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THE VELOCITY OF A FLUID MASS IMBEDDED IN
ANOTHER FLUID FIOWING IN A POROUS MEDIUM

by
Chia-Shun Yih

The University of Michigan
and Consultant to Huyck Felt Co.

ABSTRACT

The velocity of a fluid mass imbedded in another fluid, which
is of a different viscosity and a different specific weight and flowing
in a porous medium under a prevailing uniform pressure gradient, is in-
vestigated. The fluid mass may take the form of a circular or elliptic
cylinder, a sphere, or an ellipsoid, and the orientation of the fluid
mass, if not sphereical, is completely arbitrary with respect to both
the direction of the pressure gradient and that of gravity. Exact closed
solutions are obtained. The results for two-dimensional flows are ap-

plicable to Hele-Shaw cells.



1. INTRODUCTION

In this paper we shall deal with the velocity of a fluid mass
imbedded in another fluid flowing in porous media. The fluid mass may
take the form of a circular or elliptic cylinder, a sphere, or an ellips-
oid. The viscosity and the specific weight of the fluld mass may differ
from those of the ambient fluid, and the orientation of the cylinder or
of the ellipsoid may be entirely arbitrary with respect to the direction
of the prevailing pressure gradient and to the direction of gravity.

Exact closed solutions for the velocity of the fluid mass are obtained
for the cases of the elliptic cylinder and of the ellipsoid, and the solu-
tions for a circular cylinder and for a sphere follow as special cases.

Polubarinova-Kochina and Falkovich (1951) referred to solutions
for the velocity in porous media of a fluid mass in the form of an ellips-
oid of revolution. These solutions were presented in a more general form
in the work of Taylor and Saffman (1959). Taylor and Saffman (1959) also
considered the speed of a circular or elliptic bubble moving in a Hele-
Shaw cell. Their solutions for these two cases are for two-dimensional
flows only, because the velocity normal to the walls of the Hele-Shaw cell
is necessarily zero. These solutions were obtained as limiting cases of
a bubble moving in a Hele-Shaw cell of finite width, as the width ap-
proaches infinity, and not in the direct way used in this paper. The
solution of Taylor and Saffman for the velocity of the elliptic bubble
is further specialized in that the motion of the bubble is parallel to

either one of its axes.
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The main justification for writing this paper is that the solu-
tion for the general ellipsoid and the general solution for the elliptic
cylinder are new, as far as the writer is aware, and that they bring out
the very interesting behavior of ellipsoidal or elliptic-cylindrical
masses of fluid in porous media. A minor Jjustification is that the solu-
tions for all the cases, general or special, are presented in more direct
and explicit forms than hitherto. In principle, the solution for the
elliptic cylinder can be derived from the one for the general ellipsoid.
But in practice this derivation is not simple. Therefore the solution
for the elliptic cylinder has been derived separately.

The problems studied bear on the problem of extraction of oil
from the ground in the presence of water, and on the problem of water re-
moval encountered in the paper industry. In the latter problem air and
water are exuded from a felt carrying a wet paper sheet and paésing
through two rollers, and it is important to find out how much faster the
air moves relative to the water through the porous media offelt and

paper sheet.



2. GOVERNING DIFFERNTIAL SYSTEM

Cartesian coordinates x, y and z will be used. The coordinate
axes are fixed with respect to the fluid mass under consideration. The
orientation of the axes will be specified in each case to be considered.
The x'-axis will be taken along the general direction of flow of the am-
bient fluid. The direction cosines of the x'-axis with respect to the
x-y-z co-ordinates will be denoted by o', B', and y'. The Z-axis will
be taken in a direction opposite to that of the gravitational accelera-
tion. Its direction cosines will be denoted by &, B, and 7.

Fluid flow in porous media is governed by Darcy's law, which

states that

L) = - (& & 5) (0+0e), (1)

in which pu 1is the viscosity of the fluid,_ p 1s its density, k 1is
the permeability of the porous medium, assumed constant, p is the pres-
sure, g the gravitational accerlation, and u, v, and w are the velo-
city components in the directions of increasing x, y, and 2z, respec-

tively. The equation of continuity is, if the fluid is incompressible,

u + o + o _ 0. (2)

dx Jdy oz

If p and k are constant, (1) and (2) can be combined to form the

single equation

52 2 52
3%2 + Sy2 + 322 > ¢ =0, (3)

in which



O =p + peZ (4

is a potential.

The most important fact about (3) is that it is linear. One of
the conditions at the boundary of two fluids in contact is that p should
be continuous. From (L) it can be seen that this condition will be linear
in @, although not necessarily homogeneous in ¢, The linearity of (3)
and the boundary condiﬁions allow solutions to be superposed, provided any
nonhomogeneity of the boundary conditions in ¢ is properly taken into
account. Since the interface of the two fluids is not specified a priori,
it is necessary to have another boundary condition at the interface. That
condition is a kinematic one, and follows from the fact that the velocity
component normal to the interface must be the same for both fluids. Since
the flow is governed by the Laplace equation, the tangential velocities
at the interface will not be the same for the two fluids. In reality, the
tangential velocity changes from one value for one fluid to another for
the other fluid in a very short distance comparable to the pore size of
the medium. Hence the slippage at the interface is an idealized situa-

tion closely representing reality.



3. VELOCITY OF A CYLINDRICAL MASS OF ELLIPTIC CROSS SECTION

The x-axis will be assumed to coincide from the axis of the
elliptic cylinder. The y-axis coincides with the major axis and the z-

axis with the minor axis of the ellipse

A

.,
2
a

=1, (5)

U’IN
o

which describes the cross section of the elliptic cylinder under considera-
tion.

Consider now a flow of the ambient fluid with velocity U' in
the x'-direction at infinity. The component of U' in the x-direction
1s U; = a'U'. Since

X
¢

:Of)

the first of equations (1) can be written

Eu:—é—?—— 04
k ox F8

For the ambient fluid,

QE _ H

ox :;

Ul + plgoz

For the fluid mass,

op M2
- == =— U, + pr&QX
x k =@ 2

Hence the continuity of p at the interface demands that

u k(p; - pr)eQ
U, = 1 Ul + L 2 (6)
Ho Ho
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This is in fact true whatever the cross section of the cylinder. For

(Dl - p2)a =0, (6) reduces to

by
Up = —= Uy, (7)
Ko
in agreement with the previous result of Yih (1961).
For the motion of the cylinder in the directions of y and z,

it is advantageous to introduce the elliptic co-ordinates ¢ and 1.

They are connected with y and 2z by
y + iz = ¢ cosh (¢ + in),
or

ccosh ¢ cos 1, z=csinh ¢ sin 7. (8)

o~
I

1}

On the ellipse, t = £o, Dbecause (5) and (8) coincide with

Y
I

c cosh g/, b =c sinh ¢,

which defines ¢ and g, 1in terms of a and b. The flow caused by a
velocity AV 1in the y-direction relative to the ambient fluid can be

described by
b+ iy = ce (& I

in which § 1is the stream function, and is conjugate to ¢. If, as it
will turn out to be the case, the fluid cylinder moves as a solid body,

the kinematic boundary condition on the ellipse is

¥y = - AVz + constant.



Since
¥ = - Ce™8 sin 7,

this boundary condition is satisfied if

ce 80 = Avc sinh Eo
Thus
1/2
Nbc a+b
C = = AVb
a -b (a - b) ’
and
b = ce"€ cos 1.
On the ellipse
-to b
b = Ce cos 1 = AV (tanh ¢q)y = S &y (9)

Similarly, if the velocity in the z-direction of the cylinder

relative to the ambient fluid is AW,

¢ + iy = ipe ~(E +In)

with
1/2
a+b
D= aia (2127
and
a
q) ) £z, (10)



8-

The components of the velocity U' in the coordinate directions are o'
u', ' U', and y' U'. These will be denoted by Up, V;, and W;. Now,

on the ellipse, with AV =V, - V7 , restoring the factor u/k P

0p = %} [-Vy + (Vé - V;) by/al, (11)

K2
- -k— VQY; (12)

b2

if the elliptic cylinder is assumed to move as a solid body with velocity

components UE’ \') and W,. Continuity of p then demands that

27 2

B H2
= [y + (Vo - Vy)by/al -piepy = - == Voy - poey, (13)
which gives
ui(a + o) ak(py - pp)ep
V, = Y vy o+ 1 2 (14)
Similarly,
uy(a + b) bk(py - po)eY
W, = e Wy L2 (15)
p_la + ugb }_,Lla. + pgb

The expression for U, is still given by (6). From (6), (14), and (15)
it can be seen that the velocity of the cylinder is independent of its

size, although it does depend on its shape.

If Py = Pos then

W _wpib tper W (8 -0) (be - w)y W

V2 Hi2 + pgb Vl poa + pgb Vl

If up <pjp, then since a >Db, we have

W W
V2o

Vo V1
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so that in the y - z plane the cylinder will not move in the same direc-
tion with the ambient fluid, but will move more closely to the major
axis of the ellipse. The reverse is true if Ho > Moo This is indeed a
very interesting situation.

If U' =0, then

Uy 0 Vy 0 Wy = (Hlb + Hga)a DupEB 1 pgbY

so that the cylinder will not move in the direction of gravity, but will
have a velocity deviating from that direction toward the y-axis, and even
more toward the x-axis. In other words, it will drift in such a way as
to favor the axes of the cylinder in the order of their length: «, a, and
b.

The solution for the special case of a circular cylinder can be

derived from (13) and (14). The results are {f),

2 k(p7 - pn)
v, - — Ly 4 ey - o) (16)
K1 * Ko Hy * Ho
and
. 2uq . k(pl - 02)87 (17)
p=——— W . .
By * o By o

For pp =0 and (p -p ) B =0,V =2V, in agreement with the result

of Taylor and Saffman.

From (6), (16), and (17), it can be seen that the velocity of
the cylinder is entirely independent of its size, and that, when the am-
bient fluid is at rest (i.e., if U' = 0), the velocity of the cylinder
is simply k(py - pp)g/(p1 + up), in the direction opposite to that of
gravity if pq >py, and k(py - p1) & (uy + pp) in the direction of

gravity if p, > Py-



L, THE VELOCITY OF AN ELLIPSOIDAL MASS

Let the coordinate axes be taken along the axes of the ellipsoid,
and the origin be located at its center., Then the fluid mass is an ellip-

soid the surface of which is described by

o
PO

-1, (18)

+
O,N
ol o

o |i><
PO
%l

and the potentials for a velocity AJ, AV, and AW of the ellipsoidal

mass relative to the ambient fluid is, respectively,

o0

by [ B (19)
2 - oy ) (8% +2)a
(o]
b - 8be_ pyy gdk (20)
2 - B, y (b5 +20)A
and
o0}
abc dr '
= —=22 AWz f e (21)
f 2 - 7, y (e + 2)a
in which
00 oo}
a, = abc k/P ax s Bo = abc \jp ax s
o o (a2 + Nn o (b2 + 2)A
00
da
y = abc f ’ (22)
o 0o (C2 + }\,)A
and

p={(a®+2) (0% +2) (B + x)}l/2

-10-
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The co-ordinate A 1is the first of the so-called ellipsoidal co-ordinates

A, u, and v, which are roots of the cubic equation in @,

for every point (x, y, z). For the ellipsoid given by (18), A = 0 on the
surface. On the assumption that the ellipsoid moves as a solid body, the
kinematical boundary condition at the interface (that the normal velocity
must be the same) is satisfied by the solutions (19), (20), and (21). On

the ellipsoid,

for the three modes of motion. For the motion parallel to the x-axis,

M1 %o
=——'UX+ U-UX]
b=7[-U 2_%(2 1)

for the ambient fluid and

for the ellipsoidal fluid mass, assumed in solid-body translation. Hence

the continuity of pressure at the surface of the ellipsoid demands that

M1 )
— [-Uyx +
k[ 1" 70

Ho
(UE - Ul)X] -gplax = - 7; UgX - gpgaX,

(23)

(0]

so that

20101 + (2 - o) kg (p1 - pp)a
U2 _ 1¥1 O 1 2 . (24)
Goul + (2 - ao)ug
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Similarly,
2uVq + (2 - kg -
v, - uiVi + (2 - By) kg (p1 - p2)B (25)
Bor1 + (2 - Bolup
and
W, = 2u1M + (2 - 70) k& (p1 - P27 (26)

Ty + (2 - 7 )u,

For the case P, = Poy

Us Vo W
25’251
uy VoW

if o < Hqs and

U, YV, W
2o V2 %
Uy V10
if Ko > Ko since aj <B, <7, - This is indeed a very amusing situa-

tion. For the case U' =0, so that U; =V, =W, =0,

. . _ Q . B . 4
U2 . V2 . W . N °
Qo Po 70

My o+ My o+ m
2-a, + "2 2-p, 't T 2.

Hp *+ B2

¢

Since o < Bo < Yor the direction of the velocity of the ellipsoid will
deviate from that of gravity toward the directions of the longer axes,
i.e., toward the direction of y and even more toward the direction of

x, whether p, 1is greater or less than p;. The independence of the sign
of Hy - Hp 1s due to the fact that the inequality of the three axes is
not merely a measure of the inequality of the resistance to flow, as in
the case Py = Po, but is also a measure of the inequality of the moti-

vating force in the three directions, when pq # pp.
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For the special case of a sphere, Qa, =B, = 7, = 2/3. Hence

(20), (24), and (25) become

3K 2kg(p1 - p2)
Uy, Vs, W) = ——>— (U,, V., W.) + a, y). (26

If puo, =0 and pj; = po, Up = 3Up, in agreement with Taylor and
Saffman's result, If U' = O, the sphere moves in the direction of gravity
or in a direction opposite to it, according as Py > Py or Ps < Py~ In
either case the speed is

2kg | p1 - pPp




5. DISCUSSION

In Sections 3 and 4, the fluid mass has been assumed to move
as a solid body, hence without change of form, and a solution is possible
because, in the case of an elliptic cylinder, y can be cancelled in
(13), and in the case of an ellipsoid, x can be cancelled in (23).
These are very special situations, and the solutions obtained are very
probably the only ones corresponding to solid-body motion of the fluid
mass, The stability of the fluid motion corresponding to these solutions

1s another question.

6. APPLICATION TO HELE-SHAW CELLS

Since Hele-Shaw cells provide a means of experimentation on
flows in porous media, it may be mentioned that the results of Section
3 can be verified in the laboratory by the use of a Hele-Shaw cell. The
flow is necessarily two dimensional, since the axis of the cylinder is
necessarily perpendicular to its direction of motion. The direction of
gravity may be related in any arbitrary fashion to the direction of the
general flow of the ambient fluid and to the direction of the axis of the
cylinder. However, gravity effects in the direction of the cylinder must
be ignored, since the walls of the cell prohibit any flow in that direc-
tion. The error is a small since the spacing of the walls of the cell is
supposed tb be so small that any change of hydrostatic pressure over the
thickness is small compared with the change of pressure from place to

place in the cell, in a plane parallel to the walls.

=14
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Figure 1. Definition sketch for the case of an elliptic cylinder. The
direction cosines of gravity is o, B, and y. Those of U'
are ', B', and r'.



Q) ~=t

Figure 2. Definition sketch for the case of an ellipsoid. The direction
cosines of gravity and of U' remain the same as in Figure 1.



