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STOCHASTIC LEADTIMES IN TWO-LEVEL ASSEMBLY SYSTEMS
ABSTRACT
Shortages of assembly parts often arise from late arrivals of one or more
batches of components. We address the problem of determining planned leadtimes
in two-level assembly systems with stochastic leadtimes, with the objective of
minimizing the sum of inventory holding costs and tardiness costs. An
algorithm is developed which exploits properties of the objective function
to find optiml solutions. Computational results indicate that optimal
solutions often have negative safety times for at least one of the

components, as well as substantial safety times for the assembly stage.



STOCHASTIC LEADTIMES IN TWO-LEVEL ASSEMBLY SYSTEMS

1.0 INTRODUCTION

The problem of parts shortages in assembly environments often results from
variable timing of the arrival of a batch of component parts. The late arrival
of a batch of a single component can delay an entire production run.

Uncertainty in production or procurement leadtimes has a variety of causes. If
the components are produced, the actual production leadtime will vary with
because of queueing or transporation delays. Other reasons are variable setup
times (particularly when calibrations are difficult) and variable processing
times. The latter can arise when yields are variable and production continues
until a specified number of acceptable parts has been completed. If the
components are procured, availability at the vendor and transportation times may
be uncertain.

Earlier work on stochastic leadtimes includes simulation studies by Whybark
and Williams (1976) and Grasso and Taylor (1984), models for single stage
systems (Weeks, 1981), and approaches for serial systems (Yano, 1985). To the
author's knowledge, no prior research has been done on safety times for multi-
stage assembly systems with stochastic leadtimes. Yet, much of the coordination
problem in assembly systems results from timing problems, not quantity
variations. The general problem is quite complex. We therefore investigate a
simple system under a strong set of assumptions with the expectation that the
insights gained might be generalized to more realistic systems.

In section 2 we describe and formulate the problem for the case with two
components. Section 3 details the development of an algorithm which exploits
properties of the objective function to find the optimal solution. Section 4
includes computational results which provide insight into characteristics of

optimal solutions. Section 5 concludes with a summary and discussion.



2.0 PROBLEM DESCRIPTION AND FORMULATION

We address the problem of determining optimal planned leadtimes in a two-
level assembly system with two components. These planned leadtimes are flow
time allowances, and may include safety time, which is the difference between
the planned leadtime and the average leadtime. The reason for investigating the
use of safety time rather than safety stock is that prior research by Whybark
and Williams (1976) indicates that safety time is preferred to safety stock when
timing (rather than quantity) is uncertain. There are other assumptions in our
model which also make safety time a more logical alternative. Related issues
are discussed in conjunction wiﬁh these assumptions.

We assume that the two components are either produced or procured, and the
times required to do so are permitted to be stochastic. We also permit the time
required for the assembly process to be stochastic. Therefore, actual start (and
completion) times may not be known with certainty. We further assume that these
leadtimes are statistically independent, continuous, and twice differentiable.
(Generalizétion to discrete leadtime distibutions is straightforward). A
network representation of the system appears in Figure 1.

We assume that there is a due date, d, for an order (or batch) of the
finished product and that the order cannot be shipped before the due date.
Systems with such "forbidden early departure" are described further in Kanet and
Christy (1984). For simplicity, lot sizing is assumed to be done on a lot-for-
lot basis. If setup costs are of concern, 1lot-sizing can be done in advance
using any applicable optimal or heuristic procedure (e.g., Blackburn and Millen
(1982), Afentakis et al. (1984), or Roundy (1984)). Then, for each assembly run
the problem is one of determining when to produce or procure the components

which are not already available, and when to begin the assembly run. It is



assumed that if batching of orders is done, all units in the batch must be
processed together (i.e., no lot splitting). Thus safety stock would need to be
as large as the batch in order to provide any protection. We considered it
uneconomical to use safety stock in such large quantities.

Inventory holding costs (denoted h; for the item i batch) are charged for
each period that a component waits for dispatching to assembly or that the
finished product waits for shipment to the customer. If the batch is tardy, a
penalty per period, p, is assessed, which reflects the additional cost of
expediting and loss of goodwill. We assume that hy, + h3 < hy, since otherwise
there would be little incentive for timing buffers (safety time) at the
component level. We also assume that h1 £ p to provide some incentive for
timely completion of the job, although this assumption is not critical to our
model.

The decisions to be made are (1) when to initiate production or procurement
of each component, and (2) when to initiate the assembly process. Let Xi
represent the planned leadtime for stage i. The system operates as follows.
Assembly will commence at time d - X1 provided that both components are
available., Otherwise, assembly will commence as soon as they are available.
Production or procurement of component i, i = 2,3, is initiated at time d - X1 -
Xi’ where Xi is the planned leadtime for component i. We assume that d is
sufficiently large so that d - X1 - Xi >0, 1i=2,3 (i.e., it is not already too
late to execute the desired planj.

We assume that batches at any given stage are independent of one another.
This strong assumption permits us to examine one batch at a time. Thus, we do
not consider the effects of scheduling and queueing. The principal difficulty
of incorporating detailed scheduling and queueing phenomena into the model is
that we are attempting to develop normative policies in view of economic

tradeoffs between inventory holding costs and tardiness costs. On the other



hand, nearly all scheduling and queueing models either only describe, or have
the objective of minimizing one of the two., It would be reasonable to use
empirically obtained distributions as inputs to our model to get an initial
solution. Then, the initial solution can be implemented or simulated to obtain
new distributions and a revised solution. Rees, et al. (1985) have used this
type of technique (using simulation) for a single stage system with uncertain
leadtimes, and have obtained rapid convergence. Thus, we expect that a similar
approach would be viable for the assembly system.

We use the following additional notation throughout the paper:

Ty = actual leadtime for process i
£1(x) = P[ 1; = x]
Fi(x) = P[ 1; < x]
E(*) = expectation

—
.
~
+
1]

positive part

A formulation of the problem appears in Appendix A. It is a difficult
nonlinear programming problem in which the decisions regarding planned leadtimes
for the two components are not separable because (although not obvious from the
formulation) much depends upon the maximum tardiness of the two components.
There are no distributions for which the distribution of the maximum of two
random variables (much less the maximum tardiness) can be represented as another
standard distribution. Thus, it appears that the assembly problem cannot be

collapsed into an equivalent serial problem.

3.0 SOLUTION METHODOLOGY
It can be shown that the objective function for this problem is not
convex for all leadtime distributions. However, the objective function does

have two useful properties which are proved in Appendix C:



Property 1: For fixed XZ and X3, the objective function is
convex in X1.
Property 2: For fixed X; < F;1[(h2+h3+p)/(h1+p)], the objective
function is-convex in X, and X3 (jointly).
Since the objective function has these properties, the first order necessary
conditions can be useful, since they all must be satisfied at optimality.
(The first order necessary conditions appear in Appendix B). It is clear (for
the interested reader) from equation (B-1)‘and is intuitively obvious that given
any X2, X3 pair, X1 can be determined quite easily using the appropriate first
order necessary condition (namely, equation (B-1)). We note that if all first
order conditions are satisfied, it must also be true that 3TC/aX1 - JTC/AX2 -

aTC/3X3 = 0, After simplification, this yields:

Fi(Xy) = [p/(hy + p)] + {hy[1 - mefz(tZ)F3(x3 by - X5)dt,]

X5

¢ ny [1 - Em £3(t3)F (X, + t3 = X3)dt313/(ny + p) (1)

X3

Thus, it is evident that given any X5 and X3 we can find X1. What is
interesting about this equation is the fact that it indicates (reasonably)
explicitly how X1 depends upon X2 and X3. Furthermore, since the integrals
represent probabilities between zero and 1, it is evident that for any values of
X5 and X3 satisfying first order conditions,

Fy(X;) > p/(p+hy) (2)
which would be the '"newsboy" solution to the single-stage problem. Also,

Fq (X)) < (hy+hg+p)/(p+hy). (3)
Thus, the condition for convexity of the objective function with respect to X,

and X3 is always satisfied at points satisfying first order conditions.



We note that the second and third terms in (B-2) are non-negative for all

Xi‘ Thus, for the first order condition to be satisfied, we must have

X5
But
Xp
Therefore
Fy(Xp) < (hg + p)/(p + hy + hy) ()

Similarly, using the partial derivative with respect to X3, Wwe have
F3(X3) < (hy + p)/(p + hy + hg) (5)

A workable procedure would be to find the optimal values of X2 and X3
(using any standard non-linear programming procedure) for each candidate value
of X1. This, of course, is not very efficient, but since the objective function
is not convex, there are few practical alternatives. We turn to a computational
study which we hope will provide some information on the characteristics of

optimal safety time policies.

4,0 COMPUTATIONAL RESULTS

The objective of our computational work is to develop an understanding of
characteristics of optimal solutions, particularly with regard to X1. We randomly
generated 25 problems, choosing from among feasible combinations of parameters
listed in Table 1. We have used Poisson leadtime distributions (with parameter
Ai) for simplicity and normalize the value of h1 to 1.0. The resulting problems
are listed in Table 2. We used results in Section 3 to obtain bounds on the

solution space, which are listed in Table 3. The lower bar denotes a lower bound



and the upper bar denotes an upper bound on the respective decision variable. 1In
some case (particularly when p is small), the bounds are quite tight relative to
the magnitude of the Ai. However, when p is large, the bounds for are
improvements over (nearly infinite) enumeration, but really do not provide much
help. The primary role of the bounds is to eliminate computations of gradients,

etc., in directions that would be outside the "optimal" region.
TABLES 1, 2, AND 3

Solutions for the problems are listed in Table 4 with safety times in
parentheses. It was not surprising to find a significant amount of safety time
at stage 1 in most cases. It was surprising, however, to find negative safety
time for at least one of the two components in many instances. These situations
appear to fall into two categories. The first category represents situations in
which the component holding cost is relatively high (i.e., 0.40 or over) and the
shortage cost is relatively low (i.e., 1 or 4). Problems 6, 8, 14, and 24 are
examples of such situations. The second category comprises situations in which
one component leadtime is much longer than the other (such as in problem 14).
Here, negative safety time for the component with fhe longer leadtime is
compensated for by a significant amount of safety time at stage 1.

TABLE 4

One other result worth noting is that whenever hi > .65, i = 2,3, the
optimal safety time is non-positive for stages 2 and 3 in these examples, except
in instances with extremely high shortage costs (i.e., p = 49). While it makes
sense intuitively that the larger the holding cost, the smaller the safety time,
one might not expect so low a "cutoff" point.

We cannot make a definitive statement on the position of X1* relative to

its upper and lower limits. It appears that further research is necessary to



characterize the effect of the various costs and parameters on the optimal value
of Xq.

We note that the relationships among the amount of safety time and the
component holding cost and leadtime is not always as we would anticipate. For
example, in problem 16, we have equal component holding costs, but different
average leadtimes for the components. The component with the longer average
leadtime has safety time while the component with the shorter planned leadtime
does not. Thus, it appears that interactions between the components are quite
complex, and "logical" solutions based on marginal analyses are not necessarily
optiml.

In addition, it appears that the variances of the leadtimes as well as
their means may be responsible, in part, for these results. By using a Poisson
distribution for the leadtimes, we have implicitly assumed a variance to mean
ratio of 1. In practice, leadtimes with larger means generally have larger
variances, but the relationship is not necessarily linear.

To investigate the effects of the leadtime variance on the solutions, we
constructed a small set of problems with negative binomial leadtimes. The
parameters selected were A; =2, i = 1,2,3, uiz/xi = 2,4,8, h; = 1.0, hy = h3 =
0.10, and p = 4. We selected Ai small enough to minimize the computational
burden while still being large enough so that the different variances would have
a noticeable effect. We chose h2, h3, and p so that safety time may be
economical at all stages. The results are listed in Table 5. They indicate a
sensitivity of the planned component leadtime values to the variance of the
component leadtimes, and an amazing insensitivity of the planned assembly
leadtime to the component leadtime variances. The reason for the latter result
may be the relatively high safety times for the components. These large safety
times ensure that the components will be on time a vast majority of the time, so

that "extra" safety time at stage 1 is not necessary.



TABLE 5

In general, the results are similar to the results with Poisson leadtime
distributions when the component holding costs are small (e.g., problems 18 and
21) in that safety time at all stages is non-negative.

We also compared the results for the 9 symmetric systems from this set of
problems with results for "similar" serial systems. For the serial systems, we
set h2' = hy + h3 and determined optimal planned leadtimes using the algorithm
in (Yano, 1985). The solutions are listed in Table 6. It is evident that much
more total safety time is required in the assembly systems (both X2 and X3 for
the assembly system are larger than X2 for the serial system). Therefore, it
appears that increasing the number of components increases the optimal safety
times for components, and thereby the inventory holding costs associated with
them, We might speculate, similarly, that a reduction in the number of

components will reduce the inventory holding cost associated with safety time.
TABLE 6

5.0 SUMMARY AND DISCUSSION

We have developed a procedure which finds optimal planned leadtimes
for two-level assembly systems. Computational results indicate that in some
cases optimal solutions have the characteristic of negative safety time for at
least one of the components and significant amounts of safety time for the
assembly stage. We comment briefly that we have found similar patterns in two
level production systems which have distribution-type arborescent network
structures (see Yano, 1985b). Thus, the results appear to be more general than
may be indicated by the results here.

The increase from one component (i.e., a serial system) to a system with

two components causes a significant increase in the optimal amount of safety



time for components. It would appear that additional components would further
increase safety time for components.

Operationally, having negative component safety times and large assembly
safety times necessitates much more flexibility in scheduling at the assembly
stage. The results also have important implications for supply decisions. If
suppliers are perfectly reliable, then safety time is not needed. But if
suppliers are even slightly unreliable, then having fewer parts to assemble,
and/or using fewer suppliers to produce the same number of parts (assuming some
coordination occurs at the supplier to ensure that parts to be mated arrive
together), may result in significant inventory savings and shorter total
leadtimes.

On the basis of the results, managers would be advised to concentrate their
efforts on "improving" leadtime characteristics of parts to be assembled
(primarily by reducing the variances) and to reduce the number of parts, where
possible. It may be better to have longer average, but less variable,
leadtimes, and the procedure discussed here can be used to help quantify the
economic effects of these factors. While some of these concepts are already
well known, the magnitude of these effects probably has been underestimated in
the past because techniques were not available to optimize each system before
comparing alternatives. The results here represent an initial attempt to
perform this optimization so that the magnitude of the savings can be estimated
more accurately.

Further analytical work is required to address situations with multiple
components. The maximum tardiness of the components can be modeled using order
statistics (for special cases), but two difficulties remain. The first involves
modeling the component inventory costs in a tractable fashion (and the related
first order conditions). The second difficulty relates to the irregularity of

the objective function. For serial systems, the objective function is convex

10



for most leadtime distributions. For the simple assembly system studied here,
it is less well-behaved. We might expect the objective function for the general
n-component case to be somewhat less well-behaved, although it is conceivable
that the objective function is convex in X; with the other values fixed and
jointly convex in the other decision variables with X1 fixed. Unfortunately,
even writing the first order conditions for the n-component problem is not an
easy task. It is likely that we must resort to (good) heuristics for more
general problems. These problems may not be solved easily, but the economic
benefits of understanding the major effects and tradeoffs may make further
analyses worthwhile. Further research is also needed to incorporate the effects

of queueing and various scheduling policies.
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Figure 1

Network Representation
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TABLE 1

Problem Parameters

Parameter Values
Ay 1, 3, 5, 10, i =1, 2, 3 (Poisson parameter)
hi .10, .25, .40, .65, .80, i =2, 3
p 1, 4, 9, 19, 49
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TABLE 2

Problem Data

Problem 1 2 3 h2 h3
1 1 5 5 .40 .10
2 5 3 5 240 .25
3 1 5 3 .25 .65
4 10 3 10 .65 .25
5 10 10 10 40 .25
6 10 3 3 .40 .10
7 10 5 5 .10 .o
8 3 3 1 .65 .25
9 5 1 10 .10 40

10 1 3 10 .80 .10
1 5 3 5 .25 .65
12 1 3 1 .25 .65
13 1 10 1 .10 .80
14 1 1 1 .80 .10
15 10 1 5 .65 25
16 1 5 1 40 U0
17 5 3 3 .65 .10
18 3 3 1 .10 .10
19 1 1 1 .25 .65
20 5 10 10 .10 .80
21 5 3 1 .10 10
22 5 1 10 .25 LU0
23 3 5 1 .80 .10
24 5 5 1 .25 .65
25 10 5 3 .65 .10

14
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TABLE 3

Bounds on Decision Variables

X X4 X5
2 3 9
7 8 5
2 3 9
14 18 6
17 18 18
13 14 5
17 18 12
3 6 3
7 8 i
3 5 7
10 12 8
3 4 7
3 y 19
2 3 2
14 18 3
2 3 9
8 10 6
4 5 7
2 y 3
10 12 20
5 5 6
9 9 b
5 8 8
5 9 8
6 18 9

P

15

—_

P

PN
0= E1 N TJTWWoowoOowww



TABLE 4

Optimal Solutions Values and Safety Times

Problem o o X3
1 3 (2) T (2) 9 (4)
2 8 (3) 3 (0) 6 (1)
3 3 (2) 7 (3) 3 (0)
4 16 (6) 2 (-1) 12 (2)
5 18 (8) 13 (3) T4 (4)
6 14 () 2 (-1) 4 (1)
7 18 (8) 8 (3) 6 (1)
8 4 (1) 2 (1) 1 (0)
9 8 (3) 1 (0) 11 (1)
10 5 (4) b (1) 17 (7)
11 12 (7) 4 (1) 5 (0)
12 "3 (2) 5 (2) 1 (0)
13 4 (3) 16 (6) 1 (0)
14 3 (2) 0 (-1) 2 (1)
15 16 (6) 0 (-1) 6 (1)
16 3 (2) 7 (2) 1 (0)
17 9 (4) 3 (0) 5 (2)
18 5 (2) 5 (2) 2 (1)
19 3 (2) 2 (1) 1 (0)
20 12 (7) 15 (5) 12 (2)
21 5 (0) 4 (1) 2 (1)
22 10 (5) 1 (0) 13 (3)
23 7 (4) 5 (0) 2 (1)
2l 6 (1) 6 (1) 0 (=1)
25 17 (7) 5 (0) 5 (0)
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TABLE 5

Negative Binomial Results for Assembly Systems

0,2 0,° 05° o o X3
y y y 4 5 5
8 4 5 8

16 4 5 1

8 '8 4 8 '8

16 4 8 11

16 16 ! 1 1

8 4 4 4 5 5
8 4 5 7

16 y 5 1

8 8 4 7 T

16 4 7 1

16 16 4 1 1

16 y y y y y
8 4 4 7

16 4 4 11

8 8 y 7 7

16 4 7 11

16 16 4 1 1

All safety times are two units less than the respective Xi* values.
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TABLE 6

Negative Binomial Results for Serial Systems

2 2 * *
04 P X4 X5

4
8
16
4
8
16
16 4
8
16

B - A R g N
LWWwWMNHhWWLWMNNMNMNN

All safety times are two units less than the respective Xi* values.
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APPENDIX A

The problem can be formulated as:

minimize:
X3
hy [F,(%) | (X3-t3)f3(t3) dtg
0
© X3+t2-X2
* j J (X3+tp=Xp=t3) f3(t3) fo(ty) dtg dt,
+ Jw & (tpXp=t3+X3) £, (ty)f3(t3) dty dts)
X5
0
®© X2+t3-X3
X1
+hy [Fy (Xp) F3 (Xg) [0 (Xp=ty) £y (tq) dty
0
X, +X X, +X,-t
173 1°°3 "3
+Fy (%) Jf i (X)#¥3=ty=t5) £; (t)) f3 (t3) dty dts
X3 0
Xq+X Xo+X4-t
1742 2 2
X5 0
X, +X X4 +X X4 +X5-t
1 1742 1742752
J ] (Xq#Xp-tqy=ty) fy (tg) £, (ty) f3 (t3) dty dt, dtg
X3 X2+t3-x3 0

20



Xq+Xy  Xq+X Xq+Xa-t
172 M 1
: 3 3 3(X1+X3-t1-t3) £1 (ty) f3 (t3) £ (t,)dty dtg dt,]

J

X2 X3+t2'X2 0

+p [F, (Xy) Fg (X3) & (t-Xy) £1 () dt,
X
X4y g
+Fy (X)) [ ( (ty+t,7Xq=X,) £ (t1) £, () dty dt,
X2 X;#Xpmty |

X+
1 ©
o (ty+t3=Xy=X3) £y (ty) f3 (t3) dty dtg

+

Fpo(Xy) |

J

X3 X1+X3't3

©

X,+X X +X
1 1742
S ( (ty+ta7XyXp) £y (t4) £ (tp) f3 (t3) dty dt, dtg

J

)
X3 X2+t3-X3 X1+X2_t2

+

Fy (X;#%3) | (q*to=Xy=X5) £y (t5) dt,
X1 4%,
Xy ¥y Xq*Xg
+ (

J
2 X3+t2-X2 X1+X3-t3

(-]

( (t1+t3-x1°X3) f1 (t1) f2 (t2) f3 (t3) dt1 dt3 dt2

F2 (X1+X2) [w (u1+t3-X1-X3) f3 (t3) dt3

J

X1+X3

+

o] [+

+ [ (uy*t3=Xy=X3) f3 (t3) fp (ty) dtg dt,
X1+X2 t2‘X2+X3

+ (m (m (U1+t2_X1-X2) f2 (t2) f3 (t3) dt2 dt3]
X1+X3 t3'X3'X2

subject to X; 20, ¥1i
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APPENDIX B

The first order conditions are as follows:

3 TC
)"" = (h1 + p) {F1(X1 )FZ(X2)F3(X3) +
¢ Xy
Ky %o
F3(X3) [ £o(t,)F (X + Xy = ty)dty +
X2
%1+ X3
Fo(Xy) | £3(t3)F (X *+ X3 = t3)dts +

Xp + X3 X X
( £3(83)f,5 (85)F 1 (X) + X5 = ty)dt,dta+

J , £,(ty)f3(t3)F(X) *+ X3 = t3)dtadty)

(B-1)

[}

o]

]
(@]

+

hy + p) " £ (t)F5(X3 + ty = X5)dt,]
X2

—- = - (n,

X, + X
1 "%
+ (ny + P)IF3(X3) | £,(t,)F (X, + X, = t,)dt,

{ » £3(83)F5 (8x)F 1 (Xy + Xy = £5)dtydts]
+hy, =0 (B-2)
The partial derivative with respect to X3 is the same as equation (B-2) with

subscripts 2 and 3 interchanged.
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Hyq
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APPENDIX C
The elements of the Hessian matrix are:
= () {£ (XF(X)F3(X3)
X1+X,
+Fa(3) [ 7 £(e)f (X + Xy - ty)dt,
Xp
X1+X3
+ F2(X2) r . f3(t3)f1(X1 + X3 't3)dt3
X3
X1+X3 X1+X2
[ -0 £3(t3)E5 (L) F1 (Xy + Xy = ty)dt, dtg
X3 X2+t3-X3

X1+X2 X1+X3

+ J f2(t2)f3(t3)f1(X1 + X3 - t3) dt3 dtz}
X2 X3+t2'X2
> 0
X1+X2
= (ny+p) {F3(xg) | £,(t,) £ (X + X, - t5)dt,
X2

Xy#Xs Xq+X,
T £3(83)0,(65)E, (X + X, = t5)dt, dts

X3 X2+t3-X3

+

J

+ [ £3(t3)f5(Xy + t3 = X3) Fy (X + X3 = t3)dts
A3
Xy +X

[ T () a(Xs + by = Xp) Fy (Xy + X, - tp)dey)
X

> 0
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Hyp = (nyrhgep) [ [T £5(85)05(Xs + £y = Xp)dty + £5(Xy) Fy (Xg) ]
X2
X1+X
+ (nyrp) [ F3(x3) | £o(E)f (Xy + Xy = t))dt,
X2

- F3(X3)f2(X2)F1(X1)

X1+X3 X1+X2
X1+X3
- [0 T r3(t)f (X, + by = Xg) Fy (¥ + X3 - t3)deg ]
X3
H23 = -(h2+h3+p) fm fz(tz)f3(X3 + t2 - X2)dt2
X2

X1+X3

+(ny+p) [ [ £3(tg) £,(Xp * t3 = X3) Fy (X4 + X3 = tg)dtg ]

X3

H13 is the same as H12 with subscripts 2 and 3 reversed and H33 is the same as

H22 with subscripts 2 and 3 reversed.
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We prove several properties of the objective function in the rema inder of this

append ix.

PROPERTY 1: For fixed X, and X3, the objective function is convex in X, for
Xy 2 0.

PROOF: This follows directly from H11 > 0. a

PROPERTY 2: A sufficient condition for convexity of the objective function with
respect to X, and X3 for fixed X1 is
-1
Xy < Fy70 [(hy + hg + p)/(hy + p)l.
PROOF': We must show that H,s > 0, H33 > 0 and Hyy * H33 - H232 > 0 for

F1(Xy) < (hy + hy + p)/(hy + P).

We note that

X5

X1+X2 ®

= (h2+h3+p) [ {
X2 X1+X2

and

X, +X, Xy +X3
f £5(t,) 5 (X34E,-Xp)dt, = [ £3(t3)f5 (Xp¥E3-X3)dts.

X2 X3
Therefore,

X1+X3
(ny+p) [ £3(t3)F5 (Xo*t3=X3) Fy (Xy#X3-t3)dty

X3

X1+X3
< (hy+p) Fe(Xq) f £3(£3)85(Xy+t3-X3)dts

X3

25



Xq+X3

A3
X1+X5
= (hy+ths+p) | £5(t5)f3(Xg+t5X5)dt,y
%2

where the second inequality holds because Fy(X;) < (h2+h3+p)/(h1+p).

So the first term in H22 is larger than the absolute value of the last term. It

is also evident that
(h2+h3+P)f2(x2)F3(x3) > (h1+p)F3(X3)f2(X2)F1(X1)

if Fi(Xy) < (h2+h3+p)/(h1+p). Thus, the second term of H,, is larger than the
absolute value of the fourth term. Hence, H22 > 0 if F1(X1) <
(h2+h3+p)/(h1+p1). The proof for H33 is identical (except for the reversal of
subscripts).

To show that H22 . H33 - H232 > 0 it is necessary to show that the fifth
and sixth terms, respectively, of H22 and H33 are identical. Then, using the
fact that the first terms are also identical, the result follows directly. We

omit the details here. O
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