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PLANNED LEADTIMES FOR SERIAL PRODUCTION SYSTEMS

ABSTRACT

We investigate the problem of setting planned leadtimes in serial
production systems when the actual leadtimes are stochastic. The objective is
to minimize the sum of inventory holding costs, rescheduling costs arising from
tardiness at intermediate stages of production, and tardiness of delivery to the
customer.

A single-pass algorithm is developed which finds optimal solutions. The
analytical models underlying the algorithm and extensive computational
experience indicate that it is never optimal to have planned leadtimes of zero
when there are rescheduling costs at intermediate stages of production. This
also implies that unconditional immediate dispatching is not optimal under these

conditions.



PLANNED LEADTIMES FOR SERIAL PRODUCTION SYSTEMS

INTRODUCTION

Computerized manufacturing information and planning systems such as
Material Requirements or Manufacturing Resource Planning (MRP) systems require
several operating policy "rules." To specify production batch sizes, it is
necessary to have a lot-sizing or production interval (lot-timing) policy.
Planned leadtimes (times allowed for each stage of production) are required to
determine when each batch should be started.

It would be desirable to jointly optimize lot-sizing and planned leadtime
decisions. Capacitated lot-sizing models, which attempt to deal with these
decisions simultaneously, are addressed extensively in the literature (see
references in Billington, et al. (1983)). These problems, however, are
difficult to solve (particularly for multi-stage systems) and because only
finite-horizon verions can be solved (except in special cases), the solutions
may be "nervous" or unstable in a dynamic environment. Furthermore, these
approaches cannot incorporate uncertainty of actual leadtimes at the various
stages of production.

Recent research by Karmarkar, et al. (1985a,b) has investigated the
interaction between lot-sizes and leadtimes., Their analyses indicate that when
there are positive setup times and lot sizes are too small, actual leadtimes
increase exponentially (since the traffic intensity approaches or exceeds 1).
As the lot sizes increase, the actual leadtimes asymptotically approach a linear
function of the lot size.

Considerable effort has already been directed toward solving lot-sizing
problems, but very little attention has been given to determining planned

leadtimes. Therefobe, in this paper we focus on the latter problem.

Most MRP systems use weekly planning periods, even though most production



processes require far less than one week, even for a "large" batch. Thus, while
planned leadtimes are needed in weekly increments, they are also needed in more
detail to provide local information on priorities and intermediate "due dates"
where several processes may be completed in a week.

In either case, the primary reason that planned leadtimes must be specified
is that actual leadtimes may be stochastic because of queueing, variable
material handling times, and uncertain procurement leadtimes. If the planned
leadtimes are too short, certain stages of production may be completed "late,"
possibly requiring rescheduling to be done at one or more subsequent stages of
production; also, delivery of finished product to the customer may be tardy,
resulting in expediting or loss of customer goodwill. On the other hand, if the
planned leadtimes are too long, work-in-process and even finished goods
inventory may be larger than necessary.

We investigate the problem of setting planned leadtimes in such an
environment. We use the term "planned leadtime" to refer to the time allowed
for production at a stage. Safety time refers to the difference between the
planned leadtime and the average leadtime, where this value may be negative.

Earlier work on planned leadtimes and related safety time issues includes
simulation studies by Whybark and Williams (1976) and Grasso and Taylor (1984)
which indicate that quantity and type of buffering are important decisions when
leadtimes are variable. Weeks (1981) developed a one-stage model with tardiness
costs, which is a standard "newsboy" problem. Yano (1985) developed an optimal
solution procedure for serial systems with tardiness costs. Her experimental
results indicate that safety time often should be negative for all but the final
production process. Graves (1985) developed a model which characterizes the
operational behavior of a job shop where a control rule is used which is

consistent with the assignment of a planned leadtime,



Our study differs from earlier work in that both rescheduling costs at
intermediate stages of production due to tardy completion of the previous stage
and tardiness costs for the finished product are included. Although
rescheduling costs are difficult to quantify, it would be useful to determine
what existing safety time policies imply about the cost of rescheduling. If the
implied cost exceeds any reasonable estimate of actual costs, this should
provide some incentive for reducing safety times, and thereby reducing work-in-
process inventories. Of course, if the converse were to hold, more safety time
would be warranted in view of the cost of rescheduling.

The actual cost of "rescheduling" includes both the cost of revising the
schedule (if necessary) and the effort involved in any expediting which may be
done. Thus, while use of a simple dispatching policy may make the cost of
revising the schedule negligible, the expediting effort is still likely to
increase as the job becomes tardier. For instance, the expediting effort may
affect more than just the tardy job. Other jobs may be started earlier than
planned, which may necessitate expediting of material inputs or reallocation of
resources. We would expect the leadtime distributions to reflect the "usual"
expediting efforts, since expedited and non-expedited batches are not likely to
be separated in historical data on leadtimes. Modeling the effect of tardiness
and expediting on leadtime dynamics remains a difficult problem for future
research,

The primary reasons for this investigation was our observation that most
MRP systems do not use planned leadtimes with the (significantly negative)
safety times suggested by the study of Yano (1985). Rather than having negative
safety times, it is customary for each stage to have a positive safety time.
One of the questions that we want to address in this study is whether the

presence of actual (or perceived) rescheduling costs at intermediate stages of

production lead to planned leadtime policies with characteristics more similar



to those observed in practice.

Later in the paper we present algorithms which can be used to determine
optimal planned leadtimes. However, we view them as being much more useful as
managerial tools for quantifying and analyzing some tradeoffs that are much too
complex to study without the aid of such algorithms,

Before continuing, we want to emphasize that queueing phenomena and
detailed scheduling rules will not be modeled explicitly here. The arrival
process and service rate distributions at the various stages will certainly
affect the leadtime distributions. Further, the planned leadtimes will also
affect the leadtime distributions by influencing the "arrival" process to
successor stages. One way to incorporate more detailed queueing and scheduling
effects is to use empirically observed leadtime distributions to determine
initial planned leadtime policies. These policies can be simulated to provide
updated leadtime distributions, which then can be used to find updated leadtime
policies. This type of procedure has been used by Rees, et al. (1985) to
address similar issues in a single stage system, and was found to converge
rapidly.

We present a formulation and a solution procedure for the two-stage problem
to provide the reader with the basic foundations of the approach. We
subsequently discuss extensions to N-stage systems briefly. This is followed by
discussions of an experimental study of two- and three-stage systems from which

we infer some general principles, and finally, a summary and conclusions.

MODEL ASSUMPTIONS AND FORMULATION

We investigate the problem of determining planned leadtimes in serial
production systems where the objective is to minimize the sum of inventory

holding, rescheduling, and job tardiness costs. Inventory holding costs are

charged on all work-in-process inventory waiting to be dispatched to the next



stage of production, and on all finished goods inventory waiting to be sent to
the customer. We assume, as in Kanet and Christy (1984), that "early order
departures" are forbidden; one cannot send an order to the customer before the
specified ship date. Similarly, we assume that semi-finished product cannot be
dispatched to the subsequent stage prior to the dispatch time implied by the
planned leadtimes. (These planned leadtimes may be zero or very small, giving a
policy of immediate dispatching upon completion). Rules of "forbidden early
departure" parallel (in concept) those used in just-in-time inventory systems,
and MRP systems ostensibly use such rules (although practice often differs).

The dispatching policy is described in more detail later in this section.

Linear rescheduling costs are charged for tardiness (relative to the
intermediate due dates implied by the planned leadtimes) at intermediate
production stages. Note that rescheduling costs are charged only if a stage is
tardy; if a stage is completed early, it is not necessary to reschedule any
subsequent stage. Linear tardiness costs are charged for late delivery of the
finished product to the customer. We have used linear costs here because the
consequences usually become more severe as tardiness (at any stage) increases.
Other functions could have been used, but in real applications it is difficult
to estimate even a single parameter, so we chose to use this simple model. One
other approach would be to have a fixed rescheduling cost at each stage which is
independent of the degree of tardiness. Nevertheless, we believe that
rescheduling-related costs (when they exist) do actually increase with tardiness
over the ranges of tardiness normally observed. The rescheduling costs need not
be large; we only require that they be positive. If all rescheduling costs are
zero, the model of Yano (1985) would be applicable instead.

For each stage, there is an implicit "earliest dispatch time" which is the

customer due date less the sum of the planned leadtimes of that stage and all



successor stages. The earliest dispatch time for a stage can also be viewed as
the "due date" for the preceding stage. If a stage is completed prior to its
due date, the item waits until the due date. However, if a stage is completed
after its due date, the item is dispatched to the subsequent stage immediately
upon completion,

The reader may be curious about why such a policy would be used. Why not
dispatch everything immediately? Since the finished product cannot be shipped
to the customer early, dispatching everything immediately could result in value
being added to the product earlier than may be desirable, possibly increasing
the average investment in work-in-process and finished goods inventories. Of
course, in many situations the cost of labor is nearly fixed, and material
procurement is not well synchronized with production. In these circumstances,
the effect of the scheduling policy on cash flow (and therefore on inventory
holding costs) is immaterial. It is, however, important to realize that there
is generally a preference for holding product in a lesser stage of completion.
One reason is that "raw" materials are easier to store (normally in centralized
storage), whereas semifinished parts may occupy scarce space in the production
area. A second reason is that work-in-process tends to become less versatile
(in the sense of being suitable for inclusion in fewer finished products) as
production progresses.

In any event, if immediate dispatching is desirable, the optimal policy
would simply have zero (or very small) planned leadtime at the relevant stages.
Thus, the policy that we consider permits immediate dispatching but does not
require it. We note that the procedure described later in the paper only
requires that the inventory holding cost at each stage be non-negative. We do
not require that echelon holding costs be positive. Thus, there are no

conditions on the inventory holding costs which would prevent immediate

dispatching as an alternative, a priori. The presence of positive rescheduling



costs will, however, tend to limit the use of immediate dispatching.

We assume that demand is deterministic (i.e., the system is driven by
customer orders), and that a lot-for-lot policy is used. If demand is uncertain,
then a planned production quantity (e.g., demand forecast) can be specified
instead of a customer order quantity and the problem remains unchanged. The
leadtimes may be stochastic, and their distributions are assumed to be
stationary in time. We also assume that they are mutually independent,
continuous and twice differentiable (although extension to discrete leadtimes is
straightforward).

We next formulate the two-stage problem and then discuss a solution
procedure for it in the following section. Our intent is to provide an in-depth
study of a small but tangible problem before proceeding to an investigation of

larger systems.

Notation:
hi = holding cost (per batch) per period at stage i
1 = penalty cost (per batch) per period at stage i
T4 = actual leadtime at stage i
X, = planned leadtime for stage i (decision variable)

f.(*) = density of leadtime at stage i

F.(*) = leadtime distribution at stage i

2]

—

<
[}

expectation
(*)* = positive part

F¥*G = convolution of two cumulative distribution functions (c.d.f.s)

The stages are numbered so that i > j if stage i is done before stage j (i.e.,

stage 1 occurs last).



The two-stage problem can be stated as:

X
2
minimize h2 é (X2-u)f2(u)du

X
1
+ hy {Fo(Xp) é (X,-t)f, (t)dt

X1+X2 X1+X2-u
s f f (Xq#X,=t=u)fq (t) fo(u)dt du}
X, 0

-]

+py {Fo(Xy) 1 (6Xy) £(t)dt

X4
[ (t+u=X,=X,) f,(t) fo(u)dt du}
X2 X1+X2-u
* Dy £ (u=X,) f,(u)du (1)
2

subject to Xi >0, 1i=1,2,

The six terms represent the expected costs of (i) holding inventory at stage 2,
(ii) holding inventory at stage 1 when stage 2 is on time and stage 1 is early,
(iii) holding inventory at stage 1 when stage 2 is tardy but stage 1 is
completed before the due date, (iv) penalties at stage 1 when stage 2 is on time
but stage 2 is tardy, (v) penalties at stage 1 when both stage 2 and stage 1 are

tardy, and (vi) penalties at stage 2.



OPTIMIZATION

It can be shown that the objective function for the two-stage system is
positive semi-definite for all probability density functions (p.d.f.s) and
positive definite for all p.d.f.s for which the support of 1. has no gaps (i.e.,

1

P(t,

{= t] > 0 for all t within the range of ri). This has been demonstrated in

Yano (1985) for systems without rescheduling costs and the proof here is
similar. Therefore, first order necessary conditions are sufficient for
optimality since the objective function is convex for most realistic leadtime
distributions,

In Appendix A, first order necessary and sufficient conditions are used to
establish that the optimal solution has the following characteristics:

(a) F7'[py/(hy+py)] < Xq < min {F7'[(hy*py)/(hy+py) T, Gy [py/(hy+p;) 1}

(2)

and

(b) F2(X;) = p2/[(h2+P2+pl) - (h1+p1)F1(X:)], and (3)

where G12 = F1 ¥ F2 and X: denotes the optimal value of Xi‘

One possible solution procedure is quite simple. Select any reasonable
search procedure for X1 (e.g., bisection, Fibonacci search), and use equation
(3) to find the corresponding X5. Check for satisfaction of one of the first
order conditions, If it is satisfied, then we are done. Otherwise, X1 is
adjusted in the appropriate direction and the procedure repeats. Since X1 and
X2 increase or decrease together in equation (3) and one of the first derivaties
of the objective function (i.e., equation (A-1)) is strictly increasing in both X1
and X2, the appropriate direction of adjustment is evident.

A more expedient procedure is an adaptation of the generalized reduced
gradient approach (discussed in Luenberger, 1973). One would begin with any

value of X, in the range indicated in (2) and solve for X5 using (3). Then,



using a first order necessary condition (i.e., equation (A-2)), one solves for
Xy given X,. The procedure iterates between equations (3) and (A-2). Because
we have permitted the leadtime distributions to be quite general, it is not
possible to guarantee convergence of this algorithm. However, many similar
approaches do indeed converge even without guarantees of convergence. We
present experimental evidence of convergence later in the paper. We turn next

to analyses of multi-stage problems.

MULTI-STAGE PROBLEMS

Analyses of a three-stage problem begin to reveal some general patterns.
which extend to N-stage problems. Appendix B contains a formulation of the
three stage problem. In Appendix C, first order conditions for the three-stage
and N-stage problems are used to demonstrate that a general procedure would

involve the following steps:

(a) -Start with a trial value of Xy satisfying
-1
F1 [p1/(p1”'h1)] _<_X1 <
min{F1_1[(h2+p1+p2)/(h1+p1)], G12-1[(h3+p3+92+p1)/(h1+p1)],--u

Gy ..y [py/(hy*py) . (1)

(b) Sequentially solve for Xp» no=2,...,N given the values of X,,...,
xn_1 .
(c) Use one of the first order conditions (i.e., equation (C-3)) and the

values of X2,...,XN to obtain the next value of X1.

The procedure repeats steps (b) and (c¢) until convergence is achieved.

EXPERIMENTAL RESULTS

There are two objectives of our computational study. The first is to

determine whether the algorithm converges to optimal solutions even though

convergence is not guaranteed. The second (but more important) objective is to

10



gain some insight into characteristics of optimal planned leadtimes.

We used the algorithm to find optimal planned leadtimes for 1600 two-stage
problems and over 3300 three-stage problems, The parameter sets are detailed in
Tables 1 and 2, respectively. We used Poisson leadtime distributions because of
their single parameter characteristic., Using two-parameter distributions would
have necessitated larger sets of problems, but probably would have provided
little additional insight. We restricted the solutions to integer values since
the leadtime distributions under consideration are discrete and leadtimes
generally are measured in terms of a multiple of some fixed time period (an
hour, shift, or day, etec.). Thus, the solutions may not be optimal, but they
represent the minimum cost integer solutions. If more accuracy is required,

smaller time units can be used.

TABLES 1 AND 2

We normalized h1 to 1.0 and set other cost parameters relative to this
value., We used a wide range of rescheduling and tardiness costs, primarily to
recognize the possibility of rescheduling costs far exceeding commonly used
shortage cost values. Rescheduling often affects more than one product and the
many resources required to produce those products.

Of the 1600 two-stage problems, 1548 (about 97%) converged in three
iterations. The remaining problems oscillated between two adjacent values of
X1. Thus, it appears that non-convergence for these problems is an artifact of
restricting solutions to integer values, not of the algorithm. We obtained
similar results for the three-stage problem, with over 85% converging in three
to five iterations and the remainder oscillating between two adjacent values of
Xq. Of the three-stage problems for which convergence was attained, the vast

majority converged in three iterations., We initialized X1 to the integer

nearest the average of its upper and lower limits in (4). This gave a value of

1



X1 less than X: in most instances. With this initial value, convergence in
three iterations means that the optimal solution was identified on the second
iteration and confirmed on the third despite an arbitrary starting point.

Since the two-stage problem has a convex objective function, optimality is
guaranteed, since the algorithm simply finds a set of Xi which satisfy the first
order conditions, We selected a few three-stage problems to confirm that the
solutions were optimal. One problem was selected for each of the 27 possible
leadtime parameter combinations. Each of these leadtime parameter combinations
was paired randomly with one of the 27 pi/hi combinations in such a way that
each pi/hi combination was used only once (random bipartite matchings). We used
h2 = 0.5 and h3 = 0.25 for each of the 27 problems. To evaluate the performance
of the algorithm, we performed a grid search around the solutions obtained from
the algorithm and extended the search far enough to locate a local optimum.
Since we have bounds on the optimal value of X1, it would have been possible (in
some cases) to enumerate all "reasonable" solutions. However, because of the
high pi/hi ratios, small changes in each decision variable produced large
changes in the objective function, so an extensive search was deemed
unnecessary.

The observed optimal solution had the same value of X1 as determined by the
algorithm in 26 of the 27 problems. The optimal values of X2 and X3 were no
more than one unit from the values obtained from the algorithm. This may
indicate minor difficulties cause by limiting decision variables to integer
values or round-off errors in computation, but no apparent fundamental problems
with the algorithm itself. 1In fact, even for those problem for which the
procedure did not converge, the optimal solution values were not more than one
unit from the ranges of values for X;, X,, and X3 indicated by the two

alternate solutions from the algorithm.
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In the one case where the X1 values differed, the algorithm located a local
optimum with cost only 0.25 of 1% greater than the global optimum. If one is
concerned with locating the exact optimum, it may be advisable to perform a
very limited search in the neighborhood of the solution obtained from the
algorithm.

On the basis of our experimental results, it appears that the algorithm
performs extremely well, both in terms of convergence and in terms of
identifying the neighborhood of the optimal solution, even though convexity of
the cost function and convergence of the algorithm are not guaranteed.

The solutions obtained from the algorithm had some striking
characteristics., First, in all two-stage problems (except for those problems on
which the algorithm did not converge), the values of X? satisfied

X: = max {x | F(x) < (hy*p,)/(hy+p,)}
This would indicate that a single-pass procedure starting with this value of X1
could provide optimal solutions. Similar results were observed for the three-
stage problems. The values of X1* were amazingly insensitive to the costs at
stages 2 and 3. Similarly, the values of’Xz* were insensitive to costs at stage
3.

It is also evident from equations (C-6) and (C-7) (also from equations (C-
1) and (C-2)) as well as from the computational results that Fn(Xn) >0 for n =
2,...,N. Specifically, the first order necessary condition to be satisfied by
X, requires that Fn(Xn) be positive whenever P is positive., Therefore, it is
impossible for Xn to equal 0 for n=2,...,N. (Relevant technical details appear
in Appendix C). Thus, with any positive rescheduling penalty, planned leadtimes
are strictly positive and the stages do not "collapse" as they might when

p2=~-'=pN=0. In other words, unconditional immediate dispatching is not optimal
when there are rescheduling penalties at intermediate stages. Instead, each

stage "fends for itself" in view of planned leadtime at successor stages, and
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compensates very little for possible tardiness of its predecessors.

Translating these results into implications for safety time policies, we
find that the safety time at each stage is affected primarily by its own pi/hi
ratio. The rescheduling/tardiness costs at successor stages have only secondary
effects, while holding costs at successor stages have only marginal effects in
most cases,

These results have implications for possible myopic heuristics, but the
optimal procedure is fast, taking less than 10 seconds an IBM PC/XT using
Advanced BASIC for an average three-stage problem in our parameter set. Hence,

in most instances, use of heuristics may not be necessary.

SUMMARY AND CONCLUSIONS

We have developed solution methodologies for determining planned leadtimes
in two- and three-stage systems with rescheduling and tardiness costs and have
indicated how the procedures can be applied to N-stage systems. The resulting
procedure is a single-pass sequential algorithm in which the planned leadtime
for stage i, i=1,...,N is determined in sequence as a (nearly) closed form
function of the planned leadtimes at successor stages, and of the various costs.

The model underlying the algorithm indicates (and experimental results
confirm) that it is not optimal to have unconditional immediate dispatching when
rescheduling costs are positive. The planned leadtimes at all stages are
positive and are influenced most heavily by the respective pi/hi ratios,
secondarily by the penalty costs at successor stages, and only marginally by
inventory holding costs at successor stages.

It is interesting to note that the presence of rescheduling costs leads to
optimal policies which are much closer to those used in practice than those

derived from the model with no rescheduling costs. This may suggest that shop

floor controllers perceive that there are positive rescheduling costs (even if
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they are not easily quantified)--or that intermediate due dates result in a
similar response. Application of the algorithm somewhat in reverse (using
current planned leadtimes to estimate the perceived rescheduling costs) could
cause many firms to reduce their planned leadtimes!

Although the algorithms can be used for setting planned leadtimes, they are
likely to be more useful as managerial tools for quantifying and analyzing
tradeoffs among inventory, rescheduling, and tardiness penalties. These issues
traditionally have been investigated through simulation. The new method
presented here can be used to optimize and to perform sensitivity analyses much
more efficiently than can be done by simulation alone. One specific use of the
algorithm in this context would be to find planned leadtimes using a variety of
leadtime distributions reflecting different levels of shop congestion. These
planned leadtimes could be used as a basis for establishing more flexible, load-
sensitive, dispatching policies.

Much more work needs to be done to incorporate scheduling and queueing
considerations into planned leadtime decisions. This paper represents a first

step in understanding complex issues related to leadtimes.
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TABLE 1

Parameters for Two-Stage Problems
(h1 = 1.0)

Parameter Values
Ai (i=1,2) 2,4,6,8,10
h2 0.2,0.4,0.6,0.8
P4 4,36,100,196
P Mh2,36h2,100h2,196h2
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TABLE 2

Parameters for Three-Stage Problem

Parameter Values
Ai (i=1,2,3) 2,6,10
h2 0.2,0.5,0.8
h3 O.2h3,0.5h3,0.8h3
P4 4,36,100
Py Mh2,36h2,100h2
p3 Mh3,36h3,100h3
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APPENDIX A

First order necessary and sufficient conditions for the two-stage problem

are:
X +X2
(h1+p1) [FZ(XZ)F1(X1) + [ fz(u) F1(X1+X2—u)du] - p1 =0 (A-1)
X
X +X2
2

Observe that the respective second and third terms of these equations are

equivalent. Thus, the remaining terms must also equate. So we have

Since we have assumed Py > 0, both terms on the left hand side of the equation

must be positive, or
Fo(X,) > 0 | (A-3)
and F1(X1) < (h2+p2+p1)/(h1+p1) (A-14)
* * s e
Also, given X1, X2 satisfies
* *
F2(X2) = pz/[(h2+p2+p1) - (h1+P1 )F1(X1)] (A"S)

Since X2 can be expressed (almost) as a closed from function of X1, solving
for both simultaneously only requires essentially a one-dimensional search for
X10

We also can take advantage of some of the results from Yano (1985) to limit

the search. For the case of p, = 0 (no rescheduling costs), it was shown that
* . -1 -
Xy = min{F7 [(hyp))/(hy+py)], Gy3' [py/(hy+pp)]]

18



* -
where G12(') = Fy * Foo It also was shown that X; = G121 [p1/(h1+p1)] only
when FZ(X;) = 0. We have a similar condition here when p, > 0. If it were

possible to set F2(X2) = 0, we would have
* -
Xy = Gg '[py/(hy+py)]

since if F2(X2) = 0, all the (rescheduling) costs at stage 2 are sunk and the
decision at stage 1 is the solution to a standard newsboy problem using the
convolution of the two leadtime distributions.,

Consider setting X? = 6151 [p1/(h1+p1)]. Clearly FZ(X;) cannot equal zero
from equation (A-3). Now the sum of terms in brackets in equation (A-1) (which
equals G12(X1) when X, = 0) is increasing in both X1 and X,, so if X2 increases
from zero (as required by equation (A-3)) then X1 must decrease from

G151 [p1/(p1+h1)]. Thus, in addition to equation (A-l4), we also have

* -1
X1 < G12 [91/(h1+p1)].

Stated intuitively, one would never provide more protection at stage 1 than
would be desirable when X2 = 0.
We also know that if stage 2 could be guaranteed to be on time, we would
*

set X1 = F;1 [p1/(h1+p1)], but since this cannot be guaranteed, this value

represents a lower limit on X,. We now have
- * . - -
F110py/(hy+p)] < X7 < min {F710(ny#py)/(hy+py)], Gy3 [py/(ny+p)1}  (A-6)

This condition, in turn, ensures that condition (A-Y4) is satisfied, which then

guarantees that F2(X;) > 0 (from equation (A-5)). Observe also that if the left

*
equality were to hold, from equation (A-5) we have F2(X2)=p2/(92+h2)' and the
solutions for the two stages would be like solutions to independent newsboy

problems.
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APPENDIX B

The three stage problem can be formulated as:

X
minimize h, [ 3 (X5=v)Ffa(v)dv
3 0 3 3

X
*+ hy, [F3(X3) é ; (X5-u) £, (u)du

XotXqy X #Xo-v
+ [ 23 J a3 (Xo#X3-u-v) £, (u)f3(v)du dv]
X3 0

X2+X3 Xy
[F5(X3)F,(Xy) + i £3(VFy(Xp+X5-v) dv] é (Xy-t)f, (t)dt
3

-

X1 +X2 Xn‘ +X2"U
F3(X3) / / (X1+X2-t-u)f1(t)f2(u)dt du
X2 0

pu—y

© ® X1+X2+X3-u~v
+hye S S J (Xq #Xp#Xg=t-u-v) £ (t)f,(u)fa(v)dt du dv

X,+X )
+ Py [F2(X2) F3(X3) + [ 3 f3(v) F2(X2+X3-v) av] f (t-Xy) £,(t)dt
X3 X1
XZ X1+X2_u

X3 X2+X3-v X1+X2+X3-u-v

+ py F3lX3) i (u=X5) £,(u)du
2
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+p, [ (u+v-X2-X3) f‘2(u)f3(v)du dv
X3 X2+X3"V

+ p3 )j(‘ (V”X3) f3(V)dV
3

subject to X; > 0, ¥i
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APPENDIX C

Taking first partial derivatives and two of the three pairwise differences

for the three-stage problem yields:

Fo(X5) [(hy*py+py) = Fi(Xy)(hy+py)] = py = 0 (c-1)
X, +X
F3(X3){(h3+p3+p2+p1) - (h1+p1) ){ fz(U)F1(X1+X2"U)dU
2
= (hy*py+p,)F(X5)} = py = 0 (c-2)

where Y123 (x1, X2, X3) = probability that the batch is completed on time given
the dispatching policy. This is not a true convolution except when X2=X3=O.

It is already evident that given a value of X1, we can find X2 using
equation (C-1), and then proceed to find X3 given X, and X, using equation (c-2).
Then we can update X1 using equation (C-3) given X2 and X3, and repeat the
process. We have not demonstrated convexity of the objective function, nor have
we proved convergence of an iterative procedure. It is not possible to obtain
simply-stated conditions for convexity and therefore, we do not present the
conditions here. (It is not possible to prove convexity of any n-stage
objective function by induction, so for each n, this must be demonstrated by
brute force). However, most problems involving inventory and shortage cost
tradeoffs have a fairly well-behaved objective function. We therefore proceed on
the assumption that it is well-behaved, if not convex. As in the two-stage
problem, convergence is not guaranteed, but may be expected for most costs and
leadtime distributions.

It is evident that X1* 2 F1_1[p1/(p1+h1)] as explained previously for the

two-stage problem. From equations (C-1), (C-2), and (C-3), we are able to
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obtain an upper bound on Xl* as we did for the two-stage problem. So we have

F1-1[p1/(p1+h1 )] < X1* <
min{F1-1[(h2+p1+p2)/(h1+91)]: G12—1[(h3+p3+p2+p1)/(h1+p1)],

Gypg '[pq/(hy+py)]) (C-4)

where G123(‘) = Fy * Fy * F3. The first term in brackets comes from equation
(C-1). The second and third terms result from assuming X2= 0 in equation (C-2)
and X, = X3 = 0 in equation (C-3), respectively. The algorithm is started using
X1 equal to the integer nearest the midpoint of the range.

Using a similar approach as above for N-stage systems results in a set of

first partial derivatives which have the general form:
Y1,..8(X) = py/(ny+py) (c-5)

where Y, N(X) = probability that the batch is completed on time given the

dispatching policy, and

Fp(X)) {g,(XqseeesXpp)t = pp = 0, n=2,...,N (C-6)

Where gn(x1 g 00 o,xn_“_) =

n _ n=1
hl'l +_ 351 pn (hn-l * 351 pJ) Fn-—1 (xn—1)
M 0PI < x, " ow T Xy, k@l (¢-7)
- . - . T iy . . ) . m -
m=2 n-m - 5= Pj j=n-m J = j=n-m J J=n-kTJ j=n-k “J’

We also have:
F,o 0 pa/(py*h )] < X, © <
1 PPt S X
; -1 -
min{F, [(h2+p1+p2)/(h1+p1)], Gy 1[(h3+p3+p2+p1)/(h1+p1)],---.

Gy, ..y '[py/(ny+py)]} (c-8)
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Again, starting with a trial value of X1 chosen according to (C-8), we
iteratively solve for X, , n=2,...,N in sequence and then use equation (C45) to
obtain the next value of X,.

We have not yet proved that the gn(') functions above are positive, but
since Py ? 0, n=1,...,N, it would be impossible to satisfy the first order
conditions if they were non-positive. The proof can be obtained indirectly, and
we provide a sketch of it here. It can be shown that gn(') is monotone

decreasing in X1,...,X Thus, planned leadtimes satisfying the first order

n-1°
conditions have the characteristic that if X1 is increased, XZ""’XN also
increase (from equation (C-6)). Thus, preventing g, from becoming negative is
the same as preventing X1 from becoming "too large." The upper limit on X1 in

(C-8) essentially prevents this from occurring. This, in turn, guarantees

*
Fn(xn) > 0 for all n.
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