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1. INTRODUCTION

The instability of stock on a Fourdrinier wire occurs as it
issues from the slice, as it passes over the table rolls, and especially
immediately after it leaves the table rolls. There are many causes for
the instability. On top of the table rolls the cause of instability is
the centripetal and downward acceleration of the fluid, which can be
many times as great as the gravitational acceleration. A paper dealing
with this was published in the Proceedings of the Royal Society by
Yih(l’e) with supporting experimental data. At the places where the
streamlines are curved and the fluid is slowed down away from the center
of the curvature, instability may take the form of the formation of
Taylor-Gortler vortices. A paper dealing with this possibility was pub-
lished by Yih and Debler in 1961.(2)

Measurements of the growth of disturbances after the table roll
were made by Spengos,(B) who also obtained some preliminary measurements
on the rate of growth of the disturbances over the table roll. But the
rather violent instability of the stock after the table rolls has so
far not been satisfactorily explainéd. This paper provides a theory,
with some supporting experimental data, which explains the main cause
of instability after the table rolls, and constitutes a final report to
the Technical Association of Pulp and Paper Industries which has gener-
ously sponsored the study of free-surface instability at the University

of Michigan during the years 1957-59 and 1960-62.



2. A DESCRIPTIVE EXPLANATION OF THE CAUSE
OF POST=-ROLL INSTABILITY

Consider a layer of liquid in a container and in wave motion,
as shown in Figure 1. Suppose that at time t = O the wave attains a
maximum height, when the acceleration of the container is a], directed
upward. This acceleration is maintained until the free surface is flat,
at which time all the energy of the wave motion is in the form of kinetic
energy. If at this time the acceleration is suddenly changed to ap,
which is less than aj, then as the next maximum wave height is attained
it would have to be greater than the previous maximum, because the po-
tential energy relative to the container will remain the same, whereas
the effective gravitational acceleration has been decreased from g + aj
to g + ap. The reverse is true if ap 1s greater than aj, as shown
in Figure 2. It is also evident that the phase of the waves 1s important
at the moment of change of the acceleration, whether it is decreased or
increased. Since the waves on the stock as it moves past the table rolls
are in all possible phases, a change of acceleration will make certain
components of the waves unstable. The change of acceleration is experi-
enced by the stock as the wire carrying it leaves the table rolls, above
which it has undergone a downward acceleration, and goes through a region
of reverse curvature, in which it is subjected to an upward acceleration.
The first author owes this idea to a stimulating discussion with Mr. J.T.
Justus, who explained the instability in terms of pressure at the bottom
of the container. A more precise explanation will be given by a mathe-

matical analysis, which will be presented in the following two sections.
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The foregoing consideration of the instability phenomenon, for
the first time, also explains in physical terms the observation of Faraday
in 1831 (Phil. Trans., p. 319) that the frequency of liquid oscillations
was only half that of an oscillating vessel containing the liquid, since,
as the liquid accomplishes half an oscillation (Figure 1), the vessel has
already accomplished one oscillation, ready to start the next cycle by
changing ap to a; again. (The change in acceleration occurs both at

extreme wave heights and at zero wave heights.)



3. FORMULATION OF THE DIFFERENTIAL EQUATION GOVERNING
FREE~-SURFACE INSTABILITY

Wave motion in a layer of liquid of uniform depth will be
considered. The formulation of the problem is identical to that of
Benjamin and Ursell(5) for instability due to periodic acceleration.
In fact, the qualitative explanation given in the previous section
makes it possible to understand in physical terms the mathematical re-
sults obtained by Benjamin and Ursell.

The hydrodynamic equations of motion with reference to the

container are, with viscous effects neglected,

D _ 10 o 0 e
D—_t(u-:vyw) = E(S—}-C-J -55’ 5;) D+ (0,0, g a); (l)

in which & 1s the acceleration, p 1s the density, p 1is the pressure,
g 1s the gravitational acceleration, and u, v, and w are the velocity
components in the directions of increasing x, y, and z respectively.

The coordinates x, y, and z are Cartesian coordinates, and the symbol

Q stands for

Dt
d d d 9

C +ul +v& +wl,
ot ox oy dz

and is the operator for substantial differentiation. From Equation (1),

it can already be seen that when the frame of reference is taken to be

the container, the body force g per unit mass in the negative z-direction
is replaced by g + a, so that the potential energy with respect to the
container is based on g + a instead of g. Although the concept of po-

tential energy is meaningful only if a is constant, the explanation based

e
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on constant a given in the last section is qualitatively applicable
to the case of variable acceleration.

The unknowns in (1) are u, Vv, W, and p. Since there are only
three equations in (1).a fourth one is needed. This is the equation of

continuity

+ =2 =

U, OV, oW_g (2)
ox Jdy Oz

Now Equations (1) are nonlinear, and are very difficult to solve although
the number of equations is now sufficient with the addition of (2). For-
tunately, the theorem of Helmholtz and Kelvin on the persistence of irro-
tationality is valid here because the acceleration a of the container
can only be time-dependent, so that the effective body force with compo-
nents (0, O, =-g-a) is conservative, i.e., its curl is zero. This can

be demonstrated quite simply. With the vorticity components denoted by

oW _ v ou _ ow ov _ du
S oe—— O = oem— ™ e o eme— " — 5
: dy oz’ L dz  dx’ ¢ dx oy (5)
equations governing the vorticity of the fluid can be obtained from (1)

by cross-differentiation. For instance, with the second and third equa-

tion in (1) written as

N 4ot - wt = - (B WPy ¢
ot ue - ay(p 2 ) )
%% -un + vf = - %E(g + Eéiggiﬂg) - (g+a), (5)

(5) can be differentiated with respect to y and (4) differentiated

with respect to z. Utilizing (2) and the identity

ot -
%% + %% + 5% =0 ,



the result can be reduced to the form

Dt : ox T oy + ¢ oz (6)
Similarly,

D__T]_=§6_V §X+ é‘_’,

Dt ox T oy ‘ oz (7)

DE _p QW OV, OV 8

Dt : ox T oy ¢ dz (8)

Now if the flow starts from an irrotational state, & =n =¢ =0 every-
where at t = 0. Then (6), (7), and (8) state that the substantial de-
rivatives of €&, n, and { are zero, or that the true derivatives of &,
M, and { of each particle as we follow its motion are zero. This being
ture of every particle originating from an irrotational state, the vorti-
city of every particle will remain zero, and the persistence of irrota=-
tionality is demonstrated. Since the motion under consideration can be
considered to have started from rest, which is an irrotational state, the
subsequent motion is irrotational.

For irrotational motion, Equation (3) states that the curl of
the veloclty is zero. This implies that the velocity can be expressed

as the gradient of a potential ¢ :

(u)V:W) = = ('SE: %.‘: g_z) (P ’ (9)
Combining (2) and (9), we have

F ¥
(SEE + &2 + 522) b =0, (10)
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which is linear. The problem is then to solve (10) with the appropriate
boundary conditions. But one of the boundary conditions, the one at the
free surface, involves the pressure. It is therefore necessary to obtain
an expression for p 1in terms of ¢. This is supplied by the Bernoulli

equation for irrotational unsteady flows:

§_Q + % + 112;\’2_4—1]_2_ + (g+a)z = F(t) o (ll)

T 5t 2

The derivation of (11) is quite simple. With the vorticity components
in (4) and (5) equal to zero, and with v and w on the left-hand sides

given by (9), the Equations (4) and (5) can be written as

X X
— =0, = =0
ay J az )
in which
22yl
k=B R, T ()

Similarly the first equation in (1) gives

— =0,
dx

Hence, by integration, (11) is obtained. The function F(t) is independ-
ent of x, y, and z, and can be absorbed in ¢ by adding to ¢ the
function = [ F(t)dt, without affecting either the velocity components
or p. Hence, for convenience F(t) will be taken to be zero.

The conditions at the rigid boundaries are

0 -0 at the bottom, (12)
oz

and
N0 -0 at the walls. (13)

dn



At the free surface,

al . L
b= T(Rl + RE) s (1k)

in which T is the surface tension and R} and Rpo are the principal

radii of the surface

z = Q(X,y,t) ’ (15)

with ¢ now and henceforth denoting the surface displacement rather
than the third vorticity component. Since (15) is valid for all values

of time 1,

%E[Z - C(X)yyt)] =0,

or

=9t St ot |
W St +u S +V S (16)

This is the kinematic condition at the free surface, relating w to (.
The dynamic boundary condition is obtained from (11) and (14), and is
g(%z + %5) - %% + %(u2+v2+w2) + (gra)t =0 . (17)
If ¢ and its derivatives with respect the x and y are everywhere
small, wu, v, and w will be everywhere small, and squares and products
in u, v, w, and { can be neglected. Equations (16) and (17) can then

be written as
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Following Benjamin and Ursell,(5) we shall take

o0

C(Xsyyt) = % am(t)Sm(x,y) P (20)
and
O(x,y,2,) = 3 Sem(t) coshkml o (. v oy (21)

1 4t kp sinh kyh

in which Sp(x,y) satisfies

F 2
(8;5 + 2 + kp) 8,(x,y) =0, (22)

in which the k's are the eigenvalues that make §§§%§121 equal to
zero, and of course depend only on the shape of the container. Note that
(13) and (18) imply that

9% - 0 at the walls,

on
and that Equation (20) satisfies this condition. Also, ¢ given in (21)
satisfies (12) and (13), as well as (18).

The eigenvalue ko = O corresponds to So(x,y) = 0, As explained
by Benjamin and Ursell, ao(t) is constant, since the total volume of the
liquid is constant. If the origin of ¢ 1is taken from the mean free sur-
face, ag(t) = 0. Hence, it follows from (19) that G(tj can only be
a constant, which can be taken to be zero without affecting anything. With

(20) and (21) substituted into (19), the result is

2 2

o0
Sm(x,y) d"ap ky T

+ kyp tanh kph(— + g+a =0 . 2
1 km tanh kmh [dt2 m tanh kph p & )] ( 5)

Since the functions Sm(x,y) are linearly independent,

d.gam

+ (Pm+am) am =0 , (24)
dt2
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in which

by = Ky tanh k(T kS + g), qp = a(t) ky tanh kgh. (25)
P

Equation (24) is the basis for the analyses in the subsequent sections.



L. FREE-SURFACE INSTABILITY DUE TO A SUDDEN
CHANGE OF ACCELERATION

To bring out the effect of variable acceleration on the ampli-
tude of waves, consider the simplest case in which the acceleration is
zero at first, then assumes a constant finite value a, and finally
becomes zero again, as shown in Figure 3.

For simplicity the quantity ap, which is a time-dependent
aﬁplitude in the sense that it is proportional to the maximum surface
height (with respect to x and y) at time t for the m-th mode, will
be denoted by A. If attention is focused on the m-th mode, (24) reads

8°A 4 (porag)A = O . (26)
dte
Suppose that the acceleration a(t) is changed from zero to the constant

a at time t =0. Then for t <O,
A = By cos(sit + 67) , By >0 . (27)

in which s% = Pps and ©7 1is the angle specifying the phase of A at

t =0. For t >0 the acceleration is a, so that the solution of (26)

is
A = Bs cos(spt + 02) , (28)
in which
2 . .
S5 = Pptdy » with a(t) =a in qp.
Nowat t =0 both A and %% must be continuous. Hence
By cos@; = B, cosbs, , (29)
SlBl Sin@l = 8232 Sin@2 ° (50)

-11-
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If (29) is squared and (30) is divided by s, and squared, and the

results are added, the following equation is obtained:

B§ = B%[cosgel + (gl sin@l)g] = B%[l - (l-=r2) sin2®l] , (31)
2
in which
r = S—l .
52
Thus, whatever the value of r, |Bp| = |By| if ©3=0. That

is to say, the amplitude is unchanged if the change of acceleration
from zero to a occurs at the time of maximum A. This is understanda=-
ble, because at that moment the kinetic energy is zero, and a sudden
change in acceleration only brings about a sudden change in potential
energy in the proportion (g+a)/g. If the acceleration is maintained
constant (= a), the subsequent maximum A will remain unchanged.

If, on the other hand, 67 = n/2, then

IBQl = rlBlI s (32)

and the amplitude is reduced by the ratio r. We can, indeed, compute
the maximum and minimum of (BQ/Bl)2 from (31). Thus

2
4 (B2)" = -2(1-r°) sind] cos6] = =(1-r?) sin 207 ,
de; By

which is zero for 67 =0, + /2, + 70, i_5n/2, etc. Since r <1, it
is easy to see that the values O, and + nx (n = integer) correspond
to the maximum values of !Bg/BlI, and the values i(2n+l)n/2 corre-
spond to the minimum values. In other words, the most severe amplitude-

reduction ratio is simply 51/52-
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When the acceleration suddenly drops from a to zero, the
analysis is similar, but physically the situation is quite different.
Since we are going to consider all possible phase angles, we can again
take, without loss of generality, the moment of acceleration change to

be the origin of time. For t < 0, we have

A = By cos(spt + @é) s (33)

in which sp, 1s as defined before, |B2| maintains the same magnitude,
but @é is no longer ©o, because we have changed the origin of time

for convenience. For t >0 ,

A = Bz cos(syt + @5) 5 (34)
in which sq S:anl as before. Continuity in A and %% at t =0
demands that

6, 6
B2 cosb, = B3 cos 3
SoBp sin@é = 51B3 sin63 ,
which produce
- o '
3% = Bg[l + (r™2-1) 51n2©2] 5 (35)

in which r has the same meaning as before. A similar calculation gives
the maximum value for ]B5/B21 to be r'l, and the minimum value to
be 1. The minimum value, corresponding to no change of amplitude, is
again understandable. Since it corresponds to @é =0 or nx, it cor=-

responds to the state of maximum potential energy and no kinetic energy.
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The maximum value of |Bs/By| correspond to 6 = % or +(2n+l)n/2.

For 0 <5< n/2, the value of |Bs/Bp| is between 1 and 1/r. This
1
5 -

of Ol .) Since waves with all phases are assumed to exist, the maxi-

brings out the importance of the phase angle 6 (The same is true
mum ratio of amplitude increase is sp/sqy -

Consider now the acceleration graph given in Figure 3. If
to =0 and 6y =0, the amplitude suffers no change on passing through

to. At t =t the value of ©5 is really sp(ti-ty) + 82 = sot] + 6o.

0"
Depending on sj, sp, and t] (or tj-ty), it may or may not be one of
the values + (2n+l)n/2. But as t1 1is varied, it can be one of these
values. Thus the absolute maximum for iBj/Bll, or the greatest ratio
of amplitude increase, is sg/sl. If the value a 1is very large, say
L8 g, +this ratio is exactly 7 if surface-tension effect is neglected,
because (a+g)/g = 72. It is significant that it is the region of accel-
eration decrease that causes the increase in amplitude. At the post-roll
region on a Fourdrinier wire, the velocity changes from a downward one
along the roll to a slightly upward one along the wire a short distance
after a reverse curvature (concave upward), then becomes horizontal
again. There is a region where the acceleration changes from a large
positive value (upward acceleration) to zero. This is the narrow region
of dramatic increase in the amplitudes of the disturbances.

The acceleration schedule described by Figure L4 is more realis-
tic. The downward acceleration a3 corresponds to the region over the

table roll. The upward acceleration, a, corresponds to the region cf

reverse curvature (concave upward). But the wire has to become horizontal
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finally. 8o there must be a region of upward convexity again, correspond-

ing to downward acceleration as. At t = t, the greatest amplitude

o
ratio is 1, whatever the values of a; and a. At t =1t; the maximum

possible amplitude ratio is

(gﬁ_)l/e

g-ap
which is also the maximum ratio of the amplitude after t2 to the ampli-
tude before tj. Since ap may be quite near to g, this ratio can be
very large. This explains the rather dramatic amplification of disturb-

ances in the post-roll region.



5. FREE-SURFACE INSTABILITY DUE TO A GRADUAL
CHANGE OF ACCELERATION
An acceleration schedule representing the actual situation

on a Fourdrinier wire is given in Figure 5. The region t < t, repre-
sents the region of downward acceleration over the table rolls. The
region t5 <t < t; represents the region of increasing upward accel-
ergtion. The region 1t; <t < to, represents the region of decreasing
acceleration. For +t > t,, a region of negative (downward) accelera-
again exists, which corresponds to a region of upward=-convexity of the
Fourdrinier wire, following the region of reverse curvature (concave
upward) where the acceleration is positive.

The governing equation is still (26), in which Pp and Qqp
retain their forms in (25), so that

+ t=t for to <t <t
%o tl-to( o) oSt <ty
Gm al+a
—=___ =a(t) = _aitap,
k, tanh kh 8] - poogpp(t-t1) for t1 <t < tp,

=ap for t >1to .

Thus it is easy to see that (26) has in all four regions the general

form

2
d°A | (o + Bt)A =0 . (36)
at2

If B is zero, as for t <ty or t > tp, then the solution is of the

form

A=B cos Nat +8). (37)

-16=
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If B 1is not zero, as in the region of increasing or decreasing accel-

eration, the solution of (36) is
b= (@) 208 315 VB(e + 9772+ msCVBG + D)) L (38)

Matching of the solutions of types (37) and (38) at t = t, and

t = to, and of two solutions of the type (38) at t = t1, can be made

on the demand that A and dA/dt be continuous at the moments tos t1s
and to. Since the possibility of tremendous increase in amplitude has
already been demonstrated in the last section for acceleration schedules
described by Figures 3 and 4, and the demonstration for the present case
would differ only in some detail, it will not be given here. Instead,
(37) and (38) will be used to correlate the experimental data, because
the actual acceleration schedule in the experiments is not far from that

given in Figure 5.



6. EXPERIMENTAL VERIFICATION

The theory has been advanced that variable acceleration in
a direction normal to the free surface can bring about a tremendous
increase in amplitude of surface disturbances. To test the validity
of this theory, an apparatus was constructed (See Plate T) which allowed
a plastic 5-inch=square box containing a layer of water to fall about
2 to 3 inches onto a pad of foam=-rubber layers. Surface disturbances
were made by either one line-jet of air blowing at the middle of the
water surface or two such Jets parallel to two sides of the box and
blowing at two symmetric quarter positions (hence not at the center
line). Thus the wave lengths were controlled. When only one jet was
used, the wave length A 1is equal to the inner measure of the side of
the box (5 inches). When two jets were used, the wave length was one
half of that.

As the water-bearing box was released, it fell with very nearly
the downward acceleration g. When it hit the pad, this acceleration
was first reduced to zero, then became positive, reaching a large posi-
tive value after some fluctuations, then decreased to a downward accel-
eration ap, say, for a length of time before finally becoming zero as
the box was brought to rest. The magnitude of a, is less than g. The
acceleration graph is shown in Plate II, in which the value of time t
increases from right to left, and positive acceleration is registered

below the time axis. The tremendous increase in amplitude occurred in

the interval of time during which the acceleration decreased to ap and

-18-
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and was maintained at ap, as described schematically in Figure 6.
Attentlon will be focused on this period. The magnitude of ap is
near g. Hence ap 1s assumed to be =-g in the calculations.

A movie camera took the motion pictures at 250 frames per
second. The surface waves had the form and magnitude shown in Plate
III when the acceleration was ap, very shortly after t = to. The
surface form a few milli-seconds after ap was reached is shown in
Plate IV, from which the tremendous increase in amplitude is very evi-
dent indeed.

A more detailed check of the theory was provided by the follow-
ing procedure. Two values of A were taken from the motion pictures for
two values of t very near tp but less than tp. Then from the solu-
tion (38), in which, as in (36), « and P can be calculated from the
experimental data, B and C are determined. Then the value of A
calculated for a value of t less than t2 is compared with the experi-
mental value. Similarly, with A and dA/dt known at t = to (the
latter from two values of A at two instants near t = to), A for
t > t, can be calculated. The values so calculated can be compared with
the measured ones. The comparison is shown on Tables 1 to 12. Due to the
smallness of A for t < tp, and the consequent difficulty of measure=
ment, the calculated and experimental values of A for t < tp agreed
only in order of magnitude. The agreement between the calculated and ex-
perimental values is much better for t > to. The values of J2 given
in Tables 1 and 2 are for that in (37) for t > to.

Both the pictorial description provided by Plates II and III

and the more detailed record provided by Tables 1 and 12 demonstrate
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very vividly the striking effect of acceleration variation on amplitude
increase. The comparison of calculated and experimental values given

in these tables also indicates the general validity of the theory given

in Sections 3 and 4.
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TABLE 1
Max. acceleration = 10.7g A =3,6" to = 16 millisec.
h =0.25" Max. (2A) = 3.19" Jo = 3.06 rad/sec.
t (millisec.) 5 20 25 35
2A Calculated (inches) 0.0015 0.0k 0.09 0.19
2A Measured (inches) 0.0010 0.04 0.10 0.22
TABLE 2
Max. acceleration = 10.7g A= 34" to = 16 millisec.
h =0.,25" Max. (24) = 3.48" Ja = 3,49 rad/sec.
t (millisec.) 5 25 35
2A Calculated (inches) 0.0057 0.12 0.2k
2A Measured (inches) 0.0010 0.15 0.25
TABLE 3
Max. acceleration = 12.8lg A =3.6" to = 14 millisec.
h =0.25" Mex. (2A) = 3.09" Jo = 3.24 rad/sec.
t (millisec.) 5 25 35
2A Calculated (inches) 0.0015 0.12 0.22
2A Measured (inches) 0.0010 0.10 0.20
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TABLE L
Max. acceleration = 12.8g A= 34" to = 1b millisec,
h =0.25" Max. (24) = 3.27" Ja = 3.68 rad/sec.
t (millisec.) 5 25 30 35
2A Calculated (inches) 0.006 0.14 0.20 0.26
2A Measured (inches) 0.001 0.12 0.16 0.22
TABLE 5
Max. acceleration = 18.65¢g A =3,6" t, = 11 millisec.
h =0.25" Max. (2A) = 3.16" Ja = 3.16 rad/sec.
t (millisec.) 5 25 40
2A Calculated (inches) 0.012 0.19 0.34
2A Measured (inches) 0.010 0.19 0.30
TABLE 6
Max. acceleration = 18.65g A= 3.3" to, = 11 millisec.
h = 0.25" Max. (24) = 2.72" Ja = 3.68 rad/sec.
t (millisec.) 5 25 4o
2A Calculated (inches) 0.004 0.20 0.45
2A Measured (inches) 0.010 0.18 0.35
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TABLE 7
Max. acceleration = 11.65g A= 34" to = 1k millisec.
=0.5" Max. (24) = 1.12" Jo = 4,52 rad/sec. -
t (millisec.) 5 40 50
2A Calculated (inches) 0.003 0.1k 0.18
2A Measured (inches) 0.001 0.12 0.20
TABLE 8
Max. acceleration = 11.65g A =3.5" to = 14 millisec.

h =0,5" Max. (2A)= 1.h1" Jo = k.27 rad/sec.

t (millisec.) 5 25 35 45

2A Calculated (inches) 0.006 0.10 0.18 0.22

2A Measured (inches) 0.008 0.10 0.15 0.20
TABLE 9

Max. acceleration = 13.L2g A =3.2" to = 12 millisec.

h =0,5" Mex. (2A) = 0.61" Ja = 5.0 rad/sec.

t (millisec.) 5 40 70

2A Calculated (inches) 0.004 0.09 0.18

2A Measured (inches) 0.001 0.10 0.18
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TABLE 10
Max. acceleration = 13.k2g A= 3.4 tp = 12 millisec.
h =0.5" Max. (2A) = 1.11" Jo = k.51 rad/sec.
t (millisec.) 20 30 40
2A Calculated (inches) 0.001k 0.05 0.10 0.15
2A Measured (inches) 0.0020 0.0L 0.09 0.15

TABLE 11
Max. acceleration = 19.2g A =3.1" to = 12 millisec,
h =0.5" Max. (24) = 0.57" Ja = 5.3 rad/sec.
t (millisec.) 30 4o
2A Calculated (inches) 0.0017 0.06 0.09
2A Measured (inches) 0.0020 0.08 0.12

TABLE 12
Max. acceleration = 19.2g A o=3.3" to = 12 millisec.
h =0,5" Max. (24) = 2.34" Ja = 3.43 rad/sec.
t (millisec.) 15 25 35
2A Calculated (inches) 0.012 0.05 0.13 0.21
2A Measured (inches) 0.010 0.05 0.11 0.18




7. APPLICATION TO POST-ROLL INSTABILITY OF
STOCK ON FOURDRINIER WIRES

The striking effect of acceleration variation on the amplitude
of surface disturbances has been demonstrated both theoretically and
experimentally. The pertinence of this effect on post-roll instability
of stock on a Fourdrinier wire can be seen from the acceleration schedule
of the stock as it passes over the table rolls. On fop of a table roil
the acceleration is downward. Then it increases to a large positive
"value at a region of reverse curvature which must exist as the wire
leaveézthe roll. As the wire has to become horizontal eventually, the
reverse curvature will have to pass over to a region of concave-downward
curvature again. This is a region of downward acceleration. Thus the
acceleration schedule-is much like that given in PFigure 5. The latter
part of the schedule (Figure 6) is chiefly responsible for the amplitude
increase.

One point of great interest is the phase shift of the surface
disturbances as they leave the table rolls. A qualitative explanation
can be supplied here. TFor simplicity consider the acceleration schedule
desgribed by FigurelB. (The same general conclusion can be reached by
considering more complicated and realistic acceleration schedules.) 1In
the region of upward acceleration the solution is given by (28) instead
of (27). 1In (28) sy can be very large if a 1is large, and a large
So means a greater frequency and a shorter period of time required for
a phase shift of 180°, i.e., for the ridges to becéﬁe troughs and vice

versa.
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The growth of surface instability as the stock passes over
the table rolls has been adequately explained in Reference 1. In Refer-
ence L4 the velocity distribution in the post-roll region was considered
a possible cause of an instability of the Taylor=GSrtler type, with the
presence of growing longitudinal vortex tubes. Although this remains
a possibility, the violence of amplitude growth in the post-roll region
seems to favor the variability of acceleration as the main cause of in-
stability, particularly since this explanation is entirely independent
of the velocity distribution in the post-roll region. The authors be=
lieve that the variability of acceleration is indeed the main cause not
only of post=roll instability, but also of the instability of the free
surface as the stock leaves the slice.

This paper serves as a final report on the research sponsored
by TAPPI on free=surface instability for the past several years. The
writer of this paper (C.=-S. Yih), who has served as supervisor of this
research, wishes to express his sincere thanks to TAPPI for this sponsor-
ship, and to the members of the several fluid-mechanics committees of

TAPPI, for their interest and many stimulating discussions. The authors

also wish to thank Dr. W. R. Debler and Messrs. Milo Kaufman and A. Engerer

for assistance in the experimental program.



REFERENCES

Yih, C.-S., '"Instability of a Rotating Liquid Film with a Free
Surface," Proc. Roy. Soc. A, Vol. 258, pp. 63=-86, 1960.

Yih, C.=S., "Stability of a Rotating Liquid Film," TAPPI, Vol. L5,
No. 6, pp. 524-527, 1962.

Debler, W. R. and Yih, C.-S., "On the Instability of Stock on a
Fourdrinier Wire," TAPPI, Vol. 45, No. L4, pp. 272-279, 1962.

Yih, C.=-S. and Spengos, A. C., '"Free-Surface Instability," TAPPI,
VOl. h‘2, NO. 5, pp' 598_ll‘03, 1959.

Benjamin, T. B. and Ursell, F., 'Instability of the Plane Free
Surface of a Liquid in Vertical Periodic Motion," Proc. Roy. Soc. A,
Vol. 225, pp. 505=-515, 195k,

=07 =



-28-

*JUITSH WNWIXBW XN
SUIB11Y 9ABM °CB = ®

J

2 2an3Td
*9BTd ST

soBIING *[B uByL JI9%BIID
ST YoTUM ‘Ce 03 sadueyj ®

nﬂ

*qQUIBTOH UMWTXBN
suTe31y °a8BM T = ®

o

\\I/

*JUITOH UMWTIXEW XN
SUTB11Y 9ABM °CB = ®

J

T sandtd
‘3BeTd

g1 ooBJaIng *Lle uwvyl ssoT
ST UOTYM ‘e 03 sal8usy) ®

nw

—

*qUSTSH wnu
-TIXBN SUTBIIV 2ABM ‘Te = »

p

>

—




-29-

a(t)
A
a
4 -~ t
t, t
Figure 3. An Idealized Acceleration Schedule.
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Figure 4. A More Realistic Acceleration Schedule.
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Figure 5. An Acceleration Schedule Representing the
Actual Situation on a Fourdrinier Wire.
art)
A
t, _l
Figure 6. That Portion of Figure 5 Used for Experi-

mental Verification of the Theory.
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Plate II. Acceleration Graph.
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Plate IV. A ¥ew Milli-Seconds After the Condition in
Plate IIL Was Reached,



