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SAFETY STOCKS FOR ASSEMBLY SYSTEMS WITH FIXED PRODUCTION INTERVALS

ABSTRACT

We present a heuristic approach for setting safety stock levels in a
simple two-level assembly system facing random demand, where production or
assembly of each part is done at fixed intervals. The objective is to
minimize expected inventory holding and shortage costs, or alternatively, to
minimize expected inventory holding costs subject to a fill-rate constraint.
Results from the heuristic and from simulation studies indicate that
component safety stock may not be economical in most situations. We also

provide some qualitative insights into factors affecting safety stock economics.



SAFETY STOCK FOR ASSEMBLY SYSTEMS WITH FIXED PRODUCTION INTERVALS

INTRODUCTION

Scheduling multi-stage batch manufacturing facilities facing uncertain
demand is not an easy task. Recent research has focused on relatively simple
systems with the intent of characterizing or developing insight into optimal
policies. Schmidt and Nahmias (1985) investigated a periodic review assembly
system with one finished product and two components and having no setup costs.
The optimal policy was shown to have a single critical number (order-up-to
point) at each stage of production. The actual production quantity is modified
if there is insufficient input material or if it is known that a component mate
will not be available. Lambrecht, et al. (1984) analyze the same system with
setup costs. They indicate that an (s,S) policy at each stage is optimal.

Continuous review models have been developed by DeBodt and Graves (1985).
Various other approaches have been developed, including those of Meal (1979) and
Miller (1979). Finally, simulation studies, too numerous to mention here, have
been done addressing the problem (e.g., Whybark and Williams (1976)).

Our objective in this paper is to characterize the safety stock problem and
to develop heuristic approaches for safety stock management in the context of an
assembly system using fixed production intervals. By this we mean that
production is done intermittently, with a fixed time between starts of
successive production runs. We sometimes use the term production cycle instead
of production interval. The use of fixed production intervals usually gives
rise to periodic review inventory policies where the review period is the
greatest common divisor of the production intervals. It has been suggested by
Elmaghraby (1978), Caie and Maxwell (1981), and others, that using fixed

production intervals simplifies both production planning (i.e., dealing with



capacity constraints), and detailed scheduling. Even when demand is uncertain
and production quantities are permitted to vary from one batch to the next in
response to demand fluctuations, having fixed production intervals can still
simplify production planning and scheduling. At a minimum, one knows whether or
not a setup must be done for an item and has a general idea of how much must be
produced (e.g., a two-week supply). Furthermore, since one has an estimate of
the quantity to be produced, it is possible to make relatively accurate
estimates of the required processing time. It is important to note that the
basic time period need not be large. Therefore, if setup costs and setup times
are small, the production intervals can be small, keeping both inventory and
total production leadtimes low.

The actual lot-timing can be done using demand forecasts and any applicable
optimal or heuristic lot-sizing technique which can be constrained to give fixed
production intervals. For the case of constant demand and costs, the algorithms
of Blackburn and Millen (1982), or Maxwell and Muckstadt (1985) could be used.
With time-varying demand or costs, another approach would need to be used (e.g.,
Afentakis et al. (1984), Afentakis and Gavish (1986)).

In the next section we describe our problem in more detail. We then
describe an approximate analytical model which can aid in determining the most
advantageous "locations" for safety stock. Finally, we present some

computational results from which we draw general conclusions.

PROBLEM DESCRIPTION AND ASSUMPTIONS

We analyze a simple assembly system with one finished product and two
components. Demand for the finished product is uncertain but stationary in
time, and for simplicity, is assumed to have a normal distribution in each
period. (The approach can be extended to non-stationary demand processes). All

shortages are backordered and all orders are filled using a first-come, first-



served policy.

Each component is produced or procured at a fixed interval which is an
integer multiplé of the finished product assembly interval. The production
schedule, therefore, is a nested schedule. Each step in the production process
is assumed to have a known, deterministic leadtime, which includes time for
procurement, fabrication, and delivery to the assembly stage (in the case of
components) or assembly and delivery to the warehouse (in the case of the
finished product). We assume that production intervals have been specified so
that there is sufficient capacity to produce the desired quantities within the
leadtime. If the demand process is highly non-stationary, then we assume that
sufficient production smoothing has been done to make the fixed production
schedule achievable. We also assume that production or procurement of
components is done on a just-in-time basis (i.e., as late as possible), that
production yields are deterministic, and that supply of materials to the
component stage is perfectly reliable.

We also assume that the system uses a (T,S) or base stock policy in which
one orders up to S every T periods. In such a system, the production quantity
at each stage always replaces whatever has been supplied (either to a successor
stage or to customers) since the most recent order was placed. Therefore,
demands observed by the component stages are aggregates (over time) of external
customer demands.

Since the production intervals are fixed, a modified policy (T,S) policy is
clearly optimal. Schmidt and Nahmias have indicated that actual assembly
quantities may be limited by availability of components, and production
quantities of the components should be modified from the prescribed value if it
is known in advance that a mate will not be available. Unfortunately, most

manufacturing information systems are not sophisticated enough to check future



availability of component mates before ordering or producing a component, Even
if such a capability were to exist, the sequence in which the production
decisions are made would affect the ultimate production quantities--and it is
highly unlikely that the information system could accommodate joint optimization
of these production decisions. Thus, because of these practical considerations,
we will sacrifice optimality by implementing a literal (T,S) policy.

There is one final assumption which is critical to the analytic model
developed in the next section. We assume that shortages only occur in the last
period with positive demand in a production cycle (i.e., at the end of the
production cycle). In reality, shortages may occur earlier than this.
Nevertheless, if production interval of an item is not significantly longer than
the production interval of its successor, and shortage costs are sufficiently
high to encourage a moderate to high level of customer service, there is a
minimal chance of significant shortage quantities earlier than the assumption
specifies. In extensive simulation studies, we found that shortages rarely
occur earlier than we assume here. Jonsson and Silver (1987), in related work
on multi-stage, periodic review distribution systems, show that almost all
shortages occur at the end of a cycle.

We are concerned with minimizing expected total inventory and shortage
costs. Since the production intervals are fixed, only the safety stock portion
of the base stock level (but not cycle stock) is controllable. A cost per unit
per period is charged on average safety stock. Inventory holding costs are not
charged during production leadtimes since these costs are fixed under the
assumptions of complete backordering, constant leadtimes and fixed production
intervals. A cost per unit short is charged for each backorder. Because of the
shortage timing assumption, for practical purposes, the duration of each
backorder can be taken as one period. (For any reasonable level of customer

service, backorders are filled by the subsequent production run.) Thus, the



analysis can incorporate a shortage cost per unit per unit time quite easily.

Throughout the remainder of the paper, we use the following notation:

D = average demand per period for the finished product;

g = standard deviation of finished product demand;

T; = production interval (time between production runs) for item ij;
L.i = production leadtime for item i;

hi = inventory holding cost per period for item i;

ki = safety stock multiplier for item i.

The base stock level for item i, Si' equals TiD + ki VTi + Li 0.

HEURISTIC MODEL

Our objective is to develop an approximate analytic representation of the
expected cost of inventory resulting from, and the reduction of shortages
achieved by increasing the base stock levels. By comparing the cost with the
benefit, we can determine whether increasing the base stock of an item is
economically attractive.

This marginal approach to the problem does not fully capture the
interactions among the base stock decisions, and is not guaranteed to be optimal
because the objective function for the problem may not be convex. Thus, the
models are approximate, and one would not be advised to use them alone to
optimize base stock quantities. The value of the models is to quantify some
critical factors in base stock decisions, and in so doing, provide (or at
least confirm) some managerial insights which might be transferred to more
realistic settings.

The approach involves posing the following question. Suppose the
base stock level (of a specified item) were increased. How much would it
ultimately cost us, on average, and what is the expected reduction in shortages?

The algorithm, in a greedy manner, adds a unit to the base stock level of the



item with greatest net benefit per unit time. The expected costs and savings
are recomputed using the new base stock levels and the procedure repeats until
there are no further net benefits. If the shortage cost is known, the benefits
are computed in terms of shortage cost reductions. If a fill-rate (fraction of
demand filled from stock) is specified, the benefit is measured in terms of
reduction of shortages. (In this case, however, it is difficult to estimate
when the desired fill-rate is achieved.) The details of the approach appear in
the appendix. The remainder of this section is devoted to a qualitative
explanation of the reasoning underlying the computation of costs and benefits.
An important corollary to the shortage timing assumption is that adding a
unit to the base stock of any item can reduce shortages only once during that
item's production interval. Thus, for each item, both expected inventory cost
increases and expected shortage cost reductions are computed over the item's own
production interval. With this in mind, we next develop an approach for
computing these values for the finished product and then for the components.
The expected cost of adding a unit to the base stock level of the finished
product can be approximated as the product of its holding cost and the expected
time (during a production cycle) that it spends in inventory. If it is not used
to satisfy a demand, it remains in inventory for the entire cycle. If it is
used to satisfy a demand, by the shortage timing assumption, it remains in
inventory for one period less. The probability that it is needed to satisfy a
demand depends upon the current base stock level. (If the base stock level is
already high, the probability that more inventory is needed is small). The
expected reduction of shortages (measured in units) is simply the probability
the additional unit is needed to satisfy a demand. (These arguments are based
upon newsboy-like analyses and are exact for a single-level system, but are

approximations for a two-level system because they assume that components will



always be available.)

The expected cost of increasing the base stock level of a component is more
complicated. If the additional unit is not ordered by the assembly stage, it
will remain in component inventory for the entire production cycle. If it is
ordered by the assembly stage, it will remain in component inventory for one
assembly production interval less. At that point in time, it will be assembled

into a unit of finished product if the component mate is available. (Otherwise,

it will remain in component inventory.) If assembly of the extra unit occurs,
that extra unit may remain in finished product inventory for an entire assembly
production cycle if it is not needed to satisfy a demand. Otherwise, it will
remain in finished product inventory for one period less (by the shortage timing
assumption). In computing the cost incurred from the extra finished product
inventory, we include only the holding cost of the value added in the assembly
process because the component mate was already in inventory. By computing the
costs and probabilities of each of the four possible outcomes (shown in Figure
1), we can obtain the expected cost due to increasing the base stock level of a

component..

FIGURE 1

The probability that the additional unit actually reduces finished product
shortage is the probability that the fourth path in Figure 1 occurs, i.e., the
unit is ordered by the assembly stage, a mate is available, and the assembled
finished product is needed to satisfy a demand. The major point to be noted in
this analysis is that increasing the base stock level of a component can lead to
costs exceeding the component inventory holding cost (because of possible
assembly into a finished product), but several events must occur in concert for

the unit to provide a reduction of shortages.



The implementation of a literal (T,S) policy sometimes results in ordering
up to S even though it is known in advance that some of the units will not have
a mate available. Since the procedure for computing expected inventory costs
assumes this literal implementation, the expected inventory holding costs due to
increasing the component base stock level may be overstated. It should also
be pointed out that the potential exists for double-counting the third path
(one time for each component) when mating occurs. Both components would be
charged with the cost of holding the value added in the assembly process,
causing overstatements of the cost of incremental component safety stock.

Thus, there are at least two reasons for the approach to underestimate the
desirability of component safety stock. However, many approximations are
made throughout the analysis, and the assumption that finished product
safety stock costs and benefits can be determined assuming 100% service from

the components is much more critical.

COMPUTATIONAL RESULTS

Results indicate that for nearly all realistic situations, safety stock
level for second-level components should be zero. Initially we designed a
complete factorial experiment for which the parameter values are shown in Table
1. We ran the algorithm for a few of these problems (those with relatively low
component holding costs) using various shortage cost values which would be
expected to yield fill-rates from 90% to 98%. In all of these cases, the

algorithm provided solutions with no component safety stock.

TABLE 1
Before continuing, we present two examples which were typical of the
results, and which demonstrate the effect of component holding costs and

production intervals. Symmetric product structures were chosen for ease of

presentation of the results, but results for asymmetric structures are similar.



We found it helpful to plot average total setup and inventory holding cost (not
including shortage costs) versus fill-rate because it reflects the main tradeoff
over a range of possible shortage costs. In these figures, the inventory cost
includes cycle stock costs and safety stock costs, but recall that only the
safety stock costs are controllable.

Figures 2 and 3 show average inventory cost versus fill-rate relationships
as finished product safety stock is increased and as component safety stock (for
one component, or both, as applicable) is increased. These figures are for two
situations in which the algorithm indicates that no component safety stock
should be used. The plotted values represent averages obtained from 50
simulation runs, each with a 24-period horizon. The same sets of randomly
generated demands (common random numbers) were used for each set of safety
stock multipliers, so as to reduce the variance of the differences among the

results.

FIGURES 2 AND 3

Note that Figure 2 represents a case in which parameter values were chosen
so as to afford advantage to component safety stock relative to finished product
safety stock. The components have very low holding costs and the likelihood of
reducing shortages is large because the mate is always available. (Here, safety
stock of both components was increased simultaneously).

The case illustrated in Figure 3 is more typical. Only 20% of the value of
the product is added at the last stage (versus 80% in Figure 2). In this case,
component safety stock is extremely costly and provides little increase in the
fill rate.

Next we investigated what component inventory holding costs might make
component safety stock economical. To do so, we attempted to find component

inventory holding costs which (on the basis of the algorithm) would make one



indifferent between adding finished product and component safety stock. For the
system parameters in Table 1, in no case did we get a cutoff component inventory
holding cost of more than 30% of the finished product inventory holding cost,
and in only one case did we get component inventory holding costs totalling more
than 40% of the finished product inventory holding cost.

Some patterns in these results also suggested that certain combinations of
parameters might make component safety stock beneficial. In particular, it
appeared that a component having a low inventory holding cost and a short
production cycle (e.g., equal to the assembly cycle) in conjunction with a
mate having a relatively high holding cost and a long production cycle, is a
prime candidate for safety stock. The reasons are quite clearly explained
through the cost-benefit computations., The costs incurred by increasing the
base stock of such a component are relatively small since (a) the production
cycle is short, and (b) the inventory holding costs, both of the component
itself and of the value added in the assembly process, are small. The
benefit of increasing the base stock of the component is enhanced by the
long production cycle of the mate, since, as a result, the mate is available
if needed in most instances.

We simulated several systems having parameters as those described above and
found that some component safety stock was beneficial, but in most cases, the
saving was less than 1% of total costs (see Yano, 1981). Thus, it appeared that
other factors would be needed to make component safety stock of significant
benefit.

We performed some additional studies for situations with high shortage
costs. We found that initially (starting from a point with no safety stock), it
Q&s desirable to add finished product safety stock. Eventually, the relative
cost of more finished product safety stock became prohibitive (due to decreasing

marginal returns), and some component safety stock became desirable. We note,
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however, that these high shortage costs corresponded to fill-rates well in
excess of 99% (usually greater than 99.5%), so some firms would not find these
results particularly relevant.

Results from the algorithm and from simulation studies indicate that
several factors must be present simultaneously in order for some component
safety stock to be cost-effective. They are:

(1) The holding cost of the component must be very small relative to

that of the finished product (i.e., 10% or less).

(2) The mates must have long production intervals leading to infrequent

stockouts,

(3) The shortage cost (or desired fill-rate) must be very high.

SUMMARY AND DISCUSSION

Through the use of a heuristic analytical procedure and simulation, we have
found that component safety stock is normally not economical in two-level
assembly systems with two components. The results obtained here may be
applicable to other product structures., If there are more than two components,
the likelihood decreases that all component mates are available. Therefore, the
expected benefit of using safety stock of any particular component decreases.
This in turn causes a decrease in the optimal safety stock quantity and the
potential savings to be gained from using component stock.

Intuition would also indicate that as one moves deeper into an arborescent
product structure, a much larger number of events must occur simultaneously in
order for component safety stock to have a beneficial effect on customer
service. The joint probability that all the advantageous events occur
simultaneously decreases approximately geometrically with the number of levels.
The expected holding costs arising from an additional unit of safety stock tends

to decline at a slower rate, since inevitably some of the additional safety
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stock will be incorporated into units of successor items for which inventory
holding costs tend to be higher (due to value added in production). Therefore,
the expected cost of reducing shortages tends to increase as one moves deeper
into the product structure.

On the other hand, one effect of a deeper product structure is a greater
degree of supply uncertainty (which is actually the result of demand
uncertainty) because one stage of production may not receive what it ordered.
In our two-level system, the component production facilities always received the
needed inputs; only the assembly facility sometimes did not receive what it
ordered. In a system with several levels, most production facilities would not
receive what they ordered at least a portion of the time. This could lead to a
need for more component safety stock.

Two points of view on safety stock are commonly held. The first view is
that safety stock should be placed nearest to the source of uncertainty. The
other view is that holding product in a less complete form should provide some
protection at lower cost. We had hoped that the latter would be true, making
the component safety stock decision an important one. Although the results did
not bear out this conjecture, they nevertheless provide some useful insights
which might be transferred to more complex systems. In particular, we have
found that three factors are needed for component safety stock to be of benefit:
(1) very small cost of holding the component relative to holding the finished
product; (2) infrequent production of the mate(s) which minimizes mating
difficulties; and (3) very high shortage costs (or fill-rate). It is
interesting to note that the conclusions of Schwarz (1985) in a very different
setting are similar qualitatively.

The model, however, has several limitations which need to be addressed in

future research. It deals only with a two-level system where the components are
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not used in any other finished product, but in real systems there are many
stages and many common components. Issues related to component commonality in
two-level systems are beginning to be addressed by Axsater and Nuttle (1987),
Baker (1985), Baker et al. (1985), and Gerchak and Henig (1986).

Leadtimes were assumed to be deterministic in our model, but would be more
realistically modeled as random variables because the quantity produced in each
production run varies along with demand, and because of the effects of capacity
constraints on leadtimes. Random leadtimes will affect the magnitude of optimal
safety stock quantities, but it is not yet clear how they will affect its
allocation among stages. Some recent work dealing with random leadtimes in
systems with multiple stages includes Karmarkar (1987) and Yano (1987).

We have assumed that production yields are perfect, or at least
deterministic, but this is rarely ever true. Issues of random yields in systems
with multiple stages are beginning to be investigated (e.g., Lee and Yano,

1985). Finally, we have assumed that production of components is done on a
just-in-time basis, but this is not always possible because of capacity and
scheduling considerations. Graves recently (1987) proposed a method to model the
interplay between safety stock and capacity flexibility, an important first step
toward resolving this issue. Much more research is needed to deal with scheduling

decisions when demand is uncertain.
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TABLE 1

Problem Parameters

Parameter Values
T1 2,4
T2, T3 T1, 2T1, 3T1
h1 1.0
h2, h3 .10, .25, .40
D 200 per period
0] 10, 30, 50 per period
L1, L2, L3 1,5

14
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APPENDIX A

In this appendix we describe the algorithm in further detail.

Notation:

T; = production interval of item i (in periods)

,hi = inventory holding cost of item i per period

L, = leadtime to produce or procure a batch of item i

i = shortage cost per unit

D = average finished product demand per period

0 = standard deviation of demand during one period
o(*)
o (")

cumulative standard normal distribution

standard normal density

The base stock quantity is expressed as TiD + ki/T;:EZ g, where the first term
is cycle stock and the second term is safety stock. In the safety stock term,
ki is the usual safety stock multiplier and we use T1+Li under the square root
to reflect the fact that the safety stock quantity should depend upon both the
production interval and the leadtime. We use this representation principally
for notational simplicity. One could use a quantity, say 845 instead, but this
makes conversion to standard normal notation more difficult. Note that since

the cycle stock is constant, the base stock quantity can be adjusted by changing

the safety stock quantity.

Finished Product Safety Stock

Suppose we were to add one unit to the finished product base stock level.
This unit might be held through the entire finished product production interval
if demand is "small." On the other hand, that additional unit could satisfy a

demand that otherwise would have been backordered, if the demand during the
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production interval is "large." By small (large), we mean that demand during
the production interval is less than (greater than) cycle stock plus the current
safety stock provision. In the case of the assembly stage, T1 + Ly is precisely
the period of time over which the safety stock must provide protection (i.e,
from the time a production run begins until the next production batch is
available for use). The reason that we must use the interval T, + L, is that
the safety stock is incorporated in the order-up-to point, not in a reorder
point, Thus, the probability that demand is less than cycle stock plus the
current safety stock provision is é(kq).

By our shortage timing assumption, if a shortage occurs, it occurs in the
T1th period of the production cycle, so the additional unit of safety stock
would have been in the system for T1 - 1 periods. Thus, the expected cost due
to this unit of safety stock is the expected time that an additional unit of
finished product safety stock spends in the system, multiplied by the cost per
unit time, which is

hy{ Tqe(ky) + (Ty=D[1 - a(ky) 1L (1)

The expected decrease in shortages is [1 - ¢(k1)] (i.e., one unit multiplied by
the probability demand is '"high"). So the expected benefit is
(1 - ¢(k1)] 7. The expressions above lead to a form of the newsboy formula,
¢(k1) = a/(a+b), where a = 1 - hl(T1 - 1) (i.e.,, the incremental shortage cost

per unit), and b = h,T, (the incremental overage cost per unit).
11

Component Safety Stock

To simplify the discussion in this section, let us index the two
components by i and j, with i being the component for which we are considering
addition of safety stock. Before discussing the details of the model, we
mention some basic facts about the operation of the system which may not be

readily apparent. The first point is that periodically, production runs of the
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two components will be delivered to the assembly stage at the same time.
Therefore, this represents a possible simultaneous stockout occasion. At other
times, one component may have a shortage but the other component will have
adequate supply (by the shortage timing assumption). The frequency with which
possible simultaneous stockout occasions occur is the least common multiple of
Ty and Tj.

A second, related point is that both components observe the same dependent
demand, so the stockout probabilities are highly correlated. The degree of
correlation depends upon the production intervals and leadtimes.

The third point is that for each component production run, there may be
several production runs at the assembly stage, but (by the shortage timing
assumption) it is only the last such assembly run corresponding to the component
production run for which there may be insufficient component parts.

The foregoing points provide the background for analyzing component safety
stock. Consider the addition of a unit of item i safety stock. We might
summarize these possible streams of events as in Figure 1. Also indicated in
Figure 1 are the marginal costs which would be incurred for each possible stream
of events. These costs are explained next.

The first two streams of events in Figure 1 are situations in which nothing
happens to the unit of component safety stock. It therefore remains in
inventory for the entire production interval at a cost of h; per period. For
the third stream of events, the unit remains in inventory until it is needed for
assembly, or for Ti - T4 periods. If the mate is available, it is then
assembled into a unit of finished product which is not sold during the
production interval, and is thus held for another T1 periods. (The mating issue
arises only immediately before both of the components are about to be delivered
to the assembly stage simultaneously). The marginal cost per unit is only h1 -

h;, however, because the unit of component j already existed. In the last

jl
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stream of events, the costs are the same as for the third stream except that the
unit of finished product is sold and is therefore held in inventory for a
shorter period of time.

The main difficulty now is to determine the probability that each stream of
events occurs. As mentioned earlier, the components observe aggregates of
finished product demand, so the probabilities of event occurrences are
correlated, making it necessary to find the joint probabilities that the set of
events in each stream occurs. This is tedious, since one needs to consider the
precise timing of orders and production runs, but it is straightforward
conceptually. Details appear in Appendix B.

Let p, denote the probability that the nth stream occurs. Observe that Py
is precisely the expected shortage reduction (fraction of a unit). The expected
cost incurred by the additional unit of safety stock is the appropriate weighted
average of the costs described above. We need to compare this with the expected
reduction of shortage costs to determine whether additional safety stock would
be economical. More precisely, we need to compare
{hy (T;=T;) + Tylhy(py#py) * (ny=h;)(p3*py)] = py(hy=h;)} (2)
to T py. If it is smaller, additional safety stock is economical.

Using the marginal approach described earlier, the policy would be to add a
unit (or small increments) of safety stock for the item with the greatest net
benefit per unit time until the net benefit is zero or less. In order to
capture the interaction of the safety stock decisions using the type of approach
described above, it would be necessary to consider simultaneous changes of the
safety stock of two or more items. This would involve modeling much more
complex cost functions. We viewed such an approach as being too computationally

burdensome for the purpose of finding "ballpark" solutions.
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Let Ci represent the expected inventory cost during a production cyle of i
due to increasing the base stock level of item i. A statement of the algorithm
follows.,

ALGORITHM
1. Choose a step size, Ak, which is the incremental step size for
safety stock and initialize the safety stock multipliers.

2. Calculate C; for all i using (1) and (2).

3. Find z = max [w py(i) - Ci]/Ti where p)(i) is the value of p), for item i.
i

If z < 0, stop.
Otherwise:
Set k; = k; + Ak, where i = argmax [r py(i) - Ci]/Ti'

Return to Step 2.

The choice of the initial values of ki will depend upon the application,
but in most cases a safe starting point would be ki = 0 for all i,
We comment that if Ti = Tj and Li = Lj, we can collapse the product

structure into a serial system by using an "aggregate" component with holding

cost equal to hi + hj. This forces equal safety stock quantities for the two

components.
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APPENDIX B

In this appendix we present an example of the procedure for computing the
probabilities (pn values) needed for the component safety stock analysis.

Throughout the analysis, we assume that finished product demand occurs
during the period, whereas dependent demand occurs instantaneously at the
beginning of a period. We also assume that production runs start at the
beginning of a period and only those that are fully complete can be used to
satisfy demand. These timing conventions were chosen because they reflect what
typically happens in material control systems. One important corollary results
from these assumptions. The first is that the component facilities can observe
their dependent demand (to be withdrawn from a component batch produced earlier)
before production begins. However, the assembly facility only has information
up to and including the previous period's demand when the production run is
begun.

To simplify the computation, we assume that when each component production
run is complete, on-hand inventory is equal to cycle stock plus safety stock.
This is always true when L; < Ty; it is also true that average on-hand inventory
is equal to cycle stock plus safety stock even when Li > T1.

For assembly production runs prior to simultaneous completions of component
production runs, the probability that stream 4 in Figure 1 occurs is
(conceptually) the probability that the dependent demands in certain periods are
small enough so that component 3 (the mate) is available, yet large enough so
that an extra unit of component 2 is ordered for the assembly run, and demand is
large enough to require the "extra" unit of finished product. For the remaining
situations, p) is the probability that dependent demands are large enough so the
extra component 2 safety stock is needed and demands are large enough to require

the resulting additional unit of finished product.
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Probabilities of other event streams can be described in a similar fashion.
By translating the dependent demands into their equivalents in terms of finished
product demands, we can make the following generalizations for a production run
of item i which is begun in period t:
(1) The probability that an additional unit of item i safety stock is
actually ordered by the assembly stage depends upon demand in periods
Byeeey bl +T;=T4=15
(2) For situations prior to simultaneous completions of production runs of
the components, the probability that item j is available depends upon
demand in periods
t+Ti+Li-Tj-Lj,f..,t+Li+Ti-T1-1; and
(3) The probability that additional finished product (assembled from the
additional components) is actually needed to satisfy a demand is a

function of demand in periods

t+Li,...,t+Li+Ti+L1-j.

Since these time intervals overlap, in general the joint probabilities PqseeesPy
may have double, triple, and quadruple integral terms.

Consider a system with the following parameters:

T = (2,4,6)

L= (1,4,1)

Observe that items 2 and 3 are delivered to the assembly stage simultaneously
every 12 periods. Thus, in 2/3 of the item 2 production runs, we would expect
an additional unit of item 2 safety stock to find a mate available with
certainty. In the remaining 1/3 of the production runs, availability of the
mate depends upon the safety stock provision for item 3 and the demands which
actually occur. Let us consider adding to the base stock level of component 2.

We will examine an instance in which components both components are delivered to
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the assembly stage simultaneously (i.e., where component mating is an issue).
Suppose t = 1. Then the time intervals of concern are (i) 1 through 6, (ii) 2
through 6, and (iii) 5 through 9. Let W be the random variable for demand in
period 1, X for demand in periods 2 through 4, Y for demand in periods 5 and 6,
and Z for demand in periods 7 through 9. Thus, we need to make some statements
about (1) W+ X +Y, (2) X +Y, and (3) Y + Z. We can express the desired

probability as

P(w+x+Y>uw+uX+uY+kj/Tj+Lja
and
—
X+Y<Cuy +uy + kg /Ty + L0
and
—___—-—ﬂ
+min(ki/Ti+Lio,kj/Tj+LJ0))
where p represents the mean of the designated random variable. The right
hand side of the last inequality arises because a finished product shortage is
the result of a component shortage only when demand over the appropriate time
interval exceeds finished product safety stock plus the lesser of the two
component, safety stock quantities.

Transforming W, X, Y, and Z into standard normal variates W', X', ¥', and

Z', respectively, after some algebra this becomes

Jf Jf S(y x + Vg y <k V' T; + Ly)

1

emm—— —
» PIN' > (kg /Ty + Ly = Vmp x - /?1'3 y) /]

*PLZ' > (kg /Ty + Ly +min (kg /' Ty + Ly, Ky /"EE’:}:. - /3 ¥)) V]

i’ J
« ¢(y) o(x) dy dx
where § = 1 if the condition is true and 0 otherwise, ny denotes the number of

periods represented by W (= 1), n, the number of periods represented by X (= 3),
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nj the number of periods represented by Y (= 2), ny the number of periods
represented by Z (= 3), and ¢() is the standard normal density. This
expression covers the situations where mating of components is an issue (which
occurs 1/3 of the time). In the remaining situations, mating is not an issue.
Thus, component j would not need to be considered and the expression is much
simpler. To find p), we take the the expression above, multiplied by 1/3, and
add the appropriate probability when mating is not of concern, multiplied by
2/3.

Each of the p,s can similarly be represented in closed form (for details
see Yano, 1981) and can be computed using standard numerical integration

techniques.
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