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SURVEY, DEVELOPMENT, AND APPLICATION OF ALGORITHMS FOR
SEQUENCING PACED ASSEMBLY LINES

ABSTRACT

This paper focuses on sequencing issues for paced assembly lines on which many
different models of a product are assembled. We provide a critical review of the literature,
emphasizing objectives and algorithms designed for these problems. We then propose a
new approach that can be generalized to solve a class of problems with one of several
different objectives. For two commonly-used objectives, the procedure is evaluated by
comparing it with three existing procedures and with lower bounds on the optimal objective

value. The results indicate that this new, flexible, procedure performs very well.



SURVEY, DEVELOPMENT, AND APPLICATION OF ALGORITHMS
FOR SEQUENCING PACED ASSEMBLY LINES

1. INTRODUCTION

Research on sequencing jobs for paced assembly lines spans three decades, and a
variety of different procedures, most of them heuristic, have been developed. Paced
assembly lines have some special characteristics that are important to point out explicitly.
First, there is one job in each position on a constant speed conveyor. Normally, these
positions are equally spaced, so that one new job is introduced to the line at equal time
intervals. This is referred to as fixed rate launching, and this is the case that we consider
here. If the conveyor permits unequal spacing between jobs, it is possible to use variable
rate launching.

Second, there are no offline buffers between stations. Moreover, except on rare
occasions, jobs are not removed from the assembly line until they reach the end of the line.
Thus, each station must receive the same sequence of jobs.

Third, each station corresponds to a particular (continuous) portion of the assembly
line in which an individual or crew is assigned to work. Without loss of generality, we
assume that the conveyor flows from left to right. The stations are called left (right) closed
if the operators are not permitted to perform work beyond a specified left (right) boundary.
Otherwise, they are referred to as open to the left (right ). We consider the case where
stations are closed to the left and night. Most models assume that the stations may overlap
as long this does not cause undue interference between operators in adjacent stations.

This paper provides a critical review of the literature with an emphasis on
approaches that, at least in concept, can accommodate the scheduling of many different
models of a product that are intermixed on the same assembly line. Such problems arise
frequently in the automobile industry, where each body style may have millions of distinct

models because of customer choices regarding colors and optional equipment. (The reader



is referred to Schonberger (1982) for a discussion of the strategic and quality-related
advantages of the simultaneous assembly of many different models on the same line.) We
then propose a new approach that can be generalized to solve a class of problems with one
of several different objectives. For two commonly-used objectives, we evaluate the new
procedure by comparing it with three existing procedures and with lower bounds on the
optimal objective values.

The remainder of the paper is organized as follows. In section 2, we present a
review and critique of the literature. The problems that we address and our approach to
them are described in section 3. Section 4 contains an experimental comparison of our

approach with several existing procedures and some concluding remarks.

2. LITERATURE REVIEW AND CRITIQUE

Before presenting a literature review, it is useful to describe some of the objective
criteria that have been used in the literature. Thomopoulos (1967) describes several factors
(or labor "inefficiencies") that might be of concern: idleness, work deficiency, utility
work, and work congestion. Idleness occurs when an operator has completed all the work
in his station and must wait for the next job to arrive. (This can occur only in stations that
are closed to the left.) Work deficiency occurs in open-to-the-left stations when the
operator crosses the left boundary of the station to find a job on which to work.

Uulity work occurs when an operator in a closed-to-the right station cannot
complete the necessary work before the job leaves the station, and another (utility) worker
1s assigned to complete the work. This is accomplished by assisting the operator at the
station, or by performing the additional work at a downstream repair station. Work
congestion occurs in open-to-the right stations when the operators need to cross the right
boundary of the station in order to complete work on a job.

Macaskall (1973) defines these inefficiencies somewhat differently. He assumes

that the station has specified boundaries, but that beyond these boundaries, there are



upstream and downstream allowances which represent areas in which work deficiency and
work congestion, respectively, occur. The operator is not permitted to move beyond the
allowance regions, and thus, the station is assumed to be closed to the left and right. As a
consequence, unlike in Thomopoulos's definitions, work deficiency and congestion can
occur in closed stations.

Some researchers also have included setup costs as part of the objective. These
costs might be incurred when a sequence switches from a one model (or group of models)
to another model (or group of models). For example, in the automobile industry, setup
costs are incurred in the painting process when the color is changed.

Most of the other objectives in the literature are functions of the four inefficiencies
described above and of setup costs. The range of objective criteria reflects the variety of
perceptions that exist about what factors are controllable, and various assumptions about
operating policies. We describe these assumptions in more detail below.

Wester and Kilbridge (1964) pose a bicriterion problem with minimization of idle
time as the primary criterion and minimization of the amount of work congestion as the
secondary consideration. They assume that for each model, the total work content can be
distributed equally among the stations (i.e., the assembly line is perfectly balanced for each
model). This assumption reduces the problem to a single-station problem, since the
assumption of perfect balance makes the stations identical. However, because the models
differ, a scheduling problem still remains. They assume that the cycle time, which 1s the
time between consecutive job launchings, is a decision variable. By deriving a set of
constraints that ensure zero idle time, they derive the optimal cycle time and sequence of
jobs. The amount of work congestion is controlled (although not necessarily minimized)
through a greedy procedure in which the model with the smallest amount of work
congestion is chosen when the congestion is positive. The solution procedure implicitly
places an infinite cost on idle time and a finite positive cost on work congestion. Since the

cycle time can be chosen, the production rate of the system cannot be prespecified.



Thomopoulos (1967) presents an approach which might be described as a greedy
procedure to minimize the total cost of labor inefficiencies. For each position in the
sequence, the inefficiency cost incurred by placing each model in that position is computed,
and the model with the lowest cost is chosen. The procedure starts with the first position in
the sequence, then sequentially considers each of the following positions. For one problem
instance with six different models, the procedure performs well in comparison to five
hundred randomly generated sequences.

In the same article, Thomopoulos then uses an example to show that inefficiency
costs can be reduced by partitioning the jobs into groups such that the jobs of each model
type are spread evenly among the groups. The greedy sequencing procedure is applied to
each group. He also demonstrates by way of an example that the total inefficiency cost is a
convex function of the size of the groups, and that the total cost increases exponentially as
the groups become very small.

Macaskill (1973) describes a modification of Thomopoulos's method in which a job
with low inefficiency cost is followed by a job with relatively high work content as long as
that job does not incur any utility work costs. This modification prevents high work
content jobs from being concentrated in the latter part of the schedule. Implicit in the
modification is the assumption that utility work is the most expensive inefficiency and
should be avoided whenever possible.

Dar-El and Cother (1975) address the problem of sequencing so as to minimize the
overall length of the assembly line while ensuring that there is no interference (i.e, utility
work, idle time, congestion, etc.). They propose a heuristic which begins with a lower
bound on the length of each station (which is equal to the maximum processing time of all
models at that station) and increases the station length whenever an infeasibility occurs.
The sequencing procedure is based upon the objective of spreading out the jobs within each
model type as smoothly as possible. At any point in the sequence, the rank of a model is

computed as the difference between the number of jobs of that model that should have been



sequenced thus far (if all models were spread out perfectly) and the number of jobs of that
model actually sequenced. The models are considered in descending order of this ranking,
and feasibility with respect to the constraint of no interference is checked. The first model
that passes the feasibility check is selected for the given position in the sequence. If no
model passes the feasibility check, the station lengths are increased by equal amounts and
the process repeats.

Dar-El and Cother indicate that this approach avoids the issues of defining station
limits and penalties. Implicitly, their procedure places an infinite cost on all inefficiencies,
and assumes that station lengths can be specified. For the case of fixed station lengths,
they indicate that the problem should be one of minimizing idle time subject to the
constraint of no work congestion or utility work. However, their procedure still attempts
to spread out each model as evenly as possible.

Dar-El and Cucuy (1977) present a procedure to minimize the length of the
assembly line while ensuring no idle time. (Note that idle time implicitly has an infinite
cost.) Asin the Wester and Kilbridge paper, they assume that the total assembly time for
each model can be allocated equally to all stations, so this reduces to a single-station
problem. The procedure involves generating all feasible subsequences of models that have
the regenerative property. In their paper, a subsequence is called regenerative if the
location of the operator within the station is exactly the same at the beginning and end of the
subsequence. (Regeneration is defined somewhat differently in other papers.)

All possible regenerative subsequences with a selected starting point are generated.
These subsequences can be scheduled in any arbitrary order and the overall sequence
remains feasible. If one or more feasible regenerative subsequences is found, the number
of subsequences of each type needed to satisfy production requirements is chosen by
solving an integer program (IP). This process is repeated for each possible regeneration
point. If a solution to the integer program cannot be found for any regeneration point, the

station length 1s increased and the process repeats.



Note that this procedure restricts the solution to a series of regenerative
subsequences. This simplifies the problem but also has some disadvantages. The
additional constraint imposed on the problem may lead to suboptimal solutions for several
reasons. There may be relatively few regenerative subsequences, which makes it difficult
to find a feasible solution to the IP. In addition, some of the regenerative subsequences
may be quite long, which not only makes them difficult to generate, but also contributes to
difficult-to-solve IPs. Finally, the optimal solution may not contain a regenerative
subsequence, so this procedure may increase the station length unnecessarily.

Okamura and Yamashina (1979) propose a heuristic method to minimize the
maximum distance that a worker must go from the origin of the station to complete work on
all jobs. The heuristic involves moving jobs from one location to another in the sequence,
or interchanging two jobs, to reduce the maximum distance. Candidate jobs to be moved
or interchanged are selected from the regeneration cycle which has the maximum distance
from the origin. Here, a regeneration is defined as an instant when the operator returns to
the origin of his station and finds no work remaining to be done on jobs in the station. In
the case of interchanges, the other candidate job may be selected from a regeneration cycle
with the smallest maximum distance from the origin.

They suggest a procedure which uses many different initial sequences. For each
initial sequence, an improvement routine is applied in which jobs are moved until no
improvement occurs, followed by an interchange of jobs until no improvement occurs.
The best of the several sequences is the soluton. Okamura and Yamashina present
empirical results for problems with up to 100 jobs which suggest that the heuristic
performs almost as well as a branch and bound procedure with a CPU time trap of two
seconds.

The Okamura and Yamashina procedure described above applies to a single-station
problem. For multiple stations, they propose an objective which is a weighted sum of the

maximum distances for the individual stations. Unfortunately, CPU times for the multi-



station heuristic increase rapidly with the number of stations, and the estimated probability
that the heuristic finds the optimal solution declines rapidly as well. The authors do not
report on the quality of solutions for the multi-station problem.

Monden (1983) describes a "goal-chasing" procedure in which the sequencing
objective is to smooth out the rate of use of each of several component parts as much as
possible. For each candidate job, the squared difference between the target number of jobs
requiring a part (which assumes perfectly smooth usage) and the actual number of jobs
containing the part is computed for each part, and summed over all parts. The job that
minimizes the sum of squares is selected for the next position in the sequence. Monden
also presents a simplified version of the procedure which uses the sum of the differences
rather than the sum of the squared differences. The simplification applies to situations in
which each model uses an equal number of parts as well as an equal number of each type of
part. He indicates that in practice, Toyota incorporates weights on important subassemblies
into the formulas, as well as constraints on facilities, in selecting the job sequence.

Coffman et al. (1985) discuss a procedure that was developed for the purpose of
resequencing jobs after the original sequence has been scrambled by an upstream repair
process. This problem differs from the others described earlier because the jobs arrive
dynamically; thus, the problem is not static. The objective is to minimize the number of
violations of spacing constraints. Spacing constraints specify rules that no more than & out
of n consecutive jobs may have a particular customer-selected option, and there may be
more than one constraint associated with a particular option. For example, one can
simultaneously specify that no more than two out of every five consecutive jobs may have
an option and that two jobs with the option should not be sequenced consecutively.

Their proposed procedure is a greedy heuristic that assigns each arriving job to the
first available position in the sequence for which the job satisfies all the spacing constraints.
(The actual problem is further complicated by the form of the resequencing buffer. It may

be physically impossible to position a job so that it can assume the first available and



feasible position in the sequence. Thus, a job actually would be placed in the first
available, feasible, and accessible position in the sequence.) One drawback of the
procedure is that it does not guarantee that all positions in the sequence will be filled. Yet,
in practice, the jobs are drawn out in ascending order, with no gaps in the sequence. One
result of this is that spacing constraints indeed are violated, and the nature and extent of the
violations are not easy to predict in advance.

Burns and Daganzo (1985) view the sequencing problem as one one minimizing the
setup costs incurred when the operators and/or machines on the assembly line switch from
one type of operation to another (e.g., from one job with an option to one job without, or
from one color to another). They show that there is an optimal grouping hierarchy in
which jobs are first grouped to minimize the total setup cost on the operation with the
highest setup cost. Then, within each of these groups, the jobs are further grouped to
minimize the total setup cost of the operation with the next highest setup cost, and so forth.

They also consider a scenario in which there is one operation with a setup cost and
one (possibly different) operation with a "capacity cost." The capacity cost is the cost of
providing sufficient capacity, whether assembly workers or machine, or both, to ensure
that the spacing constraint is not (or rarely) violated. For the case in which the option
(operation) choices are independent, Burns and Daganzo suggest that the capacity cost 1s
convex increasing in the number of jobs between setups. Thus, since the total setup cost is
convex decreasing in the number of jobs between setups, the best solution is some finite
number of jobs between setups.

We comment here that the tradeoff between setup costs and capacity cost is
especially important when the choice of the option associated with the setup cost is
positively correlated with the choice of the option associated with the capacity cost. For
example, assume that there is a setup cost for changing paint colors, and a capacity cost for
the installation of an engine on an automobile. Now suppose that customers choosing a

turbo-charged engine tend to prefer cars painted red. Long subsequences of red cars will



reduce setup costs, but will increase capacity costs because of the concentration of turbo-
charged engines, which have a larger than average work content. On the other hand, short
subsequence of red cars will have a larger total setup cost but relatively smaller capacity
COsts.

Bird (1986) analyzes the mean time until a single spacing constraint is violated by
using a Markov chain model with an absorbing state. As in Coffman (1984) the spacing
constraint states that no more than k out of the next n jobs may have the specified option.
He assumes that jobs are sequenced randomly; thus, for each position in the sequence there
i1s a specified probability that the job in that position will have the option under
consideration. In addition, he assumes that the assembly process is such that a job with the
option is processed with probability k/n, and a job without the option is processed with
probability 1 - k/n.

The system is modeled as if there were a finite storage space for n jobs from which
jobs are selected for the next position in the sequence. Bird assumes that all jobs are
accessible and that the storage space 1s always full. He defines the state of the system as
the number of jobs in the storage area without the option. He also assumes that a spacing
constraint is violated as soon as the finite storage space contains only jobs with the option.
With this state definition and the assumption about when the spacing constraint is violated,
the absorbing state is state zero. For the stated assumptions, Bird shows that the mean time
to violation of a set of constraints is achieved by maximizing the ratio k/n for each option.

We note that the spacing constraint actually is not violated until the storage space
has n jobs with the option and k out of the last n jobs in the sequence are jobs with the
option. If fewer than k out of the last n jobs in the sequence have the option, it is still
possible to select one job from storage. Thus, it appears that a more complex state
definition is necessary to model the actual time to violation of a constraint. In order to
model the state transitions and time to violation accurately, one not only needs to know

how many of the last n jobs have the option, but also the type of job (with or without the



option) in the first position within that subsequence. This means that, effectively, one must
store whether or not each of the last n jobs has the option. Bird's model can be generalized
to account for this, but the resulting state space becomes quite large. (There are 20 + 1
states.) Moreover, with this new state definition, it would not be reasonable to model the
assembly process as randomly completing a job with or without the option, since the
presence or absence of the option in the last n jobs is known.

Yano and Rachamadugu (1987) present a heuristic algorithm for a multiple station
problem with the goal of minimizing total utility work. Each station may offer two types of
operations, one for a "basic" job and one for a job with a particular option. The algorithm
1s a greedy procedure which selects the best job for each position in the sequence, but
differs from the other approaches in that the criterion is the utility work for the job under
consideration plus a lower bound on utility work for the remainder of the sequence. The
lower bound is determined by using regenerative sequencing to determine an optimal
sequence for each station (or option) separately, then summing the objective values over all
stations.

Parrello, Kabat and Wos (1988) describe an expert system to solve a problem in
which the goal is to satisfy several constraints of the "k out of n" form and of the form "at
least n spaces between two jobs with an option" as closely as possible. Penaltes are
assigned according to the severity of the impact of the violation of a constraint. The penalty
for a job is the sum of the penalties incurred at all relevant stations. They initially suggest
an algorithm in which one position at a time (starting from the beginning of the sequence) is
filled by the job that produces the smallest total penalty. They point out, however, that
without additional considerations, such a procedure results in cherry picking, that is,
selecting "easy" jobs early in the sequence and leaving difficult jobs until the end of the
sequence. For this reason, they suggest that ties (with respect to total penalty) be broken
by considering the difficulty of the job. Each option is assigned a difficulty factor and the

difficulty factor of the job is the sum of the applicable difficulty factors.
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Details of the difficulties of developing and testing the expert system described
above are discussed by Parrello (1988). He explains that even finding the best job for each
position was difficult, and that the team eventually resorted to brute-force approaches such
as enumeration to solve small problems to provide a basis for generating good sequences.
They discovered that spreading "bad" (difficult) jobs out evenly and then sequencing the
remaining jobs using the approach given above appeared to produce good solutions.
Ultimately, the system was never used because the client decided to use a cost formula
which could not be modeled with the software that had been developed. The cost penalty
was a (Symmetric) quadratic function of the distance between two jobs with the same
option, with the minimum of the cost function occurring at the desired spacing.

Penalties for too-far-apart spacing effectively serve to reduce the amount of cherry
picking in a procedure that sequences one job at a time. One interesting characteristic of a
symmetric quadratic cost formula, however, is that it penalizes too-close-together spacing
in the same way as too-far-apart spacing. It is not clear whether this reflects the company's
actual cost function or whether it is used as a proxy for a more complicated objective
function.

Miltenburg (1989) considers the problem of finding a "level" schedule which
minimizes the variation in the usage rates of parts when there is a limited number of
models, and the demand rate for each is constant. He considers four different metrics for
"levelness" which are similar to those of Monden (1983) and shows that the sequence
closest to a level schedule cannot be guaranteed to be feasible because it can lead to negative
production (i.e., destruction of jobs). Miltenburg develops several different procedures to
find solutions, all of which are myopic in the sense that they look ahead at most two jobs.
For problems with a large number of jobs, the proposed solution procedures are based on
the his assumption that the optimal sequence is cyclic, that is, the sequence consists of a

short sequence which is repeated indefinitely.
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Analysis of Existing Procedur

The Wester and Kilbridge, Thomopoulos, Dar-El and Cother, and Dar-El and
Cucuy articles focus on the issue of eliminating idle time and permit flexibility with regard
to the station length(s) and/or cycle time. On the other hand, the later papers take the cycle
time and station lengths as given, and concentrate on smoothing out the flow of work.
Thus, the two sets of articles are based upon different assumptions about what factors are
controllable.

All of the articles directly or indirectly address issues related to efficient use of
labor. It should be pointed out that for any set of N jobs, avoidable idle time will be
reflected in the amount of utility work . Thus, the problem of minimizing total utility work
is the same as the problem of maximizing labor utilization or equivalently, minimizing idle
time. (This can be shown formally, but we will not do so here.) From this, it should be
clear that if a linear objective is used, it is not necessary to penalize both utility work and
idle time. The primary differences among the papers with linear objectives lie in the
constraints on idle time. Some models have constraints that there be no idle time whereas
others simply attempt to minimize it, but do not constrain it to be zero.

With work deficiency and work congestion, scheduling issues become more
complicated because increasing work deficiency normally causes a decrease in work
congestion. However, the more recent articles, many of which are based upon actual
applications, do not distinguish between idle time and work deficiency, nor do they
distinguish between work congestion and utility work. It appears that it is difficult to make
such distinctions in realistic settings. On the other hand, it is not well understood how
inclusion of these factors influences the "quality” of schedules, so perhaps more research
on this issue 1s needed.

The only attempt at implementing non-linear penalties (Parrello) appears to have

been unsuccessful. One might argue that these non-linear penalties could be used to
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capture the differential effects of work congestion and utility work (and similarly, work
deficiency and idle time). Here, also, further research is needed to achieve workable

approaches.

Other Possible Procedures

In theory, most of problems described above, and the problems that we address,
can be solved optimally by dynamic programming. However, only small problems can be
solved optimally. For example, Yano and Rachamadugu (1987) describe such a procedure
for the objective of minimizing total utility work, and indicate that the computational
complexity of the procedure increases as the square of the number of jobs and
exponentially with the number of stations. Furthermore, it has a very high proportionality
constant which depends on the problem data, and the size of the state space appears to be
unmanageable even for relatively small problems.

Another possible approach is Branch and Bound (implicit enumeration), which has
been used extensively in the scheduling literature. Within this framework, a depth-first
search (i.e., last in, first out) node selection strategy is often used in order to generate
feasible solutions quickly, thereby reducing computing times. Unfortunately, in most of
the problems described above, many different sequences are possible, and in the problems
that we address, every sequence is feasible (although not necessarily good). Moreover,
unless tight lower bounding procedures are available, it is unlikely that many alternatives
would be eliminated by a feasible solution generated early in the search.

Heuristic implementations of Branch and Bound procedures also can be applied to
many of these problems. Examples include filtered beam search, where only a few "best"
nodes are retained at any point in time (see, for example, Ow and Morton 1988), and
truncated Branch and Bound, where the search is terminated after a specified number of

nodes have been investigated or a CPU time limit has been exceeded.



In the next section, we describe a procedure which is based upon a fairly flexible
linear objective function. Although it is a sequential procedure (as are many of the others),
it has a look-ahead feature that provides for significant improvements in solution quality
over similar procedures without look-ahead. We selected this approach after eliminating
from consideration both dynamic programming (because of computing time requirements),
and branch and bound approaches. In investigations with many small problems, we found
that our sequential procedure obtained solutions that were nearly as good as optimal
solutions obtained from Branch and Bound (see Bolat 1988). Thus, we decided to focus
on sequential procedures which offer the combination of simplicity, flexibility, and

computational efficiency.
3. A FLEXIBLE HEURISTIC PROCEDURE WITH LOOK-AHEAD

The development of this procedure was motivated by the management of a major
automobile manufacturer, who believed that the company's existing sequencing algorithm
could be improved. The company's algorithm might be viewed as a generalization of the
simplified version of Monden's procedure (with a linear objective). We cannot disclose
further details of the algorithm because of confidentiality considerations.

We had several goals in developing a new procedure. First, it had to be relatively
efficient from a computational standpoint because approximately 1000 vehicles must be
sequenced every day for each of several automobile assembly facilities. The existing
procedure required approximately 30 minutes to sequence 1000 jobs on a minicomputer,
and this was viewed as an upper limit on the amount of time available to sequence one
day's production for one facility. The computer was used for functions other than
sequencing during approximately two shifts, and sequences for approximately ten
assembly facilities had to be generated during the third shift, on each of five or six nights
per week. Although 30 minutes may appear to be a substantial amount of computing time,

much of it was required for updating the list of orders available for scheduling, for transfer
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of the sequence to other computer programs and other computers to support various
functions, and routine input and output. Basic data management and data transfer are time-
consuming in this context because of the massive amount of information required to specify
each order.

Second, it had to alleviate the major perceived weaknesses of the existing algorithm:
(1) inadequate consideration of the relative importance of each option with regard to
workload smoothing; and (ii) a moderate amount of cherry picking. Since the existing
algorithm was similar to Monden's, it tended to give highest priority to jobs that included
particular options for which the cumulative usage lagged far behind the respective targets.
The resulting schedule tended to overload stations connected with these options and
virtually ignore the other stations. The cherry picking was a consequence of the procedure
being myopic; the only look-ahead within the procedure was implicit in the target usage
rates, and this was frequently insufficient.

Third, the procedure had to be applicable to all of the assembly facilities, since it
was considered impractical to use different algorithms for different facilities. Some
assembly plants produced several different body types with a large number of different
options, while other plants had a much narrower range of combinations. At some plants,
the labor content of the most complex vehicle was several times that of the least complex,
while at others, the variation in labor content was not significant. Thus, the desired amount
of "smoothing" differed considerably among the plants. Yet, each needed a schedule
produced by the same algorithm. We next explain how our procedure evolved into its
current form.

With these ideas in mind, we first sought to develop a reasonable objective function
starting from first principles. We also made a conscious decision to keep the objective
function simple. One key advantage of simple objective functions is that the effects of
modifications are relatively predictable. In addition, for practical reasons, we wanted an

objective function that would be easily explained to and readily accepted by management.
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Through discussions with managers at corporate headquarters and at assembly
facilities, we discovered that the primary concern was to ensure that assembly workers had
enough time to complete their tasks. Insufficient time resulted in quality problems, which,
in some cases, were difficult to rectify afterward. Interestingly, we also were informed that
too much idle time between jobs also causes quality problems because it tends to disrupt the
rhythm of the assembly worker.

On the basis of these discussions and conversations with other individuals in
various companies who were responsible for actual assembly line sequencing applications,
we decided to use the minimization of total utility work as our primary objective. As noted
earlier, minimizing utility work also contributes to minimizing unnecessary idle time.

Thus, this objective addresses quality problems of both types described above. We note
that while utility work is a linear objective, it tends to produce "smoother" schedules than
objectives such as "minimizing the number of jobs violating spacing constraints," or
"minimizing the number of spacing constraints violated." The reason for this is that utility
work incorporates penalties that are linear in the extent of the violations.

We assume that each station is closed to the left and right, but that each station can
be defined to include upstream and downstream allowances that may extend beyond the
normal boundaries of the station. For example, the station with its upstream and
downstream allowances might be specified as the reach of the power tool required for the
operation. Stations may overlap, and this is consistent with the manner in which assembly
workers share work spaces in practice.

Our work is a generalization of the research by Yano and Rachamadugu (1987) and
Bolat and Yano (1988). The work of Yano and Rachamadugu was described earlier. The
result most critical to our work is that for the objective of minimizing utility work, it 1s
optimal for an operator to complete as much of job t as possible before starting on job t+1.
Under this policy, the scheduling problem simplifies to one of determining a sequence.

Bolat and Yano use this fact to analyze the relationship between utility work and spacing
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constraints in a situation where a single station can perform one of two operations (basic or
optional). They show that an objective function that appropriately penalizes violations of
spacing constraints is almost equivalent to one which minimizes utility work. (It is
equivalent except in certain special cases where there are violations of spacing constraints,
but utility work is zero.) They also develop an optimal sequencing procedure for the
approximate objective function in the context of a single station.

This led us to the realization that there is an entire class of linear objective functions
in which a different weight can be placed upon each spacing consideration. The fact that
spacing issues and utility work, both of which have received considerable attention in the
research literature and in practice, can be reflected by the same type of objective also made
us more confident that this class of linear objectives would be very useful. Furthermore,
since single-station lower bounds can be constructed quite easily, the look-ahead capability
afforded by these bounds can be incorporated into the procedure.

Our work differs from that of Yano and Rachamadugu in that we assume only the
existence of spacing rules and relative weights associated with the violation of each rule.
(We later explain how the value of the objective function is affected by the number and
extent of these violations.) In general, these rules and weights are much easier to obtain
than the detailed processing time and station length information required by the Yano-
Rachamadugu procedure. Indeed, processing times tend to change over time because of
learning curve effects and engineering changes, among other factors. Also, station lengths,
especially upstream and downstream allowances from the actual physical station, are
sometimes difficult to specify accurately. In most cases, management familiar with the
relevant operations on the assembly line can specify both spacing rules and the relative
weights for violations of these rules on the basis of experience.

Because of the flexible form of our objective function, in addition to utility work,
we are able to consider another objective which is similar to that used by Coffman, et al.

(1985) in instances where the system is not heavily overloaded. Next, we describe the

17



objective function that we use and explain why appropriate weights lead to a good
approximation of utility work. (A more formal argument is presented in Bolat and Yano.)
We then explain the similarity of the second objective to that used by Coffman et al. We

subsequently state the sequencing algorithm for arbitrary weights.

The Objective Function

To facilitate the exposition, we introduce the concept of a window, which is defined
as a subsequence of nj consecutive jobs if the spacing constraint at station j is "no more
than k;j out of n;j consecutive jobs can have the option." Without loss of generality, we take
the cycle time to be one time unit, and assume that the processing time of a basic job is less
than or equal to the cycle time, while a job with the option has a processing time greater
than the cycle time. Let N represent the number of jobs to be sequenced. Then for each
station, there is one window ending with each position p, p =kj+1,..., N+ nj-kj - 1.
(We assume, without loss of generality, that there are dummy basic jobs prior to position 1
and after position N. Consequently, windows ending before p =k; + 1 or after p = N + n;
+kj - 1 cannot have more than k;j jobs with the option, and therefore need not be

considered.) Also let

mj = nj - kj,
qjw = number of jobs with the option in window w at station j,
vijw = number of excess jobs with the option in window w at station j (also called "unit
violations")
= (qjw - k",
B; = weight associated with station j,
bj = processing time for a basic job at station j,
0j = processing time for a job with the option at station j, and
L;j = sojourn time of a job at station j (physical length of station j divided by the cycle time)

= number of jobs in station j at any time.
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The general form of the objective function is:
z= Ej 0; 2w Viw- (1)

Observe that vjy reflects the extent to which the k; out of nj constraint is violated in
window w. These "unit violations" are summed over all windows and multiplied by the
appropriate weight for station j. These weighted sums are again summed over all stations.

For the special case in which the true objective is to minimize total utility work, we define
0 = (0j - bj)/nj. )

The rationale for this formula is as follows. Suppose the assembly worker at
station j starts at the origin (leftmost point) of the station at time zero The maximum
number of jobs with option j that can be completed in sequence without incurring any utility

work is the largest value of kj for which
ojkj<kj+L;j-1. (3)

The left hand side of the inequality is the amount of time required to process kj jobs with
the option and the right hand side is the time at which the last such job leaves the station. If
(3) is satisfied as an equality, the worker uses the full width of the station to complete the
jobs with the option, and is standing at the right boundary of the station when the kjth job
1s completed.

We now select the value of nj (or equivalently m;) in such a way that the system
regenerates (i.e., the worker returns to the leftmost point of the station), possibly with zero

idle time when these nj jobs are completed. For this to be true, we must have

0j kj + bj mj < kj + m;, 4)
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and mj is defined as the smallest value of m; for which (4) is satisfied. If (4) is satisfied as
an equality, there is no idle time (i.e., the worker is fully utilized) and the assembly worker
returns to the origin of the station exactly at the point in time when the nj +1st job enters the
station. Figure 1 depicts the position of the worker within the station over time for a case

in which (3) and (4) are satisfied as equalities. In the figure, kj =2 and m; =3.
Figure 1

Since we have assumed the worst case (all kj jobs with the option in series), any
subsequence of nj jobs satisfying the kj out of nj spacing constraint will incur no utility
work if the worker begins at a regeneration point. (The proof is omitted because the result
is intuitively evident.)

In the remainder of the paper, we assume that kj is the largest integer satisfying (3)
and mj is the smallest integer satisfying (4) for the given k;. (If (3) and (4) are not satisfied
as equalities, the correspondence between utility work and the objective function in (1) with
0; defined as in (2) is weaker, but the difference per job between the two objectives is
bounded by a value that asymptotically approaches zero as N --> oo, See Bolat and Yano
for details.) Suppose that we begin with a sequence in which the pattern of k; jobs with the
option followed by m; basic jobs is repeated until there are N jobs in the sequence. If the
actual number of jobs with the option in the set to be scheduled is less than the number of
jobs with the option in this initial sequence, we can modify the initial sequence by replacing
an appropriate number of jobs with the option by basic jobs. The resulting sequence will
clearly have no utility work and will not violate any spacing constraints.

Let us now observe what happens when the number of jobs with the option in the
set to be scheduled is greater than that in the repeating schedule. Consider increasing the
number of jobs with the option by one. To do so, we must replace one basic job by a job

with the option. With the possible exception of jobs near the end of the sequence, this



modification will lead to o - bj time units of utility work if the workers are fully utilized
(i.e., if (3) and (4) are satisfied as equalities). Also observe that the job so modified
appears in nj windows and thus increases Zy, vjw by n; (again, with the possible exception
of jobs near the end of the sequence). This process can be repeated with the same result.

Consequently, utility work at station j is closely approximated by
[(0j - b/nj] Ty viw

and we have 6; = (0j - bj)/n;.

We now turn to a discussion of why the objective function with 6j =1 for all j is
similar to that used in Coffman et al. (1985). We earlier made the observation that if we
begin with a repeating schedule and replace one basic job by a job with the option, there
would be nj windows, each with one unit violation. Observe that n; spacing constraints are
also violated. If we now modify another basic job very close in the sequence (e.g.,
adjacent) to the one changed earlier, this job will add one unit violation to each of n;
windows. However, less than n; additional spacing constraints will be violated because
some of the constraints related to the newly changed job were already violated. On the
other hand, if the system is not heavily overloaded, and if the sequencing algorithm tends
to smooth out the workload at each station as much as possible, it is unlikely that such a
heavy workload will be concentrated in such a short subsequence. If this is true, our
objective function with 6; = 1 for all j will be very similar to that of Coffman et al. More
formally, if we can guarantee that jobs violating spacing constraints are at least nj spaces
apart for all j, the two measures are identical. In most realistic situations, ensuring this for
each station separately is not difficult. The question is whether it is possible to guarantee
this for all stations simultaneously. In any case, it should be clear from this discussion
why our objective function will tend to produce smoother sequences than the objective used

by Coffman et al.
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Complete formulations of the two problems appear in Appendices A and B,
respectively. The formulation in Appendix A uses an exact expression for utility work.
The formulation in Appendix B is for the problem of minimizing weighted unit violations.
Choosing 6; according to (2) leads to an approximate expression for utility work, as

explained earlier. We now give an algorithm for the latter formulation.

The Algorithm

The proposed algorithm is a sequential heuristic procedure in which a job is selected
for each position in the sequence, starting from the first position and considering each
subsequent position in turn. It can be viewed as a heuristic branch and bound procedure in
which only the best node is retained at each level of the branch and bound tree. The best
node is the one with the smallest value of the sum of utility work in the partial sequence and
an approximate lower bound on the remainder of the sequence. The latter is obtained by
assuming that the system (i.e., every station) regenerates at the completion of the job
currently being assigned and finding an optimal sequence for each station separately, using
the objective of weighted unit violations, for the remaining jobs . The corresponding
“costs” are summed to produce an approximate lower bound. This lower bound ignores
the constraint that each station must receive the same sequence. One attractive feature of
this lower bound is that it is not necessary to find these optimal sequences; only the
corresponding objective values are needed. Algebraic expressions for objective values are
derived in Bolat and Yano as functions of the number of jobs of each type remaining to be
sequenced and the spacing constraint parameters. These expressions are presented in
Appendix C.

In order to facilitate the exposition, let us define:

1 if job i has the option installed at station j,

0 otherwise;



Yip

Sip

Ujp

Nj

A

Observe that for each station j, ujp depends only upon the value of % ajjyip, and
not on the detailed components of the sum. The value of the sum is 1 if a job with the
option installed at station j is assigned to position p, and zero otherwise. Thus, we can
simply compute the two possible values of ujp, then select the appropriate values when

computing the value of Up that results from the assignment of a particular job to position p.

1 if job i is assigned to position p,

0 otherwise;

time at which work terminates on job p at station j

max[sjp + bj + (0j - bj) Zj ajjyip, p - 1 + L], p21

time at which work starts at station j for the job in position p
min [fjp.1,p- 1],  p22
0, p=1

utility work at station j for the job in position p

[bj+ (0j- bj) Z; ajjyip - (fip- sjp)]

total utility work for the job in position p (depends on yip)

Zj ujp

approximate value of lower bound on total utility work for the
remaining R jobs if there are rj jobs with the option installed at

station j still unassigned
number of jobs with the option which is installed at station j

set of jobs remaining to be assigned.

A formal statement of the algorithm follows.



E NCING ALGORITHM
1. 1j = N;j for all j.
A = {1,..,N}.
2. Forp=1toN
Fori=1toN,ie A
Tentatively set yjp = land yyp=0forv#i.
Compute Cj=Up+ Xj LB(j,N-p,1j-aj))
Next i
Set yip = 1 for i with minimum C; value, zero otherwise.
Remove i such that yjp = 1 from A.
Forj=1to]J
rj <-- 1j - Zj ajjyip
Next |
Next p

3. Terminate.

The computational complexity of this algorithm is proportional to the square of the number

of jobs, since N + (N-1) + ...+1 values of C; must be computed.
4. EXPERIMENTAL RESULTS AND CONCLUSIONS

We obtained data on options for twenty sets of 1000 jobs from the automobile
manufacturer, along with related processing time data. Twelve stations were considered
critical. In order to assess how the algorithm performs on other data sets, we modified the
problem parameters (i.e., processing times and station lengths) so as to produce two other
data sets. The second data set has its primary "bottlenecks" at stations that differ from the
primary bottlenecks in the first data set. The third data set differs from the first in that it is

more difficult to sequence because the spacing constraints are tighter.

24



In order to evaluate the proposed algorithm, we also implemented a version of this
automobile manufacturer's existing algorithm, a version of the algorithm being used at
another automobile manufacturer (which is very similar to one of the procedures described
earlier in the literature review), and the Yano and Rachamadugu algorithm. We considered
two different objective functions. The first objective had weights which would be
appropriate for approximately minimizing total utility work. The weights were in the range
of 0.5 t0 0.95. Since the true objective is to minimize total utility work, we report actual
values of utility work, not values of the approximate objective. The second objective had
all weights equal to 1.0. One of the primary reasons for using this objective is that such
weights are consistent with one of the objectives of the second automobile manufacturer.

Percentage reductions in total utility work over solutions from existing procedures
are reported in Tables 1 through 3, and the same statistics for total unit violations are
reported in Tables 4 through 6. For comparison, we also report the percentage reduction
over the objective value of the best of 200 randomly generated sequences. The computing
time required to generate and evaluate the 200 random sequences is approximately equal to
the computing time required for either the proposed procedure or the Yano and

Rachamadugu algorithm. Thus, it represents a practical benchmark.
TABLES | THROUGH 6

It is evident from the results that the proposed procedure and the Yano and
Rachamadugu procedure perform quite well relative to the algorithms of the two automobile
manufacturers. In order to evaluate how the procedure performs relative to the optimal
solution, we also obtained lower bounds on the respective objective values. The lower
bounds are derived by finding the optimal sequence for each station independently, then
summing the corresponding objective values. Since the bound totally ignores the constraint

that all stations must receive the same sequence, it is quite loose.



We considered a variety of different ways to obtain tighter bounds, but they are
extremely difficult to find for several reasons. First, for small problems with the objective
of minimizing utility work, we found that the bounds obtained from linear programming
relaxations (which permit fractional assignments of jobs to positions), were very close to
the bounds that we obtain with our procedure (see Bolat 1988). Thus, although it was
impractical to solve the linear relaxations of the 1000-job problems (there are over one
million variables), we did not have any evidence to suggest that the resulting bounds would
be better. Second, we have observed that the reported lower bound for total unit violations
is generally tighter than a bound from a linear program (see Bolat 1988). Third, although
the problem can be solved optimally by dynamic programming for either objective function,
the computational complexity of the procedure increases rapidly with the size of the
problem (number of jobs and number of stations). Thus, it is difficult to extend our
bounding idea by partitioning the stations into sets of two or more stations, and computing
a lower bound for each set. Finally, even lower bounds obtained from a branch-and-bound
procedure with a time trap are unlikely to be tight because the number of jobs is so large
that only a very small portion of the tree can be considered.

Notably, despite the looseness of the bounds, for the objective of minimizing total
unit violations, the proposed algorithm is within 10 percent of the lower bound on average
(see Table 7). Results for the objective of minimizing total utility work (see Table 8) are
qualitatively similar. Details appear in Table 8. From these results, it appears that our

procedure also performs well in an absolute sense.
TABLES 7 AND 8§

The primary difference between the proposed algorithm (or the Yano and
Rachamadugu algorithm) and the two existing procedures is the look-ahead capability
provided by the lower bound for the remaining jobs. This suggests that even very simple,

easy-to-implement, look-ahead procedures can provide significant savings.
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The proposed algorithm performs quite well for the objective of minimizing total
unit violations. Indeed, it is unlikely that much further improvement can be obtained from
a tighter, more sophisticated lower bound. The algorithm has the advantage of being quite
flexible; it can incorporate any spacing rules and place any desired weight on each. Also,
since unit violations can be computed using available formulas, it is not necessary to
construct sequences for the various stations in order to determine lower bounds. Thus, the
algorithm can be implemented quite easily without special customization. This is especially
helpful when the same procedure is used for multiple facilities (such as the circumstances
that motivated this study), or when product characteristics change frequently.

Further research may be useful in improving lower bounds for the objective of
minimizing total utility work, not only to serve as a benchmark, but also for use within the

heuristic procedure.
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TABLE 1
Percent Improvement of New Procedure over Existing Procedures:

Total Utility Work for Data Set #1 (20 problems)

Sequencing Avg. Std. Min. Max.
Procedure Dev.
Best of 200 Random
Sequences 58.7 15.7 19.8 81.4
Company A 49.0 15.2 21.8 75.6
Company B 32.6 17.4 3.3 72.0
Y & R* -3.7 1.3 -18.1 5.3

* Yano and Rachamadugu Algorithm



TABLE 2
Percent Improvement of New Procedure over Existing Procedures:

Total Utility Work for Data Set #2 (20 problems)

Sequencing Avg. Std. Min. Max.
Procedure Dev.
Best of 200 Random
Sequences 41.0 12.0 16.6 56.5
Company A 30.7 11.3 11.3 45.9
Company B 10.2 7.9 0 244
Y & R* -2.9 2.7 -10.5 0.9

* Yano and Rachamadugu Algorithm



TABLE 3
Percent Improvement of New Procedure over Existing Procedures:

Total Utility Work for Data Set #3 (20 problems)

Sequencing Avg. Std. Min. Max.
Procedure Dev.
Best of 200 Random
Sequences 344 11.3 10.3 52.7
Company A 30.0 9.8 14.2 48.9
Company B 16.2 9.6 0.4 37.0
Y & R* -5.7 2.6 -11.4 -1.3

* Yano and Rachamadugu Algorithm



TABLE 4
Percent Improvement of New Procedure over Existing Procedures:

Total Unit Violations for Data Set #1 (20 problems)

Sequencing Avg. Std. Min. Max.
Procedure Dev.
Best of 200 Random
Sequences 51.0 13.9 15.8 71.0
Company A 40.3 13.2 14.2 62.7
Company B 23.0 12.9 2.7 48.2
Y & R* 3.5 5.5 -12.6 13.3

* Yano and Rachamadugu Algorithm



TABLE 5
Percent Improvement of New Procedure over Existing Procedures:

Total Unit Violations for Data Set #2 (20 problems)

Sequencing Avg. Std. Min. Max.
Procedure Dev.
Best of 200 Random
Sequences 50.7 15.5 15.4 70.5
Company A 39.7 15.0 10.9 61.4
Company B 13.6 10.2 -2.9 30.0
Y & R* 0.9 3.3 -6.4 6.0

* Yano and Rachamadugu Algorithm



TABLE 6
Percent Improvement of New Procedure over Existing Procedures:

Total Unit Violations for Data Set #3 (20 problems)

Sequencing Avg. Std. Min. Max.
Procedure Dev.
Best of 200 Random
Sequences 38.5 12.1 12.9 58.4
Company A 33.0 10.4 15.3 52.5
Company B 17.6 9.7 0.4 37.0
Y & R* 2.8 2.9 -0.1 12.6

" Yano and Rachamadugu Algorithm



TABLE7

Ratio of Lower Bound to Objective Value of Solution:

Total Unit Violations
Data Set
#1 #2 #3
Average 91.6 86.6 86.7
Standard Deviation 6.1 5.4 4.6
Minimum 76.2 77.4 78.6
Maximum 99.0 95.1 94.7



Average
Standard Deviation
Minimum

Maximum

TABLE 8

Ratio of Lower Bound to Objective Value of Solution:

Total Utility Work
Data Set
#1 #2 #3
42.2 90.8 74.1
18.9 3.8 5.8
17.3 82.4 65.1
69.7 96.7 87.8
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APPENDIX A

Formulation for Utility Work Minimization

Minimizing utility work is equivalent to maximizing the total work completed. The
formulation below has the latter objective. In addition to the notation defined earlier, we
define

Tjp = time allocated at station j to the job assigned to position p.

One possible formulation is:

Max % X, 1jp

s.t. - 8j1=0 forallj (Al)
Sip 2 Sjp-1 * Tjp-1 foralljand p (A2)
sip2p - 1 foralljand p (A3)
Sipt Tp<p-1+L; foralljandp (A4)
Tjp <bj +(0j- b)) Zjajjyjp foralljandp (A35)
X yip=1 forall p (A6)
pyip=1 foralli (A7)
yip=0orl foralliand p (AB)
Tjp20 foralljand p (A9)

The constraints ensure that (1) the first job starts at time zero (without loss of

generality), (i1) all other jobs start after work has terminated on their predecessors, (iii)



work on a job starts no earlier than its arrival at the station, (iv) work is terminated no later
than when a job leaves the station, (v) at each station, the amount of work performed on a
job is less than or equal to its processing time, (vi) each job is assigned to exactly one
position, (vii) each position is allocated exactly once, (viii) the assignments are binary, (ix)

the time allocations are non-negative.



Appendix B
Formulation for Minimization of Weighted Unit Violations

The problem can be formulated as follows:

N-mj-1 w+nj-1
Min Zj ej b ( X % ajjyip - mj*

w=1 p=w
subject to Ziyp=1 forall p
Xy yip=1 for all i
yip=0orl foralliand p

The objective is to minimize total weighted unit violations. The term in parentheses
1s the number of unit violations in the window of nj consecutive positions starting with
position w. The second sum reflects the totaling of these unit violations over all windows
of length mj + 1 or greater. The external sum weights these unit violations and sums them
over all stations. The assignment and binary constraints on the decision variables ensure
that the sequence 1s feasible.

Observe that this formulation is much simpler than the one for utility work (in
Appendix A). The primary difference is that the detailed timing decisions do not appear in

this formulation.
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Appendix C
Expressions for Unit Violation

The formulas below are based upon the observation that if one can sequence kj jobs

with the option followed by mj = n; - kj jobs without the option, and repeat this pattern

until the total number of jobs has been sequenced, such a sequence will have no unit

violations since there will be:

L.

exactly kj jobs with the option in any subsequence of n; consecutive jobs,
and

no more than kj jobs with the option in any subsequence of fewer than n;

consecutive jobs (e.g., in the short windows at the beginning and end og the
sequence).

Thus, the formulas for unit violations are derived by determining how many basic jobs

must be replaced by jobs with the option in order to match the original option mix and

making these replacements so that unit violations are minimized. The reader is referred to

Bolat and Yano (1988) for detailed derivations.

For station j, let

Gj = maximum number of repeating cycles of k; jobs with the option followed by

m; basic jobs

I N/n;j |

number of jobs in last fractional cycle
N - Gjn;

actual number of jobs with option j

maximum number of jobs with the option that can be sequenced with no

unit violations

Xj

Gikj + min (kj, 1)
number of excess jobs with the option

(Hj - Hj")*



With these definitions, the total unit violations in an optimal sequence is:

0 if Hj <Hj",
Xin, if Hj > Hj* and 1 =kj,
Xj (X + 1)) if Hj > Hj*, 1j <k;j, and Xj < min (kj-rj,m;),

X;nj - mj (kj - 1j) if Hj> Hj*, 1j <kj, and X; 2 min (kj-1j,m;),
Xin; - Xj (rj - Xj) if Hj > Hj*, 1j > Kj, and Xj < min (kj-1j,kj),

Xin; - kj (rj - kj) if Hj > Hj*, 1j > kj, and Xj 2 min (kj-rj,k;).

In the algorithm, the values of N and X; are updated as the sequence is constructed to
reflect the number of remaining jobs and the current number of excess jobs with the option,

respectively.



