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I. INTRODUCTION

In analyzing inelastic scattering of low-energy ( ~ 1072 ev)
neutrons by macroscopic systems methods have been given in which the
molecules are assumed to be freely rotating.(l’z) The formalism is
therefore not applicable to systems in which appreciable orientation-
dependent intermolecular forces are known to exist. For these cases a
more realistic description of molecular rotations, in addition to being
useful in neutron thermalization studies, should also be of considerable
interest in view of recent efforts to investigate liquid dynamics by
means of inelastic neutron scattering. Among the various systems studied
thus far water is perhaps the most interesting as well as important. A
relatively intense band of transitions have been observed in experiments
with water and interpreted to be associated with small-angle or hindered
rotational motions of a molecule in the potential field of its neighbors.(B)
This type of motion has been considered phenomenologically by Nelkin(”)
who assumed that rotations of the water molecule can be described by an
oscillator of adjustable mass and frequency.

In this paper we derive the energy and angular differential
scattering cross section of a rotator using a description appropriate for
polar, symmetric and linear molecules in a condensed state. An early cal-
culation(5) of the energies required for complete rotations of a water
molecule in an ice~like structure has shown a large potential barrier re-
stricting the rotation of the axis along which the permanent electric
dipole moment is directed. The fundamental assumption in the present

discussion is that the hindrance can be completely ascribed to a coupling
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between the dipole moment and a uniform and constant local electric

field. This internal field presumably then represents the net effect
arising from the presence of the near neighbors, and its order of magni-
tude should be essentially that of the corresponding crystalline fieldn(6)

The assumption that the local electric field is constant in
time is not to be taken literally - especially so since our prime con-
cern here is with the liquid state. Instead the assumption should be
interpreted in the sense that there exists a time interval correspond-
ing to the duration of local ordering throughout which the local field
may be regarded as approximately constant. Furthermore it is presumed
that these '"order intervals" are long compared to neutron-nuclear in-
teraction times.

Under the condition of strong coupling, the rotator, to first
order in the energy, behaves as a two-dimensional isotropic oscillator.
The second-order terms in the energy are independent of the coupling,
and must therefore be associated with free rotational motions. Cross
sectidns are then derived which include the second order effects. The
presence of energies proportional to the rotational constant gives
rise to small energy transitions which conceivably will complicate the
interpretation of center-of-mass motions from inelastic neutron scatter-
ing data. Moreover, a whole spectrum of frequencies is obtained with
each transition involving the oscillaﬁor energy. These excitations can
therefore be interpreted as giving rise to an effective hindered rotation
band which will reduce to only one frequency in a first-order theory.
In this sense the present work<provides a systematic generalization of

Nelkin's treatment.



ITI. THE HINDERED ROTATOR

The eigenvalue problem of a rigid symmetric molecule with

dipole moment p in a uniform and static electric field é; is well
M

known,(7)
1 4 a (M-K c->)2 I (rcos® + E)
1 4 . d y _ -Kcos®) I .o (Acos6 + B)- _
{s1m0 35 (1@ 39) sin2s T T % 7 5110 =0, (1)
where the rotational wave function is
iMy iKi
R(yop) = e VelPy(g) | (2.2)

In this notation B and é are chosen along the body and space Z axes
respectively, A =ué, and B::(QI)_l. The direction of & may be re-
garded as fixed for the molecular problem; however, in the cross section
we must average over all possible field orientations.

Equation (2.1) and the corresponding equation for a linear
molecule have been studied quite extensively in the theory of Stark
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effect in molecular spectra,( The corresponding equation for a plane
rotator (Mathieu's equation) has also been used to study the transition
from rotation to oscillation as the field increases,(9) The magnitude
of an external field is generally such that lext/B is of order unity
or less. On the other hand, we can expect strong orientation-dependent
intermolecular interactions in crystals and even ligquids if sufficient
crystalline symmetry still persists, whenever the molecules possess
large dipole moment. For these cases Ajpt >> B. The high-field solu-

tions of (2.1) should therefore correspond to a description of hindered

rotations.



The energies of rotational states in the limit of strong pertur-
bation have been derived by Maker,(lo) and Martin and Strandberg.(ll) We
adopt a somewhat different approach here by observing that under the in-
fluence of a strong field, likely values of © will be confined to a
small region about the origin, and so in this sense it i1s meaningful to
examine (2.1) in the small angle approximation. To order ©° the re-

sulting equation takes the form of the confluent hypergeometric equation,(le)

b 5w (g v (B (L 292 - X () (i)
. X

ax2 B Iz 3 3
P v(x) =0, (2.5)
where
X=T]@2
2 - A
=5

Y(x) = x EM/2ex/2 0y

By requiring the wave function to be square integrable in x over the

range (0, ») we find

X
R = |tKM >= NCKMeiMWeiK@le'M1/2e_ 2 LLK-M‘(X) , (2.4)
Begy = -M +V2)B (26 + [K-M| + 1) + BK® (%—Z-—l) + BMK
- %{eg(gﬂ) +2¢|KM| + |KM| - |K-M| + 2}, (2.5)
NEKM = ntt/en® [( + |k-M|)iP , (2.6)
where
£ =0,1,2,...,

M,K = 0,+1,+2,..., and

the associated laguerre polynomial.

=
re—
T
=
1l
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Henceforth we shall designate the terms proportional to ‘JE?EA and B
in ECKM as first and second order energies respectively. By keeping
terms to 92 the small angle approximation gives the energy correctly
only to first order. However, Equation (2.5) is correct to second order
because we have included the contributions from terms ignored in (2.5)
but which contribute to the energy of order B. Higher order energies
can likewise be developed, in fact, the form of ECKM implies an asymp-
totic series in inverse powers of (k/B)l/g.(ll)

The above strong-field solutions should provide a meaningful
description of rotations of polar molecules whenever A 1is sufficiently

large so the small-angle approximation is justified. This condition can

be stated as
02> = %_ (2t + |K-M| +1) << 1. (2.7)

Equation (2.7) implies that only a subset of the totality of available
eigenstates corresponds to physical solutions, and in principle only

these states should be considered in the cross section calculation.

We have investigated a possible generalization to the asymmetric

molecule according to the method used by Wang(lB) and have found, as ex-
pected, that the terms arising from the asymmetry couple all states of
the symmetric molecule. Thus numerical methods are necessary to diago-

nalize the resulting infinite matrix.



ITI. THE DIFFERENTIAL CROSS SECTION

The energy and angular differential scattering cross section

for a system with only rotational degrees of freedom is given by(l)

Fo0 .
o(B; - Ep,0) = 21;1];1«:1 z%' 80800y _0{ at oy 1> Y (5.1)
a0
where
apy " denotes the scattering length for the ¢-th nucleus
in the £-th molecule,
fk; and ks - are respectively the initial and final neutron momenta,
€ = Ep - E; - 1is the neutron energy exchange,
©® =~ 1is the scattering angle, and
N - 1is the total number of nuclei in the system.
The intermediate scattering function is given by
a1y = c%vx Priy < ti| ettt Race T In Ratal x> (5.2)
where
H =~ 1is the Hamiltonian for the /-th molecule,
b =~ denotes the nuclear position measured with respect to
the center of mass of the molecule,
£ = ki - ke
PCKM ~ 1s the probability that the system is initially in the
state |(KM >,
Pugg - (7 o"Etias/Ty-1 -Egra/T

KM
with temperature T in units of Boltzmann's constant.
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We consider first the scattering by a single symmetric molecule,

lt(EgKM - ECIKle)
<Xgg'> = L Prgyhe
¢KM , (3.3)
ngtMl

A= <tr| R e <ok e TR R ries L (3.4)

It is advantageous to first perform the average over electric field
orientation. Dependence upon this direction is made explicit by the ex-
pansion

R e 5 A (e0) s (BT, sk (ve0)D e, n(¥'0 "), (3.5)

fkmr

where primed and double primed arguments are measureq with respect to the
body and laboratory axes, and Dﬁ,k is the familiar rotation matrix.(lu)
The orientation of the space system (along whose Z axis é; is directed)
with respect to the fixed laboratory axes is specified by Eulerian angles

(W'@'¢')- We now make the assumption that the direction of é is random

and obtain after some manipulation

2 2 !
A = E(Qﬁ)sNCmNC'K'M' ng Q?e% FESK',K-kSM',M-m ’ (56)
t ¥ A A
RN COSEAC A ISR .7
m-k k-m
r=ll ol vl @72 s, (5.8)



-8-

o]

S = [ ax xPe(E+1)x 1p=j 1p-q

o ¢ ¢
= (-)C+C'(C+p-j)!(§'+p-q)1
(%) 2‘5‘ (=) pro) 1 (3+0-2) ! (qro-d)! (5.9)
odal(o=d)!(e'-d)!(t-a)!(j+o-d)!(q+o-d)!
where
¢ = [(44k) ! (oK) ! (gom) ! (gom) 1122

ggm,_k(s) = (=)S[(g4m-g) ! (g-k-8)!(s4k-m)!s!]7L |

kne = (24+m-k-2s) ,
2p = |a] + [+ 4| +28 -4,
2 = |a+a4] - |o-+25 =4,
2g = || - |a+4] +28 -4,
A=mn-%k,
a=M-=-K.

In writing an explicit expression for the rotation matrix use has been
made of the small-angle approximation. Integral S 1s derived using
generating functions of L‘a‘ and is valid for J and q positive or
zero.,

The above equations represent a formal calculation of the
cross section in which all possible transitions are taken into account.
In view of the fact that the rotator model used is meaningful only if

n >>1 1t is then appropriate to develop a series expression for the

cross section in inverse powers of this parameter. The form of



Equation (3.8) is very convenient for this purpose and we find

I

anF

where

H
1

|_b
|
|

o

The double sign

and lower signs
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1 1/2

ifo + (Eﬁ) £ + (%ﬁ) fs + Of

-2
= NQ‘OC| Bmkﬁggr ,

=+ am’ki;[(zlk)(zik+l)]l/2 [ ax

2

-8, (42-K2420) [ ax x

)

]a + Q1| +1
-X

X

|l +1 plaf ol

C !

1 )5/2]

’

e

bt

(3.10)

| Léqtii

in f1 denotes a sum of two terms corresponding to upper

respectively. The indicated integrals are seen to be

special cases of S with & =0 which will provide relative selection

rules for { and ('.

Since the square of F enters into A, we find to order (hn)‘l

in the cross se

I

Koy >

where W,y(t)

]

b (t)

ction

4 o p
" ﬂk%kM Uk Prxu

[1 - %ﬁ(zg+z-k2)(2§+[K-M[+l)] e

[(C'*'l) SCIC + CSQ'Q-l] a.te

2
€

4R
s 2 ettt L kAN

(4%k) (£+k+1)
Eexm - Bt 'K-k M-k¥1
(+|K-M|+1) Berg + Ldprpo1

(C+IK'M|) 5C'€ + (§+l)8C'§+l .

[Wo(t) + Wi(t) + Of

1
i@ﬁg)] )

(3.11)

it Bk {%z-(EK-k)+M-K}

itE,

J

K =M

]
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In W; the + signs again imply the sum of the two terms corresponding
to upper and lower signs respectively. The corresponding expression for
the linear molecule is obtained from (3.11) by ignoring the quantum num-
ber K and replacing GG% by BEEL 5 () 3 g (kb1 ) (280t - 1)’ 5 .

When <&x1y>T is inserted into (3.1) the time integration gives
delta functions which are merely statements of energy conservation. In
Wo(t) the first term represents the only part of the scattering that is
independent of the coupling. All terms with k =0 contribute to purely
elastic scattering whereas the k # O terms correspond to energy transi-
tions involving second-order energies. These excitations are of the same
order of magnitude as what one may expect for the possible hindered trans-
lational modes in a liquid. Since only the k =0 terms appear in the
linear molecule cross section there are thus no small energy transfers
associated with rotational motions. This fact suggests that experiments
involving polar liquids of linear or dlatomic molecules are better suited
for the study of molecular center-of-mass motions.

The term W1(t) represents excitations of first-order as well
as second-order energies. It is readily seen that the first-order energy
exchange is JEEE: Transitions involving multiples of this amount appear
only in higher-order terms which have been neglected in (3.11). For ex~
ample, one can easily show that fp leads to an energy transfer of
EJEXE: the intensity of which is of order l/l6q2. We shall consider
a transition involving an exchange of JEXE“ as a hindered rotation ex-
citation. Because of second-order energy transfers, the resulting line
shape, even in a reasonably good resolution experiment, will likely appear

as a broad distribution rather than a single sharp line.
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For scattering from different molecules (4 # £') the inter-
mediate scattering function is time independent. If we perform the

average over field orientation for the two molecules separately, then
Ko >p = Jo(KDg) 3o (KD t) - (3.12)

A consequence of the single-particle model 1is that "outer'" effects are

purely elastic and independent of the initial states of the molecules.
In order to exhibit inelastic effects specific to hindered ro-

tation excitations we shall assume A >> B so that terms proportional

to B in EQKM can be ignored. This simplification leads to
O,O:Y

(x) {1 + ﬂ;ﬁ?iz;ﬁi) oV LIW22BT, -1 2x§)} (3.13)
where v ='J§i§/T. In writing (3.13) we have kept only the leading term
in Wb(t). Furthermore, although it is not entirely consistent with
(2.7) to admit very large values of ¢ and |K-M| we have ignored this
restriction in carrying out the average over initial states. We antici-
pate no significant error in doing so since the series is in general very
rapidly convergent. For water at room temperature exp (-2v)~ 107° |

The intermediate scattering function (3.13) now describes the
scattering process in terms of two components, the time-independent compo-
nent gives elastic effects while the time-dependent component gives in-
elastic effects due to hindered rotations. The factor e~V associated

with neutron energy gain assures that the condition of detailed balance
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is satisfied,

Ep, (E1-Ep)/T
O(El —9E2,@) = 0(E2 -—)El,@) E‘i‘ e

Equation (3.13) is actually comparable to the cross section used by
Nelkin.(u) The results are similar in that both describe the mechanism
underlying hindered rotation excitation as an oscillator transition.
Otherwise, the intensity factors and associated parameters in the two
models differ significantly. The present work, taking explicit account
of molecular symmetry and the polar nature of the molecule, is less
empirical. Moreover, by using the rotator description discussed here
we obtain a generalization of the first-order result (3.13) to include
effects of rotations whose energies are of the same order as those of
free rotations.

According to the foregoing discussion the hindered rotation
excitation is associated with an energy transfer of about JEX%X From
an early discussion given by Pauling(9) we estimate A~ 0.15 ev for
HCl, and thus expect a line at 0.02 ev. Such a transition has recently
been observed for HClL at -130°C in cold-neutron studies of hydrogen
halides.(l5) A similar transition of ~ 0.066 ev has also been found
in both solid and liquid phases of HF. We can then estimate A~0.83 ev,

a value comparable to that for another highly associated system, water.



IV. NEUTRON SCATTERING BY WATER

As an illustration of the formalism Jjust developed we will
compute the energy distribution of a beam of 0.065 ev neutrons écattered
at 90° by water at 296°K. To simplify the calculation we will assume the
water molecule can be treated as a mass 18 diatomic molecule. Moreover,
since the experiment(l6) under consideration is not sensitive to center-
of -mass motions(l7) we will use, for convenience, the free gas descrip-
tion for the translational degrees of freedom.(l) The incident neutron
energy is well below the first excited internuclear vibrational state,

E, = 0.2 ev,(l8) so only the effect of zero point vibration is considered.

The cross section thus becomes

ob Ep 1/2  -18ER/Ey
G(Ei -—)Ef,@) = -L—I-T—[' (W e

-(e+ER)Z/UERT 1 2
+ ) % 2(4+1)(20+1) 35(xd)

() {e

(e+ER - V22B)®  (e+ER + V2rB)?

(x) [e7V e- LERT e AERT :I} , (4.1)

where Ep = n2/2M is the recoil energy and 0y is the bound atom cross
section of hydrogen. Equation (4.1) is actually the incoherent cross
section for hydrogen since the contributions from coherent scattering
and the oxygen effects have been estimated to be about 5% and will there-
fore be ignored. The following values are used for the parameters,
A =0.825ev, B=2.2%x102 ev, b =9 x 1077 cm.

In Figure 1 the average of (L4.1) over the experimental resolu-

tion is shown along with Nelkin's calculation(u) and the experimental

-1 %=
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points of Brockhouse.(l6) It is observed that within the rather large
experimental uncertainties both curves are in qualitative agreement
with the measurements. The two predicted intensities, however, differ
significantly in the region 0.10 -~ 0.14 ev, a region where prominent
hindered rotation effects can be expected. Before the accuracies of
the two models can be assessed on any quantitative basis, it appears
that additional calculations and more sensitive comparisons should be
made.

Work is now underway to study the effects of small energy
transitions. This investigation along with a discussion of the center-

of-mass motions in liquids will be reported later.
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