THE MEASUREMENT AND PREDICTION OF THE ENTHALPY

OF FLUID MIXTURES UNDER PRESSURE

by Victor Francis Yesavage

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University of Michigan 1968

Doctoral Committee:

Professor John E. Powers, Chairman Associate Professor Robert H. Kadlec

Professor Donald L. Katz Professor Joseph J. Martin Professor Richard E. Sonntag

ACKNOWLEDGMENTS

The author wishes to express his appreciation and gratitude for the assistance of many people during the course of this research.

I would like to thank Professor John E. Powers, chairman of my thesis committee, for his encouragement and guidance.

I would like to thank Professors Donald L. Katz, Richard E. Sonntag, Joseph J. Martin, and Robert H. Kadlec for serving on the doctoral committee.

I especially would like to thank Alan E. Mather and Joseph C. Golba who contributed greatly to this work by their efforts on the enthalpy project. Thanks are also due to Joseph Boisseneault, and Andre Furtado for their efforts while working on the project. In addition thanks are due to J. C. Golba, Jr., I.J.S. Sehgal, C. Albright, S. Engel, and R. Giszczak for reduction of the data and preparation of diagrams.

Many thanks are due to members of the ORA Instrument Shop, particularly E. Rupke and H. Senecal. I would also like to thank members of the Department of Chemical and Metallurgical Engineering staff including C. Bolen, D. Connell, and F. Drogoss for their assistance in solving mechanical and analytical problems.

I also wish to thank N. Prodany and A. Hedjmadi for many useful discussions during the course of this work.

I wish to thank Mrs. Margo Kaplin and Miss Patricia Williams for their efforts in the preparation of this manuscript.

In addition I would also like to thank the following organizations for their equipment and financial support.

The Natural Gas Processors' Association for support of the research and for fellowships.

The American Petroleum Institute for additional support of the research.

The Southern California Gas Company for the supply of methane used in this work.

The Dow Chemical Company for the gift of a large quantity of Styrofoam.

The National Bureau of Standards for the calibration of thermo-couples and standard cells.

Finally, I would like to thank my parents for all they have given me.

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENTS	ii
LIST OF TABLES	viii
LIST OF FIGURES	xiii
NOMENCLATURE	xvii
ABSTRACT	xxi
INTRODUCTION	1
SECTION I - PRELIMINARY CONSIDERATIONS	14
Flow Calorimeters	4
Isobaric Effect of Temperature on Enthalpy	4
Isothermal Effect of Pressure on Enthalpy	5
Isenthalpic Effect of Pressure on Temperature	6
Previous Experimental Data	6
Methane	7
Propane	7
Methane-Propane Mixtures	8
Interpretation of Data	9
Graphical Interpretation	10
Computer Reduction	12
Extension to Low Pressures	14
Enthalpy Change on Vaporization	15
SECTION II - METHODS OF PREDICTION	17
Statistical Mechanics Background	17
Fundamental Equation of State	17
Intermolecular Potential Functions	18
Partition Functions	18

	rage
Physical Models	20
Direct Calculations	20
Pair Distribution Functions	21
Methods of Prediction Based on Thermodynamic Data	23
Estimation of Partial Enthalpies	23
Equivalent Pure Component Method	25
Application of PVT Data	26
Application of Equations of State	27
Generalized Corresponding States Correlations	29
SECTION III - THE MODIFIED FLOW SYSTEM	39
Description of Equipment	42
Calorimeters	56
Measuring Instruments	57
Electrical Measurement	59
Procedure	61
SECTION IV - THE ENTHALPY OF PROPANE UNDER PRESSURE	63
Regions of Measurement	63
Composition of Gas	65
Flowmeter Calibrations	66
Results	69
Enthalpy Change on Vaporization	69
Isobaric Data	71
Isothermal Data	76
Isenthalpic Data	83
Analysis and Comparison of Results	83
Isobaric Data	83
Isothermal Data	88

	Page
Isenthalpic Data	88
Enthalpy Diagram and Tables	91
SECTION V - THE ENTHALPY OF METHANE-PROPANE MIXTURES UNDER PRESSURE	106
The 76.6 Mole Percent Propane in Methane Mixture	106
Composition of Gas	106
Regions of Measurement	107
Flowmeter Calibrations	110
Check on Assumption of Adiabaticity	112
Interpretation of Results	113
Isobaric	113
Isothermal	125
Isenthalpic	130
The 50.6 Mole Percent Propane in Methane Mixture	130
Composition of Gas	130
Regions of Measurement	130
Flowmeter Calibrations	135
Check on Assumption of Adiabaticity	139
Interpretation of Results	139
Isobaric	139
Isothermal	142
Isenthalpic	154
Consistency Checks	156
Enthalpy Diagrams	156
The 76.6 Mole Percent Propane in Methane Mixture	156
The 50.6 Mole Percent Propane in Methane Mixture	167
Comparison with Other Published Data	167

	Page
Enthalpy Data	167
Phase Behavior	172
Enthalpy of the Methane-Propane System	172
SECTION VI - EVALUATION AND EXTENSION OF METHODS OF PREDICTION	177
Comparison of Methods of Prediction	177
Isobaric Enthalpy Differences	178
Enthalpy Departure Comparisons	184
Conclusions	187
Application of the Corresponding States Principle to Fit Experimental Enthalpy Data	188
Development of the Reference Substance Enthalpy Departures	189
Application of Reference Sustance Equations to Pure Components	193
Application of the Correlation to Mixtures	197
Comparison with Other Mixing Rules	206
Extension to a Mixture of Nitrogen in Methane	215
Discussion of Results	218
SUMMARY AND CONCLUSIONS	220
RECOMMENDATIONS FOR FUTURE WORK	222
APPENDIX A - Calibrations	223
APPENDIX B - Experimental Data	226
APPENDIX C - Computer Programs	240
APPENDIX D - Data and Results of Corresponding States Correlation	257
RTRI.TOCRAPHY	275

LIST OF TABLES

<u>Table</u>		Page
I.	Impurity Content of Propane	65
II.	Calibration Table Used In Interpreting Experimental Results	68
III.	Illustration of Consistency of Calibration Equations for High and Low Flow Rates at Intermediate Flow Rates	68
IV.	Experimental Values of Latent Heats of Vaporization for Propane	71
V.	Maximum Values of C for Propane	73
VI.	Experimental Values of Isobaric Heat Capacity, C, for Propane	77
VII.	Experimental Values of Isobaric Heat Capacity, Cp, Near the Saturation Curve and in the Vicinity of Cp(T) Maxima	78
VIII.	Experimental Values of the Isothermal Throttling Coefficient for Propane	81
IX.	Experimental Values of the Joule-Thomson Coefficient for Propane	83
Х.	Test of Consistency of Data Based on Equation (8).	92
XI.	Tabulated Values of Enthalpy for Propane at Saturation Conditions	102
XII.	Tabulated Values of Enthalpy for Propane	103
XIII.	Composition of Nominal 77 Mole Percent Propane in Methane Mixture	107
XIV.	Calibration Data Used in Interpreting Experimental Results	112
XV	Tabulated Values of Isobaric Heat Capacities for a Nominal 77 Mole Percent Propane in Methane Mixture	116
XVI.	Supplemental Table of Experimental Values of Isobaric Heat Capacity	120

<u>Table</u>		Page
XVII.	Properties of the Nominal 77 Mole Percent Propane in Methane Mixture at the Phase Boundaries	124
XVII.	Experimental Values of the Isothermal Throttling Coefficient, φ, for a Nominal 77 Mole Percent Propane in Methane Mixture	127
XIX.	Experimental Values of the Joule-Thomson Coefficient, μ , at -96.2°F, for the Nominal 77 Mole Percent Propane in Methane Mixture	132
XX.	Composition of Nominal 54 Mole Percent Propane in Methane Mixture as Determined by Chromatographic Analysis	135
XXI.	Calibration Data Used in Interpreting Experimental Results	138
XXII.	Effect of Calibration Equation on Isobaric Heat Capacity Results	138
XXIII.	Tabulated Values of Isobaric Heat Capacities for a Nominal 51 Mole Percent Propane in Methane Mixture	143
XXIV.	Supplementary Table of Experimental Values of Isobaric Heat Capacity	146
XXV.	Properties of the Nominal 51 Mole Percent Propane in Methane Mixture at the Phase Boundaries	149
XXVI.	Experimental Values of the Isothermal Throttling Coefficient, φ, for a 51 Mole Percent Propane in Methane Mixture	152
XXVII.	Experimental Values of the Joule-Thomson Coefficient, μ , at -149.0°F for the 51 Mole Percent Propane in Methane Mixture	154
XXVIII.	Tabulated Values of Enthalpy for the Nominal 77 Mole Percent Propane in Methane Mixture	159
XXIX.	Tabulated Values of Enthalpy for the Nominal 51 Mole Percent Propane in Methane Mixture	162
XXX.	Test of Consistency of Data Based on Equation (8).	171
XXXI.	Test of Consistency of Data Based on Equation (8).	173

<u>Table</u>		Page
XXXII.	Correction Made in Jones' Table to Agree With Douslin's Enthalpy Departures	192
XXXIII.	Parameters Used in Corresponding States Calculations	194
XXXIV.	Test of Three Parameter Corresponding States Principle Using Data for Nitrogen	196
XXXV.	Original Optimum Values for the Three Pseudo- parameters in the Search Calculations	199
XXXVI.	Optimum Values of Parameters After Fitting Pseudocritical Temperature and Holding it Constant in Optimization	203
XXXVII.	Final Fit Optimum Parameter Values	203
XXXVIII.	Root Mean Square Deviations of the Results of This Study and Numerous Mixing Rules for the Methane-Propane System	204
XXXIX.	Differenced Results for the 5.1 Mole Percent Mixtures	207
XL.	Optimum Values of Pseudocritical Parameters with Third Parameters, W, Held Constant	210
XLI.	Root Mean Square of Deviations of the Results of This Study and Numerous Mixing Rules For a Methane-Nitrogen Mixture	216
XLII.	Thermopile M-3 Calibration for Isobaric Calorimeter	224
XLIII.	Thermopile M-4 Calibration for Isobaric Calorimeter	224
XLIV.	Thermopile M-5 Calibration for Throttling Calorimeter	225
XLV.	Thermopile M-6 Calibration for Throttling Calorimeter	225
XLVI.	Tabulated Experimental Isobaric Data for Propane.	227
XLVII.	Tabulated Experimental Isothermal Data for Propane	229
XLVIII.	Tabulated Experimental Joule-Thomson Data for Propane	230

<u>Table</u>		Page
XLIX.	Flowmeter Calibration Equation Constants Used for Propane	230
L.	Tabulated Experimental Isobaric Data for the Nominal 77 Percent Mixture	231
LI.	Tabulated Experimental Isothermal Data for the Nominal 77 Percent Mixture	234
LII.	Tabulated Experimental Joule-Thomson Data for the Nominal 77 Percent Mixture	235
LIII.	Flowmeter Calibration Equation Constants Used For the Nominal 77 Percent Mixture	235
LIV.	Tabulated Experimental Isobaric Data for the Nominal 51 Percent Mixture	236
LV.	Tabulated Experimental Isothermal Data for the Nominal 51 Percent Mixture	238
LVI.	Tabulated Experimental Joule-Thomson Data for the Nominal 51 Percent Mixture	239
LVII.	Flowmeter Calibration Equation Constants Used for the Nominal 51 Percent Mixture	239
LVIII.	Program for Fitting Isobaric Data	241
LIX.	List of Variables for Isobaric Data Fitting Program	245
LX.	Program for Optimization of Parameters in Corresponding States Correlation	24,8
LXI.	List of Variables for Corresponding States Cal- culation and Parameter Optimization Program	253
LXII.	Reduced Enthalpy as a Function of Reduced Temperature and Reduced Pressure for Propane	258
LXIII.	Reduced Enthalpy as a Function of Reduced Temperature and Reduced Pressure for Methane	259
LXIV.	Results of Corresponding States Correlation for Methane-Propane Mixtures Using Optimum Values Determined for the Parameters	260
LXV.	Results of Corresponding States Correlation for Methane-Propane Mixtures Using Optimum Parameters with Smooth Pseudocritical Temperatures	. 265

Table		Page
LXVI.	Results of Corresponding States Correlation for Methane-Propane Mixtures Using Smoothed Optimum Parameters	270

LIST OF FIGURES

Figure		Page
1.	Vapor-Liquid Equilibrium Envelope of the Methane- Propane System	41
2.	Flow Diagram of Modified Recycle System	44
3.	View of Storage Tanks with the Front of the Insulated Box Removed	46
4.	View of Calorimeter Bath Area	48
5.	Valve Panel with the Front of Insulated Box Removed	53
6.	View of Insulated Valve Panel	54
7.	Control Area of Modified Flow System	55
8.	Wiring Diagram of Power Measurement Circuit	60
9.	Temperatures and Pressures of Measurement for Propane.	64
10.	Results of Flowmeter Calibrations for Propane	67
11.	Enthalpy Differences for Propane in the Two-Phase Region	70
12.	Isobaric Heat Capacity for Propane at 1000 psia in the Upper Temperature Range	72
13.	Isobaric Heat Capacity in the Critical Region at the Critical Pressure for Propane	74
14.	Isobaric Heat Capacity at 500 psia in the Gaseous Region for Propane	74
15.	Isobaric Heat Capacity for Propane	75
16.	Isothermal Throttling Coefficient for Propane Above the Critical Temperature	80
17.	Isothermal Throttling Coefficients for Propane	82
18.	Isenthalpic Curves for Propane with a 21.2°F Initial Temperature	84
19.	Pressure-Enthalpy Isotherm Generated from Isenthalpic and Isobaric Data	. 85
20.	Experimental Data at 700 psia and Comparison with Results of Finn	87

Page		Figure
88	Comparison of Experimental Heat Capacities with Tabulated Values of Kuloor et al. (69)	21.
90	Comparison of Isothermal Enthalpy Departure with Data for Yarborough and Edmister	22.
93	Range of Tables and Charts of Thermodynamic Properties of Propane	23.
94	Range of Calorimetric Data Used in Preparation of Pressure-Enthalpy-Temperature Table for Propane	24.
97	Checks of Thermodynamic Consistency of Thermal Data for Propane	25.
100	Pressure-Temperature-Enthalpy Diagram for Propane	26.
105	Comparison of Tabulated Enthalpies of This Investigation with Those of Canjar and Manning	27.
108	Composition of the Nominal 77 Percent Mixture as a Function of Time	28.
109	Temperatures and Pressures of Measurement for the Nominal 77 Percent Mixture	29.
111	Results of Flowmeter Calibrations for the Nominal 77 Percent Mixture	30.
114	Heat Capacity as a Function of Reciprocal Flow Rate for the Nominal 77 Percent Mixture	31.
115	Isobaric Heat Capacity at 1000 psia in the Upper Temperature Range for the Nominal 77 Percent Mixture	32.
119	Isobaric Heat Capacity at 500 psia in the Gaseous Region for the 77 Percent Mixture	33.
122	Isobaric Heat Capacity for the Nominal 77 Percent Mixture	34.
123	Enthalpy Differences for the 77 Percent Mixture in the Two-Phase Region	35•
126	Isothermal Throttling Coefficient for the 77 Percent Mixture at 201°F	36.
128	Isothermal Throttling Coefficient for the 77 Percent Mixture	37•

Figure		Page
38 .	Isothermal Enthalpy Differences Through the Two-Phase Region at 100°F for the 77 Percent Mixture	129
39•	Joule-Thomson Coefficient for the 77 Percent Mixture at -96.2°F	131
40.	Composition of the Nominal 51 Percent Mixture as a Function of Time	133
41.	Temperatures and Pressures of Measurement for the Nominal 51 Percent Mixture	134
42.	Results of Flowmeter Calibrations for the Nominal 51 Percent Mixture	136
43.	Heat Capacity as a Function of Reciprocal Flow Rate for the Nominal 51 Percent Mixture	140
44•	Isobaric Heat Capacity at 1500 psia in the Upper Temperature Range for the Nominal 51 Percent Mixture	1.41.
45.	Isobaric Heat Capacity for the Nominal 51 Percent Mixture	1.47
46.	Enthalpy Differences for the 51 Percent Mixture in the Two-Phase Region	148
47.	Isothermal Throttling Coefficient for the 51 Percent Mixture at 152.2°F	150
48.	Isothermal Throttling Coefficient for the 51 Percent Mixture	153
49.	Joule-Thomson Coefficient for the 51 Percent Mixture at -149.0°F	155
50.	Checks of Thermodynamic Consistency of Thermal Data for the 77 Percent Mixture	157
51.	Checks of Thermodynamic Consistency of Thermal Data for the 51 Percent Mixture	158
52.	Pressure-Temperature-Enthalpy Diagram for the 77 Percent Propane in Methane Mixture	160
53•	Pressure-Temperature-Enthalpy Diagram for the 51. Percent Propane in Methane Mixture	161

Figure		Page
54.	The Effect of Pressure on C at Low Temperatures Including Comparison with Data of Cutler and Morrison (23)	168
55•	The Effect of Pressure on C at High Temperatures Including Comparison with Published Values of Rossini et al.(118)	170
56.	Comparison of Experimental Isothermal Enthalpy Departures with the BWR Equation of State for the 50.6 Percent Mixture	175
57•	Comparison of Isobaric Enthalpy Differences with Numerous Methods of Prediction	182
58 .	Comparison of Isothermal Enthalpy Departures with Numerous Methods of Prediction for the 77 Percent Mixture	185
59•	Comparison of Enthalpy Departure of Methane at 32°F Obtained Using Original BWR Equation (7) with Results Calculated by Douslin (34,35)	191
60.	Optimum Mixing Rules for the Methane-Propane System	200
61.	Comparison of Experimental Enthalpy Departures for the Methane-Propane System with the Results from the Corresponding States Correlation and Mixing Rules of this Investigation	205
62.	Comparison of Experimental Enthalpy Departures for the Methane-Propane System with Results from the Corresponding States Correlation of This Investigation and Mixing Rules of Leland-Mueller (74)	209
63.	Mixing Rules for Pseudocritical Temperature for the Methane-Propane System	212
64.	Mixing Rules for the Pseudocritical Pressure for the Methane-Propane System	213
65.	Mixing Rules for the Third Parameter for the Methane- Propane System	214
66.	Comparison of Experimental Enthalpy Departures for a Methane-Nitrogen Mixture with Results from the Corresponding States Correlation of this Investigation	01 77
	Using Several Mixing Rules	217

NOMEMCLATURE

Constants used in Equation (18) a,b,c,d,e a,b,c Constants in BWR Equation Α Helmholtz free energy A,B,C,D Constants in flowmeter calibration equation A_0, B_0, C_0 Constants in BWR Equation A',B',C',D',E' Empirical constants for mixing rules A",B",C",D",E" Empirical constants for mixing rules Second virial coefficient В B.P. Normal boiling point Isobaric heat capacity Correction term of Lydersen, Greenkorn, Hougen D correlation Base of natural logarithm е E Total energy f Symbol for a functional relationship F Mass flow rate F Root mean square deviation of enthalpy departure g(2) Pair distribution function Specific enthalpy Η \overline{H} Partial molal enthalpy J Expression in mixing rule of Joffe-Stewart, Burkhardt, Voo k Boltzmann constant K Expression in mixing rule of Joffe-Stewart, Burkhardt, Voo

Molal average boiling point

M.A.B.P.

N	Number of molecules			
P	Pressure			
ģ	Rate of transfer of heat			
Q.	Configurational integral			
r	Correction factor in mixing rule of Prausnitz, Gunn			
r	Distance			
R	Gas constant			
s	Correction factor in mixing rule of Prausnitz-Gunn			
Т	Temperature			
u	Configurational energy			
<u>U</u> :	Specific internal energy			
V	Volume			
<u>v</u>	Specific volume			
ŵ	Rate of transfer of work			
W	Third parameter used in this investigation			
x	Mole fraction			
У	Mole fraction			
Z	Compressibility factor			
Z	Canonical ensemble partition function			
α	Constant in mixing rule of Leland-Mueller			
α , γ	Constants in BWR Equation			
$\boldsymbol{\beta}$, $\boldsymbol{\gamma}$	Expression in mixing rule of Prausnitz, Gunn			
Δ	Difference			
E	Molecular energy parameter			
μ	Joule-Thomson coefficient			
μ'	Viscosity			

ρ	Density		
σ	Molecular distance parameter		
Σ	Summation		
φ	Isothermal throttling coefficient		
Ф	Intermolecular potential energy		
ω	Accentric factor		
Subscripts			
С	Critical point property		
i,j	Components in a mixture		
j	Energy state		
m	Mean Value		
mix	Mixture property		
r	Rotational contribution		
r	Reduced property		
t	Translational portion		
v	Vibrational portion		
x	Mixture property		
0	Reference substance property		
1	Component 1		
1	Inlet condition		
11	Component 1		
12	Interaction between component 1 and component 2		
2	Component 2		
2	Outlet condition		
22	Component 2		
Superscript			
0	Zero pressure value		

Conversion Factors for Units Used in This Study

1 Btu = $1054.6 \text{ J(kg m}^2 \text{s}^{-2})$

1 lb = 0.45359 kg

1 psi = $1.48907 \times 10^6 \text{ kg m}^{-1} \text{s}^{-2}$

 $1^{\circ}R = {^{\circ}K/1.8}$

 $0^{\circ}F = 459.6^{\circ}R$

ABSTRACT

THE MEASUREMENT AND PREDICTION OF THE ENTHALPY OF FLUID MIXTURES UNDER PRESSURE

bу

Victor Francis Yesavage

Chairman: Professor John E. Powers

The objectives of this research are (1) to modify the existing recycle flow calorimetry system in order to extend its capabilities to mixtures with higher critical temperature, (2) to complete the experimental investigation of the effects of pressure and temperature on the enthalpy of the methane-propane system at elavated pressures, (3) to use the data obtained as a basis for comparison of methods of prediction of enthalpies of mixtures, and (4) to extend methods of prediction to represent the available data.

Before obtaining measurements of enthalpy for propane and propane rich methane-propane mixtures with the recycle flow system, it was necessary to eliminate the possibility of severe composition and flow upsets. These upsets were caused by large parts of the system being at room temperature, and the presence of two-phase flow in parts of the system where liquid holdup was present. The modified flow system uses a steam heated/cooled Corblin diaphragm compressor for recycling the fluid. The valve panels, buffer tanks, and connecting lines are maintained at temperatures of 250°F. The calorimeter bath section consists of a series of baths connected such that the fluid, which may be a two-phase mixture in this part of the system, always flows in a downward direction. Two calorimeters, an isobaric and a throttling calorimeter, are used interchangeably in the system. The throttling calorimeter is

used isothermally at higher temperatures and as a Joule-Thomson device for liquids.

The effects of pressure and temperature on the enthalpy of propane, and 76.6 and 50.6 mole percent propane in methane mixtures were measured. Data were obtained at temperatures from -250 to +300°F at pressures from 100 to 2000 psia in the liquid, two-phase, critical, and gaseous regions. The data were internally self consistent for each mixture to about ±0.2 percent. Enthalpy-pressure-temperature tables and diagrams were prepared at pressures up to 2000 psia with the aid of data from the literature. For propane the table extended from -280 to +500°F and for the mixtures from -280 to +300°F. These tables are believed to be accurate to 1 Btu/lb. These results together with the previous experimental results for methane and a 5.1, 11.7, and 28.0 mole percent propane in methane mixture should adequately represent the methane-propane binary system. Direct experimental data of this type and accuracy are rare in the literature.

Experimental data were used to compare results from several published methods of prediction. This study indicated that the corresponding states principle is a fruitful approach for extending methods of prediction to represent enthalpy behavior.

A three parameter corresponding states correlation was developed which uses reference reduced enthalpy tables developed from data for methane and propane. The correlation is valid between reduced temperatures of 0.5 and 1.5 at values of reduced pressure up to 3.0. Values of enthalpy departures for nitrogen calculated from the correlation agreed with experimental results to within the experimental uncertainty of the data. This supports the validity of the three parameter corresponding

states principle for pure component enthalpy departures.

The correlation was extended to methane-propane mixtures by determining an optimum set of mixing rules containing six empirical constants. This correlation predicted enthalpy departures for the mixtures which agreed with experimental results almost to within experimental uncertainty (generally 1 Btu/lb). This established the validity of the principle of corresponding states for mixtures of nonpolar, mutually nonconformal components. The mixing rules obtained were compared with other rules available in the literature, and the correlation was successfully applied to a methane-nitrogen mixture.

INTRODUCTION

A knowledge of enthalpies of fluid mixtures over a wide range of pressure and temperature is necessary for accurate engineering designs of thermal processes. The goal of this research is to increase this knowledge by obtaining accurate experimental data and extending the available methods of prediction of enthalpies of fluids making maximum use of the experimental data.

In the past most enthalpies of fluids at elevated pressures have been calculated by differentiation of volumetric data. However, this method limits the accuracy of the enthalpy data obtained. In addition, accurate volumetric data for mixtures are not in great abundance and the determination of enthalpy changes across the two-phase region involves the use of not only volumetric data and derivatives but also vapor-liquid equilibrium data and derivatives. For these reasons it is desirable to have direct experimental determinations of the enthalpy behavior of fluid mixtures under pressure. These data are quite scarce in the literature.

Due to the unlimited number of mixtures which may exist and the limited amount of reliable data, an experimental approach must be used which allows considerable generalization. The Thermal Properties of Fluids Laboratory at the University of Michigan has in the past accurately measured enthalpies of fixed gases and their mixtures over a wide range of conditions by direct flow calorimetry. Systems investigated have included methane, nitrogen, one methane-nitrogen mixture, and several mixtures of methane-rich methane-propane mixtures. A specific purpose of this research has been to expand the capabilities

of the calorimetric facility so that data could be obtained for propane and propane-rich methane-propane mixtures. Determinations for these mixtures and propane would result in an accurate knowledge of the enthalpy behavior of a binary system with two components of considerably different molecular type. In addition the modified system could be used in the future to make additional measurements of mixtures or pure components with critical temperatures less than that of propane. Hopefully, such an approach would permit evaluation and extension of methods of prediction so that eventually further experimental determinations of light hydrocarbon and fixed gas mixtures could be calculated a priori.

There are many different methods of prediction which have been proposed for enthalpies of fluid mixtures. A comparison study has been made by the American Petroleum Institute of these numerous enthalpy correlations. The data used in the investigation, however, were not plentiful and consisted mainly of data derived from volumetric properties. Data were especially lacking in the critical region. Therefore, current methods of prediction are still limited to questionable uncertainty at least in the critical region. The availability of more accurate enthalpy data based on calorimetric determinations provides an improved basis for comparison of available methods of prediction. Such comparisons serve to focus attention on methods that have potential both for accurate prediction of enthalpy data and extension to systems for which data are not available.

Therefore, the specific goals of the present research were (1) to extend the capabilities of the recycle flow system, (2) to make experimental enthalpy determinations on propane and two propane-rich methane-propane mixtures, (3) to evaluate the available methods of prediction,

and (4) to select a potentially fruitful method and extend it to accurately represent the available data over a wide range of conditions.

SECTION I - PRELIMINARY CONSIDERATIONS

This introductory section presents a discussion of flow calorimetry and the necessary equations which are applied, a discussion of the data in the literature, and a summary of the techniques used in interpreting the experimental data obtained in this investigation.

Flow Calorimeters

The measurement of enthalpies of fluids at elevated pressures has been made by a number of methods. A review of experimental methods published recently by Barieau³ supplements earlier work by Masi⁸⁴ and Faulkner. Flow calorimeters have many advantages and have been used widely. The calorimeter may be designed to operate in a number of differing modes depending upon the type of enthalpy data desired. In general they are used to measure the isobaric effect of temperature on enthalpy, the isenthalpic effect of pressure on temperature, the isothermal effect of pressure on enthalpy, and the effect of composition on enthalpy at constant temperature and pressure. In the present investigation the first three of the above effects have been studied.

The first law of thermodynamics, applied to a flow calorimeter with negligible potential and kinetic energy effects, is

$$\left(\underline{H}_{T_2,P_2} - \underline{H}_{T_1,P_1}\right)_{x} = \frac{\dot{q} - \dot{w}}{F} \tag{1}$$

where q is the rate of heat transfer, w the rate of work done, and F is the mass flow rate.

Isobaric Effect of Temperature on Enthalpy

To measure the isobaric effect of temperature on enthalpy the

pressure difference P_2 - P_1 is made as small as possible, and energy is added to the fluid to change its temperature. A small correction is made for the fact that the pressure is not constant. For a calorimeter with electrical energy input, - $\mathring{\mathbf{w}}$, and negligible heat leak, $\mathring{\mathbf{q}}$, Equation (1) becomes

$$\left(\underline{H}_{T_2} - \underline{H}_{T_1}\right)_{P_2, x} = -\frac{\hat{w}}{F} - \int_{P_1}^{P_2} \left(\frac{\partial \underline{H}}{\partial \overline{P}}\right)_{T} dP \int_{T_1}^{T_2} dP$$
(2)

Several types of flow calorimeters have been developed to determine the isobaric effect of temperature on enthalpy. Partington and Shilling present a review of the early designs. The isobaric calorimeter of Faulkner, which is used in this investigation, utilizes electrical heating in the internals of the calorimeter followed by passage of the fluid through a series of concentric shells to ensure uniformity of temperature. Heat leakage is reduced to negligible proportions by heating a radiation shield located in the vacuum jacket to the temperature of the exiting gas.

Isothermal Effect of Pressure on Enthalpy

The measurement of the effect of pressure on enthalpy can be accomplished by causing a pressure drop in the flowing fluid. Energy is added so that the inlet temperature is equal to the outlet temperature. From a knowledge of the flow rate, the energy input, and the pressure drop, the isothermal effect of pressure on enthalpy can be determined by

$$\left(\frac{H}{P_{2}} - \frac{H}{P_{1}}\right)_{T_{1}, x} = -\frac{\dot{w}}{F} - \int_{T_{1}}^{T_{2}} C_{p} dT \Big|_{P_{2}}$$
(3)

where å is assumed to be negligible and the integral term is a correction for any slight difference between inlet and outlet temperatures. The calorimeter recently developed by Mather sand used in this study uses a capillary coil to induce the pressure drop with an insulated heating wire coaxially inserted into the capillary. The gas exiting from the capillary is passed through a series of concentric baffles to ensure uniformity of temperature, and the input of electrical energy to the internal heating wire is adjusted to make the outlet temperature of the fluid equal to the inlet temperature, therefore making the entire process very nearly isothermal.

Isenthalpic Effect of Pressure on Temperature

The isenthalpic mode of flow calorimetry was first studied by Joule and Thomson. In this type of experiment the fluid is throttled from a high pressure to a low pressure in an isenthalpic expansion. Equation (1) becomes

$$\underline{H}_{T_2,P_2} - \underline{H}_{T_1,P_1} = 0 \tag{4}$$

Hoxton⁵⁶ gives a good summary of the experimental work in this area prior to 1920. Johnston and White⁵⁹ review the Joule-Thomson determinations from 1920 to 1948. These summaries have been brought up to date (1967) by Yesavage et al.¹⁵²

Previous Experimental Data

All of the above methods have been used to obtain thermal data of fluids at elevated pressures. Most of the results have been for pure components. Reviews of data have been prepared by Masi, Barieau, Johnston and White, Potter, and Mage. A recent review of the avail-

able mixture data at elevated pressures has been presented by Yesavage et al. 85 and Mather.

Methane

For methane a compilation of thermodynamic properties including a comprehensive literature search is presented by Tester et al. Since this compilation was published additional determinations were made by Jones, Sahgal et al., Colwell, Gill, and Morrison, Vennix, Douslin et al., and Huang.

Propane

A similar compilation of the thermodynamic properties of propane is presented by Kuloor, Newitt, and Bateman. Since that time additional determinations have been made by Dittmar, Schulz, and Strese, Helgeson and Sage, Yarborough and Edmister, Ernst, Huang, and Finn.

Several of these previous determinations are similar to the present investigation in that they contain experimental measurements of the thermal properties of propane. Gaseous heat capacities at atmospheric pressure have been reported by Kistiakowski and Rice, Dailey and Felsing, and Sage, Webster, and Lacey. Saturated liquid heat capacities are given by Kemp and Egan, and Dana et al. Joule-Thomson coefficients have been measured by Sage, Kennedy, and Lacey in the gaseous region. The isothermal effect of pressure on enthalpy has been measured by Yarborough and Edmister at pressures up to 1000 psia at temperatures between 200 and 400°F. Latent heats of vaporization have been reported by Dana et al., Kemp and Egan, Sage, Evans, and Lacey, and Helgeson and Sage. The specific heat at constant pressure at 700 psia, about 80 psi above the critical point, has been

reported by Finn. Gaseous heat capacities have been measured by Ernst between temperatures of 68 and 176°F at pressures up to 118 psia.

Methane-Propane Mixtures

A review of the physical properties data available for the methanepropane system, including vapor-liquid equilibrium, compressibilities,

Joule-Thomson coefficient, enthalpy changes on vaporization, heat capacities, viscosities, thermal conductivities, and surface tension has
been presented by Mather.

For these mixtures a few experimental thermal properties investigations have been made. Joule-Thomson coefficients have been reported for three mixtures of methane-propane by Budenholzer et al. at pressures up to 1500 psia in the temperature range between 70 and 310°F. Head 50 measured Joule-Thomson coefficients for a mixture of 51.1 mole percent propane in methane at pressures up to 40 atm between 260 and 360°K in the single phase region.

Cutler and Morrison²³ have measured the vapor pressures and heat capacities of saturated liquid mixtures of methane-propane in the temperature range of 90 to 110°K. Dillard³² presents values of the isothermal effect of pressure on enthalpy for two methane-propane mixtures in the region between 90 and 200°F at pressures up to 2000 psia.

Manker⁸⁰ obtained isobaric data on a nominal 5 percent propane in methane mixture at temperatures from -245 to 87°F at pressures from 250 to 2000 psia. Mather⁸⁵ obtained data on the isothermal effect of pressure on enthalpy for this mixture at pressures up to 2000 psia in the temperature range of -147 to 201°F and extended the isobaric data to +257°F. In addition, Mather⁸⁵ reports isobaric data for a 12 percent

and a 28 percent propane in methanemixture at pressures between 250 and 2000 psia and temperatures between -230 and 150°F.

Interpretation of Data

The basic data are recorded in terms of quantities that can be readily measured, such as microvolts, height of a fluid and weight. These quantities are converted to temperatures, pressures, power input and flow rate in the manner discussed by previous authors 40,62,80,85 At this point Equations (2), (3), and (4) can be used to determine integral changes of enthalpy. In the single phase region these data may be interpreted to yield the derivative properties, heat capacity, c c c Joule-Thomson coefficient, c $^{$

$$C_{p} = \left(\frac{\partial \underline{H}}{\partial \underline{T}}\right)_{P,x} = \lim_{\Delta \underline{T} \to 0} \left[\frac{\underline{H}_{T_{2}} - \underline{H}_{T_{1}}}{\underline{T}_{2} - \underline{T}_{1}}\right]_{P,x}$$
(5)

$$\mu = \left(\frac{\partial T}{\partial P}\right)_{\underline{H}, x} = \lim_{\Delta P \to 0} \left[\frac{T_2 - T_1}{P_2 - P_1}\right]_{\underline{H}, x}$$
(6)

$$\varphi = \left(\frac{\partial \underline{H}}{\partial P}\right)_{T,x} = \lim_{\Delta P \to 0} \left[\frac{\underline{H} P_2 - \underline{H} P_1}{P_2 - P_1}\right]_{T,x}$$
(7)

These three derivatives are related by the mathematical identity

$$\varphi = -\mu C_{p} \tag{8}$$

These derivitive properties are obtained from the integral data by several techniques. Both graphical and computer methods are used with the choice depending upon the type of data and the region where the data are taken.

Graphical Interpretation

Graphical interpretation is used to obtain differential properties for isothermal and isenthalpic data and for isobaric data in the regions of rapid change of heat capacity with respect to temperature and in regions where extrapolation is required.

As an example one may consider determining C_p at constant pressure as a function of T. The data available from the experimental determinations are reported as sets of P, T_1 , T_2 , and $\left(\frac{H}{T_2}, P - \frac{H}{T_1}, P\right)$ over a wide range of temperature. For any one data point

$$\underline{H}_{T_2,P} - \underline{H}_{T_1,P} = \int_{T_1}^{T_2} C_p dT$$
 (9)

or

$$\frac{H}{T_{2}, P} = \frac{\int_{T_{1}, P}^{T_{2}} C_{p} dT}{T_{2} - T_{1}} = C_{p_{m}} = \frac{T_{1}}{T_{2} - T_{1}}$$
(10)

where C_{p_m} is the mean heat capacity between temperatures T_1 and T_2 . Values of C_{p_m} are plotted as horizontal lines as shown in Figure 12. The smooth C_{p} curve is obtained by satisfying Equation (10): the area under the horizontal line segments, $C_{p_m}(T_2-T_1)$, should equal the area under the smooth heat capacity curve. This same technique is used to determine the isothermal throttling coefficient as a function of pressure. For determining μ as a function of P, however, this technique can be applied only if all of the data points obtained are on the same line of constant enthalpy. This type of an experimental approach is not practical with the present facility and some other procedure must

be used.

In this investigation for isenthalpic determinations data at different pressures were obtained with the same inlet temperature, T_1 . The inlet pressure was continually reduced as data points were taken, One approximate technique can be used if the temperature difference, T_2 - T_1 , is small and if μ is not a strong function of temperature. This is to assume that

$$\left(\frac{\mathbb{T}_2 - \mathbb{T}_1}{\mathbb{P}_2 - \mathbb{P}_1}\right)_{\underline{H}} = \mu_{\mathrm{m}} \tag{11}$$

where μ_m is the mean Joule-Thomson coefficient between pressures P_2 and P_1 at an arithmetic average temperature, $T_m = (T_1 + T_2)/2$. From values of μ_m , P_2 , and P_1 , the function μ versus P at an average temperature, T_m , can be approximated by the equal area graphical technique described above.

A second technique relates the isenthalpic temperature and pressures to the isothermal throttling coefficient. For an isenthalpic determination Equation (4) applies, and if $\frac{H}{2}$ P_{O} , T_{1} is added to both sides

$$\left(\underline{H}_{P_{2}} - \underline{H}_{P_{1}}\right)_{T_{1}} = -\left(\underline{H}_{T_{2}} - \underline{H}_{T_{1}}\right)_{P_{2}}$$
(12)

By dividing both sides by P_2 - P_1

$$\frac{\left(\frac{H}{P_{2}} - \frac{H}{P_{1}}\right)_{T_{1}}}{\frac{P_{2} - P_{1}}{P_{2} - P_{1}}} = -\frac{\left(\frac{H}{P_{2}} - \frac{H}{P_{1}}\right)_{P_{2}}}{\frac{T_{2} - T_{1}}{P_{2} - T_{1}}} = \frac{T_{2} - T_{1}}{\frac{P_{2} - T_{1}}{P_{2} - P_{1}}}$$
(13)

but

$$\phi_{m} \mid_{T_{1}} = \frac{\left(\frac{H}{P_{2}} - \frac{H}{P_{1}}\right)_{T_{1}}}{P_{2} - P_{1}}$$
(14)

$$C_{p_{m}} | P_{2} = \frac{\left(\frac{H}{T_{2}} - \frac{H}{T_{1}} \right) P_{2}}{T_{2} - T_{1}}$$
(15)

and

$$\mu_{\rm m} = \frac{T_2 - T_1}{P_2 - P_1} \tag{16}$$

where μ_m is the average Joule-Thomson coefficient measured in the experiment, C $_{p_m}$ \mid_{P_2} is the average heat capacity which is determined from isobaric data, and ϕ_m \mid_{T_1} is the average isothermal throttling coefficient at temperature T_1 , thus

$$\varphi_{\mathbf{m}} \mid_{\mathbf{T}_{1}} = -\mathbf{C}_{\mathbf{p}_{\mathbf{m}}} \mid_{\mathbf{P}_{2}} \mu_{\mathbf{m}} \tag{17}$$

The smooth isothermal throttling coefficient can be obtained as a function of pressure at temperature \mathbf{T}_1 by the same graphical technique described above.

Computer Reduction

The above graphical procedures are extremely time consuming, and in addition the equal area construction can easily lead to errors.

Therefore, a computer program was developed for the interpretation of integral data. The equations used in the program are obtained as follows. Let us assume that the enthalpy at any temperature and a given pressure can be well represented over a limited temperature range by a truncated power series.

$$\underline{H} = a + bT + cT^2 + dT^3 + eT^4$$
 (18)

For any two temperatures

$$\underline{H}_{1} = a + bT_{1} + cT_{1}^{2} + dT_{1}^{3} + eT_{1}^{4}$$
 (19)

$$\underline{H}_{2} = a + bT_{2} + cT_{2}^{2} + dT_{2}^{3} + eT_{2}^{4}$$
 (20)

Subtracting Equation (19) from Equation (20) yields

$$\underline{H}_{2} - \underline{H}_{1} = b(\underline{T}_{2} - \underline{T}_{1}) + c(\underline{T}_{2}^{2} - \underline{T}_{1}^{2}) + d(\underline{T}_{2}^{3} - \underline{T}_{1}^{3}) + e(\underline{T}_{2}^{4} - \underline{T}_{1}^{4})$$
(21)

Factoring (T_2 - T_1) from the left hand side and dividing, results in

$$\frac{H_{2} - H_{1}}{T_{2} - T_{1}} = C_{p_{m}} = b + c(T_{1} + T_{2}) + d(T_{1}^{2} + T_{1}T_{2} + T_{2}^{2}) + e(T_{1}^{3} + T_{1}^{2}T_{2} + T_{1}^{2}T_{2} + T_{2}^{3})$$

$$(22)$$

From data sets of $\left(\frac{H}{T_2} - \frac{H}{T_1}\right)$, T_1 , and T_2 , the constants b, c, d, and e can be determined by a multivariable least squares regression. \underline{H} can then be determined from Equation (18) relative to a base enthalpy, a. Differentiating Equation (18) results in

$$C_p = b + 2cT + 3dT^2 + 4eT^3$$
 (23)

Thus in this way ${\tt C}$ can be determined as a function of temperature over a given temperature range.

Since data are obtained over a wide range of temperatures and it would not be expected of Equations (18) and (23) to accurately represent the data over such a range, the computer program was written to use the following approach. All experimental data for a given isobar are read in, and the program sorts the data in ascending order of the average temperature. Values of the enthalpy (relative to an arbitrary base) and the heat capacity are calculated at equal temperature intervals between a set initial and final temperature. The constants are determined at a temperature by fitting only eight data points. The data points used are the four nearest points below and above the temperature of the calculation. At the ends of the interval the first

or last eight data points are used to determine the constants. The constant a is selected to make the enthalpy a continuous function of temperature.

The constants in the fitting equation are continually changing from calculation to calculation. This procedure ensures that the equation will more closely fit the experimental data. However, this will cause the heat capacity to be discontinuous. This is not a serious drawback in regions where there are abundant data and the heat capacity is not a strong function of temperature. Nonetheless, in obtaining the final heat capacity values the results from the computer output are plotted and a smooth curve drawn through these points.

Where the heat capacity is a strong function of temperature the fit is generally so poor that the graphical technique must still be used. In addition, it has been found that the equations do a poor job of extrapolating and when this is necessary again graphical methods are used.

Although the program does not eliminate graphical methods, it does reduce the amount of equal area curve fitting which can lead to error. It also eliminates much of the graphical integration needed to determine enthalpy; and even when it cannot be applied it still can be used as a check of the graphical results. A listing of the MAD computer program which determines \underline{H} and \underline{C}_p is given in Table LVIII of Apendix \underline{C} .

Extension to Low Pressures

Since the lower limit in pressure of the recycle flow system is 100 psia, data from the literature are used in extending the enthalpy results to zero pressure. Isobaric enthalpy differences at zero

pressure can be determined from ideal gas heat capacities which are related to the rotational, vibrational, and translational motion of a single molecule. In addition, experimental values of heat capacities at elevated pressures when plotted versus pressure should extrapolate to the ideal gas heat capacity at zero pressure.

The effect of pressure on enthalpy is determined at low pressures using PVT data and second virial coefficients. The isothermal throttling coefficient can be related to volumetric properties by

$$\Phi = \overline{\Lambda} - \mathbb{I} \left(\frac{9\overline{\Lambda}}{1} \right)^{\mathbf{b}}$$
 (54)

At zero pressure this equation can be used to relate $\phi_{\mbox{\scriptsize 0}}$ to the second virial coefficient

$$\varphi^{O} = B - T \left(\frac{dB}{dT} \right)$$
 (25)

The second virial coefficient is related to the interaction of two molecules. For binary mixtures B is of the form

$$B_{\text{mix}} = x_1^2 B_{11} + 2x_1 x_2 B_{12} + x_2^2 B_{22}$$
 (26)

where ${\bf B}_{11}$ and ${\bf B}_{22}$ are the pure component second virial coefficients and ${\bf B}_{12}$ is the interaction virial coefficient. Also

$$\frac{dB_{\text{mix}}}{dT} = x_1^2 \left(\frac{dB_{11}}{dT} \right) + 2x_1 x_2 \left(\frac{dB_{12}}{dT} \right) + x_2^2 \left(\frac{dB_{22}}{dT} \right)$$
 (27)

The experimental isothermal throttling coefficients obtained at elevated pressure should extrapolate to the zero pressure values derived from the second virial equation using Equation (25). The resulting curve is integrated to determine the effect of pressure on enthalpy at low pressure.

Enthalpy Change on Vaporization

For pure component data in the two-phase region Equation (2) and

(3) can be used directly to determine enthalpies of vaporization. For pure components vaporization occurs at constant pressure and temperature so that the resulting enthalpy change of either an isobaric or isothermal experiment should be identical. For mixtures, however, vaporization must cause change of temperature, pressure, or both and thus the enthalpy of vaporization will depend on both the initial and final conditions. Equation (2) can be used to interpret isobaric data through the two-phase region and thus one obtains an isobaric enthalpy of vaporization for a mixture. If the inlet temperature, T_1 , is such that a condition in the two-phase region results, an appropriate value of ϕ must be used in the pressure correction term. Equation (3) is used to reduce isothermal data, and, therefore, one obtains an isothermal enthalpy of vaporization for a mixture. An appropriate value of C_p must be used if the outlet fluid is in the two-phase region.

SECTION II - METHODS OF PREDICTION

This section presents a review of the methods of prediction of thermodynamic properties and particularly enthalpy of mixtures. As indicated a limited number of accurate enthalpy data are available for mixtures. However, the number of mixtures which have been investigated is infinitesimal relative to the number of systems of interest so that it is fruitless to contemplate the possibility of obtaining data for all such systems. Therefore, it is essential that reliable methods of predicting enthalpy behavior be developed.

Statistical Mechanics Background

With the advent of advanced calculational techniques including electronic computers, one would hope to be able to calculate enthalpy data for mixtures from a detailed knowledge of the behavior of individual molecules and of the interaction between molecules. Statistical mechanics has been applied with some success in this endeavor especially with respect to the behavior of gases containing relatively simple molecules. However, for mixtures in the liquid or dense fluid region this approach has not been extremely successful in obtaining quantitative representation of the macroscopic behavior. A brief discussion of the advances and problems in this endeavor will now be presented.

Fundamental Equation of State

The statistical mechanical theory relevant to the determination of thermodynamic properties of fluid mixtures at elevated pressure has been derived and discussed in numerous textbooks and reviews, e.g., Hill, Prigogine, Rowlinson, Guggenheim. The main goals of statistical

mechanics in this endeavor are the determination of the potential energy of interaction of molecules, and the derivation of an equation of state which relates the thermodynamic properties of mixtures to the intermolecular potential.

Intermolecular Potential Functions

There are numerous discussions of the methods used in the determination of intermolecular potential functions, such as Rowlinson. 120 Hirschfelder, Curtiss, and Bird, and more recently Klein. These functions can in principle be calculated from quantum mechanics. However, except for the most simple molecules, such an approach is not mathematically feasible since it involves a detailed knowledge of the behavior of every electron for each molecule. Thus, the potential energy function must be obtained from macroscopic data by use of a simplified equation of state in a region where the equation applies accuarately. A functional form is assumed for the potential energy and the parameters fit to represent the macroscopic data. Such an approach is often quite arbitrary, especially for non-spherical molecules where the potential is a function of orientation as well as distance. In addition, the potential energy function between two molecules is effected by the presence of additional molecules. Most studies of intermolecular potentials, however, are limited to systems which assume pairwise additivity and ignore this effect.

If a knowledge of this potential energy function were available it would then be necessary to substitute it into an equation of state in order to determine macroscopic properties. The basic equations of statistical mechanics are the expressions for the partition functions.

Partition Functions

An example of such an equation which can be used for the determination

of thermodynamic properties is the expression for the canonical ensemble partition function, Z(N,V,T)

$$Z(N,V,T) = \sum_{j} e^{-E_{j}(N,V)/kT}$$
(28)

where E is the total energy of a system in an energy state j, and k is the Boltzmann constant. This partition function can be related to macroscopic thermodynamic functions by

$$A = -kT \ln Z(N, V, T)$$
 (29)

where A is the Helmholtz free energy

If it is assumed that the different contributions to the partition function are independent then

$$Z(N,V,T) = Z_{t}Z_{r}Z_{v}Q$$
 (30)

where \mathbf{Z}_{t} , \mathbf{Z}_{r} , and \mathbf{Z}_{v} are the contributions of the partition function for translational rotational and vibration motion, and Q is the configurational integral.

If the configurational portion is assumed to obey the laws of classical mechanics then

$$Q = \frac{1}{N!} \int \cdots \int e^{-u/kT} d\vec{r}_{1} ... d\vec{r}_{N}$$
 (31)

where u is the configurational energy of a molecular arrangement. This can be readily generalized to mixtures by

$$Q = \frac{1}{\Pi_{1}(N_{1}!)} \int \cdots \int e^{-u/kT} d\vec{r}_{1} ... d\vec{r}_{N}$$
(32)

where

$$\sum_{i} N_{i} = N \tag{33}$$

 $\boldsymbol{\Pi}_{\underline{\boldsymbol{\eta}}}$ designates the $\boldsymbol{\Pi}$ product and there are i species.

Physical Models

Since the evaluation of the above expression even for the simplest potential is extremely complex a simplified physical model is often assumed to represent the behavior of a fluid. An example of such a model is the cell theory of the liquid where it is assumed that each liquid molecule occupies a single cell or lattice site. Next an assumption is made regarding the potential energy at positions inside the cell. The partition function and then the thermodynamic properties can thus be evaluated. This procedure can be similarly applied to mixtures often by making a random mixing assumption and can be applied to elongated molecules by assuming that a molecule can occupy more than one site.

Additional refinements can be made to improve the physical model itself.

Several attempts have been made to apply these methods to the determination of heats of mixing of simple fluids at low pressures with reasonable success. This is, however, partly due to the fact that heats of mixing represent only a very small part of the configurational enthalpy and may in fact be easier to represent. In general, however, due to the number of approximations involved such methods give only a qualitative description of the properties of fluids. In addition, it is felt that due to the basic error in the physical assumption itself such methods can never be improved to the point of quantitatively predicting thermodynamic properties of fluids. Finally, such methods which incorporate physical assumptions must be limited to narrow regions of applications.

Direct Calculations

A more direct approach is the solution for the macroscopic properties

from the individual properties of a system of several hundred particles on a digital computer. There are two basic approaches. The method of molecular dynamics uses the classical equations of motions for each particle and averages over time. The Monte Carlo method uses a statistical sampling process to select configurations in the canonical ensemble and averages over these configurations with equal weight. Due to the complex calculations involved, these methods have, however, only been applied to the simplest type of molecular arrangements and potential functions which cannot be expected to represent the behavior of actual systems. Their main value has been in testing physical and mathematical models. Their main value has been in testing physical and mathematical

Pair Distribution Functions

A third approach uses the pair distribution function, $g^{(2)}(r)$, defined as the probability of finding a molecule in a volume element dr_1 and a second molecule in a second volume element dr_2 . For molecules with a force field depending only on r (spherical pairwise additive molecules) this expression can be related directly to the configurational energy

$$\underline{U} - \underline{U}_{O} = \frac{\mathbb{N}\rho}{2} \int_{0}^{\infty} g^{(2)}(r) \Phi(r) 4 \pi r^{2} dr$$
 (34)

where ρ is the density and $\Phi(r)$ the potential function. Knowledge of the distribution function can be obtained from diffraction experiments 38,90 or calculated by various approximate techniques. The above expression can be readily generalized to mixtures. Again, however, the method has severe limitations in accurately predicting the thermodynamic behavior of fluids. If the molecule is not spherical the distribution function

and potential function must be made functions of orientation. Little or no progress has been made in the solution of such a problem. In addition calculation of thermodynamic functions are very sensitive to small errors either in the distribution function or potential function.

Recently an interesting approach to the calculation of thermodynamic properties of simple fluids, limited to moderate densities, has been developed by Orentlicher and Prausnitz. Simplifying models for the distribution function and potential function in terms of three parameters are made. These models are substituted into an equation for enthalpy departure analogous to Equation 34. The three parameters are then empirically fit to best represent the thermodynamic data. Although the parameters have no physical significance, the flexibility of the expressions which are developed allow the authors to claim a minimum accuracy of 10 percent. Such an approach is similar to both equation of state methods and corresponding states correlations which are discussed in later sections.

Although advances have been made in the area of predicting macroscopic enthalpy behavior from a study of microscopic properties it appears that for some time to come less sophisticated methods of prediction must play an important role. In the first place, the mathematical difficulties encountered not only make exceedingly difficult the solution of an equation of state, based on statistical mechanics, but also prevent the determination of accurate intermolecular potential functions. The simplifying assumptions which have been made are quite often themselves extremely complex mathematical problems, usually give only qualitative results, and are in general limited to narrow regions of application. To obtain quantitative representation of thermodynamic

properties assumptions are required which make use of experimental data and contain parameters or functional forms having no direct fundamental significance. These approaches and other methods developed from correlating thermodynamic data will now be discussed.

Methods of Prediction Based on Thermodynamic Data

A review of the available methods of prediction of enthalpies of fluid mixtures at elevated pressures has been published recently by Nathan.

The predictive methods in common use can be classified in five categories.

- 1) Estimation of partial enthalpies
- 2) Equivalent pure component method
- 3) Application of PVT data
- 4) Application of equations of state
- 5) Generalized corresponding states correlations

This classification is somewhat arbitrary since first of all, the application of PVT data can be used to determine enthalpies for all of the other methods. In addition, corresponding states and equations of state methods can be difficult to distinguish and fundamentally are the same. However, for the sake of classification the five categories and examples of each will now be summarized.

Estimation of Partial Enthalpies

The enthalpy per mole of a mixture, \underline{H}_m , can be determined exactly from a knowledge of the partial molal enthalpies of the individual components, \overline{H}_i , by application of the expression

$$\underline{\mathbf{H}}_{\mathbf{m}} = \sum_{\mathbf{i}} \mathbf{x}_{\mathbf{i}} \overline{\mathbf{H}}_{\mathbf{i}} \tag{35}$$

The partial molal enthalpy of a component is generally a function of composition and is, therefore, truly a mixture property.

Accurate enthalpy data are available at low pressure for a large number of pure compounds, e.g., Rossini et al. For gases at zero pressure the assumption that the enthalpy of a component in a mixture is the same as the enthalpy of the pure component is an accurate one. Therefore, Equation (35) can be applied rigorously to establish the enthalpy of gaseous mixtures at zero pressure. In general, however, partial molal data are not abundant and, therefore, several methods of estimation have been suggested.

For non-polar fluids either as gases or as liquids it is often adequate to assume that the partial molal enthalpy \overline{H} , is independent of composition, i.e., that the enthalpy of the component in the mixture is the same as the enthalpy of the pure component at the same temperature and pressure. However, extreme care must be taken when applying this procedure since as Mather 85 has shown extreme values of the heat of mixing do exist, especially in the critical region. For this and other reasons, this method has been discouraged by the prediction evaluation study conducted by the American Petroleum Institute. 140 Peters⁹⁹ and Maxwell⁸⁹ suggest a modification of this procedure in applying data from their published enthalpy diagrams to predict the enthalpy of gaseous mixtures. In applying this general procedure to liquid mixtures, one is faced with the problem of estimating the partial molal enthalpy of a component as a liquid above the critical temperature of the component. Peters relates the partial molal enthalpy of hydrocarbons above their critical temperatures to the molal average boiling

point of the mixture and plots values of liquid partial molal enthalpies on enthalpy diagrams for the pure components. Unfortunately the method cannot be applied for pressures above 600 psia. Maxwell includes a single line on the enthalpy diagrams of pure components to represent the partial molal enthalpy of the component in the liquid phase above its critical. In general, the plots presented by Peters are limited to a temperature range between -260 and +420°F at pressures up to 600 psia. Similarly, Maxwell's plots extend between -200 and +1200°F at pressures below 150 atm.

A major drawback of this method is the fact that an enthalpy diagram must be available for every component present in a mixture. This diagram is constructed by relying primarily on empiricism and would be difficult to extend.

Equivalent Pure Component Method

Application of this method is the simplest, generally only involving one parameter and is usually restricted to mixtures of components of homologous series. Scheibel and Jenny present nomographs based on the average molecular weight of a hydrocarbon mixture.

Papadopoulos et al. showed that the molal average boiling point of a mixture defined as

$$M.A.B.P. = \sum_{i} x_{i}(B.P.)_{i}$$
 (36)

where the (B.P.) is are the pure component boiling points, for lighter hydrocarbons served to correlate values of a partial molal enthalpies calculated from an equation of state. Similar results were obtained at about the same time by Canjar and Edmister. Canjar and Peterka prepared plots of the isothermal enthalpy departure as a function of

temperature and pressure for mixtures with different molal average boiling points. The plots of Canjar and Peterka are restricted to the temperature range -200 to + 500°F at pressures below 1500 psia for mixtures with
molal average boiling points from -270 to +190°F.

Application of PVT Data

As mentioned earlier accurate PVT data can be used to calculate the effect of pressure on the enthalpy of fluids and fluid mixtures. In general, the enthalpy of a mixture at a specified temperature and zero pressure, $\underline{H}(T,0)$, can be determined for most simple fluids. This is evaluated from ideal gas enthalpies of pure fluids either from statistical mechanics or from measured data. The mixture enthalpy is determined by applying Equation (35) as already described.

Thus, if accurate volumetric data are available for the mixtures, the enthalpy can be calculated by use of the relation

$$\underline{H}(T,P) = \underline{H}(T,0) + \int_{0}^{P} \left[\underline{V} - T \left(\frac{\partial \underline{V}}{\partial T} \right)_{P} \right] dP_{T}$$
 (37)

In principle, the use of this relation in the single-phase region is fairly straightforward. In contrast to pure components for which $\left(\frac{\partial \underline{V}}{\partial \underline{T}}\right)_P$ is infinite in the two-phase region, this derivative is finite in the two-phase region for mixtures (with the exception of mixtures of azeotropic composition). Thus Equation (37) applies throughout the two-phase region for mixtures in which case \underline{V} is the total volume per mole of the mixture.

In application, the use of Equation (37) is not quite so straightforward. The term in brackets under the integral sign involves the
difference between two terms, one of which includes a derivative. As

a result, extremely accurate volumetric data are required to yield reliable estimates of the effect of pressure on enthalpy. A reduction of accuracy of one order of magnitude is to be expected. Volumetric data for mixtures of the required accuracy are available but somewhat rare.

Direct experimental determination of the volumetric behavior of two-phase mixtures is even more rate. The total volume, \underline{V} , can be related to the properties of the individual equilibrium phases. Strickland-Constable has presented the resulting equations which demonstrate that in order to make use of the properties of the individual phases, extremely accurate vapor-liquid equilibrium data are required in addition to the volumetric data.

Another practical consideration is the method of obtaining accurate values of the derivative in Equation (37) from experimental data. In general, some method of curve fitting is applied. Quite often an equation of state is used for this purpose.

The next section describes the application of equations of state in the determination of enthalpies of mixtures.

Application of Equations of State

Reviews dealing with equations of state have been presented by Van Ness, 141 Martin, 83 and Rowlinson. In general most equations of state serve to relate pressure, P, as the dependent variable to temperature, T, and specific volume, \underline{V} , as independent variables. As a result it is convenient to transform Equation (37) to

$$\underline{H}(T,\infty) - \underline{H}(T,\underline{V}) = RT - P\underline{V} + \int_{\infty}^{\underline{V}} \left[P - T \left(\frac{\partial P}{\partial T} \right)_{\underline{V}} \right] d\underline{V} T$$
 (38)

The Benedict-Webb-Rubin (BWR) equation of state is commonly used to fit volumetric data and thereby estimate the enthalpy of fluids at elevated pressures. In terms of the eight constants which are used in this equation of state Equation (38) becomes

$$\underline{H}(T,\underline{V}) = \underline{H}(T,\underline{N}) + \frac{1}{\underline{V}} \left[B_0 RT - 2A_0 - \frac{4C_0}{T^2} \right] + \frac{1}{2\underline{V}^2} \left[2bRT - 3a \right] + \frac{6}{5} \frac{a\alpha}{\underline{V}^5} + \frac{C}{2} \left[\frac{3\underline{V}^2}{\gamma} \left(1 - e^{-\frac{\gamma}{2}} \right) - \frac{\gamma}{2} e^{-\frac{\gamma}{2}} + \frac{\gamma}{\underline{V}^2} e^{-\frac{\gamma}{2}} \right]$$
(39)

The eight constants required for application of this relation are usually determined from volumetric data. It is risky to use the equation to extrapolate beyond the range of the original data. Experimental data are quite extensive in some cases as is illustrated by the fact that Crain and Sonntag²² recently published BWR constants for nitrogen which apply fairly well to reduced densities of approximately 2.

The BWR constants are only extremely rarely determined directly from volumetric data for mixtures. Instead, empirical rules have been developed for estimating values to be applied to a mixture from a knowledge of the constants for the pure components and the composition of the mixture. Combining rules for the eight constants have been suggested by Benedict, Webb, and Rubin.

Constants for the BWR equation of state are available for a considerable number of pure components, and therefore Equation (39) together with the appropriate mixing rules provides a convenient means of

estimating the effect of pressure on enthalpy for mixtures.

Recently constants for the BWR equation of state ⁷⁵ or a modification of it ¹³³, ²¹, ¹¹⁵ have been determined by fitting volumetric and enthalpy relations simultaneously. This ensures thermodynamic consistency of both types of data. Other equations of state have been used to calculate enthalpies of fluid mixtures. The virial equation can be derived from statistical mechanics considerations. The nth virial coefficient is related to an n particle interaction system.

Unfortunately neither accurate thermodynamic data nor constants for equations of state such as the BWR are available for many components. Several equations of state such as the Redlich-Kwong equation li2 and the equations due to Hirschfelder et al. state such as the redlich-Kwong equation and the equations due to Hirschfelder et al. state such as the redlich-Kwong equation and the equations due to Hirschfelder et al. state such as constants which are directly related to macroscopic constants for the individual components. These equations analytically represent a generalized correlation. Such correlations were developed to permit one to approximate the enthalpy of materials at elevated pressures using a very limited amount of available data. These corresponding states correlations will be described in the following paragraphs.

Generalized Corresponding States Correlations

Recently reviews of the application of the corresponding states principle have been presented by ${\rm Stiel}^{137}$ and Leland and Chappelear. The principle of corresponding states was first applied in its simplest form to develop generalized correlations of ${\rm PVT}$ behavior by Cope, Lewis, and Weber and Brown, Souders, and Smith. The law was stated as

$$z = f(P_r, T_r)$$
 (40)

where P_r is the reduced pressure, $\frac{P}{P_c}$, and T_r is the reduced temperature, $\frac{T}{T_c}$. Later Pitzer derived the expression from statistical mechanics

limiting its validity to spherical molecules having a potention function depending on only two parameters. In addition the translational and configuration portions of the partition function are assumed to be independent of quantum effects. This eliminates light molecules such as $\rm H_2$, $\rm He$, and $\rm Ne$. In addition the canonical ensemble partition function is assumed to be separable into independent internal and external factors. As expressed by Pitzer

$$z = f\left(\frac{\epsilon}{kT}, \frac{V}{N\sigma^3}\right)$$
 (41)

where f is a universal function. The ϵ and σ can be related directly to the critical constants 107 by applying Equation (41) at the critical point. To account for the nonconformity of compounds, which do not satisfy the above restrictions later contributors have suggested use of a third correlating parameter in addition to the critical temperature and pressure. Lydersen, Greenkorn, and Hougen 76 made use of the critical compressibility factor, z_c . Pitzer et al. employed the accentric factor, ω , which is related to the shape of the reduced vapor pressure curve. Substances with the same value of the third parameter are thus mutually conformal. The validity of the insertion of a third parameter from statistical mechanical considerations has been established by Pople 104 and Cook and Rowlinson.

The correlations of Lydersen et al. and Pitzer et al. of PVT data have been used as the basis for generalized correlations of the isothermal effect of pressure on enthalpy. The total effect is considered to be the sum of two factors. The first factor gives the reduced enthalpy departure for a fluid with a standard value of the third correlating parameter and the second factor represents the influence of the deviation

of this correlating parameter from the standard value. The correlation of Lydersen, Greenkorn, and Hougen has the form

$$\frac{H(T,0) - H(T,P)}{T_{c}} = \left[\frac{H^{O} - H}{T_{c}}\right] + (z_{c} - 0.27) [D]$$
 (42)

where the bracketed terms are presented as generalized functions in tabular form by the authors. The conditions covered include $P_r \le 30$ for $0.5 \le T_r \le 15$. Yen and Alexander have published revisions of these functions in equation and graphical form. The data used to develop these revised correlations include enthalpy data at elevated pressures and extend the upper limit on T_r to 30. A recent further modification by Yen applies for $P_r \le 100$ for $0.4 \le T_r \le 60$.

The correlation of Curl and Pitzer is given in the form

$$\frac{\underline{H}(\underline{T},0) - \underline{H}(\underline{T},\underline{P})}{\underline{RT}_{c}} = \left[\frac{\underline{H}^{O} - \underline{H}}{\underline{RT}_{c}}\right]_{O} + \omega \left[\frac{\underline{H}^{O} - \underline{H}}{\underline{RT}_{c}}\right]_{1}$$
(43)

where the bracketed terms are somewhat different generalized functions presented in tabular form by the authors. These tables cover the range of pressures for $P_r \le 9$ for $0.8 \le T_r \le 4$. Revisions of the original correlations which incorporate enthalpy data at elevated pressures in addition to PVT data have been presented recently (Yarborough 147). The range of conditions include $P_h \le 10$ for $0.5 \le T_r \le 4$.

An approach for incorporation of the third parameter which is equivalent to the Curl-Pitzer method is used later in this investigation. This involves the use of two reference substances instead of the correction term. In this case the departure is represented as

$$\frac{\underline{\mathbf{H}}(\mathbf{T},0) - \underline{\mathbf{H}}(\mathbf{T},\mathbf{P})}{\mathbf{RT}_{\mathbf{c}}} = \left[\frac{\underline{\mathbf{H}}^{0} - \underline{\mathbf{H}}}{\mathbf{RT}_{\mathbf{c}}}\right]_{1} \mathbf{W}_{1} + \left[\frac{\underline{\mathbf{H}}^{0} - \underline{\mathbf{H}}}{\mathbf{RT}_{\mathbf{c}}}\right]_{2} \mathbf{W}_{2}$$
(44)

where

$$W_2 = 1 - W_1$$
 (45)

and the bracketed terms are actual reduced enthalpy functions of reduced temperature and reduced pressure for two substances which are not conformal. The normalized third parameter, W_1 , has a value of 1 for component one and 2 for component two. These factors weigh the reduced enthalpy departure for a substance according to its relative conformity to component one or component two. These weighing factors W_1 and W_2 can be related to another third parameter such as ω by

$$W_1 = \frac{\omega_2 - \omega}{\omega_2 - \omega_1} \tag{46}$$

$$W_2 = \frac{\omega - \omega_1}{\omega_2 - \omega_1} \tag{47}$$

where ω_1 and ω_2 are the values of ω for the two reference components. This latter approach was most convenient in this investigation, since accurate enthalpy data were available for two reference components, methane and propane. This will be discussed further in the section on extensions of methods of prediction.

Another approach used in the application of the corresponding states principle to non-conformal substances has been developed by Leach and Leland. Shape factors for a given species are introduced which adjust the reduced temperature and pressure to force the component to conform to a reference substance. Its main disadvantage is that it requires the addition of two more parameters even for components which differ only slightly from a reference substance.

In applying these correlations to mixtures it is assumed that the reduced functions for a mixture behave in the same manner as those for

a pure component. It is necessary to establish values of the three parameters for a mixture. The actual critical properties of a mixture are in general not used, since, as is shown in several texts such as Prigogine and Defay, the critical properties of a mixture do not have the same physical and thermodynamic significance as those for a pure component. Therefore, some kind of mixing rule must be developed which relates the mixture parameters to the parameters of the pure components. The study conducted by the American Petroleum Institute however, does recommend use of the true critical properties in the vicinity of the mixture critical. Since heat capacity is infinite for a pure component but not for a mixture at the critical, as is pointed out in later sections, it seems doubtful that a reduced enthalpy function developed from pure component data would, at the critical, represent the mixture at its critical.

Under certain conditions the generalization of the corresponding states principle to mixtures can be justified from theoretical considerations and mixing rules suggested. For molecules of equal size with a Lennard-Jones type potential function molecular pseudoparameters can be determined from pure component parameters. This development is given in numerous texts, e.g., Rowlinson. This approach uses a random mixing assumption which is not valid for molecules of different size.

Leland, Chappalear, and Gamson⁷³ use an approximate technique based on expansion of the distribution function to determine equations for pseudomolecular parameters. This technique is limited to mixtures of mutually conformal molecular species. However, little is known about the molecular properties of non-conformal mixtures and since the statistical mechanics equations for such systems are extremely complex there

is no fundamental basis for the application of mixing rules to such complex systems. Thus, empirical methods must be used for substantiation and application of the corresponding states principle for such mixtures.

A number of mixing rules have been developed for use in applying the corresponding states principle to mixtures. The simplest mixing rules used to define mixture pseudoparameters are those suggested by Kay⁶⁵ which combine the pure component properties in a linear fashion with regard to mole fraction

$$T_{cx} = \sum_{i} T_{ci} x_{i}$$
 (48)

$$P_{cx} = \sum_{i} P_{ci} x_{i}$$
 (49)

$$W_{x} = \sum_{i} W_{i}x_{i}$$
 (50)

Curl and Pitzer²⁴ recommend the rules of Pitzer and Hultgren. for their correlation. These rules add a third empirical interaction term for each parameter which is a function of the components in the mixture

$$T_{cx} = x_1 T_{c1} + x_2 T_{c2} + 2x_1 x_2 (2T_{c12} - T_{c1} - T_{c2})$$
 (51)

$$P_{cx} = x_1 P_{c1} + x_2 P_{c2} + 2x_1 x_2 (2P_{c12} - P_{c1} - P_{c2})$$
 (52)

$$\omega_{x} = x_{1}\omega_{1} + x_{2}\omega_{2} + 2x_{1}x_{2}(2\omega_{12} - \omega_{1} - \omega_{2})$$
 (53)

These rules produce pseudoparameters having deviations from Kay's rule which are symmetrical with respect to composition. A generalization of these rules can be made by increasing the number of constants in the equation in order to better represent mixture behavior. Such an approach

was used in this investigation and will be discussed more fully in a later section. The equations which were used are

$$T_{cx} = \sum_{i} x_{i} T_{ci} + x_{i} x_{j} [A' + (1 - 2x_{i}) B' + (1 - 2x_{i})^{2} C']$$
 (54)

$$P_{ex} = \sum_{i} x_{i} P_{ei} + x_{i} x_{j} [D' + (1 - 2x_{i}) E']$$
 (55)

and again

$$W_{x} = \sum_{i} x_{i} W_{i} + F' x_{i} x_{j}$$
 (56)

In addition there are several other mixing rules which have been proposed in the literature. The Joffe-Stewart, Burkhardt, $Voo^{60,61,136}$ equations are given as

$$T_{ex} = \frac{K^2}{J} \tag{57}$$

$$P_{CX} = \frac{T_{CX}}{T} \tag{58}$$

$$K^{2} = \frac{T_{cx}^{2}}{P_{cx}} = \begin{bmatrix} \frac{\sum_{i} y_{i} T_{ci}}{\frac{1}{2}} \\ \frac{1}{P_{ci}} \end{bmatrix}^{2}$$

$$(59)$$

$$J = \frac{T_{ex}}{P_{ex}} = \frac{1}{8} \sum_{i} \sum_{j} y_{i} y_{j} \left[\left(\frac{T_{ei}}{P_{ei}} \right)^{\frac{1}{3}} + \left(\frac{T_{ej}}{P_{ej}} \right)^{\frac{1}{3}} \right]^{3}$$

$$(60)$$

These rules were originally suggested by the mixing rules for the constants in the Van der Waals equation. Since the Van der Waals equation is a two parameter equation, the strict development is limited to mutually conformal substances. However, the rules can be applied to other mixtures by assuming a linear variation in the third parameter. The

rules due to Leland and Meuller 74 are given as

$$T_{ex} = \sqrt{\frac{\sum_{i} \sum_{j} x_{i} x_{j} \left(\frac{z_{c} T_{c}}{P_{c}}\right)_{i}^{\frac{1}{2}} \left(\frac{z_{c} T_{c}}{P_{c}}\right)_{j}^{\frac{1}{2}}} \left(\frac{z_{c} T_{c}}{P_{c}}\right)_{j}^{\frac{1}{2}}}$$

$$\sum_{i} \sum_{j} x_{i} x_{j} \left(\frac{1}{2} \left(\frac{z_{c} T_{c}}{P_{c}}\right)_{i}^{\frac{1}{3}} + \frac{1}{2} \left(\frac{z_{c} T_{c}}{P_{c}}\right)_{j}^{\frac{1}{3}}\right)^{\frac{1}{3}}$$
(61)

where α is a function of

$$\frac{T \sum_{i} x_{i} P_{ci}}{P \sum_{i} x_{i} T_{ci}}$$

and is tabulated by the authors. The equation for the pseudocritical pressure is given as

$$P_{ex} = \frac{T_{ex} \sum_{i} x_{i} z_{ei}}{\sum_{i} \sum_{j} x_{i} x_{j} \left[\frac{1}{2} \left(\frac{z_{e}^{T} c}{P_{e}} \right)_{i}^{\frac{1}{3}} + \frac{1}{2} \left(\frac{z_{e}^{T} c}{P_{e}} \right)_{j}^{\frac{1}{3}} \right]}$$
(62)

These rules are obtained by equating terms of a second virial coef-ficient expression for mixtures with those of a pure component and making appropriate simplifying assumptions. Again, since the development was limited to mutually conformal substances the third parameter $z_{\rm cx}$ is given as

$$z_{ex} = \sum_{i} x_{i} z_{ei}$$
 (63)

The mixing rules of Prausnitz and Gunn are also suggested from relations for the second virial coefficient of conformal substances.

These rules are given by

$$T_{cx} = \frac{\beta + \sqrt{\beta^2 + r\underline{V}_{cx}^{\gamma}}}{2s\underline{V}_{cx}}$$
 (64)

$$\underline{\mathbf{v}}_{\mathbf{cx}} = \sum_{\mathbf{j}} \sum_{\mathbf{j}} \mathbf{y}_{\mathbf{j}} \mathbf{v}_{\mathbf{j}} \underline{\mathbf{v}}_{\mathbf{cij}}$$
 (65)

$$P_{ex} = \frac{RT_{ex}^{2}}{V_{ex}} \sum_{i} y_{i} z_{ei}$$
 (66)

$$\omega_{\mathbf{x}} = \sum_{\hat{\mathbf{i}}} y_{\hat{\mathbf{i}}} \omega_{\hat{\mathbf{i}}} \tag{67}$$

The z can be obtained from

$$z_{c} = 0.291 - 0.08 \omega$$
 (68)

The quantities β and γ are computed

$$\beta = \sum_{i,j} y_i y_j (T_e \ \underline{V} \ e)_{ij}$$
 (69)

$$\gamma = \sum_{i,j} y_{i} y_{j} (\underline{v}_{c} \underline{v}_{c}^{2})_{ij}$$
 (70)

where

$$T_{\text{cij}} = (T_{\text{ci}} T_{\text{cj}})^{\frac{1}{2}} - \Delta T_{\text{cij}}$$
(71)

$$\underline{V}_{\text{cij}} = \frac{1}{2} \left(\underline{V}_{\text{ci}} + \underline{V}_{\text{cj}} \right) - \underline{\Delta V}_{\text{cij}}$$
 (72)

where the Δ terms are small correction terms depending upon individual

mixtures. Finally the quantities r and s are functions of \textbf{T}_r and ω tabulated by the authors. Prausnitz and Gunn also recommend a simplified rule

$$\omega_{x} = \sum_{i} y_{i} \omega_{i} \tag{73}$$

$$T_{ex} = \sum_{i} y_{i} T_{ei}$$
 (74)

$$P_{ex} = \frac{RT_{ex}}{\sum_{i} y_{i} V_{ei}} \sum_{i} y_{i} z_{ei}$$
 (75)

where again z_{ci} is given by Equation (68).

Finally, Reid and Leland 113 have obtained molecular mixing rules from the general expressions developed by Leland, Chappalear, and Gamson 73 for mutually conformal mixtures. Molecular rules can be obtained which are equivalent to the equations of Joffe-Stewart, Buikhardt, and Voo, 136 Leland and Mueller, 4 and Prausnitz and Gunn, 06 depending on the assumptions used for approximating higher order terms.

SECTION III - THE MODIFIED FLOW SYSTEM

The flow calorimetry facility as described by Mather, 80 Manker. and Jones 62 was capable of making accurate determinations of the effect of pressure and temperature on the enthalpy of pure gases and mixtures behaving as fixed gases in the liquid two-phase, critical, and gaseous states. As originally developed by Faulkner 40 and Jones it was capable of measuring the isobaric effect of temperature on the enthalpy of pure fluids under pressure. It could operate between temperatures of -250 and +50°F and at pressures between 250 and 2000 psia. Such a system as described by Jones 62 required in addition to the calorimeter itself, a series of baths to obtain constant temperature in the calorimeter, a compressor to enable recycle at a steady flow, a flow metering section, numerous buffer tanks to maintain stable pressures, storage tanks to enable adjustment of operating pressure, metering valves, and a host of accurate measuring devices. Thus, the calorimeter was only a small part of a large and complex system. When modifying the system to enable measurements on mixtures behaving as fixed gases Manker 80 and Mage ' found that a major problem was preventing fractionation and other sources of composition upsets throughout the system. In addition in order to complete a pressure-temperature-enthalpy network for any pure or mixed system it was necessary to determine the isothermal effect of temperature on enthalpy. Thus, Mather 85 incorporated a throttling calorimeter into the system. In addition Mather increased the maximum operating temperature to +300°F.

The next step in the process was to obtain measurements on more complex systems other than pure or mixed fixed gases. Since data were

available for mixtures of methane-rich methane and propane and, in addition, this system is of great practical interest, the completion of the methane-propane system was a logical direction in which to proceed.

This required making measurements on pure propane as well as several mixtures of methane-propane.

The phase behavior of the methane-propane system is shown in Figure 1. It can be noted that at room temperature mixtures which are greater than 30 mole percent propane are in the two-phase region over quite a range of pressures. The desired measurement pressures are between 250 and 2000 psia and the operating pressures would thus be between 95 and 2500 psia. Much of the original system (tanks, compressor, throttling valves) was at room temperature. Therefore, it would be impossible to maintain a constant composition for mixtures which were heavy in propane in this facility. In addition for mixtures with large propane content the temperature range covered by the two-phase region at pressures below 1000 psia is as large or larger than 200°F. That is complete vaporization of a liquid at constant pressure requires at least a 200°F temperature rise. It would be very desirable to obtain isobaric enthalpy data over the complete temperature range between -250 and +300°F including the two-phase region at specified pressures. The system as decribed by Mather could not be used to obtain data all of the way across the two-phase region for mixtures with large propane content. The available energy from the power supply was not great enough at lowest flow rates to vaporize as well as heat a mixture 200°F. Also, flow and composition instabilities would not allow the fluid to enter the calorimeter in the two-phase region. Finally even with pure propane where composition fluctuations are no problem there would still

Figure 1. Vapor-Liquid Equilibrium Envelope of the Methane-Propane System

be problems of flow and pressure instabilities caused by operating the system with the fluid in the dense gas or liquid state. In addition the gas compressor could not be used to pump propane without modification.

It was therefore necessary to modify the original system in light of the above considerations. Basically the main modifications consisted of placing all parts of the system which could be in the two-phase region in a high temperature environment, with the exception of the calorimeter bath section itself since it was desirable to obtain data at temperatures as low as -250°F. The calorimeter bath section consisted of a series of cooling coils and baths arranged so that the flow was always downward since in this section two-phase flow would occur. The baths bring the fluid to the desired temperature where it enters the calorimeter. Thus the high temperature environment would eliminate composition and pressure instability. The downward flow in the baths would in addition to removing instabilities allow for measurements with the fluid entering the calorimeter in the two-phase region.

The final result would be the creation of a facility capable of accurately measuring enthalpies of mixtures as heavy as propane and as light as any fixed gas over a wide range of temperature and pressure. Accurate data of this type for mixtures over a wide range of conditions, where one component is a fixed gas and the other a heavier component, are at present almost entirely nonexistant in the literature.

Description of Equipment

The modified recirculating system capable of operating with propane as the test fluid and incorporating both isobaric and throttling calorimeters for direct experimental determinations of the effects of both temperature and pressure on enthalpy is illustrated in Figure 2.

Important features of the facility are described below.

A Corblin A2CCV50-250 two stage-diaphragm compressor is used to provide recycle capabilities. Either water or steam can be used to cool or heat the heads ensuring that only a gas phase is compressed. Additional heating can be applied to the gas leaving the high pressure stages as well as between stages. The compressor is located in a transite enclosed area on the floor above the laboratory. The compressed fluid flows through two large bombs situated in an insulated metal box heated to 250°F. The first bomb contains glass wool with a layer of copper filings in the center. The glass wool is used to trap any oil which may have leaked into the system from the compressor. The copper filings are used to remove any oxygen in the system as copper oxide. Before installation of the copper filings, particles of copper oxide would form in the calorimeter bath coils and eventually plug up the calorimeters. The second bomb is filled with dehydrite and is used to remove any water from the system. When operating the calorimeter at low temperatures water in the bath coils would freeze and plug up the coils.

The compressor is operated at a constant volume rate of 4 SCFM and a bypass line is provided to permit variation in flow rate through the calorimeter. The fluid passes in a heated line from the bomb box to the valve panel which is also located in an insulated box. The fluid is heated by a heating tape and throttled by a metering valve to approximately the calorimeter inlet pressure. Although the fluid is located in a heated box the auxiliary heater is needed to prevent condensation

Figure 2. Flow Diagram of Modified Recycle System

caused by the cooling effect on throttling. The fluid then enters a high pressure manifold in the valve panel. The fluid which is bypassed is first heated with a heating tape and then throttled by a metering valve to the compressor suction pressure. This gas is then recycled. A bank of five storage tanks located in another heated box is provided to allow operation of the calorimeter at various pressures up to 2000 psia. Figure 3 is a photograph of this box with the cover removed.

The calorimeter high pressure buffer tank is located in the controlled temperature box with the storage tanks. The fluid entering the calorimeter section first passes through this buffer tank and then goes through a micron filter at the entrance to the calorimeter section. Should temperatures get too high in the heated section and decomposition occurs this filter acts to prevent any decomposition products from entering the calorimeter section.

The fluid at elevated temperature enters the calorimeter section at a height of about eleven feet above the floor level. As condensation and/or boiling may occur within the calorimeter section every effort has been made to reduce holdup in this section and to arrange piping such that flow of fluid is downward throughout this section.

A water cooling coil is used when operating a calorimeter below room temperature and may be bypassed.

A dry ice bath provides a convenient means of reducing the temperature of the recycle gas to about -100°F when operating a calorimeter at low temperatures. This bath contains 175 feet of 3/16" O.D. copper tubing. The bath is constructed of stainless steel and is contained in a wooden box with a layer of Styrofoam insulation between the bath and the wood.

View of Storage Tanks with the Front of the Insulated Box Removed Figure 3.

The heat exchanger bath is designed to bring the temperature of the fluid close to that of the calorimeter bath. In this bath the fluid passes through 325 feet of 3/16" O.D. copper tubing. Cooling is provided by use of liquid nitrogen at low temperature and compressed air at elevated temperatures. The bath is well stirred and the temperature is controlled to within ± 0.5 °F by a Bailey electronic controller driving a 50 watt immersion knife heater.

The fluid from the heat exchanger bath passes through 100 feet of 3/16" O.D. copper tubing in the calorimeter bath before entering either the isobaric or throttling calorimeter. Four packless valves with stainless steel bellows (Hoke TY-445) located within the bath make it possible to operate either calorimeter with only minor adjustments. The calorimeter bath is well stirred and a Honeywell proportional-reset controller is used to obtain stable temperatures within $\pm 0.1^{\circ}F$. A photograph of the outside of this bath is shown in Figure 4. The hot oil bath at the exit of the calorimeter bath serves the purpose of ensuring that the fluid leaves the calorimeter section as a single phase. The temperature of this bath is controlled to within $\pm 2^{\circ}F$ by a Fenwal controller driving a coil immersion heater. When operating at low temperatures additional immersion heaters are used to supply a sufficient heat input in order to vaporize all of the flowing fluid.

After leaving the calorimeter section the fluid returns to the valve panel where it is heated by a heating tape and throttled to approximately 80 psig, the flow meter pressure. The fluid next passes through a second glass wool bomb just outside of the flowmeter bath and then is brought to 27°C, ±0.02°C in the water filled flowmeter bath. The temperature is controlled by a mercury contact switch and a Fisher relay. The

Figure 4. View of Calorimeter Bath Area

flowmeter is further isolated from the rest of the system by two micron filers. After leaving the flowmeter the fluid passes through several buffer tanks and is recycled back to the compressor to maintain a steady flow.

The heat exchanger bath and calorimeter bath are both contained in the same wooden structure. The baths were designed to operate at temperatures up to 300°F. Both are of double wall stainless steel construction in order to provide a vacuum jacket. They are each seated on 16 inch diameter transite pipe and are covered with a 1 inch layer of glass wool insulation. The wooden framework is filled with styrofoam insulation providing at least 5 inches around each bath. In addition when assembling several inches of urethane foam was formed between each bath and the styrofoam. This provides adequate insulation at bath temperatures in the range from -250 to about +275°F. Three bath fluids are used depending upon the bath temperature. Between -250 and -50°F isopentane is used, between -50 and +125°F kerosene and above +125°F industrial oil. To ensure adequate mixing at any condition a variable speed Lighnin' mixer is used for stirring.

With operation of much of the system at temperatures as high as 300°F it was found that propane or one of the trace components was decomposing and leaving a brownish black residue in the system. Since the flowmeter is the element in the system most affected by fouling, it was necessary to isolate that part from the rest of the system. In addition oil soluble in compressed propane could condense at the low flowmeter pressure. Thus the glass wool bomb was required right before the flowmeter bath. In case of backflow during startup and shutdown the low pressure buffer could act as a knockout for oil. In addition a

sight glass was incorporated right before entry into the flowmeter bath so that oil could be visually detected if present. Finally the two filters, one before and one after the flowmeter, were required to eliminate solid matter which passed through the bombs.

After leaving the flowmeter buffer the fluid passes through the compressor inlet buffer located in the laboratory. When the revised system was first tested with the compressor located on the floor above the laboratory, the compressor was connected to this inlet buffer by a long 1/2" O.D. stainless steel piece of tubing. Operating under these conditions the compressor suction pressure would drop to a very low level during the intake stage, and the compressor discharge pressure would not build up. That is the compressor did not have an ample enough supply of fluid to accept during the intake stage for it to operate in a satisfactory fashion. The 1/2 inch line was, therefore, replaced with a 3/4" O.D. line and a small suction bomb was placed upstairs, located physically near the compressor. After these modifications the compressor discharge would build up significantly and the gas could be compressed at a reasonable rate, however, a regulating valve was located between this second buffer tank and the compressor in order to eliminate large oscillations of pressure in the flowmeter section.

A low vacuum in the calorimeters is obtained by use of a Hyvac 7 vacuum pump in series with an oil diffusion pump and a liquid nitrogen cold trap. The vacuum jacket of either or both calorimeters could be connected to the vacuum system by opening or closing two Veeco vacuum valves. Duplicate vacuum measurements can be made with both an ionization vacuum gauge and a McLeod gauge.

Pressure must be transmitted from the calorimeter to the pressure

measuring devices. The 1/8 inch taps for each calorimeter come out of the calorimeter bath containing the test fluid. All four lines are connected to shutoff valves after which the two high pressure taps and the two low pressure taps are combined. The two lines then enter a heated conduit and above the baths the conduit and lines are teed. One heated conduit and one set of lines go to a Meriam high pressure mercury manometer. This manometer is located in a heated box and is used to measure the small pressure drops occuring in the isobaric calorimeter. The second conduit and the second set of lines lead to a heated valve manifold. The high pressure tap passes through the manifold and into the gas leg of a Ruska diaphragm pressure null detector. The low pressure line passes through a mercury knockout bomb located in the heated box and into one leg of a mercury U-leg. The leg extends below the box and is insulated along the part which normally contains the system fluid. U-leg is used to transmit pressure from fluid to oil. The mercury in both legs is kept at the same level by addition or removal of oil. The mercury levels are detected by a series of iron electrical contact wires on both sides of the leg.

In addition, since the temperature of many parts of the system can be a critical factor in obtaining accurate data, it was necessary to install many thermocouples into the system. For example, when a fluid is throttled additional heat from a heating tape is generally required. There is normally one thermocouple located before the fluid is heated, one after the fluid is heated to ensure that the fluid temperature has not become too hot, and one after the fluid is throttled to ensure that the fluid is not too cold and therefore fractionating.

In such a system operating over a wide range of temperature and

pressure leaks become a severe source of trouble. In order to minimize this problem heliarc welds were used to connect joints wherever possible. Valves, however, were connected into the system with standard high pressure connectors so that they could be readily removed in case of failure. As an example the valve panel was heliarced together to eliminate 38 trouble spots. A photograph of the valve panel is given in Figure 5. The photograph illustrates the high and low pressure manifolds which are heliarced together, numerous thermocouples and the neat valve arrangement. The various U-bends which are seen are wrapped with heating tapes and are located in the system right before a throttling operation. Figure 6 shows the valve panel with cover on and again illustrates the neat valve arrangement. Figure 7 shows an overall view of the control panel area of the laboratory.

The flowmeter calibration system is similar to that described by Jones 62 with several modifications necessary for running with propane and propane rich mixtures. The fluid to be collected is taken from one of several of the storage tanks and is throttled to flowmeter pressure in a special Tescom pressure regulator inside the heated valve panel box. The Tescom is a precision single stage regulator with a special viton diaphragm for withstanding the elevated temperature. Due to the temperature coefficient of pressure on the regulator and the severe effect of throttling propane near the critical point it is necessary to reach a steady state condition in the regulator before calibrating. This is accomplished by flowing through the regulator and flowmeter at approximately the desired flow rate for a short period before actually beginning the calibration. This produces a much more stable pressure and flow

Figure 5. Valve Panel with the Front of Insulated Box Removed

Figure 6. View of Insulated Valve Panel

Figure 7. Control Area of Modified Flow System

rate of fluid through the flowmeter. The flow rate and pressure in the flowmeter are regulated by this pressure regulator, and the fluid passes through the meter and is collected in aluminum bombs as described by Jones.

Calorimeters

The isobaric calorimeter used in this investigation is the one used by Faulkner 40 and Jones 62 with several minor modifications. The throttling calorimeter is that used by Mather 85 modified to allow for Joule-Thomson measurements in the compressed liquid region.

In the isobaric calorimeter new six-junction copper-constantan thermocouples replaced the ones used by Manker and Mather. The width of the inlet thermowell was increased to allow for removing and inserting the duplicate thermocouples more readily without damage. The lead wires to the nicrome heating wire in the calorimeter capsule was insulated with teflon to permit higher temperature operation without shorting. The previous vacuum electrical seals were replaced with Cervac vacuum electrical seals to facilitate removing the calorimeter and to prevent leakage. The vacuum line from the calorimeter was replaced with a one piece construction line to eliminate the possibility of leaks.

For the isothermal calorimeter the stainless steel 0-ring and mylar sheets used for a high pressure seal were replaced with a teflon coated stainless steel 0-ring. Several additional capillary coils were made for the calorimeter to enable measurement over a larger range of mixture compositions and temperatures at reasonable flow rates.

To operate the throttling calorimeter in the liquid region where throttling causes a temperature rise the radiation shield was wound

with a nicrome heating wire in order to act as a guard heater. In addition a thermocouple was added between the guard heater and the outlet line to measure the temperature difference between the calorimeter body and the radiation shield.

Measuring Instruments

A detailed description of the measuring instruments has been given by Jones 62 as modified by Manker 80 and Mather. Changes made from the above works and important features are listed below.

- (1) The inlet temperature to the calorimeter is assumed to be equal to the temperature of the calorimeter bath which is measured using a platinum resistance thermometer. The calibration constants are given by Jones. The thermometer was checked at the ice point and found to agree with the original calibration to ±0.1°C.
- (2) The temperature rise in each calorimeter is measured by duplicate six-junction copper constantan thermocouples. These were calibrated at the oxygen and nitrogen points and compared with a platinum resistance thermometer at 20°C intervals by the National Bureau of Standards. These thermocouples are calibrated from -196 to +150°C and the calibration data are given in Tables XLII through XLV of Appendix A. The accuracy of the temperature rise measurement is about ±0.05 percent.
- (3) The electrical energy input to the calorimeter is supplied by a regulated DC power supply. The energy input is measured by a K-3 potentiometer using standard resistors to scale the voltage to the range of the Potentiometer. This measurement circuit is described below. The accuracy of the electrical energy determination is ± 0.05 percent.
- (4) The mass flow rate of gas is determined by the measurement of pressure drop by a 10 inch precision water manometer across a Meriam

laminar flow element together with the temperature and pressure of the element. These data are used to obtain the mass flow rate, F, from the equation

$$\frac{\rho \triangle P}{F\mu^{\dagger}} = B + A \left(\frac{F}{\mu^{\dagger}}\right) + C \left(\frac{F}{\mu^{\dagger}}\right)^{2} + D \left(\frac{F}{\mu^{\dagger}}\right)^{3}$$
 (76)

The calibration constants A, B, C, D are obtained by a least squares fit of the calibration data. As indicated by Equation (76) small density, ρ , and viscosity, μ ', corrections must be applied for minor variations in flowmeter conditions. In this investigation the results of Giddings 44,45 were used to correct for viscosity and the density data of Reamer, Sage, and Lacey and the BWR equation used for the density correction. The accuracy of the mass flow rate determination is about ±0.2 percent.

- (5) The pressure at the inlet of the calorimeter is measured with a calibrated Mansfield and Green dead weight gauge. The calibration data for this gauge are given by Mather, and it is accurate to 0.03 percent. The pressure is checked with a calibrated Heise gauge during measurements. The accuracy of the gauge is 1 percent of full scale. In addition the dead weight gauge is occasionally checked with the differential dead weight gauge of Roebuck. The pressure is transmitted from the calorimeter fluid to the oil in the pressure measurement system by means of a Ruska differential pressure indicator.
- (6) The pressure drop across the isobaric calorimeter is measured with a 40 inch high pressure mercury manometer. The manometer is located in a special heated box to prevent condensation and fractionation within it. The pressure measurement is accurate to ± 0.1 inch of mercury pressure drop.
 - (7) The pressure drop across the throttling calorimeter is measured

over the differential dead weight balance due to Roebuck 116 and modified by Mather. The inlet pressure, as already mentioned, is transmitted to the oil in the pressure measurement system by means of a Ruska differential pressure indicator. The outlet pressure is transmitted by a 36 inch mercury U-leg. The level of mercury in the U-leg is sensed by iron electrical probes sealed into each leg.

It was found that the Viton O-ring dynamic pressure seal used by Mather 85 for the Roebuck differential pressure balance would become defective after a short period of time. The Viton was extruded by the motion of the piston and eventually the seal would blow and oil would burst out into the laboratory. The seal was replaced with a teflon O-ring and backup ring set-up which worked satisfactorily. The sensitivity of the Roebuck pressure balance at higher pressures with the new seal is about 1 psia. This limits the lower pressure drop measurements to an accuracy of 1 percent.

Electrical Measurement

The electrical measurement system for the isobaric calorimeters has been described by Jones. The electrical system for the isothermal calorimeter is essentially the same as that used for the isobaric calorimeter. In fact both calorimeters have been connected to the same measuring system where a series of switches can connect either one or the other. The fact that the isothermal calorimeter heater is grounded forced some modifications to prevent ground loops.

Measurements of power input, temperature, and temperature difference are obtained from voltages recorded with a K-3 potentiometer. The power measurement circuit used to eliminate the possibility of more than one ground is shown in Figure 8.

Figure 8. Wiring Diagram of Power Measurement Circuit

When operating the isobaric calorimeter (the one used most frequently) double pole double throw switch SI is connected to the positive side of the measurement and power leads of the isobaric calorimeter. Each calorimeter heater can be connected from the electrical system to the heater leads in the vacuum jacket by an electrical vacuum connector. During operation of the isobaric calorimeter the plug for the isobaric calorimeter is connected and the plug for the throttling calorimeter must be disconnected. Switch S2, which can be grounded, is open. Readings are then made for current (related to E1) and voltage (related to E3). At the same time readings are made of the voltages across the thermocouples and the current through and voltage across the platinum resistance thermometer (see Jones 62). The low side of the K-3 potentiometer is the only point of the circuit that is grounded.

When the isothermal calorimeter is in operation Sl is connected to the positive side of the isothermal calorimeter heater. The isothermal calorimeter connector is connected and the isobaric vacuum connector may or may not be connected. Switch S2 is closed and the current through the heating wire passes through ground. When reading El and E3, the ground on the low side of the K-3 potentiometer must be disconnected in order to prevent a ground loop. Such a loop creates an error of as large as 20 percent in the power measurement. When making the other readings with the potentiometer the ground is again connected.

Procedure

In obtaining data, inlet conditions of temperature and pressure are established and flow rate and power input are adjusted to desired values. Readings are taken and adjustments made as necessary until the condition of steady state operation is obtained and maintained for at least 15

minutes. A single determination generally lasts from one to two hours depending on the magnitude of the changes made between determinations.

After modifying the recycle flow facility the first system investigated was propane for several reasons. First of all it would permit testing the facility with the heaviest system that could possible be investigated. Thus, if propane could be investigated any system with a lower critical temperature could also. Secondly, it would allow checks of the results obtained by the new system with data in the literature. Finally, data could be obtained for propane in regions where at present they are nonexistant. Thus, the final result would be to obtain an accurate knowledge of the enthalpy of propane over a wide region of temperature and pressure. The data obtained would hopefully be used as a standard for investigations in the future.

Regions of Measurements

The range of experimental determinations is indicated on a PT diagram in Figure 9. In the single phase region isobaric measurements were usually made in groups of four runs each having the same inlet temperature rises of approximately 10, 20, 40, and 80°F. In regions where C p varied significantly with temperature (such as near the critical point) much smaller temperature rises were investigated (as small as 1°F). Isobaric determinations across the two-phase region included determinations of the heat capacities of both liquid and vapor at temperatures respectively below and above the saturation temperatures. These runs are indicated by asterisks on Figure 9. The number of isobars was reduced at low temperatures because it was found that C did not vary appreciably with pressure in this region and values of C are available below

Temperatures and Pressures of Measurement for Propane Figure 9.

atmospheric pressure for the saturated liquid.

Isothermal determinations were made mainly in the single-phase region. One isothermal enthalpy change on vaporization was obtained. Pressure drops between 100 and 500 psia were used.

Isenthalpic determinations were made at conditions of constant inlet temperature for different inlet pressures. In general, pressure drops of approximately 300, 600, and 900-1000 psia were used at two different inlet pressures.

The isobaric results for individual runs in the single- and twophase region are given in Table XLVI of Appendix B. The basic isothermal and Joule-Thomson data are given in Tables XLVII and XLVIII of
Appendix B, respectively.

Composition of Gas

Phillips Instrument Grade propane was used. This material contained approximately 1/4 percent impurities as determined by mass spectrometer analysis and reported in Table I.

TABLE I

IMPURITY CONTENT OF PROPANE

	Mass Spectrometer
Nitrogen	0.15%
Oxygen	0.04%
Methane	0.02%
Ethane	0.03%
Propylene	0.01%
Propane (by difference)	99.75%
	100.00%

Flowmeter Calibrations

Seven sets of flowmeter calibration runs (usually ten determinations to a run) were made during the course of this investigation of propane. In contrast to previous experience with other pure components and with mixtures ^{5,9,11,13} the calibration function was decidedly nonlinear with marked curvature in the middle of the operating range as shown in Figure 10. Therefore, one set of constants in Equation (76) was used to represent the calibration data at low-flow rates (0.1 to 0.25 lb/min) and another for higher flows (0.25 to 0.4 lb/min).

Data from the calibration runs were correlated in three groups. The results of the first two runs were in excellent agreement. These were fit with the lower curve in Figure 10. A third set showed deviations of as much as 1 percent from this pair at high flow rates (the upper curve on Figure 10). After cil was found in the flowmeter, the glass wool bomb described in the previous section was installed. The flowmeter was deaned ultrasonically, and subsequently, four sets of calibration runs were made which yielded results in excellent agreement. These sets are fit by the middle line in Figure 10.

A single correlating equation represents the data from these four runs in the high flow region with an average deviation of ±0.17 percent. Another equation serves to correlate the data at low flows with an average deviation of ±0.22 percent. In processing the data some improvement in precision was obtained by using correlating equations based on the two sets of calibration data obtained preceding and following a run when the calibration did not change. When the calibration changed, repeat runs were made to determine which calibration equation would most adequately represent the flow rate at the time of an experimental run.

Figure 10. Results of Flowmeter Calibrations for Propane

TABLE II

Calibration Data Used in
Interpreting Experimental Results

Experimental Runs	Calibration Runs	Number of Calibration Points	Average Deviation
1-7	10,20	High: 14 Low: 7	0.14% 0.01%
8-10	30	High: 6 Low: 6	0.10% 0.06%
11-20	40,50	High: 15 Low: 12	0.14% 0.14%
21-31	50,60	High: 15 Low: 12	0.07% 0.11%
32-47 1R-7R	60,70	High: 16 Low: 12	0.17% 0.17%

TABLE III

Illustration of Consistency of Calibration
Equations for High and Low Flow Rates
at Intermediate Flow Rates

	Flow lb/r	Rate nin	Mean Heat Capacity Btu/lb °F		
Run	Cali	ibration Equati	on Used		
	Low	High	Low	High	
20.010	0.29304	.0.29276	1.4773	1.4787	
20.020	0.29367	0.29336	1.2323	1.2335	
20.030	0.29278	0.29251	0.9889	0.9898	

A summary of the calibration equations which were used to interpret specefic data is presented in Table II, together with values of the total number of points included in the calibration sets and the standard deviation of each set from the calibration equation. The high and low flow rate correlating equations appear to give reasonable results in the region of overlap. For example, Run 20 was obtained in the middle of the flow rate region and both correlating equations were used to calculate the flow rate. Table III shows the small effect (0.1 percent) of calculating flow rates by either equation for this run. All of the sets of calibration constants of Equation (76) used to interpret experimental data are presented in Table XLIX of Appendix B.

Results

Enthalpy Change on Vaporization

Isobaric determinations were made across the two-phase region at 250, 400, and 500 psia as indicated by asterisks on the vapor pressure curve of Figure 9. Results from the run at 500 psia are presented on Figure 11. Note that the transition is not isothermal because of the presence of impurities. (See Table I.) This factor was taken into account by extending the horizontal portion of the curve to intersect with an extension of the liquid phase curve to determine the equivalent initiation of vaporization. Estimation of the point of complete vaporization was complicated by the fact that some scattering of points in the vapor region resulted bacause relatively high rates of electrical energy input were required to span the two-phase region and as a result very small changes in the flow rate caused very large changes in temperature. The data in the vapor region (difference values) were used together

Figure 11. Enthalpy Differences for Propane in the Two-Phase Region

with other runs made entirely in the vapor region to estimate $C_p = f(T)$ for the vapor near the saturation line. A linear relation served to represent the data and upon integration yielded the curve drawn on Figure 11. The resulting value for the latent heat of vaporization is listed in Table IV together with experimental values at 250 and 400 psia.

TABLE IV

EXPERIMENTAL VALUES OF LATENT HEATS
OF VAPORIZATION OF PROPANE

		Btu/lb				
			Other Inv	estigators		
Pressure psia	This Work	Helgeson & Sage (51)	Kuloor et al. (69)	Sage, Evans, & Lacey (124)	Dana <u>et</u> al. (26)	
250	122.60	122.35 ^b	123.82 ^a	124.25 ^b	127.87 ^c	
400	93.07	94.5 ^b	93.20 ^a	98.0 ^b		
500	70.45	71.7°	67.56 ^a	80.5°		
588	44.9 ⁺¹	42.3 ^d	35.63 ^a			

a Calculated from equation fit to experimentar data published prior to 1965.

Isobaric Data

Typical isobaric data in the single phase region are presented in Figure 12. Mean values of ${\tt C}_p$ determined both from the direct measurements (solid horizontal lines) and by differencing experimental data (dashed horizontal lines) are plotted versus temperature.

A curve is constructed to determine point values of $C_p = f(T)$ as indicated by the solid curved line. In regions where the heat capacity does not vary greatly with temperature Equations (18) and (23) are used to obtain the point values of heat capacity and enthalpy with the aid

b Interpolated based on plot of experimental values.

c Extrapolation based on vapor pressure data.

d Calculated from equation given by authors.

Figure 12. Isobaric Heat Capacity for Propane at 1000 psia in the Upper Temperature Range

of a digital computer. The smooth curve is obtained by fitting the calculated point values of the heat capacity. Where C is a strong function of temperature the fit of Equation (18) and (23) of eight data points becomes quite poor. In this region the graphical technique using Equation (10) is used. Also extrapolation to temperatures, above and below the region of data, is done graphically.

A distinct maximum in C_p of 1.47 Btu/lb-°F was located at 257°F for this isobar. Data at lower temperatures showed less dependence of temperature on heat capacity (see Table VI). Maximum values of C_p were determined at several pressures above the critical. The results are summarized in Table V.

Pressure psia	Temperature at Maximum, °F	Maximum Value of C Btu/lb-°F p
617	206	→ 60
700	219	5.4
1000	257	1.47
1200	284	1.18

An isobaric run was made at the critical pressure, 617 psia. The results are presented in Figure 13. A very large value of C_p (>60 Btu/lb-°F) was determined. From these data, it was determined that the maximum value of C_p occurred at a temperature of 206.3 \pm 0.3°F. This is in good agreement with the accepted value of 206.3°F as the critical temperature.

As can be seen by Figure 14, there is a strong variation in the heat capacity with respect to temperature at pressures below the critical

Figure 13. Isobaric Heat Capacity in the Critical Region at the Critical Pressure for Propane

Figure 14. Isobaric Heat Capacity at 500 psia in the Gaseous Region for Propane.

Figure 15. Isobaric Heat Capacity for Propane

also. At 500 psia the heat capacity of the liquid as well as the gas changes by a factor of 2 in the region near the saturation point.

A table of C_p values is presented in Table VI. Interpolated values are indicated underlined. Additional experimental values of the isobaric heat capacity, C_p , determined from data obtained in regions of rapid change with respect to temperature are presented in Table VII. Figure 15 summarizes all of the experimental values of isobaric heat capacity for propane.

Isothermal Data

Typical isothermal data are presented in Figure 16. Average values of $\phi_m = (\Delta H/\Delta P)_T$ are plotted as horizontal lines and the graphical equal area method was used to determine point values of ϕ = f(P) as illustrated by the solid curve. This was necessary because of the large variations in ϕ with pressure. In extrapolating the results of the experimental investigation to zero pressure it was necessary to use Equation (32) for ϕ^0 in terms of the second virial coefficient. Values of ϕ^0 were calculated from the virial coefficients given by Diaz-Pena and Cervena, and Huff and Reed. Both results are plotted on Figure 16. In addition the value of ϕ^0 obtained from the BWR equation of state using the original constants for propane is also plotted. There are significant differences in the results (±7 percent) and heavy reliance was placed on the value of Diaz-Pena since it was the intermediate value.

A table of ϕ values for all of the experimental isotherms is presented as Table VIII. These results are summarized in Figure 17. One isothermal run was made through the two-phase region at 201°F (see Figure 22). The estimate of the heat of vaporization at this temperature (588 psia) is listed in Table IV.

Table VI

Experimental Values of Isobaric Heat Capacity, C_p , for Propane (Btu/lb - °F)

(Pressure psia)

Temperatu	re					
Temperatu °F	p a	250	500	1000	1500	2000
- 250	0.4651	0.465	0.466	0.466	<u>0.467</u>	0.467
- 225	0.4697	<u>0.470</u>	0.470	0.470	0.471	0.472
- 200	0.4751	0.475	0.475	0.475	<u>0.476</u>	0.477
- 175	0.4812	<u>0.480</u>	0.480	0.480	<u>0.481</u>	0.483
- 150	0.4878	<u>0.487</u>	0.486	0.485	0.487	0.489
- 125	0.4962	0.495	0.493	0.492	0.493	0.494
-100	0.5060	0.505	0.503	0.502	0.501	0.501
- 75	0.5173	0.517	0.516	0.514	0.513	0.511
- 50	0.5307	0.530	0.529	0.526	0.524	0.522
- 25		0.546	0.543	0.540	0.537	0.535
0		0.564	0.561	0.557	0.553	0.549
+25		0.585	0.583	0.576	0.570	0.568
+50		0.611	0.608	0.597	0.588	0.581
+75		0.645	0.637	0.619	0.607	0.597
+100	1_	0.696	0.673	0.644	0.631	0.617
+125	(p°) ^b	0.755(1)	0.754	0.677	0.657	0.640
+150	0.4434	0.552(g)	0.815	0.722	0.684	0.664
+175	0.4590	0.542	0.987(1)	0.780	0.715	0.687
+200	0.4744	0.536	0.854(g)	0.863	0.755	0.713
+225	0.4898	0.540	0.711	1.026	0.807	0.743
+250	0.5050	0.553	0.662	1.45	0.867	0.792
+275	0.5199	0.569	0.634	1.250	0.928	
+300	0.5343		0.618	0.956	0.963	

a Values for saturated liquid at p < 15 psia from Kemp and Egan (66).

b Values for ideal gas at zero pressure (118).

Pressure (psia)				Tempe	rature	(°F)				
	100	105	110	115	119.9 (1)	122.4 (g)	125	130	135	140
250				C _P	(Btu/lb	°F)				
290	0.696	.7047	.7159	-r- .7290	.7424	•5794	.5756	.5684	.5629	.5586
				Tempe	rature	(°F)				
	160	161.1 (1)	163.5 (g)	165	170	175	180	190	200	220
400				<u>C</u> P_	(Btu/lb	°F)				
	.912	.943	.8214	.8078	.7693	.7399	.7157	.6769	.6478	.6130
				Tempe	rature	(°F)				
	165	170	175	180	185.3 (1)	186.0 (g)	190	195	200	205
500				$C_{\mathcal{D}}$	(Btu/lb	°F)				
	.8970	•9347	.9889	1.11		(1.54)	1.32	.985	.8543	.8069
				Tempe	rature	(°F)				
	202	203	204	205	206	206.3 (c.p.)	207	208	209	210
617				<u>C</u> p_	(Btu/lb	°F)				
	1.84	2.37	3.09	4.3	29	-	6.5	4.0	2.95	2.35
Temperature (°F)										
	212	214	217	220	225	230	235	240	245	250
617				$\underline{\mathbf{c}}_{\mathbf{P}}$	(Btu/lb	°F)				
	1.88	1.68	1.30	1.17	1.06	0.97	0.90	0.84	0.79	0.76

Table VII (continued)

Pι	•e	S	s	u	сe
(p	s	i	a))

(1014)										
				Tempe	rature	(°F)				
	200	207	213	217	219	220	225	230	240	250
700				<u>C</u> P-	(Btu/lb	°F)				
	1.265	1.410	2.150	3.795	5.280	3.910	2.018	1.351	1.061	.986
				Tempe	rature	(포°)				
	220	235	245	250	255	257	260	265	270	280
1000					(Btu/lb				_, -	
	.980	1.134	1.272	1.345			1.439	1.377	1.314	1.189
				_		(0-)				
				Tempe	rature	(°F')				
	255	260	270	275	280	284	285	290	295	300
1200				<u>C</u> P-	(Btu/lb	°F)				
	1.050	1.077	1.121	1.139	1.161	1.177	1.172	1.118	1.070	
Temperature(°F)										
		070	a li a				000		00-	700
	220	230	240	250	260	270	280	290	295	300
1500				<u>C</u> P-	(Btu/lb	°F)				
	.796	.819	.843	.867	.891	.914	.938	.956	.961	.963

Figure 16. Isothermal Throttling Coefficient for Propane Above the Critical Temperature.

Table VIII

Experimental Values of the Isothermal Throttling Coefficient for Propane

 $\emptyset \times 10^2$ (Btu/lb-psia)

Temperature	-	°F
TOMPOTAGATO		Τ.

Pressur e psia	21.2 ^a	160.5	201.0	249.9
2000	+0.253	-0.009	-0.207	-0.57
1800	+0.248	- 0.059	-0.304	-0.87
1600	+0.244	-0.110	-0.410	-1.16
1400	+0.239	-0.167	- 0.567	-1.79
1200	+0.235	-0.239	-0.843	- 3.18
1000	+0.230	-0.350	-1.292	-8.28
800	+0.226	-0.518	- 2.198(1)	-17.69
600	+0.221	- 0.802		-9.90
400	+0.217		-10.41(g)	- 7.09
200			-6. 58	-5. 70
o _p			-4.7	-3.84

- a Estimated from Figure 18
- b Based on $\emptyset^{\circ} = B T(dB/dT)$

Figure 17. Isothermal Throttling Coefficients for Propane

Isenthalpic Data

Isenthalpic determinations were made at an inlet temperature of 21.2°F and inlet pressures of 2000 psia and 1100 psia. The basic results are presented on Figure 18. Values of $\mu \equiv (\partial T/\partial P)_{\underline{H}}$ estimated from a plot of $(\Delta T/\Delta P)_{\underline{H}}$ versus P are presented in Table IX. The isenthalpic data were used together with C data in Equation (17) to generate an isotherm at 21.2°F. The results of these calculations are summarized on Figure 19. Values of μ estimated from these data are included in Table IX.

TABLE IX

EXPERIMENTAL VALUES OF THE JOULE-THOMSON

COEFFICIENT OF PROPANE

Pressure psia	Temperature F	-μ x 10 ³ °F/psi
2000	21.20	4.61
1700	22.50	4.49
1300	24.23	4.12
1000	25.50	3.99
1000	21.58	3.99
700	22.74	3.71
300	24.15	3.27
150	24.61	3.08

Analysis and Comparison of Results

Isobaric Data

Values of ΔH_v at 250, 400, and 500 psia and at 201°F (588 psia) which have been estimated from other published data are also presented in Table IV. Results from the present investigation are in reasonable agreement with values reported in 1967 by Helgeson and Sage. The discrepancies between the experimental values obtained using the isobaric

Figure 18. Isenthalpic Curves for Propane with a 21.2°F Initial Temperature

Figure 19. Pressure-Enthalpy Isotherm Generated from Isenthalpic and Isobaric Data

calorimeter in this investigation and experimental values recently reported by Helgeson and Sage ⁵¹ are within the 1.5 Btu/lb which is the uncertainty the latter claimed. At 588 psia (201°F) the value of this investigation is about 2 Btu/lb (4 percent) higher than the calculated value which appears in their publication. Values from the other sources vary from these results by as much as 10 Btu/lb (11 percent).

Isobaric heat capacity data at pressures in excess of 1 atm have only recently become available. Figure 20 summarizes the results of Finn and of this investigation at 700 psia, only 80 psi or so above the critical point. There is excellent agreement between the two investigations with respect to the temperature of the maximum in $C_p(219^oF)$ but the values reported by Finn are between 7 and 26 percent higher than those reported in this contribution with the maximum deviation occurring at the peak.

Ernst 39 reports values of C in the temperature range from 68 to 176°F at pressures up to 118 psia. This is below the lowest pressure used for isobaric determinations in the present investigation (250 psia) and also at temperatures lower than any used in the determination of φ for propane as a gas (201°F) so that direct comparisons cannot be made. However, when values of C from the two investigations were plotted versus either T or P, smooth isobaric and isothermal curves could be passed through all the data.

Values of C presented in Table VI were compared with values estimated by Kuloor, Newitt, and Bateman using low pressure C values and PVT data. The results of this comparison are summarized in Figure 21.

Sciance et al. recently published calculated values of the properties of the saturated phases of propane. Comparison of his reported

Figure 20. Experimental Data at 700 psia and Comparison with Results of Finn

Figure 21. Comparison of Experimental Heat Capacities with Tabulated Values of Kuloor et al. (69)

values with values of C for the saturated vapor determined in the course of this study and reported in Table VII together with a value from the investigation of Ernst³⁹ indicates that the values reported by Sciance et al. are uniformly high by about 0.02 Btu/lb-°F (~4 percent).

Isothermal Data

Yarborough and Edmister 148 report results of isothermal throttling experiments for propane at 200, 300, and 400°F. Their results at 200 and 300°F are plotted as points on Figure 22.

Data from Runs 4R, 5R at 201°F, and 7R at 200.5°F were interpreted to yield values of the isothermal enthalpy departure and the results are represented by a solid line in Figure 22. When corrected to 200°F the results of the two investigations differ by about 5 Btu/lb above the boiling point (about 4 percent). This agreement seems reasonable when it is considered that the determinations are made through the two-phase region within 5°F of the critical temperature.

Isothermal measurements were not made at 300°F but isobaric determinations extended to this temperature. Therefore the isothermal data at 249.9°F (see Table VIII) were used in conjunction with isobaric results at elevated temperatures (see Table VI) to calculate values of enthalpy departure at 300°F. The results are plotted as a dashed line on Figure 22. The agreement at this temperature is good with a deviation of about 3 Btu/lb (5 percent at 1000 psia).

Isenthalpic Data

Unfortunately, it was not possible to make a direct comparison with other published experimental Joule-Thomson data¹²⁵ because the isenthalpic data of the investigation were obtained in the liquid region.

However, it is possible to apply Equation (8) to check the consistency

Figure 22. Comparison of Isothermal Enthalpy Departure with Data for Yarborough and Edmister

of ϕ and C_p data from this investigation with experimental values of μ from Reference 125. Smoothed experimental values of these properties are listed in Table X together with the ratio $(-\mu C_p/\phi)$ which, according to Equation (8) should have a value of 1.0. The agreement is on the order of ±10 percent.

Enthalpy Diagram and Table

A number of tables and charts of thermodynamic properties of propane have been published. 12,14,17,26,69,103,127,135,153 The ranges in temperature and pressure covered by these published tables are indicated in Figure 23. The values of the thermal properties, enthalpy, and entropy, presented in these tables were calculated using heat capacity data at low pressure 25,26,66,67 and volumetric (PVT) data. This general procedure has been followed because there have been very few other experimental data at elevated pressures with the exception of data on the latent heat of vaporization 26,51,124 and results of Joule-Thomson experiments. The pressure-temperature-enthalpy diagram developed in this investigation, although developed mainly from the experimental portion of this research, summarizes all published experimental data on the thermal properties of propane over the range -250 to +500°F and 0 to 2000 psia. Figure 24 presents a list of the data used and the regions covered.

The reference for enthalpy was taken as H = 0 at T = -280°F for liquid propane at its saturation pressure. This is consistent with the reference previously used in reporting enthalpy values for mixtures of methane and propane 81,82,85,86,87,88 Values of the enthalpy of propane as a gas at zero pressure were calculated using data on the liquid phase

 $\frac{\text{Table X}}{\text{Test of Consistency of Data}}$ Based on Equation (8)

200°F

Pressure psia	C _p Btu/lb°F	Ø Btu/lb psi	μ ^a °F/psi	-μ ^C p
500	0.854	0.172	0.1846	0.919
450	0.730	0.127	0.1752	1.005
400	0.652	0.104	0.1677	1.051
350	0.599	0.0903	0.1613	1.070
300	0.563	0.0802	0.1537	1.079
250	0.536	0.0723	0.1470	1.090
200	0.515	0.0662	0.1407	1.095
150	0.502	0.0614	0.1370	1.120
100	0.491	0.0580	0.1259	1.066
50	0.482	0.0555	0.1165	1.012
0	0.4744 ^b	0.0536 ^c		

- a Interpolated from data in Table I in Reference (125)
- b Value for ideal gas at zero pressure (118)
- c Based on $\emptyset^{\circ} = B T (dB/dT)$

Range of Tables and Charts of Thermodynamic Properties Figure 23. of Propane

Figure 24. Range of Calorimetric Data Used in Preparation of Pressure-Enthalpy-Temperature Table for Propane

heat capacity, the latent heat of vaporization at 1 atmosphere, the BWR equation of state to correct from 1 atm to zero pressure at the normal boiling point, and values of the ideal gas heat capacity to account for a change in temperature from the normal boiling point to other temperatures at zero pressure. The calculations of the enthalpy at 250°F and zero pressure are summarized below.

	$\frac{H(Btu/lb)}{}$
Saturated liquid (at -280°F)	0
Saturated liquid (-280 to -43.7°F)	115.30
Enthalpy change on vaporization (at -43.7°F)	183.17
Effect of pressure on enthalpy (14.7 to 0 psia)	2.70
Effect of temperature on zero pressure enthalpy (-43.7 to +250°F)	121.93
\underline{H}^{O} (Propane at zero pressure and +250°F)	423.1

Isobaric enthalpy differences at elevated pressures were calculated from the data presented in Table VI plus other published values of C_p^{39} . The pressures at which such data are available are indicated by horizontal lines on Figure 24. The values of C_p recently reported by Ernst 39 are in excellent agreement with those at 1 atm previously published by Kistiakowsky and Rice.

Above 100 psia, values of ϕ from this investigation were used to determine the effect of pressure on enthalpy. These basic data were supplemented by published experimental values of enthalpy departures, $(\underline{H}^{O} - \underline{H})^{146,148}$ The temperatures as which such data are available are indicated by vertical lines on Figure 24. As already mentioned the effect of pressure on enthalpy at low pressures (100 psia) was estimated

using published experimental values of the pressure dependence of enthalpy 146,148 together with values of ϕ^0 estimated from published correlations of the second virial coefficient, B, and its temperature dependence 30,31,58 (see Equation (32)) and estimates made using the BWR equation of state 7 with primary reliance placed on the correlation of experimental values of B as made available by Diaz-Pena.

The interpreted isenthalpic data yielding isothermal differences in enthalpy as shown in Figure 19 was used in the compressed liquid region.

In establishing the enthalpy change on vaporization, experimental data from Dana et al. and this investigation were used together with "critically chosen values" reported by Helgeson and Sage. The values from Helgeson and Sage are in excellent agreement (better than 1 percent) with the results of this investigation in the region of overlap as already shown in Table IV.

No attempt was made to correlate the extensive vapor pressure data reported in the literature. Instead values were taken from recent tabulations 14,69

As indicated by Figure 9 redundant thermal data are available between 21 and 300°F at pressures up to 2000 psia. Consistency checks were made as permitted by these redundancies and the results are summarized in Figure 25. Consider the loop between the pressures of 500 and 1000 psia and the temperatures of 21.2 and 160.5°F. As indicated on the figure there is some error in the constituent experimental determinations because the algebraic sum of the enthalpy differences around the complete loop, ΔH_1 , is not zero but instead is -0.64 Btu/lb. The percentage deviation, defined as

Checks of Thermodynamic Consistency of Thermal Data for Figure 25. Propane

$$\frac{\text{percentage}}{\text{deviation}} = \frac{\sum_{i}^{\Delta H} i}{\sum_{i}^{\Delta H} i} \times 100$$
(77)

is determined to be -0.34. The maximum percentage deviation for any loop is +0.42 percent and the average absolute deviation of all such checks is 0.18 percent. It is felt that this is indicative of the accuracy of the enthalpy differences in this region.

The differences in enthalpy at a point calculated from different experimental data are small but nevertheless it was necessary to make minor adjustments in preparing the final compilation. This was done by adjusting individual values of isobaric and isothermal enthalpy differences to make each loop thermodynamically consistent. These adjustments were made within the limits of experimental uncertainty of the data. In general, the uncertainty in $\triangle \underline{H}$ p is ± 0.3 percent except near the critical region. The uncertainty in $\triangle \underline{H}$ T is ± 1 percent except at pressures below 200 psia.

In extending the calculations of enthalpy down to -280°F use was made of experimental values of $\rm C_p$ for the saturated liquid and values at 1000 and 2000 psia at temperatures of -240°F and above were extrapolated graphically to the lower temperatures. The variation in value of $\rm C_p$ over the range of extrapolation was about ±1 percent.

Above 300°F primary reliance was placed on the C data of Daily and Felsing at 1 atm. Between 300 and 400°F and at elevated pressures smoothed curves were drawn to blend experimental values at 300°F with values calculated using the BWR equation of state with the low pressure data. The blending was carried out so that the results were consistent

with the experimental values of Yarborough and Edmister at 400°F. 146,148 Between 400 and 500°F enthalpy departures were calculated using the BWR equation of state?

After all adjustments and extrapolations had been made as described above, a skeleton table of values of enthalpy was prepared. These values were then plotted on a diagram and smooth curves drawn to connent all points and to represent interpolated values. The results are presented as Figures 26a and 26b. Values were then read from the master plot and are reported in Tables XI and XII. From -250 to +300°F at the temperatures and pressures of measurement as indicated in Figure 9, little or no interpolation is involved and therefore the numbers listed for these temperatures and pressures can be considered to be smoothed experimental values.

Since the values in Table XII are based on extensive data on the thermal properties of propane between -240 and +300°F at pressures up to 2000 psia, the values in this region are believed to be accurate enough to permit determinations of enthalpy to within ±1 Btu/lb or less. The graphical representation is slightly less accurate. Extrapolation of C data to -280°F was carried out by graphical means. Extension of the values of +500°F was based on a combination of limited experimental data on the thermal properties and the BWR equation of state, and the uncertainty in these regions may be somewhat greater.

A comparison of the results of this table has been made with the results of a most recent compilation by Canjar and Manning lh and is given in Figure 27. The deviations are quite significant in the region right above the critical temperature (as large as 7 Btu/lb).

Figure 26a. Pressure-Temperature-Enthalpy Diagram for Propane

Figure 26b. Pressure-Temperature-Enthalpy Diagram for Propane

TABLE XI

TABULATED VALUES OF ENTHALPY FOR PROPANE AT SATURATED CONDITIONS

Pressure (psia)	Temperature (°F)	Saturated Liquid Enthalpy (Btu/lb)	Saturated Vapor Enthalpy (Btu/lb)	Latent Heat of Vaporization (Btu/lb)
14.7	7.54-	116.2	299.4	183.2
50	14.1	147.2	314.5	167.3
100	55.0	172.2	325.7	153.5
150	82.7	190.1	332.7	142.6
200	104.5	204.6	337.6	133.0
250	122.5	217.4	340.8	123.4
300	137.6	230.0	343.4	113.4
350	151.4	241.4	344.6	103.2
400	163.5	252.0	344.8	92.8
450	174,7	261,4	343.4	82.0
500	184,8	270.4	340.8	70.4
550	194,4	279.8	337.1	57.3
588	201.0	289.7	333.1	45.4
009	203.5	296.4	330.7	34.3
617	206.3	315.0	315.0	0.0

TABLE XII

TABULATED VALUES OF ENTHALPY FOR PROPANE

 \underline{H} (Btu/lb)

				Dro	ssure, ps	ia				
Temperature (°F)	0	100	200				400	450	500	550
								7		
Temperature (°F) -280 -270 -260 -240 -230 -220 -210 -200 -190 -180 -170 -160 -150 -140 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 21.3 30 40 50 60 70 80 90 100 110 120 130 140 150 160 160.6 170 180 190 200 201.0 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400	9.40.51.73.07.42.08.76.66.78.02.58.26.1.73.07.53.22.2.35.70.37.2.73.07.2.53.2.1.1.2.3.5.7.0.48.3.9.5.1.96.5.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	18305209529775544455558825059214 55069516352717 631950021357162797208553	20 4948.31.063.088.665.557.7699.2505.0425 558.958.035.021.0327.466.51.3793.7061.848.74321.0991823372471.6667.78889901.0111128849.508.035.021.0327.466.51.3793.7061.848.74321.09918.348.74321.0111128.348.74321.09918.3488.74321.09918.3488.74321.09918.3488.74321.09918.3488.74321.09918.3488.74321.09918.3488.74321.09918.3488.74321.09918.3488.74321.09918.3488.74321.09918.3488.74321.09918.3488.74321.09918.3488.74321.09918.3488.74321.09918.3488.74321.09918.3488.74321.09918.3488.74321.09918.3488.74321.09918.3488.7488.74888.74888.74888.74888.74888.74888.74888.74888.74888.74888.74888.74888.74888.74888.74888.74888.74888.748888.74888.74888.74888.74888.74888.748888.74888.74888.748888.748888.748888.748888.748888.748888.7488888888	3.0.6.2.8.4.2.0.6.4.1.9.9.6.6.6.6.5.7.7.6.0.0.3.5.0.5.2.6.2.5.5.7.8.3.6.4.0.2.5.8.6.0.7.8.5.5.1.4.0.8.2.7.0.6.0.5.2.8.5.1.9.6.5.3.3.2.2.2.3.3.3.4.4.5.5.6.6.6.6.5.7.7.6.0.0.3.5.0.5.0.5.3.6.2.5.5.7.8.3.6.4.0.2.5.8.6.0.7.8.5.5.1.4.0.8.2.7.0.6.0.5.2.8.5.1.9.6.5.3.3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	30 -40.73.95.3.1.7.5.2.0.0.7.7.7.7.6.8.8.7.0.0.4.5.0.5.0.5.3.7.3.6.6.5.8.2.5.1.7.9.2.1.7.3.2.8.3.8.5.3.0.6.3.1.7.5.4.4.3.3.3.3.4.4.5.3.3.3.4.4.5.5.6.6.7.6.6.5.8.2.5.1.7.9.2.1.7.4.6.7.3.1.1.7.3.2.8.3.8.5.3.0.6.3.1.7.5.4.4.3.3.3.3.4.4.5.3.3.3.4.4.5.3.3.3.4.4.5.3.3.3.4.4.4.3.3.3.3	50630540853007888878887003716163844774881395695550564218633287522121244566163352875266677688899620371611111111111111111111111111111111111	6.1.7.4.1.6.5.1.9.7.5.1.1.8.9.9.9.8.0.1.4.8.1.7.1.6.3.8.5.8.7.4.8.1.2.7.4.3.5.0.9.5.9.8.6.7.9.8.4.7.0.8.0.0.0.1.9.0.9.6.8.8.0.9.1.3.4.7.1.6.3.8.5.8.7.4.8.1.2.7.4.3.5.0.9.5.9.8.6.7.9.8.4.7.0.8.0.0.0.1.9.0.9.6.8.8.0.9.1.3.4.7.1.6.3.8.5.8.7.4.8.1.2.7.4.3.5.0.9.5.9.8.6.7.9.8.4.7.0.8.0.0.0.1.9.0.9.6.8.8.0.9.1.3.4.7.1.6.3.8.5.8.7.4.8.1.2.7.4.3.5.0.9.5.9.8.6.7.9.8.4.7.0.8.0.0.0.1.9.0.9.6.8.8.0.9.1.3.4.7.1.6.3.8.5.8.7.4.3.5.0.9.5.9.8.6.7.9.8.4.7.0.8.0.0.0.1.9.0.9.6.8.8.0.9.1.3.4.7.1.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	45.18.528.62.00.00.98.09.90.258.27.17.3.96.97.38.1.27.3.1.3.62.4.4.0.4.2.88.8.4.5.4.6.2.3.6.98.9.1.0.3.3.7.7.9.3.4.7.8.5.8.6.2.2.3.3.3.4.4.5.5.66.7.7.6.8.7.1.2.2.2.3.3.3.4.4.5.5.66.7.7.8.7.8.5.8.4.1.5.1.5.6.2.4.4.0.4.2.88.8.4.5.4.6.2.3.6.9.8.9.1.0.3.3.7.7.9.3.4.7.8.5.8.6.2.2.3.3.3.4.4.5.5.6.2.4.4.0.4.2.8.8.4.4.5.4.6.2.3.6.9.8.9.1.0.3.3.7.7.9.3.4.7.8.5.8.6.2.2.2.2.2.2.2.2.2.2.2.2.3.3.3.3.3.3.3	8205497400744111090001146047288417088491272903888292319827683836822792481372866727781728849511111111111111111111111111111111111	9417509520955423000013581593952919401382801658323590120915405241481513810 5011948383727272727272727272727272727272727272

-104-

TABLE XII (continued)

TABULATED VALUES OF ENTHALPY FOR PROPANE

 \underline{H} (Btu/lb)

Pressure, psia										
Temperature (°F)	600	617	700	800	900	1000	1250	1500	1750	2000
-280 -270 -260 -250 -240 -250 -240 -230 -220 -210 -200 -190 -180 -170 -160 -150 -140 -130 -120 -100 -90 -80 -70 -60 -50 -40 -30 -10 0 10 20 21.33 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 221 230 240 250 260 270 280 290 300 310 320 330 340 350 370 380 390 410 420 430 440 440 440 440 440 440 440 440 44	1.0529.77307753077754420113560210114194053130051230222344421773836632700438662100522205548363927004386621005223333644242222222222222222222222222222	1.5.5.0.8.4.0.7.5.4.1.8.8.8.5.5.5.2.1.2.2.4.5.7.0.3.6.0.5.0.7.4.1.3.0.6.2.2.4.9.2.8.3.8.1.2.6.3.7.8.1.0.5.5.8.4.8.5.2.5.0.5.3.8.6.2.0.7.6.5.1.5.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	1.405.107.407.64.109.88.65.55.66.803.593.834.46.14.605.107.74.22.338.33.46.55.56.803.593.836.73.48.98.41.25.55.88.997.28.83.35.993.830.75.64.94.46.14.008.82.87.34.89.88.41.25.55.88.99.98.41.22.88.35.993.83.995.22.22.23.35.06.21.294.22.22.23.35.06.22.22.23.35.06.22.22.23.35.06.22.22.23.35.06.22.22.23.35.06.22.22.22.23.35.06.22.22.22.22.22.22.22.22.22.22.22.22.22	1.7.3.9.5.5.1.7.5.1.0.6.5.4.1.1.1.0.8.8.9.0.1.4.6.9.2.6.0.7.3.9.5.5.1.7.5.1.0.6.5.4.1.1.0.8.8.9.0.1.4.6.9.2.6.0.7.3.0.7.9.6.3.6.6.9.2.6.1.1.8.0.4.2.2.2.3.3.3.4.4.5.3.8.3.2.2.2.2.3.3.4.4.5.3.6.5.4.3.0.2.2.2.2.3.3.3.4.4.5.3.8.5.7.6.6.8.6.4.1.2.9.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	1.5.7.4.9.8.5.0.9.5.5.3.2.2.2.3.4.7.9.2.5.9.4.0.6.6.6.4.0.9.2.2.1.9.5.4.0.1.5.0.3.2.6.6.6.8.8.5.2.2.3.3.4.4.5.5.5.3.2.2.2.3.4.7.9.2.5.9.4.0.6.4.0.1.9.6.9.9.1.6.1.3.1.0.6.6.6.4.0.9.2.2.1.9.5.6.6.6.8.8.5.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	2.51.731.843.8741.099.8655.5667.0359.382.9952.32.01.246.06.333.333.333.333.333.333.333.333.333	3.8 22 72 0.8 6.6 5.5 5.5 7.7 0.4 6.8 1.5 0.6 1.8 9.9 8.9 9.9 9.3 5.3 0.0 7.5 0.2 5.0 5.6 6.9 2.7 3.0 0.2 6.1 6.3 1.1 3.7 7.0 1.9 0.8 5.1 6.1 6.2 0.8 4.5 5.5 6.6 5.5 5.5 7.7 0.4 6.8 1.5 0.6 1.8 9.9 8.9 9.9 9.3 5.3 0.0 7.5 0.2 5.0 5.6 6.9 2.7 3.0 0.2 6.1 6.3 1.1 3.7 7.0 1.9 0.8 5.1 6.1 6.2 0.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	4.8.3.0.6.5.0.9.4.3.3.4.3.3.5.5.7.9.2.5.7.1.6.1.5.0.4.3.3.2.2.3.3.4.4.5.5.0.5.5.7.9.2.5.7.1.6.1.5.7.4.6.0.5.0.8.5.2.7.4.6.7.1.1.9.7.8.1.5.7.0.2.2.2.3.3.4.4.5.5.5.5.7.9.2.5.7.1.6.1.5.7.4.3.3.2.2.3.4.4.5.5.2.2.3.4.4.5.5.3.4.3.3.5.5.7.9.2.2.3.4.4.1.3.3.4.3.3.5.5.7.9.2.2.3.4.4.1.3.3.4.3.3.3.3.4.4.3.3.3.3.3.3.3	4.42.75.1.75.20.8 5.3.1.0.8 99.8 8.9.1.3.4 7.0.3.7.0.5.0.6 2.8 5.3.3.7.2.2.2.3.3.7.2.2.3.3.7.0.5.0.6 0.9.7.4 2.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	4.39.6.39.6.3.9.6.3.9.6.3.9.6.3.3.6.6.5.5.3.2.2.0.0.2.3.5.7.4.8.2.7.1.7.1.2.8.0.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3

Figure 27. Comparison of Tabulated Enthalpies of This Investigation with Those of Canjar and Manning

As already mentioned the enthalpy of a 5.1 mole percent, a 12 and a 28 mole percent mixture of propane in methane had already been obtained over a wide range of temperature and pressure before the start of this investigation. Thus, to complete the methane-propane system data for two additional mixtures with propane as the major component were obtained.

The 76.6 Mole Percent Propane in Methane Mixture

After completing the experimental investigation of propane, methane was added to the fluid in the system to obtain a nominal 77 mole percent propane in methane mixture.

Composition of Gas

The methane used in the investigation of the mixture was obtained from the Southern California Gas Company. The same instrument grade propane as obtained from the Phillips Petroleum Company was used for the mixtures as was used for the determinations of pure propane. The composition of this mixture as determined by mass spectrometer and chromatographic analyses are reported in Table XIII.

A chromatograph which is incorporated as part of the recycle flow facility was used for frequent checks on the composition of the gas in the system. The chromatograph was calibrated using samples of known composition prepared by direct weighing.

From time to time the fluid composition did change. This was most frequent during periods of excessive leakage of fluid from the system. The composition was re-established within reasonable limits by the

TABLE XIII

COMPOSITION OF NOMINAL 77 MOLE PERCENT PROPANE IN METHANE MIXTURE

	Chromatograph ^a (mole percent)	Mass Spectrometer ^b (mole percent)
Nitrogen	0.20	< 0.05
Methane	23.16	24.23
Ethane	< 0.05	< 0.05
Carbon Dioxide	< 0.0 5	< 0.05
Propane	76.53	75.77
Butane	0.11	< 0.05
	<100.10	<100.20

a Sample taken from system in March 1968.

addition of one component of the mixture and remixing the entire system.

The chromatographic analyses on a day to day basis are summarized in Figure 28. There is no indication of a change in average composition with time.

Regions of Measurement

Experimental measurements of isobaric, isothermal, and isenthalpic changes in enthalpy for the mixture containing 76.6 mole percent propane in methane were made in the liquid, two-phase, critical, and gaseous regions at temperatures between -240 and +300°F and pressures between 100 and 2000 psia. The ranges of pressures and temperatures covered by these experiments are indicated by lines drawn on a pressure versus temperature diagram in Figure 29. In addition to the mixture data normally obtained with the recycle facility the first successful attempt to obtain an isothermal enthalpy of vaporization was made. Experimental results for each run are presented in Appendix B. The isobaric single phase and

b Sample taken from system in October 1967.

Figure 28. Composition of the Nominal 77 Percent Mixture as a Funcțion of Time

Figure 29. Temperatures and Pressures of Measurement for the Nominal 77 Percent Mixture

two-phase data are listed in Table L. The isothermal and Joule-Thomson data are presented in Table LI and Table LII, respectively.

Flowmeter Calibrations

The first three calibration runs made for the 77 percent propane in methane mixture were very successful and yielded reproducible results which are presented as the lowest curve in Figure 30. All curves illustrate that as with propane the flow is not strictly laminar in the flowmeter; if it were, the results would lie on a horizontal line on this type of plot. The calibration data for the first three calibration runs lie essentially on a single curve. Two sets of constants for Equation (76) were used to fit the calibration curve. The average deviations of the experimental calibration points from the correlating equation was ±0.16 for the 19 points in the low flow rate range and ±0.18 for the 19 points at high flow rates.

The success of these early calibrations led to a deviation from standard practice and no recalibration was made between Runs 26 to 46. During this interval of nine weeks, the calibration changed. Calibrations were then made after Run 46 and before Run 49. These calibrations are represented by the upper curve on Figure 30 and are fairly consistent (average deviation ±0.17 for the 12 low flow rate points and ±0.25 for the 13 points at high flow rate points). Runs 47 and 48 are repeats of previous runs and were made in an attempt to establish when the flowmeter calibration changed.

Following the calibration after Run 48, the flowmeter was removed from the system, cleaned ultrasonically, and recalibrated. Additional check runs were made to aid in the interpretation of the previous data and new data were obtained. Data from the last calibration agreed well

Results of Flowmeter Calibrations for the Nominal 77 Percent Figure 30. Mixture

with the one made subsequent to ultrasonic cleaning as illustrated by the middle curve on Figure 30 (average deviation ±0.08 for 10 low flow rate points and ±0.12 for 12 high flow rate points).

In using the results of flowmeter calibrations to establish the experimental values of the flow rate, results from the pair of calibration runs which bracket the experimental runs are usually used. The calibration runs used to interpret specific data for this mixture are indicated in Table XIV together with values of the total number of points included in the calibration sets and the average deviation of each set from the calibration equation. The calibration constants used in Equation (76) obtained for each set are presented in Table LII of Appendix B.

TABLE XIV

CALIBRATION DATA USED IN INTERPRETING EXPERIMENTAL RESULTS

Experimental Runs	Calibration Runs	Number of Calibration Points	Average Deviation (percent)
1 - 26,	10,20,30 high low	19	0.18
1R - 3R		19	0.16
27 - 47	40,50 high	13 12	0.25 0.17
48,51	$60,70 \frac{\text{high}}{10\text{w}}$	12	0.16
4R		10	0.08

Check on Assumption of Adiabaticity

In applying Equation (2) to interpret experimental data, it is assumed that the calorimeter is adiabatic. It has been established for the isobaric mode 91 that this condition is satisfied if the heat capacity determined using the calorimeter is independent of the flow rate. Therefore, a series of isobaric determinations (Runs 18 and 20) was made at

four different flow rates to test the assumption of zero heat leakage. As illustrated in Figure 31, the heat capacity obtained is essentially independent of flow rate within the limits of precision of the measurements (±0.3 percent).

Interpretation of Results

Isobaric

The isobaric data in the single phase region were again interpreted using Equation (2). Typical results are shown as Figure 32 on which average values of heat capacity calculated from experimental results are plotted versus temperature. Again solid lines indicate basic results obtained in accordance with the procedure described previously and dashed lines are values obtained by difference from the basic results. Point values of heat capacity were obtained in the same manner as the method used for propane, implementing both a graphical and computer technique. Figure 32 illustrates the broad maximum in the heat capacity which occurs in the region just above the critical point for the mixture, which closely resembles the curve for propane at 1000 psia (Figure 12).

A majority of the values of heat capacity, \mathbf{C}_p , obtained from interpretation of isobaric data in the single phase region are summarized in Table XV for equal intervals of temperature and pressure.

Significant changes in the value of the heat capacity as with pure propane occur not only in the region above the critical point for the mixture but also near the two-phase locus. Figure 33 illustrates typical values of experimental data with the smoothed curve through the data representing values of the heat capacity near the two-phase region. Table XVI lists values of heat capacity in the regions of significant

Figure 31. Heat Capacity as a Function of Reciprocal Flow Rate for the Nominal 77 Percent Mixture

Figure 32. Isobaric Heat Capacity at 1000 psia in the Upper Temperature Range for the Nominal 77 Percent Mixture

TABLE (XV)

TABULATED VALUES OF ISOBARIC HEAT CAPACITIES

FOR A NOMINAL 77 MOL PERCENT PROPANE IN METHANE MIXTURE

 C_{p} (Btu/1b - °F)

Temperature			Pressure,	psia		
°F	0	250	500	1000	1500	2000
-280	0.485**	0.490	0.492	0.492	0.486	0.484
-270	0.487**		0.493	0.494	0.488	0.486
-260	0.489**	0.493	0.495	0.495	0.489	0.487
-250			0.497	0.496	0.491	0.490
-240		0.496	0,499	0.498	0.494	0.493
-230		0.498	0.501	0.500	0.497	0.495
-220		0.501	0.504	0.502	0.500	0.499
-210		0.503	0.506	0.504		0.501
-200		0.507	0.509	0.506	0.504	0.504
-190		0.510	0.512	0.509		0.506
-180		0.513	0.515	0.511	0.508	0.508
-170		0.517	0.518	0.513		0.510
-160		0.521	0.521	0.515	0.512	0.512
- 150		0.525	0.524	0.518		0.514
-140		0.529	0.527	0.522	0.520	0.517
-130		0.533	0.533	0.527		0.520
-120		0.538	0.534	0.532	0.528	0.523
-110		0.543	0.538	0.537		0.527
-100		0.549	0.542	0.542	0.538	0.531
- 90		0.555	0.546	0.546		0.535
- 80		0.561	0.551	0.550	0.545	0.540

-117TABLE (XV) - (Cont.)

Temperature			Pressure,	psia		
°F	0	250	500	1000	1500	2000
- 70			0.557	0.555		0.546
- 60			0.564	0.559	0.553	0.551
- 50			0.572	0.564	0.558	0.557
- 40			0.580	0.570	0.565	0.563
- 30			0.588	0.576	0.571	0.569
- 20			0.597	0.584	0.577	0.576
- 10			0.607	0.593	0.584	0.583
0			0.617	0.604	0.592	0.591
10				0.616	0.601	0.597
20				0.628	0.611	0.604
30				0.640	0.621	0.611
40				0.652	0.630	0.619
50				0.665	0.642	0.627
60				0.680	0.653	0.636
70				0.696	0.664	0.645
80				0.716	0.676	0.655
90				0.738	0.689	0.665
100	0.425*	0.601		0.766	0.704	0.676
110	0.431*	0.567		0.801	0.721	0.687
120	0.437*	0.541		0.847	0.744	0.700
130	0.443*	0.530		0.904	0.768	0.714
140	0.449*	0.525		0.980	0.794	0.728
150	0.455*	0.523	0.738	1.088	0.819	0.743

-118-TABLE (XV) - (Cont.)

Temperature		<u> </u>	Pressure,	osia		
°F	0	250	500	1000	1500	2000
160	0.461*	0.523	0.718	1.233	0.845	0.758
170	0.467*	0.523	0.679	1.360	0.870	0.773
180	0.473*	0.523	0.652	1.407	0.899	0.786
190	0.479*	0.525	0.633	1.388	0.922	0.800
200	0.485*	0.528	0.621	1.259	0.948	0.813
210	0.491*	0.531	0.613	1.115	0.976	0.827
220	0.497*	0.535	0.608	1.011	1.001	0.840
230	0.503*	0.539	0.603	0.940	1.002	0.854
240	0.509*	0.544	0.601	0.884	0.984	0.868
250	0.514*	0.548	0.601	0.839	0.960	0.881
260	0.520*	0.553	0.602	0.801	0.940	0.886
270	0.526*	0.559	0.604	0.776	0.916	0.875
280	0.532*	0.565	0.606	0.756	0.896	0.855
290	0.538*	0.571	0.609	0.741	0.879	0.834
300	0.543*	0.577	0.612	0.729	0.864	0.812

^{*}Ideal Gas Values of Rossini et. al. (118)

^{**}Experimental Data of Cutler and Morrison (23)

Figure 33. Isobaric Heat Capacity at 500 psia in the Gaseous Region for the 77 Percent Mixture

TABLE XVI Supplemental Table of Experimental Values of Isobaric Heat Capacity, ${\rm C_p}$ (Btu/lb)

Pressure										
(psia)			T	emperat	ure(°F))				
	- 45	-40	-35	- 30	- 25	-24.0	151.2	135	140	145
400			<u>_</u> C	p (Btu/	<u>(lb)</u>					
	0.579	0.586	0.594	0.601	0.609	0.610	0.736	0.701	0.655	0.610
			T	'emperat	ure (°F	<u>')</u>				
	50	55	60	65	70	75	170.1	175	180	185
700			_0	p (Btu/	<u>'lb)</u>					
	0.678	0.688	0.698	0.708	0.719	0.729	1.276	1.153	1.028	0.906
			T	emperat	ure (°F	')				
	190	200	210	220	· · · · · · · · · · · · · · · · · · ·	-	245	250	255	260
1200	190	200		Btu/	•	_ ,0	,			
	1 160	1 166		F		n 983	0 943	0.903	0.834	0.764
	1.109	1.100	エ・ エノノ	1.110	1.001	0.707	0.712	0.707	0,00,1	0.,0,
			_		ure (°F	- -	0 0	060	0.7'0	000
7.700	220	225		235		245	250	260	270	280
1700				p (Btu/						
	0.915	0.925	0.933	0.937	0.936	0.933	0.927	0.915	0.901	0.889

change such as near the maxima in the heat capacity and near the saturation curves.

The results of all heat capacity determinations are summarized on Figure 34.

A typical enthalpy traverse of the two-phase region at constant pressure is illustrated in Figure 35. Note that the traverse was made as two runs. Run 17 had an inlet temperature of about 50°F and was terminated with the two-phase region at about 140°F. In Run 16 a two-phase mixture at about 100°F was fed to the calorimeter and the run was terminated after the exiting fluid was totally vaporized at about 190°F. The results of the two runs are consistent in the region of overlap as illustrated in Figure 35. This procedure was followed so that enthalpy traverses could be made across the two-phase regions at larger flow rates than would be possible if the entire change were experienced in one run. This is necessary due to a limitation on the power available from the constant voltage power supply at low temperatures and the possibility of overheating and burning up the insulation of the nicrome heating wire in the calorimeter capsule at higher temperatures.

Determination of the points of discontinuity in slope of the curve yields values of the bubble point and dew point. For mixtures containing a majority of propane it is relatively difficult to determine the bubble point whereas the dew point is the more difficult determination for mixtures containing high mole fractions of methane. Experimentally determined values of the isobaric enthalpy change on vaporization are listed in Table XVII together with the experimentally determined values of the bubble point and the dew point for the mixture.

Figure 34. Isobaric Heat Capacity for the Nominal 77 Percent Mixture

Figure 35. Enthalpy Differences for the 77 Percent Mixture in the Two-Phase Region

TABLE XVII

Properties of the Nominal 77 Mole Percent Propane in Methane Mixture at the Phase Boundaries

Pressure (psia)

	25	250 400		500		700		
$\frac{\left(\Delta H_{\text{vap}}\right)}{\left(\text{Btu/lb}\right)}$	232	2.1	2	08.0	18	33.2	132	2.2
Phase Boundaries	Bubble Point (°F)	Dew Point (°F)	Bubble Point (°F)	Dew Point (°F)	Bubble Point (°F)	Dew Point (°F)	Bubble Point (°F)	Dew Point (°F)
This Investigation	-81.0	. 95.7	-24.0	131.2	12.2	147.0	75.0	170.1
Akers,Burns and Fairchild(1)	-73.2		-23.5		11.0	~-	· 	
Price and Kobayashi (109)	-79.0		-21.0	~-	11.7	-		
Reamer,Sage and Lacey (111)		100.8		131.0	- 1	147.1	75.8	173.0
Sage,Lacey and Schaafsma (126)		97.0		132.0		148.0	64.0	175.8

Isothermal

The isothermal data obtained in the single phase region were interpreted in accordance with Equation (3) and plots made of the average value of the isothermal throttling coefficient as a function of pressure. Typical results are shown in Figure 36. Point values of the isothermal coefficient were obtained graphically.

As the lower limit on pressure is about 100 psia, it was necessary to estimate $\varphi = f(P)$ at low pressures. To aid in this estimation, values were calculated using the BWR equation of state with the original constants for methane and propane together with mixing rules as originally suggested. Typical results are presented as a center line on Figure 36. In addition, Equations (32) to (34) were used with published values of the second virial coefficient for methane and propane and the interaction term 58 to estimate ϕ . The resulting value at 201°F is plotted on Figure 36. As another check, PVT data for the mixture lll as interpreted³⁷ using Equation (24) yielded values of $\left\lceil \frac{(\underline{H}^{0} - \underline{H})}{P} \right\rceil_{m}$ between zero pressure and 200 psia. A typical value is presented as a dashed line on Figure 36. A solid line (such as shown on Figure 36) was drawn to be consistent with the data obtained at elevated pressures and the estimates based on data from the literature in the low pressure range. Values of the isothermal throttling coefficient, φ , obtained by interpreting the data (including values of φ established as outlined above) are reported for each of the experimental isotherms in Table XVIII. These values are summarized in Figure 37. As previously mentioned one experimental isothermal run was made across the two-phase region. The results of this run are presented in Figure 38. Breaks in the curve indicate both the upper pressure at which vaporization started and the lower pressure

Figure 36. Isothermal Throttling Coefficient for the 77 Percent Mixture at $201\ensuremath{^{\text{O}}F}$

TABLE XVIII

Experimental Values of the Isothermal Throttling Coefficient, \emptyset , for a Nominal 77 Mole Percent Propane in Methane Mixture

 $\emptyset \times 10^2$ (Btu/lb. psia)

Pressure		Temperati	ure -°F	
psia	-96.8 ^a	99.9	201.0	251.0
Op			-4.39	- 3.76
100			-4.76	- 4.03
200			- 5.19	-4.30
300	+0.301		-5.70	- 4.56
400	+0.302		-6.33	-4.83
500	+0.303		-7.01	-5.11
600	+0.304		- 7.86	- 5.43
700	+0.304		- 9.13	- 5.79
800	+0.305	-0.734	-10.81	-6.18
900	+0.306	-0.596	-11.60	- 6.58
1000	+0.307	-0.483	-10.66	-6.77
1100	+0.308	-0.396	-8.77	-6. 70
1200	+0.308	-0.325	-6.45	- 6.36
1300	+0.309	-0.265	-4.54	- 5.89
1400	+0.310	-0.214	-3.39	- 5.16
1500	+0.311	-0.170	-2.62	-4.39
1600	+0.313	-0.130	-2.10	- 3.70
1700	+0.316	-0.101	-1.72	- 3.05
1800	+0.321	-0.071	-1.42	-2.53
1900	+0.328	-0.044	-1.19	-2.22
2000	+0.339	-0.017	-1.00	-1.98

a Calculated using Equation (8)

b Extrapolation to zero pressure based primarily on PVT data

Figure 37. Isothermal Throttling Coefficient for the 77 Percent Mixture

Figure 38. Isothermal Enthalpy Differences Through the Two-Phase Region at $100^{\circ}F$ for the 77 Percent Mixture

at which vaporization was complete.

Isenthalpic

Seven determinations were made with the throttling calorimeter under conditions such that a drop in pressure resulted in an increase in temperature (Run 4R on Figure 29). The inlet temperature was constant at -96.8°F in all cases. The data as interpreted using Equations (4) and (11) are illustrated in Figure 39. The values of the Joule-Thomson coefficient determined from these data are summarized in Table XIX.

These data are used in conjunction with Equation (17) to obtain isothermal enthalpy differences.

The 50.6 Mole Percent Propane in Methane Mixture

After completion of the 76.6 mole percent propane in methane mixture the fluid in the system was diluted further with methane to obtain a 50.6 mole percent propane in methane mixture.

Composition of Gas

The composition of the system as obtained by a chromatographic analysis is reported in Table XX. Again any small changes in composition which occurred were balanced by adding quantities of the deficient component. The chromatographic analyses on a day to day basis are summarized in Figure 40.

Regions of Measurement

The ranges of pressures and temperatures covered in the experimental investigation of this mixture are indicated by lines drawn on a pressure versus temperature diagram in Figure 41. The isobaric results for individual runs in the single and two-phase region are given in Table LIV of Appendix B. The isothermal and Joule-Thomson data are presented

Figure 39. Joule-Thomson Coefficient for the 77 Percent Mixture at -96.2°F

TABLE XIX

Experimental Values of the Joule-Thomson Coefficient, $\mu,$ at -96.2°F, for the Nominal 77 Mole Percent Propane in Methane Mixture

Pressure psia	$-\mu \times 10^3$ °F/psi
300	5.50
400	5.52
600	5.57
800	5.62
1000	5.67
1200	5.72
1400	5.78
1600	5.85
1800	6.02

Figure 41. Temperatures and Pressures of Measurement for the Nominal 51 Percent Mixture

in Tables LV and LVI, respectively.

TABLE XX

COMPOSITION OF NOMINAL 51 MOLE PERCENT PROPANE IN METHANE MIXTURE AS DETERMINED BY CHROMATOGRAPHIC ANALYSES

	Mole Fraction
Nitrogen	< 0.05
Methane	49.4
Ethane	< 0.05
Carbon Dioxide	< 0.05
Propane	50.6
Butane	< 0.05
	< 100.2

Flowmeter Calibrations

Again there were shifts in flowmeter calibration from series to series. The first two calibrations made were very successful and yielded results lying essentially on a single curve. These results are illustrated as the solid line on Figure 42. Again the flow is not laminar in the flowmeter. The average deviations of the experimental calibrations points from the correlating equation for these two runs is ±0.20 percent for the 20 experimental points.

The third calibration was found to differ by about 0.5 percent from the results of the first two. The curve for this calibration is shown as a center line of Figure 42. The flowmeter was removed from the system and ultrasonically cleaned. In addition the entire section around the flowmeter was cleaned. The flowmeter was replaced and three sets of calibrations made. These gave reproducible results. The results are represented by the dashed line on Figure 42. The increased curvature of this last line made it necessary to fit the single curve with two

Figure 42. Results of Flowmeter Calibrations for the Nominal 51 Percent Mixture

calibration equations, one for low and the other for high flow rates. The average deviations of the experimental calibrations points from the correlating equation for these three runs is ± 0.13 percent for 17 points in the low flow rate region and ± 0.18 percent for the 20 points at higher flow rates.

In using the results of flowmeter calibrations to establish the experimental values of the flow rate, results are used which most adequately represent the flow rate at the time of an experimental run. In cases where the flowmeter calibrations changed between runs (in this case between series 20 and 30 or runs 10 and 21) a somewhat arbitrary decision must be made in order to determine when the calibration most likely changed. This is accomplished by carefully investigating the interpreted experimental runs in light of all the data obtained. calibrations runs used to interpret specific data for this mixture are indicated in Table XXI, together with values of the total number of points for each set from the calibration equation. For the case of this mixture the correlating equations do not yield identical values of the flow rate in the region of overlap. For example, Runs 37 and 38 were obtained in the region of overlap and both correlating equations -were used to calculate the flow rate. Table XXII shows the results of calculating flow rates by both equations for these runs. It shows that the effect of the choice of equation in this case is not insignificant (0.3 percent). All of the flowmeter calibration constants used in Equation (76) are presented in Table LVII of Appendix B.

After completion of the three mixtures it now appers that the flowmeter is one of the main sources of uncertainty and trouble in the modified
recycle system. It is affected by both physical upsets and impurities.

TABLE XXI

Calibration Data Used in

Interpreting Experimental Results

Experimental Runs	Calibration Runs	Cal	mber of ibration Points	Average Deviation (percent)
1 - 21 1 - 3R	1 0 , 20		20	.20
22 - 38	40,50,60	Low:	17	.13
4R		High:	20	.18

TABLE XXII

Effect of Calibration Equation
on Isobaric Heat Capacity Results

Run	Pressure (psia)	Inlet Temperature (°F)	Outlet Temperature (°F)	C _p (Btu/lb°F) High Flow Equation	C _p (Btu/lb°F) Low Flow Equation
37	1700	131.0	144.6	0.965	0.965
		131.1	158.3	0.961	0.962
		131.2	172.0	0.964	0.963
38	1300	131.2	144.8	1.088	1.085
		131.4	158.7	1.050	1.047
		131.3	171.7	1.017	1.014

The flowmeter calibration can be changed by either small amounts of oil or solid materials, overpressurization, removing it from the system for any length of time, and mechanical handling.

Check on Assumption of Adiabaticity

For this mixture a special flowmeter calibration was made to increase the range of possible flow rates in order to test the assumption of adiabaticity. Normally, the range of possible flow rates is determined by the pressure drop across the water manometer. The reading is usually allowed to vary between 2 and 10 inches of water. For this test a special calibration was made with only 1 inch of water pressure drop. This essentially doubles the range of reciprocal flow rate. Four of the points including the point at highest flow rate and the one at lowest flow rate are plotted on Figure 43. A fifth point differed significantly from the other four indicating the probability of a recording error and is not plotted. The figure as well as the results for the 77 percent mixture indicates that the heat capacity obtained is essentially independent of flow rate within the limits of precision of the measurements (±0.3 percent). These results are consistent with those of other studies of this effect.

Interpretation of Results

Isobaric

The isobaric data for this mixture in the single phase region were interpreted in the same way as the data for propane and the 76.6 mole percent mixture. Results right above the critical region at 1500 psia are presented in Figure 44. This curve illustrates the broad maximum which occurs in the heat capacity in the region right above the critical

Figure 43. Heat Capacity as a Function of Reciprocal Flow Rate for the Nominal 51 Percent Mixture

Figure 44. Isobaric Heat Capacity at 1500 psia in the Upper Temperature Range for the Nominal 51 Percent Mixture

point for the mixture. This peak is much less sharp—than the peaks either for the 76.6 percent mixture (Figure 32) or for pure propane (Figure 12) both at 1000 psia. It resembles the peaks at higher pressures for these systems (Figures 34 and 15). This suggests that the two-phase envelope for a mixture tends to "cover up" regions where there are drastic changes in the physical properties of a single component. It further suggests that it may actually be easier to represent the behavior of a mixture than of a pure component because the regions most difficult to reproduce or predict for the pure component do not exist for the mixture.

A majority of the values of heat capacity, C_p, obtained from interpretation of isobaric data in the single phase regions are summarized in Table XXIII for equal intervals of temperature and pressure. Table XXIV lists supplementary values of heat capacity in the regions of significant change such as near the maxima in the heat capacity and near the saturation curves. All of the experimental heat capacity results are summarized in Figure 45.

A typical enthalpy traverse of the two-phase region for this mixture at constant pressure is illustrated in Figure 46. Note the large temperature change between dew point and bubble point (almost 200°F). Experimentally determined values of the isobaric enthalpy change on vaporization are listed in Table XXV together with the experimentally determined values of the bubble point and the dew point for the mixture. Isothermal

Again it was necessary to estimate $\phi = f(P)$ at low pressures. This procedure is illustrated for this mixture in Figure 47. Values were calculated using the BWR equation of state with the original constants

TABLE XXIII

Tabulated Values of Isobaric Heat Capacities

for a Nominal 51 Mole Percent Propane in Methane Mixture

C_p (Btu/lb - °F)

		Ъ,	,	,		
Temperature	And the second s	anganan arabikan sa karan arabikan arabikan arabikan arabikan arabikan arabikan arabikan arabikan arabikan arab	Pressur	e, psia		
°F	0	250	500	1000	1500	2000
-280	0.546**	0.545	0.545	0.543	0.543	0.544
- 270	0.548**	0.547	0.548	0.544	0.545	0.546
-260	0.551**	0.549	0.550	0.546	0.546	0.548
- 250		0.552	0.553	0.548	0.548	0.549
-240		0.554	0.555	0.550	0.550	0.551
- 230		0.557	0.558	0.553	0.552	0.554
- 220		0.560	0.560	0.555	0.555	0.556
-210		0.563	0.563	0.559	0.557	0.558
-200		0.566	0.565	0.562	0.561	0.561
- 190		0.569	0.568	0.565	0.564	0.563
-180		0.572	0.571	0.568	0.567	0.566
-170		0.576	0.574	0.572	0.570	0.568
-160		0.581	0.577	0.576	0.573	0.571
- 150		0.586	0.581	0.579	0.577	0.574
-149.0		0.586	0.581	0.580	0.577	0.574
-140		0.592	0.585	0.584	0.581	0.577
-130			0.590	0.588	0.585	0.581
- 120			0.595	0.593	0.589	0.585
-110			0.602	0.598	0.594	0.589
-100			0.611	0.604	0.599	0.593
- 90			0.627	0.610	0.605	0.597
-80				0.618	0.611	0.602
-70				0.627	0.618	0.608
-60				0.637	0.626	0.613
- 50				0.649	0.635	0.620
-40				0.661	0.643	0.627
-3 0				0.675	0.653	0.635
- 20				0.690	0.664	0.643
-1.0				0.708	0.677	0.652
0				0.730	0.692	0.662

-144Table XXIII continued

Temperature_	Pressure, psia							
°F	0	250	500	1000	1500	2000		
3.5				0.741	0.697	0.666		
10				0.771	0.708	0.673		
20					0.726	0.686		
3 0					0.746	0.700		
740					0.770	0.715		
50	0.419*				0.800	0.732		
60	0.425*				0.833	0.749		
70	0.430*	0.507			0.870	0.768		
80	0.435*	0.508			0.907	0.787		
90	0.441*	0.509			0.944	0.805		
100	0.446*	0.510			0.979	0.821		
1.10	0.451*	0.511	0.664		1.012	0.837		
120	0.457*	0.512	0.62]		1.031	0.852		
130	0.462*	0.514	0.605		1.037	0.866		
1.40	0.468*	0.516	0.596	1.009	1.030	0.879		
150	0.473*	0.518	0.589	0.904	1.009	0.889		
151.2	0.475*	0.518	0.588	0.887	1.003	0.891		
160	0.479*	0.520	0.583	0.837	0.980	0.895		
170	0.485*	0.523	0.580	0.790	0.948	0.891		
180	0.490*	0.525	0.577	0.756	0.916	0.882		
190	0.496*	0.529	0.575	0.730	0.885	0.873		
200	0.502*	0.537	0.575	0.710	0.857	0.862		
210	0.507*	0.536	0.575	0.695	0.831	0.850		
220	0.513*	0.540	0.576	0.684	0.808	0.837		
230	0.519*	0.545	0.578	0.675	0.788	0.825		
240	0.524*	0.549	0.579	0.669	0.771	0.814		
250	0.530*	0.554	0.582	0.664	0.756	0.804		
251.3	0.531*	0.555	0.582	0.663	0.754	0.803		
260	0.536*	0.560	0.585	0.661	0.743	0.795		

-145Table XXIIIcontinued

Temperature -	are Pressure, psia						
T.	0	250	500	1000	1500	2000	
270	0.541*	0.565	0.589	0.658	0.733	0.787	
280	0.547*	0.570	0.592	0.656	0.726	0.780	
290	0.553*	0.574	0.596	0.655	0.720	0.773	
3 00	0.558*	0.579	0.600	0.655	0.718	0.767	

^{*} Ideal gas values of Rossini et al (118)

^{**} Experimental data of Cutler and Morrison (23)

TABLE XXIV

Supplementary Table of Experimental Values of Isobaric Heat Capacity, $C_{\rm p}$ (Btu/lb) Pressure

700 psia	ì	1300]	osia	1700	psia
Temp.	$^{\mathrm{c}}^{\mathrm{p}}$	Temp. (°F)	Ср	Temp.	Сp
-50 (l)	.659	50	.8623	110	.9247
135 (g)	.740	60	.9013	120	.9489
140	.724	70	.9390	1 30	.9581
145	.707	80	.9889	140	.9609
150	.692	90	1.0635	150	.9602
155	.676	100	1.1320	160	.9570
		110	1.1597	170	.9532
		120	1.1486		
		1.40	1.1171		
		150	1.0208		
		160	.9678		
		170	.9141		

Figure 45. Isobaric Heat Capacity for the Nominal 51 Percent Mixture

Figure 46. Enthalpy Differences for the 51 Percent Mixture in the Two-Phase Region

TABLE XXV

Properties of the Nominal 51 Mole Percent

Propane in Methane Mixture at the Phase Boundaries

00	2	Dew Point (°F)	132.7			140.5	137.7
1000	138.2	Bubble Point (°F)	11.1	11.1	11.1		
	5	Dew Bubble Dew Point (°F) Point (°F)	123.6			123.5	123.5
700	197.5	Bubble Point (°F)	7.97-	-46.2	-46.1		
Pressure (psia) 500	225.0	Dew Point (°F)	104.1			104.6	103.9
Pres 50	225	Bubble Point (°F)	-82.9	-80.9	-83.4		
250	253.4	Dew Point (°F)	62.0			63.8	60.3
25	253	Bubble Dew Point (°F)	-136.0	-125.0	-136.3		
	$(\Delta \underline{H} \text{ vap})$	Phase Boundaries	This Investigation	Akers, Burns and Fairchild	Price and Kobayashi	Reamer, Sage and Lacey	Sage, Lacey and Schaafsma

Figure 47. Isothermal Throttling Coefficient for the 51 Percent Mixture at $152.2^{\circ}F$

for methane and propane together with mixing rules as originally suggested. Typical results presented as open circles on Figure 47. Note that the agreement between the BWR equation and the experimental values is good throughout the entire region of pressure.

Again PVT data for the mixture lll as interpreted 37 using Equation (43) yielded values of $\left\lceil \frac{(H^{O}-H)}{P} \right\rceil_{m}$ between zero pressure and 200 psia. This value is presented as a dashed line on Figure 47. Also Equations (32) to (34) were used with published values of the second virial coefficient for methane and propane and the interaction term 27,58 to estimate φ^{O} . The resulting values at 152.5°F are plotted on Figure 47. Values from the two sources disagree by over 15 percent. Finally values of μ , the Joule-Thomson coefficient, have been measured by Head 50 for a 51.1 mole percent propane in methane mixture at low pressures. By combining experimentally measured heat capacities from this investigation and Joule-Thomson coefficient data as indicated by Equation (8) values of ϕ can be calculated. These results are presented as solid circles on Figure 47. There is considerable disagreement between the results of the various methods. The solid line on Figure 47 was drawn to be consistent with the data obtained at elevated pressures and the estimates based on data from the literature in the low pressure range. In the low pressure region the line was drawn to agree with the BWR equation of state because of its excellent agreement with the high pressure data. This line was also reasonably consistent with volumetric data. Values of the isothermal throttling coefficient, φ , obtained by interpreting the data (including values of ϕ^{O} and other values at low pressure determined as outlined above) are reported for each of the experimental isotherms in Table XXVI. These results are summarized in Figure 48.

TABLE XXVI

Experimental Values of the Isothermal Throttling Coefficient, \emptyset , for a 51 Mole Percent Propane in Methane Mixture

 $\emptyset \times 10^2$ (Btu/lb. psia)

Pressure	Ten	nperature (°F)		
psia	-149.0 ^a	3. 5	152.2	251.3
Op	<u>-</u> -		-4.44	-3.21
100			-4.67	-3.30
200			-4.90	-3.38
3 00	+0,305		- 5 . 16	-3.46
400	+0.306		-5.46	-3.53
500	+0.307		- 5.81	-3. 60
600	+0.308		-6.20	-3. 67
700	+0.309		-6. 62	-3.73
800	+0.310	-	-7.05	-3. 79
900	+0.312		-7.45	- 3.83
1000	+0.313	-0.1904	-7.61	-3. 85
1100	+0.314	-0.1463	-7.44	-3.83
1200	+0.315	-0.1069	-6.80	-3.80
1300	+0.317	-0.0745	-6.08	-3.75
1400	+0.318	-0.0474	-5.31	-3.67
1500	+0.319	-0.0240	- 4.52	-3.56
1600	+0.321	-0.0030	-3.82	-3.42
1700	+0.322	+0.0156 ^a	-3.23	-3. 26
1800	+0.324	+0.0320 ^a	-2.75	-3.09
1900	+0.325	+0.0466 ^a	-2.3 5	-2.9 0
2000	+0.326	+0.0593 a	-2.01	-2.72

a Calculated using Equation (8)

b Extrapolated to zero pressure based primarily on PVT data

Figure 48. Isothermal Throttling Coefficient for the 51 Percent Mixture

One experimental isothermal run was made into the two-phase region at 3.5°F. A break in the curve was obtained at 966 psia. This break indicated the upper pressure at which vaporization starts.

Isenthalpic

Twelve determinations were made with the throttling calorimeter under conditions such that a drop in pressure resulted in an increase in temperature (Run 4R on Figure 41). The inlet temperature was constant at -149.0°F in all cases. The scatter in the data of greater than 1 percent as illustrated in Figure 49 is the result of the measurement of unusually small temperature differences due to the small Joule-Thomson effect at these conditions. When this effect is related to an enthalpy difference by Equation (17) and used in the preparation of a PTH diagram or table the error involved in this scatter becomes extremely insignificant. The values of the Joule-Thomson coefficient determined

TABLE XXVII

EXPERIMENTAL VALUES OF THE JOULE-THOMSON COEFFICIENT, µ, AT -149.0°F FOR THE 51 MOLE PERCENT PROPANE IN METHANE MIXTURE

from these data are summarized in Table XXVII.

Pressure psia	-μ x 10 ³ °F/psi
300	5.24
400	5.26
600	5 . 30
800	5 . 35
1000	5.40
1200	5.44
1400	5.48
1600	5.53
1800	5 . 57
2000	5.62

Consistency Checks

As illustrated for propane, if isobaric, isothermal, and isenthalpic data are obtained for a system at properly selected values of pressure and temperature, it is possible to check the thermodynamic consistency of such data. For the 77.6 mole percent propane in methane mixture experimentally determined isobars and isotherms intersect forming closed loops which are shown in Figure 50. As can be seen, the largest percentage deviation is 0.47 percent for a loop which included both isobaric and isothermal data within the two-phase region. The average absolute deviation for the 14 loops was found to be 0.18 percent. This should give some indication of the accuracy of the data presented. Figure 51 shows the results of consistency checks for the 50.6 mole percent propane in methane mixture. The largest percentage deviation is 0.74 percent for a loop which included both isobaric and isothermal data within the twophase region. This is the largest deviation obtained using the present recycle flow facility. The average absolute deviation for the 13 loops was found to be 0.23 percent.

Enthalpy Diagrams

The data reported in previous sections have been used to prepare skeleton tables of values of the enthalpy for these mixtures at selected values of pressure and temperature as reported in Tables XXVIII and XXIX. In addition, enthalpy - pressure - temperature diagrams have been prepared and are presented as Figures 52a and 52b, and 53a and 53b.

The 76.6 Mole Percent Propane in Methane Mixture

The following procedure was used in preparing the skeleton table and diagram for the 76.6 mole percent propane in methane mixture.

Figure 50. Checks of Thermodynamic Consistency of Thermal Data for the 77 Percent Mixture

Figure 51. Checks of Thermodynamic Consistency of Thermal Data for the 51 Percent Mixture

-159-

TABLE XXVIII

TABULATED VALUES OF ENTHALPY FOR THE NOMINAL 77 MOL PERCENT PROPANE IN METHANE MIXTURE

	Temperati	ure, F	Saturated	Saturated	Latent Heat	
Pressure (psia)	Bubble Point	Dew Point	Liquid Enthalpy (Btu/lb)	Vapor Enthalpy (Btu/1b)	Of Vaporizatio (Btu/lb)	
(1014)	101110					
100	-144	+36	69.0	325.0	256.0	
200	-100	+83	93.6	335.7	242.1	
300	-62	+110	115.3	342.6	227.3	
400	-24	+132	137.2	344.7	207.5	
500	12	147	159.2	342.7	183.5	
600	47	160	181.3	338.7	157.4	
700	76	170	201.6	333.4	131.8	
800	102	178	221.6	326.5	104.9	

H (Btu/lb)

-280 -270 -260 -250 -240 -230 -220 -210 -200	0 234.9 237.7 240.4 243.1 245.9 248.6	250 1.2 6.1 11.1 16.1	500 2.1 7.1	750 750	essure, ps 1000	ia 1250	1500	1750	200
-280 -270 -260 -250 -240 -230 -220 -210	234.9 237.7 240.4 243.1 245.9	1.2 6.1 11.1	2.1		1000	1250	1500	1750	200
-270 -260 -250 -240 -230 -220 -210	237.7 240.4 243.1 245.9	6.1 11.1	2.1 7.1	3.7					
-260 -250 -240 -230 -220 -210	240.4 243.1 245.9	11.1	7.1		4.2	5.2	5.9	6.9	8.
-250 -240 -230 -220 -210	243.1 245.9			8.2	9.2	10.0	10.7	11.6	12.
-240 -230 -220 -210	245.9		12.0	13.3	14.2	15.0	15.6	16.5	17.
-230 -220 -210			17.1	18.3	19.2	20.0	20.5	21.4	22. 27.
-220 -210	248.6	21.1	22.0	23.2 28.2	24.0 29.0	24.9 30.0	25.5 30.7	26.5 31.6	32.
-210	251.4	26.0 30.9	27.0 32.1	33.2	34.0	34.9	35.7	36.5	37.
	251.4	35.9	37.0	38.1	39.0	39.9	40.7	41,5	42.
	257.1	40.9	42.0	43.2	44.0	44.9	45.8	46.6	47.
-190	259.9	45.9	47.1	48.4	49.2	50,0	50.8	51.5	52.
-180	262.8	50.9	52.3	53.5	54.4	55.2	55.9	56.7	57.
-170	265.7	56.1	57.5	58.5	59.4	60.4	61.0	61.9	62.
-160	268.7	61.3	62.7	63.8	64.6	65.5	66.1	67.0	67.
-150	271.7	66.6	68.0	67.0	69.8	70.6	71.4	72.2	73
-140	274.7	71.8	73.2	74.2	75.0	75.7	76.6	77.4	78.
-130	277.7	77.0	78.5	79.4	80.2	80.8	81.7	82.5	83.
-120	280.8	82.3	83.8	84.8	85.5	86.0	86.9	87.6	88
-110	284.0	87.9	89.0	90.2	90.8	91.5	92.3	93.0	93
-100	287.1	93.7	94.4	95.5	96.2	97.0	97.7	98.4	98
- 96.8	288.2	95.7	96.1	97.2	98.0	98.6	99.3	100.0	100 104
- 90	290.4	99.4	100.0	100.9	101.6	102.2	103.0	103.6	104
- 80	293.6	105.0	105.5	106.3	107.0	107.6 113.0	108.3 113.7	109.0 114.5	114
- 70	296.9	112.3	111.0	111.9 117.4	112.5 118.0	118.6	119.5	120.1	120
- 60	300.3	119.3	116.7	123.0	123.6	124.4	125.1	125.7	125
- 50 - 40	303.7 307.1	126.5 133.8	122.4 128.2	128.6	129.3	130.1	130.8	131.3	131
- 40 - 30	310.6	140.9	134.0	134.3	134.9	135.7	136.4	136.9	137
- 20	314.2	148.2	139.9	140.1	140.6	141.4	142.2	142.8	143
- 10	317.8	156.2	145.8	146.0	146.3	147.1	148.0	148.5	148
0	321.4	163.7	152.0	152.1	152.1	152.9	153.9	154.3	154
10	325.2	172.5	158.3	158.2	158.3	159.0	159.9	160.3	160
20	328.9	181.2	165.0	164.4	164.5	165.2	165.9	166.4	166
30	332.7	191.1	173.1	170.6	170.7	171.5	172.0	172,6	173
40	336.6	201.8	181.4	176.9	177.3	177.9	178.4	178.7	179
50	340.5	214.7	189.7	183.4	183.9	184.4	184.9	185.0	185
60	344.5	229.4	198.8	190.5	190.8	191.0	191.4	191.5	191
70	348.6	249.1	207.9	197.6	197.7	197.8	197.9	197.9	197
80	352.7	276.2	218,1	204.8	204.6	204.9	204.5	204.4	204
90	356.9	312.0	228.6	212.3	212.0	211.7	211.4	211.0	210 217
100	361.1	340.7	240.5	221.9	219.3	218.7 226.0	218.3 225.4	217.7 224.8	224
110	365.4	346.9	254.2	231.6 242.0	227.2 235.4	233.9	233.0	232.0	231
120	369.7	352.3	271.1 292.0	253.4	243.6	241.9	240.6	239.5	238
130 140	374.1 378.6	357.5 362.8	317.0	266.5	253.4	250.3	248.4	246.9	245
150	383.1	368.1	345.0	281.5	263.6	259.6	256.4	254.3	253
160	387.7	373.3	352.6	299.0	275.1	268.9	264.5	262,0	260
170	392.3	378.5	359.2	318.8	288.2	278.9	273.0	269.6	268
180	397.0	383.8	366.0	337.7	302.6	288.9	282.0	278.3	276
190	401.8	389.1	372.6	347.7	316.1	298.8	291.0	286.7	283
200	406.6	394.2	378.7	356.6	329.5	309.0	300.0	295.0	291
201.0	407.1	394.8	379.4	357.5	330.7	310.2	301.0	295.8	292
210	411.5	399.6	384.8	365.1	341.2	320.3	309.4	303.6	300
220	416.4	404.9	391.0	372.8	351.5	331.5	319.4	312.9	308
230	421.4	410.3	397.0	380.5	361.4	342.2	329.4	322.1	317
240	426.4	415.7	403.0	387.9	370.6	352.7	339.6	331.3	326
250	431.5	421.3	409.0	395.2	378.9	362.6	349.4	340.1	334
251.0	432.0	421.9	409.8	396.1	379.8	363.6	350.3	341.2	335
260	436.7	426.7	415.0	402.0	387.2	372.4	359.2	349.6	343
270	441.9	432.2	421.2	408.7	395.0	381.0	368.0	358.3	352
280	447.2	437.7	427.3	415.4	402.4	389.0 397.2	376.9	367.9 376.8	360 369
290 300	452.5 457.9	443.5 449.3	433.2 440.2	421.6 427.7	409.4 416.0	404.8	385.8 394.5	385.6	377

Figure 52a. Pressure-Temperature-Enthalpy Diagram for the 77 Percent Propane in Methane Mixture

ENTHALPY (BTU/LB)

Figure 52b. Pressure-Temperature-Enthalpy Diagram for the 77 Percent Propane in Methane Mixture

TABLE XXIX

TABULATED VALUES OF ENTHALPY FOR THE NOMINAL 51 MOL PERCENT PROPANE IN METHANE MIXTURE

	Temperat	tn	Saturated	Saturated	Latent Heat
Pressure (psis)	Bubble Point	Déw Point	Liquid Enthalpy (Btu/lb)	Vapor Enthalpy (Btu/lb)	of Vaporization (Btu/lb)
100	-180	13	56.6	327.0	270.4
200	-149	50	74.8	335.5	260.7
300	-125	73	89.7	339.6	249.9
400	-103	91	102.9	341.3	238.4
500	-83	104	115.4	341.5	226.1
600	-66	116	127.8	340.6	212.8
700	-46	124	140.0	338.4	198.4
800	-27	132	152.7	335.6	182.9
900	-9	137	165.8	330.4	164.6
1000	11-	137	180.0	322,2	142.2
1100	- 31	136	194.5	312.1	117.6
1200	51	131	210.2	299.6	89.4
1300	79	114	235.4	276.5	41.1

H (Btu/lb)

emperature					essure,				- 1	Temperature					essure,				
(*F)	0	250	500	750	1000	1250	1500	1750	2000	(°F)	0	250	500	750	1000	1250	1500	1750	500
-280	234.0	1.5	2.1	2.9	3.9	4.9	6.0	6.7	7.5	30	342.1	260.4	224.0	210.6	198.1	193.0	192.5	192.3	192.
-270	237.1	7.0	7.5	8.4	9.6	10.4	11.4	12.1	13.1	40	346.2	278.2	234.9	220.2	208.1	201.1	200.1	199.3	199.
-260	240.2	12.3	12.9	13.9	15.1	16.0	16.7	17.6	18.5	50 .	350.4	301.9	247.0	229.7	. 217.6	209.3	208.2	207.2	206.
-250	243.4	17.7	18.5	19.5	20.4	21.3	22.2	23.0	24.0	60	354.6	330.5	260.0	239.8	227.6	218.3	216.3	214.6	213.
-240	246.5	23.4	24.0	24.9	26.0	26.8	27.7	28.5	29.5	70	358.9	341.7	274.2	251.1	237.6	228,1	224.8	222.8	221
-230	249.7	28.9	29.6	30.5	31.5	32.3	33.3	34.1	34.9	80	363.2	347.0	290.8	263.0	248.4	238.4	233.8	231.0	229
-220	252.9	34.6	35.4	36.3	37.0	37.6	38.7	39.6	40.4	90	367.6	352.0	309.4	276.2	259.5	248.5	242.9	239.3	237
-210	256.1	40.2	40.9	40.8	42.5	43.3	44.4	45.2	46.1	100	372.0	357.5	330.5	290.2	271.7	259.9	252.2	247.8	245
-200	259.3	45.9	46.5	47.4	48.2	49.0	49.9	50.7	51.7	110	376.5	362.4	345.1	306.2	284.7	271.5	262.3	256.7	253
-190	262.5	51.4	52.3	52.9	53.6	54.6	55.5	56.4	57.2	120	381.0	367.7	351.3	323.8	298.7	283.4	272.5	266.0	262
-180	265.8	57.0	57.9	58.8	59.6	60.4	61.3	62.1	62.8	130	385.6	372.9	357.6	338.5	313.6	295.4	282.7	275.3	270
-170	269.1	62.8	63.6	64.3	65.2	65.9	66.9	67.7	68.6	140	390.3	377.9	363.7	346.1	325.8	306.7	293.1	284.7	279
-160	272.4	68.6	69.5	70.2	71.0	71.7	72.5	73.3	74.4	150	395.0	383.2	369.5	353.7	335.3	317.2	303.3	294.0	28
-150	275.7	74.4	75.1	75.8	76.7	77.5	78.3	79.0	80.0	152.2						319.2			
-149.0	276.0	75.0	75.7	76.5	77.2	78.0	78.9	79.7	80.5	160	399.8	388.5				327.1			
-140	279.1	80.4	80.8	81.4	82.6	83.5	84.3	85.0	85.8	170	404.6	393.7				336.1			
-130	282.5	93.5	86.7	87.4	88.4	89.3	90.0	90.7	91.6	180	409.5	398.9			359.8	345.0	332.0	322.5	31
-120	285.9	107.0	92.7	93.6	94.3	95.0	95.8	96.5	97.4	190	434.4	404.2		380.8		353.5			
-110	289.4	118.2	98.6					102.4	103.3	200	419.4	409.6	398.7			361.7			
-100	292.9					107.0				510	424.4	414.8	404.7		381.6			349.0	
-90			310.8					114.3	115.1	220	429.5	420.2					366.5		
-80			119.0					120.3	121.2	230	434.7	425.7		406.0		384.7		365.7	
-70	303.6	152.7	130.5	124.6	124.5	125.1	125.9	126.4	127.2	240	439.9	431.2		412.4		392.1	382.2	373.7	
-60			140.6					132.5		250	445.1	436.6		418.2		399.0	390.0	381.6	37
-50			149.9							251.3	445.8	437.2	428.5	419.2	409.6	399.9	390.8	382.5	
-40			159.1							260	450.5	442.2	433.7	424.9	415.4	407.2	397.4	389.3	38
-30			168.3					151.4	151.9	270	455.8	447.9	439.5	431.0		413.3	404.7	397.1	39
-50			176.7					158.0		280	461.3	453.4	445.5	437.3	428.5	420.1	411.9	404.6	39
-10			185.5							290	466.8	459.2	451.3	443.3		427.1			
0		217.5	194.7							300	472.3	465.1	457.4	449.7	441.6	434.1	426.5	419.7	41
3.5	331.4					173.9													
10			204.2																
50	338.0	244.3	213.7	200.8	188.3	185,6	185.2	185.0	185.0										

Figure 53a. Pressure-Temperature-Enthalpy Diagram for the 51 Percent Propane in Methane Mixture

Figure 53b. Pressure-Temperature-Enthalpy Diagram for the 51 Percent Propane in Methane Mixture

- 1. Reference states were taken to be $\underline{H}=0$ Btu/lb for the pure components as saturated liquids at -280°F. This choice is consistent with that previously used for pure methane, pure propane and for other mixtures of propane and methane which have been investigated 80,82,85,87,88
- 2. The enthalpy of pure methane as a gas at zero pressure and +201.0°F was calculated using published data on the latent heat of vaporization at 5 psia, the BWR equation of state with the original constants to correct from 5 psia to zero pressure at -280°F and published values of the ideal gas heat capacity between -280 and +201.0°F. These calculations are summarized below.

	$\frac{H(Btu/lb)}{}$
Enthalpy change on vaporization at -280°F	+228.27
Effect of pressure on enthalpy (5 to 0 psia)	+1.43
Effect of temperature on zero pressure enthalpy (-280 to +201.0°F)	+248.67
$\frac{\text{H}^{0}}{\text{C}_{1}}$ (Pure methane at zero pressure and +201.0°F)	478.37

3. The enthalpy of pure propane as a gas at zero pressure and 201.0°F was calculated using data on the liquid phase heat capacity, the latent of heat of vaporization at 1 atmosphere, the BWR equation of state to correct from 1 atmosphere to zero pressure at the normal boiling point, and values of the ideal heat capacity to account for a change in temperature from the normal boiling point of propane to 201.0°F. These calculations are summarized below.

	$\underline{H}(Btu/lb)$
Saturated liquid (-280 to -43.7°F)	115.30
Enthalpy change on vaporization at -43.7°F	183.17
Effect of pressure on enthalpy (14.7 to 0 psia)	2.70

Effect of temperature on zero pressure enthalpy
(-43.7°F to +201.0°F)

97.99

HOCZ (Pure propane at zero pressure and +201.0°F)

399.16

- 4. The enthalpy of the propane-methane mixture at zero pressure and 201.0°F was calculated assuming negligible heat of mixing under these conditions. The molecular weight of methane was taken to be 16.042 and that of propane as 44.094. The resulting value for the mixture is 407.08 Btu/lb.
- 5. The isothermal effect of pressure on the enthalpy of the mixture at 201.0°F was established from the basic experimental data obtained at this temperature (see Figure 36). As indicated previously, extrapolation of the experimental data to zero pressure was necessary and involved application of data from the literature. 7,8,37,58,111
- 6. Isobaric data reported in this manuscript were used at various pressures to determine the isobaric effect of temperature on enthalpy in both the gaseous and liquid regions as well as within the two-phase envelope. The limits of the two-phase region were determined using results from the traverses of the two-phase regions which were made during the course of this investigation (Table XVII and Figures 35 and 38) supplemented by data from the literature.
- 7. A skeleton table of values determined in this manner was prepared. Slight adjustments were made in the values such that all deviations reported in Figure 50 were reduced to zero. The final results are presented as Table XXVIII.
- 8. Values from the skeleton table were plotted on graph paper and a smooth plot of the results was prepared by graphical methods. The PTH diagram is presented as Figures 52a and 52b.

The 50.6 Mole Percent Propane in Methane Mixture

Essentially the same procedure was used for this mixture as for the 76.6 mole percent mixture. However, the enthalpy at zero pressure and 152.2°F was calculated from the data of the pure components. The resulting value for the enthalpy of the mixture under these conditions is 396.05 Btu/lb.

The isothermal effect of pressure on the enthalpy at 152.2°F was established from the basic experimental data and extrapolated to zero pressure by application of data from the literature 7,8,27,33,50,58,111 for this mixture.

A skeleton table of values determined for this mixture is given in Table XXIX. Values from the skeleton table are presented as a smooth plot on Figures 53a and 53b.

Comparison with Other Published Data

Enthalpy Data

There are some data in the literature which permit direct comparison with the data reported here. Cutler and Morrison²³ report data on the heat capacity of liquid mixtures of methane and propane at temperatures around -280°F as well as data on the heat of mixing of liquid methane and propane at -280°F. The values of the heat capacity at -260 and -280°F for the saturated liquid based on data reported by Cutler and Morrison are plotted on Figure 54 together with values obtained by extrapolation to lower temperatures of isobaric determinations at elevated pressures. The data from these independent investigations illustrate the effect of pressure on the isobaric heat capacity in the dense fluid region. There may be some question regarding the difference in the curvature

Figure 54. The Effect of Pressure on $C_{\rm p}$ at Low Temperatures Including Comparison with Data of Cutler and Morrison (23)

between the results for the two mixtures. The curvature, however, is difficult to determine because of the small variation in heat capacity with respect to pressure (note the 1 percent band).

Values of heat capacity of the mixtures can be calculated at zero pressure from published values of ideal heat capacities. Values for both mixtures thus determined are plotted on Figure 55 together with values obtained during the course of this investigation. These values from independent sources are consistent and illustrate the effect of pressure on the isobaric heat capacity in the gaseous region at temperatures just above the two-phase envelope.

Data on the Joule-Thomson coefficient, μ , have been published for a 51.1 mole percent propane in methane mixture at 152°F at pressures up to 600 psia by Head. In addition, data on the Joule-Thomson coefficient have been published for several binary mixtures of methane and propane over a wide temperature range and up to 1500 psia. These latter values were interpolated with respect to composition to establish the values reported in Table XXX. In addition to both sets of $\boldsymbol{\mu}$ values, values of C and φ for the 50.6 mole percent mixture and the ratio of $\frac{-\mu c}{\sigma} \equiv 1.00$ are also listed. The values of μ obtained by both experimental investigators are reasonably self consistent, however, they differ from the experimental results of this investigation by as much as 10 percent. The data of Head 50 when combined with experimental heat capacities from this investigation and ideal gas heat capacities reported in the literature by Rossini ll8 give the results as shown in Figure 47. These results do not agree well with values of isothermal throttling coefficient obtained from PVT data or the BWR equation of state.

The Joule-Thomson results mentioned above must be used with

Figure 55. The Effect of Pressure on $C_{\rm p}$ at High Temperatures Including Comparison with Published Values of Rossini et al. (118)

TABLE XXX $\\ \mbox{Test of Consistency of Data Fased on Equation (8)}$

Temperature (°F)	Pressure (psia)	C _p (Btu/lb°F)	Ø (Btu/lbpsi)	μ ^α (°F/psi)	$\frac{-\mu^{\alpha}C_{p}}{\emptyset}$	μ b (°F/psi)	$\frac{\mu {}^b C_p}{\emptyset}$
152.2	0 200 400 600	.475 .509 .558 .635	0440 0490 0546 0620	.0859 .0979 .1030 .1039	.927 1.017 1.053 1.064	.0856 .0978 .1038 .1068	.924 1.016 1.061 1.093
251.3	0 200 400 600 800 1000 1250	.530 .547 .570 .597 .628 .664 .712	0321 0338 0353 0367 0379 0385 0378 0356	.0592 .0614 .0627 .0633 .0627 .0608 .0569	.977 .994 1.012 1.030 1.039 1.049 1.072		

 $^{^{\}alpha}$ Interpolated with respect to composition using values of μ from Budenholzer, et. al (11).

b Values for μ for a 51.1 mole percent propane in methane mixture from Head (50).

Joule-Thomson results for propane 125 in order to obtain interpolated results for the 77 percent propane in methane mixture. The results for propane 125 extend only to moderate pressures (600 psia) but can be extended to elevated pressures by applying Equation (8) with values of C_p and ϕ from this investigation. These values were interpolated with respect to composition to establish the values reported for a 76.6 mole percent propane in methane mixture in Table XXXI. Also listed in this table are values of C_p and ϕ for the 76.6 mole percent mixture from this investigation and the ratio $-\mu C_p/\phi$. These interpolated values of μ are consistent with experimental results of this investigation to ± 3 percent.

Phase Behavior

A number of independent investigators have reported data on the vapor-liquid equilibrium of the methane-propane system. 1,109,111,126

Data from these sources were used to estimate bubble and dew points corresponding to the pressures of investigation for both the 76.6 and the 50.6 mole percent propane in methane mixtures. These results are included in Tables XVII and XXV for the 76.6 and 50.6 mole percent mixtures, respectively. The results indicate not only the variation among the various investigators, but give some indication of the accuracy of the vapor-liquid equilibrium measurements made in the course of the present investigation.

Enthalpy of the Methane-Propane System

The isobaric effect of temperature and the isothermal effect of pressure on the enthalpy have been obtained for propane, a 76.6 mole percent and, a 50.6 mole percent propane in methane mixture. Skeleton enthalpy tables and diagrams have been presented for these mixtures.

TABLE XXXI

Test of Consistency of Data Based on Equation (8)

Temperature (°F)	Pressure (psia)	C _P (Btu/lb °F)	Ø (Btu/lb psi)	μ (°F/ˌpsi)	-μC _P
	0	0.486	-0.0438		
201°F	200	0.517	-0.0519	0.1034 ^a	1.030
	400	0.579	-0.0633	0.1115 ^a	1.02
	0	0.514	-0.0376		
250°F	200	0.541	-0.0430	o.o8o7 ^b	1.015
	400	0.577	-0.0483	0.0837 ^b	1.000
	600	0.631	-0.0543	0.0874 ^b	1.016
	800	0.705	-0.0618	0.0874 ^b	0.997

- a Interpolated with respect to composition using values of μ for propane from (125) and for methane-propane mixtures from (11)
- b Interpolated with respect to composition using values of μ for the methane-propane mixtures from (11) and values of μ for propane calculated using Equation (8) and data for C_p and Ø.

In addition both isothermal and isobaric effects on enthalpy have been measured by Manker 80 and Mather 85 for a 5.1 mole percent propane in methane mixture, and an enthalpy diagram has been constructed by Mather 85. The isobaric effect of temperature on the enthalpy for a 12 and 28 mole percent mixture has been measured also by Mather 85. In constructing the enthalpy diagram for the 11.7 mole percent mixture Mather 85 used the averaged data of Dillard 22 and the BWR equation of state with the original constants 7,8 and mixing rules to determine the effect of pressure on enthalpy. These results were in agreement with each other for the 11.7 mole percent mixture, and for the 5.1 mole percent propane in methane mixture, both results agreed with the data of Mather.

For the 28 mole percent mixture, however, no experimental data were available and Mather used the BWR equation of state alone above the twophase region to establish the effect of pressure on enthalpy. His justification was based on the agreement of the equation with experimental data for the 5.2 and 11.7 mole percent mixtures. Figure 56 shows the smoothed enthalpy departures obtained above the two-phase region for the 50.6 mole percent mixture at 152.2 and 251.3°F. The points are values of the enthalpy departure obtained using the BWR equation of state. The agreement of the BWR equation with the experimental data is excellent for both isotherms (less than 0.5 Btu/lb or 1 percent). Since the BWR equation with the original mixing rules agrees with experimental data for both an 11.7 and 50.6 mole percent mixture, the use of the equation by Mather is most probably valid for the effect of pressure on enthalpy for the 28 percent mixture. Thus, accurate results for enthalpy as a function of pressure and temperature are available for a 5.2, 11.7, 28.0, 50.6, and a 76.6 mole percent propane in methane mixture and complete the

Comparison of Experimental Isothermal Enthalpy Departures with the BWR Equation of State for the 50.6 Percent Mixture Figure 56.

work on the methane-propane system.

SECTION VI - EVALUATION AND EXTENSION OF METHODS OF PREDICTION

The thermal data obtained for the methane-propane system and other data obtained at the Thermal Properties of Fluids Laboratory permits a direct evaluation and an extension of the current methods of prediction of the enthalpy of fluid mixtures at elevated pressures, which were discussed in Section II. This section presents the results of comparison studies and an extension of the corresponding states principle which was suggested from the results of these studies.

The various methods of prediction were compared with experimentally determined enthalpy data. The results of these comparisons indicated that the method of corresponding states looked most promising for representing enthalpy behavior of fluid mixtures. Empirical mixing rules were obtained for a three-parameter corresponding states correlation which accurately represented the enthalpy of the methane-propane binary system. The mixing rules were compared with generalized rules available in the literature and the technique extended to a mixture of nitrogen in methane.

Comparisons of Methods of Prediction

There have been several comparison studies of methods of prediction of mixture enthalpies. Most have been based mainly on volumetric data. The most extensive of these is the one conducted by the American Petroleum Institute. The recommendations of the authors, however, are restricted for mixtures due to the lack of direct experimental data available when the study was conducted. Since that time there have been several papers which have compared methods of prediction of enthalpies

of mixtures which are based on the more recent thermal data. These include Mather et al., 87 Barner and Schreiner, Wiener, 44 Findley et al., 152 Sehgal et al., 252 and Yesavage et al. All of the above comparisons have used experimental data obtained at the Thermal Properties of Fluids Laboratory. The last two of the above which are the most extensive, were conducted as a part of the present investigation and are summarized in the following pages.

Two separate techniques were used to make comparisons of the data with methods of prediction. The techniques used were determined by the data available at the time comparisons were made. The first set of comparisons were based on enthalpy differences resulting from 100°F isobaric temperature differences. This comparison was based on isobaric data made available for mixtures before operation of the isothermal calorimeter. In the second set of comparisons results for isothermal enthalpy departures were utilized, basing the comparisons on the most recent data.

Isobaric Enthalpy Differences

The data available and used in the first set of comparisons includes the results of isobaric determinations made on the following mixtures:

Nominal 5 percent propane in methane; Manker et al., 80,81 Mather. Nominal 12 percent propane in methane; Mather, Mather et al. 86

Nominal 28 percent propane in methane; Mather, Mather et al. 87

Nominal 43 percent nitrogen in methane; Mather, Mather et al. 87

Nominal 25 percent helium in nitrogen; Mage, Mage and Katz. 9

Nominal 50 percent helium in nitrogen; Mage, Mage and Katz. 9

Most of the data from the references cited above have been obtained with an isobaric flow calorimeter in the temperature range from -250°F to about 250°F. Some data have been extended to 250°F from about 100°F using low pressure C_p data and corrections for pressure calculated from the BWR equation. This extrapolation was made only when experimental values of C_p at 100°F agreed with predicted values within 1/2 percent and showed the same trend with temperature.

Six methods of prediction were compared with the above data. These included three three-parameter corresponding states methods. The correlations of Curl and Pitzer, and modified by Yarborough, the correlation of Yen and that of Lydersen, Greenkorn and Hougen. The BWR equation of state with the original constants and mixing rules was applied as an example of an equation of state which was compared with experimental data. Finally, comparisons were made with the empirical methods of Peters and Canjar and Peterka for hydrocarbon mixtures.

In applying these correlations to predict enthalpy changes, pseudocritical properties and values of the correlating parameters for the mixtures must be estimated. A variety of mixing rules have already been suggested. The simplest of these are the linear mixing rules based on mole fraction as originally suggested by Kay⁶⁵ for estimation of pseudocritical temperatures and pressures. This rule has been extended to estimation of the third parameter for mixtures. Pitzer and Hultgren¹⁰¹ make use of a quadratic term in predicting correlating parameters for mixtures. Gunn, Chueh and Prausnitz have suggested mixing rules applicable to mixtures containing quantum gases.⁴⁸

For the helium-nitrogen mixtures, the mixing rules of Gunn, Chueh

and Prausnitz⁴⁸ were used for all mixtures. In applying the methods of Lydersen, Greenkorn and Hougen, and Yen¹⁴⁹ for the remaining mixtures linear mixing rules⁶⁵ were applied. In connection with the Curl and Pitzer method²⁴ the mixing rules suggested by Pitzer and Hultgren¹⁰¹ were applied for the methane-propane mixtures and those of Prausnitz and Gunn¹⁰⁶ were used with the methane-nitrogen mixture.

As mentioned previously, several of the procedures use a combination of experimental enthalpy data at low pressures with estimations of the effect of pressure on enthalpy. In order to make these comparisons as meaningful as possible, common sets of low pressure data were used for all methods. For the light hydrocarbons, values were taken from the compilation of API Project 44.18 Values for nitrogen are those of Goff and Gratch. For helium, calculations were made using $C_{\rm p}^{0} = (5/2)R$.

To estimate enthalpy changes within and in the vicinity of the two-phase region of a mixture, it is essential that the limits of this region be established accurately. For purposes of obtaining the most meaningful comparison the experimental data of Price and Kobayashi were used to establish these limits for the methane-propane mixtures, the data of Bloomer and Rao were used for the methane-nitrogen mixture and those of DeVaney et al., and Mage for the helium-nitrogen mixture.

For purposes of comparison isobaric enthalpy changes at pressures of 500, 1000, 1500 and 2000 psia were calculated for five temperature intervals of 100°F and compared with experimental data. The pressures selected were those for which actual experimental enthalpy determinations were made. The large temperature interval of 100°F was selected to

dampen out regions of rapid change in the heat capacity and to reduce round off error involved in reading charts. A percentage deviation was defined as:

$$\frac{\left[\underline{\mathbf{H}}(\mathbf{T}_{2}) - \underline{\mathbf{H}}(\mathbf{T}_{1})\right]_{P(\text{predicted})} - \left[\underline{\mathbf{H}}(\mathbf{T}_{2}) - \underline{\mathbf{H}}(\mathbf{T}_{1})\right]_{P(\text{experimental})}}{\left[\underline{\mathbf{H}}(\mathbf{T}_{2}) - \underline{\mathbf{H}}(\mathbf{T}_{1})\right]_{P(\text{experimental})}}$$

Results of the comparison are presented in graphical form for the six mixtures in Figure 57. The figures represent the percentage deviation on a pressure-temperature diagram. Lines corresponding to zero percent deviation between calculated and experimental values are sketched in much the same manner one might draw a contour line from survey determinations on a topographic map. In a similar manner contour lines corresponding to ± 5 percent, ± 10 percent and ±20 percent deviation were sketched in. Suitable coding was developed to distinguish these regions and to identify regions in which comparison was not possible.

From the results of the comparison several observations can be noted.

The procedures based on use of molal average boiling point by Canjar and Peterka¹⁵ and partial molal diagrams by Peters⁹⁹ yield results which are comparable to other methods. However, they are limited to a smaller region of pressure and temperature and to fewer systems than the other methods as was mentioned in Section II.

The BWR equation of state (using the original constants derived from a variety of data) is adequate in the gaseous and critical region but predicts erroneous results in the liquid region. This results, in part, from the fact that limited data were available in this region when the original constants were evaluated and illustrates that empirical equations of state should not be used for purposes of extrapolation. Again it is

Figure 57. Comparison of Isobaric Enthalpy Differences with Numerous Methods of Prediction

Figure 57. Comparison of Isobaric Enthalpy Differences with Numerous Methods of Prediction

more limited with regard to the number of systems which can be predicted than the corresponding states methods.

Procedures based on the principle of corresponding states can be applied with some degree of confidence to predict enthalpy departures for mixtures of nonpolar compounds over a wide range of temperatures and pressures. The recent correlation of Yen yields results which are slightly better than those obtained from the correlation of Curl and Pitzer and represent a considerable improvement over that of Lydersen, Greenkorn, and Hougen. This is not too surprising since the latter two correlations are based primarily on PVT data whereas the former incorporates enthalpy data.

Enthalpy Departure Comparisons

In this set of comparisons the results of the investigation of the 76.6 mole percent propane in methane system of Table XXVIII was used as an example to determine enthalpy departures. These departures were compared with various methods of prediction with more emphasis on corresponding states correlations. Again the methods compared with include the BWR equation, the methods of Canjar and Peterka¹⁵ and Peters⁹⁹ The same three corresponding states methods were studied in this comparison as in the previous one. For the correlations of Yen, and Yarborough's textension of Curl and Pitzer, two-mixing rules, Kay's rule and the Pitzer-Hultgren rule, were used to permit comparison with each other. In addition an equation of state (Hirschfelder, Bueller, McGee, Sutton 53,54) which is based on an extended theorem of corresponding states was also studied.

In making comparisons in the two-phase region it is necessary to

Figure 58. Comparison of Isothermal Enthalpy Departures with Numerous Methods of Prediction for the 77 Percent Mixture

make some sort of flash calculation, and the NGPA Chao-Seader program and data in the literature were used to generate the vapor-liquid equilibrium data. In using the method of Peters which is not based on an enthalpy departure it was necessary to determine the departure by substraction.

Results of the comparisons are presented in graphical form in Figure 58. These graphs were obtained by plotting the difference between the experimental and calculated enthalpy departures.

$$(\underline{H} - \underline{H}^0)_{\rm exp} - (\underline{H} - \underline{H}^0)_{\rm calc} \equiv {\rm deviation} (\underline{H})({\rm Btu/lb})$$
 (78) on a pressure-temperature diagram. Percentage errors between any two points on the pressure-temperature diagram can be obtained by referring to the enthalpy table for the 76.6 percent mixture (Table XXVIII).

Figures 58a and 58b show the results of the comparisons of the data with the original BWR equation 7,8 and a recently modified BWR equation 133,134 Both results indicate good agreement in the gaseous and critical region but much poorer agreement for the liquid.

Figures 58c and 58d show the results of the comparisons for the correlations of Canjar and Peterka¹⁵ and Peters. Again both methods show fair agreement but are limited in their region of application. Figures 58e and 58f are the results for the Curl and Pitzer²⁴ and Yarborough¹⁴⁷ method using two different mixing rules. Figures 58g and 58h are the results for the Yen correlation¹⁴⁹ using two different rules. It appears that both of these correlations show a distinct improvement when used with the nonlinear Pitzer-Hultgren mixing rule as opposed to Kay's rule. For this mixture the method of Curl and Pitzer, and Yarborough is somewhat better than that of Yen and both are better than that of Lydersen, Greenkorn, and Hougen⁷⁶ (Figure 58i). Figure 58j is a

comparison of the data with the equation of state of Hirschfelder et al. 53,54 It is an empirical corresponding states equation with up to five parameters. It is fit by three analytical functions which are forced to conform at their boundaries. By comparing Figure 58j with Figures 58f and 58h it appears that a five parameter corresponding states analytical equation of state cannot reproduce the data as accurately as a three parameter corresponding states tabular function. This implies that the reduced enthalpy is (to a reasonable degree of accuracy) a function of pseudoreduced temperature, pressure, and a third parameter. However, when trying to fit the tabulated function to one or a set of analytical equations it is at present necessary to add additional parameters. Even with these additional parameters the results of the equation of state do not compare as favorably as the tabulated correlations with experimental data. This is also demonstrated by Figure 58a and 58b where the eight constant BWR equations very poorly reproduce the enthalpy departure in the liquid region.

Conclusions

A goal of this research was to extend methods of prediction to the point of accurately reproducing the enthalpy data obtained in this investigation with the hope of using an approach that would result in considerable generalization. In light of this goal and the results of the comparison studies it was decided to develop a three parameter corresponding states tabular correlation to describe the behavior of the enthalpy departures of the methane-propane system.

There were many considerations which influenced this decision. In the first place, methods such as Peters and Canjar and Peterka, 15

although reproducing the data quite effectively, do not lend themselves easily to extension and generalization. This is in part due to the fact that there is no fundamental justification for such an approach other than success in their region of application.

Equations of state also can be made to reproduce the data accurately over their region of application. However, they also cannot be readily generalized to systems for which data are not available. A more fruitful approach appears to be a generalized equation of state based on the corresponding states principle. However, at present, the use of an analytical form appears to require the use of additional parameters.

A corresponding states graphical correlation has numerous advantages. It can represent the results to a reasonable degree of accuracy and at the same time has some grounds for fundamental validity. It can be used to represent the enthalpy departure of systems for which data, other than a knowledge of the parameters, is not available. It is generally valid over a wide range of conditions, and can be improved for mixtures by the use of improved mixing rules. Finally, if an analytical form is desirable, the tabular functions themselves can eventually be fit by one or a series of equations. For these advantages a three parameter corresponding states tabulation was utilized.

Application of the Corresponding States Principle to Fit Experimental Enthalpy Data

In applying the corresponding states principle it was first necessary to develop a tabular function of the reduced enthalpy

departure. This was accomplished using Equation (44) with reference substance enthalpy departure functions, $\begin{bmatrix} \frac{H^{0}-H}{RT_{c}} \end{bmatrix}_{1}$ and $\begin{bmatrix} \frac{H^{0}-H}{RT_{c}} \end{bmatrix}_{2}$, developed from enthalpy data for methane and propane. Next, the corresponding states principle was tested for pure components by comparison of calculated results with experimental data for nitrogen. reference substance tables were interpolated with respect to reduced temperature and pressure to determine the two reduced enthalpies. Next, Equation (44) was used to determine the departure for nitrogen, and the results compared with experimental data. After proving to be successful for pure components, the results were extended to the methane-propane system by developing mixing rules which best fit the experimental data. First an optimization technique was developed which would search to find a set of optimum values over a wide range of conditions of the three parameters for a given mixture. The individual optimum values of each parameter for each mixture were then fit with respect to composition to obtain smooth mixing rules.

Development of the Reference Substance Enthalpy Departures

Reduced enthalpy departure tables are available from most three parameter corresponding states correlations. These tables have, however, been generated in the most part from volumetric data and may be of questionable accuracy. Since accurate enthalpy data have been obtained at the Thermal Properties of Fluids Laboratory for methane and propane, it was decided to develop reference reduced enthalpy functions from these results.

In generating the tabular reduced enthalpy function for propane the values of enthalpy, temperature, and pressure presented in Table XII

were used to determine reduced quantities: $\frac{\text{H}^{\text{O}}\text{-H}}{\text{RT}_{\text{c}}}$, T/T_{c} and P/P_{c} . The resulting reduced table is presented as Table LXII of Appendix D.

The second substance reduced enthalpy departure table was based on values of enthalpy for methane as reported by Jones. In obtaining Jones' table his isobaric heat capacity data were used to determine the effect of temperature on enthalpy at numerous pressures. The effect of pressure on enthalpy was determined by the BWR equation of state with the original constants. Recently accurate volumetric results for methane by Douslin et al. have been used in Equation (38) to determine the effect of pressure on enthalpy for methane at 32°F. The values for enthalpy departure at 32°F obtained from both the BWR and Douslin are plotted on Figure 59. This figure shows a significant difference between the two results especially at high pressure. The differences are reported in Table XXXII. Since it is believed that the differentiated volumetric data are likely to be more accurate than the BWR equation with the original constants, the Jones' table was adjusted. This was accomplished by adjusting the enthalpy at all pressures in the table by the difference between the results of Douslin 34,48a and the BWR results. The resulting corrected table amounts essentially to the table that Jones would have obtained had he used the departures of Douslin 34,48a instead of the BWR. This table was put in reduced form and the results are presented in Table LXIII of Appendix D.

Values of the three parameters used in this investigation for methane and propane as well as those for nitrogen are the ones presented in the NGPSA data book and are listed in Table XXXIII. The range of the methane table is for $0.52 \le T_r \le 1.49$ and $P_r \le 2.99$ and the propane

Figure 59. Comparison of Enthalpy Departure of Methane at 32°F Obtained Using Original BWR Equation (7) with Results Calculated by Douslin (34,35)

TABLE XXXII

CORRECTION MADE IN JONES' TABLE TO AGREE WITH DOUSLIN'S ENTHALPY DEPARTURE

Pressure psia	[H(Jones)-H(Douslin)] Btu/lb
50	0.00
100	0.18
150	0.27
200	0.35
250	0.39
300	0.42
350	0.49
400	0.54
450	0.52
500	0.40
550	0.62
600	0.58
625	0.64
680	0.67
700	0.64
800	0.56
900	0.70
1000	0.82
1200	0.94
1500	1.45
2000	1.64

table for $0.27 \le T_r \le 1.44$ and $P_r \le 3.24$. In order to obtain departures for a third substance both tables must be applied and, therefore, the range of application of the present method is $0.52 \le T_r \le 1.44$ and $P_r \le 2.99$. This includes much of the liquid and gaseous region as well as the region around the critical. The method can be applied in the two-phase region for mixtures if vapor-liquid equilibrium data is generated from some other source.

Application of Reference Substance Equations to Pure Components

If the three parameter corresponding states principle is valid for non-polar fluids then it should be possible to predict the enthalpy departure for a substance such as nitrogen from the tabulated departures developed for methane and propane and the three additional parameters only. An enthalpy table developed from experimental data has been presented by Mage et al. and from it enthalpy departures were obtained for comparison. This procedure permitted a check of the three parameter corresponding states theory and the accuracy of the experimentally determined reduced functions.

A third order interpolating polynomial was used to determine reduced enthalpy departures from the methane table and the propane table for a given reduced temperature and pressure. The values of reduced enthalpy from the two functions along with a value of the third parameter, W, were used in Equation (44) to obtain enthalpy departures for nitrogen. The values of the three parameters used for nitrogen are listed in Table XXXIII. Equation (48) was used to determine the value of W from ω . As can be seen from Table XXXIII the third parameter for nitrogen falls between methane and propane about 1/3 of the way from methane.

TABLE XXXIII

PARAMETERS USED IN CORRESPONDING STATES CALCULATIONS

Component	Critical Temperature (°R)	Critical Pressure (psia)	Accentric Factor
Methane	343.3	673.1	0.010
Propane	666.0	617.4	0.152
Nitrogen	226.9	492.9	0.047

Enthalpy departures were obtained for nitrogen throughout the region of application of the reduced tables. Calculations were obtained at pressures of 500, 1000, and 1500 psia and at 20°F temperature intervals between -300°F and -120°F.

A computer program subroutine (DEV) was used to perform the numerical calculations. The subroutine searches the reduced enthalpy tables to find the grid points which center a given data point. After selecting the points on which the interpolation is to be based a second subroutine is called which uses Newton's third order interpolating polynomial. The program is called four times to interpolate with respect to reduced temperature and once with respect to reduced pressure for each table to determine enthalpy departures. This subroutine was essentially the one given by Carnahan et al. and converted to the FORTRAN language. The calling subroutine then calculates the enthalpy departure for the points and also the deviation and percent deviation between the calculated and experimental value.

The subroutine repeats the process for the next input condition. When the departures and deviations are calculated for all of the conditions desired, the root mean square difference between the experimental and calculated enthalpy departures is determined. A simplified main

program can be used to transmit data and print results. As will be discussed later, however, this subroutine was used as part of the optimization scheme applied for mixtures. The complete program is given in Table LX of Appendix C.

A major disadvantage of the calculation procedure is its inability to correctly interpolate (or extrapolate) the tables in the vicinity of two-phase region. The search procedure arrives at a series of grid points on which the interpolation is based which contain both gaseous and liquid points. Since there is a natural discontinuity at the two-phase region which the interpolation does not consider, the interpolation is likely to be in error. This is, however, a limitation only for pure components, since for mixtures the two-phase envelope, in which the mixture is not stable as a single phase, extends to prohibit the possibility of calculations near the single component reduced two-phase region.

For the 32 conditions which were compared for nitrogen, the sum of the squares deviation is 0.52 Btu/lb. The maximum deviation is 1.5 Btu/lb but this occurred at $-120^{\circ}F$ ($T_r = 1.50$) slightly outside of the region of application of the tabulated functions. The results of this comparison are presented in Table XXXIV. The agreement is good especially when considering the possible uncertainties of 1 Btu/lb present in each of the tables for the three pure components. Thus, in this instance it appears that the three component principle of corresponding states can be used to predict enthalpy departures for non-polar pure components almost to the degree of uncertainty of the measured quantities. The parameters that are used are quantities that have definite physical meaning and thus knowledge of these quantities alone is enough to

TABLE XXXIV

TEST OF THREE PARAMETER CORRESPONDING STATES PRINCIPLE USING DATA FOR NITROGEN

PRESSURE	TEMPERATURE	EXPER. DEPARTURE	CALC. DEPARTURE	DIFFERENCE	PERCENT DIFFERENCE
(psia)	(°R)	(Btu/1b)	(Btu/lb)	(Btu/1b)	
500.000000	159.5999903	-81.6499817	-82.0645905	0.3646088	-0.4462774
500.000000	179.5999308	-70.6000061	-76.9572449	0.3572388	-0.4663691
500.000000	199,5999408	-70.3999999	-70.9122925	0.5122986	-0.7276967
500.000000	219,599993	-60.6300031.	-61,5042419	0.7042389	-1.1582870
500.000000	239.5995903	-21.7030122	-22.2260132	0.5260010	-2,4239655
500.000000	259.5998535	-16.300031	-16.1213634	-0.1786346	1.0959177
5 00.000000	279.5998535	-12.0999969	-13.0271521	0.3271551	-2.5760241
500.000000	299,5998535	-10.6000041	-10.9302246	0.3802185	-3.5869646
500.000000	319,5998535	-9.0000000	-9.4131461	0.4181461	-4.6460676
500.0000000	339,5498535	6265660-1-	-6.4066486	-1.4933453	18.9031067
1000.000000	154.5999993	-60.9989847	-80.7055817	-0.2944031	0.3634606
1000.000000	179.5999908	- 76 • 0000000	-75.8509827	-0.1490173	0.1960754
1000.000000	199,5939998	-70.8000031	-70.5439453	-0.2560577	0.3616634
1000.0000000	219, 5999903	-64.3959939	-64.1234637	-0.2715302	0.4216306
1000.000000	229.5999998	-66.1000061	-60.2539264	0.1589203	-0.2644264
1000.000000	239.5999908	-55.8000031	55.4396057	-0.3603973	0.6458733
1000.000000	259, 5993535	-41.3000031	-41.4095459	0.1095428	-0.2652369
1000.000000	279.5998535	-30.1000001	-30.1832428	0.0832367	-0.2765338
1000.000000	299.5998535	-23.6000061	-23.8399963	0.2399902	-1.0169067
1000.000000	319,5998535	-19.6399969	-19.8444977	0.1445007	-0.7335063
1000.0000000	339.5998535	-16.8999939	-17.2372894	0.3372955	-1.9958315
1500.000000	159,5999938	-80.5599756	-79.6302338	-0.9697418	1.2031536
1500.000000	179.5999938	-75.900002	-75.1092224	-0.7907867	1.0418787
1500.000000	199,5999908	-70.5599908	-70,2011871	-0.3988037	0.5648777
1500.0000000	219.5999938	-65.3999939	-64.7862701	-0.6137238	0.9384155
1500.000000	229,5999938	-62.1000061	-61.7879486	-0.3120575	0.5025077
1500,000000	239,5999908	-58.8000031	-58,7319031	-0.0681000	0.1158162
1500.000000	259,5998535	-51.1000061	-50.9752350	-0.1247711	0.2441704
1500.0000000	279.5998535	-42.1999969	-42, 7993927	0.5993958	-1.4203682
1500.000000	299, 5998535	-35.000000	-35.2981567	0.2981567	-0.8518763
1500.000000	319,5998535	-29.0999908	-29.4218597	0.3213689	-1.1060781
1500,0000000	339.5998535	-24.8999939	-23.7418671	-1.1581268	4.6511126

interpolate accurate reference substance functions to accurately predict enthalpies of fluids under pressure.

Application of the Correlation to Mixtures

When attempting to apply this technique to mixtures, the critical properties of the mixtures cannot be used in the reduced enthalpy function, since mixture critical properties do not have the same physical and thermodynamic significance as those for the pure components. In addition for nonconformal mixtures, such as mixtures of methane-propane, the principle of corresponding states has at present no funcamental justification. This also eliminates the possibility of developing mixing rules from relatively rigorous theoretical analysis. Thus, an empirical approach is essential. It was, therefore, assumed that the reduced enthalpy of methane-propane mixtures does behave the same as that of a pure substance. Empirical mixing rules containing a total of six constants were determined which represent the methane-propane data to within ±18tu/lb which is of the order of the uncertainty of the data. The success of these results justified the validity of the corresponding states principle when applied to mixtures of this type.

The pure component reference substance enthalpy departures obtained from the methane and the propane enthalpy data were used to calculate mixture enthalpy data for values of the three parameters of the given mixture. These parameters were determined by a direct search procedure which found values of the three parameters which minimized the root mean square difference between the calculated and experimental departures for each mixture. Calculations were made with the aid of the computer program previously mentioned.

The program assumes initial values of T_{cx} , P_{cx} , and W_{x} . The

enthalpy departures are calculated using the subroutine described above for a wide variety of conditions including the gaseous, liquid, and critical regions. Input points were selected at pressures of 500, 1000, 1500, and 2000 psia where actual experimental determinations were usually made. Temperatures at 20°F intervals were used when the point fell in the single phase region. The range of temperature was determined usually by the range of the reference tables or occasionally by the limits of the experimental data. The root mean square deviation for all points was calculated. Root mean square deviations were then calculated with each parameter incremented in both the positive and negative direction. The base values of $P_{\rm cx}$, $T_{\rm cx}$, and $W_{\rm x}$ would shift to the point which had the lowest root mean square deviation. The procedure would continue until the root mean square deviation of the base value was lower than that of any of the six points surrounding it.

Due to limits on computer execution time minimum step sizes of $\Delta P_{\rm x} = 3.0~{
m psia}$, $\Delta T_{\rm x} = 1.5^{\circ} F$ and $\Delta W_{\rm x} = 0.002~{
m were}$ used. If initial conditions far away from reasonable values (Kay's rule is a normal "reasonable" initial value) were used the calculation would not necessarity converge to the optimum. This indicated that the function was not unimodal. However, reasonable but different initial conditions would usually converge to the same optimum. Due to the large computer execution times involved a more complete analysis of the different optimums was not undertaken. It was, however, noted that the minimum in the temperature direction was in a relatively steep valley. A gradient search was originally used, instead of the direct search, but it would not converge to the optimum. The valley in the temperature direction had too much of an effect on the gradient when using reasonable step sizes.

The technique was used to determine optimum parameters for all five experimentally determined methane-propane mixtures. The original optimum values, the sum of the squares deviations, and the number of data points used for each mixture are given in Table XXXV. The actual comparisons for each data point are given in Table LXIV of Appendix D for all five mixtures. The \triangle 's represent departures from Kay's rule as for example pseudo critical temperature.

$$\Delta T_{\rm ex} = T_{\rm ex} - T_{\rm eKay} \tag{79}$$

TABLE XXXV

ORIGINAL OPTIMUM VALUES FOR THE THREE
PSUEDOPARAMETERS IN THE SEARCH CALCULATIONS

Mole Fraction Propane	P cx psia	∆P _{cx}	T _{cx}	△T _{cx} (°F)	W _x _	W_x_	F Btu/lb
0.052	664.2	- 6.0	361.5	1.7	0.032	-0.020	0.964
0.117	667.5	+0.9	388.0	7.0	0.175	0.058	0.776
0.280	654.0	-3.4	447.0	13.4	0.359	0.019	0.966
0.506	632.4	- 12.5	521.5	14.6	0.618	0.108	0.709
0.766	6.914	-11.0	596.5	6.0	0.855	0.089	0.644

The three parameters are plotted on Figure 60 as deviations from Kay's rule. The figure indicates that the results for critical temperature are the smoothest and most regular. This is again due to the fact that the optimum pseudocritical temperature lies in a very steep valley and has the strongest effect on the magnitude of the error. It can also be noted that these points are not symmetrical and thus cannot be represented by a single empirical correction term as was suggested by Pitzer and Hultgren. In order to fit the points to a smooth curve to within the value of the minimum step size, $\Delta T_{\rm cx} = 1.5 \, {\rm ^\circ F}$, it was necessary to use a three constant empirical equation.

Figure 60. Optimum Mixing Rules for the Methane-Propane System

$$T_{ex} = \sum_{i} x_{i} T_{ei} + x_{i} x_{j} [A' + (1-2x_{i})B' + (1-2x_{i})^{2}C']$$
 (54)

The values of the constants obtained by a least squares fit were:

A' = 59.454

B' = 50.868

C' = -35.880

The resulting fitting curve is shown on Figure 60. Since the root mean square deviations were so sensitive to small temperature changes it was felt that changes in the optimum critical temperature caused by the fit could significantly effect the optimum values of the remaining two parameters. Thus, values of $T_{\rm cx}$ were calculated by Equation (54) for the five mixtures and a second search procedure performed. Using these values for the pseudocritical temperature, $P_{\rm cx}$ and $W_{\rm cx}$ for each mixture were allowed to vary and new optimum values found. The resulting optimum parameters along with the root mean square deviations are presented in Table XXXVI. The enthalpies calculated and compared with experimental results for each tested condition are presented in Table LXV of Appendix D.

The results of this procedure are shown as the solid points on Figure 60. Since there is considerable uncertainty in the results obtained for these two parameters, there was some question regarding the choice of fitting equation. Because these two parameters do not significantly effect the root mean square deviation it was decided to use simple equations for the fit. For $P_{\rm cx}$ it appears that the results show a definite asymmetry. Therefore, a two constant equation was used.

$$P_{cx} = \sum_{i} x_{i} P_{ci} + x_{i} x_{i} [D' + E' (1-2x_{i})]$$
 (55)

For W_X , however, any asymmetry, if present, cannot be observed due to scatter in the results. Therefore, the simple one constant equation was used.

$$W_{x} = \sum x_{i}W_{i} + x_{i}x_{j} F' \qquad (56)$$

The values of the constants were obtained by least squares fitting.

The points for the 5.2 percent mixture differed significantly from the trend of the data for the other mixtures and were not used in determining the constants. The values of these constants are given as

$$D' = 43.448$$

$$E' = -46.590$$

$$F' = 0.44250$$

The parameters for each mixture were calculated using Equations (55) and (56) with $T_{\rm cx}$ from Equation (54). The fit parameters were then used to calculate enthalpy departures and compared with experimental results. The root mean square of the deviations are presented in Table XXXVII.

Fitting the calculated optimum values for the parameters does cause some increase in the average deviation for all of the mixtures. This is illustrated in Table XXXVIII where columns A, B, and C present respectively the root mean square deviations obtained using the original parameters, using the smooth pseudocritical temperature values with adjusted values of the other parameters, and using the final smooth mixing rules for each parameter. The worst case (except for the 5.1 percent mixture which was not used in the final fit) was for the 11.7 percent mixture where the root mean square deviation for all data points increased from 0.776 to 0.937.

TABLE XXXVI

OPTIMUM VALUES OF PARAMETERS AFTER FITTING PSEUDOCRITICAL TEMPERATURE AND HOLDING IT CONSTANT IN OPTIMIZATION

Mole Fraction Propane	P _{cx} psia	△P cx _psi	Tcx (°R)	△T (°F)	_W_x	X	F Btu/lb
0.052	674.2	+14.4	362.6	2.8	0.012	-0.040	0.999
0.117	663.5	- 3.1	387.5	6.4	0.183	0.066	0.703
0.280	645.0	- 3.4	447.0	13.3	0.359	0.079	0.966
0.506	634.4	- 10.5	521.7	14.8	0.610	0.104	0.720
0.766	617.4	-13.0	596.4	5.9	0.855	0.089	0.648

TABLE XXXVII

FINAL FIT OPTIMUM PARAMETER VALUES

Mole Fraction Propane	P cx psia	∆P cx psi	Tcx (°R)	(°F)	W _x	X	F Btu/lb
0.052	670.1	-0.1	362.6	2.8	0.072	+0.021	2.100
0.177	665.7	-0.8	387.5	6.4	0.163	0.046	0.937
0.280	652.9	- 4.6	447.0	13.3	0.370	0.089	1.010
0.506	633.9	-11.0	521.7	14.8	0.617	0.111	0.744
0.766	618.2	-12.2	596.4	5.9	0.845	0.079	0.709

The results of the final smooth mixing rules are also presented on topographic pressure-temperature charts for each mixture in Figure 61. Deviations are represented as Btu/lb as obtained from Equation (79). The tabulated, calculated, and experimental departures for each data point are presented in Table LXVI of Appendix D.

The root mean square deviations are on the order of 1 Btu/lb or less for all mixtures with the exception of the 5.2 mole percent propane in methane mixture. These deviations are in the range of uncertainty of the experimental data and thus, the proposed mixing rules and departure function represent the data well.

TABLE XXXVIII

ROOT MEAN SQUARE DEVLATIONS OF THE RESULTS OF THIS STUDY AND NUMEROUS MIXING RULES FOR THE METHANE-PROPANE SYSTEM

Ą	Д	ŭ	А	闰	ഥ	ტ	н	Н	P	M
Optimum	Optimum Parameters	rs								
	smooth	a11	Kay	出	J-JBV	LM	PG	SPG	Optimum 2 P	arameters
original	S C	smooth	(65)	(101)	(136)	(\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(106)	(106)	original smooth	smooth
196.0	0.999	2,100	1.79	2.87	1.31	2.78	94.4	1.72	1,01	2.70
9,776	0.703	0.937	6.59	1.39	3.45	1.62	3.10	6,42	1.25	1.32
996.0	996.0	1,010	10.11	3.34	5.04	2.34	2.52	10,00	1.53	1,48
0.709	0.720	0•74 ⁴	10,04	4.63	5.01	2.21	1.94	9.93	1.44	1.75
449.0	0 •648	0.709	5.37	5.27	0.91	2.63	2,87	5.30	1.05	1,06

Figure 61. Comparison of Experimental Enthalpy Departures for the Methane-Propane System with the Results from the Corresponding States Correlation and Mixing Rules of This Investigation

By looking at Figure 61a, the comparison chart for the 5.2 mole percent mixture, it appears that a significant part of the deviations for this mixture is present in the liquid region and especially at lower pressures. There are several possible explanations for these large uncertainties in this region. By looking at the range of measurement for this mixture (Figure 3 in Mather's thesis (85)) it can be seen that at 500 psia it was necessary to interpolate heat capacity data to obtain enthalpy data at very low temperatures since there is a region where data was not taken for the liquid. In addition the pressure-temperatureenthalpy diagram (Figure 34 in Mather's thesis) appears to be constructed inconsistently in the low temperature liquid region. Table XXXIX presents the results at 500 and 1000 psia for the average heat capacities = △H/△T obtained from this diagram. The strange behavior suggests the possibility of error in this region. In addition the -80°F isotherm appears to be drawn inconsistently. This suggests the large deviation obtained at -80 and 1000 psia on Figure 61a. Thus, the large deviations in this region may well be caused by errors made in constructing the pressure-temperature-enthalpy diagram for the mixture.

Figures 61b, 61c, 61c, and 61e show that for the other mixtures the mixing rule proposed predicts enthalpy departures almost universally to within 2 Btu/1b or better. Thus, the proposed equations containing a total of six constants appear to be sufficient to predict the enthalpy of the entire methane-propane system over a wide range of conditions.

Comparison with Other Mixing Rules

The mixing rules determined in the present investigation although truly representative of the mixture behavior are obtained by fitting a

TABLE XXXIX

DIFFERENCED RESULTS FOR 5.1 MOLE PERCENT MIXTURE

Average Temperature (°F)	<u>∆H</u> (500 psia) (Btu/lb-°F)	<u>∆H</u> (1000 psia) (Btu/lb-°F)
- 275	7.5	7.6
- 265	7.5	7.7
- 255	9.1	8.2
- 245	8.0	8.1
- 235	7.5	7.7
- 225	7.8	7.6
- 215	8.0	8.0
- 205	8.2	8.1
- 195	7.9	7.8
- 185	7.8	7.7
- 175	9.9	9.5
- 165	7.3	7.0
- 155	9.4	8.8

large amount of experimental data. The generalized mixing rules which are available in the literature can be used to estimate mixture properties from a knowledge of pure component properties and minimal amount of mixture results if any. Thus, a comparison of the results of this investigation with the generalized mixing rules of Kay $(K)^{65}$, Joffe-Stewart, Burkhardt, Voo $(S-SBV)^{136}$, Leland, Mueller $(LM)^{74}$, Prausnitz, Gunn $(PG)^{106}$, and a simplified rule of Prausnitz, Gunn $(SPG)^{106}$ was undertaken.

The rules were used in conjunction with the reference enthalpy tables of this investigation to determine enthalpy departures for the mixtures at the same conditions as were calculated using the empirical mixing rules of this investigation. Both the rules of Leland, Muller hand Prausnitz, Gunn show a dependence of the pseudoparameters on temperature and pressure. It was found that for the system studied in

this investigation the effects were minor. Therefore, the variations were not considered.

Table XXXVIII presents the results of these calculations. It gives the root mean square deviation obtained for each mixture for each rule in columns D through I. As can be seen the empirical rule is a considerable improvement over the other available generalized rule even when the new reference enthalpy departure tables are used.

The generalized mixing rules which give the best agreement with experimental results for the methane-propane system are those due to Leland and Mueller that and Prausnitz and Gunn. The results of the comparisons for the best rule, that of Leland and Mueller, is illustrated graphically on Figure 62. As can be seen the discrepancies between the calculations using this rule and the experimental data is as large as 10 Btu/lb in some regions.

It should be remembered from Section II that all of the mixing rules tested with the exception of the Pitzer-Hultgren rule 101 assume that the third parameter is a linear function of composition. In addition it has been shown that if a two parameter corresponding states principle is valid these mixing rules have some theoretical justification. Thus, in order to more realistically compare these mixing rules with an optimum rule, the original optimization program was modified to search only for an optimum pseudocritical temperature and pressure with the third parameter held constant. The program was run for each mixture using a linear variation of the third parameter, W, with composition to obtain optimum values for the remaining two parameters. This approach assumed that in effect the mixing rules for pseudocritical temperature and pressure are not altered by mixing two nonconformal substances. Table XL lists the

Figure 62. Comparison of Experimental Enthalpy Departures for the Methane-Propane System with Results from the Corresponding States Correlation of This Investigation and Mixing Rules of Leland-Mueller (74)

TABLE XL

OPTIMUM VALUES OF PSEUDOCRITICAL PARAMETERS
WITH THIRD PARAMETER, W, HELD CONSTANT

Mala Tha abda.		Original	Optimum V	alues	
Mole Fraction Propane	Pc	△P c	T _c	$\frac{\Delta T}{c}$	_F
0.052	662.0	-8.0	361.1	1.3	1.01
0.117	689.0	22.4	390.5	9.5	1.25
0.280	675.0	17.5	450.0	16.3	1.53
0.506	659.4	14.5	526.2	19.3	1.44
0.766	643.4	13.0	600.9	10.4	1.05
		Smoothed	Optimum V	alues	
0.052	676.6	6.4	364.3	4.6	2.70
0.117	679.3	12.8	390.5	9.5	1.32
0.280	678.5	21.0	450.6	16.9	1.48
0.506	664.1	19.2	525.0	18.4	1.75
0.766	638.5	8.1	601.5	11.0	1.06

optimum temperatures and pressures obtained for each mixture along with the root mean square deviations.

Again the results obtained for the 5.2 mole percent propane in methane mixture did not agree with the other results and were not used to obtain the empirical equations. The two parameters could each be fit in this instance with two constant equations.

$$T_{ex} = \sum T_{ei}x_{i} + A''x_{i}x_{j}[1 + (1 - 2x_{i})B'']$$
 (80)

$$P_{cx} = \sum_{ei} P_{ei} x_i + D'' x_i x_j [1 + (1 - 2x_i) E'']$$
 (81)

The constants obtained by a least squares fit of the optimization results

are given as

A'' = 73.749

B'' = 23.289

D'' = 77.417

E'' = 60.490

Values of pseudocritical temperature and pressure were calculated for each mixture from the above equations and these results used to obtain enthalpy departures. These results were compared with experimental values and the root mean square deviations for each mixture are listed in column K of Table XXXVIII. Although these results are not as good a fit as the results for the three parameter optimization they are still considerably more in agreement with experimental data than the generalized mixing rules.

Next the actual values of the parameters were compared. Figure 63 shows the pseudocritical temperatures as a function of composition for the various mixing rules including both the linear and nonlinear third parameter mixing rules of this investigation. All of the mixing rules show a positive deviation in temperature with respect to Kay's rule. Inclusion of a variable third parameter causes the departure from Kay's rule to decrease.

Figure 64 shows the pseudocritical pressure as a function of composition. Inclusion of a nonlinear third parameter causes a change in sign in the departure from Kay's rule. The Pitzer-Hultgren mixing rule seems to overdo the deviation in pressure from Kay's rule. Also the optimum curve obtained with the two parameter search does qualitatively agree with the generalized mixing rules in magnitude as well as in shape.

Finally, Figure 65 presents the third parameter deviation from

Figure 63. Mixing Rules for Pseudo-Critical Temperature for the Methane-Propane System

Figure 64. Mixing Rules for the Pseudo-Critical Pressure for the Methane-Propane System

Figure 65. Mixing Rules for the Third Parameter for the Methane-Propane System

linearity as a function of Kay's rule. Again it appears that that the rule due to Pitzer and Hultgren overemphasizes the diviation.

Extension to a Mixture of Nitrogen in Methane

As a final step both the two parameter and three parameter optimization techniques were applied to correlate data for a mixture containing 43.3 mole percent nitrogen in methane. An enthalpy diagram and table based on isobaric enthalpy determinations for this mixture are found in the thesis of Mather. In addition departures were obtained using the various mixing rules described above. The results of the optimization and mixing rule enthalpy departure comparisons in terms of a root-meansquare deviation are given in Table XXXXI. It can be noted that in this case the deviation of pseudocritical temperature is negative. Also there is hardly any effect on varying the third parameter. This seems reasonable in view of the relative similarity between methane and nitrogen. Also Table XXXXI is arranged in such a way that the root-mean-square deviation increases from left to right for the various mixing rules. At the same time the difference between the optimum pseudocritical temperature also increases in the same fashion regardless of the effect of the other parameters. This shows the strong sensitivity of the deviations to the value of the temperature parameter.

Figure 66 presents the results of estimations based on the various mixing rules. All of the rules appear to differ from the experimental results mainly in the liquid region. The results with the optimized parameters are in much better agreement than the generalized rules. It must, however, be pointed out that the diagram of Mather scan be in error in the compressed liquid region since it is based entirely on isobaric data with the effect of pressure on enthalpy estimated from the

TABLE XXXXI

ROOT MEAN SQUARE DEVLATIONS OF THE RESULTS OF THIS STUDY AND NUMEROUS MIXING RULES FOR A METHANE-NITROGEN MIXIURE

P cx (psia)	optimum parameters 558.0	optimum 2 parameters 558.0	J-SBV (136) 596.4	PG (106) 599.5	Kay (65) 549.9	SPG (106) 599.9	LM (74) 602.3
$^{\mathrm{T}}\mathrm{cx}(^{\circ}\mathrm{R})$	286.1	286.1	291.2	292.8	292.8	293.5	294.0
×	.0981	.1151	.1131	.1131	.1131	.1131	.1131
드	649*0	0.675	2.54	3.53	3.60	3.99	4.30

Figure 66. Comparison of Experimental Enthalpy Departures for a Methane-Nitrogen Mixture with Results from the Corresponding States Correlation of This Investigation Using Several Mixing Rules

BWR equation at room temperature. Cumulative errors could produce results in the liquid region which are considerably in error. This may in part account for the reversal in the deviation from Kay's rule of the optimum pseudocritical temperature.

It is somewhat disappointing that the deviation from Kay's rule of the parameters obtained from the mixing rules in general differ in sign from the optimum rule for this mixture. It must be remembered, however, that for the methane-nitrogen system departures from Kay's rule for all parameters are quite small in all cases. Thus, the effect of even an incorrect sign in the departure from Kay's rule is not necessarily that important. In addition the mixing rules which apply most successfully to the methane-propane system are not the best for the methane-nitrogen system. If this were not the case, it might have been possible to make a more definite recommendation of a mixing rule which could be used for systems not experimentally investigated.

Discussion of Results

As has been illustrated the theorem of corresponding state can be used to accurately fit the enthalpy of simple fluid mixtures. From a table of reference substance functions and empirically fit mixing rules the enthalpy of a binary mixture can be calculated almost to within the experimental uncertainty of the experimental data.

Although this method was applied to the methane-propane system using data for pure methane and propane it appears that the procedure could be applied to other systems using the same methane-propane reference functions. This is in part justified by the ability of the method to calculate the enthalpy of nitrogen under pressure and of a nitrogenmethane mixture. In fact although a smaller range of temperature and

pressure was considered, the root-mean-square deviations for the methanenitrogen mixture was smaller than those obtained for any of the methanepropane mixtures.

One could therefore accurately represent the enthalpy behavior of a wide variety of mixtures from two reference substance reduced enthalpy functions and a maximum of six constants for each mixture. In addition, by use of the reference substance function constants for these mixtures could probably be developed from a much smaller amount of new experimental data.

The above procedure need not be limited to the enthalpy function but can be extended to other thermodynamic properties as well. If a thermodynamically consistent and accurate series of reference substance functions were developed for all of the thermodynamic properties of non-polar fluids under pressure then mixing rules could be obtained by an optimization using all of the available thermodynamic data.

Of course actual data cannot be obtained for every mixture and in some cases generalized mixing rules must be used. At present these rules, although not extremely accurate, can be applied with a knowledge that no gross errors will result. If more empirical mixing rules were available, however, such results could be used to test mixing rules developed from theoretical considerations.

SUMMARY AND CONCLUSIONS

- 1. The recycle flow facility as described by Mather was modified to allow for measurements of fluids of lower volatility than that for which the equipment was originally designed.
- 2. The effects of pressure and temperature on enthalpy were determined experimentally for propane, a nominal 77 percent and a 51 percent mixture of propane in methane. Measurements were made in the liquid, two-phase, critical, and gaseous regions at temperatures from -250 to +300°F at pressures from 100 to 2000 psia. The data are self consistent to about 0.2 percent.
- 3. An enthalpy-pressure-temperature table is presented for propane between -280 and +500°F at pressures up to 2000 psia. The table was prepared with the aid of supplementary data in the literature.
- 4. From the data for the two mixtures, enthalpy-pressure-temperature tables in the regions between -280 and +300°F and pressures up to 2000 psia were developed. These results plus those obtained by Jones, Manker, and Mather adequately represent the enthalpy behavior of the methanepropane binary system.
- 5. The data obtained in the course of this investigation plus data in the literature were used to compare several of the available methods of prediction. This comparison study indicated that the corresponding states principle would be a most fruitful approach for extending methods of prediction to represent the available data.

- 6. A three parameter corresponding states correlation was developed which used reference tables derived from enthalpy data for methane and propane. The correlation is valid between T_r of 0.5 and 1.5 at values of P_r up to 3.0. The three parameter corresponding states principle was tested for enthalpy departures by comparing the results of the correlation with data for nitrogen. The correlation predicted the enthalpies of nitrogen to within the experimental uncertainty of the data.
- 7. The correlation was extended and justified for mixtures by developing a set of mixing rules containing six empirical constants to represent the behavior of the methane-propane binary system. The correlation predicted departures for the mixture to almost within experimental uncertainty in the single phase region over the entire region of its validity.

APPENDIX A

CALIBRATIONS

TABLE XLII

THERMOPILE M-3 CALIBRATION FOR ISOBARIC CALORIMETER

Electromotive Force as a Function of Temperature of Measuring Junction (reference junctions at 0°C)

Degrees C (Int. 1948)	Absolute Microvolts	Degrees C (Int. 1948)	Absolute Microvolts
-196	-33328	20	4774
-183	-31987	40	9761
-100	-20336	60	14946
- 80	-16778	80	20320
- 60	-12954	100	25877
- 40	- 8876	120	31600
- 20	- 4556	140	37486
0	0	160	43533

TABLE XLIII THERMOPILE M-4 CALIBRATION FOR ISOBARIC CALORIMETER

Electromotive Force as a Function of Temperature of Measuring Junction (reference junctions at 0°C)

Degrees C (Int. 1948)	Absolute Microvolts	Degrees C (Int. 1948)	Absolute Microvolts
-196	-33332	20	4774
-183	- 31990	40	9762
-100	-20330	60	14947
- 80	-16778	80	20322
- 60	-12956	100	25882
- 40	- 8874	120	31606
- 20	- 4551	140	37494
0	0	160	43543

TABLE XLIV

THERMOPILE M-5 CALIBRATION FOR THROTTLING CALORIMETER

Electromotive Force as a Function of Temperature of Measuring Junction (reference junctions at 0°C)

		·	
Degrees C (Int. 1948)	Absolute Microvolts	Degrees C (Int. 1948)	Absolute Microvolts
-196	- 33331	20	4774
-183	- 31990	40	9760
-100	-20338	60	14946
- 80	-16779	80	20326
- 60	-12955	100	25872
- 40	- 8878	120	31596
- 20	- 4556	140	37486
0	0	160	43530

TABLE XLV

THERMOPILE M-6 CALIBRATION FOR THROTTLING CALORIMETER

Electromotive Force as a Function of Temperature of Measuring Junction (reference junctions at 0°C)

Degrees C (Int. 1948)	Absolute Microvolts	Degrees C (Int. 1948)	Absolute Microvolts
- 196	-33330	20	4775
- 183	- 31986	40	9761
-100	-20338	60	14944
- 80	-16781	80	20322
- 60	- 12956	100	25868
- 40	- 8877	120	31593
- 20	- 4557	140	37484
0	0	160	43530

APPENDIX B

EXPERIMENTAL DATA

TABLE XLVI
TABULATED EXPERIMENTAL ISOBARIC DATA FOR PROPANE

1.00	.753 .616 .616 .649 .513 .903 .513 .903 .510 .973 .510 .973 .510 .923 .214 .646 .647 .170 .145 .667 .170 .145 .6686 .727 .688 .727 .8397 .688 .727 .8397 .6886 .727 .8397	(AH) (AT) P Btu/lb-°F) .8703 .8921 .8964
1.010	.753 .616 .616 .649 .513 .903 .513 .903 .510 .973 .510 .973 .510 .923 .214 .646 .647 .170 .145 .667 .170 .145 .6686 .727 .688 .727 .8397 .688 .727 .8397 .6886 .727 .8397	.8703 .8921 .8964
1.020 399, 4 154.06 159, 87 .559 .3454 .003 1.618 1.020 400.6 156.07 160.86 .850 .3466 .003 2.451 1.040 400.6 156.07 161.12 1.210 .3460 .003 3.550 1.040 .359.6 156.07 161.12 1.210 .3460 .003 3.550 1.040 .359.6 156.07 161.12 1.210 .3460 .003 3.550 1.000 399.7 156.07 161.79 2.875 .3444 .003 6.355 1.000 399.7 156.07 161.79 2.875 .3444 .003 6.355 1.000 399.1 156.07 162.25 1.222 .4659 .3444 .004 13.514 1.100 .399.1 156.07 162.25 1.622 .3447 .005 20.977 2.1100 .399.1 156.07 162.25 1.222 .3447 .005 20.977 2.1100 .399.1 .356.07 162.25 1.222 .3447 .005 20.977 2.1100 .399.1 .356.07 163.25 2.144 .3424 .009 63.223 6.1130 .399.5 .399.8 .356.07 163.25 2.144 .3424 .009 63.223 6.1130 .399.5 .399.6 .356.07 .63.27 2.1641 .3155 .008 .68.548 6.1140 .397.6 .356.07 .63.31 .24.629 .3141 .009 .84.417 .22.20 .399.5 .356.07 .63.30 .26.553 .3136 .009 .44.497 .22.20 .20.20 .399.5 .356.07 .63.30 .26.553 .3136 .009 .44.497 .22.20 .20.20 .399.4 .356.05 .62.35 .9120 .399.5 .356.05 .63.35 .9120 .399.5 .356.05 .63.35 .9120 .399.5 .356.05 .63.35 .9120 .399.5 .356.05 .63.35 .9120 .399.5 .356.05 .63.55 .9120 .399.5 .399.4 .356.05 .63.35 .9120 .399.5 .399.4 .356.05 .63.35 .9120 .399.5 .399.4 .356.05 .63.35 .9120 .399.5 .399.4 .356.05 .63.55 .86.07 .399.5 .399.4 .356.05 .63.55 .9120 .399.5 .399.4 .356.05 .63.55 .9120 .399.5 .399.5 .356.05 .399.5 .356.05 .399.5	1.616 2.449 2.513 4.903 3.356 3.343 1.510 1.973 1.510 1.923 1.214 1.581 1.401 1.668 1.446 1.637 1.355 1.667 1.170 1.145 1.571 1.397 1.688 1.727 1.688 1.727 1.898 1.727 1.8998 1.727 1.8998 1.352 1.7724 1.065	.8964 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
1.040	1-513 1-903 1-903 1-356 1-313 1-510 1-973 1-214 1-510 1-923 1-214 1-601 1-608 1-637 1-355 1-667 1-70 1-70 1-70 1-717 1-686 1-717 1-686 1-727 1-727 1-724 1-724 1-724 1-686 1-724 1-724 1-686 1-724 1-724 1-686 1-724 1-724 1-686 1-724 1-724 1-686 1-724 1-724 1-686 1-724 1-724 1-686 1-724 1-724 1-724 1-686 1-724 1-725 1-726	* * * * * * * * * * * * * * * * * * *
1.000 399,9 138.07 161.38 2.188 3.441 003 6.339 6.346 1.000 399,1 138.07 162.53 7.232 3447 005 10.771 12.000 399,1 138.07 162.53 7.232 3447 005 10.771 12.100 399,1 138.07 162.53 7.232 3447 005 10.771 12.100 399,1 138.07 162.55 7.232 3447 005 10.771 12.100 399,1 138.07 162.55 7.232 3447 005 30.771 12.100 399,1 138.07 162.55 7.232 3447 005 30.771 398.6 158.07 163.26 21.649 3444 007 47.930	1.343 1.343 1.343 1.343 1.3510 1.973 1.2510 1.923 1.214 1.401 1.688 1.440 1.637 1.355 1.667 1.170 1.170 1.145 1.571 1.397 1.686 1.496 1.988 1.727 1.727 1.819 1.819 1.819 1.819 1.822	* * * * * * * * * * * * * * * * * * *
1.080 399.7 158.07 162.25 7.232 3447 -0.05 20.977 20.007 1	1. 343 1. 510 1. 973 1. 510 1. 973 1. 510 1. 923 1. 214 1. 581 1. 401 1. 688 1. 446 1. 637 1. 355 1. 667 1. 170 1. 145 1. 571 1. 397 1. 686 1. 686 1. 727 1. 232 1. 570 1. 819 1. 352 1. 724 1. 724 1. 065	* * * * * * * * * * * * * * * * * * *
1.000 399.1 1.54.07 162.55 7.232 .3447 0.05 2.9717	1.973 1.913 1.923 1.214 1.581 1.401 1.688 1.446 1.637 1.355 1.667 1.170 1.145 1.	* * * * * * * * * * * * * * * * * * *
1-120	1-923 1-923 1-924 1-581 1-401 1-688 1-446 1-637 1-355 1-667 1-170 1-145 1-571 1-397 1-686 1-988 1-727 1-724 1-968 1-988	* * * * * * * * * * * * * * * * * * *
1-120	1214 1581 1601 1608 1446 1637 1355 1667 170 1727 1232 1570 1819 1724	* * * * * * * * * * * * * * * * * * *
1.140 397.8 156.07 163.30 226.563 3136 009 34.687 8 2.010 399.5 158.07 163.12 4.896 .2003 003 24.449 24 2.020 399.5 158.07 163.12 4.896 .2003 003 24.449 24 2.020 398.8 157.98 163.39 15.830 .1995 003 79.398 77 2.040 399.4 158.09 163.55 16.078 1995 003 79.398 77 2.050 399.3 158.09 163.59 19.197 .1996 004 90.671 99 2.050 399.3 158.09 163.59 19.197 .1996 004 99.150 99 2.060 399.5 158.06 164.76 19.767 1999 004 99.150 99 2.080 399.5 158.06 164.54 20.064 .1995 005 103.402 103 2.080 399.5 158.06 166.54 20.064 .1995 005 103.402 103 2.080 399.5 158.06 166.54 20.064 .1995 005 103.402 103 2.080 399.5 158.01 170.12 20.663 .1998 005 103.402 103 2.080 399.5 158.01 170.12 20.663 .1998 005 103.402 103 2.080 300.10 112.51 2.183 3353 .001 6.511 3.011 2.000 3 102.10 112.51 2.183 3353 .001 6.511 3.011 2.000 3 102.11 112.79 2.205 3304 .001 6.672 4 3.001 2.00	1.401688446637355667170145571397686512673694988727232570819819352574666	* * * * * * * * * * * * * * * * * * *
1.150 397.7 138.07 163.30 26.563 3136 009 84.697 84.2010 399.5 138.07 163.12 4.896 2703 003 24.449 22.202 400.0 158.06 163.38 9.120 1.1998 000 45.637 44.202 2.030 398.4 137.98 163.39 15.830 1.1995 003 77.398 77.202 2.040 399.4 158.09 163.59 19.197 1.1996 004 90.671 99.2060 399.4 158.06 164.76 19.767 1.1996 004 99.174 99.2060 399.4 158.06 164.76 19.767 1.1996 004 99.150 99.2060 399.4 158.06 164.76 19.767 1.1996 004 99.150 99.2060 399.6 158.01 170.12 20.663 1.1998 005 100.576 100.2080 399.6 158.01 170.12 20.663 1.1998 005 103.402 103.2090 400.8 158.09 178.67 21.957 2002 005 109.691 103.012 2000.3 102.10 112.51 2.183 3333 .001 6.511 4.3011 2000.3 102.11 112.79 2.205 3394 .001 6.672 4.3010 2001.9 102.15 122.83 4.319 3326 .001 2.098 1.3010 2001.9 102.15 122.83 4.319 3326 .001 25.726 23.001 2001.9 102.15 122.83 4.319 3326 .001 12.988 1.3011 2002.8 102.09 144.41 17.631 23288 .001 54.231 54.001 54.231 54.000 999.1 102.02 112.47 2.360 3460 .000 6.814 4.000 999.8 102.02 112.47 2.360 3460 .000 6.814 4.000 999.8 102.02 122.90 4.834 3498 .000 57.723 55.000 4.99.5 102.02 122.90 4.834 3498 .000 57.723 55.000 4.99.5 102.02 122.90 4.834 3.498 .000 3.819 1.502.02 122.90 3.000	446 635 355 667 170 145 571 686 571 673 694 988 727 232 570 819 819 819	* * * * * * * * * * * * * * * * * * *
2.020	637 355 667 170 145 571 397 686 912 673 694 988 727 232 570 819 352 570	* * * * * * * * * * * * * * * * * * *
2.090 399.3 158.09 163.65 18.078 19.197 -0.04 90.671 99 2.050 399.3 158.09 163.59 19.197 1996 -0.004 99.150 99 2.060 399.4 158.06 164.76 19.767 1.1996 -0.004 99.150 99 2.070 398.5 158.06 164.76 19.767 1.1998 -0.05 100.576 100 2.080 399.6 158.01 170.12 20.663 1.1998 -0.05 103.402 103 2.090 400.8 158.09 178.67 21.957 2002 -0.05 109.691 103 3.012 2000.3 102.10 112.51 2.183 3353 .001 6.511 3.011 2000.3 102.11 112.79 2.205 3304 .001 6.672 4 3.010 2001.7 102.16 112.89 2.205 3304 .001 6.672 4 3.020 2001.9 102.15 122.83 4.319 3326 .001 12.988 11 3.030 2002.2 102.09 142.43 8.595 .3341 .001 5.5726 2 3.040 1998.7 102.09 184.61 17.832 33286 .001 52.726 2 3.040 1998.7 102.09 184.61 17.832 33286 .001 54.231 5 3.040 1998.7 102.02 112.47 2.360 3440 .000 6.819 4 4.020 999.8 102.02 112.90 4.834 3349 .000 54.231 5 4.010 999.1 102.02 112.47 2.360 3440 .000 6.819 4 4.030 999.9 10.19 145.24 9.846 3394 .000 57.723 5 5.010 1498.9 102.05 112.99 8.834 349 .000 57.723 5 5.020 1498.5 102.05 112.99 8.834 3498 .000 57.723 5 5.010 1498.9 102.05 112.99 8.834 3498 .000 57.723 5 5.020 1498.5 102.05 112.99 8.834 3498 .000 57.723 5 5.020 1498.5 102.05 112.99 3.834 .000 57.723 5 5.020 1498.5 102.05 112.47 2.360 3313000 7.066 5 5.020 1498.5 102.05 112.47 2.360 3313000 57.723 5 5.040 1499.5 102.06 185.32 18.559 3324000 57.723 5 5.040 1499.5 102.06 185.32 18.559 3324000 57.723 5 5.040 1499.5 102.06 185.32 18.559 3324000 57.723 5 5.040 1499.5 102.06 185.32 18.559 3324000 15.366 11 7.050 250.4 102.09 183.12 21.60 3.313000 11.5366 11 7.050 250.4 102.09 183.12 21.60 3.313000 11.5366 11 7.050 250.1 101.99 11.97 124.06 4.966 3.232000 14.687 14 7.050 250.7 101.94 118.87 3.992 3.233000 12.160 11 7.050 250.1 101.99 11.97 124.06 4.966 3.232000 14.687 14 7.050 250.2 102.06 121.2 18.97 3.29 3.29 3.200 12.366 11 7.050 250.1 101.99 121.2 18.80 3.200 3.200 12.3	1.667 1.170 1.145 1.571 1.397 1.686 1.912 1.673 1.694 1.988 1.727 1.232 1.570 1.819 1.	* * * * * * * * * * * * * * * * * * *
2.050 399,3 158.09 163.59 19.197 1996004 96.174 99.206 399.3 158.06 164.76 19.767 1994004 99.150 99.2080 399.6 158.06 166.54 20.064 1.995005 100.576 100.2080 399.6 158.01 170.12 20.663 1.998005 103.402 103.2080 399.6 158.01 170.12 20.663 1.998005 103.402 103.3012 2000.3 102.10 112.51 2.183 3335 .001 6.511 3.011 2000.3 102.11 112.79 2.205 3304 .001 6.672 4.001 3.012 2000.3 102.11 112.79 2.205 3304 .001 6.672 4.001 6.001 3.012 2000.3 102.11 112.89 2.205 3304 .001 6.672 4.001 6.001 3.012 2000.3 102.11 112.89 2.205 3304 .001 6.672 4.001 6.00	170 145 571 696 512 673 694 988 727 232 570 819 819 819 819	* * * * * * * * * * * * * * * * * * *
2.070 398.5 158.06 166.54 20.064 1.995005 100.576 100 2.080 399.6 158.01 170.12 20.663 1.998005 103.402 103 2.090 400.8 158.09 178.67 21.957 2002005 109.691 10 3.012 2000.3 102.10 112.51 2.183 3353 .001 6.511 3.011 2000.3 102.11 112.79 2.205 3304 .001 6.672 3.010 2001.7 102.16 112.89 2.205 3304 .001 6.672 3.010 2001.7 102.16 112.89 2.205 3304 .001 6.694 3.020 2001.9 102.15 122.83 4.319 3326 .001 12.988 12.303 .001 200.3 102.11 112.79 2.203 1304 .001 12.988 12.303 .001 200.3 102.11 112.89 122.83 4.319 3326 .001 12.988 12.303 .001 200.3 102.11 112.89 122.83 4.319 3326 .001 12.988 12.303 .001 200.3 12.988 102.00 12.988 12.303 .001 200.3 12.988 .001 54.251 55 .001 198.7 102.00 184.41 17.831 3288 .001 54.256 55 .001 198.7 102.00 184.41 17.831 3288 .001 54.256 55 .001 109.99 1 102.02 112.47 2.360 .3846 .000 6.819 6.400 999.8 102.02 112.47 2.360 .3846 .000 13.819 1 .001 100.00 13.809 1 .001 100.00 13.809 1 .001 100.00 13.809 1 .001 100.00 13.809 1 .001 100.00 13.809 1 .001 100.00 13.809 1 .001 100.00 13.809 1 .001 100.00 13.809 1 .001 100.00 13.809 1 .000 15.703	.571 .686 .597 .6686 .512 .673 .698 .988 .727 .232 .570 .819 .819 .352 .724 .065	, 4253 .6246 .6238 .6280 .6378 .6588 .6613 .6523 .6519 .6778 .7134 .6406
2.090	1.686 1.673 1.673 1.694 1.988 1.727 1.232 1.570 1.819 1.819 1.352 1.724 1.065 1.686	, 4253 .6246 .6238 .6280 .6378 .6588 .6613 .6523 .6519 .6778 .7134 .6406
3.012 2000.3 102.10 112.51 2.183 3353 .001 6.511 3.011 2000.3 102.11 112.79 2.205 3304 .001 6.672 4 3.020 2001.7 102.16 112.89 2.205 3304 .001 6.672 4 3.020 2001.9 102.15 122.83 4.319 3326 .001 12.988 11 3.030 2002.2 102.09 142.43 8.595 3341 .001 25.772 22 3.041 2002.8 102.09 142.43 8.595 3341 .001 25.772 22 3.041 2002.8 102.09 184.41 17.831 3288 .001 54.231 5 3.040 1998.7 102.09 184.41 17.831 3288 .001 54.569 55 4.010 999.1 102.02 112.47 2.360 3460 .000 6.819 6 4.020 999.8 102.02 112.47 2.360 3460 .000 6.819 6 4.020 999.8 102.02 122.90 4.834 3498 .000 29.352 22 4.040 999.8 102.02 182.94 19.174 3322 .000 57.723 5 5.010 1498.9 102.05 113.08 2.340 3313 -000 7.066 1 5.020 1498.9 102.05 113.08 2.340 3313 -000 7.066 1 5.020 1498.5 102.05 113.08 2.340 3313 -000 7.066 1 5.020 1498.5 102.05 185.32 18.559 3234 -000 28.404 22 5.030 1499.1 102.06 185.32 18.559 3234 -000 28.404 22 5.030 1499.1 102.06 185.32 18.559 3234 -000 56.765 5 6.010 499.2 102.06 185.32 18.559 3234 -000 56.765 5 6.010 499.2 102.06 185.32 18.559 3234 -000 7.002 6 6.020 501.9 101.97 124.06 4.966 3232 -001 15.366 1 6.030 498.9 102.17 144.47 9.710 3173 -001 30.603 33 6 6.040 500.4 102.29 183.12 21.630 3212 -002 6 6.933 6 6.000 50.4 102.29 183.12 21.630 3212 -000 26.732 6 6.030 498.9 102.17 144.47 9.710 3173 -001 30.603 33 6 6.040 500.4 102.29 183.12 21.630 3212 -000 6.933 6 7.010 251.6 102.16 111.89 2.305 3325 -000 15.366 11 7.050 251.2 102.207 101.94 118.87 33.32 3333 -000 9.811 6 7.050 251.2 102.207 101.94 118.87 33.32 3333 -000 12.160 13.700 251.6 102.16 111.89 2.305 3325 -000 14.334 17.020 249.3 102.03 119.87 4.715 3289 -000 14.334 17.020 249.3 102.03 119.87 4.713 3250 -000 14.334 17.020 249.3 102.03 119.87 4.713 3250 -000 14.334 17.020 249.3 102.03 119.87 4.713 3250 -000 14.334 17.020 249.3 102.03 119.87 4.713 3250 -000 14.334 17.020 249.3 102.03 119.87 4.713 3250 -000 14.334 17.020 249.3 102.03 119.87 4.713 3250 -000 14.334 17.030 248.9 102.08 122.28 12.59 8.400 1912 -000 43.927 4 4.000 250.7 102.08 122.28 122.59 122.20 102.08 122.40 102.8 122.45 10	0-512 0-673 0-694 0-988 0-727 0-819 0-819 0-819 0-352 0-724 0-065 0-686	.6246 .6280 .6280 .6378 .6588 .6613 .6523 .6519 .6778 .7134 .6406
3.010 2001.7 102.16 112.89 2.205 .3244 .001 6.694 1 3.020 2001.9 102.15 122.83 4.319 .3326 .001 12.998 12 3.030 2002.2 102.09 142.43 8.595 .3341 .001 25.726 22 3.041 2002.8 102.09 184.41 17.831 .3288 .001 54.251 52 3.040 1998.7 102.09 184.61 17.832 .3268 .001 54.256 53 4.010 999.1 102.02 112.47 2.360 .3460 .000 6.819 64.010 999.8 102.02 112.47 2.360 .3448 .000 13.819 11 4.030 999.8 102.02 122.90 4.834 .3498 .000 13.819 11 4.030 999.9 101.93 145.24 9.846 .3354 .000 57.723 55 5.010 1498.9 102.05 113.08 2.340 .3313000 7.066 55 5.020 1498.5 102.05 113.08 2.340 .3313000 7.066 55 5.020 1498.5 102.06 145.27 9.341 .3289000 56.765 56 6.010 499.2 102.06 145.27 9.341 .3289000 56.765 56 6.010 499.2 102.06 185.32 18.359 .3234000 56.765 56 6.010 499.2 102.06 185.32 18.359 .3234000 56.765 56 6.010 499.2 102.04 112.24 2.340 .3342001 7.002 66.030 498.9 102.17 144.47 9.710 .3173001 30.603 316 6.030 498.9 102.17 144.47 9.710 .3173001 30.603 316 6.040 500.4 102.29 183.12 21.630 .3212002 67.342 66 6.030 498.9 102.17 144.47 9.710 .3173001 30.603 316 7.000 251.6 102.16 111.89 2.305 .3325000 6.933 67 7.010 251.6 102.16 111.89 2.305 .3325000 9.811 7.022 67.342 67 7.040 250.7 101.94 118.87 3.932 .3233000 12.160 14 7.050 251.2 102.27 116.00 3.172 .3233000 14.334 17 7.050 251.2 102.08 12.27 136.00 3.172 .3233000 9.811 7.002 249.3 102.08 120.59 5.643 .3229001 17.885 11 7.060 250.0 102.08 120.59 5.643 .3229001 17.885 11 7.070 250.8 101.85 121.71 8.389 .3250000 62.094 66 7.110 250.1 101.96 122.16 15.510 .1894001 28.888 8 7.120 249.4 102.08 122.25 12.16 1.880001 11.888 11 7.140 249.0 102.11 122.71 11.832 .1906000 62.094 66 7.110 250.4 102.08 122.28 122.23 25.366 .1871001 135.201 137 7.150 248.6 102.11 122.271 11.832 .1906000 62.094 66 7.110 250.1 101.96 122.16 15.510 .1894001 135.201 137 7.150 248.7 102.08 122.28 122.28 13.360001 141.000 14 7.180 249.3 102.01 112.2.11 132.52 2.268 .3360300 6.032 8.031 245.9 201.53 241.05 7.220 3315317 21.810 2	6.694 -988 -727 -232 -570 -819 -819 -352 -724 -065 -686 -404	.6238 .6280 .6378 .6588 .6613 .6523 .6519 .6778 .7134 .6406
3.040	2.988 1.727 1.232 1.570 1.819 1.352 1.724 1.065 1.686	.6280 .6378 .6588 .6613 .6523 .6519 .6778 .7134 .6406
3.041 2002.8 102.09 184.41 17.831 3288 .001 54.231 55 3.040 1998.7 102.02 184.47 2.360 .3460 .000 6.819 4.000 999.1 102.02 122.90 4.834 .3488 .000 13.819 14.020 999.8 102.02 122.90 4.834 .3488 .000 29.352 22 4.040 999.8 102.02 182.94 19.174 .3322 .000 57.723 55 5.010 1498.9 102.05 113.08 2.340 .3313 -000 7.066 55.020 1498.5 102.05 124.79 4.822 .3283 -000 14.687 14 55.030 1499.1 102.06 185.32 18.359 .000 56.765 56 6.010 499.5 102.06 185.32 18.359 .3234 -000 28.404 .22 55.040 1499.5 102.06 185.32 18.359 .3234 -000 56.765 56 6.010 499.9 102.01 11.00 4.06 4.966 .3222 -001 15.366 11 6.030 499.9 102.17 144.47 9.710 .3173 -001 30.603 33 6.040 500.4 102.29 183.12 21.630 .3212 -000 6.7342 6.020 501.9 101.97 124.06 4.966 .3222 -001 30.603 33 7.040 550.4 102.29 183.12 21.630 .3212 -000 6.7342 6.030 499.9 102.17 144.47 9.710 .3173 -001 30.603 33 7.040 250.7 101.94 118.87 3.932 .3233 -000 6.933 6.040 500.4 102.29 183.12 21.630 .3212 -000 6.933 6.040 500.4 102.29 183.12 21.630 .3212 -000 6.933 6.000 551.2 102.07 101.94 118.87 3.932 .3233 -000 6.933 6.000 551.2 102.27 116.00 3.172 .3233 -000 12.160 14.499 17.020 249.3 102.06 120.32 4.715 .3289 -000 14.499 14.499 14.7020 249.3 102.06 120.32 4.715 .3289 -000 14.3937 17.020 249.3 102.06 120.32 4.715 .3289 -000 14.3934 14.7020 249.3 102.06 120.32 4.715 .3289 -000 14.3933 14.7020 249.3 102.06 120.32 4.715 .3289 -000 14.3934 14.7020 249.3 102.06 120.25 5.643 .3209 -000 14.3934 14.7020 249.3 102.08 121.28 6.285 .3251 -0001 19.333 14.7020 249.4 102.08 122.85 8.400 .1912 -000 43.927 4.715 .3289 -000 12.160 13.888 8.7120 249.4 102.08 122.28 19.724 .1887 -001 126.054 22.74 10.00 12.160 13.888 8.7120 249.4 102.08 122.28 19.724 .1887 -001 126.054 22.74 10.00 12.16 13.880 -001 126.159 10.756 248.7 100.248.6 102.11 122.71 11.832 1906 -000 62.094 6.7110 250.1 101.96 122.15 122.15 122.16 13.880 -001 126.159 10.7110 250.1 101.96 122.15 122.15 13.899 -0001 14.3936 11.7110 250.1 101.96 122.15 122.15 13.899 -0001 14.3936 11.7110 250.1 101.96 122.15 122.21 23.340 .1880 -001 126.159 12.715 12.110 2	3.232 3.570 3.819 3.819 3.352 7.724 7.065 3.404	.6588 .6613 .6523 .6619 .6778 .7134 .6406
4.010 999.1 102.02 112.47 2.360 .3460 .000 6.819 4.020 999.8 102.02 122.90 4.834 .3498 .000 13.819 11 4.030 999.9 101.93 145.24 9.846 .3354 .000 29.352 22 4.040 999.8 102.02 182.94 19.174 .3322 .000 57.723 55 .010 1498.9 102.05 113.08 2.340 .3313000 7.066 55.020 1498.5 102.05 124.79 4.822 .3283000 14.687 14 55.030 1499.1 102.06 145.27 9.341 .3289000 28.404 22 55.040 1499.5 102.06 185.32 18.359 .3234000 56.765 55 .010 499.2 102.04 112.24 2.340 .3342001 7.002 56.765 55 .010 499.2 102.04 112.24 2.340 .3342001 7.002 56.765 55 .010 499.2 102.04 112.24 2.340 .3342001 7.002 56.765 55 .010 499.2 102.04 112.24 2.340 .3342001 7.002 56.765 55 .010 499.2 102.04 112.24 2.340 .3342001 7.002 56.765 55 .010 4.99.2 102.04 112.24 2.340 .3342001 7.002 56.765 55 .010 4.99.2 102.04 112.24 2.340 .3342001 7.002 56.765 55 .010 2.91 102.07 144.47 9.710 .3173001 30.603 33 .000 4.98.9 102.17 144.47 9.710 .3173001 30.603 33 .000 4.98.9 102.17 144.47 9.710 .3173001 30.603 33 .000 4.98.9 102.17 144.47 9.710 .3173001 30.603 33 .000 4.98.9 102.17 144.47 9.710 .3173001 30.603 33 .000 4.98.9 102.16 111.89 2.305 .3325000 6.933 67.040 250.7 101.94 118.87 3.932 .3233000 12.160 12 .7002 249.3 102.03 119.87 4.715 .3289000 12.160 12 .7002 249.3 102.03 119.87 4.715 .3289000 12.160 12 .7002 249.3 102.03 119.87 4.715 .3289000 14.334 14 7.020 249.3 102.03 119.87 4.715 .3289000 14.334 14 7.030 251.2 102.27 116.00 3.172 .3233000 9.811 7.000 251.2 102.00 121.28 6.285 .3251001 19.333 14 7.030 251.2 102.00 121.28 6.285 .3251001 19.333 14 7.030 251.2 102.00 121.28 6.285 .3251001 19.333 14 7.030 251.2 102.08 121.75 5.647 .1906000 29.630 27 .7090 252.4 102.08 121.75 5.647 .1906000 29.630 27 .7090 251.2 102.08 121.75 5.647 .1906000 29.630 27 .7090 251.2 102.08 121.75 5.647 .1906000 62.094 66 7.110 250.1 101.96 122.15 122.71 11.832 .1906000 62.094 66 7.110 250.1 101.96 122.15 122.71 11.830001 137.888 11 7.100 248.9 102.08 122.28 19.724 1.880001 141.990 14 7.180 249.9	3.819 3.819 3.352 7.724 7.065 3.686	.6523 .6619 .6778 .7134 .6406
4.020 999.8 102.02 122.90 4.834 3498 .000 13.819 11 4.030 999.8 102.02 182.94 19.174 .3322 .000 57.723 5 5.010 1498.9 102.05 113.08 2.340 .3313 000 7.066 1 5.020 1498.5 102.05 124.79 4.822 .3283 000 14.687 14 5.030 1499.1 102.06 145.27 9.341 .3269 000 28.404 22 5.040 1499.2 102.04 112.24 2.340 .3342 001 7.002 6.020 501.9 101.97 124.06 4.966 .2232 001 15.366 12 6.020 501.9 101.97 124.06 4.966 .2232 001 35.366 12 6.020 501.9 101.97 124.06 4.966 .2232 001 35.366 12 7.010	3.819 3.352 7.724 7.065 3.686 3.404	.6619 .6778 .7134 .6406
4.040 999.8 102.02 182.94 19.174 3312 .000 57.723 5 5.010 1498.9 102.05 113.08 2.340 3313 000 7.066 5.020 1498.5 102.05 124.79 4.822 3283 000 14.687 14 5.030 1499.1 102.06 185.22 18.359 3344 000 56.765 56 6.010 499.2 102.04 112.24 2.340 3342 001 7.002 6.020 501.9 101.97 124.06 4.966 3232 001 7.002 6.030 499.9 102.17 144.47 9.710 3173 001 30.603 30 6.030 498.9 102.16 111.89 2.305 3325 000 67.342 6 7.010 251.6 102.16 111.89 2.305 3325 000 69.33 7.040 250.7 101.94 118.87 3.932 3233 000	7.724 7.065 1.686 3.404	.7134 .6406
5.020 1498.5 102.05 124.79 4.822 3289 000 14.687 12.500 145.27 9.341 3289 000 28.404 22 5.040 1499.5 102.06 185.32 18.359 3234 000 56.765 56 6.010 499.2 102.04 112.24 2.340 3342 001 7.002 6.020 501.9 101.97 124.06 4.966 3232 001 7.002 6.030 498.9 102.17 144.47 9.710 3173 001 30.603 33 6.040 500.4 102.29 183.12 21.630 3212 002 67.342 6 7.010 251.6 102.16 11.89 2.305 .3325 000 6.933 6 7.040 250.7 101.94 118.87 3.932 .3233 000 12.160 12 7.050 251.2 102.27 116.00 3.172 .3233 000 12.160 14.334 11 7.021 249.3 <t< td=""><td>-686 -404</td><td>. 6456</td></t<>	-686 -404	. 6456
5.030	3-404	
6.010 499.2 102.04 112.24 2.340 .3342001 7.002 6.020 501.9 101.97 124.06 4.966 3232001 15.366 11 6.030 498.9 102.17 144.47 9.710 .3173001 30.603 33 6.040 500.4 102.29 183.12 21.630 .3212002 67.342 6 7.010 251.6 102.16 111.89 2.305 .3255000 6.933 7.040 250.7 101.94 118.87 3.932 .3233000 12.160 14 7.050 251.2 102.27 116.00 3.172 .3233000 9.811 7.021 249.3 102.06 120.32 4.715 .3289000 9.811 7.020 249.3 102.03 119.87 4.713 .3250000 14.499 14 7.030 251.2 102.00 121.28 6.285 .3251001 19.333 10 7.060 250.0 102.08 120.59 5.643 .3209001 17.585 11 7.070 250.8 101.85 121.71 8.369 .3224001 26.054 28 7.080 250.7 102.08 121.75 5.647 .1906000 29.630 27 7.080 252.4 102.08 122.85 8.400 .912000 43.927 4 7.100 251.2 102.11 122.71 11.832 .1906000 43.927 4 7.100 251.2 102.11 122.71 11.832 .1906000 62.094 6 7.110 250.1 101.96 122.16 15.510 .1894001 81.888 8 7.120 249.4 102.08 122.28 19.724 .1887001 104.519 10 7.130 248.9 102.08 122.28 19.724 .1887001 135.201 13 7.160 247.8 102.11 122.21 23.340 .1880001 124.156 12 7.150 248.7 102.08 122.23 25.366 .1876001 135.201 13 7.160 247.8 102.11 122.21 23.340 .1880001 124.156 12 7.150 248.6 102.11 125.79 26.020 .1871001 139.095 13 7.160 247.8 102.11 125.79 26.020 .1871001 139.095 13 7.170 248.6 102.11 123.52 27.038 .1886001 143.346 14 8.010 246.5 201.59 212.22 2.028 .3363300 6.032 8.031 245.9 201.55 241.05 7.223 .33153317 21.810 2	7//	.6573
6.020 501.9 101.97 124.06 4.966 3232001 15.366 1.6 6.030 498.9 102.17 144.47 9.710 3173001 30.603 33 6.040 500.4 102.29 183.12 21.630 3212002 67.342 67.010 251.6 102.16 111.89 2.305 3325000 6.933 67.040 250.7 101.94 118.87 3.932 3223000 12.160 14.7 7.050 251.2 102.27 116.00 3.172 3233000 9.811 9.7 7.021 249.3 102.06 120.32 4.715 3289000 14.334 14.7 7.020 249.3 102.03 119.87 4.713 3250000 14.499 14.7 7.030 251.2 102.03 119.87 4.713 3250000 14.499 14.7 7.030 251.2 102.00 121.28 6.285 3251001 19.333 17.060 250.0 102.08 120.59 5.643 3209001 17.585 17.7 7.070 250.8 101.85 121.71 8.349 .2224001 26.054 28.7 7.080 250.7 102.08 121.75 5.647 .1906000 29.630 27.7 7.090 252.4 102.08 121.75 5.647 .1906000 29.630 27.7 7.100 251.2 102.11 122.71 11.832 .1906000 43.927 4.7 7.100 251.2 102.11 122.71 11.832 .1906000 62.094 6.7 7.110 250.1 101.96 122.16 15.510 .1894001 81.888 8.7 7.120 249.4 102.08 122.28 19.724 .1887001 104.519 10.7 7.130 248.9 102.08 122.25 22.161 .1880001 117.888 11.7 7.150 248.7 102.08 122.23 25.366 .1876001 135.201 13.7 7.160 247.8 102.11 122.21 23.340 .1880001 124.156 12.7 7.150 248.7 102.11 122.22 23.340 .1880001 135.201 13.7 7.160 249.3 102.11 122.22 23.340 .1880001 135.201 13.7 7.160 249.4 102.08 122.23 25.366 .1876001 135.201 13.7 7.160 249.5 102.11 122.22 23.340 .1880001 124.156 12.7 7.150 248.6 102.11 123.52 27.038 .1886001 135.201 13.7 7.160 249.3 102.11 133.52 27.038 .1886001 143.346 14.8 8.010 246.6 201.59 212.22 2.028 .3363300 6.032 8.030 245.9 201.55 241.05 7.230 .33153317 21.810 2	7.001	.6817
6.040 500.4 102.29 183.12 21.630 .3212002 67.342 67.010 251.6 102.16 111.89 2.305 .3325000 6.933 67.040 250.7 101.94 118.87 3.932 .3233000 12.160 14.70.50 251.2 102.27 116.00 3.172 .3233000 9.811 9.001 12.00	.365 .602	.6955 .7234
7.040 250.7 101.94 118.87 3.932 3233000 12.160 14 7.050 251.2 102.27 116.00 3.172 3233000 9.811 9 7.021 249.3 102.06 120.32 4.715 3289000 14.334 14 7.020 249.3 102.03 119.87 4.713 3250000 14.334 14 7.020 249.3 102.03 121.28 6.285 3251001 19.333 14 7.060 251.2 102.00 121.28 6.285 3251001 19.333 14 7.060 250.0 102.08 120.59 5.643 3209001 17.585 17 7.070 250.8 101.65 121.71 8.349 3224001 26.054 22 7.080 250.7 102.08 121.75 5.647 1.906000 29.630 27 7.090 252.4 102.08 122.85 8.400 1.912000 43.927 4 7.100 251.2 102.11 122.71 11.832 1.906000 62.094 6 7.110 250.1 101.96 122.16 15.510 1894001 81.888 8 7.120 249.4 102.08 122.28 19.724 1.887001 104.519 10 7.130 248.9 102.08 122.28 19.724 1.887001 104.519 10 7.130 248.9 102.08 122.15 22.161 1.880001 117.888 11 7.140 249.0 102.11 122.21 23.340 1880001 117.888 11 7.140 249.0 102.11 122.22 23 25.366 1876001 124.156 12 7.150 248.7 102.08 122.23 25.366 1876001 125.201 13 7.160 247.8 102.11 125.79 26.020 1871001 139.095 137 7.160 248.6 102.14 129.49 26.513 1879001 141.090 14 7.180 249.3 102.11 133.52 27.038 1886001 143.346 14 8.010 246.5 201.59 212.22 2.028 3363300 6.032 8.020 246.6 201.55 2416.05 7.230 3315310 11.350 18.0031 245.9 201.55 2416.05 7.230 3315317 21.810 2	. 340	.8331
7.021 249.3 102.06 120.32 4.715 .3289000 14.334 14 7.020 249.3 102.03 119.87 4.713 .3250000 14.499 14 7.030 251.2 102.00 121.28 6.285 .3251001 19.333 17 7.060 250.0 102.08 120.59 5.643 .3209001 17.585 17 7.070 250.8 101.85 121.71 8.399 .3224001 26.054 27 7.080 250.7 102.08 121.75 5.647 .1906000 29.630 27 7.090 252.4 102.08 122.85 8.400 .1912000 43.927 4.7 7.100 251.2 102.11 122.71 11.832 .1906000 62.094 6.7 7.110 250.1 101.96 122.16 15.510 .1894001 81.888 81 7.120 249.4 102.08 122.28 19.724 .1887001 104.519 10.7 7.130 248.9 102.08 122.15 22.161 .1880001 117.888 11 7.140 249.0 102.11 122.21 23.340 .1880001 117.888 11 7.150 248.7 102.08 122.23 25.366 .1876001 124.156 12.7 7.150 248.6 102.11 125.79 26.020 .1871001 135.201 133 7.160 247.8 102.11 125.79 26.020 .1871001 139.095 137 7.180 249.3 102.11 133.52 27.038 .1886001 143.346 14.80 100 246.5 201.59 212.22 2.028 .3363300 6.032 8.031 245.9 201.55 241.05 7.230 .3315310 11.350 1	. 933 - 100 - 011	.7125 .7183
7.020 249.3 102.03 119.87 4.713 .3250 000 14.499 14 7.030 251.2 102.00 121.28 6.285 .3251 001 19.333 17 7.060 250.0 102.08 120.59 5.643 .3209 001 17.585 17 7.070 250.8 101.85 121.71 8.349 .3224 001 26.054 2 7.080 250.7 102.08 121.75 5.647 .1906 000 29.630 2 7.090 252.4 102.08 122.85 8.400 .1912 000 43.927 4 7.100 251.2 102.11 122.71 11.832 .1906 000 62.094 6 7.110 250.1 101.96 122.16 15.510 .1894 001 81.888 8 7.120 249.4 102.08 122.28 19.724 .1887 001 104.519 10	. 911 . 334	.7147
7.060 250.0 102.08 120.59 5.643 .3209001 17.585 17.070 250.8 101.85 121.71 8.369 .3224001 26.054 22.77.080 250.7 102.08 121.75 5.647 .1906000 29.630 27.7.090 252.4 102.08 122.85 8.400 .1912000 43.927 4.7.100 251.2 102.11 122.71 11.832 .1906000 62.094 6.7.110 250.1 101.96 122.16 15.510 .1894001 81.888 8.7.120 249.4 102.08 122.28 19.724 .1887001 104.519 10.7.130 248.9 102.08 122.15 22.161 1.880001 117.888 11.7.140 249.0 102.11 122.21 23.340 .1880001 117.888 11.7.150 248.7 102.08 122.23 25.366 .1876001 124.156 12.7.150 248.7 102.08 122.23 25.366 .1876001 135.201 13.7.160 247.8 102.11 125.79 26.020 .1871001 139.095 13.7.160 248.6 102.14 129.49 26.513 .1879001 141.090 14.7.180 249.3 102.11 133.52 27.038 .1886001 143.346 14.8.010 246.5 201.59 212.22 2.028 .3363300 6.032 8.020 246.6 201.53 221.05 7.220 .3315310 11.350 1	.499	
7.070 250.8 101.85 121.71 8.349 .3224001 26.054 27 7.080 250.7 102.08 121.75 5.647 .1906000 29.630 27 7.090 252.4 102.08 122.85 8.400 .1912000 43.927 4 7.100 251.2 102.11 122.71 11.832 .1906000 62.094 66 7.110 250.1 101.96 122.16 15.51C .1894001 81.888 8 7.120 249.4 102.08 122.28 19.724 .1887001 104.519 100 7.130 248.9 102.08 122.15 22.161 .1880001 117.888 11 7.140 249.0 102.11 122.21 23.340 .1880001 124.156 12 7.150 248.7 102.08 122.23 25.366 .1876001 135.201 13 7.160 247.8 102.11 125.79 26.020 .1871001 135.201 13 7.170 248.6 102.11 125.79 26.020 .1871001 139.095 13 7.170 248.6 102.11 125.79 26.020 .1871001 139.095 13 7.180 249.3 102.11 133.52 27.038 .1886001 141.090 14 7.180 249.3 102.11 133.52 27.038 .1886001 143.346 14 8.010 246.5 201.59 212.22 2.028 .3363300 6.032 8.020 246.6 201.59 212.22 3.823 .3368310 11.350 1 8.031 245.9 201.53 241.05 7.223 .33153317 21.810 2	1.333 1.585	*
7.090 252.4 102.08 122.85 8.400 .1912 000 43.927 4 7.100 251.2 102.11 122.71 11.832 .1906 000 62.094 6 7.110 250.1 101.96 122.16 15.510 .1894 001 81.888 8 7.120 249.4 102.08 122.28 19.724 .1887 001 104.519 10 7.130 248.9 102.08 122.21 23.340 .1880 001 117.888 11 7.150 248.7 102.08 122.22 25.366 .1876 001 124.156 12 7.160 247.8 102.11 125.79 26.020 .1876 001 135.201 13 7.170 248.6 102.14 129.49 26.513 .1879 001 141.090 14 7.180 249.3 102.11 133.52 27.032 .1886 001 143.346 14	- 054	
7.100 251.2 102.11 122.71 11.832 .1906000 62.094 66 7.110 250.1 101.96 122.16 15.51C .1894001 81.888 8 7.120 249.4 102.08 122.28 19.724 .1887001 104.519 10 7.130 248.9 102.08 122.15 22.161 .1880001 117.888 11 7.140 249.0 102.11 122.21 23.340 .1880001 124.156 12 7.150 248.7 102.08 122.23 25.366 .1876001 135.201 13 7.160 247.8 102.11 125.79 26.020 .1871001 139.095 13 7.170 248.6 102.14 129.49 26.513 .1879001 141.090 14 7.180 249.3 102.11 133.52 27.038 .1886001 143.346 14: 8.010 246.5 201.59 212.22 2.028 .3363300 6.032 8.020 246.6 201.54 222.03 3.822 .3368310 11.350 1 8.031 245.9 201.53 241.05 7.230 .33153317 21.810 2	3.630 3.926	*
7.130 248.9 102.08 122.15 22.161 .1880001 117.888 11 7.140 249.0 102.11 122.21 23.340 .1880001 124.156 122 7.150 248.7 102.08 122.23 25.366 .1876001 135.201 133 7.160 247.8 102.11 125.79 26.020 .1871001 139.095 137 7.170 248.6 102.14 129.49 26.513 .1879001 141.090 144 7.180 249.3 102.11 133.52 27.032 .1886001 143.346 143 8.010 246.5 201.59 212.22 2.028 .3363300 6.032 8.020 246.6 201.54 222.03 3.822 .3368310 11.350 1 8.031 245.9 201.53 241.05 7.230 .3315317 21.810 2	2.094 L.887	*
7.140 249.0 102.11 122.21 23.340 .1880001 124.156 12 7.150 248.7 102.08 122.23 25.366 .1876001 135.201 13 7.160 247.8 102.11 125.79 26.020 .1871001 139.095 139 7.170 248.6 102.14 129.49 26.513 .1879001 141.090 14 7.180 249.3 102.11 133.52 27.038 .1886001 143.346 14: 8.010 246.5 201.59 212.22 2.028 .3363300 6.032 8.020 246.6 201.54 222.03 3.822 .3368310 11.350 1 8.031 245.9 201.55 241.05 7.230 .3315317 21.810 2	.518	
7.150	7.867 4.155	*
7.170 248.6 102.14 129.49 26.513 .1879 001 141.090 14 7.180 249.3 102.11 133.52 27.03e .1886 001 143.346 14 8.010 246.5 201.59 212.22 2.028 .3363 300 6.032 8.020 246.6 201.54 222.03 3.822 .3368 310 11.350 1 8.031 245.9 201.53 241.05 7.230 .3315 317 21.810 2	5.199 9.094	*
8.010 246.5 201.59 212.22 2.028 .3363300 6.032 8.020 246.6 201.54 222.03 3.822 .3368310 11.350 1 8.031 245.9 201.53 241.05 7.230 .3315317 21.810 2	1.089	<u> </u>
8.020 246.6 201.54 222.03 3.822 .3368310 11.350 1 8.031 245.9 201.53 241.05 7.230 .3315317 21.810 2	5.732	.5393
	1.039 1.493	.5388
8.030 245.7 201.53 241.12 7.23C .3309317 21.850 2	1.533	.5438 .5439
	7.451	.5490 .8068
9.020 499.5 201.54 221.28 5.188 .3358313 15.451 1	5.137	.7670
9.030 499.2 201.46 239.60 9.482 .3359340 28.227 2	7.889 7.887	.7321 .7312
	2.343 2.225	.6905 .6904
10.011 1502.6 201.41 210.89 2.375 .3201002 7.420	7.418	.7823
	7.391 5.410	.7661 .5404
11.020 243.9 201.40 221.19 3.781 .3429320 11.024 1	0.704	.5410
11.040 243.4 201.44 279.16 14.727 .3405351 43.235 4	1.198 2.884	.5463 .5518
12.011 999.1 201.48 212.11 2.954 .3106007 9.511	9.504 9.558	.8947 .8957
12.020 999.4 201.50 221.93 5.935 .3141008 18.893 1	8.885	.9245
	2.205 2.401	1.0213
13.011 1500.9 201.49 212.10 2.597 .3169002 8.193	9.191	.7721 .7704
13.020 1502.1 201.51 222.91 5.441 .3255002 16.714 1	8.138	.7811
13.021 1500.7 201.51 223.12 5.442 .3219002 16.906 1 13.030 1498.3 201.48 242.20 11.138 .3397003 32.788 3	8.138 6.712	.7824 .8051
14.010 700.2 201.49 210.52 4.044 .3205015 12.619 1	6.712 6.904	1.3956
14.020 701.2 201.54 220.75 14.327 3184020 44.997 4	6.712 6.904 2.785 2.605	1.3948 2.3545
15.011 699.3 201.53 231.21 13.596 .1943009 69.977 6	6.712 6.904 2.785	2.3577
15.021 702.3 201.54 242.85 16.658 .2004009 83.136 8	6.712 6.904 2.785 2.605 2.558 4.977	6.2066
15.020 701.2 201.49 244.25 16.656 .1969009 84.607 8 15.030 701.1 201.56 257.71 18.040 .1842009 97.912 9	6.712 6.904 2.785 2.605 2.558 4.977 9.968 9.530 3.127	2.0122 1.9785

TABLE XLVI (CONTINUED)

Dita	INLET	INLET	OUTLET TEMPERATURE	POWER	FLOW	CORR.	POWER FLOW	V H-	(AH) _P
RUN	PRESSURE (psia)	TEMPERATURE (OF)	TEMPERATURE (OF)	POWER (Btu/min)	(lb/min)	(Btu/lb)	(Btu/lb)	ΔΗ _P (Btu/lb)	(Btu/lb-OF)
16.010	2000.0	201.50	211.32	2.289	.3227	+.001	7.096	7.095	.7219
16.020	2000.6	201.46 201.58	221.49	4.567 8.863	.3122 .3056	001 001	14.629 28.998	14.628 28.997	•7304 •7454
16.030 16.042	2001.2 2000.2	201.56	277,15	17.582	3025	001	58.123	58.122	.7679
16.041	1999.7	201.54	277.38	17.580	.3016 .2973	001 001	58.288 59.134	58.287 59.134	.7686 .7771
16.040 17.010	617.4	201.58 202.15	277.68	17.580	.3417	039	2.950	2.911	2.2572
17.020	616.8	202.14	204.75	2.437	.3429	029	7.107	7.078	2.7151
18.010 18.020	517.5 618.1	203.79 203.83	205.09 206.18	1.503 7.353	.3272	073 092	4.595	4.522 22.131	3.4593 9.4276
18.030	617.8	203.79	206.30	10.118	.3335	112	30.342	30.231	12.0242
18.040 18.050	618.5 618.1	203.84 203.84	207.30 208.48	11.834	.3052 .2712	097 097	38.651 43.625	38.553 43.528	11.1487 9.3640
18.060	618.0	203.80	210.22	11.687	.2414	078	48.420	48.342	7.5280
18.070	618.4 498.2	<u>293.82</u>	211.74 213.11	2.223	.2227 .3013	078 170	51.336 7.378	51.258 7.208	6.4771 .7814
19.020	499.2	203.87	223.23	4.478	.3015	179	14.853	14.674	.7583
19.030 19.040	499.5 499.6	203.87 203.94	242.53 260.87	8.485 12.057	.3010 .3003	197 206	28.186 40.146	27.989 39.940	.7240 .7016
19.051	499.2	203.77	280.50	11.884	.2255	134	52.693	52.558	.6850
19.050	499.4	203.79	280.33	11.884	.2257	134	52.661	52.526	.6862 1.4787
20.010	617.9 517.5	212.22 212.20	218.17 227.83	2.597 5.694	•2928 •2934	070 130	8.871 19.409	8.800 19.279	1.2335
20.030	617.1	212.14	253.11	11.910	. 2925	163	40.717	40.554	. 9898
21.010	995.3	251.29	260.23	3.258	.1309	527	24.883 48.579	24.357	2.7268
21.021	999.8 1000.1	251.34 251.35	270.00 270.10	6.074 6.074	•1250 •1245	656 689	48.804	47.923 48.115	2.5686 2.5667
21.030	998.6	251.34	282.52	8.468	.1158	661	73.124	72.463	2.3243
22.011	1199.8 1199.8	251.32 251.28	262.11 262.96	2.027 2.028	.1078 .1027	003	18.807 19.750	18.804 19.747	1.7416 1.6915
22.021	1201.3	251.28	276.94	4.550	.1020	003	44.628	44.626	1.7391
22.020 22.030	1201.4 1200.9	251.28 251.31	276.93 294.55	4.549 7.975	.1020 .1034	004	44.622 77.111	44.618 77.107	1.7397
23.010	1500.4	251.34	264.43	2.115	.1095	001	19.320	19.319	1.4760
23.020	1502.4	251.34	276.63	3.999	•1071 1053	001 001	37.331	37.330 64.634	1.4761
23.030 24.010	1499.2 1001.4	251.41 251.34	294.50 293.85	6.804 8.543	•1053 •1008	010	64.635 84.798	84.788	1.4998 1.9943
25.010	998.9	231.39	241.43	2.886	.1322	005 005	21.821	21.816	2.1743
25.020	999.2	231.46 231.44	250.42 260.47	5.612 7.764	.1304 .1185	005	43.038 65.505	43.033 65.500	2.2696 2.2559
26.010	498.5	171.47	174.22	•640	.1301	001	4.924	4.923	1.7895
26.020 26.030	498.8 499.3	171.39 171.46	176.43 178.71	1.193 1.749	.1300 .1302	001 001	9.177 13.439	9.176 13.438	1.8203 1.8533
26.040	499.8	171.46	180.94	2.337	.1299	001	17.986	17.984	1.8962
26.050	500.6 498.6	171.44 171.42	180.58 180.05	2.243	.1302 .1294	001 001	17.233 16.156	17.232 16.155	1.8856
26.070	500.0	171.43	181.60	2.530	.1301	001	19.443	19.441	1.9114
26.080	500.1	171.47	184.00	3.203	.1299	001	24.659	24.657	1.9690
26.090	500.5 500.9	171.62 171.27	185.11 185.38	3.928 4.787	•1299 •1302	001 002	30.233 36.776	30 • 232 36 • 774	
26 • 110	500.9	171.36	185.36	5.631	.1299	002	43.345	43.343	*.
26 • 1 20 26 • 1 30	500.7 500.6	171.34 171.37	185.26 185.35	4.773 6.540	.1298 .1298	002 003	36.774 50.405	36.772 50.402	*
26.140	501.0	171.56	185.63	7.972	.1298	003	61.419	61.416	*
26 • 1 50 26 • 1 60	500 • 8 500 • 0	171.31	185.44 185.34	7.970 7.968	•1170 •1058	003 001	68.136 75.286	68.133 75.285	
26.170	501.4	171.33 171.33	185.65	9.986	.1061	003	94.127	94.124	*
26.180	501.0	171.35	185.62	12.130	•1059	002	114.500	114.498	*
26.190 26.200	501.1 501.0	171.33	185.59 188.30	14.761 15.366	.1059 .1061	003 003	139.430 144.886	139.427 144.883	*
26.210	499.2	171.34	192.78	16.254	•1055	003	154.097	154.095	· •
26.220 27.050	498.9 250.2	171.37 136.13	202.78 176.50	17.786 5.457	.1056 .1305	003 124	168.498 41.799	168.495 41.674	* 1.0322
27.060	249.5	136.16	176.60	3.184	.0940	042	33.857	33.814	.8361
27.010	250.3 249.3	136.05 136.36	146.49 157.00	1.880 3.637	.3120 .3137	216 225	6.026 11.706	5.809 11.481	• 5564 • 5563
27 •0 20 27 •0 30	250.1	136.26	177.14	7.123	.3117	233	22.852	22.619	•5533
27.040	248.3	136.36	177.09	8.294 10.759	.3644 .2896	324 220	22.762 37.158	22.438 36.937	•5509 •5466
27.071 27.070	248.0 248.1	136.17	203.75 203.44	10.760	. 2902	217	37.079	36.862	• 5480
28.010	1498.4	22.71	34.40	2.069	.3079	.000	6.722	5.722	• 574 9
28.020	1498.5 1499.7	22.72 22.93	47.00 68.13	4.233 8.070	.3016 .3055	.000	14.035 26.413	14.036 25.413	.5779 .5844
28.041	1498.5	22.55	104.71	15.325	.3114	.000	49.210	49.211	•5990
28.040 29.010	1497.7	22.53 22.64	104.95	15.327 2.124	.3103	.000	49.389 6.903	49.389 6.903	•5993 •5704
29.020	1998.9	22.62	46.31	4.183	.3080	.000	13.583	13.583	.5735
29.030	1998.8	22.61	67.27	7.938	.3075	.000	25.816 50.455	25.816 50.455	.5781 .5937
29.041	1999.4	22.61 22.62	107.59 108.11	15.338 15.339	.3040	.000	50.666	50.666	•5927
30.010	1001.0	22.63	34.13	2.102	•3159°	.000	6.656	6.656	•5790
30.020 30.030	1002.0	22.60 22.63	45.20 68.59	4.173 7.952	.3164 .2922	.000	13.191	13.191 27.247	.5836 .5927
30 • 0 40	998.4	22.57	108.41	15.169	.2894	.000	52.421	52.422	.6107
31.010 31.020	502.2	22.55 22.58	33.73 45.53	2.023 4.178	.3094 .3062	.000	6.539 13.645	6.539 13.645	•5847 •5918
31.030	501.1 499.9	22.60	67.70	8 • 245	.3038	.000	27.142	27.143	.6019
31.040	501.0	22.61	103.78	15.340	.3033	.000_	50.572 6.747	50.572 6.747	•6230 •5965
32.010 32.020	251.8 248.4	22.32 22.32	33.64 45.76	2.035 4.214	.3016 .2999	•000	14.049	14.050	•5993
32.030	248.5	22.38	67.88	8.255	.2973	•000	27.762	27.762	.6102
32.040 33.010	250.1 1001.9	22.36 22.33	104.97 67.93	15.485 1G.205	.2953 .3769	•000 •000	52.445 27.075	52.446 27.075	.6348 .5937
33.020	1001.9	22.32	67.47	8.277	•3095	.000	26.747	26.747	.5924
33.030	1000.0	22.29	68.46	6.500	.2421	000	27.253	27.263	• 5905
33.040	1002.0	22.24 -236.75	67.18 -223.33	4.256 2.305	.1543 .3641		26,286 6,332	26.286	• 5848 • 4720
34.010 35.010	999.6 1000.7	-236.25	-209.59	4.345	.3461	.001	12.553	12.554	-4708
35.021	998.5	-236.23	-186.89	8.429	•3603	.001	23.394	23.395	.4741
35.020 35.031	998.4 1001.9	-236.26 -236.24	-186.74 -186.00	8.418 6.883	.3588	.001	23.465 23.628	23.466 23.629	.4738 .4703

TABLE XLVI (CONTINUED)

	INLET	INLET	OUTLET				POWER	·	/AH)
RUN	PRESSURE	TEMPERATURE	TEMPERATURE	POWER	FLOW	CORR.	FLOW	$\Delta {\rm H}_{ m P}$	
<u> </u>	(psia)	(°F)	(°F)	(Btu/min)	(lb/min)	(Btu/lb)	(Btu/lb)	(Btu/1b)	(Btu/1b-OF)
36.010	2001.5	-236.22	-222.89	2.134	•3406	.001	6.266	. 6.267	.4701
36.024	2003.9	-236.23	-209.11	4.139	•3219	.001	12.859	12.860	.4741
36.023	2002.2	-236.24	-209.20	4.139	.3248	.001	12.744	12.745	.4713
36.022	1999.4	-236.21	-209.21	4.139	.3231	.001	12.810	12.811	.4745
36.021	2000.6	-236.22	-208.69	4.139	.3172	.001	13.047	13.048	.4741
36.020	1998.7	-236.23	-208.10	4.139	.3098	•001	13.360	13.361	.4749
36.031	2001.3	-236.20	-185.15	7.727 7.727	-3184	.001 .001	24.267 24.286	24.268	.4754 .4736
36.030 36.041	2002.6	-236.20 -236.20	-184.92 -141.02	14.090	.3182 .3081	.001	45.730	24.286 45.731	.4805
36.040	2003.2	-236.20	-138.95	14.090	.3012	.001	46.775	46.775	.4810
37 010	1000.9	-136.72	-126.74	1.697	•3470	.001	4.890	4.890	•4902
37.010 37.020	1001.7	-136.72	-116.40	3.495	-3488	.001	10.022	10.022	.4931
37.031	1001.4	-136.72	-96.02	6.940	.3436	•001	20.201	20.201	.4964
37.030	1001.4	-136.72	-96.03	6.940	.3433	.001	20.214	20.214	4968
37.042	1001.1	-136.73	-60.90	13.611	.3557	.001	38.263	38.263	• 5046
37.041	999.4	-136.73	-60.60	13.609	.3542	.001	38.428	38.429	.5048
37.040	1000.5	-136.73	-60.37	13.610	.3534	.001	38.510	38.511	.5044
38.010	2000.7	-136.73	-126.39	1.761	.3456	.001	5.096	5.097	.4932
38.020	1999.3	-136.72	-115.79	3.532	.3380	.001	10.450	10.451	.4994
38.030	2001.1	-136.68	-96.69	7.013	.3541	.001	19.804	19.804	. 4952
38.040	2000.9	-136.69	-59.13	13.689	.3501	.001	39.099	39.09%	• 5041
39.010	1000.5	-56.94	-48.15	1.640	.3533	.001	4.641	4.642	-5282
39.020	999.3	-56.97	-39.48	3.257	.3518	.001	9.260	9.260	. 5294
39.030	1000.7	-57.06	-22.02	6.554	.3508	-001	18.685	18.686	.5333
39.040	999.0	-56.90	11.12	12.757	-3451	.001	36.962	36.963	.5434
40.010	2000.5	-56.98	-48.09	. 1.587	•3420	-001	4.639	4.640	.5218
40.020	1999.3	-56.92	-38.84	3.243	.3422	.001	9.477	9.477	•5242
40.030	1999.9	-56.98	-21.75	6.275	.3374	•001	18.601	18.602	.5279
40.040	2001-1	-56.96	11.36	12.513	.3415	•001	36.641	36.642	•5363
43.010	1201.3	267.58 267.59	269.45	.514 1.259	.2423	001	2.122	2.121	1.1352
43.020 43.030	1201.5 1200.9	267.17	272.19 274.55	1.976	.2385 .2343	001	5.278	5.277 8.432	1.1460
43.040	1200.5	267.29	277.48	2.686	.2324	001 001	8.433 11.557	11.556	1.1406
43.050	1197.6	267.49	280.25	3.326	.2 28 9	001	14.532	14.532	1.1344 1.1389
43.060	1199.7	267.53	282.96	4.119	.2333	001	17.656	17.655	1.1443
44.010	700.5	211.94	212.87	.481	2522	076	1.907	1.831	1.9577
44.020	702.0	211.94	213.87	1.054	.2535	076	4.157	4.081	2.1108
44.030	700.2	211.94	214.77	1.720	.2581	080	6.662	6.583	2.3226
44.040	701.8	212.02	215.92	2.418	.2505	080	9.653	9.574	2.4526
44.050	701.4	212.00	216.74	3.188	.2513	080	12.685	12.605	2.6602
44.060	700.2	211.98	217.73	4.143	.2499	080	16.578	16.498	2.8696
44.070	701.3	212.03	218.68	5.115	.2495	080	20.503	20.423	3.0709
44.080	702.1	212.09	219.76	6.319	.2496	080	25.319	25.240	3.2931
45.010	400.6	181.84	191.73	6.319 1.992	.2830	193	7.040	6.847	.6916
45.020	399.8	181.80	201.37	3.857	.2881	202	13.388	13.186	.6736
45.030	397.5	181.93	211.13	5.589	.2864	214	19.513	19.298	•6608
46.010	449.0	191.46	201.25	2.109	.2810	277	7.504	7.227	.7389
46 • 0 20	448.9	191.38	210.85	4.058	.2816	292	14.411	14.119	.7252
47.010	701.1	218.37	219.30	1.275	.2696	055	4.729	4.674	5.0303
47.020	700.6	218.40	220.26	2.524	.2704	072	9.335	9.263	4.9774
47.030	701.2	218.40	221.24	3.601	.2693	079	13.374	13.295	4.6680
47.040	699.4	218.40	222.26	4.569	•2692	085	16.972	16.887	4.3663

TABLE XLVII
TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR PROPANE

	INLET	INLET	PRESSURE					
RUN	TEMPERATURE	PRESSURE	DROP	POWER	FLOW	CORR.	$\Delta H_{\rm T}$	$(\Delta H/\Delta P)_m$
	(°F)	(psia)	(psi)	(Btu/min)	(1b/mim)	(Btu/lb)	(Btu/lb)	(Btu/lb-psi)
3.020	250.0	2005.6	339.2	.985	•3540	,013	2.769	008163
3.040	249.9	1821.3	360.4	1.473	.3607	010	4.094	011358
3.060	250.0	1581.2	365.0	2.475	.3543	028	7.014	019219
3.080	249.9	1333.7 ,	402.3	7.294	.3499	105	20.951	052084
3.010	250.1	2010.2	181.5	.338	.2564	•023	1.296	007141
3.030	250.0	1809.4	186.7	.474	.2546	.003	1.858	009954
3.050	250.0	1586.4	213.8	.884	.2689	005	3.292	015398
3.070	250.0	1347.8	232.9	1.890	.2723	040	6.982	C29980
3.090	249.9	1046.8	257.4	10.751	. 2524	039	42.635	143372
3.100	249.9	829.4	333.4	8.046	.1936	011	41.566	124686
3.110	249.9	659.8	316.6	3.879	.1463	.001	26.518	083768
3.120	249.9	654.6	536.6	6.311	.1625	012	38.847	072402
4.010	201.0	2024.8	170.9	.101	.2608	023	.409	002393
4.030	201.0	1826.4	192.2	.175	.2750	028	•662	003446
4.050	201.0	1544.9	181.2	.238	.2558	•022	•909	005016
4.070_	201.0	1284.7	188.7	.428	. 2666	026	1.632	008650
4.020	201.0	2025.0	319.2	. 315	.3623	006	.876	002744
4.040	201.0	1828.2	333.6	. 472	.3688	003	1.283	003846
4.060	201.0	1530.4	340.6	.834	.3772	004	2.216	006507
4.080	201.0	1273.7	345.1	1.288	.3621	048	3,605	010448
5.020	201.0	1018.5	354.5	2.896	.3642	.042	7.911	022317
5.01C	201.0	1021.2	160.4	.472	.2395	037	2.007	012512
5.030	201.0	720.6	77.9	• 565	.1568	•020	3.584	046012
5.04C	201.0	721.6	85.4	.739	.1682	-041	4.354	048707
5.050	201.0	822.7	104.5	1.047	.1834	.039	5.669	054254
5.060	201.0	719.3	119.9	1.487	.1940	033	7.696	064189
5.070	201.0	726.0	176.6	13.530	.1968	•052	68.707	389091
5.080	200.9	722.1	190.6	14.381	-2001	•036	71.844	376971
5.090	201.0	717.7	205.2	15.203	.2022	031	75.235	366674
5.100	201.0	555.3	352.6	5.575	.1421	•006	39.241	111301
5.110	201.0	551.3	440.9	6.652	.1479 .2911	019 021	45.004 .059	102084 000293
6.010	161.7	2019-8	202.9	-011				
6.020	160.6	1877.5 1710.4	201.5 203.0	•039	.2912	003	.135 .216	000672 001062
6.030	160.6 160.6	1567.5	202.0	.063 .087	.2900	002	.301	001493
			210.5	.126	.2914	•007	.427	002027
6.050	160.4	1386.4		.199	.3025	000	.657	002987
6.060	160.5	1217.9	220.0			•026		004205
6.070	160.5	1024.4	223.0	•290 453	.3012 .3053	.028	.938	004209
6.080	160.5	827.9	232.4	•452 500	.2874	.001	1.479 2.037	009665
6.090	160.6 200.6	638.3 562.8	210.8	.589 4.844	.1814	024	26.725	163271
7.010			163.7		.1733	.010	23.820	092981
7.020	200.5	470.6	256.2 331.2	4.129 4.762	.1751	.010	27.186	082091

TABLE XLVIII

TABULATED EXPERIMENTAL JOULE-THOMSON DATA FOR PROPANE

Run	Inlet Temperature (°F)	Inlet Pressure (psia)	Temperature Difference (°F)	Pressure Drop (psi)	$-\left(\frac{\Delta T}{\Delta P}\right)_{\frac{H}{2}}$ (°F/psi)xlo ³
0.011 0.010 2.010 2.020 2.030 2.040 2.050	21.2 21.3 2.13 21.3 21.2 21.1 21.2	1992.1 1992.5 2026.0 2020.5 1082.2 1071.7 1099.6	1.524 3.334 4.281 1.837 2.580 3.372	381.2 352.0 773.9 1016.6 481.5 697.7 941.9	4.668 4.371 4.357 4.262 3.853 3.738 3.622

TABLE XLIX
FLOWMETER CALIBRATION EQUATION CONSTANTS USED FOR PROPANE

Flow Meter Series	В	A	C	D
10 - 20 low high	0.045462835	94.606418	-34925.356	5060329.4
	0.4390828	-270.13652	26375.322	- 6141762.4
30 high	0.86077077	-610.80764	166847.2	-13993813.0
40 - 50 low high	0.045305256	93.5971	-34102.569	4941925.4
	0.50686614	-320.16109	88793.802	-7156188.0
50 - 60 low high	0.057971521	81.50558	30315.252	4554907.9
	0.49223719	-308.87943	86038.184	- 6942817.9
60 - 70 low	0.050889514	89.83600 6	-33417.221	4928000.5
high	0.50108158	-316.88119	88371.262	-7159948.1

TABLE L
TABULATED EXPERIMENTAL ISOBARIC DATA FOR THE NOMINAL 77 PERCENT MIXTURE

RUN	MOLE FRACTION	PRESSURE	TNLET	OUTLET TEMPERATURE	מפעומם	ET OU	CORR.	POWER FLOW	٧ ٣	(AB AT) Po
	C ₃ H ₈	(psia)	(°F)	(°F)	POWER (Btu/min)	FLOW (lb/min)	(Btu/lb)	(Btu/lb)	△ <u>H</u> P (Btu/lb)	(Btu/lb-OF,
.0100		1499.8	199.49	215.81	3, 869	.2454	004	15.764	15.759	•9659
1.0200	•767 •767	1501.6	200.72	233,44	8.091	•2496	005	32.420	32.415	•9905
1.0300 2.0100 _	•767 •767	1502.1 2001.2	200.98	249.09 216.69	11.598 3.114	•2441 •2410	005 001	47.504 12.917	47.499 12.916	.9872 .8228
2.0200	. 767	2001.0	200.99	234.89	6.420	•2252	001	28.514	28.512	.8412
2.0310 2.0300	.767 .767	1999.5 2000.9	201.02	252.32 252.61	8.974	.2049 .2041	001 001	43.792 43.971	43.791 43.970	.8537 .8517
3.0100	.767	1199.6	201.02	216.85	4.045	.2202	009	18.375	18.366	1.1601
3.0200	.766	1199.4	201.12	234.14	7.967	.2158	012	36.921	36.909	1.1179
3.0310 3.0300	.767	1202.0 1201.6	201.06	249.54 249.92	11.123	.2137 .2121	011 012	52.056 52.432	52.045 52.419	1.0735 1.0701
4.0100	.767	999.9	201.04	210.36	2.302	.2085	019	11.043	11.024	1.1819
4.0210 4.0200	. 767 . 767	1001.8 1002.0	200.84 200.82	220.02 219.94	4•440 4•440	.2069 .2060	021 021	21.456	21.435 21.530	1.1173 1.1264
4.0300	. 768	998.9	200.56	239.72	7.926	.1972	021	40.196	40.175	1.0260
4.0400	• 768 • 766	1001.8 998.9	201.05	257.72 276.17	13.043	.1884 .1885	020 015	54.887 69.201	54.867 69.186	•9682 •9202
5.0100	. 766	497.8	201.00	210.83	1.267	.2073	026	6.112	6.086	.6192
5.0200 5.0300	. 766 . 766	498.2 498.4	201.18 200.92	220.77 240.09	2.503 4.968	.2075 .2072	032 032	12.060 23.975	12.028 23.943	.6142 .6114
5.0400	.766	498.1	201.02	258.49	7.244	.2071	037	34.989	34.952	.6081
5.0500 6.0100	.766 .770	498.0 246.8	201.39 199.22	277.07 209.08	9.496 1.132	.2066 .2128	036 082	45.971 5.317	45.935 5.235	.6069 .5305
6.0200	.770	247.5	200.61	220.54	2.280	.2138	084	10.662	10.579	.5307
6.0300 6.0400	•767	247.7	201.03	239.95 259.02	4.478 6.705	.2137 .2135	088 089	20.952 31.402	20.864 31.314	•5362 5601
6.0500	.767 .767	247.8 247.8	201.04 201.03	276.47	8.780	.2133	092	41.160	41.068	•5401 •5444
7.0110	.767	1499.0	251.54	261.21	1.986	.2165	007	9.169	9.162	•9475
7.0100 7.0210	.766 .766	1498.6	251.02 251.04	260.60 269.93	1.996 3.832	.2185 .2158	007 007	9.134 17.754	9.126 17.747	•9529 •9394
7.0200	.766	1498.2	251.02	270.09	3.832	.2134	007	17.950	17.944	•9409
7.0300 7.0400	. 766	1499.0 1498.5	251.12 251.02	282.32	6.032 6.859	.2099 .1556	007 005	28.745 44.086	28.738 44.081	•9210 •9067
8.0100	.767	1697.9	250.61	263.00	2.499	.2190	004	11.413	11.409	.9208
8.0200 8.0300	•767 •767	1701.2 1698.1	251.17 250.39	276.97 293.12	4.994 8.124	.2149 .2105	005 005	23.236 38.598	23.232 38.593	•9007 •9032
9.0100	.767	2000.9	251.02	264.72	2.412	.2012	002	11.989	11.987	.8751
9.0210 9.0200	.767 .767	2000.9 1999.1	251.02 251.02	275.70 278.40	4.530 4.530	.2120 .1883	002 001	21.374	21.371 24.061	.8657 .8788
0.0100	.766	1001.9	151.73	165.64	3.713	.2220	004	16.727	16.723	1.2019
0.0200 0.0300	.766 .766	999.9 1001.9	151.70 151.67	178.86 192.58	7.685 11.871	.2192 .2188	004 006	35.055 54.262	35.051 54.256	1.2902 1.3264
0.0400	. 765	999.6	151.61	205.28	15.196	.2163	006	70.271	70.265	1.3092
1.0100	• 765 • 765	501.5 501.8	156.63 156.59	173.26 189.69	2.539 4.884	.2195 .2198	045 058	11.566 22.215	11.521 22.157	.6930 .6694
1: 0300	. 765	501.2	156.58	206.68	7.182	.2195	054	32.727	32.673	•6522
2.0100 2.0200	•766	1499.4 1500.9	102.05	112.94 123.61	2.036 4.010	.2610 .2561	000	7.803	7.803	.7166 .7256
2.0300	.766	1498.1	102.03 102.08	144.61	8.046	.2500	000	15.656 32.186	15.656 32.186	•7569
2.0400	.765	1498.4	101.93	183.53	16.446	.2506	000	65.636	65.636	•8043
3.0100 3.0200	.764 .764	1998.4	101.65	112.00 123.49	1.831 3.548	.2587 .2364	.000	7.078 15.011	7.078 15.011	-6866 -6900
3.0300	. 764	1998.2	101.82	144.27	7.404	.2478	• 000	29.882	29.882	.7040
3.0400 4.0100	•764 •765	1998.2 998.3	101.67	184.37 119.43	14.766 3.588	.2424	001	60.921	60.921	•7367 •7742
4.0200	.765	999.0	101.67	136.51	7.519	.2564	001	29.330	29.330	.8419
4.0300 5.0100	.765 .768	1000.1 246.4	101.68 112.28	153.35 122.71	12.130	.2600 .2714	001 224	46.646 5.736	46.645 5.512	.9028 .5281
5.0200	.768	246.4	112.25	133.18	3.060	.2711	228	11.290	11.063	•5285
5.0300 5.0400	.768 .768	246.5 246.6	112.26	154.76	6.126 9.823	.2712 .2713	201 239	22.586 36.203	22.385 35.963	•5266 •5250
6.0100	.766	700.0	102.47	113.25	2.175	.1933	000	11.254	11.254	*
6.0200	. 767	698.5	102.48	124.22	4.604	.1933	000	23.820	23.820	*
6.0300 6.0400	•767 •767	698.7 697.4	102.43 102.46	134.81 145.87	7.284 10.491	.1939 .1930	000 000	37.571 54.365	37.571 54.365	*
6.0500	. 766	699.1	102.44	154.92	13.609	.1927	000	70.633	70.633	. *
6.0700	• 766 • 766	700.9	102.49	164.82 170.06	13.597 15.608	.1459 .1460	000 000	93.193 106.912	93.193	*
6.0800	. 766	701.0	102.45	175.10	16.498	.1460	000	113.033	113.033	*
6.0900 6.1000	• 766 • 766	698.4 699.4	102.46 102.46	182.22 189.96	17.480 18.529	.1449 .1454	000 000	120.622 127.405	120.622 127.405	*
7.0100	. 769	698.7	47.35	51.14	• 543	.2195	.000	2.473	2.473	.6539
7.0200	.769	699.4	47.49 47.48	53.59 55.98	.856 1.236	•2131 •2126	.000	4.016 5.815	4.016 5.815	.6588 .6842
7.0300 7.0400	.769	698.7	47.48	58.61	1.613	•2115	.000	7.626	7.626	.6854
7.0500	·768	698.6	47.50	61.36	2.011	.2111	.000	. 9.526	9.526	.6875
7.0600 7.0700	.768 .768	699.2 699.0	47.50 47.50	63.62 66.14	2.356 2.718	.2112	.000	11.155 12.931	11.155 12.931	.6921 .6937
7.0800	.768	699.8	47.48	68.16	3.044	.2119	.000	14.366	14.366	.6947
7.0900 7.1000	• 768 • 769	698.6 699.6	47.50 47.50	72.55 77.72	3.727 4.580	.2116 .2123	.000	17.609 21.570	17.609 21.570	*
17.1100	. 769	699.4	47.51	75.42	4.177	.2121	.000	19.697	19.697	*
7.1200	. 769	699.1	47.51	82.81	5.406	.2073	.000	26,083	26.083 38.822	*
17.1300 17.1400	• 769 • 769	699.3 698.7	47.51 47.52	96.49 110.28	5.420 	.1396 .1394	.000	38.822 52.528	52.528	*
17.1500	• 769	700.7	47.51	124.88	9.566	•1390	.000	68.812	68.812	*
17.1600 17.1700	.769 .769	700.2 699.1	47.50 47.53	137.86 155.03	11.991	.1387 .1382	•000	86,431 114,962	86.431 114.962	
18.0100	.764	998.5	22.91	30.80	1.478	.2945	•000	5.019	5.019	.6363
18.0200	.764	1000.1	22.90	38.93	3.037	.2958	•000	10.265	10.265 19.564	.6405 .6467
18.0300 19.0100	.764	998.2	22.82	53.07 55.02	6.390	•3266 •3106	•000	19.564	19.777	.6431
20.0100	.766	998.3	24.26	55.45	6.354	.3136	.000	20.261	20.261	.6496
20.0200	.766	999.4	24.31 24.32	55.49 84.48	5.268 11.852	.2618 .2926	.000	20.117 40.507	20.117 40.507	.6452 .6733
20.0500	• 766 • 766	998.7	24.31	55,62	3.737	.1837	000	20.344	20.344	.6497
20.0400	.766	999.7	24.27	56.19	2.293	.1128	000	20.326	20.326	.6367

TABLE L
(CONTINUED)

RUN	MOLE FRACTION	INLET PRESSURE	TEMPERATURE	OUTLET TEMPERATURE	POWER	FLOW	CORR.	POWER FLOW	ΛH	(ŏ ∦)
11011	C ₃ H ₈	(psia)	(°F)	(°F)	(Btu/min)	(lb/min)	(Btu/lb)	(Btu/lb)	Δ <u>H</u> P (Btu/lb)	(∆ÿ) _P (Btu/lb- ⁰ l
1.0100	.766	1502.0	24.30	32.24	1.461	.2960	•000	4.935	4.935	.6223
1.0200	.766	1498.7	24.28	39.82	2.823	.2905	•000	9.717 19.269	9.718	.6253
1.0300	•766 •766	1501.7 1501.1	24.31 24.32	54.78 84.32	11.026	.2883 .2837	.000	38.867	19.270 38.868	.6324 .6478
2.0100 2.0200	• 766 • 766	1999.7 1999.1	24.29	32.02 40.45	1.371 2.789	.2907 .2812	•000	4.716 9.919	4.716 9.920	.6098 .6132
2.0300	•7£5	1999.2	24.29	55.53	5.237	.2708	.000	19.343	19.343	.6193
2.0400 3.0100	•765 •766	1999.2	24.31 09	85.06 3.61	10.381 .495	•2705 •2162	•000	38.378 2.292	38.378 2.292	.6317
3.0200	• 766	500.2	09	6.06	.821	•2151	.000	3.817	3.817	-6204
23-0300	.766	499.8 498.6	09 06	8.69	1.170	2149	.000	7.058	5,446 7,058	-6206 -6250
23.0400 23.0500	. 766	498.7	07	11.23 14.00	1.513	.2143 .2142	.000	9.002	7.058 9.002	*
23.0600 23.0700	• 765 • 765	500.9 499.5	08 08	16.92 19.77	2.402 2.873	•2147 •2142	.000	11.189 13.415	11.189 13.415	*
3.0800	. 765	498.3	08	31.89	4.887 7.583	.2132	.001	22.921 35.540	22.922	* /
23.0900 23.1000	• 766 • 766	499.7 498.5	09 09	47.39 69.78	11.815	•2134 •2132	.001	55.408	35.541 55.409	*
23.1100	. 766	498.3	07	91.41	16.564	•2129	•000	77,798	77.799	*
24.0100 24.0200	• 766 • 766	251.1 248.1	09 07	15.98 31.02	2.319 4.722	•1697 •1676	.001 .001	13.663 28.181	13.664 28.182	*
24.0300	• 766	248.9	09	46.53	7.686	.1675	.001	45.879	45.880/	*
24.0400 24.0500	• 766 • 766	249.8 249.6	07 05	61.77 76.45	11.422 16.483	•1678 •1674	.001	68.053 98.472	68.054 98.473	*
24.0600	. 767	247.8	05	88.62	23.385	.1658	.001	141.005	141.006 155.197	<u> </u>
24.0700 24.0800	•767 •767	248.4 251.0	14 08	91.82 94.90	19.053 20.724	•1228 •1239	.001 .001	155.196 167.296	167.296	*
24.0900	• 767	250.0	.01	102.15	21.781	•1234	•001	176.548	176.549	*
24.1000 24.1100	.767 .767	249.7 248.9	•01 •00	113.42 118.18	22.561 22.820	•1232 •1227	.001 .001	183.066 185.920	183.067 185.921	*
25.0100	. 765	399.0	.00 58.70 58.65	69.97 80.93	1.602 3.346	.1345	000	11.913	11.913	*
25.0200 25.0300	• 765 • 765	398.5 399.9	58.66	91.95	5.381	.1358 .1365	000	24.648 39.411	24.648 39.411	*
25.0400 25.0500	• 765 • 766	399.4 398.8	58.66 58.70	102.68 113.32	7.799 10.838	•1364 •1359	.000 000	57.178 79.731	57.178 79.731	*
25.0600	. 766	399.8	58.61	124.29	15.309	.1359	000	112.693 136.288	112.692	*
25.0700 25.0800	• 766 • 766	398.3 399.7	58.62 58.63	129.87 130.87	18.457 18.819	•1354 •1360	000 000	136,288 138,385	136.288 138.385	*
25.0900	. 766	399.4	58.63	135.38	19.514	.1359	000	143.592	143.592	*
25.1000 25.1100	•767 •767	398.9 398.9	58.73 58.67	141.26 145.84	19.965 20.418	•1355 •1358	000 000	147.391 150.333	147.391 150.333	*
26.0100	.767	502.1	82.72	93.51	1.611	.1344	001	11.983	11.983	*
26.0200 26.0300	•767 •767	498.6 498.9	82.52 82.52	104.26 114.94	3.434 5.540	.1327	000 000	25.868 41.493	25.868 41.493	
26.0400	. 765	498.6	82.49	125.63	8.164	.1328	001	61.475	61.474	
26.0500 26.0600	• 765 • 765	499.1 500.7	82.49 82.61	135.60 145.99	11.197 15.504	• •1324 •1330	001 001	84.549 116.574	84.548 116.574	* **
26.0700	• 765	501.2	82.63	147.50	16.168	.1327	.000	121.806	121.806	*
26.0800	• 765 • 765	501.0 500.2	82.71 82.57	150.61 154.79	16.572 16.922	•1324 •1320	001 001	125.133 128.213	125.132 128.212	*
26.1000 27.0100	.765 .764	1302.1	82.56 139.72	159.26	17.369 . 2.872	.1320	001	131.580.	131.579	*
27.0200	• 765	1300.0	140.06	153.36 168.20	5.717	.1864 .1793	002 002	15.406 31.886	15.404	1.1297
27,0300 27.0400	• 765 • 765	1300.0 1300.1	140.18	181.49 193.18	8,715	•1767 •1755	002	49.328	49.326	1.1940
28.0100	• 766	1499.8	157.32	167.77	11.676	.2088	003 017	66.549 8.722	66.547 8.705	1.2511
28.0210	•766	1497.9	158.13	178.64	3.496	.1988	016	17.583	17.566	.8563
28.0200 29.0100	• 766 • 766	1497.5	158.13 181.71	178.45 191.65	3.496 1.820	.1973 .2001	016 016	9.098	9.081	.8711
29.0200 30.0100	.766 .766	1498.6 1198.4	181.70 191.74	200.90 198.40	3.671 1.506	•2067 •1924	020 078	17.760 7.827	17.740	.9241
20.0200	• 765	1199.2	191.75	204.94	2.910	.1891	081	15.387	7.749 15.306	1.1629
31,0100 31.0200	.765	495.5 493.1	199.94 199.98	219.23	2.420 4.650	.1983	423 459	12.205 23.585	11.781 23.126	.6107
32.0100	.765 .765	1499.6	213.80	238.16 220.43	1.263	.1971 .1906	037	6.626	6.589	.6057 .9936
32.0200 32.0300	• 765 745	1497.7	213.73 213.75	226.75	2.408	.1855	039	12.980	12.941	.9941
2.0400	•765 •765	1499.7 1498.4	213.73	232.85 239.47	3.746 5.050	•2004 •1975	047 050	18.688 25.565	18.641 25.516	•9762 •9915
33.0100 33.0200	.765	1701.1	221.24 221.20	230.68	1.765 3.509	.2008	027	8.790	8.763	.9280
33.Q300	•765 •765	1697.9 1698.6	221.23	240.10 249.65	5.279	•2000 •1994	029 031	17.539 26.482	17.510 26.451	.9268 .9307
34.0100 34.0200	• 765 • 766	1998.5 1998.6	231.C7 231.C2	240.55 249.95	1.746 3.430	•2133 •2096	016 018	8.183 16.368	8.167 16.350	.8607 .8638
4.0300	• 766	2001.0	230.97	259.33	5.105	.2079	019	24.557	24.538	.8652
34.0400 34.0500	•766 •766	1997.3 1999.2	231.04 231.07	268.58 277.43	6.569 8.067	.2012 .2002	019	32.644 40.293	32.624 40.273	.8689 .8687
34.0600	• 766	2000.1	230.95	286.43	9.670	.2007	021	48.185	48.164	.8682
5.0100 5.0210	•766 •766	1697.9 1697.7	221.09	258.56 267.08	7.285 9.048	.2092 .2100	029 038	34.817 43.075	34.788 43.037	•9282 •9203
5.0200	• 766	1700.5	220.33	267.18	9.047	.2094	038	43.207	43.169	.9215
6.0300 6.0400	•766 •766	1998.9 2002.1	-57.38 -57.32	-21.58 9.51	4.218 7.241	.2090 .1885	•000	20.183 38.405	20.183 38.406	•5638 •5747
6-C100	.766	1999.3	-57.4C	-48.51	1.350	.2731	•000	4.943	4.943	•5560
36.0200 37.0100	• 766	2001.9	-57.38 -57.43	-38.74 -48.95	2.476	.2388 .2771	•000	10.370	10.370	•5563 •5573
7.0200	.765	1498.8	-57.41	-48.95 -40.31	2.719	.2839	•000	9.580	9.580	•5603
7.0400	• 765 • 765	1499.5 1500.2	-57.39	-23.16	5.369 10.627	.2771 .2738	•000	19.374 38.818	19.375 38.818	.5660
8.0200	.765	999.2	-57.30 -57.37	9.98 -40.38	2.986	.3130	•000	9.542	9.542	.5616
8.0300	• 765	.1000.0	-57.38	-22.93	6.020	.3075	•000	19.578	19.578 39.167	.5683 .5809
8.0400	• 765 • 765	998.7 999.0	-57.39 -57.29	10.04 -47.08	11.907	.2077	•000	39.167 5.781	5.781	.5662
9.0100	.765	499.3	-57.55	-48.83	1.338	.2695	•000	4.967	4.967	.5699
9.0200	• 765 • 765	499.0 499.3	-57.40 -57.51	-39.05 -22.68	2.845 5.452	.2690 .2689	•000	10.577 20.278	10.578 20.278	.5765 .5821
0.0100	•766	2002.4	-147.56	-137.51	1.411	.2710	•000	5.206	5.206	.5176
0.0200	• 765 • 765	1999.8 1998.8	-147.56 -147.56	-126.99 -107.33	2.868 5.712	.2680 .2721	.000	10.700 20.996	10.700 20.996	.5202 .5219
10.0400	• 765	2000.5	-147.56	-68.43	11.050	.2646	•000	41.759	41.760	.5277
1.0100	.766	998.5 999.5	-147.60	-137.68	1.494 3.119	-2904	•000	5.145	5.145	.5185
1.0200	•766 •766	1001.1	-147.60 / -147.51	-126.72 -107.98	6.128	.2878 .2947	•000	10.836 20.796	10.836 20.796	.5190 .5261
1-0400.	.766	1001.3	-147.52	-69.52	12.258	.2940	•000	41.690	41.690	•5345

TABLE L (CONTINUE**D)**

	MOLE	INLET	INLET	QUTLET				POWER		<u>(44)</u>
RUN	FRACTION	PRESSURE		TEMPERATURE	POWER	FLOW	CORR.	FLOW	Δ <u>H</u> P	$\left(\frac{\Delta H}{\Delta T}\right)_{p}$ (Btu/lb- $^{\circ}$ F)
	с ₃ н ₈	(psia)	(°F)-	(°F)	(Btu/min)	(lb/min)	(Btu/lb)	(Btu/lb)	(Btu/lb)	(Btu/lb-OF)
42.0100	•765	500.8	-147.60	-137.48	1.511	.2846	•000	5.310	5.311	.5249
42.0200	.765	500.8	-147.52	-126.14	3.217	-2847	.001	11.299	11.300	-5285
42.0300	.765	501.8	-147.59	-107.52	6.045	.2841	•000	21.276	21.277	.5310
42.0400 43.0100	. 765	498.3	-147.54	-70.08	11.815	.2833 .2999	•000 •000	41.704 5.904	41.705	•5384 •5068
43.0200	•765 •765	248.5 248.3	-217.80 -217.82	-206.15 -193.59	3.843	.3097	.000	12.410	12.411	.5122
43.0300	.765	249.6	-217.88	-170.05	7.349	.3029	•000	24.263	24.263	.5073
43.0400	.765	251.0	-217.78	-128.55	13.702	.2977	•000	46.020	46.020	.5158
44.0100	.766	2001.7	-236.16	-223.40	1.792	.2797	•000	6.407	6.408	.5021
44.0200	• 766	2000.9	-236.12	-209.98	3.597	.2764	.000	13.012	13.012	.4978
44.0300	.766	1999.3	-236.10	-186.05	6.737	.2684	•000	25.101	25.101	.5015
44.0400	• 766	2000.3	-236.07	-142.71	12.458	.2631	.000	47.358	47.358	.5073
45.0100	.766	998.5	-236.11	-222.48	1.943	.2855	•000	6.806	6.806	.4996
45.0200	• 766	998.7	-236.C7	-210.40	3.637	-2836	•000	12.825	12.825	.4996
45.0300 45.0400	• 766 • 766	999.2	-236.11	-187.54	6.971	.2851 .2850	.000	24.451 47.837	24.451 47.838	•5035 •5084
46.0100	.766	499.0	-236.C7	-141.99 -223.02	1.884	.2884	•000	6.532	6.533	.5009
47.0100	• 765	1000.3	-236.C7 -57.14	-223.02 -48.82	1.390	.2975	•000	4.672	4.672	.5621
47.0200	.765	998.7	-57.22	-39.16	3.058	.3015	.000	10.142	10.142	.5615
0300	.765	998.7	-57.19	-20.91	5.971	.2908	•000	20.530	20.531	•5659
48.0100	. 765	1006.2	-147.07	-135.85	1.631	.2789	.000	5.847	5.847	.5213
48.0200	. 766	1004.2	-147.05	-126.77	2.912	•2749	.000	10.594	10.595	•5224
48-103.00	. 766	1006.2	-146.91	-106.53	5 • 82 5	.2731	.000	21.329	21.329	•5281
48 0400	. 766	1009.2	-146.91	-68.85	11.484	.2730	.000	42.058	42.058	.5388
49.0100 49.0200	.765	254.2	-107.37	-104.34	• 265 • 535	.1623	•000	1.632 3.302	1.632 3.302	•5400 •5574
49.0200	• 765 • 765	254•2 254•2	-107.38 -107.38	-101.46 -98.75	.761	.1622 .1618	•000	4.704	4.704	•5446
49.0300	.765	257.2	-107.38	-95.79	1.040	.1637	•000	6.353	6.353	5484
49.0500	.765	256.2	-107.37	-93.05	1.284	.1636	•000	7.847	7.847	•5481
49.0600	.765	257.2	-107.38	-89.95	1.562	.1636	•000	9.548	9.548	.5477
49.0700	•765	256.2	-107.36	-86.79	1.848	.1627	.000	11.358	11.358	.5521
49.0800	.767	256.2	-107.39	-83.92	2.108	.1641	.000	12.842	12.842	•5471
49.0900	.767	256.1	-107.39	-81.12	2.353	.1624	.000	14.490	14.490	•5516
49.1000	• 767	256.0	-107.62	-78.51	2.658	.1630	.001	16.311	16.312	*
49.1100	.767	254.0	-107.54	-75.77	2.957	.1612	.001	18.338	18.338	*
49.1200	• 767	255.0	-107.38	-71.94	3.381	.1617	.001	20.910	20.910	*
49.1300 49.1400	.763 .763	254.9	-107.38 -107.36	-60.47 -34.39	4.726 7.718	.1606 .1607	.001 .001	29.426 48.036	29.426 48.037	*
49.1400	.768	253.9 254.0	-107.36	-9.65	10.658	.1608	.001	66.293	66.294	- -
49.1600	.768	256.9	-107.38	13.81	13.874	.1623	.001	85.504	85.505	*
50.0100	.764	406.1	-47.83	-42.46	•514	.1656	.000	3.103	3.103	.5781
50.0200	.764	406.2	-47.76	-37.45	.990	.1653	.000	5.989	5.990	.5810
50.0300	.764	407.1	-47.71	-32.11	1.518	.1651	.000	9.197	9.197	•5892
50.0400	. 764	407.1	-47.77	2 27.04	2.015	.1651	.000	12.204	12.204	•5885
50.0500	. 764	408.1	-47.75	-22.15	2.541	.1660	.000	15.309	15.310	*
50.0600	. 764	408.1	-47.73	-17.20	3.141	.1661	•000	18.904	18.905	*
50.0700	• 764	408.1	-47.71	-11.84	3.803	.1659	.000	22.927	22.928	*
50.0800	. 764	408.1	-47.73	2.58	5.567	.1655	•000	33.649 45.995	33.649 45.995	*
50.0900 50.1000	• 764 • 764	408.1 409.1	-47.69 -47.69	18.72 40.74	7.614 10.665	.1655 .1665	•000	45.995 64.054	45.995 64.054	*
50.1100	.764	408.1	-47.74	65.75	14.599	.1652	•000	88.379	88.379	_
51.0100	.765	501.0	200.63	211.78	1.446	.2094	022	6.905	6.884	•6175
51.0200	.765	500.7	200.64	220.20	2.501	.2094	016	11.989	11.973	.6121
51.0300	.765	498.7	200.60	239.17	4.879	.2075	025	23.512	23.487	.6089
51.0400	. 765	498.6	200.74	275.97	9.351	.2049	032	45.631	45.599	.6061

TABLE LI

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR THE NOMINAL 77 PERCENT MIXTURE

	!
(A <u>H</u> /AP) _T (Btu/lb-psi)	010437 012292 014754 018154 023168 029044 041729 041729 045599 055599 055599 055599 055599 055599 055599 055599 055599 06770 06770 063268 063268 064459 06427 061259 001229 001229 001222 005882 015777
Δ <u>H</u> T (B†u/1b)	1.112 1.392 1.392 1.392 1.392 1.392 1.392 1.392 1.402 1.392 1.403 1.592 1.593 1.592 1.593 1.
Corr. (B†u/1b)	
Flow (lb/min)	29048 29970 29970 30957 31026 31026 31026 31026 31026 19618 19
Power (B†u/min)	
Pressure Drop (psi)	105.6 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17
Inlet Pressure (psi)	2029.7 1893.1 1830.9 1731.1 1622.1 1529.9 1403.2 1277.0 1111.9 950.7 801.2 657.3 482.2 361.0 2022.3 1747.2 1747.2 1747.2 1747.2 1747.2 1747.2 1747.2 1747.2 1760.3 1760.3 1760.9
Inlet Temperature (OF)	2000 2000 2000 2000 2000 2000 2000 200
Mole Fraction C ₃ H ₈	7.00 7.00
Run	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2

TABLE LII

TABULATED EXPERIMENTAL JOULE-THOMSON DATA
FOR THE NOMINAL 77 PERCENT MIXTURE

Run	Mole Fraction Propane	Inlet Temperature (°F)	Inlet Pressure (psia)	Temperature Difference (°F)	Pressure Drop (psi)	$-\left(\frac{\Delta T}{\Delta P}\right)_{\frac{H}{2}}$ (°F/psi) x 10 ³
4.010 4.020 4.030 4.040 4.050 4.060 4.070	0.761 0.761 0.761 0.761 0.761 0.761	-96.8 -96.7 -96.8 -96.8 -97.0 -96.7	1942.3 1796.2 1451.8 1173.6 912.3 694.5 602.1	1.285 1.331 1.269 1.229 1.213 1.183 1.211	221.0 226.0 220.2 216.0 214.8 213.2 219.4	6.00 5.89 5.77 5.69 5.65 5.55

TABLE LII

FLOWMETER CALIBRATION EQUATION CONSTANTS
USED FOR THE NOMINAL 77 PERCENT MIXTURE

Flow Meter Series		В	A	C	D
10,20,30	low	0.074556366	59.519280	-21616.839	3479232.9
	high	0.12003127	16.100944	-8125.2457	2118787.9
$\mu \cap - 50$	low	0.10684014	15.203628	-1462.5168	535593.14
	high	-0.16666467	315.17891	-110295.06	1360895.0
60 - 10	low	0.087080753	43.093003	-14088.483	2339258.0
	high	0.15376994	-13.008022	7.5220947	1395307.2

TABLE LIV

TABULATED EXPERIMENTAL ISOBARIC DATA FOR THE NOMINAL 51 PERCENT MIXTURE

RUN 1.0100 1.0200 1.0300 2.0400 2.0200 2.0300 2.0400 3.0200 3.0300 3.0200 3.0300 4.0100 4.0200 4.0300 5.0100 5.0200 6.0400 6.0500 7.0100 7.0200 7.0300 7.0400 7.0500 8.0100 8.0300 9.0100 9.0200	FRACTION C 3 ^H 8 - 505 - 505 - 505 - 506	PRESSURE (psia) 2000.1 2002.1 1998.3 1998.6 1502.0 1499.9 1501.3 1500.4 1000.1 998.6 998.0 498.1 498.4 499.9 498.8 245.7 251.0 251.3 250.9 251.0 251.3 250.9 251.0 2001.1 2001.8	TEMPERATURE (°F) 200.54 200.51 200.54 200.55 200.56 200.56 200.56 200.56 200.56 200.60 200.60 200.77 200.77 200.77 200.77 200.77 200.77 200.77 200.77 200.77 200.77 200.77 200.77 200.77 200.77 200.77 200.77 200.77 200.77	TEMPERATURE (°F) 209.92 220.02 238.76 275.92 209.96 220.06 238.69 275.69 210.69 220.29 238.91 275.62 210.26 220.10 238.86 275.96 210.68 220.57 238.71 275.77 161.22	POWER (Btu/min) 1.641 3.408 6.559 12.500 1.564 3.186 6.099 11.571 1.425 2.740 5.246 10.065 1.108 2.236 4.398 8.628 1.080 1.0667 2.144 4.129 8.270	FLOW (1b/min)	CORR. (Btu/lb)001001002002003002002001002002001	#IOW (Btu/lb) 8.004 16.518 32.166 61.713 7.877 16.120 30.800 58.453 7.156 13.780 26.378 50.694 5.588 11.252 22.115 43.798 5.426 5.287	Δ H _p (Btu/lb) 8.003 16.516 32.165 61.711 7.874 16.117 30.798 58.450 7.137 13.759 26.356 50.672 5.570 11.233 22.096 43.777 5.309	(AH) _p (Btu/1b-°F) .8529 .8465 .8414 .8190 .8393 .8265 .8080 .7780 .77032 .6980 .6856 .6744 .5734 .5752 .5752
1.0200 1.0300 1.0400 2.0100 2.0200 2.0300 2.0400 3.0100 3.0200 3.0300 4.0400 4.0200 4.0400 5.0110 5.0200 5.0300 5.0400 6.0500 7.0200 7.0200 7.0200 7.0500 8.0200 8.0300 8.0300 8.0300 9.0100	.505 .505 .505 .505 .506 .506 .506 .506	2000.1 2002.1 1998.3 1998.6 1502.0 1499.9 1501.3 1500.4 1000.1 998.0 998.0 998.0 498.1 499.9 499.1 499.4 499.9 251.0 251.3 250.9 251.0 1999.2 1999.2	200.54 200.51 200.54 200.57 200.56 200.56 200.56 200.56 200.56 200.56 200.60 200.60 200.60 200.74 200.77 200.69 200.77 200.69 200.77 200.69 200.77 200.69	209.92 220.02 238.76 275.92 209.96 220.06 238.69 210.69 220.29 238.91 275.62 210.26 220.10 238.86 220.10 238.86 220.10 238.86 275.96 210.68 220.57 210.68	1.641 3.408 6.559 12.500 1.564 3.186 6.099 11.571 1.425 2.740 5.246 10.065 1.108 2.236 4.398 8.628 1.080 1.067 2.144 4.129	.2051 .2063 .2039 .2025 .1985 .1976 .1979 .1991 .1988 .1989 .1989 .1987 .1987 .1987 .1987 .1987 .1987 .1987 .1988	001 001 002 002 003 003 002 009 019 021 022 018 019 019 019	8.004 16.518 32.166 61.713 7.877 16.120 30.800 58.453 7.156 13.780 26.378 50.694 11.252 22.115 43.798	8.003 16.516 32.165 61.711 7.874 16.117 30.798 58.450 7.137 13.759 26.356 50.672 5.570 11.233 22.096 43.777 5.309	.8529 .8465 .8414 .8190 .8393 .8265 .8080 .7780 .7032 .6980 .6856 .6744 .5734 .5752 .5775 .5810
1.0200 1.0300 1.0400 2.0100 2.0200 2.0300 2.0400 3.0100 3.0200 3.0300 4.0400 4.0200 4.0400 5.0110 5.0200 5.0300 5.0400 6.0500 7.0200 7.0200 7.0200 7.0500 8.0200 8.0300 8.0300 8.0300 9.0100	*505 *505 *505 *506 *506 *506 *506 *506 *506 *506 *506 *506 *506 *506 *507 *507 *507 *507 *507 *507 *507 *506 *507 *507 *507 *507 *507 *507 *507 *506 *506 *506 *506 *506 *506 *506 *506 *507 *507 *507 *507 *507 *506 *506 *506 *506 *506 *506 *506 *507 *507 *507 *507 *506 *506 *506 *506 *506 *506 *506 *506 *506 *507 *507 *506	2002.1 1998.3 1998.6 1502.0 1499.9 1501.3 1500.4 1000.1 998.0 998.0 998.0 998.0 499.1 499.4 499.9 251.0 251.3 250.9 251.0 1999.2 1999.2 1999.2 1999.2	200.51 200.54 200.57 200.58 200.56 200.56 200.54 200.58 200.48 200.57 200.60 200.60 200.76 200.77 200.69 200.77 200.69 200.77 200.69 200.77	220.02 238.76 275.92 209.96 220.06 238.69 210.69 220.29 238.91 275.62 210.26 220.10 238.86 210.26 220.10 238.86 210.26 220.10 238.86 210.26 210.26 210.27 210.28 210.28 210.20	3.408 6.559 12.500 1.564 3.186 6.099 11.571 1.425 2.740 5.246 10.065 1.108 2.236 4.398 8.628 1.080 1.067 2.144 4.129	.2063 .2039 .2025 .1985 .1976 .1980 .1979 .1991 .1988 .1989 .1983 .1987 .1987 .1987 .1987 .1989	001 002 002 003 003 002 009 019 021 022 018 019 019 019	16.518 32.166 61.713 7.877 16.120 30.800 58.453 7.156 13.780 26.378 50.694 5.588 11.252 22.115 43.798	16.51.6 32.165 61.711 7.874 16.117 30.798 58.450 7.137 13.759 26.356 50.672 5.570 11.233 22.096 43.777 5.309	.8465 -8414 -8190 -8393 -8265 -8080 -7780 -7032 -6980 -6856 -6744 -5734 -5735 -5752 -5715 -5810
1.0400 2.0100 2.0200 2.0300 2.0400 3.0100 3.0200 3.0300 4.0100 4.0200 4.0300 5.0110 5.0200 5.0400 6.0200 6.0300 6.0400 6.0500 7.0200 7.0300 7.0200 7.0300	. 505 . 506 . 507 . 507 . 507 . 507 . 507 . 507 . 506 . 507 . 508 . 508 . 508 . 508 . 508 . 509 . 509	1998.6 1502.0 1499.9 1501.3 1500.4 1000.1 998.6 998.0 498.1 498.4 498.4 499.9 498.8 245.7 251.0 251.3 250.9 251.0 2001.1 2001.8 2002.1	200.57 200.58 200.56 200.57 200.56 200.58 200.46 200.48 200.55 200.60 200.60 200.74 200.77 200.77 200.77 200.77 200.77 200.77 200.77	275.92 209.96 220.06 238.69 210.69 220.29 238.91 275.62 210.26 220.10 238.86 275.96 210.20 210.68 220.57 210.68 220.57 210.68	12.500 1.564 3.186 6.099 11.571 1.425 2.746 10.065 1.108 2.236 4.398 8.628 1.080 1.067 2.144 4.129	.2025 .1985 .1976 .1980 .1979 .1991 .1988 .1986 .1983 .1987 .1988 .1970 .2018	002 003 003 002 009 019 021 022 018 019 019 019	61.713 7.877 16.120 30.800 58.453 7.156 13.780 26.378 50.694 5.588 11.252 22.115 43.798	61.711 7.874 16.117 30.798 58.450 7.137 13.759 26.356 50.672 5.570 11.233 22.096 43.777 5.309	.8190 .8393 .8265 .8080 .7780 .7032 .6980 .6856 .6744 .5734 .5735 .5752 .5775 .5810
2.0200 2.0300 2.0400 3.0100 3.0200 3.0300 3.0400 4.0100 4.0200 4.0300 5.0110 5.0100 5.0200 5.0300 6.0400 6.0500 7.0100 7.0200 7.0300 7.0400 7.0500 8.0200 8.0300 8.0300 8.0300 9.0100	. 506 . 507 . 507 . 507 . 507 . 507 . 507 . 506 . 507 . 508 . 506 . 506 . 506 . 506 . 507 . 507 . 507 . 507 . 507 . 507 . 507 . 507 . 508 . 506 . 506 . 506 . 506 . 506 . 507 . 507 . 507 . 507 . 507 . 508 . 508	1499.9 1501.3 1500.4 1000.1 998.6 998.0 998.0 498.1 498.4 498.9 498.8 245.7 251.0 251.0 251.0 251.0 2001.1 2001.8 2002.1	200.56 200.57 200.56 200.58 200.46 200.48 200.55 200.60 200.60 200.74 200.77 200.77 200.77 200.77 200.77	220.06 238.69 275.69 210.69 220.29 238.91 275.62 210.26 220.10 238.86 275.96 210.20 210.68 220.57 10.68 220.57 10.68 220.57 10.68	6.099 11.571 1.425 2.740 5.246 10.065 1.108 2.236 4.398 8.628 1.080 1.067 2.144 4.129	.1976 .1980 .1979 .1991 .1988 .1989 .1986 .1987 .1987 .1988 .1970 .1990	003 002 002 019 021 022 022 018 019 019 021 116	13.780 26.378 50.694 5.588 11.252 22.115 43.798	16.117 30.798 58.450 7.137 13.759 26.356 50.672 5.570 11.233 22.096 43.777 5.309	.8265 .8080 .7780 .7032 .6980 .6856 .6744 .5734 .5752 .5775 .5810
2.0300 2.0400 3.0100 3.0200 3.0300 3.0400 4.0200 4.0200 5.0110 5.0200 5.0200 6.0100 6.0200 6.0300 6.0500 7.0200 7.	. 506 . 506 . 506 . 506 . 506 . 506 . 506 . 506 . 506 . 507 . 507 . 507 . 507 . 507 . 506 . 506 . 506 . 506 . 506 . 506 . 506 . 506 . 507 . 507 . 507 . 507 . 506 . 506 . 507 . 507 . 507 . 508 . 508 . 509 . 509	1501.3 1500.4 1000.1 998.0 998.0 998.0 498.1 499.9 498.8 245.7 251.0 251.3 250.9 251.0 1999.2 1999.0 2001.1 2001.8	200.57 200.56 200.54 200.58 200.48 200.57 200.60 200.60 200.76 200.77 200.69 200.77 200.69 200.77 200.69	238.69 275.69 210.69 220.29 238.91 275.62 220.10 238.86 275.96 210.20 210.68 220.57 236.71 275.77 161.22	6.099 11.571 1.425 2.740 5.246 10.065 1.108 2.236 4.398 8.628 1.080 1.067 2.144 4.129	.1980 .1979 .1991 .1988 .1989 .1986 .1983 .1987 .1988 .1970 .1990 .2018	002 002 019 021 022 022 018 019 019 021	13.780 26.378 50.694 5.588 11.252 22.115 43.798	30.798 58.450 7.137 13.759 26.356 50.672 5.570 11.233 22.096 43.777 5.309	.8080 .7780 .7032 .6980 .6856 .6744 .5734 .5752 .5752 .5810
3-0100 3-0200 3-0300 3-0400 4-0100 4-0200 4-0300 5-0110 5-0200 5-0300 5-0400 6-0200 6-0400 6-0500 7-0100 7-0200 7-0500 8-0200 8-0200 8-0300 9-0100	. 506 . 506 . 506 . 506 . 506 . 506 . 506 . 506 . 507 . 507 . 507 . 507 . 507 . 506 . 506 . 506 . 506 . 506 . 506 . 506 . 506 . 507 . 506 . 506	1000.1 998.6 998.0 998.0 998.0 498.1 498.4 499.9 498.8 245.7 251.0 251.3 250.9 251.0 1999.2 1999.0 2001.1 2001.8 2002.1	200.54 200.58 200.46 200.48 200.55 200.57 200.60 200.76 200.77 200.77 200.77 151.51 151.53 151.55	210.69 220.29 238.91 275.62 210.26 220.10 238.86 275.96 210.20 210.68 220.57 238.71 275.77 161.22	1.425 2.740 5.246 10.065 1.108 2.236 4.398 8.628 1.080 1.067 2.144 4.129	.1991 .1988 .1989 .1986 .1983 .1987 .1988 .1970 .1990 .2018	019 021 022 022 018 019 019 021 116	13.780 26.378 50.694 5.588 11.252 22.115 43.798	7.137 13.759 26.356 50.672 5.570 11.233 22.096 43.777 5.309	-7032 -6980 -6856 -6744 -5734 -5752 -5775 -5810 -5625
3.0400 4.0100 4.0200 4.0300 4.0400 5.0110 5.0200 5.0300 5.0400 6.0100 6.0200 6.0500 7.0100 7.0200 7.0200 7.0500 8.0200 8.0300 8.0300 9.0100	. 506 . 506 . 506 . 506 . 506 . 506 . 507 . 507 . 507 . 507 . 507 . 506 . 506 . 506 . 506 . 506 . 506 . 506 . 506	998.0 998.0 498.1 498.4 498.4 498.9 498.8 245.7 251.0 251.3 250.9 251.0 1999.2 1999.0 2001.1 2001.8 2002.1	200.46 200.48 200.55 200.57 200.60 200.60 200.76 200.77 200.77 200.77 151.51 151.53 151.55	238.91 275.62 210.26 220.10 238.86 275.96 210.20 210.68 220.57 238.71 275.77 161.22 171.21	5.246 10.065 1.108 2.236 4.398 8.628 1.080 1.067 2.144 4.129	.1989 .1986 .1983 .1987 .1988 .1970 .1990 .2018	022 022 018 019 019 021	50.694 5.588 11.252 22.115 43.798	26.356 50.672 5.570 11.233 22.096 43.777 5.309	.6856 .6744 .5734 .5752 .5775 .5810
3.0400 4.0100 4.0200 4.0300 4.0400 5.0110 5.0200 5.0300 5.0400 6.0100 6.0200 6.0500 7.0100 7.0200 7.0200 7.0500 8.0200 8.0300 8.0300 9.0100	. 506 . 506 . 506 . 506 . 506 . 507 . 507 . 507 . 507 . 506 . 506 . 506 . 506 . 506 . 506 . 506 . 506	998.0 498.1 498.4 499.9 498.8 245.7 251.0 251.3 250.9 251.0 1999.2 1999.0 2001.1 2001.8 2002.1	200.48 200.55 200.57 200.60 200.60 200.76 200.77 200.69 200.77 151.51 151.53 151.56	275.62 210.26 220.10 238.86 275.96 210.20 210.68 220.57 238.71 275.77 161.22 171.21	10.065 1.108 2.236 4.398 8.628 1.080 1.067 2.144 4.129	.1986 .1983 .1987 .1988 .1970 .1990 .2018	022 018 019 019 021 116	50.694 5.588 11.252 22.115 43.798	50.672 5.570 11.233 22.096 43.777 5.309	.6744 .5734 .5752 .5775 .5810
4.0200 4.0300 5.0110 5.0100 5.0200 5.0300 6.0400 6.0200 6.0400 6.0500 7.0200 7.0200 7.0200 7.0300 7.0500 8.0200 8.0300 9.0100	. 506 . 506 . 506 . 507 . 507 . 507 . 507 . 506 . 506 . 506 . 506 . 506 . 506 . 506 . 506	498.4 499.9 498.8 245.7 251.0 251.3 250.9 251.0 1999.2 1999.0 2001.1 2001.8 2002.1 1500.8	200.57 200.60 200.60 200.74 200.77 200.69 200.77 151.51 151.53 151.56	238.86 275.96 210.20 210.68 220.57 238.71 275.77 161.22 171.21	2.236 4.398 8.628 1.080 1.067 2.144 4.129	.1987 .1988 .1970 .1990 .2018	019 019 021 116	11.252 22.115 43.798	11.233 22.096 43.777 5.309	.5752 .5775 .5810 .5625
4.0400 5.0110 5.0100 5.0200 5.0200 5.0300 6.0100 6.0200 6.0300 6.0400 6.0500 7.0100 7.0200 7.0400 7.0500 8.0200 8.0300 9.0100	.506 .507 .507 .507 .507 .507 .506 .506 .506 .506 .506 .506 .506 .506	498.8 245.7 251.0 251.3 250.9 251.0 1999.2 1999.0 2001.1 2001.8 2002.1 1500.8	200.60 200.76 200.77 200.77 200.69 200.77 151.51 151.53 151.56	238.86 275.96 210.20 210.68 220.57 238.71 275.77 161.22 171.21	8.628 1.080 1.067 2.144 4.129	.1970 .1990 .2018	021 116	22.115 43.798 5.426	43.777 5.309	.5810 .5625
5.0110 5.0120 5.0200 5.0300 6.0100 6.0200 6.0300 6.0400 7.0200 7.0200 7.0200 7.0400 7.0500 8.0200 8.0200 8.0300 9.0100	.507 .507 .507 .507 .507 .506 .506 .506 .506 .506 .506 .506 .506	245.7 251.0 251.3 250.9 251.0 1999.2 1999.0 2001.1 2001.8 2002.1 1500.8	200.76 200.74 200.77 200.69 200.77 151.51 151.53 151.56 151.51	210.20 210.68 220.57 238.71 275.77 161.22 171.21	1.080 1.067 2.144 4.129	.1990 .2018	116	5.426	5.309	-5625
5.0200 5.0300 5.0400 6.0100 6.0200 6.0300 6.0400 6.0500 7.0100 7.0200 7.0500 8.0200 8.0300 9.0100	.507 .507 .507 .506 .506 .506 .506 .506 .506 .506	251.3 250.9 251.0 1999.2 1999.0 2001.1 2001.8 2002.1 1500.8	200.77 200.69 200.77 151.51 151.53 151.56	220.57 238.71 275.77 161.22 171.21	2.144 4.129	2010	034	E 207		•5284
6.0300 6.0400 6.0500 7.0100 7.0200 7.0400 7.0500 8.0100 8.0200 8.0300 9.0100	.507 .506 .506 .506 .506 .506 .506 .506	2001.1 2001.8 2002.1 1500.8	151.56	275•77 -161•22 171•21	8-270	.2016	032	10.632	5.252 10.599	•5355
6.0300 6.0400 6.0500 7.0100 7.0200 7.0400 7.0500 8.0100 8.0200 8.0300 9.0100	.506 .506 .506 .506 .506 .506 .506	2001.1 2001.8 2002.1 1500.8	151.56	-161.22 171.21		.2014 .2012	031 024	20.503	20.472 41.082	.5385 .5478
6.0300 6.0400 6.0500 7.0100 7.0200 7.0300 7.0400 7.0500 8.0100 8.0200 8.0300 9.0100	. 506 . 506 . 506 . 506 . 506 . 506	2001.1 2001.8 2002.1 1500.8	151.56	1/1-21	1.795 3.643	.2075 .2070	001 001	9 452	8.651 17.597	.8912 .8940
6.0500 7.0100 7.0200 7.0200 7.0300 7.0400 7.0500 8.0100 8.0200 8.0300 9.0100	• 506 • 506 • 506 • 506 • 506	2002.1 1500.8	151.51 151.54	181.08	5.442	.2070	001	17.598 26.290 35.214 44.133 10.095	26.289	.8903
7.0100 7.0200 7.0300 7.0400 7.0500 8.0100 8.0200 8.0300 9.0100	• 506 • 506 • 506 • 506	1500.8		191.19 201.44	7.290 9.097	•2070 •2061	001 001	35.214 44.133	35.213 44.132	-8874 -8844
7.0300 7.0400 7.0500 8.0100 8.0200 8.0300 9.0100	• 506 • 506		151.52	161.76	1.810	.1793	005	10.095	10.090	•9850
7.0500 8.0100 8.0200 8.0300 9.0100		1499.4	151.57 151.57	172.30 181.52	3.572 5.048	•1766 •1765	006	28.597	20.220	•9753 •9544
8.0100 8.0200 8.0300 9.0100	• JUD	1498.5 1498.9	151.58 151.56	191.33	6.606 8.084	.1760 .1756	008	37.538 46.030	37.530 46.021	•9440 •9299
8.0300 9.0100	• 505	999.3	141.96	158.71	8.084 2.982 5.639	.1979	011 011	15.068 28.521	15.057 28.510	-8991
9.0100	• 50 5 • 50 5	1001.7 999.1	141.99	175.30 193.24	8.199	.1977 .1961	013	41.822 8.990	41.809 8.952	.8549
	• 508 • 508	250.5 249.7	141.96 142.00	159.30 175.84	1.792 3.482	.1993 .1984	038 039	8.990 17.545	8.952 17.510	•5162 •5175
9.0300	• 508	248.4	141.89	193.52	5.293	.1965 .1996	039	26.934	26.894	•5209
10.0100	• 505 • 505	501.4 501.5	112.16 112.22	122.39	1.267 2.537	.1977	022 024	6.349 12.833	6.328 12.810	.6187 .6148
10.0300	• 505 • 505	501.3	112.22 112.19 112.35	153.97 193.73	4.952 9.433	.1969 .1957	024	25.146 48.200	25.123 48.174	.6013 .5919
11.0100	• 507	501.2 2002.3	101.72	111.92	1.663	.1962	000	8.478 17.632	8.478	.8317
11.0200 11.0300	•507 •507	2000.0 2001.2	101.76 101.73	122.71 133.54	3.407 5.173	.1932 .1916	000 000	26.992	17.631 26.992	.8413 .8486
11.0400 11.0500	•507 •507	1999.3 2000.2	101.79	143.24 154.56	6.733 8.498	.1899 .1864	000	35.448 45.589	35.448 45.589	.8552 .8649
12.0100	• 506	1699.4	101.85 101.78	112.02	1.707	.1822	001	9.367	9.366	-9146
12.0200	• 506 • 506	1699.0 1698.5	101.75 101.75	122.83	3.531 5.293	.1806 .1794	001 001	19.551 29.499	19.550 29.498	.9273 .9382
12.0400	• 506 • 506	1699.5 1698.8	101.74 101.73	143.09	6.977 8.851	.1789 .1781	001 001	38.994	38.993 49.704	.9430 .9487
13.0100	•507	1499.4	101.79	112.36	1.879	.1775	001	49.704 10.588	10.587	1.0020
13.0200 13.0300	• 507 • 507	1498.4 1498.7	101.84 101.80	122.64 133.30	3.712 5.642	.1758 .1753	002 002	21.111 32.179	21.109 32.177	1.0149 1.0215
13.0400 13.0500	• 507 • 507	1499.8 1498.8	101.89	144.09 153.85	7.563 9.281	.1747 .1741	002 002	43.290	43.288 53.315	1.0257
14.0100	• 503	249.4	101.74 72.26	84.05	1.083	.1792	040	53.317 6.042 11.068 22.303 43.160	6.002 11.028 22.261 43.118	.5089
14.0200	• 503 • 503	251.0 251.5	72.26 72.30 72.30	93.87 115.88	1.996 4.023 7.692	.1804 .1804	040 042 042	22.303	22.261	•5104 •5107
14.0400 - 15.0100	• 503 • 506	251.5 251.1 1298.4	72.30 52.19	115.88 156.38 66.77	7.692 2.445	.1782 .1871	042 000	43.16C 13.C68	43.118 13.067	•5128 •8960
15.0200	• 506	1298.5	52.11	81.96	5.253	.1873	001	28.C52	28.051	•9400
15.0300 15.0400	• 506 • 506	1299.2 1299.6	52.21 52.15	96.54 110.33	7.644 10.259	.1808 .1761	001 001	42.284 58.272	42.283 58.271	.9538 1.0016
15.0400 15.0500	• 506 • 506	1299.7 1300.1	52.25	124.57	13.144 15.968	•1768 •1776	001 001	74.354 89.897	74.353 89.896	1.0281 1.0419
15.0600 16.0100	• 506	701.1	52.15 52.29	138.43	2.127	•1787	003	11.900	11.897	1.1033
16.0200	• 506 • 506	698.3	52.39 52.45	73.00 81.92	4.439	.1850 .1280	002 000	23.312 34.670	23.310 34.670	1.1312
16.0400 16.0500	•506 •506	698.3 698.7	52.49 52.47	92.22 102.04	6.230 8.148	•1276 •1276	000	48.832 63.871	48.832 63.871	1.2292
16.0600	- 506	699.1	52.47	109.70	9.801	.1277	003	76.737	76.734	1.3409
16.0700 16.0800	• 506 • 506	699•5 699•5	52.43 52.43	117.26 125.70	11.578 13.370	.1277 .1278	003 004	9C.656 104.656	90.653 104.652	1.3982
16.0900 16.1000	• 506 • 506	700.1 699.3	52.44 52.51	134.61 146.19	14.193 15.163	.1279 .1272	009 000	110.956 119.249	110.947 119.249	1.3502 1.2728
16.1100	• 506	699.8	52.50	155.79	16.003	.1271	000	125.866	125.866	1.2185
17.0100 17.0200	• 506 • 506	1999.3 1998.6	22.72 22.51	34.91 46.12	1.686 3.251	.1971	•000	8.553 16.755	8.553 16.755	.7014 .7097
17.0300 17.0400	• 506 • 506	1998.8	22.72 22.80	68.60 111.91	6.399 12.962	.1921 .1903	•000	33.321 68.105	33.321 68.105	•7263 •7643
18.0100	• 506	1500.8	22.76	34.03	1.571	.1883	000	8.347	8.347	.7404
18.0200 18.0300	•506 •506	1501.4 1499.7	22.78 22.78	45.90 68.80	3.275 1.939	.1882 .0532	000 000	17.403 36.468	17.403 36.468	.7527 .7925
18.0400	• 506	1500.3	22.78	68.46	3.178	.0878	000	36.197	36.197	.7924
18.0500 18.0600	• 506 • 506	1499.8	22.71	68.16 68.71	5.803 8.253	.1618 .2286	000	35.859 36.097	35.859 36.097	.7889 .7847
18.0700	• 506	1498.5 1499.9	22.73	68.53 111.89	10.596 14.631	.2927 .1903	000 000	36.196 76.886	36.196 76.886	.7903 .8632
19.0100	•507	1000.8	2.69	6.03	•477	•1927	000	2.476	2.476	.7406
19.0200	•507 •507	1000.2 1000.3	2.76 2.69	9.65 10.86	.990 1.182	.1921 .1916	000 000	5.155 6.166	5.155 6.166	.7473 .7549
19.0400 19.0500	• 507 • 507	998.6 999.8	2.69 2.71	12.89 16.08	1.565 2.140	.1918 .1920	000	8.161 11.146	8.161 11.146	*
19.0600	• 507	998.8	2.68	19.45	2.781	.1910	000	14.560	14.559	
19.0700	•507 •507	998.4	2.74	26.66 42.08	4.077 3.883	.1915 .1068	000 000	21.284 36.356	21.284 36.356	*
19.0900	• 507	999.8 1000.4	2.75 2.75	64.68 86.37	6 • 284 8 • 739	•1065 •1064	000 000	58.594 82.145	58.994 82.145	*
19.1100	•507 •507	999.8	3.91	102.02	10.554	.1057	000	99.851	99.851	*
19.1200 19.1300	•507 •507	999•2 998•8	3.97 3.93	115.20 122.07	12.341 13.320	.1053 .1049	000	117.145 126.931	117.145 126.931	*

TABLE LIV (CONTINUED)

	MOLE	INLET	INLET	OUTLET				POWER		/ΔH)
RUN	FRACTION C3 ^H 8	PRESSURE	TEMPERATURE (°F)	TEMPERATURE (°F)	POWER	FLOW	CORR.	FLOW	△ H _P	$\left(\frac{\Delta H}{\Delta T}\right)_{p}$
19.1400	.507	(psia) 998•3	3.87	129.41	(Btu/min) 14.460	(lb/min) •1046	(Btu/lb) 000	(Btu/1b) 138.177	(Btu/lb) 138.177	(Btu/lb-OF)
19.1500	. 507	998.3	3.90	137.45	15.596	.1045	000 00C	145.219 157.273 159.596 11.785	149.218 157.273	*
19.1600 19.1700	•507 •507	998•7 999•3	3.90 3.83	145.53 148.03	16.394 16.609	.1042 .1041	000	159.596	159.596	*
20.0100	• 506 • 506	498.9 498.7	8.10 8.11	20.19 31.88	1.431 2.895	.1214 .1215	000 001	11.785 23.829	11.784 23.828	.9749 1.0023
20.0300	• 506	502.0	8.13	51.49	5.720	.1230	001	46.486	46.486	1.0721
20.0400	• 506 • 506	501.8	8.16	70.32 88.71	8.877	•1234 •1227	001 001	71.940 103.732	71.940 103.732	*
20.0600	• 506	501.0	8.24	105.79	17.077	.1226	002	139.294	139.292	*
20.0700 20.0800	•506 •506	500.7 500.5	8.23 8.18	113.02 101.10	17.687 15.938	•1227 •1226	002 003	144.202 130.041	144.200 130.038	*
20.0900 21.0100	• 506 • 500	501.0 251.5	8.29 -26.52	119.04 -14.49	18.132 1.608	•1226 •1226 •1352	003 074	147.935 11.892	147.932 11.818	* •9826
21.0200	• 500	251.4	-26.46	-2.15	3.417	.1345	059	25.408	25.349	1.0424
21.0300	• 500 • 500	250.3 250.1	-26.49 -26.49	17.87 37.19	6.464 10.470	.1248 .1248	059 059	51.328 83.89C	51.269 83.831	1.1557
21.0400 21.0500	-500	250.2	-26.44	55.83	16.049	.1246	C89	128.848	128.759	*
21.0600 21.0700	.500 .500	250.5 249.7	-26.33 -26.42	68.18. 78.87	18.859 19.516	•1245 •1242	074 089	151.465 157.082	151.391 156.994	;
21.0800	• 500	250.4	-26.40	81.45 59.57	19.758 17.404	.1248	096 089	158.312 139.731	158.216	*
21.0900 21.1000	• 500 • 500	250.0 250.6	-26.39 -26.34	92.88	20.084	.1246 .1221	096	164.459	139.642	*
22.0100	•509	2001.0	-147.77	-137.02 -125.85	1.499 3.047	.2419 .2413	.000 .000	6.196 12.628	6-196	•5768 •5763
22.0200	• 509 • 509	1998.3 1999.5	-147.77 -147.71	-106.09	5.776	.2393	•000	24.133	12.628 24.134	.5798
22.0400 23.0100	•509 •507	2001.7 1499.2	-147.66 -147.71	-69.32 -136.91	11.063	•2402 •2470	•000	46.052 6.242	46.052 6.242	•5878 •5781
23.0200	. 507	1499.8	-147.72	-126.50	3.045	•2470 •2470	•000	12.328	12.328	.581C
23.0300 23.0400	• 507 • 507	1499.3 1499.6	-147.70 -147.67	-107.06 -69.57	5.872 11.472	.2471 .2471	.000	23.768 46.431	23.768 46.432	•5848 •5945
24.0100	•509	1000.0	-147.73	-137.24	1.534	.2513	.000	6.106	6.106	.5824
24.0200 24.0300	• 509 • 509	1000.5 1000.2	-147.67 -147.69	-126.85 -107.00	3.052 6.024	•2512 •2513	•000	12.149 23.971	12.149 23.971	•5834 •5891
24.0400 25.0100	•509 •508	998.6 499.8	-147.68 -147.62	-69.52 -131\85	2.151	.2510	.000	46.887 9.275 18.125	9.275	.5999 .5883
25.0200	• 508	499.5	-147.57	-116.82	4.204	.2320	•000	18.125	18.126	.5895
25.0300	• 508 • 506	500.5 249.1	-147.56 -147.61	-87.81 -144.08	8.336 .253	.2323 .1212	.000	2.085	35.883 2.085	.6006 .5910
26.0200 26.0200 26.0300 26.0400 26.0500 26.0700	• 506	249.9	-147.59	-141.12	• 466	.1217	.000	3.827	3.827	.5919
26.0300 26.0400	• 506 • 506	249.7 250.0	-147.57 -147.58	-137.56 -135.29	.718 1.007	.1214 .1216	.000 .000	5.514 8.284	5.914 8.284	•5909 *
26. 7500	• 506	250.2	-147.57	-132.14	1.685	.1214	.001 .001	13.881	13.881 34.853	*
26.0700	• 506 • 506	249.5	-147.56 -147.58	-88.18	4.216 7.409	.1208	.001	34.852 61.353	61.354	*
26.0900	• 506 • 506	251.1 250.5	-147.49 -147.51	-52.36 -19.74	10.998	.1214 .1210 .1208 .1218 .1213	.001	90.295 115.523	90.296 119.524	*
27.0100	.504	1998.8	-241.75	-227.71	2.060	•2648	•000	7.781	7.781	.5542
27.0200 27.0300	•504 •504	1998.1 1999.7	-242.11 -242.11	-215.85 -191.38	3.877 7.561	.2681 .2691	.000	14.460 28.102	14.461 28.103	•5507 •5539_
27.0400	• 504	1999.0	-242.12	-147.25	14.182	.2660	.000	53.314	53.314	.5619
28.0100 28.0200	• 504 • 504	1499.9 1499.3	-242.13 -242.12	-228.78 -216.20	1.836 3.573	•2496 •2494	.001 .001	7.356 14.324	7.357 14.325	.5509 .5528
29.0100	. 504	1000.2	-242.12	-229.13	1.836	•2556	.001	7.185	7.186	•5530
29.0200 29.0300	• 504 • 504	998.5 999.5	-242.11 -242.09	-215.23 -191.39	3.790 7.174	.2551 .2549	.001 .001	14.859 28.149	14.860 28.150	•5528 •5552
29.0400	• 504	998.1	-242.08	-146.51	13.491 1.802	.2502 .2553	.001 .000	53.912 7.057	53.913 7.057	.5641 .5601
30.0100	• 504 • 504	498.8	-242.13 -242.14	-229.53 -215.79	3.755	.2556	•000	14.696	14.696	.5577
30.0300 30.0400	• 504 • 504	498.1 500.0	-241.30 -242.10	-191.21 -146.99	7.193 13.833	•2555 •2565	•000	28.158 53.929	28.158 53.930	.5621 .5671
31.0100	•501	248.0	-242.12	-227.90	1.982	•2503	.000	7.920	7.920	•5568
31.0200 31.0300	.501 .501	249.4 249.2	-242.11 -242.11	-214.68 -190.77	3.868 7.260	.2519 .2511	.000 .000	15.355 28.910	15.355 28.910	.5597 .5631
31.0400	• 501	250.5	-242.08	-146.64	13.734	.2530	•000	54.283	54.283	.5687
32.0100	• 504 • 504	498.5 498.5	-97.84 -97.83	-93.81 -89.97	•338 •664	•1361 •1362	.000	2.481 4.875	2.481 4.879	.6158 .6206
32.0200 32.0300	• 504	498.8	-97.83	-86.30	•982	.1362	•000	7.208	7.209	.6250
32.0400 32.0500	• 504 • 504	498.5 499.0	-97.80 -97.82	-82.62 -78.83	1.330 1.967	.1363 .1367	.000 .001	9.757 14.384	9.757 14.385	•6428 *
32.7600	• 504	499.1	-97.82	-74.46	2.684	.1369	.001	19.606 33.819	19.606 33.819	*
32.0700	. 504 . 504	498.7	-97.81 -97.79	-61.13 -25.78	4.614 8.934	•1364 •1354	.000	65.996	65.596	*
32.0900	•504	499.5	-97.74 -57.29	15.44 -53.60	14.035 .344	•1355 •1395	.001	103.593 2.468	103.593 2.468	*
33.0100 33.0200	• 504 • 504	700.0 699.1	-57.24	-50.33	•634	.1394	.000	4.546	4.546	•6579
33.0300 33.0400	• 504 • 504	700.3 700.3	-57.32 -57.29	-46.30 -43.57	1.013	.1395 .1382	.000	7.265 10.046	7.265 10.046	.6553 .7318
33.0500	• 504	699.1	-57.33	-39.17	2.034	.1391	.000	14.616	14.616	*
33.0700	• 504 • 504	701.1 700.4	-57.26 -57.26	-24.01 8.21	4.099 8.222	.1382	.000	29.663 59.276	29.663 59.277	*
33.0800	• 504	700.8	-57.22	40.96	12.519	.1378	•000	90.851	90.852	*
34.0100 34.0200	• 505 • 505	2000.8 1998.4	-57.25 -57.23	-48.11 -39.19	1.391 2.712	•2444 •2421	•000	5.691 11.204	5.692 11.204	.6224 .6208
34.0300	.505	1998.2	-57.27	-22.94	5.370	.2477	•000	21.678	21.679	.6315
34.0400 35.0100	•505 •505	1999.1 1499.0	-57.25 -57.28	9.91 -48.45	10.633	.2469 .2472	•000	43.067 5.564	43.067 5.564	.6413 .6306
35.0200	• 505	1501.3	-57.28	-40.03	2.700	.2472	.000	10.921 22.286	10.921 22.287	.6333 .6424
35.0300 35.0400	• 505 • 505	1499.6	-57.25 -57.41	-22.56 7.49	5.268 11.394	.2364 .2558	•000	44.548	44.548	.6863
36.0100	. 505	1001.1	-57.42	-43.99	2.134	.2454	•000	8.695 17.914	8.695 17.914	.6472 .6561
36.0200 36.0300	.505 .505	1000.1 1000.2	-57.43 -57.42	-30.12 -5.62	4.404 8.725	.2458 .2495	•000	34.968	34.968	.6750
37.0100	• 504	1698.6 1699.7	131.04 131.13	144.64 158.35	2.896 5.793	.2206 .2214	002 003	13.127 26.162	13.125 26.159	.9649 .9612
37.0200 37.0300	• 504 • 504	1698.1	131.21	171.99	8.146	.2071	003	39.326	39.323	.9642
38.0100	. 504	1301.2	131.18	144.84	2.906	.1954	005	14.874	14.869	1.0882
38.0200	•504	1298.3	131.38	158.75	5.604	•1950	004	28.740	28.736	1.0500

TABLE LV

TABULATED EXPERIMENTAL ISOTHERMAL DATA FOR THE NOMINAL 51 PERCENT MIXTURE

RUN	MOLE FRACTION C ₃ H ₈	INLET TEMPERATURE (°F)	INLET PRESSURE (psia)	PRESSURE DROP (psi)	POWER (Btu/min)	MLOW _h/min)	CORR. (Btu/lb)	∆ <u>H</u> T (Btu/lb)	(ΔΗ/ΔΡ) _Τ (Btu/lb-psi
1.010	• 505	152.2	2026.1	198.0	.805	.1796	•022	4.458	022519
1.020	•505	152.3	1839.0	207.0	1.115	.1744	•033	6.361	030732
1.030	.505	152.2	1642.3	202.8	1.396	.1610	.019	8.653	042670
1.040	•505	152.2	1460.7	210.4	1.811	.1506	.018	12.006	057069
1.050	.505	152.2	1253.7	218.2	2.C94	.1341	027	15.648	071721
1.060	•505	152.2	1049.3	283.2	. 2.732	.1301	003	21.007	074184
1.070	•505	152.2	945.8	278.2	1.938	.1042	.011	18.574	066772
1.080	•505	152.2	655.5	420.0	2.116	.0906	003	23.358	055619
1.090	.505	. 152.2	560.9	460.2	1.960	.0807	002	24.281	052766
2.010	• 507	251.3	1984.6	195.0	.852	.1503	001	5.670	029078
2.020	•507	251.3	1796.8	196.6	•909	.1415	.003	6.419	032654
2.030	.507	251.3	1622.9	206.4	. 993	.1364	.003	7.279	035268
2.040	5507	251.3	1450.8	212.2	1.020	.1295	011	7.889	037179
2.050	.507	251.3	1285.8	219.2	1.009	.1213	.011	8.308	037906
2.060	597	251.3	1087.3	229.4	.983	.1114	004	8.826	038480
2.070	.507	251.3	878.6	231.4	.951	.1005	.009	9.455	040864
2.080	-507	251.3	666.2	299.4	.952	.0881	.007	10.792	036048
2.090	.507	251.2	594.5	491.6	1.475	.0857	.000	17.206	035003
3.010	•505	3.4	1996.5	188.2	.000	.1818	.083	083	.000442
3.020	.505	3.5	1813.8	198.0	•000	.1851	.035	035	.000179
3.030	•505	3.5	1633.3	207.6	.00C	.1887	051	•051	000248
3.040	.505	3.5	1432.9	207.6	.027	.1875	.004	.141	000681
3.050	.505	3.5	1231.1	212.0	.062	.1891	.017	.313	001475
3.060	.505	3.5	1098.6	113.2	.028	.1323	.014	•199	001754
3.070	•505	3.5	1100.2	159.6	.243	.1597	019	1.543	009669
3.080	• 505	3.5	1100.1	211.6	•758	.1833	014	4.151	019617
3.090	•505	3.5	1100.0	262.7	1.374	. 2074	.008	6.617	025191
3.10C	.505	3.6	1100.4	346.6	2.663	2459	015	10.846	031295
3.110	.505	3.5	1099.7	434.6	4.263	.2800	005	15.226	035037
3.120	.505	3.6	698.5	199.2	1.062	1049	030	10.153	050971

TABLE LVI

TABULATED EXPERIMENTAL JOULE-THOMSON DATA
FOR THE NOMINAL 51 PERCENT MIXTURE

Run	Mole Fraction Propane	Inlet Temperature (°F)	Inlet Pressure (psia)	Temperature Difference (°F)	Pressure Drop (psi)	$-\left(\frac{\Delta T}{\Delta P}\right)_{\frac{H}{2}}$ (°F/psi) x 10 ³
4.010	0.507	-149.0	2011.1	0.713	128.4	5.55
4.020 4.030	0.507 0.507	-149.1 -149.0	1899.3 1800.6	0.753 0.725	134.0 132.2	5.62 5.48
4.040	0.507	-149.0 -149.0	1681.0	0.956	170.7	5 . 60
4.050	0.507	-149.0	1540.9	0.933	166.7	5 . 60
4.060	0.507	-149.0	1403.5	0.759	138.3	5.49
4.070	0.507	- 149 . 1	1291.6	0.763	140.8	5.41
4.080	0.507	-149.0	1166.1	0.961	176.4	5.45
4.090	0.507	-149.0	1005.6	0.995	186.0	5 .3 5
4.100	0.507	-149.0	827.2	1.050	196.6	5.35
4.110	0.507	-149.0	630.7	1.075	201.2	5.34
4.120	0.507	-149.0	433.8	0.998	191.2	5.22

TABLE LVII
FLOWMETER CALIBRATION EQUATION CONSTANTS
USED FOR THE NOMINAL 51 PERCENT MIXTURE

Flow Meter Series	B	A	C	D
10 - 20	0.10331343	20.513388	-4137.6569	962875.55
40,50,60 low high	0.10390242 0.043650561	18.303396 98.539793	-2433.9077 -37002.100	630217.66 5443353.1

APPENDIX C

COMPUTER PROGRAMS

TABLE LVIII

PROGRAM FOR FITTING ISOBARIC DATA

	INTEGER N,I,J,K,L,M
	DIMENSION CPBAR(200), TIN(200), TOUT(200), CPARR(200),
	1 $EX((1200)*(03)), X((18)*(13)), Y(8), B(3)$
*	BOOLEAN IPO
BEGIN	READ DATA N, TO, TF, IPO
	TO=TO+460.
	IF=TF+460.
property and controlled the control	THROUGH DO, FOR I=1,1,I.G.N
	READ FORMAT INPUT, CPBAR(I), TIN(I), TOUT(I)
	TIN(I)=TIN(I)+460.
	TOUT(I)=TOUT(I)+460.
DO	EX(I,0)=TIN(I)+TOUT(I)
	VECTOR VALUES INPUT=\$3E14.8*\$
	THROUGH GO, FOR I=1,1,1.G.N
	K=1
	THROUGH ORDER, FOR J=2,1, J.G.N
	WHENEVER EX(K,0).G.EX(J,0)
	K=J
ORDER	END OF CONDITIONAL
	EX(I,1)=EX(K,0)
	CPARR(I)=CPBAR(K)
	EX(I,2)=TIN(K).P.2+TIN(K)*TOUT(K)+TOUT(K).P.2
	EX(1,3)=TIN(K).P.3+(TIN(K).P.2)*TOUT(K)+TIN(K)*(TOUT(K).P.2)
	1 +TOUT(K).P.3
GO	EX(K,0)=5000.
	WHENEVER IPO, PRINT RESULTS CPARR(1)CPARR(N).EX(1,1)
	1 EX(N,1)
	L=0
	M=1
	DELH=0.0
	EXECUTE ZERO.(B(0)B(3))
	THROUGH ALL, FOR T=TO, 10., T.G.TF
	WHENEVER L.E.1, TRANSFER TO SKIP
	H0=0.0
	THROUGH TIL, FOR K=3,-1,K.L.O
TIL	HO = (HO + B(K)) *EX(M-1,1)/2.
	HO=HO+DELH
A STATE OF THE PROPERTY OF THE PARTY.	THROUGH RANGE, FOR I=M, 1, T. L. EX(I, 1)/2. OR. I.G.N
RANGE	CONTINUE
	WHENEVER I.L.5, I=5
	WHENEVER $(I+3) \cdot G \cdot N \cdot I = N-3$
	K=1
	THROUGH HORSE, FOR J=I-4,1,J.G.I+3
	X(K,1) = EX(J,1)
	X(K,2) = EX(J,2)
	X(K,3) = EX(J,3)
	Y(K) = CPARR(J)
HORSE	K=K+1
	S=REGR.(X,Y,A,B,BAD,IPO)
1	B(0) = A
	. HON=0.0
	THROUGH KIQ, FOR K=3,-1,K.L.O
KIQ	HON=(HON+B(K))*EX(M-1,1)/2.

TABLE LVIII (CONTINUED)

	DELH=HO-HON
SKIP	H=0.0
	THROUGH DIM, FOR K=3,-1,K-L-0
DIM	H=(H+B(K))*T
	H=H+DELH
1.	CP=B(0)+2.*B(1)*T+3.*B(2)*T.P.2+4.*B(3)*T.P.3
	TFAR=T-460.
	PRINT RESULTS TEAR , H, CP, S
	TRANSFER TO JUMP
BAD	PRINT RESULTS T
	PRINT COMMENT\$1FOR THE ABOVE TEMPERATURE, COEFFICIENT MATRIX
	1 IS SINGULAR OR NEARLY SINGULAR\$
JUMP	M= I + 1
	L=0
ALL	WHENEVER T.L.(EX(I,1)/210.).OR.(I+3).E.N,L=1
	TRANSFER TO BEGIN
	END OF PROGRAM
***************************************	The state of the s

TABLE LVIII

(CONTINUED)

	EXTERNAL FUNCTION (N,A,X,EPS)
	NORMAL MODE IS INTEGER
	FLOATING POINT DETER, A, X, EPS, BIGA, AJCK
	DIMENSION IR(3), JC(3)
	ENTRY TO SIMUL.
	MAX=N+1
	DETER=1.0
	THROUGH L1, FOR K=1,1,K.G.N
	BIGA=0.0
	THROUGH L2, FOR I=1,1,I.G.N
	THROUGH L2, FOR J=1,1,J.G.N
	THROUGH L3, FOR II=1,1,I1.E.K
′	THROUGH L3, FOR J1=1,1,J1.E.K
L3	WHENEVER I.E.IR(I1).OR.J.E.JC(J1), TRANSFER TO L2
	WHENEVER.ABS.A(I,J).G.BIGA
	BIGA=.ABS.A(I,J)
	IR(K)=I
	JC(K)=J
L2	END OF CONDITIONAL
·	WHENEVER BIGA.L.EPS, FUNCTION RETURN O.
	BIGA=A(IR(K),JC(K))
	DETER=DETER*BIGA
	THROUGH L4, FOR J=1,1,J.G.MAX
L4	A(IR(K),J)=A(IR(K),J)/BIGA
-	THROUGH L1, FOR I=1,1,I.G.N
	AJCK=A(I,JC(K))
	WHENEVER I.NE.IR(K)
	THROUGH L5, FOR J=1,1,J.G.MAX
L5	WHENEVER J.NE.JC(K), $A(I,J)=A(I,J)-AJCK*A(IR(K),J)$
LÎ .	END OF CONDITIONAL
:	THROUGH L7, FOR I=1,1,I.G.N
<u>L7</u>	X(JC(I))=A(IR(I),MAX)
	FUNCTION RETURN DETER
	END OF FUNCTION

TABLE LVIII

(CONTINUED)

	EXTERNAL FUNCTION(X,Y,A,B,BAD,BOOL)
	STATEMENT LABEL BAD
THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW	BOOLEAN BOOL
	INTEGER I, J, L
	DIMENSION SX(3), SYX(3), CYX(3), C((13)*(14))
	ENTRY TO REGR.
14	EXECUTE ZERO.(SY,SYY,SX(1)SX(3),SYX(1)SYX(3))
	THROUGH OWN, FOR I=1,1,1.G.8
	SY=SY+Y(I)
	SYY=SYY+Y(I).P.2
	THROUGH OWN, FOR J=1,1,J.G.3
	SX(J) = SX(J) + X(I,J)
OWN	SYX(J) = SYX(J) + X(I,J) *Y(I)
	THROUGH COEF, FOR J=1,1,J.G.3
Mary Indiana and Articles and A	THROUGH COEF, FOR I=1,1,I.G.3
	C(I,J) = -SX(I) * SX(J) / 8.0
	THROUGH COEF, FOR L=1,1,L.G.8
COEF	C(I,J)=C(I,J)+X(L,I)*X(L,J)
1	THROUGH LIP, FOR I=1,1,I.G.3
	$CYX(I) = -SX(I) * SY/8 \cdot 0$
Management of the second of th	THROUGH BID, FOR J=1,1,J.G.8
BID	CYX(I) = CYX(I) + X(J,I) + Y(J)
LIP	C(I,4)=CYX(I)
	WHENEVER BOOL, PRINT RESULTS C(1,1)C(3,4)
	CYY=SYY-((SY).P.2/8.0)
	DET=SIMUL.(3,C,B,1.0E-20)
	WHENEVER DET.E.O.C, TRANSFER TO BAD
	A=SY/8.0
Permitted a state of the state of the second	TEMP=CYY
	THROUGH GIN, FOR I=1,1,1.G.3
The state of the s	A=A-B(I)*SX(I)/8.0
GIN	TEMP=TEMP-B(I)*CYX(I)
Section 1971 Committee Com	S=SQRT.(.ABS.(TEMP/4.0))
	WHENEVER BOOL, PRINT RESULTS A,B(1)B(3), DET
	FUNCTION RETURN S
	END OF FUNCTION

TABLE LIX

LIST OF VARIABLES FOR ISOBARIC DATA FITTING PROGRAM

Main Program

Program Symbol <u>Definition</u> A, B(I) Regression coefficients C.p CP Array of ordered values of C pm **CPARR** Array of C_{pm} variables **CPBAR** Enthalpy base correction DELH Data input storage array EX Н H НО Original enthalpy base value HON Enthalpy base value for a new set of constants I, J, K Counter variables IPO Boolean conditional variable L, M Defined in program Number of input data points N REGR Regression subroutine name Standard deviation S SIMUL Simultaneous equation subroutine name T(OF) T Lower temperature interval limit TO Upper temperature interval limit TF

T(OF)

TFAR

TABLE LIX CONTINUED

TIN Inlet temperature of data point

TOUT Outlet temperature of data point

X Array containing regression independent variables,

X;

Y Array containing dependent variable, y

Subroutine REGR*

BAD Error return dummy statement label

BOOL Boolean conditional variable

C Coefficient matrix, C

CYX C

CYY C_{VV}

DET Determinant of matrix C

I, J, L Counter variables

 $\sum x_{i}$

 $\sum x_{i,y}$

SY, SYY $\sum y^2$

TEMP Temporary iteration variable

Subroutine SIMUL*

A Coefficient matrix, A

AJCK $^{A}_{i,j_{ck}}$

BIGA Pivot element, A_{IR_k} , JC_k

DETER Value of determinant of A

TABLE LIX CONTINUED

EPS	Tolerance value,
I	Row index, i
11	Index on the array IR during pivot element search
IR	Array containing row subscripts of pivot elements, in order
J	Column index, j
J1	Index of the array JC during element search
JC	Array containing column subscripts of pivot elements, in order
MAX	Number of columns in the matrix A
N	Number of equations
TEMP	Temporary location used in ordering CJ array
X	Vector containing the ordered solution values

^{*} Subroutines are explained more fully in Carnahan $\underline{\text{et al}}^{16}$ from which they were obtained with minor modifications.

TABLE LX

PROGRAM FOR OPTIMIZATION OF PARAMETERS IN CORRESPONDING STATES CORRELATION

FORTRAN IV	G COMPILER	- MAIN	10-09-68	12:36.37	PAGE 0001
0001		MENSION TABLE(11,1	111.		
0001			30) . HLIQ1 (20) . HGAS	11201.KE01/201.	21 101 (20)
			(20),F(7),PMIX(100)	, IMIAL LOUS, HMIX	10011
		MIX(100), HEXP(100)	• •		
0002			<u> </u>	IX, HMIX, HOMIX, HI	EXP, HMIXC,
		LH,M1,N1,M2,N2,F			
0003		MELIST/NL/PEC,TEC	WGA, IND, F		
0004		42=20			,
0005	N	N2=79			
0006	REA	AD(8) (P2(J), J=1, I	(0)		
0007	REA	AD(8)(P2(J),J=11,2	20)		
8000		AD(8)(T2(J), J=1, 16			
0009		AD(8)(T2(J),J=17,3			
0010		AD(8)(T2(J), J=33,4			
0011		The state of the s			
		AD(8)(T2(J),J=49,6			
0012		AD(8)(T2(J),J=65,7	191	•	
0013		122 J=1,79			·
0014		AD(8)(H2(I,J),I=1,			
0015		AD(8)(H2(I,J),I=11			
0016	REA	AD(8)(P1(J),J=1,19	01		
0017	REA	AD(8){P1(J),J=20,2	22)		
0018	REA	AD(8)(T1(J),J=1,19))		
0019	F	READ(8)(T1(J),J=20	.38)		
0020		AD(8) (HL1Q1(J),J=1			
0021		AD(8)(HGAS1(J),J=1	• -	•	
0022		D(8) (KEQ1(J), J=1,			
0023		AD(8)(PLIQ1(J),J=1			
0024		AD(8)MI.NI.LIQVAL	. 9 1 7 1		
0025		121 J=1,38			
0026		AD(8)(H1(I,J),I=1,		4	
0027		<u> </u>			
0028			IM, DPC, DTC, DW, N, IND		
0029	WRI	TE(6,110)PC,TC,W,	WM, DPC, DTC, DW, N, IN	DEX, NPR	
0030			.3,2F6.1,F6.4,I4,I		h
0031	. 00	202 I=1.N		•	
0032			TMIX(I),HMIX(I),HO	MIX(I)	
0033		(P(I)=HMIX(I)-HOMI		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1
0034		RMAT (F6.0.3F6.1)			
0035		C=PC			
		C=7C			
0036					
0037		/=W			
0038		DPC/200.			•
0039	INC				
0040		L DEV(PEC,TEC,WGA	(+WM+N+1)		
0041		(INDEX-1)52,3,52			. ,
0042	3 DO	2 I=2,7			
0043	2 F(1	()=F(1)			
0044	GO	TO 50			
0045	52 PEC	C=PEC+DPC		• .	
0046		L DEVIPEC, TEC, WGA	. WM. N. 2)		
0047		C=PEC-DPC	· · · · · · · · · · · · · · · · · · ·		
0048		C=TEC+DTC			
0049			. WM . M . 9 V	Ť	•
		L DEV(PEC, TEC, WGA	I C F M C M C M C		
0050		C=TEC-DTC	•	•	
0051	WGA	N=WGA+DW			

TABLE LX (CONTINUED)

0052						
	CA	LL DEVIPEC	,TEC,WGA,WM	I.N.4)		
0053		A=WGA-DW				
0054	PE	C=PEC-DPC				
0055	CA	LL DEVIPEC	, TEC, WGA, WM	I,N,5)		
0056		C=PEC+DPC		•		
0057	TE	C=TEC-DTC				<u> </u>
0058	CA	LL DEVIPEC	, TEC, WGA, WM	I,N,6)		
0059		C=TEC+DTC		, i i-,,,		
0060	WG	A=WGA-DW				
0061	CA	LL DEVIPEC	, TEC , WGA , WM	I,N,7)		
0062	WG	A=WGA+DW			•	
0063	II	=1				
0064	DO	11 I=2.7				
0065	11 IF	(F(I).LT.F	(II))II=I	 . 		
0066		(II.EQ.1)				
0067	IF	(II.EQ.2)	PEC=PEC+DPC	,		
8 8 0 0	IF	(II.EQ.3)	TEC=TEC+DTC	•		
0069	IF	(II.EQ.4)	WGA=WGA+DW			
0070	IF	(II.EQ.5)	PEC=PEC-DPC	•		
0071	IF	(11.EQ.6)	TEC=TEC-DTC	,		
0.072	[F	(II.EQ.7)	WGA=WGA-DW			•
0073	1F	(NPR.GT.O) WRITE(6,N	IL)		
0074	F(1)=F(II)				
0075	DO	53 I=1,N				
0076	53 HM	IXC(I,1)=H	MIXC(I,II)			
0077	IN	D=IND+1				
0078	[F	(IND.GT.I	NDEX) GO TO	50		
0079	GO	TO 52				
0080	50 WR	ITE(6,NL)				•
0081	WR	ITE(6,120)	. 			
0082	120 FD	RMAT(30X,	. OPTIMUM C	ALCULATED E	NTHALPY DEPARTURE	ES*/* PRES
	150		TEMPERATU		PER. DEPARTURE	CALC. DEPARTU
•	2RE	DIF	FERENCE	PERCENT D	IFFERENCE 1/)	
0083	00	54 I=1,N				
0084	DE	LH=HEXP(I)	-HMIXC(I,1)			
0085				1))/HEXP(I)	*100.	
0086	54 WR	ITE(6,123)	PMIX(I),TMI	X(I), HEXP(I),HMIXC(I,1),DEL	H, DELHP
0087	123 FO	RMAT(1H ,6	F20.7)			
8800	GO	TO 1				1
0089	EN	D				

TABLE IX

(CONTINUED)

ORTRAN IV	G COMPI	LER DE	V	08-03-68	20:25.26	PAGE 0001
0001		SUBROUTINE D	EV (PEC.TEC.	·W·WM·N·EF)		
0002		INTEGER EF				
0003		DIMENSIONTAB	LE(11,11),	TAB(11), HVEC(11	,HTAB(4,4),HOU	Γ(11),
		1TTAB(11),F(7),PMIX(100)	,TMIX(100),HMIX	100),HOMIX(100	, HEXP (100),
		2HMIXC(100,7)	,H1(30,40)	T1(40),P1(30),H	2(20,79),T2(79)	P2(20)
0004		COMMON TABLE	,H1,T1,P1,F	12,T2,P2,PMIX,TM	IX, HMIX, HOMIX, H	EXP.HMIXC.
		1DELH,M1,N1,N	12 • N2 • F	•	• •	
0005		F(EF)=0.0				
0006		DO 416 L=1.N	l			
0007		PR=PMIX(L)/P				
0008		TR=TMIX(L)/T		4		
0009		DO1 I=1,M1,1			<u>·</u>	
0010		IY=I				
0011		IF(PR-P1(1))	3.1.1			
0012	1	CONTINUE	37171			
0012	3	DU 5 J=1.N1.	1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
0013	3	JAY=J	•			
0014		IF (TR-T1(J))	401 E E			
0016	5	CUNTINUE	4014343	•		
			11144-61			
0017	401	IF(JAY.GT.N1		<u>.</u>		
0018		IF(IY.GT.M1-				
0019		IF(JAY.LT.3)		***** *** *** ***		
0020			, II, PI, HIAE	TTAB, PTAB, IY, JA	17,30,401	<u> </u>
0021		DO 30 J=1,4				
0022		DO 21 I=1,4				· .
0023	21	HVEC(I)=HTAB				
0024				TABLE, 3, 3, & 15)		
0025	30			TABLE, 3, 3, HOUT (.	11,3,815)	
0026				TABLE,3,3,&15)		
0027				BLE,3,3,HINT1,3,	&15)	
0028		DO 10 I=1,M2	,1			
0029		IY=I			***	
0030		IF(PR-P2(I))	11,10,10			
0031	10	CONTINUE			•	
0032	11	DO12 J=1,N2,	1			
0033		JAY=J				
0034		IF(TR-T2(J))	402,12,12			
0035	12	CONTINUE				
0036	402	IF (JAY.GT.N2	-1) JAY=N2-1			
0037		IF(JAY.LT.3)				
0038		IF(IY.GT.M2-				
0039	13			B,TTAB,PTAB,IY,JA	Y.M2.N2)	
0040		DO 22 J=1,4	, , , , , , , , , , , , , , , , , , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
0041		DO 23 I=1.4				
0042	23	HVEC(I)=HTAB	(1.4)			
0043				TABLE, 3, 3, &15)		
0044	22			TABLE, 3, 3, HOUT (() . 3 . 61 5)	
0045				TABLE, 3, 3, &15)	77774457	
0046				ABLE,3,3,HINT2,3	.£151	
		R=1.987/WM	TIADTINTI	OFF 1313 HITHI 513	4171	
0047				コナナ エル・テロエハエント・ウィエロ	:c	
0048				IT1+W*HINT2)*R*TE		
0049		DELH=HEXP(L)		•)		
0050		F(EF)=F(EF)+	UL LH**Z	·		,
0051	416	CONTINUE				
0052		EN=N				

CUMPINUED)

FORTRAN	IV G COMPI	LER	DEV	07-27-68	13:40.12	PAGE 0002
0053 0054 0055	15	F(EF)=SQRT RETURN END	T(F(EF)/EN)			

ORTRAN IV	G COMP	ILER	INT4	07-16-68	22:38.	32 F	PAGE 0001
0001		SUBROU	TINE INT4 (H, T, P	HTAB TTAB PTAB.	IY, JAY, M, N)		
0002		DIMENS	ION H(M,N),T(N)	,P(M),HTAB(4,4),	TTAB(11), PT	48(11)	
0003		ILOW=I					
0004		JLOW=J	AY-3	· · · · · · · · · · · · · · · · · · ·			-
0005		DO 1 J	=1,4				
0006	1	TTABLJ)=T(JLOW+J)				
0007		DO 2 I	=1,4				
0008	2	PTAB(I)=P(ILOW+I)				,
0009	**	DO 3 J	=1,4				
0010		DO 3 I	=1,4				
0011	3	HTAB(I	,J)=H(ILOW+I,JL	DW+J)			
0012		RETURN					
0013		END	·		•	·	

TABLE LX

(CONTINUED)

FORTRAN IV	G COMP	ILER I	TABLE	97-16-68	22:38.16	PAGE 0001
0001		SUBBOUTINE	DTABLE(X,Y,TA	ŘI F.N.M.*)		
0002		INTEGER DEC		OL CYNTHY!		
0003			((11),Y(11),TA	BL F(11.11)		
0004		IF(M-N)1,1		OL MILLYLIY	*.*.	
0005	2	WRITE(6.3)	· ·			
0006	3	FORMAT(SCREWED UP	•)		
0007	,,,	RETURN 1	30.12.02.37	,		
0008	1	DO 4 J=1.M				
0009		DO 4 I=J.N			•	
0010		IF(J-1)5,6	.5			
0011	6			/(X(I+1)-X(I))		
0012		GO TO 4	11111111111			
0013	5		(TABLE(I.J-1)	-T ABLE(I-1.J-1))/(X(I+1)-X(I	1+1))
0014	4	CONTINUE			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
0015		RETURN				
0016			ON (X. XARG. TAB	LE.N.M.YEST.DE	GREE.*)	
0017		IF(DEGREE-				
0018	8	WRITE(6,9)				
0019	9	FORMAT (*	SCREWED UPPP	1)		
0020		RETURN 1				
0021	. 7	L=N+1	•			
0022		00 10 I=1,1				
0023		K = I				
0024		IF (XARG.LF	.X(K)) GO TO	11		
0025	10	CONTINUE				
0026	11	MAX=K+DEGRE	E/2			
0027		IF (MAX.LT.	DEGREE+1)MAX=	DE GREE+1		
0028		IF(MAX.GT.	N+1)MAX=N+1			
0029		YEST=TABLE	MAX-1, DEGREE)			
0030		L=DEGREE-1				
0031		TIF(L.EQ.O)	GO TO 13			
0032	The same	DO 12 I=1,L				
_0033 .	12	YEST=YEST*(XARG-X(MAX-I))+ TABLE (MAX-I-	1,DEGREE-I)	
0034	13	YEST=YEST*	XARG-X (MAX-DE	GREE))+Y(MAX-D	EGREF)	
0035		RETURN				
0036		END				
-						

TABLE LXI

LIST OF VARIABLES FOR CORRESPONDING STATES CALCULATION AND PARAMETER OPTIMIZATION PROGRAM

Main Program

Program Symbol	<u>Definition</u>
DELH	Difference between experimental and calculated enthalpy
DELHP	Percent difference between experimental and calculated enthalpy
DEV	Enthalpy departure calculation and comparison subroutine name
DPC, DTC, DW	Step size of parameters in optimization procedure
F	Root mean square deviation between experimental and calculated enthalpy departures
HOMIX	Ideal gas enthalpy
H1	Reduced enthalpy departure for first reference substance
Н2	Reduced enthalpy departure for second reference substance
HEXP	Experimental enthalpy
HMIX	Experimental enthalpy departure
HMIXC	Calculated enthalpy departure
I, J	Counter variables
II	Variable indicating direction of maximum reduction in standard deviation
IND	Counter variable of search iterations
INDEX	Maximum number of search iterations
M1	Number of reduced pressure values for first reference substance table

TABLE LXI CONTINUED

M2 Number of reduced pressure values for second

reference substance table

N1 Number of reduced temperature values for first

reference substance table

N2 Number of reduced temperature values for second

reference substance table

NPR Conditional print index

Pl Reduced pressure of first reference substance

P2 Reduced pressure of second reference substance

PC Initial critical pressure

PEC Critical pressure

PMIX Mixture pressure

T1 Reduced temperature of first reference substance

T2 Reduced temperature of second reference substance

TABLE Storage matrix for difference table

TC Initial critical temperature

TEC Critical temperature

TMIX Mixture temperature

W Initial third parameter

WGA Third parameter

WM Molecular Weight of mixture

Subroutines DEV and INT4

DTABLE Difference table calculation subroutine name

EN Number of data points

EF Subscript of F

TABLE LXI CONTINUED

HINT1 Final interpolated enthalpy using first reference

table

HINT2 Final interpolated enthalpy using second

reference table

HOUT Vector containing enthalpies interpolated with

respect to pressure

HTAB Matrix containing reduced enthalpies upon which

interpolation is based

HVEC Vector containing enthalpies from HTAB at the

same reduced temperature

I, J, L Counter variables

ILOW, JLOW Defined in program

IY, JAY Defined in program

NEWTON Interpolation subroutine name

PR Reduced pressure of mixture

PTAB Vector containing reduced pressures corresponding

to HTAB values of reduced enthalpy

R Gas constant

TR Reduced temperature

TTAB Vector containing reduced temperatures corres-

ponding to HTAB values of reduced enthalpy

Subroutines DTABLE* and NEWTON*

DEGREE Degree of desired interpolating polynomial

I, J Counter variables

K, L Defined in program

Maximum order of divided differences to be

calculated by DTABLE

TABLE LXI CONTINUED

MAX Subscript of largest X value used in constructing

the interpolating polynomial

N Maximum subscript on X and Y

TABLE Matrix containing divided difference table

X An array containing abscissa values in ascending

order

XARG Interpolation argument

Y An array containing ordinate values

YEST Variable used to hold partially computed value

of interpolant

^{*} Subroutines are more fully explained in Carnahan $\underline{\text{et al.}}^{16}$ from where they were obtained with minor modification.

APPENDIX D

DATA AND RESULTS OF CORRESPONDING STATES CORRELATION

RABLE LATI

REDUCED ENTHALFY AS A FUNCTION OF REDUCED TEMPERATURE AND REDUCED PRESSURE FOR

REDUCED ENTHALFY AS A FUNCTION OF REDUCED TEMPERATURE AND REDUCED PRESSURE FOR

4

0.996.5	-5,33896 -5,33825 -5,33943 -5,33806 -5,33318 -5,33412 -5,33176 -5,32166 -5,31636 -5,30553 -5,29188 -5,24998 -5,24079 -5,14406 -5,26559 -5,26545 -5,	5,51767 5,0506 5,50814 5,50314 5,50314 5,50320 5,503343 5,50343 5,50343 5,50343 5,50345 5,5034	-4,46089 -4,4613 -4,4753 -4,4751 -4,47510 -4,4160 -4,4920 -4,4920 -4,49511 -4,4940 -4,4252 -4,4840 -4,4440 -4,4151 -4,3162 -4,3170 -4,4160 -4,4152 -4,3170 -4,4160 -4,4152 -4,3170 -4,4160 -4,4152 -4,3170 -4,4160 -4,	-0.54891 -0.64825 -0.81806 -0.9854 -1.14789 -1.44738 -3.513179 -3.55054 -3.44541 -3.47104 -3.47419 -3.47724 -3.77254 -3.	-0.4534 -0.5317 -0.6230 -0.7310 -0.62310 -0.52310 -0.62310 -0.2340 -1.3104 -0.114490 -1.12450 -1.3250 -1.7471 -2.45130 -2.44138 -2.45140 -2.45150 -2.45140 -2.45150 -2.45440 -2.45140 -	0.3316 0.3517 0.3517 0.3518 0.5517 0.5518 0.5617 0.5
	-5.24998 -5.6 -5.17701 -5.1 -5.10640 -5.6	-4.88043 -4. -4.80275 -4. -4.71801 -4. -4.63092 -4.	-4.44968 -4. -4.35082 -4. -4.24450 -4. -4.13426 -4. -4.01657 -4.	-3.80237 -3. -3.72234 -3. -3.68468 -3. -3.54580 -3. -3.44455 -3.	-3.19744 -3. -3.05150 -3. -2.34770 -2. -2.05583 -2. -1.83928 -2.	-1.42030 -1. -1.32615 -1. -1.24377 -1. -1.11195 -1. -1.01195 -1. -1.00367 -1.
,	153 -5.29188 156 -5.21891 195 -5.14830 165 -5.07297	192 -4.99530 192 -4.91762 124 -4.83994 115 -4.75521 170 -4.66576 155 -4.57396	405 -4.47745 312 -4.37388 385 -4.26561 745 -4.15027 522 -4.01610	729 -3.77130 431 -3.67244 576 -3.61830 714 -3.44177 176 -3.29583 841 -3.12164	738 -2.89568 140 -2.61792 772 -2.81374 117 -1.81374 347 -1.62696 536 -1.46219 643 -1.33509	685 -1.14914 801 -1.08088 388 -1.01968 915 -0.96554 643 -0.91611 644 -0.83137 850 -0.79371
	.31636 -5.305 .24339 -5.232 .17278 -5.161 .09745 -5.086	. 93975 -4.928 . 93975 -4.928 . 86207 -4.851 . 77498 -4.764 . 59138 -4.58(.49252 -4.48 .38424 -4.376 .26655 -4.26 .13709 -4.14 .98880 -4.004	. 71104 -3.74 . 58158 -3.63 . 48978 -3.57 . 14612 -3.34 . 59297 -3.11 . 04453 -2.80	. 79738 - 2.41 . 64438 - 2.15 . 42312 - 1.76 . 216185 - 1.39 . 07240 - 1.26 . 99943 - 1.16	87939 - 1,010 83232 - 0,95 18995 - 0,90 17528 - 0,85 17698 - 0,81 168402 - 0,71 168402 - 0,71 168402 - 0,71 168402 - 0,71
	2 -5.32766 -5 5 -5.25469 -5 3 -5.18408 -5 6 -5.10640 -5	3 -5.02631 -6.02631 -	1 -4.49440 -4 3 -4.38612 -4 3 -4.26373 -4 6 -4.12556 -4 6 -3.76707 -5	7 -3.64231 -7 -3.47048 -7 -3.31513 -7 -3.02288 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	10 -1.39205 - 11 -1.29790 - 11 -1.05902 - 12 -0.97545 - 12 -0.90716 - 13 -0.85067 -	2 -0.75652 2 -0.75652 72 -0.6566 12 -0.6560 138 -0.6560 38 -0.6560 38 -0.5941 39 -0.57056 40 -0.57056
	26175 -5.3307 26175 -5.2577 19114 -5.1871 11346 -5.1094	03343 -5.0294 95105 -4.9494 181866 -4.869 18157 -4.7869 68741 -4.6881 59326 -4.5939	49205 -4,495 37906 -4,3866 25196 -4,2644 11308 -4,125 93890 -3,584	.55051 -3.626. .65803 -3.4311 .63214 -3.1981 .40147 -1.7526 .29790 -1.5457 .21552 -1.4210	.14490 -1.324 .08606 -1.242 .98719 -1.115 .90952 -1.016 .84596 -0.938 .79183 -0.8745	6472 -0.728 -0.728 -0.728 -0.728 -0.728 -0.728 -0.728 -0.601 -0.601 -0.601 -0.601 -0.601 -0.601 -0.528 -0.5
0 8968 0	-5.3331 -5. -5.26034 -5. -5.18972 -5.	-5.03202 -5. -4.94963 -4. -4.86725 -4. -4.68600 -4.	-4.49063 -4. -4.37530 -4. -4.24584 -4. -4.10461 -4. -3.93042 -3.	-1.59307 -1. -1.59307 -1. -1.47302 -1. -1.29178 -1. -1.19998 -1.	-1.01638 -1. -0.86103 -0. -0.86103 -0. -0.80218 -0. -0.75275 -0.	
4138 0.82212	13378 -5.33660 26081 -5.26363 19020 -5.19302 11252 -5.11534	3249 -5.03531 34775 -4.95293 36381 -4.86819 77592 -4.78110 7941 -4.68694	18169 -4.48922 15929 -4.37153 12512 -4.23972 17448 -4.09142 18617 -3.91016	16279 -1.44336 18041 -1.28566 14274 -1.2268 15095 -1.1044 10151 -1.0408 16150 -0.98908	32384 -0.94436 19089 -0.90434 13439 -0.8313 8731 -0.77254 64493 -0.68308 57668 -0.6630	1186 -0.507 (c) 1866 -0.57 (c) 1866 -0.523 (c) 1866 -0.5018 (c) 1898 -0.4806 (c) 1898 -0.4429 (c) 1888 -0.4429 (c) 1848 -0.4429 (c) 1888 -0.44
0.44845 0.52511 0.59171 0.67655 0.14138 0.85222 0.89880	-5.33896 -5. -5.26599 -5. -5.19537 -5.	-5.03767 -5. -4.95293 -4. -4.86819 -4. -4.77639 -4. -4.67988 -4.	-4.47510 -4. -4.35270 -4. -4.21853 -4. -4.06318 -4. -3.86310 -3.	-0.96554 -1. -0.91140 -1. -0.89493 -1. -0.82195 -0. -0.78665 -0.	-0.72310 -0. -0.69720 -0. -0.65012 -0. -0.57480 -0. -0.57480 -0.	0.46171 -0.464171 -0.464617 -0.464617 -0.464617 -0.464617 -0.37708 -0.37708 -0.37708 -0.37708 -0.36483 -0.37708 -0.36483 -0.37708 -0.36483 -0.37708 -0.36483 -0.37708 -0.36483 -0.37708
16765-0 1163	3825 -5.33943 6528 -5.26646 9467 -5.19584 1699 -5.11817	3696 -5.03814 5222 -4.95340 6749 -4.86866 7568 -4.77686 7917 -4.68035	6733 -4,47557 4022 -4,34846 0606 -4,21430 8009 -4,04247 7417 -0,96601 9649 -0,85067	6825 -0.81066 3765 -0.76829 1411 -0.73534 9057 -0.70238 6939 -0.67413	3173 -0.62706 1289 -0.60587 8465 -0.56821 5876 -0.5582 3522 -0.50466 1404 -0.47876	7167 -0.45169 5519 -0.41051 2695 -0.37755 1283 -0.36108 9870 -0.34460 8929 -0.3283 7987 -0.32106
6.0	-5.33896 -5.3 -5.26599 -5.2 -5.19537 -5.1	-5.03767 -5.0 -4.95293 -4.9 -4.86584 -4.8 -4.77168 -4.7 -4.67517 -4.6	-4.46098 -4.4 -4.33387 -4.3 -4.19029 -4.2 -0.69250 -0.8 -0.62424 -0.7	-0.54891 -0.6 -0.52773 -0.6 -0.50654 -0.6 -0.49007 -0.5 -0.47359 -0.5	0.44534 -0.5 -0.43122 -0.5 -0.40768 -0.4 -0.38855 -0.4 -0.37002 -0.4 -0.35119 -0.4	-0.31823 -0.3 -0.30411 -0.3 -0.28058 -0.3 -0.26881 -0.3 -0.25704 -0.2 -0.24763 -0.2
0.31309	28/20	-5.03696 -4.95222 -4.86513 -4.77098 -4.66976	200000	-0.44464 -0.42816 -0.41639 -0.40227 -0.39050	المراح مام حاصر	7 N - 10 00 N 0 1 + N
0.22422	-5, 32907 -5, 33331 -5, 33543 -5, 33731 -5, 3382 -5, 2510 -5, 26034 -5, 26246 -5, 26434 -5, 26252 -5, 13313 -5, 1834 -5, 1834 -5, 1937 -5, 1937 -5, 10546 -5, 10969 -5, 11417 -5, 11609 -5, 11609	-5.02966 -5.03414 -5.03602 -4.94643 -4.94640 -4.95128 -4.85783 -4.86231 -4.86419 -4.76368 -4.76815 -4.77003 -0.24903 -4.66253 -4.66646 -0.23727 -4.55395 -4.66646		-0.25115 -0.34483 -0.24409 -0.33306 -0.23938 -0.32345 -0.22526 -0.31424 -0.22526 -0.30482	-0.1431 -0.21564 -0.28334 -0.3593 -0.14075 -0.20818 -0.28128 -0.3593 -0.12839 -0.18935 -0.25316 -0.3420 -0.12839 -0.18935 -0.25336 -0.3223 -0.11825 -0.18935 -0.253185 -0.22916 -0.11825 -0.16406 -0.22018 -0.27916	0.10345 - 0.11870 - 0.10831 - 0.25553 - 0.0938 - 0.12854
0.14948	07 -5.33331 -5.33543 10 -5.26034 -5.26246 13 -5.18737 -5.18949 46 -5.10969 -5.11417	43 -5.02966 - 69 -4.94493 - 40 -4.85783 - 04 -4.76368 - 69 -0.23727 - 63 -0.23727 -		-0.16665 -0.16194 -0.18077 -0.15488 -0.15252	-0.14311 -0.14075 -0.13370 -0.12899 -0.12428 -0.11957	08 - 0.0074 - 0.1260 08 - 0.0034 - 0.1499 08 - 0.09349 - 0.1452 08 - 0.09349 - 0.13341 72 - 0.00897 - 0.13341 72 - 0.08897 - 0.12640 01 - 0.08891 - 0.12169 01 - 0.07726 - 0.11698
0.0		0.0 -5.02543 0.0 -4.94069 0.0 -0.12240 0.0 -0.12004 0.0 -0.11769		0.0 -0.07297 0.0 -0.07297 0.0 -0.07297 0.0 -0.06826 0.0 -0.06826		0.0
2	0000	- 5 5 6 6			200300	

TABLE LXIV

RESULTS OF CORRESPONDING STATES CORRELATION FOR METHANE-PROPANE MIXTURES USING OPTIMUM VALUES OF THE PARAMETERS

A. 5.1 PERCENT MIXTURE

PRESSURE	TEMPERATURE	EXPER. DEPARTURE	CALC. DEPARTURE	DIFFERENCE	PERCENT DIFFERENCE
(psia)	(°R)	(Btu/lb)	(Btu/lb)	(Btu/lb)	
500.0000000	179.5999908	-223.5000000	-223.8465271	0.3465271	-0.1550456
500.0000000	199.5999908	-217.6999969	-217.6114197	-0.0885773	0.0406878
500.0000000	219.5999908	-209.6999,969	-211.7310486	2.0310516	-0.9685509
500.0000000	239.5999908	-203.7999573	-205.2352753	1.4353180	-0.7042776
50C.0000000	259.5998535	-196.9000092	-198.4780273	1.5780182	-0.8014310
500.0000000	279.5998535	-190.3999634	-190.9170227	0.5170593	-C.2715648
500.0000000	299.5998535	-182.3998566	-182.7281189	0.3282623 -0.0773926	-0.1799685 0.0449173
500.0000000	319.5998535	-172.30C0031 -27.8000488	-172.2226105 -26.9967194	-0.8033295	2.8896685
500.0000000 500.0000000	419.5998535 439.5998535	-24.9001465	-24.2286530	-0.6714935	2.6967449
500.0000000	459.5998535	-22.5000000	-21.8375854	-0.6624146	2.9440641
500.0000000	479.5998535	-20.3999023	-20.0686493	0.3312531	1.6237965
500.0000000	499.5998535	-18.6999512	-18.4226685	-0.2772827	1.4827986
500.0000000	519.5998535	-17.3000488	-17.0725708	-0.2274780	1.3148975
LC00.0000000	179.5999908	-221.5000000	-221.9775238	0.4775238	-0.2155863
LC00.0000000	199.5999908	-215.4000092	-215.8345032	0.4344540	-0.2017149
1000.0000000	219.5999908	-208.1999969	-210.0275879	1.8275909	-0.8778054
1000.0000000	239.5999908	-202.2999573	-203.8572693 -197.5049744	1.5573120 2.0C49744	-0.7698033 -1.0255613
L COO• 00000000	259.5998535	-195.5000000° -189.1999512	-190.4310455	1.2310944	-C.65C6841
1 COO. 0000000 L 000. 0000000	279.5998535 299.5998535	-182.0998535	-182.7608032	0.6609497	-0.3629600
L CO C • 0000000	319.5998535	-173.6000061	-174.2459564	0.6459503	-0.3720911
1000.0000000	339.5998535	-163.3999023	-163.9692383	0.5653359	-0.348431C
000.000000	359.5998535	-149.7998047	-150.3798218	0.5800171	-0.3871948
C00.0000000	379.5998535	-125.4998169	-128.1374054	2.6375885	-2.1016665
LC00.000000	399.5998535	-88.8999023	-89.5020294	0.6021271	-0.6773088
1000.000000	419.5998535	-68.5000000	-68.5833588	0.0833588	-0.1216916
COC. 0000000	439.5998535	-56.8000488	-56.5252686	-0.2747803	0.4837673
000.000000	459.5998535	-49.2001953	-48.7428894	-0.4573059	0.9294797 0.4447848
L COO. 00000000	479.5998535	-43.5000000 -30.0009535	-43.3065186 -38.9842224	-0.1534814 -0.1156311	C.2957328
1000.0000000 1000.0000000	499.5998535 519.5998535	-39.0998535 -35.6000977	-35.4225464	-0.1775513	0.4987381
1500.0000000	179.5999908	-219.3999939	-218.2074738	-1.1925201	0.543537C
1500.0000000	199.5999908	-213.1999969	-212.1310272	-1.0689697	0.5013928
500.0000000	219.5999908	-206.3959939	-206.4019775	0.0019836	-0.0009611
1500.0000000	239.5999908	-200.8999634	-200.4232788	-0.4766846	0.2372746
500.000000	259.5998535	-194.3000031	-194.1630096	-0.1369934	0.0705061
1500.0000000	279.5998535	-187.8999634	-187.4026794	-0.4572839	0.2646535.
1500.0000000	299.5998535	-181.0998535	-180.2934113	-0.8064423	0.4453022
1500.0000000	319.5998535	-173.7000122	-172.5238342	-1.1761780	0.6771315
500.0000000	339.5998535	-165.4999084	-164.0117950	-1.4881134	0.8991625
500.0000000	359.5998535	-155.3998108	-153.5645447	-1.8352661	1.1809959
1500.0000000 1500.0000000	379.5998535 399.5998535	-143.0998077 -127.4999084	-142.0413571 -126.5802460	-1.0584106 -0.9196625	0.7396311 0.7213041
500.0000000	419.5998535	-108.8000031	-108.0916443	-0.7083588	0.6510649
500.0000000	439.5998535	-91.1999512	-90.3188019	-0.8811493	0.9661726.
500.000000	459.5998535	-77.6000977	-76.8830719	-0.7170258	0.9240009
1500.0000000	479.5998535	-67.5998535	-67.1749878	-0.4248657	0.6285008
1500.000000	499.5998535	-60.000000	-59.9863129	-0.0136871	0.0228119
150C.0000000	519.5998535	-54.0000000	-54.1292572	0.1252572	-0.2393652
2000.0000000	179.5999908	-217.2999878	-215.9124298	-1.3875580	C.6385446
200.000000	199.5999908	-211.1000061	-209.8416138	-1.2583 523	0.5961116
2000.0000000	219.5999908	-204.7999878	-204.1183624	-0.6816254	0.3328249
2000.0000000	239.5999908 259.5998535	-199.5999603 -193.1000061	-198.1295013 -192.0975647	-1.47C4590 -1.0024414	0.7367030
2000.0000000	279.5998535	-186.6999512	-185.7134094	-0.9865417	0.5284101
COO. 0000000	299.5998535	-180. 1998596	-179.1232758	-1.0765839	0.5974386
000.000000	319.5998535	-173.2000122	-171.8867340	-1.3132782	0.7582433
000,0000000	339.5998535	-165.3999023	-164.2259216	-1.1739807	0.7097829
000.0000000	359.5998535	-156.9998169	-155.5579681	-1.4418488	0.9183760
COC. 0000000	379.5998535	-147.4958169	-146.7535095	-0.7463674	0.5059715
COC.0000000	399.5998535	-136.6999054	-136.7344360	0.0345306	-0.0252602
000.0000000	419.5998535	-124.5000000	-124.3732452	-0.1267548	0.1018110
2000.000000	439.5998535	-111.5999603	-111.8323575	0.2324371	-0.2082770
2000.0000000	459.5998535	-99.0000000	-99.3701172	0.3701172	-0.3738557
200.000000	479.5998535 499.5998535	-87.5998535 -78.0998535	-88.2673035	0.6674500	-0.7619302
	477.0770000	ーィウ・リソソグランフ	-78.8437347	0.7438812	-C.9524744

TABLE LXIV (CONTINUED)

B. 11.7 PERCENT MIXTURE

PRESSURE	TEMPERATURE	EXPER. DEPARTURE	CALC. DEPARTURE	DIFFERENCE	PERCENT DIFFERENC
(psia)	(°R)	(Btu/lb)	(Btu/lb)	(Btu/lb)	
00.000000	199.5999908	-223.6999969	-222.9557190	-0.7442780	0.3327125
00.0000000	219.5999908	-218.0999908	-217.0829010	-1.0170898	0.4663408
00.000000	239.5999908	-212.0999146	-211.0576172	-1.0422974	0.4914179
oc. 0000000	259.5998535	-205.7000122	-204.6004181	-1.0955541	0.5345616
00.0000000	279.5998535	-198.7998657	-197.9979553	-0.8C19104	C.4033755
00.0000000	299.5998535	-191.2999115	-190.7028503	-0.5970612	0.3121073
00.0000000	319.5998535	-181.8999634	-182.8739929	0.9740295	-0.5354751
00.0000000	479.5998535	-24.5998535	-22.6493683	-1.9504852	7.9288483
00.0000000	499.5998535	-20.9001465	-20.6938171	-0.2063293	0.9872146
00.0000000	519.5998535	-18.6999512	-19.0550690	0.3551178	-1.8990297
00.0000000	539.5998535	-17.3999023	-17.5503C82	0.1504059	-0.8644063
00.000000	559.5998535	-16.8000488	-16.3127899	-0.4872589	2.9003410
CC. 0000000	199.5999908	-220.8959939	-221.2119751	0.3119812	-0.1412318
00.0000000	219.5999908	-215.0999908	-215.3538208	0.2538300	-0.1180055
00.0000000	239.5999908	-209.2999115	-209.4137573	0.1138458	-0.0543936
	259. 5998535	-203.1000061	-203.2781982	0.1781921	-0.0877361
00.000000	279.5998535	-196.2958657	-196.9353180	0.6354523	-0.3237150
00.0000000			-190.0705261	0.7706146	-0.4070863
00.0000000	299.5998535	-189.2999115			-0. F202004
00.0000000	319.5998535	-181.6999512	-182.6600189	0.9600677	-0.5283806
00.000000	339.5998535	-172.9000092	-174.5535736	1.6535645	-0.9563703
00.000000	35 5 • 59 98 53 5	-163.8000031	-165.1951599	1.3951569	-0.8517440
00.000000	379.5998535	-150.2999115	-152.9467773	2.6468658	-1.7610559
00.000000	479.5998535	-52.8999023	-51.6362762	-1.2636261	2.38£711C
00.000000	499.5998535	-45. 9001465	-45.4912415	-0.4089050	0.8908577
00.000000	519.5998535	-40.8000488	-40.7847748	-0.0152740	0.0374363
00.000000	539.5998535	-37.0998535	-36.9780884	-0.1217651	0.3282092
00.000000	559.5998535	-34.1999512	-33.8241577	-0.3757935	1.0988121
00.000000	199.5999908	-218.0000000	-217.8072357	-0.1927643	0.088424C
00.000000	219.5999908	-212.1999969	-211.9319611	-0.2680359	0.1263129
00.000000	239.5999908	-206.3999023	-206.1060028	-0.2938995	0.1423932
00.000000	259.5998535	-200.5000000	-200.1881104	-0.3118896	0.1555559
00.000000	279.5998535	-193.8998566	-194.0115509	0.1116943	-0.0576041
00.000000	299.5998535	-187.3999023	-187.3063507	-0.0935516	0.0499208
00.000000	319.5998535	-180.3999634	-180.4412384	0.0412750	-0.0228797
00.000000	339.5998535	-173.0C00000	-172.9879761	-0.0120239	0.0069502
CO.0000000	359.5998535	-165.0000000	-164.9716949	-0.02 £3 C51	0.0171546
00.000000	379. 5998535	-155.5999146	-155.7413025	0.1413879	-C.0908663
00.000000	399.5998535	-144.3000031	-145.0418549	0.7418518	-0.5141035
00.000000	419.5998535	-130.1998596	-131.7047424	1.5048828	-1.1558247
00.000000	439.5998535	-113.4998169	-114.8953552	1.3955383	-1.2295504
00.0000000	459.5998535	-97.5000000	-97.2541504	-0.2458496	0.2521534
00.000000	479.5998535	-83.5000000	-82.4559479	-1.0440521	1.2503614
00.C000000	499.5998535	-72.5000000	-71.5027771	-0.9972229	1.3754787
00.000000	519.5998535	-64.1999512	-63.2568207	-0.9431305	1.4690514
00.000000	539.5998535	-57.3999023	-56.9259644	-0.4739380	0.8256770
00.000000	559.5998535	-52.100C977	-51.6867065	-0.4133511	0.7934555
00.000000	199.5999908	-215.2999878	-215.7004395	0.4004517	-0.1859970
00.000000	219.5999908	-209.3999939	-209.8628693	0.4628754	-0.2210484
00.0000000	239.5999908	-203.8999023	-204.0389252	0.1390228	-0.0681819
00.0000000	259.5998535	-198.0000000	-198.0725403	0.0725403	-0.0366365
00.0000000	279.5998535	-191.5998535	-192.1285858	0.5287323	-0.2759565
00.000000	299.5998535	-185.4999084	-185.7765656	0.2766571	-0.1491413
00.0000000	319.5998535	-179. 2999573	-179.2699585	-0.0299988	0.0167311
				The second secon	
00.0000000	339.5998535	-172.6000061	-172.3524933	-0.2475128	0.1434025
00.0000000	359.5998535	-165.4000092	-165.0437469	-0.3562622	0.2153943
00.0000000	379.5998535	-157.3999023	-157.0870209	-0.3128815	0.1987812
00.000000	399.5998535	-148.5000000	-148.4530792	-0.0469208	0.0315965
00.0000000	419.5998535	-138.3998566	-138.9698334	0.5699768	-0.4118330
00.0000000	439.5998535	-127.0998077	-128.0904541	0.9906464	-0.7794238
00.000000	459.5998535	-115.1999512	-116.2451935	1.0452423	-0.9073287
00.000000	479.5998535	-103.3000488	-104.2760315	0.9759827	-0.9448037
OC. 0000000	499.5998535	-92.5000000	-93.0516510	0.5516510	-0.5963791
00000000	519.5998535	-82.8999023	-83.1849213	0.2850189	-C.34381C9
00.000000	539.5998535	-74.6999512	-74.8662415	0.1662903	-0.2226110
00.000000	559.5998535	-67.8000488	-67.8438416	0.0437927	-0.0645910

TABLE LXIV (CONTINUED)

C. 28.0 PERCENT MIXTURE

PRESSURE	TEMPERATURE	EXPER. DEPARTURE	CALC. DEPARTURE	DIFFERENCE	PERCENT DIFFERENCE
(psia)	(°R)	(Btu/lb)	(Btu/lb)	(Btu/lb)	
500.0000000	219.5999908	-219.6999969	-219.7361450	0.0361481	-0.0164534
500.0000000	239.5999908	-214.3999939	-213.9856720	-0.4143219	0.1932471
500.0000000	259.5998535	-209.0000000	-208.8074C36	-0.1925964	0.0921513
500.000000	279.5998535	-202.8000031	-203.2437439	0.4437408	-0.2188071
500.000000	299.5998535	-197. 2998657	-197.4878082	0.1879425	-0.0952572
500.0000000	319.5998535	-190.5998077	-191.6642514	1.0644836	-0.5584914 -0.6971911
500.000000	339.5998535	-184.1998596 -27.0008525	-185.4840851 -25.2987976	-1.8010559	6.6459951
500.0000000	519.5998535 539.5998535	-27.0998535 -24.3000488	-23.0268860	-1.2731628	5.2393417
500.000000 500.0000000	559.5998535	-22.1000977	-21.0830688	-1.0170288	4.6019192
00.000000	579.5998535	-20.3000488	-19.5655518	-0.7344971	3.6182022
OC. 0000000	599.5998535	-18.7998047	-18.1147308	-0.6850739	3.6440468
500.0000000	619.5998535	-17.3000488	-16.7906189	-0.5094299	2.9446726
500.000000	639.5998535	-16.1000977	-15.7055397	-0.3945580	2.4506550 -0.2016911
000.0000000	219.5999908	-217.4000092 -212.0999908	-217.8384857 -212.2733154	0.4384766 0.1733246	-0.0817183
000.0000000	239.5999908 259.5998535	-206.8000031	-207.0347900	0.2347870	-0.1135333
00.000000 00.000000	279.5998535	-201.0000000	-201.5647888	0.5647888	-0.2809894
00.0000000	299.5998535	-195.5998535	-196.0337372	0.4338837	-0.2218220
0C.000000	319.5998535	-189.4958169	-190.3890381	0.8892212	-0.4692461
00.000000	339.5998535	-183.6998596	-184.4388123	0.7389526	-0.4022605
00.000000	359.5998535	-177.00C0000	-178.0918274	1.0918274	-0.6168514
000.0000000	379.5998535	-170.3000031	-171.3118591 -163.9705963	1.0118561 2.2707367	-0.5941607 -1.4042902
000.0000000	399.5998535	-161.6598596 -55.8000488	-53.8077698	-1.9522791	3.5703888
00.000000 00.000000	539.5998535 559.5998535	-48.6999512	-47.3797913	-1.3201599	2.7108030
00.0000000	579.5998535	-43.8000488	-42.6066895	-1.1933594	2.7245607
000.0000000	599.5998535	-39.7998047	-38.6299438	-1.1698608	2.9393625
00.000000	619.5998535	-36.3000488	-35.3710785	-0.9289703	2.5591431
000.000000	639.5998535	-33.3999023	-32.6143951	-0.7855072	2.3518238
00.000000	219.5999908	-215.1000061	-214.9495850	-0.1504211 -0.4848938	0.0699307 0.2311219
00.000000	239.5999908	-209.8000031 -204.7000122	-209.3151093 -204.0634766	-0.6365356	0.3109602
500.000000 500.000000	259.5998535 279.5998535	-199. 4000092	-198.6932678	-0.7067413	0.3544339
500.000000	299. 5998535	-194. C998535	-193.4026489	-0.6972046	0.3591989
00.000000	319.5998535	-188.4958169	-187.9442444	-0.5555725	0.2947336
00.000000	339.5998535	-182.69985 9 6	-182.0074005	-0.6924591	0.3790146
OC.0000000	359,5998535	-176.5000000	-175.9835968	-0.5164C32	0.2925797
00.000000	379.5998535	-170.5000000	-169.7929535	-0.7070465	0.4146900
00.000000	399.5998535	-163.8998566	-163.0111237	-0.8887329	0.5422413
00.000000	419.5998535 439.5998535	-156.3999023 -147.6998138	-155.8802948 -147.9449615	-0.5196C75 0.2451477	0.3322300 -0.1659769
00.0000000	459.5998535	-137.3998108	-138.6822568	1.2824860	-0.9333968
00.0000000	479. 5998535	-125.3000031	-127.5434113	2.2434C82	-1.7904291
00.000000	499.5998535	-111.6998138	-114.0764008	2.3765869	-2.1276541
00.000000	519.5998535	-98.0998535	-99.8649902	1.7651367	-1.7993259
00.000000	539.5998535	-85.9001465	-86.2155304	0.3153839	-0.3671517
00.0000000	559.5998535	-75.8C00488	-75.2431946	-0.5568542	0.7346354
00.000000 00.0000000	579.5998535 599.5998535	-67.7001953 -61.0000000	-66.7154541 -59.9455566	-0.9847412 -1.0544434	1.4545612
00.0000000	619.5998535	-54.4001465	-54.5367737	0.1366272	1.7285948 -0.2511522
00.0000000	639.5998535	-49.6999512	-49.9396667	0.2397156	-0.4823253
00.000000	219.5999908	-212.8000031	-213.1689758	0.3689728	-0.1733894
00.0000000	239.5999908	-207.5959908	-207.5888214	-0.0111694	0.0053803
00.000000	259.5998535	-202.6000061	-202.2734833	-0.3265228	0.1611662
00.0000000	279.5998535	-197.7000122	-196.9940338	-0.7059784	0.3570957
CC. 0000000	299.5998535	-192.5998535	-191.5930481	-1.0068054	0.5227442
00.0000000	319,5998535 339,5998535	-187.2998047 -181.8998566	-186.3367310 -180.6253052	-0.9630737	0.5141880
00.0000000 00.0000000	359.5998535	-176.2000122	-180.6253052 -175.0912170	-1.2745514 -1.1087952	0.7006884 0.6292820
00.0000000	379.5998535	-170.5000000	-169.1955261	-1.3044739	0.7650871
00.000000	399.5998535	-163.7998657	-162.8309326	-0.9689331	0.5915344
00.000000	419.5998535	-157.0999146	-156.4238129	-0.6761017	C.4303638
00.000000	439.5998535	-149.8998108	-149.4604797	-0.4393311	0.2930831
00.000000	459.5998535	-141.8558108	-142.1370544	0.2372437	-0.1671909
00.000000	479.5998535	-133. 2000122	-134.5644684	1.3644562	-1.0243654
00.000000	499.5998535	-123.7998C47	-125.3279724	1.5281677	-1.2343855
0C.000000	519.5998535 539.5998535	-113.7998047 -103.8000488	-114.5359497 -104.8703308	0.7361450 1.0702820	-0.6468769 -1.0310993
00.000000	559.5998535	-94.3000488	-95.3125305	1.0124817	-1.0736799
00.000000	579.5998535	-85.8000488	-86.3955078	0.5954590	-0.6940074
00.0000000	599.5998535	-78.0998535	-78.4010773	0.3012238	-0.3856905
00.000000	619.5998535	-71.0000000	-71.4418030	0.4418030	-0.6222576.
	639.5998535	-64. 8999C23	-65.3887939	0.4888516	-0.7533006

D. 50.6 PERCENT MIXTURE

(Btu/lb) 213, 4365540 208, 3826752 203, 6472321 198, 6600647 193, 5580902 188, 4100800 -27, 8946075 -25, 3979950 -23, 2492371 -21, 4089813 -19, 9047089 -18, 5703430 -17, 3711395 -16, 1923523 -15, 0905466 211, 5381470 206, 6434326 201, 8343353 96, 8405304 191, 9116974 186, 9467773 181, 8092346 176, 5315399 170, 8943787 165, 0761566 158, 8870087 -63, 9630127 -55, 1568909 -48, 9238434 -44, 0820770 -40, 1949463 -36, 8521881 -34, 0541229 -31, 5944824 209, 2494812 204, 1678009 199, 3116302 194, 4917755 189, 6732025 184, 8447876 180, 0071259	(Btu/1b) 0.6367493 0.4828644 0.7473297 0.3601990 0.3581848 0.3101654 -1.8055878 -1.2018585 -0.9507141 -0.7952423 -0.6288605 -0.6076965 -0.7092581 0.43843392 0.4436188 0.4344330 0.3406677 0.3117828 0.2468719 0.3092346 0.3315887 0.0944214 0.2763519 0.2871552 -0.5569873 -0.57430603 -0.7763519 -0.8178253 -0.6051025 -0.7479095 -1.0459747 -1.2053223 -0.1503296 -0.3320160 -0.5882721 -0.3080902 -0.4267120 -0.4551239	(Btu/lb) -0.29922450.23225820.36832430.18164350.18539590.16489390.1648939. 4.5182896. 3.9285774. 3.5639944 3.8417587. 3.2804470 3.493686. 3.6172304 4.48902990.20764540.21514020.21570660.17336790.16272590.13222930.17037720.18818890.16768940.161768940.1810563. 0.8325383. 0.9749744. 1.5620699. 1.8214407. 1.4830923. 1.9891157. 2.9799767. 3.6747847. 0.0717907. 0.1623551. 0.2942833. 0.1581573.
208.3826752 203.6472321 193.6600647 193.5580902 128.4100800 127.8946075 123.2492371 121.4089813 11.99047089 118.5703430 117.3711395 116.1923523 115.0905466 1211.5381470 1206.66434326 1201.8343353 196.8405304 191.9116974 186.9467773 181.8092346 176.5315399 170.8943787 165.0761566 158.8870087 163.943484 164.0820770 164.9494812 165.07618089 179.9116302 179.944814 179.944814 179.944814 179.944812 179.944817755 189.6732025 189.6732025 184.8447876 180.0071259	0.4828644 0.7473297 0.3601990 0.3581848 0.3101654 -1.8055878 -1.2018585 -0.9507141 -0.7912140 -0.7952423 -0.6288605 -0.6076965 -0.7092581 0.4383392 0.4436188 0.4344330 0.3406677 0.3117828 0.2468719 0.3092346 0.3315887 0.0944214 0.2763519 0.2871552 -0.5369873 -0.763519 -0.8178253 -0.6051025 -0.77479095 -1.0459747 -1.2053223 -0.1503296 -0.3380160 -0.5882721 -0.3080902 -0.4267120	-0.232582 -0.3683243; -0.1816435. -0.1853959 -0.1648939 -0.1648939 -0.1648939 -0.1648939 -0.164873 3.5639944 3.8417587 3.2804470 3.4936686 3.6172304 4.4890299 -0.2076454 -0.2151402 -0.2157066 -0.1733679 -0.1627259 -0.1322293 -0.1703772 -0.1881.889 -0.0552818 -0.1676894 -0.1810563 0.8325383 0.9749744 1.5620699 1.981157 2.9799767 2.6747847 0.0717907 0.1623551 0.2942833
208.3826752 203.6472321 193.6600647 193.5580902 128.4100800 127.8946075 123.2492371 121.4089813 11.99047089 118.5703430 117.3711395 116.1923523 115.0905466 1211.5381470 1206.66434326 1201.8343353 196.8405304 191.9116974 186.9467773 181.8092346 176.5315399 170.8943787 165.0761566 158.8870087 163.943484 164.0820770 164.9494812 165.07618089 179.9116302 179.944814 179.944814 179.944814 179.944812 179.944817755 189.6732025 189.6732025 184.8447876 180.0071259	0.4828644 0.7473297 0.3601990 0.3581848 0.3101654 -1.8055878 -1.2018585 -0.9507141 -0.7912140 -0.7952423 -0.6288605 -0.6076965 -0.7092581 0.4383392 0.4436188 0.4344330 0.3406677 0.3117828 0.2468719 0.3092346 0.3315887 0.0944214 0.2763519 0.2871552 -0.5369873 -0.763519 -0.8178253 -0.6051025 -0.77479095 -1.0459747 -1.2053223 -0.1503296 -0.3380160 -0.5882721 -0.3080902 -0.4267120	-0.232582 -0.3683243; -0.1816435. -0.1853959 -0.1648939 -0.1648939 -0.1648939 -0.1648939 -0.1648939 -0.164873 -0.173873 -0.173944 -0.173944 -0.17394 -0.2151402 -0.2157066 -0.1733679 -0.1627259 -0.1322293 -0.1703772 -0.1881889 -0.0552818 -0.1676894 -0.1810563 0.8325383 0.9749744 1.5620699 1.981157 2.9799767 2.6747847 0.0717907 0.1623551 0.2942833
203.6472321 198.6600647 193.5580902 188.4100800 -27.8946075 -25.3979950 -23.2492371 -21.4089813 -19.9047089 -18.5703430 -17.3711395 -16.1923523 -15.0905466 211.5381470 206.6434326 201.8343353 196.8405304 191.9116974 186.9467773 181.8092346 176.5315399 170.8943787 165.0761566 158.8870087 -63.9630127 -55.1568909 -44.9238434 -44.0820770 -40.1949463 -36.8521881 -34.0541229 -31.5944824 209.2494812 204.1678009 199.3116302 194.4917755 189.6732025 184.8447876 180.0071259	0.7473297 0.3601 900 0.3581 848 0.3101 654 -1.8055878 -1.2018585 -0.9507141 -0.7912140 -0.7952423 -0.6298523 -0.6288605 -0.6076965 -0.7092581 0.43843392 0.4436188 0.4344330 0.3406677 0.3117828 0.2468719 0.3092346 0.3315887 0.0944214 0.2763519 0.2871552 -0.5369873 -0.5430603 -0.7763519 -0.8178253 -0.6051025 -0.7479095 -1.0459747 -1.2053223 -0.1503296 -0.3380160 -0.5882721 -0.3080902 -0.4267120	-0.36832430.18164350.1853959 -0.1648939. 6.0793791. 4.5182896. 3.9285774. 3.5639944 3.8417587. 3.2804470 3.4936686. 3.6172304 4.48902990.20764540.21514020.21514020.16272590.13222930.17037720.18818890.05528180.16768940.1810563. 0.8325383. 0.9749744. 1.5620699. 1.8214407. 1.4830523. 1.9891157. 2.9799767. 3.6747847. 0.0717907. 0.1623551. 0.2942833.
198.6600647 193.5580902 188.4100800 -27.8946075 -25.3979950 -23.2492371 -21.4089813 -19.9047089 -18.5703430 -17.3711395 -16.1923523 -15.0905466 211.5381470 206.6434326 201.834353 196.8405304 191.9116974 186.9467773 181.8092346 176.5315399 170.8943787 165.0761566 158.8870087 -63.9630127 -55.1568909 -48.9238434 -44.0820770 -40.1949463 -36.8521881 -34.0541229 -31.5944824 209.2494812 204.1678009 199.3116302 194.4917755 189.6732025 184.8447876 180.0071259	0.3601 990 0.3581 848 0.3101654 -1.8055878 -1.2018585 -0.9507141 -0.7912140 -0.7952423 -0.6288605 -0.6076965 -0.7092581 0.4383392 0.4436188 0.4344330 0.3406677 0.3117828 0.2468719 0.3092346 0.3315887 0.0944214 0.2763519 0.2871552 -0.5369873 -0.65369873 -0.763519 -0.8178253 -0.6051025 -0.77479095 -1.0459747 -1.2053223 -0.1503296 -0.3380902 -0.4267120	-0.18164350.1853959 -0.1648939 -0.1648939 -0.07648939 -0.0793791 -0.162896 -0.295666 -0.1733679 -0.2076454 -0.2157066 -0.1733679 -0.1627259 -0.1322293 -0.1703772 -0.1881889 -0.0552818 -0.1676894 -0.1810563 0.8325383 0.9749744 1.5620699 1.8214407 1.4830923 1.9891157 2.9799767 2.6747847 0.0717907 0.1623551 0.2942833
188, 41 00 800 -27, 8946075 -25, 3979950 -23, 2492371 -21, 4089813 -19, 9047089 -18, 5703430 -17, 3711395 -16, 1923523 -15, 0905466 -211, 5381470 -206, 6434326 -201, 8343353 -196, 8405304 -191, 116974 -86, 9467773 -81, 8092346 -76, 5315399 -70, 8943787 -65, 0761566 -58, 8870087 -63, 9630127 -55, 1568909 -48, 92, 38434 -44, 0820770 -40, 1949463 -36, 8521881 -34, 0541229 -31, 5944824 -209, 2494812 -204, 1678009 -199, 3116302 -194, 4917755 -189, 6732025 -184, 8447876 -184, 884, 88448786 -184, 884, 88448876 -184, 884, 88448876 -184, 884, 88448876 -184, 884, 88448876 -184, 884, 88448876 -184, 884, 88448876 -184, 884, 884, 884, 886, 886, 886, 886, 8	0.3101.654 -1.8055878 -1.2018585 -0.9507141 -0.7912140 -0.7952423 -0.6298523 -0.6288605 -0.6076965 -0.7092581 0.4383392 0.4436188 0.4344330 0.3406677 0.3117828 0.2468719 0.3092346 0.3315887 0.0944214 0.2763519 0.2871552 -0.5369873 -0.5430603 -0.7763519 -0.8178253 -0.6051025 -0.7479095 -1.0459747 -1.2053223 -0.1503296 -0.3380902 -0.4267120	-0.1648939 6.0793791 4.5182896 3.9285774 3.5639944 3.8417587 3.2804470 3.4936686 3.6172304 4.4890299 -0.2076454 -0.2151402 -0.2157066 -0.1733679 -0.1627259 -0.182293 -0.1703772 -0.1881889 -0.0552818 -0.1676894 -0.1810563 0.8325383 0.9749744 1.5620699 1.8214407 1.4830523 1.9891157 2.9799767 3.6747847 0.0717907 0.1623551 0.2942833
-27.8946075 -25.3979950 -23.2492371 -21.4089813 -19.9047089 -18.5703430 -17.3711395 -16.1923523 -15.0995466 211.5381470 206.6434326 201.8343353 196.8405304 191.9116974 186.9467773 181.8092346 176.5315399 170.8943787 165.0761566 158.8870087 -63.9630127 -55.1568909 -48.9238434 -44.0820770 -40.1949463 -36.8521881 -34.0541229 -31.5944824 209.2494812 204.1678009 199.3116302 194.4917755 189.6732025 184.8447876 180.0071259	-1.8055878 -1.2018585 -0.9507141 -0.7912140 -0.7952423 -0.6288605 -0.6076965 -0.7092581 0.4383392 0.4436188 0.4344330 0.3406677 0.3117828 0.2468719 0.3092346 0.3315887 0.0944214 0.2763519 0.2871552 -0.5369873 -0.5450603 -0.7763519 -0.8178253 -0.6051025 -0.7479095 -1.0459747 -1.2053223 -0.1503296 -0.3320160 -0.5882721 -0.3080902 -0.4267120	6.0793791 4.5182896 3.9285774 3.5639944 3.8417587 3.2804470 3.4936686 3.6172304 4.4890299 -0.2076454 -0.2151402 -0.2157066 -0.1733679 -0.1627259 -0.1322293 -0.1703772 -0.1881889 -0.0552818 -0.1676894 -0.1810563 0.8325383 0.9749744 1.5620699 1.8214407 1.4830523 1.9891157 2.9799767 3.6747847 0.0717907 0.1623551 0.2942833
-25.3979950 -23.2492371 -21.4089813 -19.9047089 -18.5703430 -17.3711395 -16.1923523 -15.0905466 -211.5381470 -206.6434326 -201.8343353 -196.8405304 -191.9116974 -86.9467773 -81.8092346 -17.65315399 -70.8943787 -65.91568909 -48.9238434 -44.0820770 -40.1949463 -36.8521881 -34.0541229 -31.5944824 -209.2494812 -204.1678009 -199.3116302 -194.4917755 -89.6732025 -884.84487876 -884.892884487876 -884.892884884	-1.2018585 -0.9507141 -0.7912140 -0.7952423 -0.6288523 -0.6288605 -0.6076965 -0.7092581 0.4383392 0.4436188 0.4344330 0.3406677 0.3117828 0.2468719 0.3092346 0.3315887 0.0944214 0.2763519 0.2871552 -0.5369873 -0.5450603 -0.7763519 -0.8178253 -0.6051025 -0.77479095 -1.0459747 -1.2053223 -0.15032296 -0.3380160 -0.5882721 -0.3080902 -0.4267120	4,5182896 3,9285774 3,5639944 3,8417587 3,2804470 3,4936686 3,6172304 4,4890299 -0,2076454 -0,2151402 -0,2157066 -0,1733679 -0,1627259 -0,1322293 -0,1703772 -0,1881889 -0,0552818 -0,1676894 -0,1810563 0,8325383 0,9749744 1,5620699 1,8814407 1,4830923 1,9891157 2,9799767 2,6747847 0,0717907 0,1623551 0,2942833
-23,2492371 -21.4089813 -19.9047089 -18.5703430 -17.3711395 -16.1923523 -15.0905466 211.5381470 206.6434326 201.8343353 196.8405304 191.9116974 .86.9467773 .81.8092346 .76.5315399 .70.8943787 .65.0761566 .58.8870087 -63.9630127 -55.1568909 -44.9238434 -44.0820770 -40.1949463 -36.8521881 -34.0541229 -31.5944824 209.2494812 204.1678009 199.3116302 199.3116302	-0.9507141 -0.7912140 -0.7912140 -0.7952423 -0.6298523 -0.6298523 -0.6288605 -0.6076965 -0.7092581 0.4383392 0.4436188 0.4344330 0.3406677 0.3117828 0.2468719 0.3092346 0.3315887 0.0944214 0.2763519 0.2871552 -0.5369873 -0.5430603 -0.7763519 -0.8178253 -0.6051025 -0.7479095 -1.0459747 -1.2053223 -0.1503296 -0.3380160 -0.5882721 -0.3080902 -0.4267120	3.9285774 3.5639944 3.8417587 3.2804470 3.4936686 3.6172304 4.4890299 -0.20764540.2151402 -0.2157066 -0.1733679 -0.1627259 -0.1322293 -0.1703772 -0.1881889 -0.0552818 -0.1676894 -0.1810563 0.8325383 0.9749744 1.5620699 1.8214407 1.4830523 1.9891157 2.9797767 3.6747847 0.0717907 0.1623551 0.2942833
-21.4089813 -19.9047089 -18.57703430 -17.3711395 -16.1923523 -15.0905466 211.5381470 206.6434326 201.8343353 196.8405304 191.9116974 186.9467773 181.8092346 176.5315399 170.8943787 165.0761566 158.8870087 -63.9630127 -55.1568909 -48.9238434 -44.0820770 -40.1949463 -36.8521881 -34.0541229 -31.5944824 209.2494812 204.1678009 199.3116302 194.4917755 189.6732025 184.8447876 188.80701259	-0.7912140 -0.7952423 -0.6278523 -0.6288605 -0.6076965 -0.7092581 0.4383392 0.4436188 0.4344330 0.3406677 0.3117828 0.2468719 0.3092346 0.3315887 0.0944214 0.2763519 0.2871552 -0.5369873 -0.546973 -0.8178253 -0.6051025 -0.7779095 -1.0459747 -1.2053223 -0.1503296 -0.3320160 -0.5882721 -0.3080902 -0.4267120	3.5639944 3.8417587 3.2804470 3.4936686 3.6172304 4.4890299 -0.2076454 -0.2151402 -0.2157066 -0.1733679 -0.1627259 -0.1322293 -0.1703772 -0.1881889 -0.0552818 -0.1676894 -0.1810563 0.8325383 0.9749744 1.5620699 1.8214407 1.4830523 1.9891157 2.9799767 3.6747847 0.0717907 0.1623551 0.2942833
-18.5703430 -17.3711395 -16.1923523 -15.0905466 211.5381470 206.6434326 201.8343353 196.8405304 191.9116974 186.9467773 181.8092346 176.5315399 170.8943787 165.0761566 158.8870087 -63.9630127 -55.1568909 -48.9238434 -44.0820770 -40.1949463 -36.8521881 -34.0541229 -31.5944824 209.2494812 204.1678009 199.3116302 194.4917755 189.6732025 189.6732025 184.8447876 180.0071259	-0.6298523 -0.6288605 -0.6076965 -0.7092581 0.4383392 0.4436188 0.4344330 0.3406677 0.3117828 0.2468719 0.3092346 0.3315887 0.0944214 0.2763519 0.2871552 -0.5369873 -0.5430603 -0.7763519 -0.8178253 -0.6051025 -0.7479095 -1.0459747 -1.2053223 -0.1503296 -0.3320160 -0.5882721 -0.3080902 -0.4267120	3.2804470 3.4936686 3.6172304 4.4890299 -0.20764540.2151402 -0.2157066 -0.1733679 -0.1627259 -0.1322293 -0.1703772 -0.1881889 -0.0552818 -0.1676894 -0.1810563 0.8325383 0.9749744 1.5620699 1.8214407 1.4830523 1.9891157 2.979767 2.6747847 0.0717907 0.1623551 0.2942833
-17.3711395 -16.1923523 -15.0905466 211.5381470 206.6434326 201.8343353 196.8405304 191.9116974 186.9467773 181.8092346 176.5315399 176.5915399 176.5916566 158.8870087 165.0761566 158.8870087 163.9630127 155.1568909 168.9238434 164.0820770 169.92494812 204.1678009 199.3116302 194.4917755 189.6732025 189.6732025 184.8444876 1889.0071259	-0.628605 -0.6076965 -0.7092581 0.4383392 0.4436188 0.4344330 0.3406677 0.3117828 0.2468719 0.3092346 0.3315887 0.0944214 0.2763519 0.2871552 -0.5369873 -0.5450603 -0.7763519 -0.8178253 -0.6051025 -0.7479095 -1.0459747 -1.2053223 -0.1503296 -0.3320160 -0.5882721 -0.3080902 -0.4267120	3.4936886 3.6172304 4.4890299 -0.2076454 -0.2151402 -0.2157066 -0.1733679 -0.1627259 -0.1322293 -0.1703772 -0.1881889 -0.0552818 -0.1676894 -0.1810563 0.8325383 0.9749744 1.5620699 1.8214407 1.4830523 1.9891157 2.9799767 3.6747847 0.0717907 0.1623551 0.2942833
-16.1923523 -15.0905466 211.5381470 206.6434326 201.8343353 96.8405304 191.9116974 .86.9467773 .81.8092346 .76.5315399 .70.8943787 .65.0761566 .58.8870087 -63.9630127 -55.1568909 -48.9238434 -44.0820770 -40.1949463 -36.8521881 -34.0541229 -31.5944824 209.2494812 204.1678009 199.3116302 199.3116302 199.3116302 199.3116302	-0.6076965 -0.7092581 0.4383392 0.4436188 0.4344330 0.3406677 0.3117828 0.2468719 0.3092346 0.3315887 0.0944214 0.2763519 0.2871552 -0.5369873 -0.5430603 -0.7763519 -0.8178253 -0.6051025 -0.7479095 -1.0459747 -1.2053223 -0.1503296 -0.3320160 -0.5882721 -0.3080902 -0.4267120	3.6172304 4.4890299 -0.20764540.2151402 -0.2157066 -0.1733679 -0.1627259 -0.1322293 -0.1703772 -0.1881889 -0.0552818 -0.1676894 -0.1810563 0.8325383 0.9749744 1.5620699 1.8214407 1.4830923 1.9891157 2.9799767 2.6747847 0.0717907 0.1623551 0.2942833
-15.0905466 211.5381470 206.6434326 201.8343353 196.8405304 191.9116974 186.9467773 181.8092346 176.5315399 170.8943787 165.0761566 158.8870087 -63.9630127 -55.1568909 -48.9238434 -44.0820770 -40.1949463 -36.8521881 -34.0541229 -31.5944824 209.2494812 204.1678009 199.3116302 194.4917755 189.6732025 184.8447876 180.0071259	-0.7092581 0.44363392 0.4436188 0.44344330 0.3406677 0.3117828 0.2468719 0.3092346 0.3315887 0.0944214 0.2763519 0.2871552 -0.5369873 -0.5430603 -0.7763519 -0.8178253 -0.6051025 -0.7479095 -1.0459747 -1.2053223 -0.1503296 -0.3320160 -0.5882721 -0.3080902 -0.4267120	4.4890299 -0.2076454 -0.2151402 -0.2157066 -0.1733679 -0.1627259 -0.1322293 -0.1703772 -0.1881889 -0.0552818 -0.1676894 -0.1810563 0.8325383 0.9749744 1.5620699 1.8214407 1.4830523 1.9891157 2.9799767 2.6747847 0.0717907 0.1623551 0.2942833
206.6434326 201.8343353 196.8405304 191.9116974 186.9467773 181.8092346 176.5315399 170.8943787 165.0761566 158.8870087 -63.9630127 -55.1568909 -48.9238434 -44.0820770 -40.1949463 -36.8521881 -34.0541229 -31.5944824 209.2494812 204.1678009 199.3116302 194.4917755 189.6732025 184.8447876 180.0071259	0.4436188 0.443430 0.3406677 0.3117828 0.2468719 0.3092346 0.3315887 0.0944214 0.2763519 0.2871552 -0.5349873 -0.5430603 -0.7763519 -0.8178253 -0.6051025 -0.7479095 -1.0459747 -1.2053223 -0.15032296 -0.3320160 -0.5882721 -0.3080902 -0.4267120	-0.2151402 -0.2157066 -0.1733679 -0.1627259 -0.1322293 -0.1703772 -0.1881889 -0.0552818 -0.1676894 -0.1810563 0.8325383 0.9740744 1.5620699 1.8214407 1.4830923 1.9891157 2.9799767 2.6747847 0.0717907 0.1623551 0.2942833
201.8343353 196.8405304 191.9116974 186.9467773 181.8092346 176.5315399 170.8943787 165.0761566 58.8870087 -63.9630127 -55.1568909 -48.9238434 -44.0820770 -40.1949463 -36.8521881 -34.0541229 -31.5944824 209.2494812 204.1678009 199.3116302 194.4917755 189.6732025 184.8447876 184.8447876	0.4344330 0.3406677 0.3117828 0.2468719 0.3092346 0.3315887 0.0944214 0.2763519 0.2871552 -0.5369873 -0.5430603 -0.7763519 -0.8178253 -0.6051025 -0.7479095 -1.0459747 -1.2053223 -0.1503296 -0.3320160 -0.5882721 -0.3080902 -0.4267120	-0.2157066 -0.1733679 -0.1627259 -0.1322293 -0.1703772 -0.1881889 -0.0552818 -0.1676894 -0.1810563 0.8325383 0.9749744 1.5620699 1.8214407 1.4830923 1.9891157 2.9799767 2.6747847 0.0717907 0.1623551 0.2942833
196.8405304 191.9116974 186.9467773 181.8092346 176.5315399 170.8943787 165.0761566 158.8870087 -63.9630127 -55.1568909 -48.9238434 -44.0820770 -40.1949463 -36.8521881 -34.0541229 -31.5944824 209.2494812 204.1678009 199.3116302 194.4917755 189.6732025 184.8447876 184.847876	0.3406677 0.3117828 0.2468719 0.3092346 0.3315887 0.0944214 0.2763519 0.2871552 -0.5369873 -0.5430603 -0.7763519 -0.8178253 -0.6051025 -0.7479095 -1.0459747 -1.2053223 -0.1503296 -0.3320160 -0.5882721 -0.3080902 -0.4267120	-0.1733679 -0.1627259 -0.1322293 -0.1703772 -0.1881889 -0.0552818 -0.1676894 -0.1810563 0.8325383 0.9749744 1.5620699 1.8214407 1.4830523 1.9891157 2.9799767 3.6747847 0.0717907 0.1623551 0.2942833
191,9116974 186,9467773 181,8092346 176,5315399 170,8943787 155,0761566 158,8870087 -63,9630127 -55,1568909 -48,9238434 -44,0820770 -40,1949463 -36,8521881 -34,0541229 -31,5944824 209,2494812 204,1678009 199,3116302 194,4917755 189,6732025 184,8447876 184,8447876	0.3117828 0.2468719 0.3092346 0.3315887 0.0944214 0.2763519 0.2871552 -0.5369873 -0.5430603 -0.7763519 -0.8178253 -0.6051025 -0.7479095 -1.0459747 -1.2053223 -0.1503296 -0.3320160 -0.5882721 -0.3080902 -0.4267120	-0.1627259 -0.132293 -0.1703772 -0.1881889 -0.0552818 -0.1676894 -0.1810563 0.8325383 0.9749744 1.5620699 1.8214407 1.4830923 1.9891157 2.9799767 2.6747847 0.0717907 0.1623551 0.2942833
181.8092346 176.5315399 170.8943787 165.0761566 158.8870087 -63.9630127 -55.1568909 -48.9238434 -44.0820770 -40.1949463 -36.8521881 -34.0541229 -31.5944824 209.2494812 204.1678009 199.3116302 194.4917755 189.6732025 184.8447876 184.8447876	0.3092346 0.3315887 0.0944214 0.2763519 0.2871552 -0.5369873 -0.5430603 -0.7763519 -0.8178253 -0.6051025 -0.7479095 -1.0459747 -1.2053223 -0.1503296 -0.3320160 -0.5882721 -0.3080902 -0.4267120	-0.1703772 -0.1881889 -0.0552818 -0.1676894 -0.1810563 0.8325383 0.9749744 1.5620699 1.8214407 1.4830523 1.9891157 2.9799767 3.6747847 0.0717907 0.1623551 0.2942833
176.5315399 170.8943787 165.0761566 158.8870087 -63.9630127 -55.1568909 -48.9238434 -44.0820770 -40.1949463 -36.8521881 -34.0541229 -31.5944824 209.2494812 204.1678009 199.3116302 194.4917755 189.6732025 184.8447876 180.0071259	0.3315887 0.0944214 0.2763519 0.2871552 -0.5369873 -0.5430603 -0.7763519 -0.8178253 -0.6051025 -0.7479095 -1.0459747 -1.2053223 -0.1503296 -0.3320160 -0.5882721 -0.3080902 -0.4267120	-0.188.889 -0.0552818 -0.1676894 -0.1810563 0.8325383 0.9749744 1.5620699 1.8214407 1.4830923 1.9891157 2.9799767 2.6747847 0.0717907 0.1623551 0.2942833
170.8943787 165.0761566 158.8870087 -63.9630127 -55.1568909 -48.9238434 -44.0820770 -40.1949463 -36.8521881 -34.0541229 -31.5944824 209.2494812 204.1678009 199.3116302 194.4917755 189.6732025 184.8447876 184.8447876	0.0944214 0.2763519 0.2871552 -0.5369873 -0.5430603 -0.7763519 -0.8178253 -0.6051025 -0.7479095 -1.0459747 -1.2053223 -0.15032296 -0.3320160 -0.5882721 -0.3080902 -0.4267120	-0.0552818 -0.1676894 -0.1810563 0.8325383 0.9749744 1.5620699 1.8214407 1.4830523 1.9891157 2.9799767 2.6747847 0.0717907 0.1623551 0.2942833
165.0761566 158.8870087 -63.9630127 -55.1568909 -48.9238434 -44.0820770 -40.1949463 -36.8521881 -34.0541229 -31.5944824 209.2494812 204.1678009 199.3116302 194.4917755 189.6732025 184.8447876 184.847876	0.2763519 0.2871552 -0.5369873 -0.5430603 -0.7763519 -0.8178253 -0.6051025 -0.7479095 -1.0459747 -1.2053223 -0.1503296 -0.3320160 -0.5882721 -0.3080902 -0.4267120	-0.1676894 -0.1810563 0.8325383 0.9749744 1.5620699 1.8214407 1.4830523 1.9891157 2.9799767 2.6747847 0.0717907 0.1623551 0.2942833
158.8870087 -63.9630127 -55.1568909 -48.9238434 -44.0820770 -40.1949463 -36.8521881 -34.0541229 -31.5944824 209.2494812 204.1678009 -99.3116302 194.4917755 89.6732025 84.8447876 880.0071259	0.2871552 -0.5369873 -0.5430603 -0.7763519 -0.8178253 -0.6051025 -0.7479095 -1.0459747 -1.2053223 -0.1503296 -0.3320160 -0.5882721 -0.3080902 -0.4267120	-0.1810563 0.8325383 0.9749744 1.5620699 1.8214407 1.4830923 1.9891157 2.9799767 3.6747847 0.0717907 0.1623551 0.2942833
-63,9630127 -55,1568909 -48,9238434 -44,0820770 -40,1949463 -36,8521881 -34,0541229 -31,5944824 209,2494812 204,1678009 199,3116302 194,4917755 189,6732025 184,8447876 184,071259	-0.5430603 -0.7763519 -0.8178253 -0.6051025 -0.7479095 -1.0459747 -1.2053223 -0.1503296 -0.3320160 -0.5882721 -0.3080902 -0.4267120	0.9749744 1.5620699 1.8214407 1.4830523 1.9891157 2.9799767 2.6747847 0.0717907 0.1623551 0.2942833
-48.9238434 -44.0820770 -40.1949463 -36.8521881 -34.0541229 -31.5944824 209.2494812 204.1678009 -199.3116302 -194.4917755 -194.4917755 -194.4917755 -194.4917755 -194.4917755 -194.4917755 -194.4917755 -194.4917755	-0.7763519 -0.8178253 -0.6051025 -0.7479095 -1.0459747 -1.2053223 -0.1503296 -0.3320160 -0.5882721 -0.3080902 -0.4267120	1.5620699 1.8214407 1.4830523 1.9891157 2.9799767 3.6747847 0.0717907 0.1623551 0.2942833
-44.0820770 -40.1949463 -36.8521881 -34.0541229 -31.5944824 209.2494812 204.1678009 199.3116302 194.4917755 189.6732025 184.8447876 180.0071259	-0.8178253 -0.6051025 -0.7479095 -1.0459747 -1.2053223 -0.1503296 -0.3320160 -0.5882721 -0.3080902 -0.4267120	1.8214407 1.4830523 1.9891157 2.9799767 3.6747847 0.0717907 0.1623551 0.2942833
-40.1949463 -36.8521881 -34.0541229 -31.5944824 209.2494812 204.1678009 199.3116302 194.4917755 189.6732025 184.8447876 180.0071259	-0.6051025 -0.7479095 -1.0459747 -1.2053223 -0.1503296 -0.3320160 -0.5882721 -0.3080902 -0.4267120	1.4830923 1.9891157 2.9799767 2.6747847 0.0717907 0.1623551 0.2942833
-36.8521881 -34.0541229 -31.5944824 209.2494812 204.1678009 -99.3116302 194.4917755 89.6732025 84.8447876 880.0071259	-0.7479095 -1.0459747 -1.2053223 -0.1503296 -0.3320160 -0.5882721 -0.3080902 -0.4267120	1.9891157 2.9799767 2.6747847 0.0717907 0.1623551 0.2942833
-31.5944824 209.2494812 209.1678009 199.3116302 194.4917755 189.6732025 184.8447876 184.8447876	-1.2053223 -0.1503296 -0.3320160 -0.5882721 -0.3080902 -0.4267120	3.6747847 0.0717907 0.1623551 0.2942833
209.2494812 204.1678009 199.3116302 194.4917755 189.6732025 184.8447876 180.0071259	-0.1503296 -0.3320160 -0.5882721 -0.3080902 -0.4267120	0.0717907 0.1623551 0.2942833
204.1678009 199.3116302 194.4917755 189.6732025 184.8447876 180.0071259	-0.3320160 -0.5882721 -0.3080902 -0.4267120	0.1623551 0.2942833
199.3116302 194.4917755 189.6732025 184.8447876 180.0071259	-0.5882721 -0.3080902 -0.4267120	0.2942833
189.6732025 184.8447876 180.0071259	-0.4267120	0.1581573
184•8447876 180•0071259		
180.0071259	-0.4331633	0.2244672
	-0.3928833	0.2177845
174.5782013	-0.6217499	0.3548802
169.2781677	-0.7217865	0.4245803
163.9106445	-0.4891663	0.2975467
158.1855927 152.1361237	-0.6142731 -0.6638794	0.3868221
145.5708466	-0.5291138	0.3621587
138.3458405	0.0459747	-0.0332428
130.5618744	1.1619110	-0.8979220
121.1949463 110.3257751	1.3949432 1.8257751	-1.1643925 -1.6827412
-99.1565399	1.9565887	-2.0129519
-87.8372803	1.2374268	-1.4289007
-77.6985779	0.1985779	-0.2562295
-69.4961395 -62.8487396	0.1960907 -0.1512604	-0.2829589 0.2400958
-57.2648468	-0.4351044	0.7540807
-52.5844574	-0.5156403	0.9710718
-48.5066986	-0.8932037	1.8081074
207.8436737	0.2438660	-0.1174693
202.9090576 197.9739075	-0.0907593 -0.0260010	0.0447090 0.0131318
193.1004028	-0.1994629	0.1031883
188.2640686	-0.2358398	0.1251140
183.5434113	-0.1564941	0.0851901
178.6508179 173.6158600	-0.1491852 -0.2841034	0.0834368 0.1633717
168.7568359	-0.2431183	0.1438569
	-0.3879395	0.2366930
158.0872192	-0.4126434	0.2603431
		0.2427145
		0.3740996. -0.0692223.
	0.5815735	-0.4336864
134.6815338	1.6209259	-1.2773247
128.5209351	1.7305603	-1.4542513
128.5209351 120.7305603		-0.0252156 0.0441866
128.5209351 120.7305603 110.8277435		-0.6281421
128.5209351 120.7305603 110.8277435 102.6545715		-C.9906635
128.5209351 120.7305603 110.8277435 102.6545715 -95.1943207	U.8608 9 56	-0.7378004
128.5209351 120.7305603 110.8277435 102.6545715 -95.1943207 -87.7607880	0.8608856	
128.5209351 120.7305603 110.8277435 102.6545715 -95.1943207 -87.7607880		-0.4427530 0.0298260
	163.5118713 158.0872192 152.6286469 146.6492767 140.9973907 134.6815338 128.5209351 120.7305603 110.8277435 -102.6545715 -95.1943207	-163.5118713

E. 76.6 PERCENT MIXTURE

PRESSURE	TEMPERATURE	EXPER. DEPARTURE	CALC. DEPARTUR	the second second	PERCENT DIFFERE
(psia)	(°R)	(Btu/lb)	(Btu/lb)	(Btu/lb)	
				0.0141004	0.4350053
00.000000	259.5998535 279.5998535	-215.0998535 -210.4998169	-216.0159760 -211.0794220	0.9161224 0.5796051	-0.4259C53 -0.2753471
0.000000	299.5998535	-205.9999542	-206.1875153	0.1875610	-0.0910490
0.000000	319.5998535	-201.4999542	-201.6920776	0.1921234	-0.0953466 -0.1863975
0.000000	339.5998535 359.5998535	-196.9998169 -192.6998596	-197.3670197 -192.8692474	0.3672028 0.1693878	-0.0879024
0.0000000	379.5998535	-188.0998535	-188.2959747	0.1961212	-0.1042644
0.000000	399.5998535	-183.5998077	-183.8383789	0.2365712	-0.1299408
00.0000000	419.5998535 439.5998535	-178.8998566 -174.2999573	-179.2449188 -174.4692841	0.3450623 0.1693268	-0.1928801 -0.0971467
0.000000	459.5998535	-169.3999023	-169.8678589	. 0.4679565	-0.2762437
0.000000	619.5998535	-35.1000977	-34.1748047	-0.9252930	2.6361542
00. C000000 00. 0000000	639.5998535 659.5998535	-31.0000000 -27.8999023	-30.21 93 756 -27.22 33 734	-0.7806244 -0.6765289	2.5181427 2.4248428
0.000000	679.5998535	-25.3999023	-24.8325653	-0.5673370	2.2336187
0.000000	699.5998535	-23.3999023	-22.8972473	-0.5026550	2.1481066 1.6778374
00.000000	719.5998535 739.5998535	-21.6999512 -19.9001465	-21.3358612 -19.8022156	-0.3640900 -0.0979309	0.4921112
0.000000	759.5998535	-17.6999512	-18.6399384	0.9359872	-5.3106766
0.000000	259.5998535	-213.0998535	-214.0740051	0.9741516 0.7319489	-0.4571337 -0.3512233
0.000000	279.5998535 299.5998535	-208.3998108 -204.0999603	-209.1317596 -204.4316711	0.3317108	-0.1625236
0.000000	319.5998535	-199.6999512	-200.0546722	0.3547211	-0.1776270
0.000000	339.5998535	-195.2998047	-195.6636563	0.3638916	-0.1863246
00.0000000	359.5998535 379.5998535	-190.8998566 -186.5998535	-191.1503754 -186.7207184	0.2505188 0.1208649	-0.1312305 -0.0647722
0.0000000	399.5998535	-182.2998047	-182.1741638	-0.1256409	0.0689198
C. 0000000	419.5998535	-177.7998657	-177.7269287	-0.0729370	0.0410220
00.000000	439.5998535 459.5998535	-173.5999603 -169.2999115	-173.1340179 -168.4081879	-0.4659424 -0.8917236	0.2684000 0.5267121
0.000000	479. 5998535	-164.3999023	-163.4295044	-0.9703979	0.5902666
00.000000	499.5998535	-159.2998657	-158.4062347	-0.8936310	0.5609739
0.0000000	519.5998535 539.5998535	-153.7000122 -148.0999603	-153.0404663 -147.2147064	-0.6595459 -0.8852539	0.4291121
0.000000	559.5998535	-141.7998657	-140.7905579	-1.0053079	0.7117830
0.0000000	579.5998535	-134.2999573	-133.4449310	-0.8550262	0.6366540
00.000000	599.5998535 619.5998535	-125.1998596 -112.6000977	-124.8813477 -113.3713989	-0.3185120 0.7713013	0.2544028 -0.6849915
00.000000	639.5998535	-94.40C1465	-96.1907349	1.7905884	-1.8968058
CC. 0000000	659.5998535	-77.0998535	-76.7966156	-0.3032379	0.3933053
00.0000000	679.5998535 699.5998535	-65.3000488 -55.8000488	-63.6920471 -55.2490692	-1.6080017 -0.5509796	2.4624805 0.9874176
0.0000000	719.5998535	-49.5000000	-49.2533264	-0.2466736	0.4983302
C. 0000000	739.5998535	-44.8000488	-44.6920166	-0.1080322	0.2411430
00.0000000	759.5998535	-41.8999023	-40.8411102 -211.9787292	-1.0587921 0.6788635	2.5269556 -0.3212796
00.0000000 00.000000	259.5998535 279.5998535	-211.2998657 -206.8998108	-207.2814789	0.3816681	-0.1844699
0.0000000	299.5998535	-202.5999603	-202.5853119	-0.0146484	0.0072302
00.000000	319.5998535 339.5998535	-198.0999603	-197.9884338 -193.5381317	-0.1115265 -0.3616791	0.0562981
0.0000000 0.000000	359.5998535	-193.8998108 -189.3998566	-189.2272491	-0.1726074	0.0911338
0.0000000	379.5998535	-185.2998657	-184.8013611	-0.4985046	0.2690259
00.0000000	399.5998535 419.5998535	-180.7998047 -176.2998657	-180.5911407 -176.2270050	-0.2086639 -0.0728607	0.1154116 0.0413277
0.000000	439.5998535	-171.9999542	-171.7733612	-0.2265930	0.1317401
00.000000	459.5998535	-167.4999084	-166.9301605	-0.5697479	0.3401482
00.000000	479.5998535	-162.9999084 -158.1998596	-162.2540436 -157.5592651	-0.7458649 -0.6405945	0.4575859
0.000000	519.5998535	-153.1000061	-152.5584564	-0.5415497	0.3537228
C. C000000 ·	539.5998535	-148. 1999512	-147.2889099	-0.9110413	0.6147377
00.000000	559,5998535	-142.7998657	-142.0412140	-0.7586517	0.5312688
00.0000000 00.0000000	579.5998535 599.5998535	-136.6999512 -130.1998596	-136.2548065 -129.7807159	-0.4451447 -0.4191437	0.3256363 0.3219233
0.000000	619.5998535	-123.1999512	-122.8943024	-0.3056488	0.2480916
00.000000	639.5998535	-115.0000000	-115.0190887	0.0190887	-0.0165989
00.000000	679.5998535	-106.5998535 -97.0000000	-105.9700928 -96.5324860	-0.6297607 -0.4675140	0.5907707 0.4819732
0.000000	699.5998535	-86.8000488	-87.1248169	0.3247681	-0.3741565
00.000000	719,5998535	-77.5000000 -70.3000488	-78.2465820 -70.4666489	0.7465820	-0.9633313
00.000000 00.000000	739.5998535 759.5998535	-63.3999023	-70.6694489 -64.1792145	0.3694000 0.7793121	-0.5254619 -1.2292004
0.0000000	259.5998535	-209.4998627	-210.9630432	1.4631805	-0.6984159
00.000000	279,5998535	-205.1998138	-206.0866547 -201.4947968	0.8868408	-0.4321839
00.000000 00.0000000	299.5998535 319.5998535	-200.8999634 -196.4999542	-201.4947968 -197.1403961	0.5948334 0.64C4419	-0.2960843 -0.3259246
C.0000000	339,5998535	-192.3998108	-192.5645142	0.1647034	-0.0856047
00.0000000	359.5998535	-188.1998596	-188.0761566	-0.1237030 -0.3054330	0.0657296
00.000000	379.5998535 399.5998535	-184.0998535 -179.8998108	-183.7904205 -179.4332886	-0.3054330 -0.4665222	0.1680788 0.2593233
0.0000000	419.5998535	-175.6998596	-175.2061157	-0.4937439	0.2810155
00.000000	439.5998535	-171.1999512	-170.6735535	-0.5263977	0.3074753
0.000000	459.5998535 479.5998535	-166.6999054 -160.0999146	-166.2579803 -161.9475708	-0.4419250 1.8476562	0.2651021 -1.1540642
c.0000000	499.5998535	-157.5958535	-157.1962585	-0.4C35950	0.2560884
00.000000	519.5998535	-153.1000061	-152.5149689	-0.5850372	0.3821275
00.000000	539.5998535 559.5998535	-148.4999542 -143.5998535	-147.6849060 -142.9332275	-0.8150482 -0.6666260	0.5488541 0.4642244
00.000000	579.5998535	-138.4999542	-137.5990753	-0.9008789	0.6504539
C. 0000000	599.5998535	-133.0998535	-132.6007233	-0.4991302	0.3750043
00.000000	619.5998535 639.5998535	-127.1999512 -121.0000000	-126.8971252 -121.1513214	-0.3028259 0.1513214	0.2380707 -0.1250589
00.000000	659.5998535	-114.6999512	-114.6189880	-0.0809631	C.0705869
0.0000000	675.5998535	-107.60CC577	-106.8897247	-0.7103729	0.6601970
0.000000	699.5998535	-100.3999023	-99.7025604	-0.6973419 0.0039368	0.6945640
00.000000	719.5998535	-93.3000488	-93.3039856		-0.0042195

TABLE LXV RESULTS OF CORRESPONDING STATES CORRELATION FOR METHANE-PROPANE MIXTURES USING OPTIMUM PARAMETERS WITH SMOOTH PSEUDOCRITICAL TEMPERATURES

A. 5.1 PERCENT MIXTURE

PRESSURE	TEMPERATURE	EXPER. DEPARTURE	CALC. DEPARTURE	DIFFERENCE	PERCENT DIFFERENC
(psia)	(°R)	(Btu/lb)	(Btu/lb)	(Btu/lb)	
500.0000000	179.5999908	-223.5000000	-223.6318359	0.1318359	-0.0589870
500.0000000	199.5999908	-217.6999969	-217.4304962	-0.2695007	0.1237945
500.0000000	219.5999908	-209.6999969	-211.6576538	1.9576569	-0.9335510
500.0000000	239.5999908	-203.7999573	-205.2513428	1.4513855	-0.7121615
500.0000000	259.5998535	-196.9000092	-198.5638275	1.6638184	-0.8450065 Hamiltonia
500.0000000	279.5998535	-190.3999634	-191.0784302	0.6784668	-0.3563376
500.0000000	299.5998535	-182.3998566	-183.0291901 -173.4033103	0.6293335 0.3023071	-0.3450295 -0.1754539
500.0000000 500.0000000	319.5998535 419.5998535	-172.3000031 -27.8000488	-172.6023102 -26.7770691	-1.0229797	3.6797762
500.0000000	439.5998535	-24.9001465	-24.0481415	-0.8520050	3.4216862
500.0000000	459.5998535	-22.5000000	-21.6835175	-0.8164825	3.6288109
500.0000000	479.5998535	-20.3999023	-19.9320984	-0.4678040	2.2931671
500.0000000	499.5998535	-18.6999512	-18.3113556	-0.3885956	2.0780563
500.0000000	519.5998535	-17.3000488	-16.9819641	-0.3180847	1.8386345
000.0000000	179.5999908	-221.5000000	-221.8489990	0.3489990	-0.1575616
1000.0000000	199.5999908	-215.4000092	-215.7433777	0.3433685	-0.1594096
1 000. 0000000	219.5999908	-208.1999969	-210.0404816	1.8404846	-0.8839983
1 000 • 00 00 00 00 00 00 00 00 00 00 00	239.5999908 259.5998535	-202.2999573 -195.5000000	-203.9433899 -197.6898346	1.6434326 2.1898346	-0.8123741 -1.1201191
000.0000000	279.5998535	-189.1999512	-190.6936951	1.4937439	-0.7895052
1000.0000000	299. 5998535	-182.0998535	-183.1223145	1.0224609	-0.5614836
000.0000000	319.5998535	-173.6000061	-174.7048492	1.1048431	-0.6364301
1000.000000	339.5998535	-163.3999023	-164.5803680	1.1804657	-0.7224396
000.000000	359.5998535	-149. 7998047	-150.9364166	1.1366119	-0.7587537
000.0000000	379.5998535	-125.4998169	-128.9161835	3.4163666	-2.7222080
1000.0000000	399.5998535	-88.8999023	-89.5667877	0.6668854	-0.7501528
.000.0000000	419.5998535	-68.5000000	-68.3029938	-0.1970062	0.2876003
000.0000000	439.5998535	-56,8000488	-56.2066345	-0.5934143	1.0447416
.000.0000000	459.5998535 479.5998535	-49.2001953 -43.5000000	-48.4727478 -43.0586243	-0.7274475 -0.4413757	1.4785452 1.0146561
000.0000000	499.5998535	-39.0998535	-38.7781219	-0.3217316	0.8228458
000.0000000	519.5998535	-35.6000977	-35.2352295	-0.3648682	1.0249071
500.0000000	179.5999908	-219.3999939	-218.0461121	-1.3538818	0.6170835
1500.0000000	199.5999908	-213.1999969	-212.0303650	~1.1696320	0.5486078
500.0000000	219.5999908	-206. 3999939	-206.4029541	0.0029602	-0.0014342
1500.0000000	239.5999908	-200.8999634	-200.5047607	-0.3952026	0.1967161
500.0000000	259.5998535	-194. 3000031	-194.3301086	0.0301056	-0.0154944
500.0000000	279.5998535	-187.8999634	-187.6579742	-0.2419891	0.1287861
1500.0000000 1500.0000000	299. 5998535 319. 5998535	-181.0998535 -173.7000122	-180.6305695 -172.9298706	-0.4692841 -0.7701416	0.2591299 0.4433743
500.0000000	339.5998535	-165.4999084	-164.5115662	-0.9883423	0.5971856
500.0000000	359.5998535	-155.3998108	-154.4683075	-0.9315033	0.5994234
500.0000000	379.5998535	-143.0998077	-142.7532196	-0.3465881	0.2422003
500.0000000	399.5998535	-127.4999084	-127.3916321	-0.1082764	0.0849227
500.0000000	419.5998535	-108.8000031	-108.2607117	-0.5392914	0.4956718
.500.0000000	439.5998535	-91.1999512	-90.2763367	-0.9236145	1.0127354
.500.0000000	459.5998535	-77.6000977	-76.7010498	-0.8990479	1.1585646
500.0000000	479.5998535	-67.5998535	-66.9355621	-0.6642914	0.9826816
500.0000000 500.0000000	499.5998535 519.5998535	-60.0000000 -54.0000000	-59.7538757 -53.9082794	-0.2461243 -0.0917206	0.4102070 0.1698529
000.0000000	179.5999908	-217.2999878	-215.7217407	-1.5782471	0.7262986
000.0000000	199.5999908	-211.1000061	-209.6983643	-1.4016418	0.6639704
000.0000000	219.5999908	-204.7999878	-204.0653229	-0.7346649	0.3587231
COO. 0000000	239.5999908	-199.5999603	-198.1613159	-1.4386444	0.7207636
000.0000000	259.5998535	-193.1000061	-192.1994476	-0.9005585	0.4663687
000.000000	279.5998535	-186.6999512	-185.8863373	-0.8136139	0.4357867
000.0000000	299.5998535	-180.1998596	-179.3311768	-0.8686829	0.4820660
000.0000000	319.5998535	-173.2000122	-172.1945801	-1.0054321	0.5805034
000.0000000	339. 5998535	-165.3999023	-164.5603638	-0.8395386	0.5075808
000.0000000	359.5998535	-156.9998169	-156.0212555	-0.9785614	0.6232880
000.000000	379.5998535	-147.4998169	-146.8545380 -136.3205414	-0.6452789 -0.3793640	0.4374776
000.0000000	399.5998535 419.5998535	-136.6999054 -124.5000000	-136.3205414 -125.2012177	0.7012177	-0.5632270
000.000000	439.5998535	-111.5999603	-112.2586365	0.6586761	-0.5902115
000.0000000	459.5998535	-99.0000000	-99.3920441	0.3920441	-0.3960039
000.0000000	479. 5998535	-87. 5998535	-88.1770325	0.5771790	-0.6588809
000.0000000	499.5998535	-78.0998535	-78.7508850	0.6510315	-0.8335884
000.000000	519.5998535	-70.3000488	-70.9214172	0.6213684	-0.8838803

B. 11.7 PERCENT MIXTURE

PRESSURE	TEMPERATURE	EXPER. DEPARTURE	CALC. DEPARTURE	DIFFERENCE	PERCENT DIFFERENCE
(psia)	(°R)	(Btu/lb)	(Btu/lb)	(Btu/lb)	
500.0000000	199.5999908	-223.6999969	-223.0068207	-0.6931 763	0.3098686
500,0000000	219.5999908	-218.0999908	-217.1113892	-0.9886017	0.4532788
500. 0000000	239.5999908	-212.0999146	-211.0460510	-1.0538635	0.4968710
500.0000000	259.5998535	-205.7000122	-204.5604553	-1.1395569	0.5539894
500.0000000	279.5998535	198.7998657	-197.9233704	-0.8764954	0.4408933
500.0000000	299.5998535	-191. 2999115	-190.5954132	-0.7044983	0.3682690
500.000000	319.5998535	-181.8999634	-182.7186432	0.8186798	-0.4500713
500.0000000	479.5998535	-24.5998535	-22.7081757	-1.8916779	7.6897917
500.0000000	499.5998535	-20.9001465	-20.7657623	-0.1343842	0.6429817
500.0000000	519.5998535	-18.6999512	-19.1062469	0.4062958	-2.1727095
500.0000000	539.5998535	-17.3999023	-17.5858459	0.1859436	-1.0686464
500.0000000	559.5998535	-16.8000488 -220.8999939	-16.3319092 -221.2240906	-0.4681396 0.3240967	2.7865372 -0.1467164
1000.0000000	199.5999908 219.5999908	-215.0999908	-215.3415680	0.2415771	-0.1123092
1000.0000000	239.5999908	-209. 2999115	-209.3639832	0.0640717	-0.0306124
1000.0000000	259. 5998535	-203.1000061	-203.1998596	0.0998535	-0.0491647
1000.0000000	279.5998535	-196.2998657	-196.8235321	0.5236664	-0.2667685
1000.0000000	299.5998535	-189.2999115	-189.9216919	0.6217804	~0.3284631
1000.0000000	319.5998535	-181.6999512	-182.4802399	0.7802887	-0.4294376
1000.0000000	339.5998535	-172.9000092	-174.3420105	1.4420013	-0.8340086
1 000. 0000000	359.5998535	-163.8000031	-164.9284210	1.1284180	-0.6888996
1000.0000000	379. 5998535	-150.2999115	-152.6010284	2.3011169	-1.5310163
1 000. 0000000	479.5998535	-52.8999023	-51.7379303	-1.1619720	2.1965485
1000.0000000	499.5998535	-45.9001465	-45.5902863	-0.3098602	0.6750743
1000.0000000	519.5998535	-40.8000488	-40.8630066	0.0629578	-0.1543080
L 000. 0000000	539.5998535	-37.0998535	-37.0459137	-0.0539398	0.1453909
1000.0000000	559.5998535	-34. 1999512	-33.8877258	-0.3122253	0.9129409
1500.0000000	199.5999908	-218.0000000	-217.8262177	-0.1737823	0.0797166
1500.0000000	219.5999908	-212.1999969	-211.9238281	-0.2761688	C.13C1455
1500.0000000	239.5999908	-206. 3999023	-206.0637970	-0.3361053 -0.3821259	0.1628418
1500.0000000	259.5998535	-200.5000000 -193.8998566	-200.1178741 -193.9117432	0.0118866	0.1905864 -0.0061303
L500.0000000 L500.0000000	279.5998535 299.5998535	-187.3999023	-187.1718597	-0.2280426	0.1216877
500.0000000	319.5998535	-180.3999634	-180.2784119	-0.1215515	0.0673789
500.0000000	339.5998535	-173.0000000	-172.7988586	-0.2011414	0.1162666
1500.0000000	359.5998535	-165.0000000	-164.7543640	-0.2456360	0.1488702
500.0000000	379.5998535	-155.5999146	-155.5247192	-0.0751953	0.0483260
500.0000000	399. 5998535	-144.3000031	-144.7363434	0.4363403	-0.3023841
500.0000000	419.5998535	-130.1998596	-131.3392029	1.1393433	-0.8750725
.500.000000	439.5998535	-113.4998169	-114.7121124	1.2122955	-1.0681028
500.0000000	459.5998535	-97.5000000	-97.1982269	-0.3017731	0.3095108
50C. 0000000	479.5998535	-83.5000000	-82.4818115	-1.01 81 885	1.2193871
500.0000000	499.5998535	-72.5000000	-71.5636292	-0.9363708	1.2915449
500.0000000	519.5998535	-64. 1999512	-63.3362732	-0.8636780	1.3452930
500.0000000	539.5998535	-57.3999023	-56.9979706	-0.4019318	0.7002305
500.0000000	559.5998535	-52.1000977	-51.7556305	-0.3444672	0.6611637
0000.0000000	199.5999908	-215.2999878	-215.7375946	0.4376068	-0.2032544
0000.0000000	219.5999908	-209.3999939	-209.8743134	0.4743195	-0.2265136
000.0000000 000.000000	239.5999908	-203.8999023 -198.0000000	-204.0192261 -198.0189514	0.1193237	-0.0585207
000.0000000	259.5998535 279.5998535	-191.5998535	-192.0462036	0.0189514	-0.0095714 -0.2329595
000.000000	299.5998535	-185.4999084	-185.6760712	0.1761627	-0.2329395 -0.0949664
COC. 0000000	319.5998535	-179.2999573	-179.1514740	-0.1484833	0.0828127
000.0000000	339. 5998535	-172.6000061	-172.2033844	-0.3966217	0.2297924
000.0000000	359. 5998535	-165.4000092	-164.8913727	-0.5086365	0.3075190
000.0000000	379.5998535	-157.3999023	-156.9180145	-0.4818878	0.3061551
000.0000000	399.5998535	-148.5000000	-148.3316650	-0.1683350	0.1133568
000.0000000	419.5998535	-138.3998566	-139.0845490	0.6846924	-0.4947204
000.0000000	439.5998535	-127.0998077	-127.8479462	0.7481384	-0.5886227
000.0000000	459.5998535	-115.1999512	-115.9387665	0.7388153	-0.6413329
0000.0000000	479.5998535	-103.3000488	-104.1500397	0.8499508	-0.8228365
2000.0000000	499.5998535	-92.5000000	-93.0359802	0.5359802	-0.5794380
2000.0000000	519.5998535	-82.8999023	-83.1945953	0.2946930	-0.3554805
2000.0000000	539.5998535	-74.6999512	-74.8671112	0.1671600	-0.2237753
2 00 0 • 0 0 0 0 0 0 0	559.5998535	-67.8000488	-67.8381500	0.0381012	-0.0561964

C. 28.0 PERCENT MIXTURE

PRESSURE	TEMPERATURE	EXPER. DEPARTURE	CALC. DEPARTURE	DIFFERENCE	PERCENT DIFFERENC
(psia)	(°R)	(Btu/lb)	(Btu/1b)	(Btu/lb)	
	210 5000000		210 7242641	0.0343.001	-0.0164812
500.0000000 500.0000000	219.5999908 239.5999908	-219.6999969 -214.3999939	-219.7362C61 -213.9856720	0.0362091 -0.4143219	0.1932471
500.0000000	259.5998535	-209.0000000	-208.8074036	-0.1925964	0.0921513
500.0000000	279.5998535	-202.8000031	-203.2437439	0.4437408	-0.2188071
500.0000000	299.5998535	-197.2998657	-197.4878082	0.1879425	-0.0952572
500.0000000	319.5998535	-190.5998077	-191.6642914	1.0644836	-0.5584914
500.0000000	339.5998535	-184.1998596	-185.4840851	1.2842255	-0.6971911
500,0000000	519.5998535	-27.0998535	-25.2987976	-1.8010559	6.6459951
500.0000000	539.5998535	-24.3000488	-23.0268860	-1.2731628	5.2393417
500.0000000	559.5998535	-22.1000977	-21.0830688	-1.0170288	4.6019192
500.0000000 500.0000000	579.5998535 599.5998535	-20.3000488 -18.7958047	-19.5655518 -18.1147308	-0.7344971 -0.6850739	3.61£2022 3.6440468
500.0000000	619.5998535	-17. 3000488	-16.7906189	-0.5094299	2.9446726
500.0000000	639.5998535	-16.1000977	-15.7055397	-0.3945580	2.4506550
000.0000000	219.5999908	-217.4000092	-217.8384857	0 • 43 £4 766	-0.2016911
000.0000000	239.5999908	-212.0999908	-212.2733459	0.1733551	-0.0817327
000.0000000	259.5998535	-206.8000031	-207.0347900	0.2347870	-0.1135333
000.000000	279.5998535	-201.0000000	-201.5647888	0.5647888	-0.2809894
000.0000000	299.5998535	-195.5998535	-196.0337372	0.4338837	-0.2218220
000.0000000	319.5998535	-189.4998169	-190.3891144	0.8892975	-0.4692863
000.0000000	339.5998535	-183.6998596 -177.000000	-184.4388123 -178.0918274	0.7389526 1.0918274	-0.4022605 -0.6168514
000-0000000 000-0000000	359.5998535 379.5998535	-177.0000000 -170.3000031	-171.3119202	1.0918274	-0.5941964
000.0000000	399.5998535	-161.6998596	-163.9705811	2.2707214	-1.4042807
000.0000000	539.5998535	-55.8000488	-53.8077698	-1.9922791	3.5703888
000.0000000	559.5998535	-48.6999512	-47.3797913	-1.32C1599	2.7108030
COO. 0000000	579.5998535	-43.8000488	-42.6066895	-1.1933594	2.7245607
000.000000	599.5998535	-39.7998047	-38.6299438	-1.1698608	2.9393625
000.000000	619.5998535	-36.3000488	-35.3710785	-0.52 69 703	2.5591431
000.000000	639.5998535	-33.3999023	-32.6143951	-0.7855072	2.3518238
500.0000000	219.5999908	-215.1000061	-214.9496307	-0.1503754	0.0699095
500.0000000	239.5999908	-209.8000031	-209.3151093 -204.0634766	-0.4848938	0.2311219
500.0000000	259.5998535 279.5998535	-204.7000122 -199.4000092	-198.6932678	-0.6365356 -0.7067413	0.3109602 0.3544339
500.0000000 500.0000000	299.5998535	-194.0998535	-193.4026489	-0.6972046	0.3591989
500.0000000	319.5998535	-188. 4998169	-187.9442444	-0.5555725	0.2947336
500.0000000	339.5998535	-182.6998596	-182.0074005	-0.6924591	0.3790146
500.0000000	359.5998535	-176.5000000	-175.9835968	-0.5164C32	0.2925797
500.000000	379.5998535	-170.5000000	-169.7929535	-0.7070465	0.4146900
500.0000000	399.5998535	-163.8998566	-163.0111542	-0.8EE7C24	0.5422227
500.0000000	419.5998535	-156.3999023	-155.8802948	-0.5196075	0.3322300
500.0000000	439.5998535	-147.6998138	-147.9449615	0.2451477	-0.1659769
500.0000000	459.5998535	-137.3998108	-138.6822968	1.2824860	-0.9333968
500.0000000	479.5998535	-125.3000031	-127.5434113	2.2434082	-1.7904291
500 . 0000000	499.5998535	-111.6998138 -98.0998535	-114.0764008 -99.8649902	2.3765869 1.7651367	-2.1276541 -1.7993259
500.0000000 500.0000000	519,5998535 539,5998535	-85.9001465	-86.2155304	0.3153839	-0.3671517
500.0000000	559.5998535	-75.8000488	-75.2431946	-0.5568542	0.7346354
500.0000000	579.5998535	-67. 7001953	-66.7154541	-0.9847412	1.4545612
500.0000000	599.5998535	-61.0000000	-59.9455566	-1.0544434	1.7285948
500.000000	619.5998535	-54.4001465	-54.5367737	0.1366272	-0.2511522
50C.0000000	639.5998535	-49.6999512	-49.9396667	0.2397156	-0.4823253
000.0000000	219.5999908	-212.8000031	-213.1689758	0.3689728	-0.1733894
000.000000	239.5999908	-207.5999908	-207.5888214	-0.0111694	0.0053803
000.000000	259.5998535	-202.6000061	-202.2735138	-0.3264923	0.1611511
000.0000000	279.5998535	-197.7000122	-196.9940338	-0.7059784 -1.0068054	0.3570957 0.5227442
000.0000000 000.000000	299.5998535 319.5998535	-192.5998535 -187.2998047	-191.5930481 -186.3367310	-0.9630737	0.5227442
000.0000000	339.5998535	-181.8998566	-180.6253357	-1.2745209	C.7006716
200.000000	359.5998535	-176.2000122	-175.0912170	-1.1087952	0.6292820
000.000000	379.5998535	-170.5000000	-169.1955566	-1.3044434	0.7650692
000.000000	399.5998535	-163.7998657	-162.8309326	-0.9689331	0.5915344
000.0000000	419.5998535	-157.0999146	-156.4238129	-0.6761017	0.4303638
000.000000	439.5998535	-149.8998108	-149.4604797	-0.4393311	0.2930831
000.0000000	459.5998535	-141.8998108	-142.1370239	0.2372131	-0.1671694
000.0000000	479.5998535	-133.2000122	-134.5644989	1.3644867	-1.0243893
000.0000000	499.5998535	-123.7998047	-125.3279724	1.5281677	-1.2343855
000.0000000	519,5998535	-113.7958047	-114.5359497	0.7361450	-C.6468769
000.0000000	539.5998535	-103.8000488	-104.8703308	1.0702820	-1.0310993
COC.0000000	559.5998535	-94.3000488 -85.800C488	-95.3125305 -86.3955078	1.0124 £17 0.5954590	-1.0736799 -0.6940074
000.0000000	579.5998535	-78.0998535	-78.4010315	0.3011786	-0.3856319
000.0000000 000.0000000	599.5998535 619.5998535	-71.0000000	-71.4418030	0.4418030	-0.6222576
	ひょうき フォラクンコン	11000000		00.120000	

D. 50.6 PERCENT MIXTURE

PRESSURE	TEMPERATURE	EXPER. DEPARTURE	CALC. DEPARTURE	DIFFERENCE	PERCENT DIFFEREN
(psia)	(°R)	(Btu/lb)	(Btu/1b)	(Btu/lb)	
00.000000	250 5000525	212 7000047	212 2424 070	0. 5/0/001	0.0444100
00.0000000 00.0000000	259. 5998535 279. 5998535	-212.7998047 -207.8998108	-213.3624878 -208.3149261	0.5626831 0.4151154	-0.2644190 -0.1996709
00.000000	299.5998535	-202.8999023	-203.5897675	0.6898651	-0.3400027
00.000000	319.5998535	-198.2998657	-198.6142731	0.3144073	-0.1585514
00.000000	339.5998535	-193.1999054	-193.5208435	0.3209381	-0.1661171
00.000000	359.5998535 579.5998535	-188.0999146 -29.7001953	-188.3823090 -27.8154144	0.2823944 -1.8847809	-0.1501300 6.3460169
00.000000	599.5998535	-26.5998535	-25.3229980	-1.2768555	4.8002338
00.000000	619.5998535	-24.1999512	-23.1920776	-1.0078735	4.1647739
00.000000	639.5998535	-22.2001953	-21.3625031	-0.8376923	3.7733545
00.000000 00.000000	659.5998535 679.5998535	-20.6999512 -19.2001953	-19.8561401 -18.5359192	-0.8438110 -0.6642761	4.0763903 3.4597359
0.000000	699.5998535	-18.0000000	-17. 32 80 334	-0.6719666	3.7331467
0.000000	719.5998535	-16.8000488	-16.1573486	-0.6427002	3.8255844
00.000000	739,5998535	-15.7998047 -211.0998077	-15.0561409	-0.7436638	4.7067900
00.000000 00.0000000	259.5998535 279.5998535	-206.1998138	-211.4761200 -206.5892334	0.3763123 0.3894196	-0.1782627 -0.1888554
0.0000000	299. 5998535	-201.3999023	-201.7908478	0.3909454	-0.1941140
0.0000000	319.5998535	-196. 4998627	-196.8105011	0.3106384	-0.1580858
0.000000	339.5998535	-191.5999146	-191.8905334	0.2906189	-0.1516801
00.000000	359.5998535 379.5998535	-186.6999054 -181.5000000	-186.9299469 -181.8016968	0.2300415 0.3016968	-0.1232145 -0.1662241
0.0000000	399.5998535	-176.1999512	-176.5414581	0.3415070	-0.1938178
0.000000	419.5998535	-170.7999573	-170.9107666	0.1108093	-0.0648766
0.000000	439.5998535	-164.7998047	-165.0961456	0.2963409	-0.1798187
0.000000	459.5998535 599.5998535	-158.5998535 -64.5000000	-158.9174194 -63.8252411	0.3175659 -0.6747589	-0.2002308 1.0461369
0.0000000	619.5998535	-55.6999512	-55.0355377	-0.6644135	1.1928434
0.000000	639. 5998535	-49.7001953	-48,8198700	-0.8803253	1.7712708
0.0000000	659, 5998535	-44.8999023	-43.9855652	-0.9143372	2.0363894
0.000000	679.5998535 699.5998535	-40.8000488 -37.6000977	-40.1219482 -36.7792511	-0.6781006 -0.8208466	1.6620083 2.1830959
0.0000000	719.5998535	-35.1000977	-33.9914856	-1.1066121	3.1584291
0.0000000	739.5998535	-32.7998047	-31.5339203	-1.2658844	3.8594255
00.000000	259.5998535	-209. 3998108	-209.1833954	-0.2164154	0.1033503
0.000000	279.5998535 299.5998535	-204.4998169 -199.8999023	-204.1105042 -199.2641144	-0.3893127 -0.6357880	0.1903731 0.3180531
0.0000000	319.5998535	-194.7998657	-194.4530334	-0.3468323	0.1780454
0.000000	339. 5998535	-190.0999146	-189.6434021	-0.4565125	0.2401434
0.0000000	359.5998535	-185.2999115	-184.8253937	-0.4745178	0.2560809
0.0000000	379.5998535	-180.4000092 -175.1999512	-179.9970703 -174.5775757	-0.4029388 -0.6223755	0.2233585 0.3552372
0.0000000	399.5998535 419.5998535	-169.9999542	-169.2830811	-0.7168732	0.4216902
0.0000000	439.5998535	-164.3998108	-163.9248199	-0.4749908	0.2889242
0.0000000	459.5998535	-158.7998657	-158.2054443	-0.5944214	0.3743210
0.0000000 0.0000000	479.5998535 499.5998535	-152.8000031 -146.0999603	-152.1599426 -145.6017914	-0.6400604 -0.4981689	0.4188876 0.3409781
0.0000000	519.5998535	-138.2998657	-138.4087219	0.1088562	-0.0787103
0.0000000	539. 5998535	-129.3999634	-130.6119843	1.2120209	-0.9366468
0.0000000	559.5998535	-119.8000031	-121.2412872	1.4412842	-1.2030745
0.0000000	579.5998535	-108.5000000	-110.3212433	1.8212433	-1.6785650
0.000000	599.5998535 619.5998535	-97. 1999512 -86. 5998535	-99.1135864 -87.7532349	1.9136353 1.1533813	-1.9687614 -1.3318510
0.000000	639.5998535	-77.5000000	-77.5964966	0.0964966	-0.1245117
0.0000000	659, 5998535	-69.3000488	-69.3953552	0.0953064	-0.1375272
0.0000000	679.5998535	-63.0000000	-62.7524719	-0.2475281	0.3929015
0.0000000	699.5998535 719.5998535	-57.6999512 -53.1000977	-57.1692352 -52.4980316	-0.5307159 -0.6020660	0.9197857 1.1338310
0.0000000	739.5998535	-49.3999023	-48.4240875	-0.9758148	1.9753370
0.000000	259.5998535	-207.5998077	-207.7725830	0.1727753	-0.0832251
0.0000000	279.5998535	-202.9998169	-202.8385620	-0.1612549 -0.0774536	0.0794359
0.0000000	299.5998535 319.5998535	-197.9999084 -193.2998657	-197.9224548 -193.0569916	-0.2428741	0.0391180 0.1256462
0.0000000	339.5998535	-188.4999084	-188.2287598	-0.2711487	0.1438455
C. 0000000	359. 5998535	-183.6999054	-183.5183105	-0.1815948	0.0988541
0.0000000	379.5998535	-178.8000031	-178.6380920	-0.1619110	0.0905542
0.0000000 0.0000000	399.5998535 419.5998535	-173.8999634 -168.9999542	-173.6020966 -168.7507019	-0.2978668 -0.2492523	0.1712863
0.0000000	439.5998535	-163.8998108	-163.5073700	-0.3924408	0.2394394
0.000000	459.5998535	-158.4998627	-158.0904541	-0.4094086	0.2583022
0.000000	479.5998535	-153.0000000	-152.6328430	-0.3671570	0.2399718
0.0000000	499.5998535	-147. 1999512	-146.6652832 -140.9657898	-0.5346680 0.0659332	0.3632256 -0.0467944
0.0000000 0.0000000	519.5998535 539.5998535	-140.8998566 -134.0999603	-140.9657898 -134.6620483	0.5620880	-0.4191558
0.0000000	559.5998535	-126. 9000092	-128.4300385	1.5300293	-1.2056961
0.0000000	579. 5998535	-119.0000000	-120.6824341	1.6824341	-1.413809€
0.0000000	599. 5998535	-110.7998047	-110.8658600	0.0660553	-0.0596168
0,000000 0,000000	619.5998535 639.5998535	-102.6999512 -94.6000977	-102.6687012 -95.1734467	-0.0312500 0.5733490	0.0304284 -0.6060764
0.0000000	659.5998535	-86.8999023	-87.6919403	0.7920380	-0.9114370
0.000000	679.5998535	-80.000000	-80.5114899	0.5114899	-0.6393622
0.000000	699.5998535	-73.8999023	-74.1491852	0.2492828	-0.3373249
0.000000	719.5998535	-68 . 40014 6 5	-68.3155670	-0.0845795	0.1236539

E. 76.6 PERCENT MIXTURE

PRESSURE	TEMPERATURE	EXPER. DEPARTURE	CALC. DEPARTURE	DIFFERENCE	PERCENT DIFFERENC
(psia)	(°R)	(Btu/lb)	(Btu/lb)	(Btu/1b)	
500.0000000	259.5998535	-215.0998535	-215.9630890	0.8632355	-0.4013184
500.0000000	279.5998535	-210.4998169	-211.0289612	0.5291443	-0.2513751
500.0000000 500.0000000	299.5998535 319.5998535	-205.9999542 -201.4999542	-206.1390533 -201.6459351	0.1390991 0.1459808	-0.0675238 -0.0724471
500.0000000	339.5998535	-196.9998169	-197.3194733	0.3196564	-0.1622622
500.0000000	359.5998535	-192.6998596	-192.8189240	0.1190643	-0.0617874
500.0000000 500.0000000	379. 5998535 399. 5998535	-188.0998535 -183.5998077	-188.2440186 -183.7898560	0.1441650 0.1900482	-0.0766428 -0.1035122
500.0000000	419. 5998535	-178.8998566	-179.1966705	0.2968140	-0.1659107
500.0000000	439.5998535	-174.2999573	-174.4201050	0.1201477	-0.0689315
500.0000000 500.0000000	459.5998535 619.5998535	-169.3999023 -35.1000977	-169.8145447 -34.3142700	0.4146423 -0.7858276	-0.2447712 2.2388182
500-0000000	639.5998535	-31.0000000	-30.3339081	-0.6660919	2.1486826
500.000000	659.5998535	-27.8999023	-27.3220062	-0.5778961	2.0713186
500.0000000 500.0000000	679.5998535 699.5998535	-25.3999023 -23.3999023	-24.9154816 -22.9706421	-0.4844208 -0.4292603	1.9071751
500.0000000	719.5998535	-21. 6999512	-21.4063873	-0.2935638	1.8344526 1.3528309
500.0000000	739.5998535	-19.9001465	-19.8648071	-0.0353394	0.1775833
500.0000000 000.0000000	759. 5998535 259. 5998535	-17.6999512 -213.0998535	-18.6975403 -214.0125885	0.9975891 0.9127350	-5.6361113 -0.4283130
000.0000000	279. 5998535	-208.3998108	-209.0690460	0.6692352	-0.3211304
000.0000000	299. 5998535	-204.0999603	-204,3749390	0.2749786	-0.1347274
000.000000	319.5998535	-199.6999512	-199.9977875	0.2978363	-0.1491418
000 . 0000000	339.5998535 359.5998535	-195.2998047 -190.8998566	-195.6057587 -191.0912170	0.3059540 0.1913605	-0.1566586 -0.1002412
000.0000000	379.5998535	-186.5998535	-186.6613770	0.0615234	-0.0329708
000.0000000	399.5998535	-182.2998047	-182,1132355	-0.1865692	0.1023419
000 . 0000000	419.5998535 439.5998535	-177.7998657 -173.5999603	-177.6692047 -173.0776520	-0.1306610 -0.5223083	0.0734876
00C• 0000000	459.5998535	-169.2999115	-168.3477173	-0.9521942	0.5624301
000.0000000	479, 5998535	-164. 3999023	-163,3701935	-1.0297089	0.6263438
000.0000000 000.000000	499.5998535 519.5998535	-159.2998657 -153.7000122	-158.3547974 -152.9866638	-0.9450684 -0.7133484	0.5932636 0.4641171
000.000000	539.5998535	-148.0999603	-147.1595001	-0.9404602	0.6350170
000.0000000	559.5998535	-141.7998657	-140.7395935	-1.0602722	0.7477242
000.0000000	579.5998535 599.5998535	-134.2999573 -125.1998596	-133.4069977 -124.8759003	-0.8929596 -0.3239594	0.6648991 0.2587537
000.0000000	619.5998535	-112.6000977	-113.3898468	0.7897491	-0.7013749
000.0000000	639.5998535	-94.4001465	-96.4388885	2.0387421	-2.1596804
000.0000000	659.5998535 679.5998535	-77.0998535 -65.3000488	-77.0856628 -63.9251556	-0.0141907 -1.3748932	0.0184056 2.1055002
000.0000000	699,5998535	-55.8000488	-55.4507446	-0.3493042	0.6259925
000.000000	719.5998535	-49.5000000	-49.4138489	-0.0861511	0.1740426
000.0000000 000.000000	739.5998535	-44.8000488	-44.8408203 -40.8447444	0.0407715 -0.9331360	-0.0910076 2.2270594
500.0000000	759.5998535 259.5998535	-41.8999023 -211.2998657	-40.9667664 -211.9204712	0.6206055	-0.2937084
500.000000	279.5998535	-206.8998108	-207.2250214	0.3252106	-0.1571826
500.0000000	299.5998535	-202.5999603	-202.5259705	-0.0739899	0.0365202
500 . 0000000 500 . 0000000	319.5998535 339.5998535	-198.0999603 -193.8998108	-197.9289093 -193.4789581	-0.1710510 -0.4208527	0.0863458
500.0000000	359.5998535	-189.3998566	-189.1691284	-0.2307281	0.121820€
500.0000000	379.5998535	-185. 2998657	-184.7435455	-0.5563202	0.3002269
500.0000000 500.0000000	399.5998535 419.5998535	-180.7998047 -176.2998657	-180.5327148 -176.1721954	-0.2670898 -0.1276703	0.1477268
50C.000000	439.5998535	-171.9999542	-171.7151031	-0.2848511	0.1656111
500.000000	459,5998535	-167.4999084	-166.8757019	-0.6242065	0.3726608
500.000000 500.000000	479.5998535 499.5998535	-162.9999084 -158.1998596	-162.2016907 -157.5055847	-0.7982178 -0.6942749	0.4897043 0.4388593
00.000000	519.5998535	-153. 1000061	-152.5071259	-0.5928802	0.3872503
500.000000	539.5998535	-148.1999512	-147.2438507	-0.9561005	0.6451420
500.0000000	559.5998535 579.5998535	-142.7998657 -136.6999512	-141.9967957	-0.8030701 -0.4772797	0.5623743 0.3491440
500.000000 500.000000	599. 5998535	-130.1998596	-136.2226715 -129.7465363	-0.4533234	0.3481750
500.000000	619.5998535	-123.1999512	-122.8667450	-0.3332062	0.2704597
500.000000 500.0000000	639, 5998535	-115.0000000	~115.0187378 ~106.0254669	0.0187378	-0.0162937
500.0000000	659.5998535 679.5998535	-106.5998535 -97.0000000	-106.0254669 -96.6218567	-0.5743866 -0.3781433	0.5388249 0.3858384
00.000000	699.5998535	-86.8000488	-87.2585297	0.4584808	-0.5282033
500.000000	719.5998535	-77.5000000 -70.3000488	-78.3973999 -70.8262329	0.8973999	-1.1579351
00.000000 00.000000	739.5998535 759.5998535	-70.3000488 -63.3999023	-64.3321075	0.5261841 0.9322052	-0.7484831 -1.4703569
0000000	259.5998535	-209.4998627	-210.9001007	1.4002380	-0.6683714
000.0000000	279.5998535	-205, 1998138 -200, 8999636	-206.0324097	0.8325958	-0.4057485
000.0000000 000.0000000	299.5998535 319.5998535	-200.8999634 -196.4999542	-201.4397278 -197.0929565	0.5397644 0.5930023	-0.2686732 -0.3017824
00.000000	339.5998535	-192.3998108	-192.5046082	0.1047974	-0.0544685
00.000000 -	359.5998535	-188.1998596	-188.0214539	-0.1784058	0.0947959
00.000000	379.5998535 399.5998535	-184.0998535 -179.8998108	-183.7349091 -179.3813171	-0.3649445 -0.5184937	0.1982318 0.2882124
00.000000	419.5998535	-175.6998596	-175.1452789	-0.5545807	0.3156409
00.000000	439.5998535	-171.1999512	-170.6218872	-0.5780640	0.3376542
00.000000	459.5998535 475.5998535	~166.6999054 ~160.0999146	-166.2076416 -161.8976135	-0.4922638 1.7976990	0.2952994
000.0000000	479.5999535 499.5998535	-160.0999146 -157.5998535	-157.1539154	-0.4459381	-1.122860C 0.2829559
000,000000	519.5998535	-153.1000061	-152.4760895	-0.6239166	C.4075221
000.000000	539.5998535	-148. 4999542	-147.6445465	-0.8554077	0.5760319
000.000000 000.0000000	559.5998535 579.5998535	-143.5998535 -138.4999542	-142.8975525 -137.5681305	-0.7023010 -0.9318237	0.4890680 0.6727971
000.0000000	599.5998535	-133.0998535	-132.6048889	-0.4949646	0.3718746
000.000000	619.5998535	-127.1999512	-126.8992615	-0.3006897	0.2363913
000.0000000	639.5998535 659.5998535	-121.0000000 -114.6999512	-121.2071686 -114.6870728	0.2071686 -0.0128784	-0.1712137 0.0112279
000.000000	679.5998535	-114.6999512	-106.9406891	-0.6594086	0.6128326
000.000000	699.5998535	-100.3999023	-99.7528687	-0.6470337	C.6444562
000.0000000	719.5998535	-93.3000488	-93.3932648	0.0932159	-0.0999098
000.000000	739.5998535	-86.4001465 -80.3000488	-86.9765625 -80.9935608	0.5764160 0.6935120	-0.6671469 -0.8636504

TABLE LXVI RESULTS OF CORRESPONDING STATES CORRELATION FOR METHANE-PROPANE MIXTURES USING SMOOTHED OPTIMUM PARAMETERS

A. 5.1 PERCENT MIXTURE

PRESSURE	TEMPERATURE	EXPER. DEPARTURE	CALC. DEPARTURE	DIFFERENCE	PERCENT DIFFERENCE
(psia)	(°R)	(Btu/lb)	(Btu/lb)	(Btu/lb)	
			A AMERICA		
500.0000000	179.5599908	-223.5000000	-226.9316864	3.4316864	-1.5354290
50C.0000000	199.5999908	-217.6999969	-220.4833527	2.7833557	-1.2785273
50C.0000000	219.599908	-209.6999969	-214.4564667	4.7564697	-2.2682257
50C.0000000	239.5999908	-203.7999573	-207.8097839	4.0058267	-1.9675303
50C.0000000	259.5998535	-196.9000092	-200.9120026	4.0119934	-2.0375786
500.0000000	279.5998535	-190.3999634	-193.2441254	2.8441620	-1.4937820
500.0000000	299.5998535	-182.3998566	-184.9583282	2.5584717	-1.4026709
500.0000000 500.0000000	319.5998535 419.5998535	-172.3000031 -27.8000488	-174.3747559 -27.0675659	2.0747528 -0.7324829	-1.2041512 2.6348257
50C. COOOOOO	435.5598535	-24.9001465	-24.2700500	-0.6300964	2.5364928
50C.0000000	459.5998535	-22.5000000	-21.8718262	-0.62 81 73 8	2.7918825
500.0000000	479.5998535	-20.3999023	-20.0746518	-0.3252106	1.5941763
500.000000	455.5598535	-18.6999512	-18.4159088	-0.2840424	1.5189466
500.000000	519.5998535	-17.3000488	-17.0569916	-0.2430573	1.4049511
1000.000000	179.5999908	-221.5000000	-225.1002960	3.6002960	-1.6254148
1 COC. COCOCOC	155.5559908	-215.4000092	-218.7625427	3.3625336	-1.5610638
1000.0000000	219.5999908	-208.1999969	-212.7849884	4.5849915	-2.2022047
1000.0000000	239.5999908	-202.2999573	-206,4502258	4.1502686	-2.0515413
1000.0000000	259.5998535	-195.50C0000	-199.9441681	4.4441681	-2.2732315
1000.0000000	279.5998535	-189.1999512 -182.0998535	-192.7454071 -184.9430542	3.5454559	-1.8739195
1000.000000	299.5998535 319.5998535	-173.6000061	-176.3085480	2.8432007 2.7085419	-1.5613413 -1.5602188
1000.0000000	339.5998535	-163.3999023	-165.9652100	2.5653076	-1.5699558
1000.0000000	359.5998535	-149.7998047	-152.1031342	2.3033295	-1.5376043
1000.0000000	379.5998535	-125.4998169	-129.8916321	4.3918152	-3.4994583
1000.0000000	355.5998535	-88.8999023	-90.4928894	1.5929871	-1.7918873
1 COC. 0000000	419.5998535	-68.5000000	-68.8716431	0.3716431	-0.5425445
1000.0000000	439.5998535	-56.8000488	-56.7012329	-0.0988159	0.1739715
1000.000000	459.5998535	-49.2001953	-48.8535004	-0.3466949	0.7046614
1000.000000	479.5598535	-43.5000000	-43.3674469	-0.1325531	0.3047197
1000.0000000	499.5998535	-39.0998535	-38.9932098	-0.1066437	0.2727470
1 COC. 0000000	519.5998535	-35.6000977	-35.4002533	-0.1998444	0.5613587
150C.0000000	179.5999908	-219.3959539	-221.3976746	1.9976807	-0.9105198
1500.0000000	155.5999908	-213.1999969	-215.1211853	1.9211 884	-0.9011201
1500.0000000 1500.0000000	219.599908 239.5999908	-206.3999939 -200.8999634	-209.2149506 -203.0811768	2.8149567 2.1812134	-1.3638353 -1.0857201
1500.000000	259.5998535	-194.3000031	-196.6875610	2.3875580	-1.2287989
1500.000000	279.5598535	-187.8999634	-189.7619171	1.8619537	-0.9909279
1500.0000000	299.5998535	-181.0998535	-182.5285339	1.4286804	-0.7888909
1500.0000000	315.5558535	-173.7000122	-174.6191101	0.9190979	-0.5291294
1500.0000000	339.5998535	-165.4999084	-165.9848785	0.4849701	-0.2930334
150C.0000000	359.5998535	-155.3998108	-155.7523804	0.3525696	-0.2268790
150C. CO00000	379.5998535	-143.0998077	-143.7893066	0.6894989	-0.4818305
150C.0000000	359.5998535	-127.4955084	-128.1256104	0.6257019	-0.4907466
1500.0000000	419.5998535	-108.8000031	-109.0628204	0.2628174	-0.2415600
1500.0000000	439.5998535	-91.1999512	-90.9673615	-0.2325897	0.2550327
1500.0000000	459.5998535	-77.6000977	-77.2834015	-0.3166962	0.4081130
1500.0000000	479.5998535	-67.5998535	-67.3894501	-0.2104034	0.3112483
1500.0000000	499.5998535	-60.0000000	-60.0946655	0.0946655	-0.1577758
1500.0000000	519.5998535	-54.0000000 -317.3060878	-54.1584320	0.1584320 1.8347931	-0.2933925
2000.0000000	179.599908 199.599908	-217.2999878 -211.1000061	-219.1347809 -212.8544922	1.7544861	-0.8443594 -0.8311160
2000.0000000	219.5999908	-204.7999878	-206.9452972	2.1453094	-1.047514C
2000.0000000	239.599908	-199.5999603	-200.8016663	1.2017059	-0.6020568
2000.0000000	259.5998535	-193.1000061	-194.6253204	1.5253143	-0.7899086
2000.0000000	275.5598535	-186.6999512	-188.0641937	1.3642426	-0.7307138
2000.0000000	259.5998535	-18C.1998596	-181.2850037	1.0851440	-0.6021891
2000.0000000	319.5998535	-173.2000122	-173.9479065	0.7478943	-0.4318095
2000.0000000	339.5998535	-165.3999023	-166.1320038	0.7321014	-0.4426248
2000.0000000	359.5998535	-156.9998169	-157.4232025	0.4233856	-0.2696726
2000.0000000	379.5998535	-147.4998169	-148.1235962	0.6237793	-0.4229016
200C.0000000	399.5998535	-136.6999054	-137.5641785	0.8642731	-0.6322410
2 CO C • 0000000	419.5998535	-124.5000000	-125.6990814	1.1990814	-0.9631175
2000.0000000	439.5998535	-111.5999603	-112.7542572	1.1542969	-1.0343161
2000.0000000	459.5998535	-99.0000000	-99.9122620	0.9122620	-0.9214766
2000.0000000	479.5998535	-87.5998535	-88.6198578	1.0200043	-1.1643896
2000.0000000	499.5998535	-78.0998535	-79.1157684	1.0159149	-1.30 C7889
200C.0000000	519.5998535	-70.3000488	-71.1804657	0.8804169	-1.2523699

B. 11.7 PERCENT MIXTURE

PRESSURE	TEMPERATURE	EXPER. DEPARTURE	CALC. DEPARTURE	DIFFERENCE	PERCENT DIFFEREN
(psia)	(°R)	(Btu/lb)	(Btu/lb)	(Btu/lb)	
				1 77.67.62.6	
50C.0000000	199.5999908	-223.6999969	-221.9612732	-1.7387238	0.7772568
50C.C000000	219.5999908	-218.0999908	-216.1458282	-1.9541626	0.8959938
50C.C000000	239.599908	-212.0999146	-210.1582794	-1.9416351	0.9154338
50C.C000000	259.5998535	-205.7000122	-203.7401886	-1.9598236	0.9527579
50C.0000000	279.5998535	-198.7998657	-197.1702118	-1.6296539	0.8197457
50C.000000	299.5998535	-191.2999115	-189.8962708	-1.4036407	0.7337380
50C.0000000	319.5998535	-181.8999634	-182.0914917	0.1915283	-0.1052932
5CC.0000000	479.5998535	-24.5998535	-22.6095428	-1.9903107	8.0907402
500.000000	499.5998535	-20.9001465	-20.6689606	-0.2311859	1.1061440
50C.0000000	519.5998535	-18.6999512	-19.0365601	0.3366089	-1.8000517
50C. C000000	539.5998535	-17.3999023	-17.5312042	0.1313019	-0.7546127
50C.0000000	559.5998535	-16.80CC488	-16.2901306	-0.5099182	3.0352182
CCC- C000000	155.5599908	-220.8999939	-220.2052917	-0.6947021	0.3144872
000.000000	219.5599908	-215.0999908	-214.4022217	-0.6977692	0.3243929
000.000000	239.5999908	-209.2999115	-208.5052032	-0.7947C83	0.3796983
000.000000	259.5998535	-203.1000061	-202.4145660	-0.6854401	0.3374889
000.0000000	275.5598535	-196.2998657	-196.1113892	-0.1884766	0.0960146
0000000	299.5998535	-189.2999115	-189.2724762	-0.0274353	0.0144930
000.0000000	319.5998535	-181.6999512	-181.8969421	0.1969910	-0.1084155
000.000000	339.5998535	-172.9000092	-173.8210297	0.9210205	-0.5326893
000.000000	359.5998535	-163.8000C31	-164.4685669	0.6685638	-0.4081584
000.000000	379.5998535	-150.2999115	-152.1975861 -51.5134277	1.8976746	-1.2625914 2.6209393
000.0000000	479.5998535	-52.8999023		-1.3864746	
000.000000	499.5998535	-45.9001465	-45.4022675	-0.4578790	1.0846996
000.000000	519.5998535	-40.8000488	-40.7203217	-0.0797272	0.1954095
000.000000	539.5998535	-37.0998535	-36.9300842 -33.7904205	-0.1697693 -0.4095306	0.4576008 1.1974592
000.0000000	559.5998535	-34.1999512		-1.2160950	
500.0000000	199.5999908	-218.0000000 -212.1999969	-216.7839050 -210.9642487	-1.2357483	0.5578414 0.5823504
50C.0000000	219.5999908 239.5999908	-206.3999023	-205.1847992	-1.2151031	0.5887128
500.000000	259.5998535	-200.5000000	-199.3072205	-1.1927795	0.5949024
50C.0000000			-193.1636047	-0.7362518	0.3797072
50C.0000000	279.5998535	-193.8998566	-186.5019379	-0.1902516	0.4791699
50C.000000 50C.0000000	299.5998535 319.5998535	-187.3999023 -180.3999634	-179.6705322	-0.7294312	0.4043407
500.000000	339.5998535	-173.0000000	-172.2507935	-0.7492065	0.4330672
	359.5998535	-165.0000000	-164.2658386	-0.7341614	0.4449461
500.000000 500.000000	379.5998535	-155.5999146	-155.0887146	-0.5112000	0.3285348
50C.000000	399.5998535	-144.3000031	-144.3593597	0.0593567	-0.0411342
	419.5998535	-130.1998596	-131.0386200	0.8387604	-0.6442096
50C.000000 5CC.000000	439.5998535	-113.4998169	-114.3671722	0.8673553	-0.7641907
		-97.5000000	-96.8395691	-0.6604309	0.6773646
50C.0000000	459.5998535		-82.1640015	-1.3359985	1.5999975
500.0000000	479.5998535	-83.5000000 -73.5000000	-71.2907867	-1.2092133	1.6678801
50C.0000000	499.5998535	-72.5000000 -64.1999512	-63.1142578	-1.0856934	1.6911116
00.000000	£19.5998535		-56.8190460	-0.5808563	1.0119457
5CC. 0000000	539.5998535	-57.3999023		-0.4892426	0.9390432
50C.0000000	559.5998535	-52.1000977	-51.6108551	-0.6265564	0.2910155
000.000000	199.5999908	-215.2999878	-214.6734314	-0.5110626	0.2440605
CCC. C000000	219.5999908	-209.3959939	-208.8889313	-0.7870636	0.3860049
000.0000000	239.5999908	-203.8999023	-203.1128387	-0.8116760	0.4099373
ccc.0000000	259.5998535	-198.0000000	-197.1883240	-0.3206482	0.1673530
000.000000	279.5998535	-191.5998535	-191.2792053	-0.5206757	0.2806878
00C.0000000	299.5998535	-185.4999084	-184.9792328	-0.7813110	0.4357561
000.000000	319.5998535	-179.2999573	-178.5186462	-0.9689178	0.5613658
000.0000000	239.5998535	-172.6000061	-171.6310883	-1.0352173	0.6258867
000.0000000	359.5998535	-165.4000092	-164.3647919	-0.5459686	0.6009966
000.0000000	315.5998535	-157.3999023	-156.4539337	-0.6160889	0.4148744
000.000000	399.5998535	-148.5000000	-147.8839111		-0.1168114
000.0000000	415.5998535	-138.3998566	-138.5615234	0.1616669	-0.1166114
00C.0000000	439.5998535	-127.0998077	-127.5689240	0.4691162	-0.4821882
000.0000000	459.5998535	-115.1999512	-115.7554321	0.5554810	
coc.0000000	479.5998535	-103.3000488	-103.9051056	0.6050568	-0.5857274 -0.3009528
000.0000000	455.5998535	-92.5000000	-92.7783813	0.2783813	-C.3009528
0000000	519.5998535	-82.8999023 •	-82.9710693 -74.6830292	0.0711670 -0.0169220	-0.0858468 C.0226533
000.000000	539.5998535	-74.6999512			

C. 28.0 PERCENT MIXTURE

PRESSURE	TEMPERATURE	EXPER. DEPARTURE	CALC. DEPARTURE	DIFFERENCE	PERCENT DIFFERENC
(psia)	(°R)	(Btu/lb)	(Btu/lb)	(Btu/lb)	
500.0000000	219.5999908	-219.6999969	-220-2863007	0.5863037	-0.2668656
50C.0000000 50C.0000000	239.5999908 259.5998535	-214 . 3999939	-214.5048828	0.1048889	-0.0489220
500.0000000	279.5998535	-209.0000000 -202.8000031	-209.2912445 -203.6928406	0.2912445 0.8928375	-0.1393514 -0.4402552
50C.0000000	299.5998535	-197.2998657	-197.9077148	0.6078491	-0.3080838
50C.C000000	319.5998535	-190.5998077	-192.0535431	1.4537354	-0.7627159
50C.0000000	339.5998535	-184.1998596	-185.8499756	1.6501160	-0.8958287
50C.0000000	519.5998535	-27.0998535	-25.3669434	-1.7329102	6.3945351
500.0000000	539.5998535	-24.3000488	-23.0831146	-1.2169342	5.0079489
50C.C000000	559.5998535	-22.1000977	-21.1312561	-0.9688416	4.3838787
500.0000000 500.0000000	579.5998535 599.5998535	-20.3000488 -18.7998047	-19.6109467 -18.1495972	-0.6891022 -0.6502075	3.3945827 3.4585857
50C.0000000	619.5998535	-17.3000488	-16.8185883	-0.4814606	2.7830009
50C.0000000	639.5998535	-16.1000977	-15.7279387	-0.3721 590	2.3115320
1000.0000000	219.5999908	-217.4000092	-218.3764343	0.9764252	-0.4491374
1000.0000000	239.599908	-212.0999908	-212.7821503	0.6821594	-0.3216216
1000.0000000	259.5998535	-206.8000031	-207.5072327	0.7072296	-0.3419872
1 COC. COCCOCC 1 COC. COCCCCC	279.5998535	-201.0000000	-202.0022736	1.0022736	-0.4986435
1000.0000000	299.5998535 319.5998535	-195.5998535 -189.4958169	-196.4371185 -190.7607880	0.8372650 1.2609711	-0.4280496 -0.6654207
1000.0000000	339.5998535	-183.6998596	-184.7817688	1.0819092	-0.5889546
1000.000000C	359.5998535	-177.0000000	-178.4043274	1.4043274	-0.7934052
1000.0000000	379. 5998535	-170.3000031	-171.5980377	1.2980347	-0.7622044
1 COC. 0000000	399.5998535	-161.6998596	-164.2261353	2.5262756	-1.5623236
1000.0000000	539.5998535	-55.80C0488	-53.9281158	-1.8719330	3.3547153
1000.0000000	559.5998535	-48.6999512	-47.4826508	-1.2173004	2.4995918
1000.0000000	579.5998535	-43.8000488	-42.6932068	-1.1068420	2.5270329
1 000.0000000	599.5998535	-39.7998047	-38.6974792	-1.1023254	2.7696753
1 COC. 0000000 1 COC. 0000000	619.5998535	-36.3000488 -33.3999023	-35.4270477 -32.6619110	-0.8730011 -0.7379913	2.4049578 2.2095604
150C. COOOOOO	219.5999908	-215.1000061	-215.5056000	0.4055 93 9	-0.1885605
1500.0000000	239.5999908	-209.8000031	-209.8356171	0.0356140	-0.0169752
1500.0000000	259.5998535	-204.7000122	-204.5474091	-0.1526031	0.0745496
1500.0000000	279.5998535	-199.4000092	-199.1423035	-0.2577057	0.1292405
1500.0000000	259.5558535	-194.0998535	-193.8211975	-0.2786560	0.1435632
1500.0000000	319.5998535	-188.4998169 -182.6998596	-188.3348083	-0.1650085	0.0875377
1500.0000000 1500.0000000	339.5998535 359.5998535	-176.5000000	-182.3637543 -176.3096313	-0.3361053 -0.1903687	0.1839658 0.1078576
1500.0000000	379.5998535	-170.5000000	-170.0927734	-0.4072266	0.2388425
1500.0000000	399.5998535	-163.8998566	-163.2828827	-0.6169739	0.3764334
1500.0000000	419.5998535	-156.3999023	-156.1258392	-0.2740631	0.1752322
150C.000000	439.5998535	-147.6998138	-148.1684418	0.4686279	-0.3172840
1500.0000000	459.5998535	-137.3998108	-138.8779907	1.4781799	-1.0758228
1500.0000000	479.5598535	-125.3000031	-127.7117615	2.4117584	-1.9247866
150C.0000000 150C.0000000	499.5998535 519.5998535	-111.6998138 -98.0998535	-114.2397308 -100.0403748	2.5399170 1.9405212	-2.2738771 -1.9781075
1500.0000000	539.5998535	-85.9001465	-86.3804779	0.4803314	-0.5591739
1500.0000000	559.5998535	-75.8000488	-75.3906403	-0.4094086	0.5401164
1500.0000000	579.5998535	-67.7001953	-66.8442688	-0.8559265	1.2642889
1500.0000000	599.5998535	-61.0000000	-60,0529022	-0.9470978	1.5526190
1500.0000000	619.5998535	-54.4001465	-54.6243286	0.2241821	-0.4120983
1500.000000	639.5998535	-49.6999512	-50.0119781	0.3120270	-0.6278213
2000.0000000	219.5999908	-212.8000031	-213.7352905 -208.1239777	0.9352875 0.5239868	-0.4395146
2000.0000000 2000.0000000	239.5999908 259.5998535	-207.5999908 -202.6000061	-202.7685394	0.1685333	-0.2524021 -0.0831852
2000.0000000	279.5998535	-197.7000122	-197.4569550	-0.2430573	0.1229424
2000.000000	299.5998535	-192.5998535	-192.0215454	-0.5783081	0.3002640
2000.000000	319.5998535	-187.2998047	-186.7361603	-0.5636444	0.3009316
200C.000000	339.5998535	-181.8998566	-180.9917603	-0.9080963	0.4992284
2000.0000000	359.5998535	-176.2000122	-175.4336548	-0.7663574	0.4349358
2000.0000000	379.5998535	-170.5000000	-169.5098724	-0.9901276	0.5807198
2000.0000000	359.5598535	-163.7998657 -157.0999146	-163.1153717 -156.6856079	-0.6844940 -0.4143066	0.4178841 0.2637217
2000.0000000 2000.0000000	419.5998535	-149.8998108	-149.6936951	-0.2061157	0.1375023
2000.0000000	459. 5998535	-141.8998108	-142.3596497	0.4598389	-0.3240588
2000.0000000	479.5998535	-133.2000122	-134.8022614	1.6022491	-1.2028894
200.000000	499.5998535	-123.7998647	-125.5167084	1.7169037	-1.3868380
2000.0000000	519.5998535	-113.7998647	-114.6369171	0.8371124	-0.7356007
2 CCC . 0000000	539.5998535	-103.8000488	-104.9794312	1.1793823	-1.1362057
200.000000	559.5998535	-94.3000488	-95.4340515	1.1340027	-1.2025471
2000.0000000	579.5998535	-85.8000488	-86.5139618	0.7139130	-0.8320655
2000.0000000	599.5998535	-78.0998535 -71.000000	-78.5068054 -71.5308990	0.4069519	-0.5210660 -0.7477451
2000.0000000 2000.0000000	619.5998535	-71.0000000 -64.8999023	-71.5308990 -65.4637146	0.5308990 0.5638123	-0.8687410

D. 50.6 PERCENT MIXTURE

PRESSURE	TEMPERATURE	EXPER. DEPARTURE	CALC. DEPARTURE	DIFFERENCE	PERCENT DIFFERENCE
(psia)	(°R)	(Btu/lb)	(Btu/lb)	(Btu/lb)	
FAX 600000			-14-28-677-	4 700//15	
50C.000000 50C.000000	259.5998535 279.5998535	-212.7998047 -207.8998108	-213.6822662 -208.6192322	0.8824615 0.7194214	-0.4146907 -0.3460423
500.0000000	299.5998535	-202.8999023	-203.8759460	0.9760437	-0.4810467
500.0000000	319.5998535	-198.2998657	-198.8828430	0.5829773	-0.2939877
500.0000000	339.5998535	-193.1999054	-193.7728424	0.5729370	-0.2965513
500.0000000 500.0000000	359.5998535 579.5998535	-188.0999146 -29.7001953	-188.6192627 -27.8566132	0.5193481 -1.8435822	-0.2761022 6.2073059
500.0000000	599.5998535	-26.5998535	-25.3582458	-1.2416077	4.6677227
500.0000000	619.5998535	-24.1999512	-23.2206879	-0.9792633	4.0465498
500.0000000	639.5998535	-22.2001953	-21.3867645	-0.8134308	3.6640701
50C.0000000 50C.0000000	659.5998535 679.5998535	-20.6999512 -19.2001953	-19.8788452 -18.5556488	-0.8211060 -0.6445465	3.9667044 3.3569784
500.0000000	659.5998535	-18.0000000	-17.3444824	-0.6555176	3.6417637
500.0000000	719.5998535	-16.8000488	-16.1705322	-0.6295166	3.7471113
50C.000000 CCC.0000000	739.5998535 259.5958535	-15.7998047 -211.0998077	-15.0652752 -211.7926483	-0.7345295 0.6928406	4.6489782 -0.3282052
.000.0000000	279.5998535	-206.1998138	-206.8906860	0.6908722	-0.3350498
.000.000000	299.5998535	-201.3999023	-202.0738525	0.6739502	-0.3346328
000.0000000	319.5998535	-196.4998627	-197.0742798	0.5744171	-0.2923244
000.0000000	339.5998535 359.5998535	-191.5999146 -186.6999054	-192.1378326 -187.1615143	0.5379181 0.4616089	-0.2807506 -0.2472464
000.0000000	379.5998535	-181.5000000	-182.0179138	0.5179138	-0.2853519
COC. CO00000	399.5998535	-176.1999512	-176.7419586	0.5420074	-0.3076093
000.0000000	419.5998535	-170.7999573	-171.0954132	0.2954559	-0.1729836
00C.0000000	439.5998535 459.5998535	-164.7998047 -158.5998535	-165.2679443 -159.0746307	0.4681396	-0.2840656 -0.2993554
000.0000000	599. 5998535	-64.5000000	-63.8943329	-0.6056671	0.9390186
000.0000000	619.5998535	-55.6999512	-55.0928802	-0.6070709	1.0898943
000.000000	639.5998535	-49.7001953	-48.8696289 -46.03.67546	-0.8305664	1.6711521
000.0000000	659.5998535	-44.8999023 -40.8000488	-44.02 97546 -40.1583405	-0.8701477 -0.6417084	1.9379711
COC. 0000000	699.5998535	-37.6000977	-36.8083344	-0.7917633	2.1057472
000.0000000	719.5998535	-35.1000977	-34.0158081	-1.0842896	3.0891342
500.0000000	739.5998535 259.5998535	-32.7998047 -209.3998108	-31.5534515 -209.5099945	-1.2463531 0.1101837	3.7998791 -0.0526188
500.0000000	279.5998535	-204.4998169	-204.4188232	-0.0809937	0.0396057
50C. 6000000	299.5998535	-199.8999023	-199.5538025	-0.3460999	0.1731365
500.0000000	319.5998535	-194.7998657	-194.7259979	-0.0738678	0.0379198
500.000000	359.5998535 359.5998535	-190.0999146 -185.2999115	-189.8994751 -185.0658569	-0.2004395 -0.2340546	0.1054389 0.1263112
500.0000000	379.5998535	-180.4000092	-180.2243805	-0.1756287	0.0973551
50C. CO00000	399.5998535	-175.1999512	-174.7866974	-0.4132538	0.2358755
500.0000000	419.5998535	-169.9999542	-169.4774017	-0.5225525	0.3073839
500.0000000 500.0000000	439.5998535 459.5998535	-164.3998108 -158.7998657	-164.1054535 -158.3721771	-0.2943573 -0.4276886	0.1790496 0.2693255
500.0000000	479.5998535	-152.8000C31	-152.3120880	-0.4879150	0.3193161
50C.0000000	499.5998535	-146.0999603	-145.7399445	-0.3600159	0.2464175
50C.0000000	519.5998535	-138.2998657 -129.3999634	-138.5391388 -130.7234344	0.2392731 1.3234711	-0.1730103 -1.0227747
50C.0000000 50C.0000000	539.5998535 559.5998535	-119.8000031	-121.3415680	1.5415649	-1.2867813
500.0000000	579.5998535	-108.5000000	-110.4123230	1.9123230	-1.7625093
500.0000000	599.5998535	-97.1999512	-99.1941223	1.9941711	-2.0516167
500.0000000 500.0000000	619.5998535 639.5998535	-86.5998535 -77.5000000	-87.8310852 -77.6684418	1.2312317	-1.4217472 -0.2173442
500.0000000	659.5998535	-69.3000488	-69.4592896	0.1592407	-0.2297844
500.0000000	679.5998535	-63.0000000	-62.8094940	-0.1905060	0.3023904
500.0000000	699.5998535	-57.6999512	-57.2172394	-0.4827118	0.8365895
500.0000000 500.0000000	719.5998535 739.5998535	-53.1000977 -49.3999023	-52.5367432. -48.4553986	-0.5633545 -0.9445038	1.0609283 1.9119539
000.0000000	259.5998535	-207.5998077	-208.1056824	0.5058746	-0.2436777
000.000000	275.5598535	-202.9998169	-203.1564789	0.1566620	-0.0771734
000.0000000	299.5998535 319.5998535	-197.9999084 -193.2998657	-198.2191925 -193.3349915	0.2192841 0.0351257	-0.1107495 -0.0181716
000.0000000 000.000000	339.5998535	-188.4999084	-188.4903412	-0.0095673	C.0050755
000.0000000	359.5998535	-183.6959054	-183.7644043	0.0644989	-0.0351110
COC. COCCOCC	379.5998535	-178.8000031	-178.8682861	0.0682831	-0.0381896
000.0000000	355.5598535	-173.8999634 -168.9999542	-173.8172760 -168.9519806	-0.0826874 -0.0479736	0.0475488
COC. 0000000	419.5998535	-163.8998108	-163.6926270	-0.2071 838	0.1264088
COC. 0000000	459.5998535	-158.4998627	-158.2630310	-0.2368317	0.1494207
00C.0000000	479.5998535	-153.0000000	-152.7920227	-0.2079773	0.1359329
000.0000000	499.5998535 519.5998535	-147,1999512 -140,8998566	-146.8095093 -141.1008606	-0.3904419 -0.2010040	0.2652459 -0.1426573
000.000000	539.5998535	-134.0999603	-134.7816467	0.6816864	-0.5083419
COC. COOOOOO	555.5958535	-126.9000092	-128.5346680	1.6346588	-1.2881460
000.0000000	579.5998535	-119.0000000	-120.7703705	1.7703705	-1.4877062
0000000	599.5998535 619.5998535	-110.7998047 -102.6999512	-110.9399567 -102.7336273	0.1401520 0.0336761	-0.1264911 -0.0327908
00C.0000000	639.5998535	-94.6000977	-95.2316284	0.6315308	-0.6675791
COC. COOOOOO	659.5998535	-86.8999023	-87.7489014	0.8489990	-0.9769849
COC. 0000000	679.5998535	-80.0000000	-80.5635223	0.5635223	-0.7044028
CCC. 0000000	699.5998535	-73.8999023 -68.4001465	-74.1958618 -68.3526611	0.2959595 -0.0474854	-0.4004866 0.0694228
	719.5998535	-68.4001465	-000 3720011	0 0 0 1 1 T 0 J T	0.8114524

E. 76.6 PERCENT MIXTURE

	ERATURE	EXPER. DEPARTURE	CALC. DEPARTURE		ERCENT DIFFERE
	°R)	(Btu/lb)	(Btu/lb)	(Btu/lb)	
	5998535	-215.0998535	-215.5321350	0.4322815	-0.2009678
	5998535 5998535	-210.4998169 -205.9999542	-210.5978241 -205.7217865	0.0980072 -0.2781677	-0.0465593 0.1350329
	5998535	-201.4999542	-201.2463074	-0.2536469	0.1258793
	5998535	-196.9998169	-196.9413757	-0.0584412	0.0296656
	5998535 5998535	-192.6998596 -188.0998535	-192.4624481 -187.9075470	-0.2374115 -0.1923065	0.1232027 J.1022363
	5998535	-183.5998077	-183.4690399	-0.1307678	0.0712243
	5998535	-178.8998566	-178.8936615	-0.0061951	0.0034629
	5998535 5998535	-174.2999573 -169.3999023	-174.1351166 -169.5427094	-0.1648407 0.1428070	0.0945730 -0.0843017
	5998535	-35.100C977	-34.2124023	-0.8876953	2.5290384
£39.	5998535	-31.0000000	-30.2560120	-0.7439880	2.3999605
	5998535 5598535	-27.8999023 -25.3999023	-27.2572327 -24.8617401	-0.6426697 -0.5381622	2.3034830 2.1187563
	5998535	-23.3999023	-22.9255219	-0.4743805	2.0272751
719.	5998535	-21.6999512	-21.3645477	-0.3354034	1.5456409
	5998535 5998535	-19.9001465 -17.6999512	-19.8291168 -18.6642609	-0.0710297 0.9643097	0.3569303 -5.4480915
	5998535	-213.0998535	-213.5743561	0.4745026	-0.2226667
279.	5998535	-208.3998108	-208.6395416	0.2397308	-0.1150340
	5998535	-204.0999603 -199.6999512	-203.9591370 -199.5998840	-0.1408234 -0.1000671	0.0689972
	5998535 5998535	-195.2998047	-195.2294464	-0.0703583	0.0360258
359.	5998535	-190.8998566	-190.7369385	-0.1629181	0.0853421
	5998535	-186.5998535	-186.3264771 -181.7993317	-0.2733765 -0.5004730	0.1465040
	5998535 5998535	-182.2998047 -177.7998657	-177.3726959	-0.4271698	0.2745329 0.2402531
439.	5558535	-173.5999603	-172.7976379	-0.8023224	0.4621673
	5998535	-169.2999115 -164.3999023	-168.0863342 -163.1274719	-1.2135773	0.7168207 0.7739846
	5998535 5998535	-159.2998657	-158.1249084	-1.2724304 -1.1749573	0.7375754
	5998535	-153.7000122	-152.7749023	-0.9251099	0.6018929
	5998535	-148.0999603	-146.9677582	-1.1322021	0.7644851
	5998535 5998535	-141.7998657 -134.2999573	-140.5634613 -133.2422333	-1.2364044 -1.0577240	0.8719362
	5998535	-125.1998596	-124.7229614	-0.4768982	0.3809095
	5998535	-112.6000977	-113.2555695	0.6554718	-0.5821235
	5998535 5998535	-94.4001465 -77.0998535	-96.2505951 -76.9190216	1.8504486 -0.1808319	-1.9602175 0.2345424
	3998535	-65.3000488	-63.8059235	-1.4941254	2.2880917
659.	5998535	-55.8000488	-55.3491516	-0.4508972	0.8080587
	5998535	-49.5000000	-49.3303070	-0.1696930	0.3428141
	5998535 5998535	-44.8000488 -41.8999023	-44.7638855 -40.9013672	-0.0361633 -0.9985352	2.3831434
259.	5998535	-211.2998657	-211.4673004	0.1674347	-0.0792403
	3998535	-206.8998108	-206.7797089	-0.1201019	0.0580483
	5998535 5998535	-202.5999603 -198.0999603	-202.0983887 -197.5228424	-0.5015717 -0.5771179	0.2913266
	5998535	-193.8998108	-193.0941467	-0.8056641	0.4155051
	3998535	-189.3998566	-188,8037262	-0.5961304	0.3147470
	5998535 5998535	-185.2998657 -180.7998047	-184.3977661 -180.2046814	-0.9020996	0.4868321 0.3291614
419.	5998535	-176.2998657	-175.8610535	-0.4388123	0.2489010
	5998535	-171.9999542	-171.4217529	-0.5782015	0.3361636
	3998535 5998535	-167.4999084 -162.9999084	-166.6016998 -161.9443207	-0.8982086 -1.0555878	0.5362440
	5998535	-158.1998596	-1:57.2647552	-0.9351044	0.5910903
	3998535	-153.1000061	-152.2830658	-0.8169405	0. 3335990
	5998535	-148.1999512 -142.7998657	-147,0353699 -141,8023529	-1.1645613 -0.9975126	0.7858176
	5998535 5998535	-136.6999512	-136.0410156	-0.6589355	0.4820302
	1998535	-130.1998596	-129.5714874	-0.6283722	0.4826210
	1998535	-123.1999512 -115.0000000	-122.7189331	-0.4810181	0.3904369
	1998335 1998535	-115.0000000	-114.8762970 -105.8873901	-0.1237030 -0.7124634	0.1079678 0.6683528
	1998535	-97.0000000	96.5073547	-0.4926493	0.9078813
		-86.8000488	-87.1470947	0.3470459	-0.3998220
	3998535 3998535	-77.5000000 -70.3000488	-78.2887268 -70.7235413	0.7887268 0.4234924	-1.0177116 -0.6024070
139.	39 78535	-63.3999023	-64.2389069	0.8390049	-1.3233319
	1998535	-209.4998627	-210.4296570	0.9297943	-0.4438162
	1998535 1998535	-205.1998138 -200.8999434	-205, 5762 93 9 -201, 00 22 58 3	0.3764801 0.1022949	-0.1834700 -0.0509183
119.	1998535	-196.4999542	-196.6713562	0.1714020	-0.0872275
339.	5998535	-192.3998108	-192.1113434	-0.2884674	0.1499312
	5998535 5998535	=188,1998596 =184,0998535	-187.6489901 -183.3813477	-0.9512495 -0.7185059	0.292 91 70 0.3902805
	1978535	-179.8998108	-179.0443 878	=0.8554230	0.4754994
419.	5998535	-175.6998596	-174.8303986	-0.8694611	0.4948556
	5998535 5998535	-171.1999512 -166.6999054	-170.3227081 -165.9267120	=0.8772430 =0.7731934	0.5124081 0.4638232
	3770333	-160.0999146	-101.0342316	1.9343170	=0.9583499
499.	5998535	-157.5998535	-156.9091644	-0.6906891	0.4382547
	9998535 5998535	-153.1000061 -148.4999542	=152.2447815 =147.42 91818	=0.8552246 =1.0706024	C.5586050
	3996535	-143.5996535	-147,4293518 -142,6966705	=0.9031 830	0.7209442 0.6289579
579.	5998535	-138.4999542	-137.3877869	-1.1121674	0.8030090
	1998535	-133.0998535	-132,4456329	-0.6542206	0.4919299
	9998535 3998535	-127.1999512 -121.0000000	-126.7569580 -121.1032257	-0.4429932 0.1032257	0.3482692 =0.0853109
	5998535	-114.6999512	-114.6038513	-0.0960999	0.0837837
679.	5998535	-107.6000977	-106.8187865	-0.7813110	0.7261246
	9998535 9998535	-100.3999023 -93.3000488	-99.6301270 -93.2831726	-0.7697754 -0.0168762	0.7667090
139.		-86.4001465	-86.8853455	A. A. E. A. D. I. O. E.	A1A56A60 F

BIBLIOGRAPHY

- Akers, W. W., J. F. Burns, and W. R. Fairchild, <u>Ind. Eng. Chem.</u>, 46, 2531 (1954).
- 2. Alder, B. J. and T. E. Wainwright, <u>J. Chem. Phys.</u>, <u>33</u>, 1439 (1960).
- 3. Barieau, R. E., U. S. Bur. Mines Inform. Circ., 8245 (1965).
- 4. Barker, J. A., <u>Lattice Theories of the Liquid State</u>, Pergamon, Oxford (1963).
- 5. Barker, J. A. and D. Henderson, <u>Fourth Symposium on Thermophysical Properties</u>, ASME, New York (1968) p. 30.
- 6. Barner, H. E. and W. C. Schreiner, <u>Hydrocarbon Processing</u>, <u>45</u>, No. 6, 161 (1966).
- 7. Benedict, M., G. B. Webb, and L. C. Rubin, <u>J. Chem. Phys.</u>, 8, 334 (1940).
- 8. Benedict, M., G. B. Webb, and L. C. Rubin, <u>J. Chem. Phys.</u>, <u>10</u>, 747 (1942).
- 9. Bloomer, O. T. and K. N. Rao, <u>Inst. Gas. Tech. Res. Bull.</u>, <u>18</u>, (1952).
- 10. Brown, G. G., M. Souders, and R. L. Smith, <u>Ind. Eng. Chem.</u>, <u>24</u>, 513 (1932).
- 11. Budenholzer, R. A., D. F. Botkin, B. H. Sage, and W. N. Lacey, Ind. Eng. Chem., 34, 878 (1942).
- 12. Burgoyne, J. H., Proc. Roy. Soc., A176, 280 (1940).
- 13. Canjar, L. W. and W. C. Edmister, <u>Chem. Eng. Prog. Symp. Ser.</u>, <u>49</u>, No. 7, 73 (1953).
- 14. Canjar, L. N. and F. S. Manning, <u>Thermodynamic Properties and Reduced Correlations for Gases</u>, Gulf Publishing Co., Houston, Texas (1967).
- 15. Canjar, L. N. and V. J. Peterka, AICHE J., 2, 343 (1956).
- 16. Carnahan, B., H. A. Luther, and J. O. Wilkes, <u>Preliminary Edition</u> of Applied Numerical Methods, Wiley, New York (1964).

- 17. Chu, J. C., N. F. Mueller, R. M. Bushche, and A. S. Jennings, Pet. Processing, 1203 (1950).
- 18. Colwell, J. H., E. K. Gill, and J. A. Morrison, <u>J. Chem. Phys.</u>, 39, 635 (1963).
- 19. Cook, D., J. S. Rowlinson, <u>Proc. Roy. Soc. (London)</u>, <u>A219</u>, 405 (1953).
- 20. Cope, J. Q., W. K. Lewis, and H. C. Weber, <u>Ind. Eng. Chem.</u>, <u>23</u>, 887 (1931).
- 21. Cox, K. W., M. E. Thesis, University of Oklahoma (1968).
- 22. Crain, R. W., Jr., and R. E. Sonntag, <u>J. Chem. Eng. Data</u>, <u>12</u>, 73 (1967).
- 23. Curl, R. F., Jr. and K. S. Pitzer, Ind. Eng. Chem., 50, 265 (1958).
- 24. Cutler, A. J. B. and J. A. Morrison, <u>Trans. Farad. Soc.</u>, <u>61</u>, 429 (1965).
- 25. Dailey, B. P. and W. A. Felsing, J. Am. Chem. Soc., 65, 42 (1943).
- 26. Dana, L. I., A. C. Jenkins, J. N. Burdick, and R. C. Timm, Refrig. Engineering, 12, 387 (1926).
- 27. Dantzler, E. M., C. M. Knobler, and M. L. Windsor, <u>J. Phys. Chem.</u>, <u>72</u>, 676 (1968).
- 28. Deschner, W. W. and G. G. Brown, Ind. Eng. Chem., 32, 836 (1940).
- 29. DeVaney, W. E., B. J. Dalton, and J. C. Meeks, Jr., <u>J. Chem. Eng.</u> Data, 8, 473 (1963).
- 30. Diaz-Pena, M., Personal Communication, November 17, 1967.
- 31. Diaz-Pena, M. and A. Cervera, <u>Thermidynamik-Symposium</u>, Kl. Schafer, Ed., Heidelburg, Germany (Sept. 1967) pp. III, 10, 1.
- 32. Dillard, D. D., M. S. Thesis, Oklahoma State University (1966).
- 33. Dittmar, P., F. Schulz, and G. Strese, <u>Chem.-Ing.-Tech.</u>, <u>34</u>, 437 (1962).
- 34. Douslin, D. R., Personal Communication.
- 35. Douslin, D. R., R. H. Harrison, R. T. Moore, and J. P. McCullough, J. Chem. Eng. Data, 9, 358 (1964).

- 36. Eckert, C. A., H. Renon, and J. M. Prausnitz, <u>Ind. Eng. Chem.</u> Fundamentals, 6, 58 (1967).
- 37. Edmister, W. C. and L. Yarborough, AIChE. J., 9, 240 (1963).
- 38. Eisenstein, A. and N. S. Gingrich, Phys. Rev., 62, 261 (1942).
- 39. Ernst, G., Dr. Ing. Dissertation, Universitat Karlsruhe, Germany (1967).
- 40. Faulkner, R. C., Jr., Ph.D. Thesis, University of Michigan (1959).
- 41. Findlay, R. A., M. Mora, and R. H. Jacoby, Paper presented at the 32nd Midyear Meeting of the American Petroleum Institute's Division of Refining, Los Angeles, California (May 16, 1967).
- 42. Finn, D., Ph.D. Thesis, University of Oklahoma (1965).
- 43. Frank, A. and K. Clusius, Z. physik. Chem., B36, 291 (1937).
- 44. Giddings, J. G., Ph.D. Thesis, Rice University (1965).
- 45. Giddings, J. G., J. T. F. Kav, and R. Kobayashi, <u>J. Chem. Phys.</u>, 45, 578 (1966).
- 46. Goff, J. A. and S. Gratch, <u>Trans. Am. Soc. Mech. Eng.</u>, <u>72</u>, 741 (1950).
- 47. Guggenheim, E. A., Mixtures, Oxford (1952).
- 48. Gunn, R. D., P. L. Chueh, and J. M. Prausnitz, <u>AICHE J.</u>, <u>4</u>, 480 (1958).
- 48a. Harrison, R. H., R. T. Moore, and D. R. Douslin, <u>Thermodynamic Properties of Compressed Gases</u>, Final Technical Summary Report for the period 12 April 1965-14 December 1966, Bureau of Mines, Bartlesville, Oklahoma.
- 49. Hermsen, R. W. and J. M. Prausnitz, <u>Chem. Eng. Sci.</u>, <u>21</u>, 803 (1966).
- 50. Head, J. F., Ph.D. Thesis, University of London (1960).
- 51. Helgeson, N. L. and B. H. Sage, <u>J. Chem. Eng. Data</u>, <u>12</u>, 47 (1967).
- 52. Hill, T. S., <u>An Introduction To Statistical Thermodynamics</u>, Addison-Wesley, New York (1960).
- 53. Hirschfelder, J. O., R. J. Buehler, H. A. McGee, Jr., and J. R. Sutton, <u>Ind. Eng. Chem.</u>, <u>50</u>, 375 (1958).

- 54. Hirschfelder, J. O., R. J. Buehler, H. A. McGee, Jr., and J. R. Sutton, <u>Ind. Eng. Chem.</u>, <u>50</u>, 386 (1958). See corrections, <u>I/EC Fund.</u>, <u>1</u>, 224 (1962).
- 55. Hirschfelder, J. O., C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York (1954).
- 56. Hoxton, L. G., Phys. Rev., 13, 438 (1919).
- 57. Huang, E. T. S., Ph.D. Thesis, University of Kansas (1966).
- 58. Huff, J. A. and T. M. Reed, III, J. Chem. Eng. Data, 8, 306 (1963).
- 59. Johnston, H. L. and D. White, <u>Trans. Amer. Soc. Mech. Eng.</u>, <u>70</u>, 651 (1948).
- 60. Joffe, J., <u>Ind. Eng. Chem.</u>, <u>39</u>, 837 (1947).
- 61. Ibid., 40, 1738 (1948).
- 62. Jones, M. L., Jr., Ph.D. Thesis, University of Michigan (1961).
- 63. Jones, M. L., Jr., D. T. Mage, R. C. Faulkner, Jr., and D. L. Katz, Chem. Eng. Prog. Symp. Ser., 59, No. 44, 52 (1963).
- 64. Joule, J. P. and W. Thomson, Phil. Mag., Ser. 4, 4, 481 (1852).
- 65。 Kay, W. B., <u>Ind. Eng. Chem.</u>, 28, 1014 (1936).
- 66. Kemp, J. D. and C. J. Egan, J. Am. Chem. Soc., 60, 1521 (1938).
- 67. Kistiakowsky, G. B. and W. W. Rice, <u>J. Chem. Phys.</u>, <u>8</u>, 610 (1940).
- 68. Klein, M., Jour. Res. Nat. Bur. Standards-A, 70, 259 (1966).
- 69. Kuloor, N. R., D. M. Newitt, and J. S. Bateman, <u>Thermodynamic Functions of Gases</u>, ed. F. Din, Vol. 2, 115 (1956).
- 70. Leach, J. W., Ph.D. Thesis, Rice University (1967).
- 71. Leach, J. W., P. S. Chappelear, and T. W. Leland, AIChE J., in press.
- 72. Leland, T. W. and P. S. Chappelear, <u>Ind. Eng. Chem.</u>, <u>60</u>, No. 7, 17 (1968).
- 73. Leland, T. W., P. S. Chappelear, and B. W. Gamson, <u>AIChE J.</u>, <u>8</u>, 482 (1962).

- 74. Leland, T. W. and W. H. Mueller, Ind. Eng. Chem., 51, 597 (1959).
- 75. Leung, P. K. and Donald Quon, <u>AIChE J.</u>, <u>12</u>, 596 (1966).
- 76. Lydersen, A. L., R. A. Greenkorn and D. A. Hougen, <u>University</u> <u>Wisc. Eng. Exp. Sta. Rept.</u>, <u>4</u> (1955).
- 77. Mage, D. T., Ph.D. Thesis, University of Michigan (1964).
- 78. Mage, D. T., M. L. Jones, D. L. Katz, and J. R. Roebuck, <u>Chem.</u> <u>Eng. Prog. Symp. Ser.</u>, <u>59</u>, No. 44, 61 (1963).
- 79. Mage, D. T. and D. L. Katz, AIChE J., 12, 137 (1966).
- 80. Manker, E. A., Ph.D. Thesis, University of Michigan (1964).
- 81. Manker, E. A., D. T. Mage, A. E. Mather, J. E. Powers, and D. L. Katz, Proc. Ann. Conv., Natl. Gas Process. Assoc., Tech. Papers, 43, 3 (1964).
- 82. Manker, E. A., A. E. Mather, J. E. Powers, and D. L. Katz, Forth-coming Publication.
- 83. Martin, J. J., Ind. Eng. Chem., 59, No. 12, 34 (1967).
- 84. Masi, J. F., Trans. Amer. Soc. Mech. Eng., 76, 1067 (1954).
- 85. Mather, A. E., Ph.D. Thesis, University of Michigan (1967).
- 86. Mather, A. E., J. E. Powers, and D. L. Katz, <u>Proc. Ann. Conv.</u>, <u>Nat. Gas Process. Assoc.</u>, <u>Tech. Papers</u>, <u>44</u>, 3 (1965).
- 87. Mather, A. E., V. F. Yesavage, J. E. Powers, and D. L. Katz,

 Proc. Ann. Conv., Natl. Gas Process. Assoc., Tech. Papers, 45, 12

 (1966).
- 88. Mather, A. E., V. F. Yesavage, J. E. Powers, and D. L. Katz, <u>Proc. Ann. Conv.</u>, <u>Natl. Gas Process. Assoc.</u>, <u>Tech. Papers</u>, <u>46</u>, 3 (1967).
- 89. Maxwell, J. B., <u>Data Book on Hydrocarbons</u>, D. Van Nostrand, Princeton, N. J. (1950).
- 90. Mikolaj, P. G. and C. J. Pings, Phys. Rev. Letters, 15, 849 (1965).
- 91. Montgomery, J. B. and T. DeVries, <u>J. Am. Chem. Soc.</u>, <u>64</u>, 2372 (1942).
- 92. Nathan, D. I., <u>Brit. Chem. Engr.</u>, <u>12</u>, 223 (1967).

- 93. Natural Gas Processors Suppliers Association Data Book (1966).
- 94. Orentlicher, M., Ph.D. Thesis, University of California (1965).
- 95. Orentlicher, M. and J. M. Prausnitz, <u>Can. J. Chem. Eng.</u>, <u>45</u>, 78 (1967).
- 96. Orye, R. V., Personal Communication, Nov. 22, 1967.
- 97. Papadopoulos, A., R. L. Pigford, and L. Friend, Chem. Eng. Prog. Symp. Ser., 49, No. 7, 119 (1953).
- 98. Partington, J. R. and W. G. Shilling, <u>The Specific Heat of Gases</u>, Ernest Benn Ltd., London (1924).
- 99. Peters, H. F., Petroleum Refiner, 28, No. 5, 109 (1949).
- 100. Pitzer, K. S., <u>J. Chem. Phys.</u>, <u>7</u>, 583 (1939).
- 101. Pitzer, K. S. and G. O. Hultgren, <u>J. Am. Chem. Soc.</u>, <u>80</u>, 4793 (1958).
- 102. Pitzer, K. S., D. Z. Lippmann, R. F. Curl, Jr., C. M. Huggins, D. E. Petersen, J. Am. Chem. Soc., 77, 3433 (1955).
- 103. Plank, R., Z. F. die gesamte Kalte-Industrie, 49, 104 (1942).
- 104. Pople, J. A., Proc. Roy. Soc. A, 221, 498, 508 (1954).
- 105. Potter, J. H. and M. J. Levy, <u>Second Symposium on Thermophysical Properties</u>, ASME, Princeton, N. J. (1962) p. 147.
- 106. Prausnitz, J. M. and R. D. Gunn, AICHE J., 4, 430 (1958).
- 107. Prigogine, I., Molecular Theory of Solutions, North-Holland, Amsterdam (1957).
- 108. Prigogine, I. and R. Defay, <u>Treatise on Thermodynamics</u>, Longmans, London (1954).
- 109. Price, A. R. and R. Kobayashi, J. Chem. Eng. Data, 4, 40 (1959).
- 110. Reamer, H. H., B. H. Sage, and W. N. Lacey, <u>Ind. Eng. Chem.</u>, <u>41</u>, 428 (1949).
- 111. Reamer, H. H., B. H. Sage, and W. N. Lacey, <u>Ind. Eng. Chem.</u>, 42, 534 (1950). See corrections, Ind. Eng. Chem., 42, 1258 (1950).
- 112. Redlich, O. and J. N. S. Kwong, Chem. Rev., 44, 233 (1949).

- 113. Reid, R. C. and T. W. Leland, <u>AIChE J.</u>, <u>11</u>, 228 (1965); <u>Ibid.</u>, 12, 1227 (1966).
- 114. Rice, S. A. and Peter Gray, <u>The Statistical Mechanics of Simple Liquids</u>, Interscience, New York (1965).
- 115. Roberts, F. D., M. E. (Ch.E.) Thesis, University of Oklahoma (1968).
- 116. Roebuck, J. R., Phys. Rev., 2, 299 (1913).
- 117. Roof, J. G. and J. D. Baron, J. Chem. Eng. Data, 12, 292 (1967).
- 118. Rossini, F. D., et al., <u>Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds</u>, Carnegie Press, Pittsburgh, Pa. (1953).
- 119. Rotenberg, A., <u>J. Chem. Phys.</u>, <u>43</u>, 1198 (1965).
- 120. Rowlinson, J. S., <u>Liquids and Liquid Mixtures</u>, Butterworths, London (1959).
- 121. Rowlinson, J. S., Rept. Progr. Phys., 28, 169 (1965).
- 122. Rowlinson, J. S., <u>Ind. Eng. Chem.</u>, <u>59</u>, No. 12, 28 (1967).
- 123. Rutherford, W. M., Soc. of Pet. Engrs. J., 2, 340 (1962).
- 124. Sage, B. H., H. D. Evans, and W. N. Lacey, <u>Ind. Eng. Chem.</u>, <u>31</u>, 763 (1939).
- 125. Sage, B. H., E. R. Kennedy, and W. N. Lacey, <u>Ind. Eng. Chem.</u>, 28, 601 (1936).
- 126. Sage, B. H., W. N. Lacey, and J. G. Schaafsma, <u>Ind. Eng. Chem.</u>, 26, 214 (1934).
- 127. Sage, B. H., J. G. Schaafsma, and W. N. Lacey, <u>Ind. Eng. Chem.</u>, 26, 1218 (1934).
- 128. Sage, B. H., D. C. Webster, and W. N. Lacey, <u>Ind. Eng. Chem.</u>, 29, 1309 (1937).
- 129. Sahgal, P. N., J. M. Geist, A. Jambhekar, and G. M. Wilson, Intern. Advan. Cryogen. Eng., 10, 224 (1965).
- 130. Scheibel, E. G. and F. J. Jenny, <u>Ind. Eng. Chem.</u>, <u>37</u>, 990 (1945).
- 131. Sciance, C. T., C. P. Colver, and C. M. Sliepcevich, <u>Hydrocarbon Processing</u>, 46, No. 9, 173 (1967).

- 132. Sehgal, I. J. S., V. F. Yesavage, A. E. Mather, and J. E. Powers, Hydrocarbon Processing, 47, No. 8, 137 (1968).
- 133. Starling, K. E., Personal Communications, April, 1968.
- 134. Starling, K. E. and J. F. Wolfe, Presented in AIChE, Free Forum, Detroit, Michigan, December 4-8, 1966.
- 135. Stearns, W. V. and E. J. George, <u>Ind. Eng. Chem.</u>, <u>35</u>, 602 (1943). (See corrections Ind. Eng. Chem, <u>38</u>, 1322 (1946).
- 136. Stewart, W. E., S. F. Burkhardt, and D. Voo, paper presented at national meeting of AIChE, Kansas City, May 18, 1959.
- 137. Stiel, L. I., <u>Ind. Eng. Chem.</u>, <u>60</u>, No. 5, 50 (1968).
- 138. Strickland-Constable, R. F., Proc. Roy. Soc. (London) A209, 14 (1951).
- 139. Tester H. E. in <u>Thermodynamic Functions of Gases</u>, ed. F. Din, Vol. 3, 1 (1956).
- 140. Thompson, W. H., W. G. Braun, and M. R. Fenske, <u>Documentation of the Basis for Selection of the Contents of Chapter 7 in Technical Data Book Petroleum Refining</u>, American Petroleum Institute, New York (1966).
- 141. Van Ness, H. C., <u>Classical Thermodynamics of Non-Electrolyte</u> Solutions, 45, Pergamon, London (1964).
- 142. Vennix, A. J., Ph.D. Thesis, Rice University (1967).
- 143. Vennix, A. J., T. W. Leland, Jr., P. S. Chappelear, and R. Kobayashi, Presented at 47th NGPA Annual Convention, March 19-21, 1968, New Orleans.
- 144. Wiener, L. D., <u>Hydrocarbon Processing</u>, <u>46</u>, No. 4, 131 (1967).
- 145. Wiener, L. D., Personal Communications, April, 1968.
- 146. Yarborough, L., Ph.D. Thesis, Oklahoma State University (1964).
- 147. Yarborough, L. in Engineering Data Book, Natural Gas Processors Suppliers Assoc., Eighth Edition (1966), p. 203.
- 148. Yarborough, L. and W. C. Edmister, AIChE J., 11, 492 (1965).
- 149. Yen, L. C., Personal Communication, April 24, 1967.
- 150. Yen, L. C. and R. E. Alexander, AIChE J., 11, 334 (1965).

- 151. Yesavage, V. F., A. W. Furtado, and J. E. Powers, <u>Proc. Ann. Co</u> Conv., <u>Nat. Gas Process. Assoc.</u>, <u>Tech. Papers</u>, <u>47</u>, 3 (1968).
- 152. Yesavage, V. F., A. E. Mather, D. L. Katz, and J. E. Powers, <u>Ind.</u> <u>Eng. Chem.</u>, <u>59</u>, No. 11, 35 (1967).
- 153. York Div. of B-W Corp., <u>Thermodynamic Properties of Propane-Refrigerant 290</u>, York, Pa. (1968).

