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ABSTRACT

A quasi-crystalline model of polar liquids for the analysis of slow-
neutron scattering is proposed. Effects of the macroscopic medium are
considered in terms of specific potentials which hinder molecular trans-
lations and rotations. By smearing the neighboring molecules over a
spherical distribution and choosing a two-particle interaction which in-
cludes dipole-dipole forces an effective potential for the center-of-mass
degrees of freedom is derived., A sufficient condition for the parsbolic
approximation to this potential is established. Hindrance in the rota-
tional motion is treated by means of a coupling between the permanent
electric dipole moment of the molecule and a local electric field which
represents orientation-dependent effects of intermolecular forces. Under
the condition of strong coupling this hindering potential leads to useful
wave functions for symmetric and linear molecules which describe free as
well as hindered rotations. On the basis of the present treatment of
molecular translations and rotations the energy and angular differential
scattering cross section is calculated without introducing further ap-
proximations. Particularly simple expressions are obtained when free-
rotation energies are ignored. Energy distributions of neutrons scat-
tered by hydrogen chloride and water are calculated. It is shown that
hindered rotation effects are experimentally observable whereas the

structure associated with hindered translations can be observed only

vii



by means of high-resolution measurements. The present results provide
a suitable basis for systematic studies of medium effects in polar lig-

uids by inelastic slow=-neutron scattering. Specific experiments are

suggested,
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CHAPTER I

INTRODUCTION

In recent years considerable attention has been directed toward the
use of inelastic scattering of slow (egrm(cffl_(¢;2kav ) neutrons for
the study of atomic motions in macroscopic systems. Of the various modes
of molecular motions, translation of the center-of-mass and rotation are
of particular interest because of their more sensitive dependence upon
the physical state of the medium., The characteristic energies associated
with these motions are of the order of lO'B-lO'Eev, so in the event of an
inelastic collision with a neutron the energy transfer is of the same
order as the incident neutron energy. The energy spectrum of the scat-
tered neutrons therefore provides a means with which the details of mol-
ecular translations and rotations, and the effects on these motions due
to surroundings in a liquid or a crystal, can be directly examined. In
this respect, slow neutrons are very suitable microscopic probes for the
investigation of intermolecular forces.,

The general problem of low-energy neutron scattering by free mol-
ecules has been considered by Zemach and Glauber'l in treating those sys-
tems which can be characterized by the degrees of freedom appropriate to

gas molecules. Krieger and Nelkin,2

in a somewhat different approach,
used the Sachs-Teller mas tensor approximation5 to describe the combined

2,4
effects of translations and rotation. Both methods ’ give results for

gaseous methane in good agreement with measurements, ”



In crystals the translational degrees of freedom can be appropriately
characterized by a system of oscillators (if diffusion in crystals is
ignored) according to a dynamical description such as that of Debye or
Born-Von Ké}mén.6 The first general treatment of neutron scattering by
crystals was given by Weinstock;7 subsequently the theory has been re-
fined and valuable information about interatomic forces in crystals,
namely, frequency distribution and dispersion relations, have been ob-
tained by means of neutron diffraction studies.8’9

The analysis of neutron scattering by liquids is considerably more
difficult since the dynamics of molecular translations and rotations are
much more complicated. In the absence of detailed knowledge of inter-
molecular forces it has become necessary, in cases where a specific model
is used to interpret measurements, to introduce greatly simplified de-
scriptions. Commonly either a gas-like or crystal-like description is
employed for the translational degrees of freedom. A number of slow-
neutron experiments using liquid tin,lO ammonium halides,ll and waterlg'lu
have been reported where the results tend to support the point of view
that liquids behave much like disordered crystals with short range order-
ing and that the molecules spend appreciable amount of time in a local-
ized region before undergoing diffusion. The energy distributions of

12,13

neutrons scattered by water at very low energies showed consider-
able structure in the region of small energy transfer and this struc-

ture is regarded as direct evidence of hindered translational motions.



Morales15 has studied hindered translations in normal liquids and
has found that an Einstein-crystal model of liquid lead leads to energy
broadenings in better agreement with observed valuesl6 than those pre-
dicted by a continuous diffusion model proposed by’Vineyardgl7 Singwi
and Sjb‘landerl8 have shown that the previously mentioned structure in

the water result512

can be calculated by treating the liquid as a Debye
crystal. They have also suggested a model in which each molecule inter-
mittently undergoes oscillations and diffusions. On the basis of an
extensive series of measurements Larsson and coworkersl5 concluded that
on the average the water molecule performs about ten oscillations during
a period of ~2 x 10712 sec before diffusing a distance of at least
l,Sﬁ, Since the time interval in which a slow neutron (Vr\/lO5 cm/sec)
is in the immediate vicinity of a molecule is approximately 10-15 sec,
then the supposition that dominant aspects of translational motions are
crystal-like seems reasonable, at least in so far as slow=-neutron scat-
tering is concerned. Although gquasi-crystalline models have been em-
ployed with some success in correlating with experimental data, the only
attempt to Jjustify such descriptions on thecretical basis has been made
by Morales in the case of normal liquids.

In addition to translations, molecular rotations in liquids can
also become hindered as a result of intermolecular interactions., The

12-1k

phenomenor of hindered rotation has been observed in water and in

. - 11 . . .
ammonium halides™ using the neutron technique, and also in Raman spec-

tral9 and infrared absorptiongo studies, 1In early papers, Paulinggl



has considered the rotational motion in crystals in connection with its
influence on the dielectric constant, and Magat22 has carried out an
electrostatic calculation to determine the amount of energy a water mol-
ecule must acquire in order to have complete freedom of rotation in the
potential field of four nearest neighbors., Aside from these considera-
tions the study of hindered rotation in liquids and crystals has re-
ceived little theoretical attention. Thus far, the effect of this type
of motion upon neutron scattering has been treated only recently by
Nelkin,g5 who, in constructing a model for water, assumed that the
hindered molecular rotations can be replaced by a single mode of tor-
sional oscillation. Nelkin's approach is phenomenological, and the
model, although providing an adequate basis for calculations of neu-
tron thermalization in nuclear reactors, does not lead to much phys-
ical insight as to the nature of intermolecular forces in liquids,

In the present work we propose a dynamical model for polar liquids
for the analysis of slow-neutron scattering. The atomic motions are
considered in terms of molecular translations, rotations, and inter-
nuclear vibrations. The model consists of descriptions, derived in a
systematic and consistent approach, of translations and rotations in
the presence of appreciable intermolecular interactions.

The method used by Morales in treating normal liquids is extended
in order to study molecular translations in polar liquids where non-
central forces arising from dipole-dipole couplings are taken into ac-

count, For those liquids where the existence of short range ordering



can be expected, an averaged, effective single-particle potential for
the center-of-mass degrees of freedom is derived. This potential pro-
vides, in principle, at least a qualitative representation of the inter-
actions generated by neighboring molecules in the liquid. To the ex-
tent that a certain condition can be satisfied by the parameters char-
acterizing the two-particle potential employed, some theoretical Justi-
fication for the use of oscillator models in treating translational mo-
tions is obtained.

A description of the rotational motions of polar molecules is pro-
posed in which the permanent electric dipole moment of the molecule is
coupled to a local electric field which represents the orientation-
dependent effects produced by the ordered near neighbors. In the case
of strong coupling, physically meaningful solutions for symmetric and
linear molecules are obtained, The model treats free as well as hind-
ered rotations because in this instance the potential contains only one
angular variable,

On the basis of the proposed model an energy and angular differen-
tial cross section is calculated. New formulae for the scattering by
rotational degrees of freedom are obtained., The results of the present
investigetion are considerably less empirical than Nelkin's treatment
since the molecular rotational degrees of freedom, the polar nature of
the molecule, and internuclear separations appear explicitly in the ex-
pression for the intensity of the scattering. Moreover, the approach

allows the magnitudes of the energy transfer to be directly estimated



in terms of the dipole moment of the molecule, the moment of inertia,
and the crystalline electric field in the corresponding solid phase.
Numerical computations are presented in which the calculated energy dis-
tributions are compared with the available water data and future scat-
tering measurements are suggested.

In Chapter II the formalism of Zemach and Glauber is derived and a
general expression for the energy and angular differential cross section
is obtained.* The single-particle model is then adopted in which coup-
lings between translation, rotation, and vibration are iénored so that
these motions can be studied separately. Hindered molecular translation
is treated in Chapter III in terms of a potential obtained by appropriate
position and orientation averages of the two-particle Stockmayer poten-
tial, A sufficient condition for an Einstein-crystal approximation is
established, and the cross section for a system of oscillators is cal-
culated, The dynamics of free mclecular rotation are reviewed in Chap-
ter IV where the known symmetry properties of the wave functions are
utilized in computing the cross sections for asymmetric, symmetric and
linear molecules rigorously. A rotator model of hindered rotation is
proposed in Chapter V. A formal solution of the molecular problem is
first discussed, then strong-field sclutions for symmetric and linear

molecules are obtained and used in cross section calculations., Effects

*Van Hove®* has discussed neutron scattering in terms of space and time
correlation functions. This approach is quite general and has been ex-
tensively used by Egelstaff25 and othersa26 Inasmuch as specific models
are proposed and employed in the present work there is no advantage to
consider Van Hove's approach.



of free and hindered motions are examined, and using the method of mass-

L the angular differential cross section in the limit of

ratio expansion
high incident energy is derived. Numerical computations for hydrogen
chloride and water are discussed in Chapter VI. 1In the case of water,
the molecule is approximated by a diatomic molecule of equal mass and
having the same dipole moment. Concluding remarks regarding the present

model are given in Chapter VII where specific scattering experiments are

also suggested.



CHAPTER IT

GENERAL FORMULATTION OF NEUTRON SCATTERING BY MACROSCOPIC SYSTEMS

In this section a general description of neutron scattering by mol-
ecules in an arbitrary macroscopic system is developed. The formalism is
suitable for the analysis of low-energy inelastic scattering by liquids
on the basis of specific dynamical models. In order to calculate the ef-
fects characteristic of atomic motions in the liquid state an independent-
particle model is adopted in which molecular translations, rotations, and
vibrations are approximated by independent motions. Each motion can then
be treated separately.

We consider an idealized experiment to illustrate the type of meas-
urements with which subsequent calculations are to be correlated. A beam
of monoenergetic neutrons impinges upon a scattering system as shown in
Fig. 1, and collisions between the neutrons and target molecules result
in some of the neutrons being deflected from the original path with ener-
gies greater or less than that before scattering. By counting neutrons
of a given energy scattered in a given direction, an energy distribution
is obtained. If neutrons of all encrgies are counted for a given direc-
tion, then by repeating this measurement at different scattering angles
an angular distribution is obtained. Finally, if all scattered neutrons
are counted regardless of their directions or energies then the measure-
ment is said to be a total scattering measurement and the result depends
only upon the incldent energy. We observe that of the three types of

8
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measurement, the energy distribution experiment is the most fundamentsal
and should provide maximum information about the scattering process, and
that with respect to it the other two are integral measurements. The
scattering event under consideration is a single collision process, and
the resolution of the neutron detector shown in Fig. 1 is infinitely sharp.
In practice, however, the thickness of the sample is dictated by multiple
scattering and effects of finite resolution, which is inherent in any
energy measurement device, must be taken into account in specific appli-
cations.

The energy distribution measuremeht can be analyzed in terms of a
fundamental quantity which characterizes the interaction, the probability
that an incident neutron with initial energy E% will be scattered into
directioni}vmih.final energy €§ . When appropriately normalized to unit
scatterer, this probability becomes a differential cross section.G(E%’Q;ﬁﬁé)
which, we emphasize, is a distribution in final neutron energy and direc-
tion.

In order to derive an expression for'CYQEL£2§§) we return to the
idealized experiment of Fig. 1. The number of neutrons scattered into
an element of solid angle dSL about £ (denoted by % ) per unit incident
neutron with energy G-L and per unit scatterer is

*(fe1)

G, Q)d0 =
N(Z-T)

L)y

ad (2.1)

where-zk and :i are initial and final neutron currents and N is the total

number of scattering centers. From the well-known relation



i= Q%)UY\W\\\) - Qf@%m& . (2.2)

where JO\: ‘rfm\/g being the Planck's constant, W is the neutron mass, and
\b is the neutron wave function, the cross section can therefore be cal-
culated once the initial and final neutron wave functions are determined.
The initial wave function may be taken as a plane wave with wave vector EQ_
The final neutron wave function necessarily depends upon the particular
scattering process involved, and can be derived from the appropriate sta-

tionary Schrodinger equation,

H@:ﬁﬁﬁl) (2.3)

whereEE is the total energy of the system, molecules plus neutron, whose

wave function is ﬂiw The appropriate Hamiltonian is

W= 2oV (2.1)

2

where‘aa is the kinetic energy of the neutron,%\sthe Hamiltonian of the

scattering system, and V' the neutron-nuclear interaction potential.

The Hamiltonian\ﬂszepresents only the various molecular energies of
the scattering system. Because in the experiments under consideration
the neutron energies are much too low to excite any electronic levels, and
also electron scattering is negligible, the electronic energies are of no
interest and have been separated by means of the Born and Oppenheimer
27

It is expected that given \%c there exists a complete,

]

approximation.

orthonormal set of functions i@;& which satisfy the equation,&A

B =5 4
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where \T"jf,ﬂis the energy eigenvalue of the system associated with the nh

eigenstate. Then we can consider the expansion

WV (t )[2_3 7—‘2-%\(& §m( 2) ) (2.5)

\
s -~y o
where ¥ represents neutron position and - 18, ¥\ represents the

set of .M coordinates of a system containing N particles. The function
‘Q\}\,\ is seen to be that neutron state which corresponds to the V\“ﬂi state

of the system. Inserting the above expansion in (2.3) we obtain

(vz-{- bvz\)\b‘,\ = %;(V\‘V‘V\'>\bnl 3 (2.6)

where (V\\\/\V\' =§CFQ§

Dy
AD
|=
m
m
=
)
m
m

Equation (2.6) represents a set of integro-differential equations
and is conveniently converted to a set of integral equations. If we de-

{
fine a Green's function G\n(t)t> by

/

QY +‘Q VGt ry = - §(Y.—X‘.)) (2.7)
then because (2.6) is a linear equation,

(\“\ \\J (‘(‘\ )(,\ j_&dv"Q\y\(-)-)Q\lV“"N)WU) (2.8)

b 0
h _ti f‘ 2. 2 N, areontey
where Q)n satlsiies (Q -HQ.\.\ ML’\(\C\ =0 (2.9)
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Physically, if there were no interaction between the neutron and system
we would expectgito be just the product of incident neutron and initial

system wave functions. Hence,
: R."Y
\\Jv\(y_j =, b (2.10)

o

where Wo denotes the initial state of the scattering system. The solution

28
of (2.7) is . / .
‘\Qn\r‘r ( \‘Q V\V

, ‘v2
QM@)\E)Z—Q——- ~ ¢ + 6(

u“ \..Y“‘ \Q/l LH[Y‘ (2.11)

(]
where terms of order Y "and higher can be ignored as the region of de-
¢ ¥
tection is such that i M1, 1In fact, in the limit >0 contribution
to neutron current from higher-order terms vanish identically. An approx-
imate solution to the integral equation (2.8), according to the "first

Born approximation," is obtained by iterating once,
“@CY‘ | @
M\)V‘L\c) ~ §M ) + % (D) © (2.12)
=}

The first term in (2.12) represents the unscattered incident beam and the
second term can be interpreted as the spherically outgoing scattered wave

whose amplitude is

M

>
ﬁ'nv\ = _‘ﬂ\gdr,é' Iy aas)

Using the results just derived we arrive at a formsl expression for

the differential cross section of (2.1),

€, 2)d0. = N’Z R, (42, e
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where we average over initiasl system states and sum over all possible
final system states because they cannot be observed. The probability
that the system is in initial state V|, is denoted by Fﬁﬁ, which becomes
a Kronecker delta should the scattering system be initially prepared.

For each collision process in which the scattering system undergoes
a transition from state VL to state V], the associated condition of energy

conservation,

Bt €0 = EV\°+ émc (2.15)

must be satisfied. It will be convenient to incorporate this statement

2
into the cross section. 7 By defining

& Gle; 2,6)dQdEr = OlE QL (2.26)

vy —
%
and noting the integral representation of the Dirac delta function,
(4)] .
_be

é(\%:é{vg ¢ Ot

we obtain an expression for the energy and angular differential cross

section,*
V%xﬁﬁldé§
N R,

L

o% ¢

(S -Ey) (o
j 2 V\ [] \C;l"()
® wv “)g”"A Q

where on account of the delta function kn\and. 65“ can be written as k%

-Jt(éf‘e{>
e A - S0 |

D

*In the present notation the variable-b has the unit of reciprocal energy,
that is to say, ¥=T/4| where { has the unit of time.
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and 6%; this is to avoid confusion and to indicate that the scattered
neutron energy 1s an observed quantity. The manipulation also conven-

iently removes the factor - from the summand.

b

\

It is noted that the amplitude of the scattered wave (2.13) con-
tains the neutron-nuclear interaction potential‘V which has yet to be
specified. For neutron energy sufficiently lOW‘(éiéﬁN> such that its
wavelength is large compared to the range of nuclear forces, neutron-
nuclear collisions can be represented quite accurately as a "localized
impact" for which the interaction potential may be taken as the "Fermi

pseudopotential,"*BO

JW\ j (\M (- (2.18)

where f\qd is the scattering length of i nucleus in the {4 molecule,

whose position is Y, and summation is over all nuclei and molecules in

Qo
the system. This particular form of the potential is so chosen that when
used with the "first Born approximation' the correct total scattering
cross section for a free atom is guaranteed in the high-energy limit (€2, aV)
i.e., 6—~>1$Wd;‘ where d@ is the experimentally determined free-atom

I J
scattering length and is related to the so-called bound-atom scattering

length by'aB:W%%M}f SFA being the mass of the scatterer. With this

choice of the potential the scattered amplitude takes the form

*The use of pseudopotential is appropriate so long as the incident neu-
tron is in the energy range for which nuclear scattering is isotropic in
the center-of-mass coordinate system and independent of neutron energy.



L = f ~ (2.19)
N\ £ A, |
where = ‘ kfg is the neutron momentum transfer. The differential

—s g

\

cross section thus becomes

b - i€y
eoC L0 i ;
Q<\.)\J,‘J J Q“—Nhgdt b 2‘<,\60@<’/ /T (2.20)
NM'

where Wl ‘\%Jr\ \g_% \ﬂ'\< "\KI \‘(\'Qo('

and where €5=:<£§-é;< In arriving at (2.21) we have used the closure
property of the wave function to perform the sum over final states. The
subscript | is used to denote the average of the expectation value of
the indicated operator in a given initial eigenstate ¥ (previously W, )
over all initial states; because the scattering system is usually taken
to be in thermodynamic equilibrium the quantity <\>%,is often called a
thermal average. Expressions (2.20) and (2.21) represent the basic equa-
tions used by Zemach and Glauber1 in treating neutron scattering by gases.
Since the Hamiltonian for the scattering system has not yet been specified
these expressions can be applied to crystals and liquids as well.

We have purposely placed Gﬁdaqa,kﬁtween the initial system wave
functions. The reason for this is that (2.21) can be generalized to in-
clude spin effects which we have not considered thus far and which can be

taken into account by introducing a spin-dependent expression for the
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scattering length,

where S and.ié are respectively the neutron and nuclear spins, and z\)ES
are nuclear constants to be determined by experiment. The necessary
modification in (2.21) merely requires that the thermal average to in-
clude the matrix elements of spin-dependent factors. The system eigen-
function now appears as é&&&m)where nueclear spin function X@nis a column
vector specified by W , the projection of the nuclear spin along the Z
axis. OSeparation of spin and coordinate dependences is not always al-
lowed; however, it has been shownlL that spin correlation effects may be
neglected for all but the lightest diatomic molecules containing like
nuclei (eogo,HQ and Do) at very low temperatures. The thermal average

(2.21) becomes

e ‘

/ S e ¢ &4
< ,}<\] 9(}\'>T = 2;\§<S\C‘XD(LQ/““:/~‘/\ A é, Q 4/ 21— ) (2 525)

where § specifies the neutron spin function represented by a two-compo-
nent column vector.
The spin thermal average in (2.23) can be readily performed by

noting the follewing:

2E<%l §:§Qd&3> = o ) (2.24)
: 1

{
PIRGES NS N = TS NS S (ees)
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Hence

Pl TN N t‘\ S E DS S
op (.W( %A T Sy (2426)

z B

This result leads to a convenient and meaningful separation of the cross

section into various contributions,

»\ét
T, 2= _ﬁwgdk tZ <%§§%_

Nk,
(2.27)

T?Z{; ; QC > >Y) AWAMA%@

[T Mot/ |
where the prime over the summetion indicates that terms for which the
two indices being equal are to be omitted. In this notation,
TSQ& A“Q‘/d\ + g’“o( < ’i:"'“‘er ﬂ / A and
e Ty, it SRRy,

/(v‘ N / b X .
A n( \ AN ()/ Q/ 0 Q, >\ , (2.28)
4 ('\

The three terms in (2.27) represent contributions due to direct, "inner"
(interference within the same molecule) and "outer" (interference from
different molecules) scatterings. The nuclear constants ﬁ\ and

E§E§i§§ﬁ~ﬂ)jvi/gi are conventionally known as the coherent and in-
coherent scattering amplitudes respectively. They are related to the
"parallel" and "anti-parallel"” (total spin = ;JEVQ. respectively) scat-
tering lengths by

BaSw . g 0)=A TS Pl

GO=Rt = 0 TR T e




19

Thus we see that direct scattering is both coherent and incoherent while
interference scattering is coherent; moreover, only incoherent scattering
is spin-dependent. When more than one isotope 1s present in the system
the scattering amplitudes should be replaced by appropriate isotopic
averages.9

We will now briefly indicate the essential connection between the

present formalism and Van Hove's approach.gu The differential cross

section for a monatomic system is*

| a
(& QEDN= T
SRR if\ Ol ke

where the symbol A is used to denote the appropriate scattering length.

If a function<<h([#§ is defined as

L ket < ~
G ky= () X\ﬁ %M ¢ 0 >‘r)

then the cross section can be calculated in terms of Ch(tﬁb by means of a

four-dimensional Fourier transform,

ak
G(é\wﬁn. »««f% >
L(Kor

D) = c\w (et b

One advantage of this approach lies in the fact that it is possible

17

*¥Vineyard has discussed the generalization to polyatomic systems.
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to assign physical interpretation to the function.CZKtﬁj in the classical
limit and obtain different methods of calculation.* For then Cﬁ(tk\d}dﬁ
represents the probability that given a molecule at the origin at'b==(3
there will be a molecule incﬁ'about t_anddk'about't . The presentation
of experimental data in terms of iéLé;Q} have also been pr’oposed..25’26
The general expression for the differential cross section (2.27) pro-
vides a basis for a direct calculation of the quantity measured in a scat-
tering experiment. The thermal average <Vhw> contains effects of neutron
o |
interaction with all possible degrees of freedom of the molecular system,
and in order to study characteristic atomic motions in liquids it will be
necessary to obtain an appropriate decomposition of (2.27). It is antic-
ipated that because of the relatively small energies (E ~v \0—5—- (O_Q €V>
associated with translations of the centers of mass and molecular rota-
tions these motions are apt to be influenced to the greatest extent by
existing intermolecular forces in the liquid.** We now make the funda-
mental assumptions that the energy of the liquid can be represented as
a sum of individual molecular energies and that for times long compared
to neutron-nuclear interaction times each molecule moves in a potential

generated by interactions with its neighbors, which is approximated by a

*The transition between classical and quantum mechanic I,CA(KAQ functions
has been recently discussed by Rosenbaum and Zweifel,

**The internuclear vibrational motions, which involve energies (EiN'H51€V>
large compared to translations and rotations, are less affected by sur-
roundings. It is known that the frequencies of normal vibrations are
different in the liquid phase from those in the corresponding vapor;
however, even for water where considerable amount of hydrogen bonding
exists in the liquid state the changes in the frequencies are no more
than 5-10%.51
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function depending upon the coordinates of that molecule only and is
taken to be the sum of two terms. One of these is assumed to be a func-
tion only of the center-of-mass coordinates and the other a function of

molecular orientation. Thus

)

l—\szjﬁ Hy (2.29)
an ¢ .| {
. \—\1—?— \’\T'\‘ HQ‘\‘ HV ' (2.30)

According to (2.29) the physical many-body problem is reduced to a single-
particle description, and in (2.30) the energy of each polyatomic molecule
is further separated into energies of translation, rotation, and vibra-
tion. The present treatment will ignore couplings between different de-
grees of freedom. The dynamical correlation effects among molecules are
treated in terms of effective interaction potentials which are single-
particle potentials, and evidently, such a description of the liquid
state emphasizes aspects characteristic of individual particle motions.
Because the model does not take into account explicit correlations in po-
sitions and orientations of the molecules it is not expected to be suit-
able for direct studies of molecular symmetries.

The form of the Hamiltonian (2.30) suggests a decomposition for the

position of a nucleus measured in the laboratory system,

- A U
EQM’“ gg* \—O-Qo{JT -‘Qo( ) (2.31)
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where € is the position of center of mass of the Q#M molecule, bg

—
the equilibrium position of the {¥n nucleus in the QHA molecule and %&d

0

its instantaneous displacement. When the molecule consists of more than
two atoms nuclear vibrations can be treated in terms of normal coordi-

nates, which are obtained by a transformation of the form,

N A
hyy= 2 S (2:52)

A
where C is the A4 polarization vector associated with normal coordi-
nate(qA .  Among the components in (2.31) ankzﬁu )C}A will not commute

with ¥%i_, #\&),%{% respectively, and in addition S;QM , a vector which

) -

rotates with the molecule, also does not commute with F\Q,

otherwise
all commutators vanish. The thermal average (2.28) is therefore factored
into a product,

- -ty

gy =0T e T < (2.5

ot/
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yao=Ce7e 00t T Tl AEDNCER

The nonseparability of rotation and vibration in <‘yf>a_ results from the
commutation relation noted above and also follows directly from the de-
composition (2.31) since only three coordinates are needed to specify
each Y&“ and the coordinates of kﬁﬁ and SAQM are clearly not independent
sets,

Because the operators in each thermal average involve only the Q*M
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and ¥ molecules, the matrix elements therefore are taken with respect
to the appropriate coordinates of these two molecules. It is seen that
nggFé_ will be time-dependent only when J-= ' , SO energy transfer is
possible only by direct and "inner" scatterings. The fact that inter-
molecular interference is a purely elastic effect arises from the as-
sumption of no explicit dynamical correlations among the molecules.

In the following chapters we shall be concerned with neutron scat-
tering by associated or polar liquids. ©Specific dynamical models de-
scribing molecular translations and rotations will be proposed and the
corresponding thermal averages evaluated. It will be assumed that aver-
age over molecular orientations in the rotational and vibrational thermal
averages can be performed separately, although the coupling effect can
be formally treated by the methods developed later.* This assumption
corresponds to ignoring the effect of rotation of the axes of vibra-

tion during a scattering event,

*It has been shown in the calculation of angular distribution of neu-
trons scattered by CH) vapor that little error is introduced by ignor-
ing the nonseparability of rotational and vibrational thermal averages,2



CHAPTER ITII

MOLECULAR TRANSLATIONS

The translational motion of a molecule is influenced only by its
interactions with the surroundings. In a gas the molecules tend to be-
have as free particles whereas in a crystal they would tend to oscillate
about their respective lattice sites. Unfortunately, for molecules in
the liquid state no simple description of their translational degrees of
freedom is available primarily because these molecules neither diffuse
continuously nor remain in any oscillatory state over a long period of
time. It is however reasonable for some class of experiments to suppose
that the molecules would vibrate in a semistable structure for a certain
length of time after which diffusion takes place by activation through
potential barriers created by intermolecular interactions, and the en-

tire process then repeats itself.

10-14 10

In recent neutron experiments with water and liquid tin solid-
like behavior has been observed which suggests the existence of a certain
degree of local order in the liquid. For the description of neutron
scattering by polar molecules we feel it is appropriate, particularly in
view of the appreciable molecular associations, to adopt a quasi-crystal-
line model in which it is assumed that the neutron will encounter, on the
average, & molecule oscillating about a position of temporary equilibrium

rather than one undergoing diffusive motions. Similar description has

been used by Moralesl5 in analyzing neutron diffraction by liquid lead,

2k
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and by Singwil and SjBlanderl8 in calculating the differential cross sec-
tion for water. In both cases the results are in better agreement with
measurements than those obtained assuming continuous diffusion.

The present chapter is devoted to a discussion of attempts to jus-
tify the assumption of hindered molecular translations. We shall derive
an approximate effective potential in terms of the Stockmayer two-par-
ticle interaction where, under a certain condition to be satisfied by
the associated parameters, the potential may be approximated by a three-
dimensional isotropic harmonic oscillator potential. Such an approxima-
tion would effectively correspond to an Einstein-crystal description of
the liquid in which liquid parameters are used to determine the force
constant.

The oscillator model thus obtained is then used to calculate the
direct and interference scattering contributions to the differential
cross section from center-of-mass motions. Similar calculations for a
square-well potentlal, an alternative to the parabolic approximation,

have also been considered and are discussed in Appendix C.

THE EFFECTIVE POTENTIAL

We consider a molecule in a pure liquid moving in the field of its
neighbors. The energy of interaction for this molecule, which, accord-
ing to independent-particle assumption, is the same for any molecule in

the system, can be written as
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where kj@%jﬁéggﬁ}'s is the two-particle interaction for a molecule
at R with dipole moment}i and another at R' and dipole moment}}', and
= = U=
AT Ay,
\jdﬁa&&gggf k ii\ is the probability that given a molecule at R its di-
N7
- A
pole orientation is inaﬁgijgg about (| and that another molecule is in
N\ ‘ \[—___
5 ) A+ A
d"R' about R' with dipole orientation in<jf¥}ij aboutﬁ&'. The integra-
\.

tions in (3.1) extend over all configuration space excluding the volume
occupied by the molecule in question and over all orientations of both

dipoles. The frequency”% may be decomposed into a product of two fre-
\Y

guencies,

Y ) A Y.
FRIR I W Aoy dndly = (5.2)

AN/

A A A
Y !
F(R\RYAR PR R |l i) dQNdy |
where k(y}vef\p> is the probability that given a molecule at R there
. Y A
4 ‘n 42 oL weR ~ () N 3
will be enother in d”R' akout R', and \7J:£§¥}£Qi)d&XngﬂyJA> is the
probability that given a molecule at R and another at R' the former will
- A N
have dipole orientation in aha&}i\ about [\ and the latter will have di-
pole orientation in ¢ WWJA\ about}('
/

A useful approximation for tresting E{E§“2j>, first used by ILen-
nard-Jones and Devonshire52 in attempts to calculate thermodynamic prop-
erties of dense gases and more recently applied by MOralesl5 to neutron

scattering by normal liquids, is to assume that all the neighboring

molecules which interasct with the molecule under consideration to an
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appreciable extent are uniformly distributed on the surface of a sphere
centered about the "equilibrium" position of the molecule and whose
radius is of the order of intermolecular separation.* In applying such

a "smearing" procedure we first write

3

TREdL = (e Ede’
~ FUx-R)dR! (5.5)

2
N FL%)&% ,
where the various position vectors are defined in Fig. 2. Now accord-

ing to the Lennard-Jones and Devonshire approximation,

F(EB=={2L-i§<§“SD> (3.4
\re® .

where 2 is the number of neighboring molecules involved in the interac-
tion and s is the mean separation between molecules. Tt is expected
that b should be of the order of coordination number for the correspond-
ing crystal and s may be estimated from the radial distribution function
studied in X-ray scattering.

In choosing a two-particle interaction kj@§J§3Ei¢K> it is evident
that any reasonable potential should be attractive at large molecular

separations and repulsive when the molecules are close together. In ad-

*¥The assumption of the existence of "equilibrium" positions is central
to the quasi-crystalline model which we have adopted. At least for
neutron scattering this is believed to be reasonable since neutron-
nuclear interaction times are very short compared to times required
for molecules to change their positions appreciably.
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Fig. 2. Position vectors for the Lennard-Jones-Devonshire
"smearing" procedure.
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dition, the potential should be orientation-dependent to account for
electrostatic interactions between dipoles. Such a potential can be
constructed by taking a central potential widely known as the Lennard-
Jones 6-12 potential and the interaction between two rigid, point di-

poles. The resulting potential is the Stockmayer po*l:en‘tiail.,33

2 b
= L\-e(_(%} - (gg) [ERU (3.5)

!
U, = B4 2yt (5.6)

= (= ’

with r = R'-R. 1In (3.5) consteants € and G are characteristic of the

chemical species of the molecule; &€ is the maximum energy of attraction
. . ©
of the two molecules which occurs at a separation of 2 § , and G is the
distance of closest approach.
A MY

Now it remains to obtain an explicit expression for R-,_ )M) .
From the form of the two-particle potential just chosen it follows that
at a given intermolecular separation there will be relative orientations
for which Ug 1s & minimum or maximum, The fact that statistically mol-
ecules prefer those orientations for which the interaction energy is

-BUq

small can be expressed by means of the Boltzmann factor ¢ , where

630’&-) k being the Boltzmann constant and T the absolute tempera-

ture of the liquid. The effective potential (3.1) now becomes

g T@Mwiﬁ mFGﬁj G
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where

- B Tl
U=\ 2 acudyinds |

\ - @Ud A At
o Ut dadiau) .

It has been assumed in (3.8) that any variation in r during a period of
rotation can be neglected. At small separations or low temperatures
ﬁHN(Ud)min because the molecules will tend to oscillate only about the
orientation corresponding to minimum energy. For large separations and

high temperatures the Boltzmann factor can be expanded in powers of

(kT)-l. The first nonvanishing contribution to Ty 1577

2
— 2
U, v o= =
d WTre

(3.9)

The dipole-dipole interaction averaged in the above manner is seen to be
attractive and vanishes as (kT) ™1 for large temperatures. Using (3.L4)

and (3.9) we obtain

| 2 e
T AR

24

where éio, CYQ are constants chosen so the integrand has the same form as

the Lennard-Jones 6-12 potential,

2 -Yo
6.6'—"‘— é(‘\"?&;B N GO:G(\'\'V> (3‘11)

A ¢
with &::::ESVU (Rel \QTSJ\ . After a trivial integration,

N = *%i {N_(\-@m* C \erﬂm} + &H@S%(\-agur} ,  (3.12)
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where ({ = Z%D(%SO , leg(%? , and 6:% . Thus V(u) is
only a function of the displacement of the molecule from its "equilib-
rium" position, and the shape of this isotropic potential is character-
ized entirely by the parameter @ . At the origin u = 0, V(u) has the
©
value—S(%S).

It is necessary to introduce further approximations of V(u). This
is because the Schrddinger equation with (3.12) as the potential energy
cannot be solved analytically and numerical solutions for the wave func-
tions are not suitable for later calculations of the differential cross
section, In Fig. 3 we show a number of typical curves for V(u) with dif-
ferent values of ? . As we would expect, the associative nature of the
dipole-dipole interaction tends to cause the molecule to move away from
its "equilibrium" position. However, beyond a certain point the repulsive
part of the potential becomes dominant quickly and the molecule is thus
always bound. Moreover, for r };5x162'the potential can be reasonably
approximated by either a square well or a parabola. In either case the
approximation results in one parameter for the present model, the width
of the well or the strength of the restoring force., By considering the
expansion of V(u) in a power series about u = O, we find that in order
for the potential to have a minimum only at the origin in the range %<l,
the condition

Wi
ML(E) > (3.13)



30

1.5x% 107!
Vi

Ix10~!
415

5x10-2
HO
2.5x10-2

..-5

-

Y=1.5xI10-2

—
r

Fig. 3. Curves of the effective potential V(u) in units of ‘.X .



53

must be satisfied.* TFor liquids whose parameters are such that (3.13)
holds,** a first estimate of the oscillator frequency in the parabolic

{ C\\/ -~ Vz
approximation is given by Wy .  We suspect that even when
M3

5
W U=o

the above condition is not met the use of an oscillator potential is
at least consistent with the fundamental assumption of quasi-crystalline
behavior of polar molecules in the liquid state. The present descrip-
tion ignores diffusive motion which certainly must exist: for this
reason usefulness of the model is questionable in considerations of
long-term phenomens such as those encountered in thermodynemic measure-
nments.,
For special cases where it is felt that dipole-dipole interactions
should result in a significant anisotropic character of the effective
potential, a slightly different method may be used. We may assume a
fixed relative orientation between the molecules and relegate any direc-
tional effects to an asymmetrical distribution of the neighbors., For
simplicity the dipole orientation of the neighbors can be taken to be
the same asg that of the central molecule, a choice that is actually
quite reasonable except when ¢§'£ﬁ=€>, in which case the molecular di-
poles will tend to point in opposite directions. This particular approx-
imation leads to an expression for the effective potential,
*¥This condition with Jl = O has been noted by Moralesl® in connection
with deriving an effectlve potential for normal liquids.

*%Using the parsmeters given by Hirschfelder, Curtiss, and Bird,55
p. 214, we have found that the oscillator approximation is justified,
on the basis of condition (3.13), in the cases of CHCloF (dichloro-

fluoromethane, { % 0,403), CpH5CL (ethyl chloride, § ¥ 0.654), and
possibly CH3CL (methyl chloride, ¥ = 0.0795).




where 2 , - |
U = L\rei(g {EB“S*H\M__S(JM

and P@E) specifies the nonspherical distribution., Calculations have
been made assuming the neighbors are "smeared" over the surface of a

spheroid and are discussed in Appendix A,

THE THERMAL AVERAGE

The preceding discussions indicate that a tractable description of
molecular translations in polar liquids is obtained by treating the mol-
ecules as a system of independent oscillators. Using such a model we
shall proceed to calculate the thermal average appropriate to the trans-
lational degrees of freedom. The analysis involved can be considerably
simplified by introducing time-dependent operator formalism,l in fact,
it will be seen that explicit form of the molecular wave function is
never needed in obtaining the necessary matrix elements.

The thermal average is first written as

fll ter -l SRy kg KeRE) SR
<0,HT@ QQ i Qﬂ>=4/ KSM/\@ l Jl>T (3.15)
T

where ;tkgg '“;hp@

T
E%fﬁ):: Q Eéq@ = ?&Q%"S§QA§>

(3.16)
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is the Heisenberg operator. The "equilibrium" position vector x is not
a dynamical variable and therefore appears only in the multiplicative
phase factor. Both time-dependent and time-independent forms of the in-
stantaneous displacement vector are used, the time-independent operator
/
u being the same as u(t) at t = 0. The case of QiiQ corresponds to
1 i

direct and "inner" scattering while that of i& corresponds to inter-
ference scattering. In the former case, it is evident that correspond-
ing components of %éfﬁ and !Q will not commute, and in the latter case
all components commute with each other regardless of time-dependence.
We shall consider direct scattering first.

Because the Hamiltonian F\T is separable into three independent com-

i

ponents the thermal average (3.15) forQ=Q factors into a product of three

thermal averages, one for each component,

\ [} 2 ‘K}‘ultk/) —‘\Kl:k\‘

IKIQ(JV\ -—\K/‘Q i - AN \ s‘

=~ = M T P in ( 0.

<4/ { > o k\z\jﬁ; V\'< ‘\@ \ t>> (3.17)

«

the subscript Q being suppressed and nj is the quantum number specifying
the ith component of the molecular translational wave function, In ar-
riving at (3.17) use has been made of the fact that Pp is similarly ex-

pressible as a product of Ppy. In thermodynamic equilibrium we have ex-

plicitly e - 212 — 202 -1
Wy ¢ C - ¢ )

L

i

~ 212 —2Z
¢ A-¢ )

)
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N

where z =¢%;%’(D being the frequency which characterizes the oscillator
potential. Because in the present instance the effective potential de-
scribing translations 1s a three-dimensional isotropic oscillator poten-

tial each thermal average in the product can be trested identically. By

virtue of the operator identity”

ﬁ\ 174 ﬁ\+£§fk%i{lﬁ‘ﬁ5l
@ f = ¢, (3.19)

which holds whenever A and B commute with their commutator [A,B],

) ik @-‘%'_i[u(&\)\&< YR

N EANE { (3.20)
Wy >

where we have suppressed index i, and the commutator [u(t),u] is just a

number, Next we make use of Bloch's theorem,l
l,).2
Q 24Q >T
Uy = ¢ (3.21)
T
Q being a multiple, or some linear combination, of commuting oscillator

coordinates and their conjugate momenta. Thus
2
w5 Ly + Q- 240 ]
&y 0 Y= T T T ‘ (3.22)
T

A more detailed discussion of the time-dependent operator u(t) is given
in Appendix B, It is shown that u(t) can be expressed in terms of the
"creation" and "annihilation" operators a(t) and a'(t). The thermal
averages in (3.22), evaluated in terms of thermal averages of a(t), a+(t)

and their time-independent analogues, are
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QM» <u> QMQ&Q@\»-\-«R

& ~i@% Mb% (3.23)

(@H} AR

<ues\u> T

where
- % -2y

<V\§T=ZV\F§=@ U-¢ Yy (3.24)

After some rearrangements we arrive at the expression for direct scat-

tering
KRA -k Q - (@~ iuk)
- ~Q ___
! T z L ey , (3.25)
wiaere L
h = :AAUDQQ*MTZ y
%
o = m&d/\iz)

and we have used the generating function of the modified Bessel function

of the first kind,>" ®

6“‘7\ - 24y,

==

In a very similar manner the corresponding result for interference

scattering is found to be

The time-dependence of the thermal average determines the manner in

which energy may be exchanged with the neutron in a collision. To
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illustrate this remark more explicitly we imagine the differential cross
section (2.20) to depend only upon the translational degrees of freedom
of the system., In this case the "time" integration yields delta func-
tions which obviously represent statements of energy conservation. For
direct scattering we would obtain terms containing §5(63-MQLCV> which,
depending on the sign of n, correspond to neutron energy gain or loss
in multiplies of the oscillator energy spacing. Of course not all neg-
ative values of n are allowed since the neutron cannot give more than
its incident energy to the liquid. The energy distribution of the scat-
tered neutrons, according to the oscillator model, therefore exhibits
a certain uniform and discrete structure consisting of peaks whose amp-
litudes decrease with increasing amount of energy transfer. This struc-
ture is in marked contrast to the smooth distribution of energies pre-
dicted by the gas model. In fact, the comparison of the calculated
distribution with measurements provides a direct means with which it is
possible to determine whether a gas or an oscillator model offers the
more appropriate description of the translational degrees of freedom.

At any finite temperature neutron energy loss is always more prob-
able then energy gain since the lower system states are more heavily

-0

populated. This fact is expressed by the factor @ . In particular,
at T = O energy gain is no longer possible. When the molecules are more
tightly bound, the frequency W) will be large and in the limit all in-
elastic term vanish by virtue of the small-argument representation,

-4 i
1W§Y> oty <¥/§} . This is to be expected on physical grounds as



a system of rigidly=-fixed molecules cannot possibly exchange energy with
the neutron. Elastic scattering (n = 0), however, is still allowed.

It is seen that the thermal averasge for interference scattering is
time-independent and thus leads to no energy transfer. The reason for
interference scattering being a purely elastic effect lies in the assump-
tion of no dynamical correlations among molecules, a situation in which
it is highly improbable for neutron waves to be scattered from two un-
correlated scattering centers with identical energy exchanges. The phase
factor J, is ultimately to be summed over all | and 9" mol-
ecules (QJ?QB . 1o do so explicitly would require the determination of
these "equilibrium" positions relative to each other. This difficulty
can be avoided if we follow the earlier method of smearing the neighbors
over the surface of a sphere, then

ot el R “in K%

“\ ’// | li, TN n e - .,.:,..__.. y ( 5 o 27)

0 KS

where s is the mean intermolecular separation, Alternatively, we may

adopt a more elaborate treatment of the summation in terms of the radial

distribution function®® or simply apply Debye's outer-effect approxima-
tion well known in X-ray diffractiono55
DK ,
The exponential (, which appears in both (3.25) and (3.26) is

the Debye-Waller factor originally derived in X-ray scattering to account
for temperature effects., This factor attenuates the intensity of all
scattering processes particularly at high temperature or smallZ., In

addition to being temperature-dependent it also varies with the angle
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of scattering, For sufficiently smallfz,¥>k? will be large so :[M(X>
oy

QI“HDQ {, , and the Debye-Waller factor is thus canceled. This im-

plies that at high temperatures or large momentum transfer only direct

scattering will be appreciable.

We have just used a quasi-crystalline model to study neutron scat-
tering by the translational degrees of freedom of molecules in the liquid
state. The general expressions derived here will be used to calculate
energy distributions of neutrons scattered by water and hydrogen chloride,
and the results will be compared to corresponding distributions based on
the gas model.l In the case where observable differences can be shown
to exist in distributions according to the two models a scattering ex-
periment will then be suggested. Because the present thermal average
calculation is actually applicable to any bound system in which inter-
particle interactions may be approximated by harmonic forces, similar
cross section results can also be used to study neutron scattering by
vibrational degrees of freedom of molecules. In fact, the treatment ap-
plies equally well to analysis of neutron diffraction by crystals,* the
significant difference being the appearance of the well-known Bragg con-

dition for interference which would not be obtained for liquids.

*Neutron diffraction by crystals have been discussed by a number of
authors. For an excellent review readers may see Kothari and Singwi;
& number of fundamental aspects have also been examined in detail by
Yip, Osborn, and Kikuchi,?



CHAPTER IV

MOLECULAR ROTATIONS

-3 =2
When the energy of incident neutrons is very low ( é;t«,ug —iD @)

the scattered neutron energy distribution can be significantly affected
by angular momentum exchanges resulting from neutron interaction with
the rotational degrees of freedom of the scattering molecule. The prob-
lem of inelastic scattering by rigid molecules rotating freely in space
has been treated in terms of the Sachs-Teller mass tensor? which com-
bines the effects of molecular translations with rotations, and also

1’56 to the

from the point of view of computing inelastic corrections
static approximation which ignores energy transfer. In this section a
formal calculation is described in which matrix elements in the thermal
average are evalusated rigorously. The present approach has been used
independently by Rehman” 1~ following the work of Gorgunov°58 Because of
the assumption of free rotational motions the results are spplicable
primarily to gases and normal liquids; the effects of intermolecular
forces will be considered in the following chapter in terms of & spe-
cific model for polar molecules.

We shall begin with a review of the dynamics of molecular rotations

in free space. The purpose for the review is to present a complete de-

velopment of those aspects of the molecular problem relevant to the

*We wish to thank Dr, K.S. Singwi for bringing this work to our atten-
tion.
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analysis of neutron scattering. In addition, certain features of the
free-rotator problem which are also pertinent to later development of a

description of hindered molecular rotation can be brought forth,

DYNAMICS OF FREE MOLECULAR ROTATIONS*
Consider an arbitrary polyatomic molecule rotating freely in space

as a rigid body with energy

4=

2 2
AN
I, T

:«2 I,JO

W= =( ), (4.1)

4
where P; and I; are the ith components of the total angular momentum and
moment of inertia respectively in the "body" system, i.e., that system of
axes fixed in the molecule which coincide with the principal axes, It
is conventional to express this energy as

2

2 2 2,
%HPEC\P+Pz+b(PX-Q\>) (k.2)

<

If Iy is assigned the intermediate value of the three moments, then

~{{bso . In (k.2) we also have the Hamiltonians for symmetric mol-

*A large amount of literature is available; for review reader may see
Nielsen®9 and Van Winter. 4o
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ecules (Ix = Iy) and spherical molecules (Ix = Iy = I,). The Eulerian
angles OMGQ) which specify the orientation of the body axes relative to
a set of axes fixed in space are defined in Fig. 4. 1In terms of these
dynamical variables explicit expressions of the angular momentum opera-
tors have been derived and are given in Appendix D.

It is convenient to treat the symmetric molecule first and then use

the result to obtain solutions for other cases. The eigenvalue problem

- & \ -
E><§<¢GQ) == O ) (L.3)

where from (L4.2)

with Iy = Iy = I, and from Appendix D,

S _ =~ (1-1)a
—‘%XE‘MQ‘;_(W%;Q‘\_’-(Q\V QM}A\@Q ;(2)*‘ 12;3@2-& (4.5)

with B ='ﬁ2/21, In (L4.5) the coefficient of every term is independent

of q/and & , the equation is therefore separable. The solution becomes

Mk\) \\((Q
BU)=0 ¢ RE, 1.

where M, K are integers, and R({) is defined by the equation

S e

Siv
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Fig. 4. TFulerian angles ( \L}%Q ) defining orientation of body
axes L. with respect to space axes Q’: .
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with )\: E* :E \< . This equation can be solved by studying its
Z

singular points, A variable transformation Q‘Q:l—@se leads to

’g(\—t)(z"(t) + (\—9.%3(2/.. Uﬁ:;;’:; b _ AXQ =0, (4.8)

with regular singular points at t = O, 1 and another regular singular
point at infinity which is nonphysical since t is defined in the range
(0, 1). 1In the neighborhood of the first two singular points the well-

behaved solutions are

\e-Mi/2
QUY;B%:;G’ t )
IK+Mi 2 (4.9)
~ (1-%)

P>

The transformation is therefore suggested,

=Ml WktMl/n

Rty="1 -1) T (%.10)

After some manipulations, an equation for F(t) is obtained,

WUHF ¢ L= ettt [F-dfF =0, o

with K\th“M\+1

N 4p = le=M+lir M+ 1o

i = (M EMDC KM M) +2) /4 — K-

Equation (4.11) is known as the hypergeometric equation which is the

standard equation for three regular singular poin‘l:sc.u‘:L The analytic
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solution at t = O is called the hypergeometric function, expressible as

a convergent series for{&ﬂ <A,

o et 2
Fy— 4+ 004 = TR (4.13)

Sae 1y

U U “\0 ' i T
Since the wave function must be finite everywhere (including t = 1) the
series must terminate. This will be the case if X is a negative integer

or zero. Thus it follows that the energy eigenvalues are given by

. - 2.
E o= %_XCH» ”\} - 5(Iw LZB K (L.1k)
A Az

where - \f+.21-(sK+Mz+|K-M|) is denoted by J,J=0,1,...; K,M = 0, *1,..., £J.

The corresponding eigenfunction is

g i el kM

— R Y _ =(y Akl
\TKK@Q%S&%W:N@ et o = )E;W) (4.15)

and39

—

N — (fictt oo 1 = 2O (M + e M=oy | M=) |
- VNN =, . (4.16)
U oo el (s ol

In the solutions just obtained J, K, M are quantum numbers appro-
priate to the total angular momentum, its component along the body-z axis
and its component along the space-z axis. Since P2 commutes with P, in
both systems then the total angular momentum and its two z components are
all conserved. From this standpoint the energy Egjxy could have been
written down directly. The fact that the energy is independent of M is

not surprising because the molecule has no preferred orientations in
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space, Assoeciated with this randomness is a degeneracy of 2J+1. The
energy 1s also independent of the sign of K, corresponding to clockwise
or counter clockwise rotations about its symmetry axis, hence each state
|70 is 2(20+1) -fold degenerste.

A convenient representation of the symmetric-molecule wave function

Lo

has been given by Wigner

e T
\SKNW:( awl) D_M)_KWW\) ) (4.17)

b3

where if we follow the notation used by Rose
Dy ) = ¢ dMK(Q) Lo (1.18)

2.
d—i\\((@;\ = [@‘r OLCT-E) CTEMYLT-MY \1
2THK-M-23 M-k +2S 10

s 3 W
w2 O ) ) ’
S

(3-M-S)) (-t (SM-DE st

Summation over s is such that arguments in all the factorials are never
negative, The function D&K is known as the rotation matrix, or the MKth
matrix element of the Jth irreducible unitary representation of the
rotation group. Because of its well-known symmetry and transformation
proper‘tiesh5 this function is very useful in the calculation of maxtrix
elements.

Solutions for the spherical molecule are obtained by simply setting
I, = I in the above results. The complete degeneracy in K leads to a
2

total degeneracy of (2J+1) The wave functions and energies of a linear

molecule can also be derived as a special case in which there is no
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rotation about the molecular axis. Thus

l/z v i
MY
ol ML T -y M
TM) = \{3— (6‘,% = \5 —_—__L\JY(T\-\MKB\J ( F?y(uﬁ%\ (14.20)
23 (/2 T

= KTT) Dvm(%o> ) (k.21)

E, = %T(j‘&‘ ‘\B 3 (4022)

M

where Pg is an associated ILegendre polynomial. Degeneracy for this sys-
tem with only two degrees of freedom is 2J+1.
We next consider the general case of the asymmetrical molecule whose

energy is given by (4.2) or

Q_ ‘. ‘ .
g—u‘mz: Z"\s\z'“ oH, . (k.23)

The eigenvalue problem

(22 10W0=0, o

gé._

with >== <. , may be treated by noting that the states lJKM> form

[

a complete set in the space of the Eulerian angles and thus provide a

basis for the expansion of the present solution

———

-

N = —_
TEMY = 2 U | Tam) (4.25)

Ke= 7

The coefficients(x depend only upon K because J and M are still good

quantum numbers (P2 and the space-z component still commute with HAR),
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Now gquantum number E is anticipated here as a replacement for K. Equa-
tion (4.24) becomes
> o, | (2E 7}§ N k., 26)
(T b<m<\s~\,\:ﬂ<>§:o) (4.
where we have suppressed the label M., As usual there will be no non-

trivial solution for dk;unless the secular determinant vanishes, i.e.,

ddr | (ZE )33 o LTR(H \”A\<>\ o (k27)

Since K ranges from -J to J the determinant yields 2J+1 values of £>,
each of which will be labeled by the index E. The energy of an asymmet-
ric molecule is therefore given by CLQ /&_, where for a given J, E may
range from zero to 2J in integral steps. For a given J and E, the appro-
priate set of coefficlents of expansion are then obtained from the set
of simultaneous equations (L4.26).

The present method of solution corresponds to an orthogonal trans-
formation from an "old" basis itJKﬁ>% to a "new" basis {lJEﬁ)S in which
HpR is diagonal, In order to evaluate the matrix element <JK§H1\JK3>

"

the "raising" and "lowering" angular momentum operators P, = PxiiPy can

be introduced., Thus

\‘ z PZ
H = P sza Pt R (1.28)
In terms of P, the necessary computation is greatly simplified because

the symmetric-molecule wave function, denoted here as \JK:>, transforms

according to the Jth irreducible representation of the rotation group,
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L8

and under the operation of infinitesimal rotation operators P, yields

Pt\'S\O - )ﬂ\s ('S;K)('StKH)l \Tkt1> .

In other words,

(4,29)

H 1w = )-ﬁ; % a ) |7 + 8@)@ [Tk- 2>R (450

with

43.9= \ TRk TR

Thus Hy couples only adjacent states K' = Ki2.*

The determinant (4.27) has the tridiagonal form

P/
>

*The same result is obtained by using the differential-operator form of
Hpgr and deriving recursion relations for the wave functions (L4,15).
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2
where QSE—'; >3E~ aV\I(:m) . The energy of the molecule is therefore

2
EZ’)EM= %UJO\XQHHQEX X (4.33)

and the associated eigenfunctions are given by (4.25). The (2J+1)-fold
degenerary due to the arbitrary orientation of the space-z axis still
remains; however, previous degeneracy in the sign of K is removed by the

asymmetry.

THE THERMAL AVERAGE

The wave functions and energies of rigid molecules obtained in the
preceding section can now be used to investigate neutron scattering by
8 system with only rotational degrees of freedom. From the standpoint
of energy transfer the case of interest is the scattering from a single
molecule since "outer" scattering is necessarily elastic in the present
model. The appropriate thermal average will be evaluated first for
symmetric molecules, then the asymmetrical case can be derived as a
generalization, *

For molecules with axial symmetry the matrix elements under con-

sideration are
X3 JkMS = (TkM
d ’ \TKM} (4.3k)

H(Ex By ik Sk,

=21 sy [Tl
& Gag  [TARCTM] ¢ Ty )

*Rahman> [ has independently obtained results similar to those derived
here,
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the index Q being suppressed since Q::Q‘. In the product only one matrix
element needs to be obtained, the other is merely its complex conjugate
with appropriate change of nuclear subscript. The equilibrium position
b is a constant vector in the body system while neutron momentum trans-
fer E; is fixed in space; in the scalar product both vectors must be ex-
pressed in the same system of coordinates. A useful expansion for the

purpose of calculating the indicated matrix elements is

x
|\<:b Y‘QA, k), .
_L\T d (Klo) Q(@)Yﬂu@) (L.35)
where dq\is the ch order spherical Bessel function and the prime indi-
cates that arguments of the spherical harmonics are measured with respect
to the body axes. Because EJ is specified in the laboratory, a rotation

yvields

(K) iiiﬁ:) _QUQQQYK/(K>

A |

where KJ has components in the space system. The rotation matrix (:%Wk

(L.36)

is an explicit function of the Eulerian angles describing rotations of

the molecule with respect to the space axes. The desired matrix element
Q L /

now becomes <_SKM\ i, ht TK

The expectation value of [}Mh in an eigenstate of the symmetric

molecule is easily obtained since the wave functions are themselves ro-

tation matrices. The product of rotation matrices can be reduced by

e \
means of the tabulated Clebsch-Gordon coefficients (:M M, MM, the
2 |

|

relevant reduction formula as well as other useful properties of the
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Clebsch-Gordon coefficients are summarized below:*

< L TA QT N N\
z C‘ V< K DW\+M ket K
Al s ir"’i;—&s /\i \2 ,\5
C«.\z\ = © o m

w\l —M.B ()-1-557)

erw 77
% R K-k C!e’K—Va’ =§ht(€'

*See Roset) for a thorough discussion of the properties of rotation
matrix and Clebsch-Gordon coefficients.,
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Using these results we obtain

Kl M4k

——

Gaals TS = \ﬂ'ZS Y 2TLA)

QW d K'> (b) C—V\ Mo~ w0
where use has been made of the orthogonality property
J P P = Q'H "’Q M‘M :

A

In arriving at (4.38) the space-z axis is chosen to be along E!so that
Yi(m S \}(4Q+ s

The energy eigenvalues of the symmetric molecule have been shown to
be degenerate with respect to M and the sign of K. The matrix element
(4.34) therefore should be averaged over K, -K and the 2J+1 values of M.

Summation over M and M' gives

- T T'Q TIE
— D (4.L40)
). CM C, M ~M A == QQI 5

MY/

and we have

(ol ?S'K Y = wi—~ / ol ;«_.;«‘./;77
/ 4L’2_ \T«> -‘-k/ f\l\
LE -2 )
; / JK Jg ¢ .
_ LD ey (1. 4)

T

~~«:"; U\,r\\‘ \ ] .y Q
SR A TFCOMECTAN T3

S -ra*k‘%_“‘\dw )Bd hb y (& )[ ( ((o ﬂ -K -k’ X

Sl
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The thermal average for scattering by a single symmetric molecule thus

becomes

e Kb, -t ~ikby
Gy =<6 b Ly
1 1

N _
:(7_@6 )?mgm b &

Tk Tk

(k.42)

Inelastic neutron interaction with rotational degree of freedom re-
sults in angular momentum exchanges which are governed by selection rules
for J' and K' for fixed values of J and K. The energy transfer depends
upon Q » which from the expansion (4.35) is interpretable as the amount
of angular momentum exchanged in the collision. When Q = 0, we would ex-
pect only elastic scattering; this is precisely the case since K' = K and

the Clebsch-Gordon coefficients require J' = J. Explicitly,

T T N
—_— (O b4
‘e - T+1) éﬂ, (4.143)

C

and so
i , :
G\ 76y = do““% dowod) , (1. 4h)
JE
]
As b —0 only the term with Q = 0 survives in (4.41) because dq(x>
__——.kéjsiﬁ ; the vanishing of the "moment arm" therefore renders the
= 0

scattering process purely elastic. Equation (k4.4k4) is, however, not the
sole elastic contribution to the cross section since for finite angular

momentum exchanges there will also be selection rules for K!' = K and
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J' = J, and each term in the Q-sum contributes to elastic scattering,

The Clebsch-Gordon coefficient C:EZ‘?:/ restricts J' to range from
kT”Qt to J+Q, then for small Kk) the spherical Bessel function dﬂ(x>
N X%&QQ+Q\§ limits inelastic processes to small energy transfer.
Spherical and linear molecules are special cases of some interest
in which rotational energy is the same and depends only upon quantum
number J. The difference in these two cases lies in system symmetries
and hence the associated degeneracies as noted previously. The matrix
elements in the thermal average must be appropriately averaged over all
orientations with respect to which the energy is degenerate. The re-

sults are

t:.. =

< -6 T
Qin'y =(2.4 ) Zw oy (1.5)
T

where for spherical molecules,

: N
(&M)T> V\\“ ,/ <m& UKM

KM .
k;(jym *t_' 'l";"Qﬂ
-1 ’ ( (3 y i
:(QIH"D‘Z—(QK-FDQJ L()Q 1 K )d \\lb Y(E)Yd 4 /., ' ke ~K I
e e &F (1. 46)
A< 173
= (@3t 2Ty g Pl i da‘“b MY
I 1—\7—3!
where '% ! , 1s the angle between k) and bd . Similarly for linear mol-

ecules,

Gl 7 = (2T41) 2 otl ;w}
(kL)

rbOE E; o
_ 2 S s, W\«b\ iyl

J! q



The absence of the degree of freedom characterized bty K results in

(23,4-13/(Q—5J\‘ D being replaced by (QQ+1> X C_—i %}ilj B

The present method of obtaining the thermal average can be gen-
eralized to the case of an asymmetric molecule in a straightforward man-
ner, We recall from the discussion of the molecular problem that the
wave function of the asymmetric molecule is expressible as a linear com-

bination of [JKM> , and that the energy is still degenerate with respect

to M. The eigenstates are
(4, 48)

where the coefficients(%XEKare real and the energy eigenvalues are
labeled by J and E. Following the same procedure as before, we obtain

the formal expression

/\D(o(> _(j_@ > Z(M)USE}@

-

el )'JE> _(Q'j\@ Z Al );\—‘E\Q
e ) -
= 2 QQ’S—\-‘\B ( = JE z Q(Pr'\ Q(Klbobd Kb ,> (L. k49)

TE/ Ki/{ k!
77( T 34
(\\/ /ot
) \Q(b\\(ﬁ ( 30(3.&:_\4 UE'KWO(JEK’NW,E/K{MQI C K (ki) ks ‘(K—‘r\Q)

In the results derived thus far the scattering process is treated
by explicit summation of individual rotational transitions., While the
approach is rigorous and accounts for all the inelastic processes at

once, the amount of labor involved in an actual calculation may be pro-
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hibitively large if the incident neutron energy is sufficiently high as
to induce a great number of transitions. On the other hand the results
obtained here are in a form suitable for exhibiﬂing the low energy limit.
By virtue of the small argument representation for the spherical Bessel
function, bq L X +-H l , the cross section may be
q (QQJr TIEETREN

readily expressed as series in powers ofkbb.

When the incident energy is large compared to rotational level spac-
ings the mass-ratio expansion method developed by Zemach and Glauberl and

. 36 . . N

extended by Volkin® can be applied. The static approximation, or the
high-energy approximation which completely ignores inelastic scattering,
may be readily deduced from the present expressions for spherical and
linear molecules.”! In this case energy transfer is a small fraction of
the incident energy so FQ is essentially only a function of ki and the

angle of scattering; moreover, the time-dependent factor will be ignored

and the sum over J' extended to all possible final states. Then from

(14.16)
o ZWH‘B\ 7T Qg _ Q_sz_[ e j ot (u.50

and

<o<b<'>T ujﬁ_«zqﬂ)d \d (Kz H b,
(]EOQK’\ @[b&'\}



9

The last step in (L4.51) can be shown by considering expressions similar
Koy kb -ikp!
to (4.35) for @ and é { , and then integrate over
A
all directions of El. The same result can be derived for linear mole-
cules using (4.47), thus implying that the scattering of high-energy
neutrons is not sensitive to system symmetries, In the cases of spher-

ical and linear molecules the scattering is also not influenced by the

particular state in which the molecule is found initially.



CHAPTER V

HINDERED MOLECULAR ROTATIONS

The preceding analysis of neutron scattering by systems with only
rotational degrees of freedom assumes the molecules are freely rotating.
The assumption would be erroneous if existing intermolecular electro-
static effects in the liquid are sufficiently strong as to cause the
molecules to spend considerable period of time in certain preferred ori-
entations of minimum energy. This type of motion is then said to be
hindered in the sense that one or more of the rotational degrees of
freedom is partially or completely restrained.

Recent slow-neutron experiments with waterlg’15 have revealed pro-
nounced inelastic scattering involving energies larger than any char-
acteristic energies associated with molecular translations or free rota-
tions and smaller than the vibrational energies. As in early interpre-
tations of similar observations in Raman spectra,g2 the specific atomic
motions responsible for this type of energy transfer are taken to be
hindered rotations, or torsional oscillations of the molecule in the
potential field of its neighbors. .

In this section we propose a dynamical model for the description
of hindered as well as free rotational motions. The basis of the model
lies in the assumption that the hindrances are predominantly produced
by electrostatic interactions among molecular dipoles and because of

the appreciable amount of crystalline symmetry still persisting in the

60
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liquid strong direction-dependent forces prevent the molecules from
having complete freedom in rotation. It is evident that this viewpoint
is consistent with the model developed earlier for molecular transla-
tions.

The present approach treats the interactions of a molecular dipole
with its neighbors in terms of the coupling between the dipole moment
and a local electric field which represents the effects of the surround-
ing, As in the previous determination of an effective potential for
translations, only one parameter appears in the model to account for the
dynamical characteristics of different liquids. The electric field in
this connection will be taken as uniform in the immediate neighborhood
of the molecule and constant in time, at least during a period of rota-
tion; its magnitude is presumably of the same order as the crystalline
field in the corresponding solid phase.*

In the single-particle description the potential for rotations ap-
propriate to our model is Just “J&'E) the interaction of a dipole@i in

a uniform electric field E. The Hamiltonian now becomes

l —
HQ: “\E*M\E 5 (5.1)

where Hg is the free-rotator Hamiltonian used in the preceding chapter.
The direction E is fixed for the molecular problem; however, in eval-

uating the corresponding thermal average its direction must be averaged,

*¥Spatial and time dependences of such a field can be assigned physical
meanings and may be introduced as modifications of the model.
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in which case E will be assumed to have random orientation.

In the presence of the potential the total angular momentum is not
conserved although with proper choice of coordinates its two z components
will still commute with Hé. We shall first consider a rigorous solution
of the molecular problem for symmetric molecules and then indicate a pos-
sible generalization to the asymmé%ric case in Appendix E. It will be
seen that the rigorous approach is not convenient for the calculation of
thermal average because the determination of rotator energy and wave func-
tion requires substantial amount of numerical work. Moreover, as the
existence of hindered rotations implies large local electric fields,

strong-field solutions should be physically meaningful and capable of

providing a suitable means for the analysis of slow-neutron scattering.

A FORMAL SOLUTION
The eigenvalue problem for a symmetric polar molecule rotating in a

uniform electric field is¥*
{ o
QH&P\” ADOO)\ﬁwb == Eg::m \%KM} ) (5.2)

/
where Hgp is given by (M.M),Avuw“:, and f}wfm(mg,w [see Eq. (Lk.21)].
!
The dipole moment\n‘has been chosen along the body-z or §5 axls and elec-

tric field.g;along the space-z or 35 axis so the potential is simply M\Cﬁﬁ@l

Since the other two Eulerian angles are not affected by E, M and K re-

*The same equation is encountered in the study of Stark effects in polar
molecules. An application of the present approach to linear molecules
has been described by Kusch and Hughes. 5
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main as good quantum numbers while ﬁ;is anticipated as a replacement for
J. Again making use of the fact that the free-rotator eigenstates form

a complete set, we seek an expression for ngﬁb»of the form

vm}w < LD [Ty (5.3)
The coefficients of expansion are determined from the coupled set of
equations

"S C Lcﬂ E@\> s‘y"s"/ -\ UN' \ =0, (5.4)
ST R

where EJ is the free-rotator energy, indices M and K being temporarily
suppressed, and Eg;has yet to be found. The interaction matrix element
Usyr is readily obtained by means of the reduction formula (4.37) and or-
thogonality integral (L4.39),

. b . C \ O (<
U:r:nx‘ VIR = Q‘@@nﬁ ("W gy Ayig.y 5> 69)

th o TTT T
4 ou) wm O C

0 b}

o AL TET o~ TR T
G =TT LR 56

The next step is usually to demand that the determinant formed by
the coefficients of CJ,(g) in (5.4) vanish, a condition giving rise to
allowed values of E@, each of which is then used to obtain a correspond-
ing set of Cz(g). From (5.5) the matrix Usj: is seen to be an infinite

tridiagonal matrix since J is unrestricted, and for this reason it is not

possible to exhibit the solutions in closed form. Nevertheless, by using
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a method first discussed by Feenberg™ in connection with perturbation
theory the solutions can be given in continued-fraction form which will be
suitable for weak-field approximations or numerical computation.

We shall write the energy as*

U U
2 P YpT
Egﬁ =5y >‘035+ )\ :lﬂ EM- EAKF ' 57

An argument is given to E_ for identification purposes since in the event

S
the electric field vanishes the energy given by (5.7) must coincide with
the corresponding free-rotator energy. The effect of the potential can
therefore be studied at any field strength. The close resemblence of
(5.7) to ordinary perturbation theory should not imply that the expression
is approximate. Due to the fact that D%O couples only adjacent levels in

E
addition to having nonzero diagonal matrix elements all terms in )\ and

higher do not appear. To show this we only need to consider the term in

3

K ,» which would be ordinarily present,

UTF UP‘l Ufﬁ

NG (E-EpllE0) -]

For a fixed J, UJp requires p = J*1 and Upg requires q = J*2. Since

Uggr = 0 for J' £ J, J+1 then Ugg must vanish.

In view of (5.5) the energy 1s rigorously given by

) &)

n) _

E’\T)z‘E-A(q@H?%S —— + | k
g -S 0 Eé—SB“E\I S‘H Eg('—SB_ é]’:_i ’

*See Morse and Feshbach,ul Chapter 9.
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Z UTIIIW U:rm ]
E—‘TX:‘,‘” =E3;/ ‘)\C’.](T)‘*‘)\ ”# _SHE(T) E_‘_J:: "oy ) e
with J' = J¥1, J'' = J¥2, etc. It is more convenient to cast EEé;f)
into the form of a continued fraction,ul
%? <4+Cf>
ELT) - Egy + AQLTH) — NEHELD) (5.10)
€ T+ 8 = =
=Bt AGEHY ~ ..
G4T7)
E)- By v AQ, ) - N @.(T-)

ELD By FAQG2) — ..

The coefficients of expansion corresponding to this energy are similarly

obtained,
CHd =1,
_AQEWB (5-11)
S = EO)-Ep, + A Qo) - s (TR

B -Egpqt
Thus the expansion (5.5) consists of three terms, and it is obvious from

" ™
these results that as }\-ﬁ 16 , \gkpb—ﬂ‘:\q]} and t:_g("SB—-\; EI' The present
formulation is particularly useful in studying the splitting of the energy

levels as the electric field varies.* Since the wave function is expressed

*The total number of splittings is more easily determined from the strong-
field solution. For some numerical results in the case of linear mole-
cules, see Kusch and Hughes. >
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as a linear combination of the rotation matrices the method used previously
can be applied in computing the matrix elements for the thermal average.
There is little advantage in this approach, however, as it would be very
difficult to treat the physically interesting case of strong electric field
to exhibit the nature of hindered rotations. In the following we shall

therefore directly seek analytic solutions in the high-field limit.

THE HINDERED ROTATOR

The eigenvalue problem for symmetric polar molecules in an electric
field expressed in the form of a differential equation is obtalned from
(5.1) and (4.5). By choosing M along gé and E along ey the equation is

still separable in the three Eulerian angles, so the wave function is of

‘w
Nsgy= ¢ Y,

the form

(5.12)
and Y(Q) satisfies
2.
A digady MkeEd) T L L (Aems +ED W~
{SMGJG(SMQJ@)' R '1':'2*6 \(% 0. (5.13)

It is expected that under the influence of strong field the molecular di-
pole will tend to be aligned in the direction of E, thus angle 6 is re-
stricted to having small values. A meaningful first approximation is

then obtained by a power expansion in @. To second order
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¥
{2
The %3% term can be eliminated by a change of variable Y(%;P(@}@

2
A further transformation X:V\Q yields

E S

” W

where O< — \\(“-M \2
L_ 2N\, *_M .16
g=ME-(Fr )< F0) o9
o A\ \

=5z~ 3 )
1= %
an equation with singularieties at X-.-_OJOO . In the neighborhood of these

points the well-behaved solutions are

Wi/
P(\) ;(:, X
6 —X/a
~
X=>e e

In the small-angle approximation the range of © is now (O,») instead of

(0,%). The asymptotic behavior of P suggests the dependent-variable
Wl _ X

=2 2
transformation P(Y\);xza L(X> which leads to an equation for L(x),

I B Wi ,
Y= e [ e — _ .1
VARG FS (Lu] ~ )L o (5.17)
Equation (5.17) is in the form of confluent hypergeometric equation with
regular singular pcint at x = O and an irregular point at x = oo.hl The

solution, like that of the hypergeometric equation,; can be expressed as

a convergent series for \x] < [ If we require the wave function to be

square integrable over the range (O,») it is necessary that '\E\;:%—\Oﬁ%—\
be a positive integer or zero, in which case the solution is the associated

|
Laguerre polynomial \__S(x> . The energy and wave function according to
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this mode of quantization are

11\/\4/ Ml — £ M|
sy = N_y, ¢ x T L, (5.18)

ng X—;\%OD.%HKM-HB \~&i <_~_§> 3M< ‘VM\ }\ (5.19)
N

In wrltlng these results we have used, to a very good approximation, q@Qié

and 4:6/QEX 1 . The normalization constant is determined from a special
case of a more general integral discussed in Appendix F,
¢ 1!

SM o Deriemi 12

The wave function and energy of a linear molecule are derivable

from (5.18) and (5.19) by simply removing the(Q degree of freedom and

seting K =

My %y
§N@XQL<‘«))

:W(Qg+iw\\+a) + %_?t/i A (5.22)

(5.21)

Normalization constant here is that given by (5.20) with K = 0 and less
a factor of (2K>-l/2.

The rotational energies of the symmetric molecule are seen to con-
sist of contributions from both hindered and free motions, the latter
being the terms proporticnal tc B. This consequence could have been pre-
dicted from the form of the potential which contains only the 6 variable.

Although each of the three degrees of freedom is involved in hindered

rotation, the energy of this type cf motion actually depends upor only
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two numbers. This implies that if the energies of free rotation were
ignored then the small-angle approximation leads to & description of the
symmetric molecule as a system with effectively two degrees of freedom,
and in this sense there is no difference in the dynamical behavior between
the symmetric and linear molecules. Moreover, through the form of the
energy of hindered motion the nature of the small-angle approximation is
revealed; it is not surprising to find that under strong fields the
system behaves as if it were a two-dimensional isotropic oscillator.
In Appendix G we discuss a somewhat different approach to the strong-
field solution which leads to the same results as those obtained here.

The presence of free rotations gives rise to a rather complicated
pattern of energy levels superimposed upon the equally spaced levels of
hindered rotations. It is interesting to note that by changing the
quantum numbers K and M such that IK-MI remains the same the symmetric
molecule can undergo relatively small amounts of energy exchange. Phys-
ically this is to be expected since the rotational frequency about the
axis of symmetry can be altered without affecting the relative orien-
tation ofx&iamigé. Since there is no rotation about the e4 axis in
linear molecules this type of low-energy transitions is not possible as
can be observed in (5.22).

The strong-field solutions which we have obtained represent a
meaningful description of rotations of polar molecules whenever'A is
sufficiently large so the use of small-angle approximation is justi-

fied. However, not all solutions are admissible since
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&, = 'WQQ@ M4 1) (5.23)

and there will be values of € and |[K-M| for which <%2>§KM is no longer
small. The physical breakdown of the model occurs when the energy avail-
able for rotation is so large that the effect of the electric field be-
comes negligible. Such a situation may be achieved by increasing the
system temperature to the extent that the molecules can no longer '"feel"
the influence of the potential. In this limit one would expect the mole-
cules to again resume completely free rotations. Unfortunately, the use
of small-angle approximation at the outset prevents the dynamical be-
havior during this transition to be examined in the present formulation.*
The description of hindered rotations has not been satisfactorily
generalized to the case of asymmetric molecule. We have considered the
method of orthogonal transformation employed by Wanglm in treating the
free asymmetrical top and have found that the terms arising from the
asymmetry [terms proportional to b in Eq. (D.5)] couple all states of
the symmetric molecule. Hence numerical methods are required to diago-
nalize the resulting infinite matrix. On the other hand, we have ob-
served that the energies of hindered rotation for symmetric and linear
molecules are of the same form. Then it may be argued that in cases of
strong coupling the symmetric molecule provides a reasonable first ap-

proximation to the asymmetrical molecule. The supposition that hindered

*The use of a temperature-dependent field offers an interesting possible
modification of the model through which a high-temperature limit may
be derived.
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rotations are not sensitive to system symmetries will be tested in a

specific calculation of water to be discussed in the next chapter.

THE THERMAL AVERAGE

Recently Nelkin25 has treated hindered rotations in water by means
of an oscillator whose frequency was taken directly from neutron experi-
ment and whose mass was an adjusted parameter fitted to the free-atom
cross section in the Sachs-Teller mass tensor approximation. The reduc-
tion of rotations in a potential field to torsional oscillations has Jjust
been explicitly derived and in this respect it is possible to Jjustify
Nelkin's approach. The model proposed in this investigation provides a
reagsonably simple but realistic description of rotations of polar mole-
cules in the liquid or even solid state, and is suitable for use in
studying neutron scattering. We shall follow essentially the same ap-
proach developed in Chapter IV in evaluating the thermal average. It
will be seen that the main features of Nelkin's calculation are con-
tained in the present results although the corresponding expressions
for the intensity of the scattering are markedly different. Moreover,
the present treatment allows the effects of free rotations to be in-
cluded in the general analysis.

We consider first the matrix element appropriate to neutron scat-

tering by a single symmetric molecule,
| | .
K‘Hfsz LKy ~WHgz “‘&‘bd/ N
L keM> = ek 2 o l J <Ky (5.24)
Q Q{EQEQKM“ EQIK./M'>

= & N
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where ‘KLb —thb
Q) = <geM| ¢ M < kM| ¢ \§\<M> (5.25)

The expansion (4.%5) now gives

LmZu mb}Y(b)\’ K‘SD W\D SO 5:26)

where under the transformation of successive rotations the spherical

harmonie \)iK whose arguments are measured in the ei system 1s expressed
Ag

as a linecar combination of \( (KJ% with components of K measured in the

laboratory or Q, system. The orientation of the space of e; axes with
L

=i
respect to the laboratory system is specified by the Eulerian angles (Né&)‘
The laboratory axes are introduced because the direction of E, which is
along 25, must be averaged over all possible directions. By means of the
orthogonality integral (4.39),

(' _

& Sd%*eMD_?_MDQ oS S S

and the relation

we obtain an expression for Q averaged over all the random directions

of E,

}k

Q=<u§2.k,dé“‘°\dw W(b 5<€‘<M\ AOQD, ) Al

The indicated matrix elements can be reduced in view of (5.18),

;7 /i 2
<§}<M\‘D_%4’_n lekM = (21 NngN e éM,M'-\-M §K§<’+h = , (5.28)
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<§KM\D \§\<M> (Q“BN mmg'\[w M| M= KK-WF (5-29)
where normelization constant b%§“4is given by (5.20) and integral F is
defined by %
\ \K__\_M*r\l'“\ —x M| lEM] g
N V2 .
with V\=(EE§ . It is seen that for fixed K and XK' the product of the
two matrix elements requires k = k'. Thus

G=UT ?da‘““dn‘“@\@“”\(ﬁ(aw G

In the integral F the matrix element C*Q " is according to (4.19),
Wy

k-mi0s

d- 12+M+Qs
Qi Q\_M_Z& Gdy Gy 5.52)
where y

|
@erw = [ - o) (femy! X = Q|
{ S ] A
%_W\r@(%\ =) [(Q%W\—S\\‘( =)\ (sthe-m )l sl ]

In keeping with the small-angle approximation used to obtain the rotator

wave function we -may write

b—mﬁg “L&ﬂ leAm-25)
dm A8 X sza 3(— 0 ) (5.33)

which leads to an explicit expression for F,
b-

T QV‘ thjM (©)( M]S g CPH;LUB , (5.34)

<
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P

S <pig- jd P ~cttyx Po{ P
\g%, H“M>: XX ¢ L L > (5.35)
= L‘i;] Qlem-k-22)
lk-M MAM-lo | +oc
2p =M+ M eM-k | + 28w+ o (5.56)

2{ =Mkl ~ikm| v2s -wt
Qq =M= k- Mm-k| £28 - wm vl
We note that p, j, q are always positive integers or zero. The integral

S can be evaluated in terms of the generating function of the associated

Laguerre polynomial (see Appendix F),

D <Péts\m——(\jg(§+\: \5 (SH ~f1\)[ (5.5
5.37

C-4
033§l oy i

S 4 d[(@ld){(ng\!Céﬁd>\<*¥6~%§\<ﬂ+6*§:>\ :

where the summations are such that arguments of the factorials in the

denominator must never be negative. For a given <, J, 4, and p Eq. (5.37)
can be used to derive the correponding selection rules for f;’

The Eqs. (5.24), (5.31), (5.34), and (5.37) comprise a formal de-
scription of neutron scattering by a hindered symmetric rotator. As with
the earlier case of free rotators, the present approach results in an
explicit summation of all possible transitions, and consequently requires
considerable reductions before a particular process can be investigated in
detail. It is noted that in (5.34) a natural and convenient expression

. . i /2 )\ Y2
for F can be developed as a power series in Q“ﬂ> , where V\=(§E;3 w1

The leading terms are



>

Vs

F=F 4 (M) F,o+ LW]F + MW\ , (5.38)

M| —x M| kM|
Ezémbjdxx ¢ Lo be s
b KM+ [K-MEL {44 KM ket

Py = =Sy oy LYk ) de X - ( L% L%,

2 2 [ Ml =% MM Tkem|
F2=~§M\Q&Q—Vz+\)xdxx A Lg:

The integrals in Fi are special cases of (5.57) with JA=C), they are of

the form
e
S = go\xxa Lo b
SO
)

=6y (srp-DHEHP-9! (49! (5.39)

Mz Cprod!

g Ql(g-o Lgim\qirm O qm: el

in which YV\O\)&( }1 )< F<min (§+1 . If the condition on § is not

satisfied then the integral is zero, indicating all transitions are for-

bidden.

Since F appears in the thermal average as F2 it will be sufficient

for most cases to retain only the first two terms in (5.38). By ignoring

L
the term ~ 7

4

which represents elastic scattering, of order MV\ and inelastic terms of

in F we are effectively neglecting a correction to Fo>
_LQ.

order (44> which are different from those given by Fl. In order to

exhibit the nature of the energy transfer with hindered modes of rota-

tion we shall, for the present, ignore free-rotation energies in EE§3<NA .

The matrix element (5.24) can now be written as
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e Xk, (5.140)

_ u;\l@«b Jﬁx G Ny ( W L)

where

e - \“_‘ 3
_— ‘ 2. ‘HE% /|-l -
T Ny LI = S Gy
& kM <'m L em]® } ’
@«\r = Sy S (/\00> (5.42)

KH“\\H \Qt\m—f L4 =IAL1] <
mw (\I'i‘\q‘r@(wb} ( - 2

In the above notation K; K~ k4 Q \L‘

, and in (5.42) the second term is

to be regarded as a sum of two terms corresponding to upper and lower
signs respectively. The energy becomes 75~ *QX9~ ) “‘x as a
result of ignoring free rotations, and the matrix element is only a func-

tion of%g instead of K and M separately. The simplification thus resulted

is more apparent in performing average over initial states, for we have

(/ U WE?\: gy\,
o >W gm@ ) gkéw i ._/_<°(X ek )
where — RE — A
("( — ‘2‘ ; K) S and
( < )

_ (5.4k)
Lty 1l p + 3 €7k =

k*/\/ N WA -
W? ‘u\ %\(Q(bd»\{(b@{W@MH \/\)(g;f; MLS‘
The calculation of W(fi)j;ﬁ)k;> requires explicit determination of the

.\‘«
integrals %2€$?¢1> and associated selection rules for ﬁf. After a series

of straightforward manipulations with (5.42) and (5.39) we find
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AR ~ioAE
W(g,qﬁ): {4+ (Q\HB x?&i( W ey E (5.45) -
1N >

_ e _ tow -iore
V\/(%;—%jvﬁﬂ“wmé%w + () ¢ § (5.46)

@Tr\rzﬁltb’rb § g é‘\k@—@«_ (et +0) 1 &mg .

Thus for Ci 6 ,

U 4 e -the

W(g)’é)—ﬁ+W(§;§t}=9§ laesdye +asiliyy ]}. (5.47)

The indicated summations over € and A; can now be carried out,

=D ) Al UJQYT

S=e =0
(5.48)
Qépme_D) (1 59}
—— — _{_
(204l ym —— 2 L2e4f D) = —= X
S (D e
where ;L:%QQ)&g . The thermal average becomes simply
S ey D
Lol > = U b | kb B\Y (b
D<>T "dQM“\dQ “>h=—\/QUQ°’WQ(%') (5.49)
_Q tbQ)\% "\JU\YQX_VZ
m\{ ﬂ M—&( + ¢ 3&,

( 2/
24(&— ¢
In arriving at (5.49) average over initial states has been performed using

all possible states. However, this procedure is not entirely consistent
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with the rotator model since large < and @ values are not allowed by
virtue of (5.23). For cases with 931 we anticipate no significant error
due to the rapid attenuation provided by the Boltzmann factor. If only
a smaller set of quantum states are to be used in the average the appro-
priate partial sums may still be performed without difficulty.

The first term in 4(d$h> represents the contribution to the cross

T

section from elastic scattering. It is in fact expressible as &éﬁﬂt&-!&)})
the result obtained in the static approximation for free molecules. As to
be expected, elastic processes only depend upon system symmetries and is
not influenéed by dynamical details of a particular model. The time-depen-
dent terms in (5.49) correspond to "one-quantum" transitions in which
neutron energy is increased and decreased respectively by an amount XESEg:
the spacing of hindered rotation levels. This relatively large energy
transfer may be interpreted as the hindered rotation peak similar to those
observed in scattering from water and ammonium halides. The same nature
of inelasticity can be obtained by treating the rotator as an ordinary
oscillator with frequency t{«iﬁiég and in this respect the nature of
approximation in Nelkin's model for water is demonstrated. Higher-order
inelastic scatterings do not appear in the thermal average because terms
of order ﬁh and higher have been neglected in computing F. It can be
readily shown that the term F, will give rise to "two-quanta" transitions
whose intensity is lower by a factor of ﬁ; compared to the "one-quantum"
processes.

The index Q plays essentially the same role as in the free-rotator
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problem since identical expansions have been émployed. Inelastic scat-

tering is seen to be possible only if Q is non-zero. Because each term
n (5.49) represents all the contributions to that particular process,
all values of Q greater than or equal to one will contribute to the "one-
quantum" transitions.
It is observed that elastic scattering is temperature independent.
The absence of a Debye-Waller factor is a direct consequence of the assump-
tion of rigid molecular bonds. Nevertheless, temperature effects intro-
duced by the averaging over initial states indicate that neutron energy
loss at finite temperatures is always more probable than energy gain, the
latter process is completely restricted at T = O. In the limit of high
temperatures the intensity of both processes varies like Qﬁ due to the
fact that many more states are able to participate in inelastic scat-
tering. The equal probability for scattering up or down suggests in these
results a certain degree of classical phenomenon. As noted previously,
the high-temperature limit in which free rotations are obtained is not
available in the present model by virtue of the small-angle approximation.
Corresponding result for linear molecules may again be derived

directly from (5.49). By noting that \%ioﬂq=:§§h€<?§;Ir we have
T

S = ;@M@é % K»boo (Kb,)
Q@MM%_\.

“il(}\)_Q—}:E’ (5.50)

)

(44 w(Qm
(m\i { + QV](\” UQV)

The thermal averages given by (5.49) and (5.50) are valid for any
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incident neutron energy. In the case of very low energy further simpli-
fication is available. The small arguments expression for dQ(X> men-
tioned in Chapter IV leads to expressions in power series of\Qb. For in-

stance, for linear molecules we would find

(K
(BN QS me@( K(g;() U’V‘O 3 &
Y,

T -\‘s\)Qx&‘
(D =) BRe 0 )
ER 70-0) (¢ ¢ +
2“\( ’
An appropriate high energy limit will be discussed separately in the fol-
lowing section.

For scattering from different molecules, we need to evaluate

Kb, Kebys
<o’ 3 okMy -4@44\@ \%WXQKMM \ikm

We shall be content with averaging the product over orientations of the
electric field separately. This is equivalent to assuming no directional

correlation from one molecule to another. Thus

Lol MY, = dﬁ%\ d}%b@ . (5.51)

Again, as a consequence of the single-particle model, "outer" effects are
purely elastic and independent of initial state of the molecule.

Thus far we have not considered the effects of free rotations. It
1s to be expected that these effects will not significantly alter the

essential features of the preceding results. On the other hand, there



are two interesting aspects associated with the results which take into
account of free rotation energies, namely, that there will be inelastic
scatterings associated with low-energy transfer and that many transitions
involving energies of order {§XFJ will be allowed. A detailed considera-
tion of these effects is discussed in Appendix H, we shall mention here
some of the conclusions. The selection rules for ﬁy is irdependent of
the form of EEQKM) therefore only the case m = k, which previously gave
rise to elastic scattering, needs to be examined for transitions involv-
ing only the terms proportional to B. The cases m = k*]l will contribute

»
to a number of transitions involving an exchange of’fQQXF% and some free-

rotation energies; because of the dependence of KQT on Kg, Mg, and KM

A8

a rich spectrum of inelasticities is produced. The resulting energy dis-
tribution will thus exhibit certain peaks in the low energy region cor-

responding to excitations of free-rotation levels and the somewhat

i

broadened hindered rotation peaks centered roughly about Elf?* ¢ *"\&?%y,h

e

0
For linear molecules the low-energy peaks do not appear as previously

noted.

A HIGH-ENERGY APPROXIMATION
The formalism in the preceding section becomes cumbersome whenever
the incident neutron energy is high enough to induce a great number of
transitions. In this case the quantity of interest is usually the angular
differential cross section for which the mass-ratio expansion developed by
Zemach and Glauberl can be applied. This method, previousiy discussed
1,36

only in connection with free molecules, ’ can be used with the hindered
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rotator model. We will consider the application to linear molecules and
show that for very high energy neutrons the distinction between hindered
and free rotations vanishes, a limit one would expect on purely physical
grounds .

We return to the matrix element for direct scattering by a linear

molecule in a given initial state,

H 6
Q'yemy =<euld ¢ ey (5.52)

PR

. __ /
where "\ h k "U‘E , with 1‘"-%‘02 , and we have defined H .

Ko ket

¢~ H [‘&'b According to the Lie expansion

éSQ @%=Q+ESJQX+ %_[%KEQX g Ty (5.53)

we have

/
| =L+ Ckxb), (5.54)

H = H+ i [l&'(bx\:—kxb_y(&*bﬂ .

b (5.55)

/
In arriving at \‘: the different components may be taken with respect to

either body or space axes; in the former case the commutators involve
components of Li and Ki’ and will have a minus sign associated with the
commutation relations.36’LL7 For the moment we shall proceed formally.
Since H is diagonal in the representation \%M>, Eq. (5.52) can be

written as

=B
Lotk = 4| ¢ 7, (5.56)
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where

Ao B, = m-\:_g@ ik gtk ik, K
@ = &-(@r'\bxg/\ab

} = (ol / ki

For the purpose of present discussion we shall ignore the trans-
lational and vibrational degrees of freedom of the molecule. Then for
a given initial state the contribution to the cross section from direct

scattering is

-
sz Sdbwou%*b@ ) (5.57)

G;\< Al 3&
(,

where the scattering length is denoted as a. Now consider the Taylor ex-

pansion

© LY
Lot ‘>%M§=?=—;CV\ (3%3 :

(5.58)
which when inserted into (5.57) gives
2 IRIeIN
e 28 = Q‘Q‘_?&chw Can)(5e) o) | (5.59)
L

The angular distribution is obtained by integrating over all energy trans-

fer,

GA(QX:zlj Gkﬁéﬁ)ng%QCki
L2mE Sieey,
42 (30 (e )k
i (g 3 ) ) et

(5.60)

(‘—



8L

Thus the time expansion (5.58) results in an expression in power series
of the mass ratio for the angular differential cross section.
In order to determine the coefficients of the time expansion we ex-

amine (5.56) in the form

LB

—-\...w. Ny oy )

where terms which obviously have zero expectation values have been omitted.
For the expectation values of these terms we introduce the hindered rotator
model in which three vectors need to be specified. As before the neutron

momentum transfer Kf will be chosen along the laboratory-z axis, the

—

electric field E along the space-z axis, and dipole momentx& along the
molecular axis. Since E does not appear in (5.61) the average over all
electric field orientations may be conveniently replaced by average over
directions of Ki. Moreover, among the products of various components of
Ei and b it is not necessary to rotate the momentum transfer vector back
to the laboratory system for the averaging, the same results are obtained
by integrating these components afgivdth respect to a set of axes of
which the z axis is along b. One readily finds

R 2 N e O
LB ARy ™ /\%ﬁ‘mmo 3 Oy 32, =

A TR S W AWRADY
Wn= %) ?E:Mppa R



85

where <\>>AN denotes the average over electric field orientations. To
2
order t~ the only expectation value in (5.61) that requires further
2
attention is the term <:% >NJ> for which explicit representation of the

angular momentum operstors Pi are given in Appendix D. In this case,

= (Co%eccs\b;q} + a2 >

L, = kg5 b 5

-
Lsz‘(a\{/.

Of the nine terms in the summation only six have to be evaluated. After

some manipulation it is found that

2.
=
<%>AV }H MWQ&B (&99\\11 . (5.63)

The last two terms in the bracket are seen to be precisely the kinetic
2
energy operator so the expectation of <:@ >AN can be readily computed.

The matrix element thus has the following time expansion

Nige: %z 2
ol ey = | (‘Wm (:%B’V\WK Yoo 57(( }(Qng\MHmk%-\& (5.64)

For comparison we quote the free molecule result derived by Zemach and

Glauber,l

’ (5.65)

(otl'y3My = 1 (&\)M \bw MKJ_WM

Since J(J+1) is the energy of a free linear molecule there exists complete

anslogy between these two results except for the somewhat puzzling reversal
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b

of sign of the last term. However, both terms in (\N\ (361 are always
positive even in the ground state.

The coefficients of (,\‘N() in (5.64) are the required C;S. Accord-
ing to (5.60) the angular differential cross section for direct scattering

by a hindered rotator in the eigenstate \gM> becomes

W

GOy = 1 - ()5 - 2 us)

Vz
2 P (5.66)
+ &\X b 3~ ecsa | SL\ B LM *“B‘L }C\Q b>

This result is useful for the study of angular distributions at relatively
high incident energy(b(-b 2 1) and small mass ratio. The "inner" scat-
tering can be similarly treated. In this result dependence on system dyna-
mics first appears in the correction term of order (J/w d@t% . There-
fore at large energies effects of the hindrance become increasingly in-
significant and the scattering is expected to be insensitive to the choice

of models.



CHAPTER VI

SLOW-NEUTRON SCATTERING BY DIATOMIC LIQUIDS

We consider specific calculations based on the dynamical models
developed in Chapters IIT and V. It is our main purpose in this chap-
ter to determine what aspects of the differential cross section are
sensitive to details of molecular translations and rotations, and to
what extend does the incident neutron spectrum influence the final en-
ergy distribution in studying hindrances in molecular motions. The
calculations are made for diatomic polar liquids since it is the simpl-
est system that embodies all the essential features of molecular dy-
namics in the present description.

The differential cross section (YCG;@>6)€E§) is computed for
liquid HC1l at 188°K. As there are no reported measurements using any
diatomic polar liquid the results obtained here can well serve as a
guide for future experiments.

Because water is an important system from the standpoint of liquid
theory as well as neutron moderation in nuclear reactors it has received
considerable experimental attention as previously mentioned. In this
investigation the differential cross section for water is computed in
an approximation where the asymmetric molecule is replaced by a diatomic
molecule of equivalent mass and permanent electric dipole moment, The
results are then compared with the measurements of Brockhouse and Nelkin's

calculation.

87
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ENERGY AND ANGULAR DIFFERENTTIAL CROSS SECTION FOR POLAR DIATOMIC MOLECULES
According to the formalism derived in Chapter II the differential
cross section (YC‘5L>8 )€;§ﬁ> (the cross section is azimthally sym-
metric) is determined once the thermal averages appropriate to the various
degrees of freedom are obtained. When the center-of-mass degrees of free-
dom are treated by the methods of Chapter III the translational thermal
averages are given by Eqs. (3.25) and (3.26). By ignoring the vibration-
rotation coupling it is shown in Appendix I that the description of vi-
brational degree of freedom is that appropriate to an oscillator, but
on account of the non-commutation between Hg andfqu vibrational and
rotational thermal averages are still not separable. The thermal average
for the internal degrees of freedom, in the case of &:: Q/ , can be

taken from Eq. (2.33)
tK1b§% —JE'V

S = _ 2R Ru‘sule g e l§M> (6.1)

W'l M

where

A e, - tH, -y
b&ﬁ‘r—:é _bo(@ : @M:@ Qa@

The eigenstates U@) are just oscillator eigenstates, so
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where for diatomic molecules Qd::hde
The internuclear vibrational frequency and reduced mass are denoted here
as SL and ’C respectively. Note the ordering of time-dependent and time-
independent operators, bﬂ%) and k{ , are respected. This expression for
‘JQM’ is to be inserted in (6.1) when averaging over-all molecular or-
2
ientations. A formal method which is applicable when g%%iéhw‘ﬁi%?
is described in Appendix J.
Since the effect of rotation of axis of vibration on neutron scat-
2 :
tering has been shown to be small  we shall proceed under the approxi-
_ A 2
mation that the effect can be ignored entirely in which case \_Eﬁ-bé&ﬂ]
2 2
and (kQ.E%U> will be replaced by K, . Compared to the Krieger and
Nelkin approach of averaging the exponent2 the present approximation al-

lows greater attenuation of the intensity of scattering due to vibrational

motions. Thus
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For the range of neutron energies C_E;Lf\- o) - \O aNo and tem-
e o . . . . .
peratures (T ~ 373°K) of interest excitations of vibrational levels are
highly unlikely. We may then adopt the low-temperature limit and admit

only elastic scattering,

fe 2 2
AN dﬂo( 4 b\d‘ >
. (6.5)

“\[ . ( AGN
o/ ol ¢ '
The effect of internuclear vibration is therefore characterized entirely
by an exponential factor, and in this approximation the same results ap-
/

plies in the case of Qi R .

When the vibrational and rotational thermal averages are evaluated
independently as we have done here, the formulae derived in Chapter V

can be used directly. The thermal average (6.1) becomes

T - y R
<‘, %‘}i‘ \/_ = \jv\/%/<0((x \/ g (‘}:- K) (6°6)

= Vo Jekigd kg y 5 41 (6.7)
= \]w, doﬁK,%d}K/‘%’) R



91

J
where ol >T— is given by (5.50). The appropriate thermal averages
can then be inserted into the expression for the differential cross sec-

tion (2.27). Performing the indicated integration we find

l\'{:f VZ _"YDK—T?" < \
U(ﬁ‘ﬁﬁﬁﬁ _GTB ¢ %-Q\Q& T w%rw

( | w2
o @ it Z@ g(%bB {Kb,)QS, 1 )\Zé )

- )
L& ) + MQ % > Kf(é - \\%)é 4 Ye- v\mm&

Y

The use of oscillator approximation for molecular translations results
in discrete energy transfers as noted in Chapter III., The first term
(Q::Q/> in (6.8) consists of contributions from direct ( N==~d/) and
"inner" scatterings. The second term represents "outer" scattering
(&#&Q'>) and since it is purely elastic this term will not be consid-
ered in computing the energy distribution of scattered neutrons.

An alternative to the oscillator description of the center-of-mass

is the description in which the molecules move in a square well (see
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Appendix C). 1In the limit of very large well width or high temperature
where it is justified to replace the summation over initial states by

an integral the translational thermal average is that appropriate to gas

molecules,l
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the "outer" scattering being negligible. The differential cross section

corresponding to free translations is then readily derived,
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fie .
with Ciwfh e:g? . The distribution of energy transfer is seen to
~ < Ny

be continuous. In the calculations we will also use this expression as
a comparison with Eq. (6.8).
It is of some interest to note that the differential cross sections

exhibited in Egs. (6.8) and (6.10) both satisfy the detailed balance

condition which can be stated 3823
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This property of the cross section is useful in neutron thermalization

studies,

THE MEASURED DIFFERENTTAL CROSS SECTION

The measured differential cross section Gcéio )6.)&{-0} is
actually an appropriate average of (& )% )C—,§> since due to the in-
herent finite resolution associated with any energy-measuring device the
initial and final neutron energies cannot be specified precisely. If
ve let A(C—_c ,é-cQ and %CG.:“Q-&D be the energy distributions
of the incident neutrons and the neutrons actually detected respectively)

then

~

6‘(6@ S&*D: %(ég)esgc\é._s \f-\ﬁég,étb(%t& &g (6.11)

We shall approximate the incident spectrum by & Gaussian,

- Ltaa(ei- € lu2

Ace: ey=N ¢ (6.12)

)

where ta is the full width at half maximum and N is the normalization

constant, The distribution B will be approximated by a step function so
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otherwise. Then we may write
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For the following calculations we will use a scattering angle of
90° in order to obtain maximum energy transfer and a value of 0.065 ev
for €¢0 . In applying Eq. (6.8) the final energy space is divided into
equal intervals of ﬁgﬁ_, then all contributions to an interval are sum-
med and assigned a value at the midpoint of the interval. The energy
distribution thus appears in the form of a histogram. The energy dis-
tribution computed with Eq. (6.10) is necessarily a smooth function so
the results are presented as a curve drawn through the discrete points
of computation. To compare the results obtained with Egs. (6.8) and
(6.10) the distributions are normalized at the energy in the vicinity
of the incident spectrum where the scattering intensity according to

(6.8) is a maximum.

SLOW-NEUTRON SCATTERING BY HYDROGEN CHLORIDE

Among the hydrogen halides, HF, HCl, HBr and HI are in the order
of increasing mass and decreasing permanent electric dipole moment. From
the standpoint of obtaining maximum energy transfer and applying the
strong field description of hindered rotations HF should be the most ap-
propriate scattering system. But because of the practical problem of
finding suitable substance to comtain HF and of the availability of optical

and thermodynamic studies of HCl in the literature we have chosen HCl to
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perform sample calculations.

Two parameters in the present description, the oscillation frequency
of the centers of mass and the magnitude of the local electric field,
are to be estimated. 1In the absence of Stockmayer potential parameters
for HCl the method developed in Chapter ITI is not applicable; we shall
therefore follow an approach previously employed by Morales.1? On the
basis of an oscillator description of the liquid an approximate expres-
sion has been derived relating the entropy of melting S to the ratio of
oscillation frequencies in the solid and liquid states,ug’SO

= sQAAﬁE@D\, 4 (6.15)
Ty Haw - )

where —EQ denotes the melting temperature. In this expression we have
replaced the frequency of oscillation in the solid phase by an average
frequency corresponding to a Debye temperature {}). Using the values51
_T:w = 162°K , O = 476 cal/mol and éﬂ;: 128°K we obtain W= 1,112 x
1015 sec~l, This is the value of W used in (6.8) to compute the energy
distribution for HCI.

The local electric field produced by the neighboring molecules, in
principle, can be estimated from the known crystalline structure. On
the other hand, in infrared studies of crystalline HC1l Hornig and Osberg52
observed & line corresponding to an energy of about 0.033% ev interpreted to

be a torsional lattice vibration.* We will interpret this energy to cor-

*A weaker and broader band corresponding to 466 em™l (A~ 0.0575 ev) has
also been observed.



96

respond to the energy of hindered rotation,\EZXé; . From the H-Cl separa-
tion of 1.27hTA 52 we find bt—f 1.23954, bc\ - 0.0%524, and the rotational
constant B = 0.00131 ev. The dipole moment of HC1l in liquid phase (162-
188°K) is about 1.15 debye54 (1 debye = lO]'8 lsil.), a slight increase over
the gas-phase value of 1,05.55 In order that {Eﬁ@g ~ ©.02Z% &y a field
strength of about 5.77 x 107 dyne/cm will be used. This value is not
unreasonable since in water the etimated field is of the same order of
magnitude.

The frequency of internuclear vibration in the ground state of HCL
has been reported at 5.63 x lOll’L sec'l.53 This frequency corresponds to
an energy of 0.35 ev so that at 188°K the population of the excited
levels should be negligible. For 0.065 ev neutrons the assumption of no
energy transfer with the vibrational mode is also justified. Thus our
approximation of the vibrational thermal average is not expected to in-
troduce any appreciable error.

The appropriate nuclear scattering amplitudes of hydrogen and chlo-

2 < 2
rine have been measured’® at L\I\DH = & F\L> LH'YAH* ‘20’\j LLTYDC(* =
and HJTﬁ§£f= ‘C_  in units of barn (1 barn = 10-2k cm®). The scattering
by hydrogen is seen to be predominantly incoherent, while the scattering
by chlorine is mostly coherent.

The energy distributions of neutrons scattered by HCl at 188°K as
predicted by the hindered and free translation descriptions are shown in
Fig. 5. ©Since it is anticipated that such an experiment may be carried

out here at The University of Michigan the incident spectrum used is a
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Fig. 5. Energy distributions normalized at 0.062 ev of an initially
"narrow" beam of neutrons scattered by hydrogen chloride according
to descriptions of hindered (histogram) and free (solid curve) trans-
lations. Also shown 1s the incident spectrum.
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narrow Gaussian as indicated by the dotted curve where % ~ CDADESEELO -
This spectrum represents the optimum that can be achieved with the crys-
tal spectrometer in the Phoenix Memorial La'boratory.57 The result ob-
tained according to Eg. (6.8) is presented in the form of a histogram
at a uniform width of 0.002 ev, a value of A& that may be somewhat
optimistic even for high-resolution measurements. The incident spec-
trum is sufficiently narrow so the hindered translation result shows
considerable structure. Both distributions indicate that the two peaks
associated with hindered rotation scattering should be easily measur-
able; consequently, an experiment measuring the intensity of scattering
in these vicinities is strongly suggested as a test of the proposed
model.

An identical calculation using a broad ( %,V 0.15€;, ) Gaussian
incident spectrum shows little or no evidence of the structure due to
hindered translational motions, a result not at all surprising since
there now exists considerable overlap of contributions from the various
direct scattering terms in (6.8). The contribution from "inner" scat-

tering is found to be less than 1% and hence is ignored,

SLOW-NEUTRON SCATTERING BY WATER

In calculeting the differential cross section for water we intro-
duce an approximation in which the asymmetric water molecule is re-
placed by a fictitious diatomic molecule of equivalent mass and electric

dipole moment (\Lx = 1.8 debye55). This approximation greatly simpli-
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fies the calculation of rotational thermal average and does not alter
any essential feature of hindered rotations. Although the appropriate
moment of inertia to be used in computing the rotational constant is
now somewhat ambiguous, B can be expected to be of the order of 1075 ev.
The internuclear vibrational frequency of this diatomic molecule is
taken to correspond to the first measured vibrational level,ﬁ:l==33CLX
tow sec™l.9® Using an 0-H aistance of 0.96A and H-0-H angle of 105°09
we have estimated QQH to be 0,905R.

In obtaining the oscillation frequency W , the Stockmayer poten-
tial for water - gives a value for [} 0,023, thereby indicating that
the potential \KUQ is not parabolic. Nevertheless we shall proceed to
approximate the actu&lVOb by a parabola. If we apply Eq. (6.14) using

8~ 250°K%0 and & ~ 1400 cal/mo1®t then W ~ 1.5 x 103 sec~l, fc-

18

cording to recent calculations of Singwi and Sjdlander~“ and high-
resolution neutron experiments15 the Debye temperature for water, as-
suming such a concept is meaningful, is about 135°K. The frequency ap-
propriate to the present hindered translation description is then three
fourth of the frequency corresponding to this value of 6[3 , or O~ 1.3 x

lOl5 sec'l.

We shall use this latter value of W) in the calculations.,
An attempt is made to estimate the magnitude of the local electric

field by directly computing the field produced at the central molecule

which is surrounded by four dipoles at the corners of a tetrahedron.

The orientations of the dipoles are chosen to the extent that there is

a hydrogen between two oxygens, otherwise they are arbitrary. The value
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of E computed in this manner is about 3 x 10° dyne/cm, thus giving )\

as ~. 0.35 ev which may be compared to the height of a hindering poten-
tial of ~ 0.7 ev from an early calculation by Magat.22 Since the rota-
tional constant B is not known in the diatomic approximation we shall
choose B such that QEZG%; corresponds roughly to the observed energy
of hindered rotation ~ 0,06 ev,12213:19 then B ~ 5.3 x 1077 ev.

We have mentioned that scattering by hydrogen is mainly incoherent.
The scattering by oxygen however is entirely coherent,56 Hﬂ[§k=uﬂﬁigﬁufz
barns. On the basis of the scattering amplitudes, hydrogen effects con-
stitute about 95% of total scattering so we will ignore the small con-
tribution from oxygen in the following calculations.

In order to determine the nature of translational motions in water
we compute the energy distributions according to the oscillator and free
gas descriptions of the center-of-mass degrees of freedom and neglect,
for the moment, the effects of internal degrees of freedom. The two
distributions are compared in Fig. 6 where the experimental points of

1k

Brockhouse—" are also shown. The dotted curve represents a relatively
broad incident spectrum ( %.AJCDAESéELO ) corresponding to the actual
spectrum employed in the experiment. We observe that the two descrip-
tions give essentially the same distribution. The discrete structure
associated with the hindered motions is almost completely smeared into

a smooth distribution by virtue of the relatively large spread of the

incident spectrum whickh causes considerable overlap of different transi-

tions. On the basis of this comparison we can conclude that measure-
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ments with the present spectrum are not sensitive to details of mole-
cular translations and therefore cannot yleld any information regarding
any possible hindrances which may exist in water. This observation also
explains why gas-like descriptions have been used with success in com-
puting neutron distributions in reactors. The peaks of the two distri-
butions in Fig. 6 are seen to be shifted to a lower energy. The observa-
tion that the broadening predicted by the hindered translation model is
slightly smaller can be explained by the fact that a hindered molecule
develops a thermal cloud of smaller extent during the scattering process
than the free molecule. Except for the regions of large energy transfer
both models give reasonable fit to the data thus indicating that the
differential cross section for small energy transfer is influenced mainly
by interactions with the molecule as a point mass. A similar comparison
is given in Fig. 7 in which the narrow incident spectrum of Fig. 5 is
used. In this case the discrete structure associated with the oscillator
model is clearly observable, There is essentially no shift of the elas-
tic peak in the hindered translation distribution where the intensity

of low order (n) inelastic scattering is greater when neutron loses en-
ergy than when energy is gained. The attenuation of the higher order
processes 1s not the same for energy gain and loss, hence the distribu-
tion becomes asymmetrical as is apparent in Fig., 6. It is noted in

Fig. 7 that transitions for which 3 need not be considered since
their intensities are of the order 1% or less compared to the intensity

of elastic scattering.
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Fig. 7. Energy distributions normalized at 0.064 ev of an initially
"narrow" beam of neutrons scattered by water (center-of-mass degrees
of freedom only) according to descriptions of hindered (histogram)
and free (solid curve) translations. Also shown is the incident
spectrum.
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The energy distributions for water calculated according to Egs.
(6.8) and (6.10) are shown in Fig. 8 along with the measurements of
Brockhouse and the theoretical curve (dotted line) of Nelkin. The ef-
fects of zero point vibration and hindered rotstion are readily observed
by comparing these results with those in Fig. 6. As can be expected
with a broad incident spectrum little difference exists between free
and hindered translation descriptions. A value of E = L x 102 dyne/cm
is used in the computation which corresponds to \32)&5 = 0.069 ev. It
is observed that within the large experimental uncertainties the the-
oretical curves are in reasonable agreement with the measurements. The
essential difference between Nelkin's theory and the present treatment
manifests mainly in the predicted intensity of scattering associated
with hindered rotations, the calculation in this investigation showing
a considerably more pronounced effect than Nelkin's distribution. Be-
cause of experimental uncertainties and the scarcity of data in the
region around 0.12 ev it is not possible to arrive at any definite
conclusion regarding relative accuracy of the two models.

IncdquMmml(QQNOJDSeﬂ mﬁawmmmsofWMEﬁgﬁth3®-
served intensity of the hindered rotation peak is about twice that at
the incident energies. The intensity calculated according to (6.8) is
found to be low by a factor of ~ 10. The discrepancy may indicate that
symmetry effects are important in this case, hence the breakdown of the

diatomic approximation. On the basis of the comparison in Fig. 8, it
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is likely that even lower intensity will be predicted by Nelkin's model
although such a calculation has not been reported. In these experiments
a smaller peak corresponding to energy transfer of ~ 0,008 ev is also
observed. The position of this peak is predicted by the present model
as the primary hindered translation peak although the calculated inten-

sity is lower than the observed value by a factor ~ 2,



CHAPTER VIT

CONCLUDING REMARKS

By considering the effects of intermolecular forces on molecular
translation and rotation the model proposed in this investigation re-
duces the description of slow-neutron scattering to a consideration of
two parameters which characterize the scattering system, a frequency of
oscillation of the center of mass and a local electric field which hinders
rotation. The oscillation frequency arises from a parabolic approxima-
tion to an effective potential derived on the basis of assigning the
neighboring molecules to a spherical distribution and choosing an appro-
priate two-particle interaction. Such a potential will always tend to
confine the central molecule to one, or at most two, small local regions.
The validity of the parebolic approximation then depends on the fact
that the localized region of minimum interaction be necessarily at the
center of the distribution. This sufficient condition can be stated
essentlally in terms of the ratio of the distance of closest approach,

a parameter appropriate to the two-particle potential, and the radius

of the spherical distribution. When the ratio is of order unity repul-
sive forces dominate in the interaction between the central molecule and
its symmetrically-located neighbors in which case a Justification for
the use of an oscillator description of translational motions is ob-

tained.

107
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The polar nature of the molecules can be taken into account in
estimating this oscillation frequency. It 1s found that the specific
effect of dipole-dipole interaction suitably averaged over orientations
produces attraction among molecules, and hence leads to a more strin-
gent condition for the oscillator approximation., There is no aposte-
riori reason for choosing a spherical distribution for the neighbors;
in fact, the orientation-dependent dipole-dipole effects suggest that
the tendency for molecules to associate is probably greater in some di-
rections than in others. The results of smearing the neighbors accord-
ing to a prolate or oblate spheroidal distribution are complicated but
are simplified considerably in the case of small deformation from spher-
ical symmetry. The oscillator frequency estimated in this manner is
now directionally dependent and contains the additional parameter char-
acterizing the deformation,

The estimation of an oscillator frequency according to the smearing
procedure is a useful method provided that in the case where the suf-
ficient condition is not satisfied a parabola can still be found by
numerical means which is a reasonable fit to the calculated effective
potential. This method is, nevertheless, limited since the necessary
parameters of the two-particle interaction may not be known for a spe-
cific liquid. On the other hand, such a frequency may also be estimated
from a simple expression which requires only a knowledge of the entropy
of melting, the melting temperature, and a characteristic frequency of

oscillation in the corresponding solid. This somewhsat less direct ap-
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proach has a much wider range of applicability and is found to be satis-
factory in the cases of lead and water.

A means by which the rotational motions of polar molecules are
hindered is obtained by assigning the hindrance to purely electrostatic
effects, specifically, the coupling between the dipole moment and a
uniform and constant electric field. 1In principle, the magnitude of
the field is expected to be roughly the same as the crystalline field in
the corresponding solid. In practice, the field estimated from the
structure of ice is found to be of the proper order of magnitude ex-
pected for water on the basis of measurements. The particular type of
hindrance considered here affects only one angular displacement, so
there will still be free rotational motions associated with the other
two rotational degrees of freedom of the molecule.

The present description of hindered rotation leads to useful wave
functions for symmetric and linear molecules under the condition of
strong coupling, The energies associated with hindered rotation of both
types of molecules are those of a two-dimensional isotropic oscillator
with level spacing \FQXES , Where A and ® are the coupling and rota-
tional constants respectively. This fact is actually to be expected
since for small angular displacements any molecule behaves like a tor-
sional oscillator. The energies of this oscillator can then depend on
system symmetries only through its level spacing, hence the definition
of & . This observation implies that the hindered rotational energy

spectrum of an asymmetric molecule should also consist of an equally-
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spaced set of levels. It then appears that in the sense of similar en-
ergy spectrum the effects of hindered rotation on neutron scattering by
an asymmetric molecule may be approximated by those calculated using the
wave functions of the symmetric, or even the diatomic, molecule, How-
ever, the asymmetry which is ignored in such an approximation may have
significant influence on the scattering intensity in which case substan-
tial error can be introduced in the calculated energy distribution of
the scattered neutrons. The condition of strong coupling requires that
the mean square of the angular displacement between the dipole moment
and the field be small. For this reason, only a subset of the totality
of the available eigenstates corresponds to physically meaningful solu-
tions and, in principle, only these states are involved in the scattering
process.

Using the present descriptions of molecular translation and rotation
the differential cross section for slow-neutron scattering can be cal-
culated without introducing further approximations. As a consequence
of the assumption of no dynamical coupling between molecules inelastic
processes are possible only by direct and "inner" scatterings. These
effects therefore determine the energy distributicn of the scattered
neutrons. The purely elastic "outer" effect, which can be important in
considerations of angular distributions, has not been dealt with to any
appreciable extent in this investigation.

In the parabolic approximation the scattering by the center-of-mass

degrees of freedom is described by the well-known results of neutron
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scattering by a system of independent oscillators, The method employed
in treating the scattering by rotational degrees of freedom can be ap-
plied to both free and hindered molecules. In the former case the eval-
uation of the matrix elements is considerably facilitated by making use
of known symmetry properties of the wave functions. The results obtained
are particularly useful when the incident neutron energy is sufficiently
low so that only the lowest order excitations contribute significantly
to the cross section. In the case of hindered rotators consideration of
the integrals involved leads to a separation of the different contribu-
tions to the scattering in powers of (E?éxvvz . The zeroth-order terms
in the cross section therefore consist of elastic processes and inelastic
processes involving only changes in free-rotation energies. The first-
order terms consist of transitions involving the exchange of Qé}}g in
the presence of free rotation excitations. These latter terms can be
interpreted to give rise to the hindered rotation transitions observed
in neutron as well as optical measurements. Higher-order terms in the
cross section correspond to excitations invoiving multiples of QCZAEb
and also free-rotation energies; these are of much lower intensity and
may be ignored (for water the second-order terms are of an order of mag-
nitude lower in intensity as compared to the first-order terms).

When the small free-rotation energies are ignored the total scat-
tering consists of only elastic and i:{ﬁ]ﬁg’ inelastic contributions
and the cross section can be exhibited in a particularly simple form.

The fact that only a limited number of the hindered rotator eigenstates
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can be used does not impose any significant restriction on the calcula-
tion. This is because in averaging over initial states the summation
involves terms in powers of Q: which is a small quantity (éf ~ 8
and 20 for HCl and HpO respectively), and hence the inclusion of all
powers of QT introduces little error.

The expression for the cross section may be compared to Nelkin's
model of hindered rotation.2’ The present treatment is seen to be less
empirical in that all the rotational degrees of freedom are considered
and the polar nature of the molecule is explicitly taken intc account.
In addition to the parameters which characterize the particular model
the difference in the two descriptions manifests itself mainly in in-
tensity factors.

It is recommended that the model proposed in this investigation be
subjected to thorough experimental test. The calculations for hydrogen
chloride and water both indicate that effects of hindered rotational mo-
tions can be observed by measuring the energy distribution of scattered
neutrons. On the other hand relatively high-resolution experiments are
necessary in order to resolve the distribution in the region of small
energy transfer for structure associated with hindered translational mo-
tions. Results of the water calculation are in good agreement with low-

1L

resolution measurements. However, the experiment is not sufficiently
precise as to provide a basis for quantitive comparison of Nelkin's

model and the description presented here, even though the two calcula-

tions deviate significantly in the region where hindered rotation ef-
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fects are prominent.

In view of the calculations a number of scattering experiments are
suggested, It will be desirable to repeat Brockhouse's water experiment
to examine with greater precision the region where prominent hindered
rotation excitation ~ 0.06 ev is predicted. If sufficiently good re-
solution (~ 5% resolution) can be obtained the region of small energy
transfer should be studied to determine if any structure exists in the
distribution, In this respect, it is perhaps more appropriate to use
incident neutrons of lower energy than . 0.065 ev. Similar types of
measurements are also highly recommended for hydrogen chloride. If en-
ergy exchanges ~ 0.033 ev of appreciable intensity are indeed observed
then the neutron method promises to be a very powerful tool for the
study of hindered rotations in polar liquids, particularly those liquids,
such as hydrogen flouride, which may not be suitable for optical studies.

The present investigation provides a basis which can be modified
and extended in subsequent work. The hindered rotation descriptions can
be refined by introducing temporal and spatial dependences in the local
electric field, the latter effect thus leading to directional correla-
tion between molecules., Some consideration should be given to a de-
scription in which all three rotational degrees of freedom are hindered
for the analysis of neutron scattering by systems, such as perhaps am-
monium halides, which do not seem to exhibit any free rotations. Thus
fap)Nelkin's model has been used to study neutron thermalization and

diffusion in water., It is suggested that some of the calculations be
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repeated using the results derived in this investigation. Since the
quantities to be calculated are integral measurements of the differential
cross section, no major deviation in the two models can be expected;
nevertheless, second-order differences can prove to be very interesting
and informative., Only qualitative agreement is obtained with the cold-

12,15 where the calculated intensities in the diatomic

neutron water data
approximation are considerably lower than the measured values. It ap-
pears that a more refined computation, where the molecular symmetries

are treated more appropriately, is required to determine if the present

model is adequate in obtaining quantitative agreement.



APPENDIX A

A NON-SPHERICAL LENNARD-JONES-DEVONSHIRE "SMEARING" PROCEDURE

We consider the derivation of an effective potential for molecular
translational degrees of freedom in which the distribution of neighbors
about the "equilibrium position" of the central molecule is assumed to
be non-spherical. By taking all molecular dipoles to be along the same
direction, say the z axis, the effective potential is given by (3.14),

\ = S dz PCLI)
(A.1)

12 ©
with Q:LLé_(y szLeG . The surface of distribution will be taken to
)

be a spheroid for which we introduce ellipsoidal coordinates,51
= K\QSLV\\/\D( s CFQQ X
= i \ h’, §~\,

sy sing =i
Z = X\QQU&MMCGS% .
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The probability of finding a molecule on a given surface (O(= oy, & con-

stant) becomes

- .2 2 2
St = [QTV@SW\V\ ot %ﬂ §><o<—b<03(5inho(o+ sme)ginié}g\%do(d((z C(a.2)

In the present approach, a direction, that of the dipoles, has been defined
for the problem, therefore it is convenient to exhibit YV in terms of its

components, V. and V, , corresponding to the cases in which displacements
Z X
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of the central molecule are parallel and perpendicular to the dipole

orientation respectively. We find

{ 2

\/ = (2m+4 BB‘LAx(W\H X)E d = 2 - M l

1 "
_1 a b
VX& = (2m4 %} jdX(W\H—xz) g 27 e + =

where
Y2

L3 +u-2%ux] |

V2.

o= [§2+ 0+ 2’<§L\U—><2>V2 1.

2 =
g =1 Lot (n-m)x 1

m o= s,
2
n = cosh ol

Instead of performing the indicated integrations we consider the

following approximation. For small displacements,

gjdg?@)&w’i)ﬂ Li) \ Q&MW\A j (a.)

where indices 1i,J represent different components of the vector and repeated

indices are to be summed. After some manipulation it can be shown that

\(d\% p(%)(w ) y for all j
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and

3 _ S, <\§ +BS,) (a5

Vi £5%

In this notation éiw denotes the X or W component and EDksthe Z com-

ponent only; moreoverigribwgz does not imply summation over ﬂ . We note
that if ﬁ\§§‘>C> then‘v may be approximated by an oscillator potential
with frequency in the X and directions different from that in the ¥

direction. Explicit expressions for (A.5) have been obtained after a

great deal of manipulations. We shall merely record the results here,

Sd%%)bm) S {<u>m+ R{OAS (.6

where we have separated the contributions from the ILennard-Jones 6-12

potential and those from dipole-dipole interactions.

4

L o) 2 ol T
Wy {m(@m&) or| 5 ﬂf/\ X\z; )'\’pﬁ:m i x\o‘”‘c;-&\"

gL G - e

{ 6\ 1
o\ [ _ Lo (2.7
T \‘-glma \( M*Q\), §\3%§ " ﬂ“" K‘:QV\-W\ 1 X\:(V\—w\\ Ar&

+&§d (P& ----- ((ow JW) ( i~ AV}&@
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R ¥ Y
<U>@\ - ‘%\9\\@\\&5% {‘ X: Luw)O% { .5(—.*\&-\?\3&
+ ;{{qcalzg‘*{&vw s)d:/ + g;@\ VS/ + (n-w) ( @)"5/ - é \73/ ﬂ
gt e
LS 'S g‘ EL et m)d w Lo \IA.,!\/"\\ \* f E"».}{_jv’_;;

A \

\ ?S\ </ >Oi\ \\\3

3 %
+ S, lb‘aﬁ(w 1)(-) 3 2Qfs/2

[* v @j(zrvw %}(W—M}B{

2 2 2 i
4 L&S 1@682(.\'\4\\5 - 9—? (w.m) - 251 az & W2>/2

N
A

4. \_ \ /‘l:\ + 9| v\aly vv\(!/\‘t‘\'\}%\*\J> + 20 wh az \ \(5/2

/ 2 x
- \5»\vv\82[m(n«'\)+v\} W%% \
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where

= y
8‘:mm° ) a = oy

R-2
el ) ehdedy o, Q“ !
e (Dbl l=o S ) +
Y- et My, Ao o sz @2 mHmm )’

. &=, =%
sz 0 'W 2st)-1 2 2Ls-t>—l.s>§
{= o (2m) 2%-} JRACTRATy CQM)S—nys-\\W\\M fep ST
- -M
72 W-m)TN r@ T )
w0

k V\b

* X
Tt 2 .

3 - V\\S hd *

These results are too complicated to be used in practice; however,

N-m
— 1

in the case of small deformation from spherical smearing, Ty

considerable simplifications are obtained. Using the parameters for the
Stockmayer potential given by Hirschfelder?> it has been found that for

. . _ n-w S v
water coefficients A and B in (A.5) will be positive if &= —p= < 0.03
and the elongation is in the z direction (prolate spheroid). On the
other hand, if the elongation is in the x and y directions (oblate

spheroid) then the coefficients are always negative, becoming more so
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for larger €. The second case is believed to e more reasonable since
for the present choice of dipole orientations the interaction is more
attractive along the z direction than the x and y directions. According
to the approach described in Chapter III the effective potential for

108
AW
water does not have a minimum around the origin since E ::-1( ;?) ~ C.cLD

U‘U*O

(see Figure 3).



APPENDIX B

"CREATION" AND "ANNIHILATION'" OPERATORS

b -itH

In Chapter III the time-dependent position operator, &i(‘b): { Q@
was introduced in (3.16). When the Hamiltonian H is that of a system
of independent oscillators it is most convenient to express L\i(-{ﬁ
in terms of certain operators of which the matrix elements in any eigen-
state of the oscillator are trivially obtained. As defined Uk) obviously

satisfies the Heisenberg equation of motion

+ A48 _ T ug) H] (8.1)
ay

where the ’V\ is omitted because 'K/ here is actually the conventional 'b//ﬂ .
Since the oscillator is isotropic we need only to consider one of its

cartesian components,
P R 2 2.
= w24 ) k=M (B.2)
and we have the usual commutation rule EM)\:‘I‘: f)ﬂ . According to (B.1),
o ® _ ] o PU;B o . _ o
) = (udy W= 05 Tpy= U, R = —tleut)

as 2 2,
These results combine to give an equation for b((b), namely, (Mjg): -{7](0 (/WC) .

e fat ~iet fiag -k
Ud=0¢  +pt 5 pE=MO0E B ),

(B.3)

Constants  and é can be determined from (/\((3) and P(c); we find, for

121
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instance, Ut) = U(o}(ﬁs&\(ﬁb + K\T/\LQ 5\‘&\%& \

(B.4)

which is in fact the result one would obtain for a classical harmonic

oscillator.

An alternative approach is to consider the transformation directly,

Nl

B e S
W= w6 = w1 U S S T Tu] e )

were TR U= B Caul =4 0Hull = 2y

13 .
ol =~ Tep s Th], =

and we have used U(L), (D(()> interchangeably with \X‘P Using these com-
mutator results (B.5) can be summed explicitly again giving (B.k).
From (B.3) we have expressions for b( and 6) which in terms of the com-
mutation relation for W\ and Fsatisfy EB( s e& = “WQMCQ , moreover,
since W and P are Hermitian ()(T_—; @ .

It is convenient to replace the dynamical variables W and F by

so-called "creation" and "annihilation" operators

il

=M
gy = (2T g

D)

witfcil also dave oime-Independent Coullterparts wiern %/‘:: ¢ . This choice

produces the commutation relation C_d(ﬂ)a#d-)l = [C{(Q\) Q‘\Eb):( = .
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In terms of these operators,

\&Qb\zn &é%&g K}XQ&B%‘CUQVXK , (3’7)

L
and similarly for U(@. The effect of the operation of (A or Cﬂ on an
oscillator eigenstate iﬂ) can be found by the following., The Hamiltonian

becomes
i { i —\ L s .
"‘\ zﬁ'.::, /('\ LO\ (‘ (1\( i (\/B(l (\ ‘‘‘‘‘ ( \> (') .\/\) A :‘/ N ( B . 8)

which is also valid at b*%ﬁ since H itself is time-independent. We can

write (B.8) as
(H-b)= diatey 5 (S =aeide) |

-5) ﬂo\\m = c&o}( A é) Wy >
or

!—\/Of%coy\vb-—— (A+1) 6&0} iy \
)

which shows that c%m must be proportional to |Wedy, Ity A0y =R {nal
Similarly we find Q(0)|M) to be proportional to |- , or AW AY = Aln-ry
To determine A and B, we simply consider

Qw\a(bmko)\ ..... 1y L tf\'\C\J‘Zo\a(OS Y = 1)

Hence, -~ -(ﬁdﬁf
a@y="MWln-y 5 alld = -

> . | . iy |
aly="\ntilsy 5 d@lny =g )
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This shows clearly why (' and (| are called "creation" and "annihilation"

operators.



APPENDIX C

NEUTRON SCATTERING ACCORDING TO THE SQUARE-WELL APPROXIMATION

K W h) "\“\/ ‘»\
In this appendix we shall consider the thermal average <(', ¢ { >

T

appropriate to molecules each moving in a three-dimensional square well.
Since the well width is taken to be the same in all three directlons we
only need to treat one component in the calculation. The molecular prob-

lem is simply

‘)d 2\(,= .
PAZL SN P
SN

U
where we have defined ?—" — QA being the width of the well, and

a,
N OMES"
= %W The origin is chosen at £=q  with E} 0. By taking the

barrier to be infinite at € =¢ 20 the solutions to (C.1) are

-~
-

\’ (@ — S % g\s\‘&z (c.2)

where un*—-— /o .

The required matrix elements can be readily computed. For direct

scattering,
KU -kl MEEW ki 2
nle { Ay 24 ra (VM (c.3)
. 2iKa 21K
vhere L @K iy = ngé s T -4 __4 WC“?S»“WV‘)W 40
= (Ka§ - (meny T/ 4 (Y - /4 )

If we let M=W+ <, © an integer, then
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[<nfe D] = (1 b2, s ew
toT (C.4)
e \'* (Q'{.QL//[\\) qk ) - (}‘/M
with - 2 -
g Al NN
IR | O - Qs )
i W, - X - 2 2
- - ’\\Lm)“g(zm)i\[ a3 \K
Hence the thermal average becomes, in the case of direct scattering,
= 2
: . Sy
Kud) -k — ~Fufry -t Z e ST
Ty =2 0
T 7l LIRS
(c.5)

For interference scattering,

- '
\K/L\QGVS -\l "‘E/ /é KU 2
ety > O@ )U Knlg (@ (c6)
In an actual calculatlon, the required thermal average is a product of
three terms like (C.5) or (C.6) since we have only considered one com-

ponent here.



APPENDIX D

ANGULAR MOMENTUM OPERATORS AND HAMILTONIAN FOR RIGID MOLECULES

The orientation of a body in space can be specified by the FEulerian
angles ((}{@265> » By this we mean that the set of axes fixed in space
and another set fixed in the body can be brought into coincidence by
three successive rotations; explicitly,

QH = Qg{(@,\ 41' )

@:{ ———?W(Qz\%p&(’ﬂ @{Q 5

QL: :;Q“(%QQW@DQQQ(% éﬁ = QUR Qi,( 3

/
where @t and @L are respectively the space and body axes. Since a rota-
tion is an orthogonal transformation then matrix (%'(Qﬁ> is orthogonal,

i.e., Q%?(%wx==(212(ng . When the body is undergoing arbitrary rotation,

rotation about any axis gives rise to an angular velocity 6 along that
axis, and for infinitesimal rotation the angular momentum generated may
be treated like vectors,65 The angular velocity'gg for the arbitrary
rotation can be expressed in terms of the Eulerian angles,
. . i \ If
W=p L, +8, ¢ +4§ ¢

-2 273 )

i i
where the three rotations are sbout @3)@2_ and LS respectively (see
Figure 4), Expressing the angular velocity either in the space system

or the body system we have

127
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~ 4R, ae}@ L0 + AR (e\a Al e

\

where these relations will be used in deriving angular momentum operators.
Consider an infinitesimal rotation of a scalar field \U(% about

the space axis @_* by an amount D{,\ ’

P\b mn\ = \:Q(Q\/D = kW%vﬁ' EVO > (D.3)

Sl
1951\

the change in 6 due to the rotation being A 0( Since Av\ is

small the expansion

W) 20y + AGUE)

is appropriate. Now define a generator of infinitesimal rotation about

(. L8

__\ as

1 b w;»-w &t
{ 0(1»—50 d&w“}w\ 0<1>o i

or

- @% 3
(e Y @g» @uv 8,

In this rotation the summation over repeated indices is implied. By using

/ /

N
LUJ instead of L@)ﬂ (D.4) yields \_1) a generator of infinitesimal rotation
| .

ql i
about the body axis @4 . The operator L,A-
\ !

angular momentum operator T': by merely adding a factor. ‘: = 'Vk LA .
\. T ‘

is actually related to the

i
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ANGULAR MOMENTUM OPERATORS IN "SPACE" SYSTEM

We may regard (D.l) as a matrix equation CO,\:B{AGV\ from which we

M -
need to determine a]‘“= we - In the present order of rotations
(- |
Cz o ‘Sz C, SI O Czcl ng\ ~S2
Q(69Q<Q\>= o ! © -5, C\ o = ‘S\ <y @)
S2 0 ¢, 6 o | S.Cs5S, <y )
where CLE(_EgGL )SCES(:\AGC . From (D.1) matrix B is seen to be
Ndd S¢<C2
O -8, S£, y = = !
B=( ¢ <SS and inversex © = -S, <, O
o ¢, ’ SL S o
52_ SZ

Hence the angular momentum operators in the space system are:¥**

’P&:_ ‘\MQ{VI (S%—V\) 1

with
C.c <,
-S&%2 o =L
T S2 S' S2
-
Q=(R > = —Si<a <, S
Se Sa .
1 o 0

ANGULAR MOMENTUM OPERATORS IN "BODY" SYSTEM

/
We could follow the same procedure in obtaining expressions for TD‘ .

51
*B = Bf/deU?%, where B“_ is the adjoint matrix. ‘L
**This method of deriving P. has been used by Osborn and Klema.
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However, once () is determined a more direct method is available. DNote that
Pl
H Rt
= QO 55,)
(R RuN “obn/

where rotation matrix R is given by

( C?}CQCV-S&Ek QSCZS."\'SsSt —CsS,
=R Q\?(QQQ@JD = \_SBCQQ; ¢S SO+ C s,
SZC\ SZS‘ CZ
Thus 8
P o U (55
with
-Gy, &S
‘C‘Z/ — Sa, Sa
$3 c S5 .
o © 1

Summary: If we designate %\:‘b %2: Q ) -Q‘S-—: Q according to Figure L,
)

then
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N
22 a
am(m&‘;k\/‘é_@Jr%qSei % = ﬁ {S'SM‘(\‘, US%&@%C%&%%

> p
= 2

Ll

/
The preceding formulae for F% are in agreement with Eq. (II.29) of
39

The present Eulerian angles are defined with respect to a

]
right-hand coordinate system and the second rotation is about the @2

Nielsen.,

0
axis rather than the _Q\ axis as used by Goldstein,65 Margenau and
62 . Lo .
Murphy, etec. If we follow Van Winter ™ who has adopted the convention

/
of using the @f axis for the second rotation, then
! % SM& -8 +LﬁQ
Be=Tlams SV Q) =Y

M e UM 2
/Pa L%& “%&QBQ &9\

SMAQ

o 3
P ké&\

which can be obtained from the previous results by letting ®-4§ &+WV2..

THE HAMILTONIAN

The Hemiltonian is given by (4.2). By straightforward differentia~-
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tion (using ) we obtain

_‘W'ir\”‘(f V'\(»W\()Q V\e ) “\t\(-}K*UZ 'G'%K@Q\‘:;‘@%'SKQN L‘)l : )
where R
‘,\g mum&\—(oe&r W B G *w&\/ Atghp&ﬁ-gkzx

SV S = ‘2(&0}“ 0 ¢ ;
e Qi U—)s\y “%eaco ST (M’)@Q

L

In the literature the sign of b often appears as minus

K g
the use of (,, axis instead of & _,

l

(D.5)

and is due to



APPENDIX E

THE ASYMMETRIC MOLECULE IN AN ELECTRIC FIELD

We record here a procedure whereby, at least in principle, rigorous
solutions or solutions to any order of accuracy to the problem of the
hindered asymmetrical rotator can be obtained. The method is a straight-
forward generalization of the formal approach describéd in Chapter V, and,
as before, involves considerable numerical efforts in any application.

The eigenvalue problem is

. { —
_ D_\;_> =0 (E.1)
(#*2 N s N4 )
where F\Qis the free-rotator Hamiltonian given by (4.1). From Chapter

IV recall the solution
Hel TEM) = Em\ =M
RV ZN t:ve)\w}

Now we seek solutions to (E.1l) of the form
n 27T

[EMY = 7_1 ‘ LEIITEMY | (E.2)

T=p E=q
since M remains as good quantum number,%% is used to replace J and E.

Henceforth we shall suppress index M. (E.l) then reads

%%T'E'@)\(EIE EQ‘%S/‘;EE/M AUIT’)EEj& =9, (53

133
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where waiEE, <’S‘E\ 00 3E> zu <E>O( \TE><II< D \?K> J

T+ T Q D
y j T
QKD NI =9, i S Sl SD
=I7-1]

(E.3) becomes

BEESED- Q Ce®eeis=o,

oY)
T+1
Bl B0 2 lZaEéQmE =0,
T E'=o
where
(I V)
Qe Jery = Z 03»<<TE>(>< 9>C DCWD
K=-(T, )

In (E.5) K ranges from -N to N, N being J or D) whichever is the smaller.

For instance,

/ o | =
Q(C)o)\E ) = 0(0(0@ O(OC\E/> [C‘o o ]

>

The first equation in (E.4) corresponds to J = O where D has to be 1,
and the second equation is for J > {
We can simplify the notations somewhat by introducing a single

index V] for J and E. The following correspondence is noted:

"J:o j 2 N

o
E=o0o oi2 o34 v >N

V\=-a 123 Asga oot NNNED)
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When J = N, the highest that V} can assume is z<2‘/\+ O = N(N4 ’\3 R
=0

Therefore in this group V] starts at (N-D(N+ )+ 1 = N*  and runs through

the QN*"( values of E up to N(N*Q) It is necessary to devise a scheme

by which a given V), say V];: X can be related uniquely to a set of (J,E).

Consider the test:

2,
(1) If X= N) then the corresponding (TJE> is J=N E-_—:Q |

2
(2) If X# NZ) then  find that N such that N < x (NH}

and the corresponding (_SJE> is  T=N E X M

With this substitution (E.4) becomes
(N‘r'z\z«

%WL@(EW E} 5 Z(u\) @ & v]’y =0 . (E.6)

where it being understood that N & ‘/) <(M‘HB Equation (E.6) is in

the same form as (5.4) so E_ ana @V]Ci> can be formally expressed in

g

similar continued-fraction forms as (5.10) and (5.11).



APPENDIX F

THE INTEGRAL o - Pﬂ W)

J

We shall evaluate the integral

XH 1) A
. C o A (
Cawy A
G4y T = L (aray
\/\:.:(3
Consider _tV\ TW‘ A

T U\‘r\%p! (\m-rp_‘q}i

ol e —-Ox

i ( F.1)
- | | dxx ¢ ) (
r POt
gy ey e
t % . . . . \"\'« ‘_i
where (D=4 -&rlf’g- + n . The integral in (F.1l) is simply p! (G )

We next write

P {\H(\—W\i—\'ﬁﬂ - ‘JFH
$2 = (-t) =) )
- (pr)

N= \>‘(\ ’v YBL A (E ‘ (7.2)

The following expansions are useful:

e = (e (-FY v N
J \ \

Lr=b-dimen) = &9 =g R
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€ S _ou’ \ i &d
Th {\”‘ (‘“b)ﬂ V)x - Zf&_ﬁv (T—aM! d\ (F‘b)(\_\() .
_L\?H) §+4 \LL <P+G) o4 d
~r) (r
(LA Zl LD e o)

Since ,\ and q can be positive, negative or zero we need to consider three
cases separately.

) f*_ andq either positive or zero

\w—dﬁ_ 1 (_%\ Cro—dy !
(-%) = T GEe=d-uyt

+ -4
A+5-4 1 z Gre-dt F
(1= = Z(—) — R
= (Q+o-d-2)! 2!

00 aq '\{‘G‘d C\’r@d 6’&"(**(«(*&

=222 20

e Wtd 2+
M Prod (-t qua-a)L g ¢

(§-0Ydl Ul 2L (jrg-d-1)! (Qre —d =201

)

/
From this we want coefficient h%ri s, 50 we set u-{-(/\:g Z+C\=~§’ thus

implying QJFQ” .>.§)C\ -%@Zg’ .  Now we obtain
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© § &4 ¢4 .
< )= SN eto) & Jb PrO (k=) (q4Fd)! )
= (- { .. ; - / F.
se PP =@ SR L2 AN GAGEN gy
with c\(W\W\ (gﬂ and € >‘/\(\£1)((§ \} >
When /=0 , only non-vanishing term is Q= d .
. SO = P+ !
Q =) (e (4 Jt i . L
<=0 ST £ T GO (i gre-git - ()
with m % .
th mex. (= j RGP mm(é_:z)-
(2) 4_ negative, Ci_ positive or zero
In this case
© G G-d -4  G+0-4 4
A S SHen G b
¢ d (6=4)E dt (1-1) 1
We can still expand
- %_ Uflsf-0t J
(-t) = f (,\‘\-—‘Dl‘. f
Thus
(I L) = ) (prall (P
(F.5)
T <-4 ¢
T<£\" AN alk qam) (qta-d)i ({1HE=1)

AN / L_.,:\-‘) [ L / [
" %ZTM« iz (=i f%\‘tg“” Qm‘“ﬁ@'@
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Again when JA=0,d=0 +then only the term with &:-—.. R-§ survives in the

S‘ summation. Also note symmetry in (C,\\) and Q%{l\) .

(3) 4_ and q negative

Similar procedure leads to

i<y

L) =0 s )
(F.6)
¢ ed s-4 . )
T O+
w7 > > j_ ) %
0 4 feco a=§;@

et (g Cilef-01 Cigl+4-1)1
TG0t ql-D LT -9 (ﬂg—gﬁ%—f-dbt<§'—3-<m

When JA=0 set d:G‘)%= %‘@)%z S/-Gﬂ.



APPENDIX G

THE HINDERED ROTATOR—OSCILLATOR APPROXIMATION*

We shall consider an approximation in which Eq. (5.13) can be re-

duced to the oscillator equation. Equation (5013) is

tad | (M-kexd)
{d —,+ JSG &~ "o + NS + LOEY(Q):Q) (5.13)
A 2
where )\— =Y ) = E - T—%-i\( - The first-order derivative can be
eliminated by the transformation Q(%\ (gw\% Y(Q-) . Then
Z
d ' L
{J@L - e{-f-(% + (h)"\" L‘_\}k Q(% =0 3 (G.1)
2
with  (M-keed)- V4
V, () = —X b ¢ ¢ ’f) .
v ST

/ \
For )\3\,1 and M# K s \/@@(8\ has a minimum at %‘-‘ 6m which is near

6:: D . We can therefore expand\{ ,@:\) in a Taylor series,

“

ny - , N d\'ew\ G.2
\/@(aﬁ 2OV + ( ) 8 | (6.2)

where by definition (%\ = O . It is found that for small eM

2 - 2
§r v 2 TM-S-Va) /N 4 @(%A")
S50

j\}gif?) v+ V)

*We thank Professor K. Hecht gor a discussion of this approach which has
recently been used by Maker. 5

1Lo

/ , T 2, <
Neplfy) X =N+ *2)\' UM=K=+ KM= 1) + (MoK
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We have kept terms independent of }( in \ﬁﬂéég) because they represent

the energies of free rotation which are of some interest. On the other
N 2

hand, the leading terms which are ignored in (d\/df/c\ﬁ > §, » Vhen milti-

\ M

plied by a term ~, 6;\ , are of the same order, but they are neglected

becuase their presence introduce undesirable coupling effects between the

different degrees of freedom characterized by‘Q’)%" and Q

In the present approximation (G.l) thus becomes an oscillator equa-

tion. The energy eigenvalues are

— = O
— ) | T +\ + MK
= A AOAE (2e| M-k Y- +1) -

o3 E))
+%Q \)\<+ M=K~ -
For M+K we cen ignore the 1/U so (G.3) agrees with (5.19) to within a
constant. The result (G.3) actually is not valid for M = K in which
case\LEAQD has no true minimum. The reason for this behavior may be

W

seen from the fact that G==0 is a simple pole in the differential equa-
tion and physically the molecule can never be in the position Q‘==C
(\&L and Ei colinear) unless M = K, It is therefore not surprising that
the M = K case leads to difficulty in the present approximation. If we
insist on ignoring the /4SWQH term and proceed with the oscillator ap-
proximation then essentially we are neglecting effects of irregular be-
havior near the origin whenever M = K, For large )( this irregularity
is confined to a very small region about %::Q hence the oscillator ap-

proach may still be useful in cases where one is primarily interested

in the over-all behavior of the wave function,
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The eigenfunctions of the hindered rotator are

f\"

| I P VI IRV NP
\QEMY = @) Q%\“(f{ﬁ> L0

) L‘\Q(M (G.k4)

where H‘%is the Hermite polynomial of order €. In this case, ehas the

o

range (-C0)'\'Cb> .



APPENDIX H

EFFECTS OF FREE ROTATION IN NEUTRON SCATTERING BY HINDERED ROTATORS

In this appendix we shall examine the influence of free-rotation
energies upon the scattered neutron energy distribution. It has been
shown in Chapter V that to order ‘[%,\ in the cross section only the cases
M= \Q, and M= V{ k"ﬂ need to be considered. For these cases the selection
rules for g’ as given by g@i’ show that W\:\Q, corresponds to no ex-
citation of the hindered mcdes, therefore when free-rotation energies
are considered this particular case will give rise to energy transfer
involving terms proportional to B. On the other hand, the cases\= \Q"\:'\

correspond to "one-quantum" excitations, and in the presence of free-

rotation excitations the amount of energy exchanged will not be pre-

cisely \\2?\% thus resulting in a broadening of the inelastic peaks at

E. C. \l‘/\% Since the two effects just mentioned arise from dif-

ferent relative values of m and k they can be discussed separstely.

(1) SMALL ENERGY TRANSFER

n (5.42) QV‘F) is given as a sum of three terms, the first of
which is 'R%“ (@Oov The contribution of this term in (5.41) will
be denoted as

tb( QK“‘Q>
No(skmpyo ¢ S

where now =  is given by (5.18),
M
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Thus elastic scattering is obtained only when k = O. It is interesting
to note that in the case of linear molecules all terms vanish except
those with k = O [see (5.50)] and so no small energy transfer is possible.

The corresponding thermal average may be written as

<w> JM?@ Kby Q‘K'b \ZYQ <b3\(<

%E(%KVB in %te\jm $ 2 (zk-\eﬂ (H.3)

53¢ [

gK N=o 3

-8t (e
with ) = )
ekn g

L4

R = .
Egw) =\2xa (&4 1) + %K(I{-zi 0y + %)

In (HOB) the summand actually consists of two terms corresponding to

upper and lower signs of n, and similarly in % . The elastic term is

still d (K,\_D( ’“o(’\>'
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(2) LARGE ENERGY TRANSFER

The preceding discussion shows how free rotational motions can lead
to low-energy inelastic scettering., Now we shall consider the effects
of free rotations on large energy transfer processes, The iInelastic terms

n (5.45) and (5.46) become

G (kM)
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where
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These results may be compared to (5.45) and (5.47). The major effects
due to free-rotations appear in the time dependence of the matrix ele-
ments and greatly complicates the inelastic spectrum. Because the energy
now depends separately in M and K the thermalaverage can no longer be
given in closed form as (5.&9), nevertheless, the expression can be

written down without difficulty.



APPENDIX I

SEPARATTON OF ROTATION AND VIBRATION IN DIATOMIC POLAR MOLECULES

The procedure for treating rotational and vibrational motions of a
diatomic molecule is well knowna66 The method is equally applicable
when the molecule is in a potential field. In the following we give a
brief description to illustrate the necessary approximationsin separating
rotation and vibration,

The six coordinates of a diatomic molecule are chosen to be the co-
ordinates of center-of-mass, the interatomic separation, and the two
angles specifying the orientation of the molecular axis. The molecular
energy 1is therefore just the sum of energies associated with center-of-

mass and internal motions. Explicitly

H= Hot (1.1)

with

M@ \; (&)
— 4+ (I.2)

,:\'2.

\ e

2& ) —
a i'ﬁa{ ()t MENE R

% -_.-«-%Q\ e >+\1Qw(®§ (1.3)

n

|
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where \/T\[{) is the effective potential governing translations and there-
fore depending on the center-of-mass coordinate R only, and \/2\6> , &s
discussed in Chapter V, is a function only of the angle © under appro-
priate choice of axes, The interatomic potential \](Y) governs the vi-

brational motion and hence depends on the interatomic separation. The
an\z
M
It is apparent from the form of (I.3) that the wave function de-

reduced mass , where M’“*W\ﬂ“ M, is denoted here as /\‘,

scribing the internal degrees of freedom is separable,
() = R Bl (1.4)

where

( (\ o T T EZZ l\
\ _...\ 4__.-\{ — - ! o (106)
EE IR ATTE R

J

[ 2

\aahlaed)- 2 \'BP_D‘;“_EE\@m: o (1.7

In arriving at (I.7) we have employed the approximation Y'z\/{z(\ Q\\ N

\(@ \/Q(%B @ being the separation when both atoms are at rest. Rota-
tional constant is defined as before, R= )V\/ 27 V"Zm , and E:S rep-
resents the energies of internal motion. The rotational energy EQ

a diatomic molecule under the influence of a strong local electric field
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is given by Egq. (5.22) as E

™
is given by (5.21) as \@,{) .

and the associated wave function @(G>

The potential for vibrational motion, to a fair approximation, can

% (r- Q\z )

where b is the restoring force constant. To take advantage of this

be given by a Hooke's-law interaction of the form \]("(S:_

quadratic form we introduce the transformation, Q(\(}:—. Q(w / r
and P = (- ‘("c) , so that
] %Eg QT/ 1 b 1 S
- 2V g X =0 (1.8)
R~ Ly # \QR=o0.
The choice of \/(Y) presupposes C t0 be small compared to V\C . Then

2
to order e (1I.8) becomes

e

QH_V\H‘SQ (\;}‘ W*“‘ K=o, (r9)

! (oo
where V\J = ‘fh—!zEl__ %.7__ N S=RE aM  ° We observe that (I.9) re-

sembles the oscillator equation if the term proportional to Q can be

eliminated, This is accomplished by letting Q: T+q , and
il il 2 “
Q&) + (W'-1% >®ﬂ§)=o) (1.10)

. 27 3 S bY -4

th - — - L
wi V\l—ﬁ +Jm>% acF 5 0= (-
and )\= \UE . It is seen tha“t'k,' is always negative because the ratio
or,’ 0/ it

e,/(p)\ A" Q,/(O(\Q > is expected to be considerably greater than unity.
Equation (I.10) is the oscillator equation provided we can ignore the
fact that the actual problem requires Q=u for Y= 0,0 vwhereas the

oscillator solution vanishes at § = - 0,
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g
If the oscillator approximation is adopted [~ can then be exhibited
as
3 2 ‘b‘/2< k 15 - + tu?
- e oril) + -
2 E 2
~ ~ — M
Ny SN L = VL ~_§— (1.11)
N A )+ By )

™ M
where i2 T:(t%Tf\

is the vibrational frequency. The three terms in
this equation obviously represent the energies of vibration, rotaticn,
and rotation-vibration coupling. For most cases (E%%§;<<‘\ , and
since EF2> B we may ignore the stretching of the molecule due to rota-
tion in which case vibration and rotation become separable. We thus find

Ry Hy v He  amd ke v Ry leM> » where | 1s

the wave function of an oscillator of mass ‘|, and associated frequency (.



APPENDIX J

THE THERMAL AVERAGE FOR INTERNAL DEGREES OF
FREEDOM OF A DIATOMIC MOLECULE

We consider a formal method of evaluasting the thermal average

R
(%5 y V.- The vibrational thermal average is given by Eq. (6.3).
o/

In general 4{\1>2&T and t';’d”;("/‘, 4, <\, , the small argument expres-

sion of the modified Bessel function can therefore be used, (X))

(\\%jv\ /0l . Ve find

A = .,\ o
bie ~DU) ity - Ol 5By
T\]uo(/ = él Q/ Z 4/ |
Ok - ' g e
[
T P! L + C)é %anW

(J.1)

._\_. LY >

where

D = WMo’ )/ 4502,
P = W wY/4g5
'3(;/ = )V\Q/Qb—r) A =

The first two terms in \fw/ correspond to elastic and first-order

(V\: ‘_*: 1> inelastic scatterings. Dependence upon \-\Q is explicit

so that each term may be inserted into Eq. (6.1) to perform the average
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over molecular orientation.

We consider the first term of \[W’ which represents the effects

of zero vibration in (6.1). The corresponding thermal average

A - (J-2)

In performing the average over all directions of the electric field the

K-
exponential {, - can be expanded according to Eq. (5.26), sim-

ilarly

kb
0 OI\O(K/__@ - KLLW)DUQ‘/\OD

(\C ,\ﬂ(b\\{ (b)\((‘w) q&l \ D b

o 1

The leading term in (J.3) leads to the result given in Chapter V and the
second term when inserted in (J.2) can be reduced using the relations

(4.37) and the explicit form of \%M> . After a series of manipulations

we obtain to order 'D/K/@

<0<°</> . D/KZ ; (Jlk)
Q%QD T PX <>T

o/ T
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where <[>(D(/>T is given by Eq. (5.50) and

O = 2 Zas crz(lmwhndq%md (K;beP
(o

Nz 2 lJG E‘ EQ:M-\-\M)
™ §MNg’M+W\ {

i"‘ (W*M\d %jv_(gm QQ | XCQ * XCQM \tx Cq \A
o MY

Wt )

) W) ) U
%6 C‘Oo Coo C(M+‘v§ -S C‘-M -+

X
X) (SM\O\O)(MWS\@WMB §W\-\\7JM'+S -
dJ.

ot dQ guw)me}( ”\QQ\’\CX At

AP -m -§/ —M’ -5

9O Q‘)“‘CQ/D ) Lok )

66 Somis)y t -w -

o(
) (ilMJ'M\d‘o;tM@sSW\gM\ gm*’v’,“’*s'g ‘



The integral ( ENA \ (‘{
RS
)
vV, is
.M ’ \Q\ s

'\‘\E’t\/\\&(;fm\iM'B :,\“/ %CW\U%‘afﬂ§:> KLLV\\ S)g (9.5)

™~

{
where EE) is known (see (5.37)) and gives the selection rule for

SN

in a rather complicated way.

The higher order terms in V ; may be treated in a similar manner

W

although the amount of labor involved is expected to rapidly become

prohibitive.
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