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Abstract — In this paper we investigate inspection and replacement poli-
cies for a multi-stage deteriorating system with acyclic phase-type (ACPH)
sojourn time distributions. We assume that the stage (except the failure stage)
of the system is known only through inspections and the system can be re-
placed at any point of time. The time durations of inspection and replacement
are nonnegligible. The costs incurred are inspection cost, replacement cost,
operating cost, and downtime (idle) cost. In particular, the operating cost
rates, replacement costs and times are functions of the degree of deteriora-
tion. Various methods are developed for deriving inspection and replacement

policies to minimize the expected long run cost rate.



1. INTRODUCTION

This paper studies inspection and replacement policies for a multi-stage deteriorating
system whose sojourn time distribution in each stage is acyclic phase-type (ACPH). An
ACPH distribution is the distribution of the time until absorption in a finite state Markov
process with an upper triangular infinitesimal generating matrix. This multi-stage dete-

riorating system is considered here for the following two reasons.

1. Multi-stage deteriorating systems with exponential sojourn time distributions have
been widely investigated in the literature [11,14-16] and are special cases of the
model considered here. One well-known limitation of exponential distributions is
that they assign a large probability to a shorter sojourn time and cannot express
multimodality of a distribution. Because of the limitation of exponential distribu-
tions, semi-Markovian processes have been employed to model two or three-stage
deteriorating systems [7,10,12,13] by allowing the sojourn time distributions to be
general (non-exponential) distributions. However when the number of stages in-
creases, analytical approaches to derive inspection and replacement policies become
so complicated that they are essentially intractable. As we will see later on, if the
sojourn time distribution in each stage is ACPH, then the overall model for the
deteriorating system is again Markovian. While our model is more general, it also

preserves the analytic tractability of Markovian models.

2. As discussed in [2,3,5,8], the class of ACPH distributions is very versatile and can
be used to approximate general sojourn time distributions. Many methods have
been developed to approximate general distributions or estimate empirical data by
ACPH distributions. Discussion of these methods is outside the scope of this paper.

We refer interested readers to [1,2,4,6,8,9].

The objective of this paper is to derive inspection and replacement policies which minimize

the expected long run cost rate.



2. MODEL

We consider a deteriorating system with the following properties.

1. The deterioration of the system at any point of time can be classified into one of a
finite number of stages 1,2,---,n + 1. Stage 1 represents the initial new condition
of the system. The intermediate stages 2,3, --,n are ordered to reflect the relative
degree of deterioration of the system (in ascending order). Stage n + 1 represents
the failure condition of the deteriorating process. From stage 7, the system will
deteriorate to stage j with probability p;;. In particular, we assume that p;; = 0

whenever ;7 <1 as shown in Figure 1.

Figure 1: A Flow Diagram of a Multi-Stage Deteriorating System.

2. Suppose that the time for the system to stay in stage i € {1,2,---,n} is a k;-phase
acyclic phase-type (ACPH) distribution. A k;-phase ACPH distribution is defined
as the distribution of the time until absorption in a k; 4+ 1-state Markov process

with an absorbing state k; + 1, an initial probability given by a 1 x (k; + 1) vector

(1,0,---,0), and an upper triangular infinitesimal generating matrix
T, T
0T 0

(ki+1)x (ki+1)

where the entries of T; satisfy Ti(u,u) < 0 for 1 < u <k, Ti(u,v) 2 0 for



l<u<v<k Ti(u,v)=0fork;2u>v>1, T, 1+ T,= 0,and 0 and 1 are
column vectors with all entries equal to 0 and 1, respectively.
3. The overall system can now be modeled by a Markov process with ¥V +1 = Z ki+1
1=1
states where state NV + 1 is an absorbing state. The infinitesimal generating matrix

of this Markov process is given by

-

Ty, Ty T3 -+ Tia P1n+1 Tl
0 T, Ty - Ty D2,n+1 Tz

0 0 0 e Tn Dnn+1 In

QT QT QT OT 0

~

L J(N+1)x (N+1)

where T;; = [p;,' T;, 0} for ¢ < j and 0 is a matrix with all entries equal to 0.

k,‘XkJ’

3. MAINTENANCE ACTIONS

At any point of time, we assume that there are two maintenance actions available —

inspection and replacement.

1. Two types of inspection are considered here — complete and incomplete inspections.
A complete inspection can identify the current stage as well as the time that the
system has spent in the current stage. An incomplete inspection can only identify
the current stage of the system. Since the states within stages are fictitious, it
is therefore reasonable that inspections can only identify stage but not state in
practice. We assume that each inspection incurs a fixed cost M and it takes ¢ units

of time.

2. A replacement action is taken to replace the system with a new identical system or

to repair the system back to its initially new stage. When the system is in stage ¢,



3. We assume that during an inspection or a replacement, the system is neither oper-
ating nor deteriorating and it incurs a loss of m per unit time. When the system is
operating in stage ¢, the operating cost is a; per unit time.

4. NOTATIONS
S The set of all stages for the deteriorating system, S = {1,2,---,n + 1}
S The set of all states in the overall Markovian model, 5 = {1,2,---, N + 1}
i-1 i

S S;cSandS; = {Z ki+1,---, Z k,}, 1.e., it is the set of all states within stage
1 € Sinthe overalljl\jllarkovian moi;ell after renumbering. Note that S,4; = {N+1}.

Gi The system replacement cost if it is in state : € S , i = ¢; whenever ¢ € S'J- for
some j € S.

T The system replacement time if it is in state i € S, 7; = r; whenever 1 € S; for
some j € S.

a; The system operating cost rate if it is in state i € S\ {N + 1}, &; = ¢; whenever
i € §; for some j € S\ {n +1}.

P;(t) The probability that the system presently in state 1 will be in state j after ¢ units
of time, i,j € 5. It is clear that P;(t) =0 for all j < 1.

Fi(t) The failure time distribution of the ;ystem starting from state 1. Note that Fi(t) =
Pinsi(t) and Fi(t) =1 = F(t) = }_ P;(t).

j=i
A;(t) The expected operating cost of the system during [0, ] given it starts from state

the replacement cost and time are ¢; (¢; = 0) and r;, respectively. We assume that
when a failure occurs, the system must be replaced immediately with an identical

new system.

N t
i At = Y4 /0 Py(u) du.



ti  The expected time to failure given the system starts from state i € S. u; =

/w F(u)du.
0
5. A POLICY IMPROVEMENT ALGORITHM

In this section, we provide a Policy Improvement Algorithm (PIA) to find the optimal
inspection and replacement policy by assuming that the current state of the system can be
estimated after each inspection. Our objective here is to minimize the expected long run
cost rate. Later on we will provide methods to estimate the current state of the system

using information revealed by a complete or an incomplete inspection.

Let 6(z) be the action selected at the time instant when the current state of the system
is estimated as in state ¢ € S and § = (§(1),--+,8(N + 1)) be the sequence of actions
selected for all the states. If §(z) = 0, then the system should be replaced immediately.
If §(1) = t; > 0, then the system is inspected ¢; units of time later. Since a failure system
must be replaced, we will only consider the set of all policies, A, with §( N + 1) = 0. Let
Ts(1) and Cs(i) be the expected time and cost of the system starting from state 1 to the
completion of the next replacement under policy § € A. Then, Ts(¢) and Cs(¢) can be
calculated recursively by

( t N+1

.F_’,-u du F,‘,‘ P,'j ,'T ) if (¢ =1 0
i) | [ RGdroht)+ L RETG) H80=6>0
| 7 if6(z) =0
and ( ; N+1 s
A,‘,‘ M m F,'; P,'j t,-C ] 1 i=t,' 0
o) = | (t:) + (M +mq) (t)+§ (t:)Cs(j) if 8(i) =t > 2
| & + mf; if8(i) =0

For an infinite time span, minimizing the expected long run cost rate is equivalent to min-
imizing the expected cost rate of a maintenance cycle which is the time interval between

two successive replacements. Therefore, the objective here is to find §* = (13,13, -, ¥, 0)



such that
«_ . Cs(l) _ Cs(l)

g" = inf

Tsea To(l)  Tse(1) (3)

Clearly, there are two trivial policies: é, = (0,0,---,0) and é; = (00,00, +,00,0) with

expected cost rates g, = m + ¢;/f; = m and g; = [A;(00) + Cvy1 + MmN )/ (11 +
Fn+1), respectively. The optimal expected cost rate ¢* is therefore bounded above by the

minimum of g, and g;.

From [16], solving Equation (3) is equivalent to finding a ¢* € [0,00) and a policy
6* € A such that 222 [Cs(1) = g*T5(1)] = Cs+(1) — g*Ts+(1) = 0. Given any g € [0,m],
1 €5, and § € A, define Vs(i,g) = Cs(i) — gTs(i). From Equations (1) and (2) above, we

have
. v,(1,9,¢) if 6(z) >0
Vs(,9) =
f(9) { E,~+(m—g)F,~ if6(z) =0
where
vo(i’gvt) = I—;})’_(t){A\(t) + [M + (m = g)Q] F“(t)
N+1 .
¢ X R0 - [ Rwdf (@
j=itl

Since all the functions on the right hand side of Equation (4) are continuous for any
§ € A, v,(i,g,t) is a continuous function of ¢ for all ¢t € (0,c0). Furthermore, for each
fixed g € [0,m], we have tl_i’rgv,(i,g,t) = A;(00) + eng1 + (M — g)FNg1 — gli < ©
and &i_r.%v,(i,g,t) = oo. Therefore, for each g € [0,m], tei[g;]v,(i,g,t) exists and is
finite. Furthermore, if W(g) = géli[cg(l) — gTs(1)] for g € [0,m], then W(g) is clearly
a continuous and non-increasing function in g with W(0) = §2£ Cs(1) > 0 and W(m) <
0. Therefore, there always exists a g € [0,m] and a corresponding policy 6, such that
W(g) =0, ie., 6* = §, and g* = g. The optimal policy 6* and cost rate g* can be obtained

by the following Policy Improvement Algorithm (PIA).



Step 1: Select an initial policy 6, e.g., § = §, and set g = m.

Step 2: Construct a policy é as follows.
Set Vs(N +1,9) = vy + (m — g)Fngy and §(N +1) = 0.
Fori=N,V-1,.-.,21

P B ]

Set Vs(z,¢9) = min | inf ]vé(i,g,t),éf + (m = g)7i]|.

telo

If Vs(i,9) = zEi[gf ]vé(i,g,t) =v,(t,9,t), then §(z) = ¢,.
If Vs(s,9) = & + (m — g)7;, then 6(z) = 0.
Step 3: If Vy(1,¢) =0, then ¢* = g and §* = 4. STOP.

Otherwise, g = C5(1)/T5(1). GOTO Step 2.

A similar argument given in [14] can be used to show that the above algorithm converges

to the optimal policy é*.
6. ADAPTIVE METHODS

Adaptive methods are developed to estimate the most likely state of the system after

each complete or incomplete inspection and to apply the optimal policy §* obtained by

PIA.
6.1 Complete Inspection

After a complete inspection, suppose that the system is identified to be in stage : €
S\ {n + 1} for 7; units of time. Then, the conditional probability that the system is
currently in state j € 5; is given by

Puj(7i)

hi(r) = m (5)

ueg.‘

where 7 is the first state of stage i. Let k be the most likely current state of the system
within stage 7. Then, we have h(7;) = rJne?c hj(7;). Obviously, we also have P,;(m) =
r]rg‘c Py;(7;) since the denominator of Equation (5) is independent of j, given any 7; €
[0, 00). The method to implement §* under complete inspection is summarized as follows.

9



Step 1: Use PIA to derive the optimal policy 6.

Step 2: Set inspection time ¢ = t].

Step 3: Perform an inspection ¢t units of time later and identify the stage ¢ and ;.

Step 4: Find k € S; such that P,(m) = rjré%)‘( Pu;(7;) where 7' is the first state in stage 1.

Step 5: If 6(k) =t; > 0, then t = t; and GOTO Step 3.

Otherwise, replace the system immediately and GOTO Step 2.

6.2 Incomplete Inspection

Under incomplete inspection, the estimation of the current state relies on the infor-
mation revealed by all the previous inspections since the amount of time the system has
spent in the current stage cannot be realized. Suppose that a new system is just installed,
L.e., the system is in state 1 at time 0 and clearly the optimal action is 6*(1). To avoid
the trivial case that a new system is replaced, we assume that 6*(1) = ¢t} > 0. The system
is therefore inspected at time t]. Set t! = ¢]. After the first incomplete inspection, sup-
pose that the system is identified to be in stage i* € S\ {n + 1}. Then, the conditional
probability that the system is in state j € Sy is given by

hi(th) = —}D—"'—(t—l)—l.
> Pu(t)

ues'»l

More generally, let t" be the time interval between the r — Ist and the rth incomplete
inspections. After the rth incomplete inspection, if *he system is identified to be in stage

i, then the conditional probability that the system is in state j € Sir is given by

S RN P(E)

Uesir—l

Y Y AT(ETHPL()

‘UES."‘ uES‘-r_l

RI(ET) =

The most likely current state k of the system is the state such that hi(t’) = 512%)'( hi(t").
If 5‘(1::) = 0, then the system is replaced immediately and brought back to state 1. If
5‘(1;:) = {7 > 0, then the system is inspected ¢7 units of time later and t™t! = t: > 0. The
method to implement 6* under incomplete inspection is summarized as follows.

10



Step 1: Use PIA to derive the optimal policy §*.
Step 2: Setr=1,t" =§%(1), A}(t) =1 and A%(t) =0 for all j € S\ {1}.
Step 3: Perform an inspection t" units of time later and identify the current stage 1",

Step 4: Find k € S such that hi(t") = mgx hi(t).
j€Sir

Step 5: If 6(k) =17 >0, thenset r =r + 1, ¢" = t; and GOTO Step 3.

Otherwise, replace the system immediately and GOTO Step 2.
7. RESTRICTIVE METHOD

In this section, we present an alternative algorithm to derive an inspection and replace-
ment policy for our multi-stage deteriorating system. The resulting policy can be im-
plemented without estimating the current state of the system after a complete or an
incomplete inspection. In this algorithm, we restrict 6(j) = 6(k) for all j,k € S;. Let
i, and i, € S; be the first state and the last state in stage ¢, respectively. Under this
restriction, we modify Equation (4) by

1

v,(l,g,t) = ——=—=SA(t)+[M+(m-g)q B(t) + Z P;(t)v,(5,9,1)
1 = Py(t)

J=l+1

N+1
+ Y PitVi(,9) g/Fz } (6)

J=ia+l

for all 1; <1< 1.

Using the above modification, the optimal restricted policy can be obtained by ad-
justing Step 2 of PIA as follows.

Step 2’: Construct a policy 6 as follows.
Set Vs(N +1,9) =cns1 + (m —g)ingr and §(N +1) =0.
Fori=n,n-1,.---,2,1,
Find i1, 13 € S; and v, (41, 9,t) as given in Equation (6).

Set Vs(11,9) = min tei(gf ]v6(i1,g,t),c,~ + (m—g)ri|.

11



If Vs(ir,9) = tei{gt;o] v,(11,9,t) = v,(i1,9,t:), then §(7) =t; forall j € S..

If Vs(i1, ) = ¢ + (m = g)ry, then 6(j) = 0 for all j € S..

Under the optimal restricted policy derived using the modified PIA above, if the system
is identified to be in stage ¢ € S, then the optimal action is either to inspect the system

t; units of time later or to replace the system immediately.
8. EXAMPLES

In this section, we consider two 5-stage deteriorating systems with the following common

cost and time parameters.

1.a1=1,a2=3,a3=6,a4=9,
2. ¢; =500, ¢; = 600, c3 = 1000, c4 = 1400, cs = 2100,
3. ™ =20, T‘2=21,7‘3=23, 7‘4=26, Ts =30,

4. M=1,¢=0.1,m=10.
Using these cost and time parameters, g can be computed and is equal to 10.99.

8.1 Ezample 1

In this example, k; = 1, k; =4, k3 = 1, kg = 1 and the T matrix is given by

—0l 009 0 0 0 0 0 .00l |
0 —.04762 04762 0 0 0 0 0
0 0  —04546 04546 0O 0 0 0
0 0 0 —.04348 04348 0 0 0
0o 0 0 0 —.04167 0375 0  .00417
0 0 0 0 0 —0125 01125 .00125
0 0 0 0 0 0 —.01420 .01429
0o 0 0 0 0 0 0 0

12



Using PIA, the optimal policy 6* = (25.17,11.75,6.03,1.85,0,0,0,0) and the corre-
sponding expected cost rate g* = 7.11. For adaptive methods, the expected cost rates are
estimated from 1000 simulated maintenance cycles and are given in Table 1 below. For
restrictive method, the optimal restricted policy is obtained using the modified PIA and

is given by (63.13,0,0,0,0,0,0,0) with expected cost rate equal to 8.01.

Method g (9-91)]9s
Complete inspection | 7.96  27.57%

Incomplete inspection | 7.97  27.48%
Restrictive 8.01  27.12%

Table 1: Results for Example 1
8.2 Ezample 2

In this example, k; = k; = k3 = k4 = 2 and the T matrix is given by

[ —.0204 0204 0 0 0 0 0 0 0
0 -01961 01765 0 0 0 0 0 .00196
0 0 -02273 02273 0 0 0 0 0
0 0 -.02173 01956 0 0 0 .00217
0 0 0 0 —02564 02564 0 0 0
0 0 0 0 0 -.02439 0215, 0 00244
0 0 0 0 0 0 —.02941 02941 0
0 0 0 0 0 0 0 —.02778 .02778
0 0 0 0 0 0 0 0 0

Using PIA, the optimal policy 6* = (28.55, 14.61,4.3,0,3.12,0,0,0,0) and the corre-
sponding expected cost rate g* = 7.55. For adaptive methods, the expected cost rates are
estimated from 1000 simulated maintenance cycles and are given in Table 2 below. For
restrictive method, the optimal restricted policy is obtained using the modified PIA and
is given by (62.6,62.6,0,0,0,0,0,0,0) with expected cost rate equal to 8.32.

13



[1]

(2]

(3]

[5]

[6]

Method 9 (9-95)/9s
Complete inspection | 8.27  24.75%

Incomplete inspection | 8.38  23.75%
Restrictive 8.32  24.29%

Table 2: Results for Example 2
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