, the
constrained optimal solution is to input Q, =y, (i.e., as much as possible).

Therefore, assuming Q, > O is optimal, for y, < S,, we have Q, = y, and

C,(y,) = wy, + K, +h, [y, E(p,) = D']

D'/y,
-(r +h)y, | p,f,(p,)dp,
0
D'/y,
+(nm + h)D" | f,(p,)dp, (8)
0

This is derived by substituting Q, = y, in (2) and combining like terms. [Note
that we have represented limits of integrals (i.e., yield rates) in their
analytic forms (e.g., D'/y,), realizing that the resulting values may be less
than zero'or greater than one. Since fn(pn) = 0 for these values of p,, there
are no practical or theoretical difficulties associated with this. In all

cases, the meaning should be clear from the context, and appropriate



modifications to accommodate these situations are straightforward.]
By comparing (8) with (5) to find the conditions under which producing (or

not producing) is less expensive, we find that if y, < S,, the optimal policy is

(¥, if (w +h)D' > (w, + h; E(p,) = h,)y, + K,

D'/y,
+ (v + 0D [ £,(p,)dp,
Ql = < JO
D'/y,
- (m+ h,)y, Jf p1f1(p1)dp1
0

\ 0 otherwise
If y, < D', the latter policy can be simplified to

y, if y, > K,/[m E(p,) +h, - w,]
Q] =
0 otherwise

It is important to note that the form of the optimal policy can be
determined without knowledge of y,, although the optimal solution cannot be

determined until y, is known.

For simplicity, let us refer to

[* £,(p,)dp, > K,/(m + h,)D'

a,

as condition I,
(m + h,)D' > (w, + h, E(p,) - hy)y, + K,

D'y,

+ (v +n)D" [ £,(p,)dp,
0
D'/y,

- (1 + h))y, Jf p,f,(p,)dp,
0

as condition II, and



Yy, > Ky/[m E(p,) +h, - w,]

as condition III. Each of these is a condition for Q, > O to be optimal. More
specifically, if y, > S, and condition I holds, it is optimal to input S, units.
If D' <y, < S, and condition II holds, it is optimal to input y, units. If y,
< D' and condition III holds, it is also optimal to input y, units. If none of
the above holds, it is optimal not to produce.

Before continuing to a two-stage system, it would be useful to establish
a more general form of the optimal policy. 1In particular, for fixed D', we

might expect the form of the optimal policy to be

0 if y, < s, (for some s,) (9a)
Q, = y, if s, S Y, < 5, (9p)
S, if y, > S, (9e)

where s, = inf {y, | y, satisfies condition II}. 1In fact, if the optimal policy
is more complex than this, it could be difficult to extend the approach to
multiple stages.

Clearly, if y, < D' and condition III holds, the form of the optimal policy
satisfies (9a). To show that it is also true for D' < y, < s, we need to
establish that the right hand side of condition II is monotonically non-
increasing in y,. If this is true, then either (i) for y, sufficiently small,
condition II will not be satisfied, or (ii) condition II is satisfied for all y,
>0 (in which case s; = 0 and it is always optimal to produce). It can be shown
that the partial derivative with respect to y, of the right hand side of
condition II is

D'/y,
[w, + h, E(p,) = h,] = (7 + h,) Jr p.fy(p,)dp, (10)
0

10



Using equation (6) and the fact that y, < S,, the partial derivative can be
shown to be strictly negative. Thus, the optimal policy has the form of (9a).

We next need to show that the policy has the form of (9b). Observe that if
condition III is satisfied for y, = D', then condition II (which is equivalent
to condition III at y, = D') is also satisfied. Since the right hand side of
condition II is monotonically decreasing in y,, the condition will be satisfied
for D' <y, <S,. If condition III is not satisfied by y, = D', but condition
II is satisfied by some s, > D', monotonicity of the right hand side of
condition II guarantees that the policy has the form of (9b).

The optimal policy clearly has the form of (9¢) by the convexity of ().
The only thing remaining to be shown is that s, < S,. This follows directly
from the fact that conditions I and II are equivalent when y, = S, and the fact
that the right hand side of condition II is monotonically decreasing in y,.

We have thus proved the following theorem:
Theorem 1: For a one-stage system with variable yields and positive setup

cost, the form of the optimal policy is

0 if y, < s,
Q, = y, if s, <y, <SS,

S, if vy, 2

v
W
-

where s, = inf {y, | y, satisfies condition II}, and S, satisfies (6).

The same result can be shown diagrammatically. Recall that the expected
cost function for Q, = 0 is linear in y,, while the expected cost function for
Q, > 0 is convex in Q,. Note also that for y, > S;, the expected cost function
(see equation (7)) is linear in y,. Thus, the relevant expected cost functions
are like those in Figures 1 and 2 for the cases of h, > 0 and h, < 0,

respectively.

"
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Figure 1
Expected Costs at Stage 1 when h>0
(shown by solid line)
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Expected
Costs

S~ CostforQi =0

CostforQ1>0

S1 y2

Figure 2
Expected Costs at Stage 1 when h<0
(shown by solid line)
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3.2 Two-Stage System

In this section we prove that under certain conditions on costs and the
yield rate distributions, the optimal policy at stage 2 has the (s,S)
form. We show that (i) the two-stage cost for Q, = 0 is linearly increasing in
Ys» and (ii) the two-stage cost function is convex in Q, for Q, > 0. Then, by
examining breakeven points between producing and not producing, we show that for
n =1, 2 the optimal policy has the stated form.
If S, =0thenQ, =0 is optimal provided h,,q < w, +h E(p ), n=1, 2.
Suppose S; > 0. We have
C,(ys) = min {w, @ *+ K, 6(Q,) + hyly, - Q)
0<Q,<y,
-7 + E[C,(p,Q,+I,) ]}
Note that the expression in braces is linearly increasing in y,. This
demonstrates (i) above.
Since we will need to consider C,(y,) over various ranges of y, values, for

notational simplicity, let us define

Cy(y,) fory, <s,
n,(y,) =

0 otherwise

C,(y,) fors, <y, <S,
¢1(Y2) =

0 otherwise

C,(y,) fory,>S,
¥ (y,) =

0 otherwise

Also, for simplicity, let Y,(y,) denote the two-stage cost function assuming

that Q, > 0. That is,

Yo(ys) = w, Q + K, + hy(y; = Q) + E[Cl(sz2+Iz)]} (11)

14



We first need to understand characteristics of the expectation term in (11)
before we can proceed further. In the Appendix we show that E[C,(p,Q,+I,)] is
convex in Q, under certain conditions on costs and the yield rate distribution
at stage 1. This permits us to establish that Y,(y,) is convex in Q, for Q, >
0, since the remaining terms in C,(y,) are either linear in Q, or constant. If
Q, > 0 is optimal then the target input quantity to stage n is the value of S,
satisfying the first order necessary condition.

We now have established the convexity of Y,(y,) in Q, for Q, > 0 and the
linearity (in y,) of the two-stage objective function when Q, = 0. We now need
to investigate the breakpoints between ordering and not ordering. We will
consider y,; > S,, s, ¥y, <S,, and y, >3, in turn.

Consider the case of y, > S,. Q, = S, is optimal if

hy y5 + C,(I,) > w,S, + K, + hy(y;-S,) + E[C,(p,S,+I,)]

or C,(I,) > (W,~h,)S, + K, + E[C,(p,S,+I,)].

This simply compares the expected cost if Q, = O with the expected cost if Q, =
S,. Observe that satisfaction of this condition depends only upon I, and S, and
not on y, (except to the extent that y, > S,). If the condition is not
satisfied, Q, = 0 is optimal.

On the other hand, if y, < S,, then Q, = y, is optimal if

h,y, + C,(I,) > w,y, + K, + E[C,(p,y,+I,)] (12a)

or C,(I,) > (wy=h,)y, + K, + E [C,(p,ys+I,)] (12b)

Otherwise, it is optimal not to produce. We have already shown that the last
term on the right hand side of (12a) is convex with a minimum at S,; thus, it is
convex decreasing for y, < S,. Note that h,y, is linearly decreasing in y, if
h, > 0 and increasing iny, if hy; < 0. Thus, the entire right hand side of

(12b) is a convex function of y,, and s, is the breakeven point between
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3.3

producing and not producing. The proof of the form of the optimal policy is
similar to that given for the one-stage problem.

The optimal policy has two critical numbers at each stage, s, and S,. A
solution procedure follows directly from the dynamic programming formulation.
One solves successively for Sn and Sp» N = 1, 2. The results above simply limit

the search for the critical numbers.

Extension to Three or More Stages

It may be possible to extend these results to systems with more than two
stages. The main difficulty in proving that the result holds in general is that
for three or more stages, the cost function when Qn > 0 may not be convex.
Indeed, it is possible to show (details are omitted here) that as Qn increases,
the n-stage cost function is linearly increasing (decreasing) over [0, sn_1-In]
if h, is positive (negative). It is also strictly concave for [sn-1'In’Sn-1'
In] if h, > 0 or monotonically decreasing over the same domain if h < 0.
Finally, it can be shown that the function is convex increasing for Qn
sufficiently large. The shape of the function in the interval from Sn-1'In to
the "sufficiently large" Qn is difficult to specify. Thus, the n-stage cost
function might be convex, or concave-convex (i.e, concave for small values of Qn
and becoming convex for sufficiently large values, with one inflection point
between the concave and convex portions of the function), or it may have
multiple local optima in [S,_4-I,, ®).

If the n-stage cost function is convex or concave-convex, and if the cost
function for Q, = 0 intersects this function in such a way that E{Cn(ann+In)}
remains convex or concave-convex, then it is possible that the (s,S) type of

policy is optimal at all stages. It appears, however, that strong conditions on

inventory holding costs and on the yield rate distributions may be required for

16



this. Further research is needed to accomplish this extension. Next we discuss

conditions in which the critical numbers are finite.
CONDITIONS FOR FINITENESS OF THE CRITICAL NUMBERS

To ensure that Sn is finite, certain conditions on costs are needed. We

need
(Sn_1‘1n)/sn

Jo

1 1
Tn{¥pet) =Wy = gy Pn Mn=1(PpSp*Iy) fr(py) dpy

(Sn-1'In)/Sn '
+ Py bpo1(PySp*Iy) £n(ppy) dpy

J(Sn_1'In)/sn

1
+ {‘ Py ¥p-1(PnSp*In) £a(Py) dpy
(Sn_1_1n)/sn

to be greater than or equal to zero for Sn sufficiently large (but finite).
We show that the condition hn+1 < LA hnE(pn) is sufficient to guarantee finite
Sn' Observe that the sum of the last three terms is the partial derivative of
E[Cn-1(ann + In)] with respect to Q, and evaluated at S. It is thus non-
decreasing with Sn‘ We next show that it eventually becomes larger than - Wy ot
B4
It can be shown that dé_1 (ann+In) = hn' (Recall that y(*) represents the
portion of the cost function where there is more than enough to satisfy the
target input quantity. Thus, the marginal cost of a unit of available input is
th Therefore, as Sn increases, the last term asymptotically approaches
hnE(pn) from below and the third and fourth terms decline in value (eventually
to zero). Since - Wwo ot hp < hnE(pn) by assumption, ngn+1) asymptotically

approaches a non-negative value from below. Thus, the first order condition is

satisfied by some finite value of Sn'

17



There are two situations that we need to consider with regard to Spe
The first occurs where the cost of producing and the cost of not producing
have a point of intersection at s, < Sn' In this case s, < » since S, < =. The
second case occurs when it is always cheaper to produce than not to produce. 1In
this case, we can set sn=0, and identify this case by the fact that

lim  C,(Q,) < C,(0).
Q,-->0
SYSTEMS WITH RANDOM DEMAND

We would like to establish that the form of the optimal policy for systems
with random demand is the same as for systems with deterministic demand. To do
s0, we only need to show that the respective cost functions at stage 1 have the
same fundamental properties. The formulation of the single-stage problem is the
same as given in (4).

Let fDP) denote the density of net demand and FD(ﬁ denote the
corresponding cumulative distribution. If D - I, < O with probability 1, then
there is no need to produce. Assume that FD(O) < 1. Suppose we were to choose
Q, = 0. The expected cost would be

h,y, + © E(D)* - h, E[min(0, D)] (13)
If Q, > 0, we can minimize costs by finding S, satisfying the first order

necessary condition

@ 1
W, < hz + hl r ( lel(pl)fD(D)dpldD
Jpa-a lp,=pss,
® D/S,
-7 [ pufy(p,)fp(D)dp,dD = 0
JD=O p,=0

The second derivative with respect to Q, is

18



Q,
[(r +n,)/Q31 [ D2F,(D/Q,)fp(D)dD > O

D=0

so the one-stage cost function is convex in Q,. Thus, if y, < S,, one would

like to input as much as possible, provided the expected cost evaluated at y,,

i.e.,
® 1
Wy, +hy | | (p,y¥, = D), (p,)fp(D)dp,dD
JD=‘-m Jpl-"D/Sl
® D/S,
o[ [ (D - pyy,)f (p,)f(D)dp,dD + K, (14)
JD:O Jp1=0

is less than (13). Let s, denote the value which equates the two expressions.
The optimal policy is
0 1ify, <s,
Q, = y, if s, <y, <SS,

S, ify,>S

The proof again parallels that given in section 3.1. This has the same form as
the case of deterministic demand. As in the case of deterministic demand,
certain conditions on costs and the yield rate distributions (given in the
Appendix) are needed to ensure that the two-stage cost function is convex for Q,
> 0. Under these conditions, we have the following theorem:

Theorem 2: The optimal policy for a one- or two-stage serial system with
variable yields, positive setup costs, and either deterministic or random

demand, has the form

0 1if yp4q <8y
Q = Yne1 1 8p < ¥pey <8y

Sp if Ype1 2 5

v
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CONCLUSIONS
We have developed a model of a serial production system with variable
yields and positive setup costs. Variable production costs and inventory
holding costs are also considered in the model. We have shown that for one- and
two-stage systems, under certain conditions on the cost structure and the yield
rate distributions, the form of the optimal policy is
0 for yp4q <8y

Q, = Ype1 fOr 8y < ¥pap €5

%]
L)
o
-3
%]
I

Yn+1

where Qn is the optimal input quantity, Yn+1 is the available input for stage

< S.. A solution procedure is

n, and Sh and Sn are two critical numbers with shp £ 5,

proposed in which one successively solves for Sn and Sn forn=1, 2

One area for future research is to determine whether the results generalize
to more general conditions on costs. There are two specific conditions which
might be relaxed. We required that it be less expensive to hold a unit in
inventory at a stage rather than to process it and to hold the expected output
at the following stage. If this condition is not satisfied, it is relatively
expensive to hold inventory at stage n+1, and it may be desirable to collapse
stages n and n+1 into one stage if the setup cost at stage n is sufficiently
small. Thus, even if the condition is not satisfied, it may be possible to
construct an equivalent system in which the condition is satisfied by all
remaining stages. The various cost functions are not as well behaved as when
then condition is satisfied, however, so procedures to find optimal values must
be modified to accommodate these situations. The existence of setup costs may
make such a collapsed policy suboptimal in some instances, so further research
is needed to find conditions in which collapsing is either optimal or near

optimal.
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One other sufficient condition on costs and the yield rate distribution for
stage 1 was given in the Appendix for the (s,S) policy to apply to stage 2. It
is likely that less stringent conditions are required for optimality of an (s,S)
policy and future research may bear out this conjecture.

We also described briefly how the results might be extended to multiple
stages if further research can prove out certain characteristics of the n-stage
cost functions. Further research is also needed to analyze and develop solution
procedures for multi-period versions of this problem, and to incorporate other
properties of real production systems, such as multiple batches at each stage of

production, rework, and yield rate distributions which vary with the batch size.
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APPENDIX

In this appendix, we show that the objective function for the two-stage
problem is convex in Q, under certain conditions on costs and yield rate

distributions. To do so, we first show that E[C,(p,Q,+I,)] is convex in Q,.

E[C,(p,Q,+I,)] =
(s,-1,)/Q,
nl(p2Q2+I2) f‘2(p2> dp2
Jo
(8,-1,)/Q,
+ f ¢1(p2Qz+Iz) fz(pz) dp,
J(sl'lz)/Qz
1
+ ¥, (p,Q,+I,) £,(p,)dp, (A-1)
J(Sl'Iz)/Qz
where
n,(y,) = hyy, + nD'

h,(p,Q, + I,) + 7D'.

¢1(y2) =W, (p2Q2+I2) + hl[(p2Q2+Iz)E(pl)-D']
D'/(p,Q,+I,)
= (“*hl) (p202+12) ( plfl(pl)dpl
Jo
D'/(p,Q,*1,)
+ (m+h,) D' I f,(p,)dp, + K,
0
oy
¥,(y,) = (e+h)D' [ £,(p,)dp, + h, (p,Q,+I,) + K, (A-2)
0

The last three expressions were obtained by replacing Q, in the cost function by

its optimal value.
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We also have
J{E[CI(P202+12)]} /0Q, =

(81'12)/Q2 '
J P, N, (p,Q,+I;) f,(p,)dp,
0

= n(s)f, ((31'12)/Q2) * ((51'12)/Q22)
(81'12)/Q2

+ [ P2 ¢;(szz+Iz) f,(p,)dp,
J(sl'lz)/Qz

¢, (S))f, ((Sx'Iz)/Qz) . ((Sl‘lz)/szl

+

9,(s,)f, ((Sx'lz)/Qz] * ((51'12)/022)

1
+ ( pzwx'(szz+Iz) fz(pz)dpz

Jis,-1,0/0,
0 (S)F, ((8,71,)7Q,) + ((8,-1,)/Q,2)

+

But ¢(S,) = ¥(S,), and n(s,) = ¢(s,) by definition, so only the terms with

integrals remain. We also have

1 (5,-1,)/Q,
3 {E[CI(p2Q2+I2]} /anz = [ p: n'l'(sz2+I2) fz(pz)dpz

0
(s,-1,)% ni(s,) £, ((8,-1,)/Q,)/Q3

(8,-1,)/Q, "
+ ( P} ¢,(p,Q,*I,) f,(p,)dp,

J(sl'Iz)/Qz
= (8,-1,)% « ¢1(S)) £, ((SI-IZ)/QZ)/Q;

+ (8,-I,)% « ¢i(sy) £, ((51'12)/Qz)/Q;

1 "
+ [ P ¥,(p,Q,+I,) f,(p,)dp,

J(Sl'lz)/Qz
+(8,-1,)2 ¥i(s,) £, ((5,-1,)/Q,)/Q} (A-3)

The first term vanishes for n = 2 since n, is a linear function of Q,. Since C,

isminimized at S,, y4(S,) = ¢!(S,) = 0. Hence, the fourth and seventh terms
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cancel. Also if ny(s,) > ¢'(s,), the sum of the first and fourth terms is non-
negative. We next derive conditions in which this is true. Now s, is defined

as the value which satisfies

(m +h;) D' = [w, + h,E(p,)] s, + K,

D'/s,
+(n+h) D [ f,(p,)dp,
0
D'/s,
= (" + hl) s] ( pl fl(pl)dpl
0
Rearranging terms, we have
1 D'/s,
(v +h,) D' [ f£,(p,)dp, = s, [w, + h,E(p,) - (v +h,) | p, f,(p,)dp,]
D'/s, JO
+ K,

But the term in brackets is ¢!(s,), so we have

1
¢1(s,) = {(m +h,) D ( f,(p,)dp, -K,}/s,

D'/s,

Now n!(s,) =h,, so ¢!(s,) is greater if

1
(m +n) [ f£,(p)dp, - K, > h, s, (A-4)

D'/s,
In addition to the condition above, for (A-3) to be positive, we also require
that ¢, > 0 and w',' > 0. It can be shown (using (8) evaluated at y, =p,Q, + I,)
that
o1(y,) = (m+n)p3D'? £,(D'/(p,Q,+1,))/(p,Q,+1,) 2 2 0.
It is obvious from equation (A-2) that %Y = 0. Since w, Q, and h,(y,-Q,) are

both linear in Q,, Y,(y,) is convex in Q,.
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For the case of random demand, the condition in (A-3) should be replaced by

® 1
(m +n,) | ( D f,(p,)fp(D)dp,dd - K, >h, s,
D=0 Jp1=D/s1

It is also easy to show that ¢! and ¢} are non-negative.
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