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Abstract

There are methods such as preflow methods(for example, the preflow push algorithm by
Goldberg and Tarjan[2, 3]) which can be used directly to find maximum flows only in
networks with zero lower bounds. We describe a simple two phase approach for finding a
maximum flow in a network with nonzero lower bounds, using such an algorithm.



Let G = (N, A4,6,k,3, f) denote a pure directed single commodity flow network with
N = set of nodes; A = set of arcs; £ = (£;;), k = (ki;), the vectors of lower and upper
bounds(upper bounds are also called capacities) for arc flows in G satisfying ¢ £ k, ¢ # 0;
3,1, the source and sink nodes in G. A feasible flow vector f = (fij) is a vector of flow f;;
defined over arcs (z,7) € A satisfying

(£ f<k (1)
0, ifi#3,1

f(l,N)—f(N,Z)= v, fi=3 (2)
—v, ifi={

where for any i € N, f(i,N') = sum of f;; over j such that (i,j) € A and f(N,i) = sum
of f;; over j such that (j,7) € A.

The maximum flow problem in G is to find a feasible flow vector with the maximum
possible value. The conditions (1) are the bound constraints. (2) are known as the flow
conservation eqations.

If there are two or more parallel arcs joining the same pair of nodes in G, they can
all be combined into a single arc with the same orientation, with bounds obtained by
summing up the bounds on the combined arcs. So, without any loss of generality, we
assume that there are no parallel arcs in G.

There is one significant difference between networks with zero lower bounds, and those
with nonzero lower bounds. If the lower bound vector is zero, there is always a feasible
flow vector, since the vector 0 is itself feasible. If the lower bound vector is nonzero, it is
possible that there is no feasible flow vector.

There are a class of methods for the maximum flow problem in networks with zero
lower bounds based on preflow. A preflowis a vector defined on A satisfying (1); and (2)
as < inequalities for i # § or £, instead of equalities as required. An example of this
type of method is the recently developed preflow push algorithm due to Goldberg and
Tarjan [2, 3]. These methods obtain a sequence of preflows and terminate only when the
preflow becomes a feasible flow vector, and at that time it will be a maximum flow. That
is why they do not detect infeasibility directly, and are thus applied only for solving the
maximum flow problem in networks with zero lower bounds.

In this note we develop a simple two phase approach for tackling the maximum flow
problem in a network with nonzero lower bounds, using such an algorithm.

Given a feasile flow vector f = (f;;) in our network G, a path P from & to ¢ in G is
said to be a flow augmenting path( FAP ) with respect to f if

fii < ki; for all forward arcs (i,) on P

fii > }é,-j for all reverse arcs (z,7) on P
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The classical result of Ford and Fulkerson[l] states that a feasible flow vector in a
network is a maximum value flow if and only if there exists no FAP from the source to
the sink with respect to it. This result is the one most commonly used to check whether a
given feasible flow vector is a maximum value one, and is the basis for several augmenting
path methods for the maximum flow problem.

Given a feasible flow vector f = (f;;) in G, construct a set of arcs denoted by A(f)
by the following rules:

(i) for each (i,7) € A satisfying fi; < ki, include the arc (,7) in A(f) with a + label,
lower bound 0, and capacity(or upper bound) k;; = ki; — fi;. This + labeled arc
(¢,7) in G(f) is said to correspond to the arc (¢,7) in G.

(ii) for each (z,j) € A satisfying f;; > Zij, include the arc (j,7) in A(f) with a — label,
lower bound 0, and capacity &j; = f;; — £;;. This — labeled arc (j,7) in G(f) is said
to correspond to the arc (7,7) in G.

A(f) is called the set of residual arcs, and the network G(f) = (V,A(f),0,& =
(ki;),3,1) is known as the residual network with respect to f. Notice that |A(f)| £ 2|4,
i.e., the number of arcs in the residual network is at most twice the number in the original
network.

Let Algorithm I refer to any algorithm such as preflow push algorithm which can
process directly only maximum flow problems in netowrks with zero lower bounds. The
two phase procedure for processing the maximum flow problem in our network G with
lower bound vector £ # 0 by Algorithm 1 is the following:

Phase I Transform the problem of finding a feasible flow vector in G into that of finding
a maximum flow in an augmented network G* in which lower bounds for all arc flows
are zero, by well known classical techniques( See Ford and Fulkerson[1] or Murty|4,
section 2.6] ). Solve the maximum flow problem in G* by Algorithm 1 directly.
From this either conclude that there is no feasible flow vector in G and terminate,
or obtain a feasible flow vector in it. Suppose a feasible flow vector f = (f;;) of
value ¥ has been found in G. Go to phase II.

Pase II Construct the residual network G(f) as described above. Since the lower bound
vector in G(f) is 0 by definition, a maximum flow in G(f) from § to f can be found by
Algorithm 1 directly, which do. To avoid confusion with flow vector in the original

network G, we denote the maximum flow obtained in G(f) by § = (gy,), and its
value by w. Lower bounds in the residual network G(f) are 0, and for a pair of
nodes p, g, if there are arcs (p,q) and (g,p) both with positive flows in g, then the
flows on them can be canceled(i.e., replace the larger of g,,, g,, by their difference

and the smaller by 0) and at least one of these flows converted to 0, leading to
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another feasible flow vector in G(f) of the same maximum value. We assume that
this is done. So, without loss of generality, we assume that for any pair of nodes,
the vector g has positive flows in at most one of the two orientations for arcs joining
them.

Define the flow vector f = (f”) in G, where for (¢,5) € A

fi; =

f;‘j + gij, if there is a + labeled corresponding arc (i, ;) in G(f) with g;; > 0
fij = Gji, if there is a — labeled corresponding arc (j,4) in G(f) with g;; > 0
fijs otherwise

Then f is a maximum value feasible flow vector in G and its value is o +w. Terminate.

THEOREM The flow vector f obtained in Phase II of the above procedure is a mazimum

value

feasible flow vector in G.

PROOF Since f is a feasible flow vector in G of value #; and § is a feasible flow vector of

value

w in G(f), the fact that f is a feasible flow vector of value & + w follows from the

flow conservation equations satisfied by f_and g in the respective networks G and G(f),
and the definition of upper bounds in G(f).

Now, to show that f is a amximum flow in G, suppose not. Then there must exist an
FAP from 3 to { with respect to f in G. Suppose it is P. We will now show that using P
we can construct an FAP from § to ¢ P, in G(f) with respect to g.

1. 1

f (i,5) is a forward arc on P with f;; = f;;, we have Jfii < kij, so arc (1, 7) exists
in G(f) with + label and capacity ki; — fi; > 0, and since f;; = f;;, we must have
= 0. So put (z,7) as a forward arc on P;.

If (¢,7) is a forward arc on P with f,] > fii, form the definition of f (t,7) must be
a + labeled arc in G(f) with g;; = fii = fi; > 0, and since fij = fij + gij < kij, we
have g;; < k,, f,J = £;j. So put (3,7) as a forward arc on P;.

If (¢,5) is a forward arc on P with f,’j < fi;, from the definition of 7, (j,t) must be
a — labeled arc in G(f) with g;; > 0. Put (j,7) as a reverse arc on P;.

If (4, 7) is a reverse arc on P with fi = Fiiy we have f;; > £, so arc (j,7) must be a
— labeled arc in G(f) with capacity kj; = f;; — £;; > 0, and from the definition of
fs gj.- = 0. Put (j,) as a forward arc on P;.

. If (1,7) is a reverse arc on P with f,J > fi;, from the definition of f, (2,7) must be

a + labeled arc in G(f) with g;; = f.] fi; > 0. Put (i,) as a reverse arc on P;.



6. If (¢,7) is a reverse arc on P with f,J < f.], from the definition of f, (], i) must be
a — labeled arc in G(f) with gj; = fij — fi; > 0; and since f;; — g;; = fij > b, we
have g;; < fij — £ij = kji. Put (j,1) as a forward arc on P;.

It can be verified that the path P; constructed using statements 1 to 6 above is a
path from § to { in G(f), with the forward, reverse orientations for arcs on it as specified
in these statements, and that it is an FAP from 3 to { in G(f) with respect to g. This
contradicts the hypothesis that g is a maximum value flow from § to tin G(f). So there

does not exist any FAP from 3 to { in G with respect to f Hence f is a maximum value
flow in G. §

The theorem shows that the two phase procedure described here always finds a max-
imum flow in the given network G.
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