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ABSTRACT 
The partial cavity on a 2D NACA0015 foil at 6 degrees 

angle-of-attack is studied numerically. Assuming the fluid to be 

a continuum of variable density, we solve the RANS equations, 

complemented with turbulence and cavitation models. Some 

important details of the mathematical model are pointed out 

first. We study then carefully what occurs in the numerical 

simulations in and near the cavity from the inception phase to 

the stage well before serious unsteadiness (cavity shedding) 

starts. By making the computations on grids of different 

densities we get an impression of numerical uncertainties. This 

is important for the interpretation and the subsequent 

comparison with what experimental investigations have learned 

us about the physics of these almost steady partial cavities on 

foils. The results show that close to inception a cavity exists 

while the boundary layer is non-separating. The liquid-vapour 

interface turns out not to be a material surface, neither at the 

front end nor at the tail of the cavity. It also appears that the 

widely accepted re-entrant jet model as conceived from free-

streamline theory is not a good description of the flow at the 

tail. The confrontation of the numerical results with information 

from experiments indicates that there is agreement and 

corroboration in several respects, but also intriguing 

discrepancies are found which require further elucidation.  

INTRODUCTION 
The partial cavity on a 2D foil has been studied extensively 

in the past, both experimentally and numerically. Thus the 

knowledge and understanding of the observed phenomena have 

accumulated during the years. The occurrence and the shape of 

a partial cavity is not only dependent – as expected – on the foil 

shape, its orientation with respect to the incoming flow, the 

speed of that flow and the pressure level, but also – less 

expected – on the fluid viscosity and the fluid “quality” 

(notably the content and the size spectrum of nuclei) as well as 

the foil surface properties. A wealth of information on the 

findings of many years of research and references to important 

papers on the subject can be found in Franc & Michel‟s book 

about the fundamentals of cavitation [1]. They describe for 

example that various experimentalists have successively 

confirmed the strong relation between the appearance of 

cavitation and the behaviour of the boundary layer on the foil. 

Yet, there are unresolved issues left. Why is the pressure at the 

stagnation point aft of the partial cavity so low? Is the liquid 

just ahead of the cavity under tension (meta-stable state)? To 

what extent is the cavity surface a material surface? Is an 

attached partial cavity necessarily associated with flow 

detachment? 

We have approached the problem from the numerical side. 

This comes with an obligation to consider carefully to what 

extent the outcome could be affected by modeling and 

discretisation errors; on the other hand, the amount of detail 

that we get in velocity, pressure and other variables is 

practically unachievable in an experiment. As in so many other 

applications, numerical studies can complement experiments to 

come to a full understanding of what is going on. 

We have computed the flow past a NACA0015 foil at 6 

degrees angle-of-attack. Under wetted flow conditions the 

RANS equations are solved, assuming incompressibility of the 

fluid. For cavitating flow simulations we adopt the concept of a 

continuum mixture fluid with variable density and viscosity. 

Again the RANS equations are solved for this mixture fluid, 

with an added transport equation for the vapour fraction, 

governing the evaporation and condensation processes. With 

this numerical model we have studied the flow details in and 

near a partial cavity, between the inception phase and the stage 

where shedding of vapour clouds starts, i.e. in the more or less 

stable regime for which we think the RANS model to be an 
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appropriate choice. Results have been obtained on three 

geometrically similar grids of varying density, giving a rough 

idea of uncertainties due to discretisation errors, which can be 

taken into account in the interpretation of the data.  

In what follows, first a description of the mathematical 

model and its numerical treatment is given. In particular the 

special features of the equations, if applied to a variable-density 

continuum mixture fluid instead of a uniform-density 

incompressible fluid, are addressed. Then flow conditions for 

the foil are specified and the results of the numerical 

simulations are presented. Only afterwards the numerical 

results will be confronted with experimental information and a 

discussion of possible and impossible flow configurations 

ensues. Conclusions are drawn at the end of the paper. 

 

MATHEMATICAL MODEL 
The numerical model for the simulation of the flow with 

and without cavitation refers to the RANS equations, 

supplemented with a transport equation for the vapour fraction 

and a turbulence model. We solve the equations in steady as 

well as unsteady mode, but only under conditions which result 

in steady or weakly unsteady flow, to avoid running into 

philosophical discussions about the meaning of unsteady 

RANS. 

Below we shall present the primary equations to be solved. 

We shall then refer to a fundamental relation for the rate of 

change of some quantity Φ contained in a material volume V 

moving in a velocity field u  which reads (see e.g. Chapter 3 of 

[2]): 

( . ) ( . ) .
d D

dV u dV u dV
dt t Dt

 (1) 

 

 

Mass conservation 

If in Eq. (1) Φ is replaced by the mass density of the fluid, 

denoted by ρ, mass conservation is expressed by the equation 

. . . . 0.
D

u u u u
t t Dt

    (2) 

We have omitted here the integral signs because Eq. (1) must 

hold for any material volume. For an incompressible fluid the 

density ρ is uniform and not changing in time, so that the 

equation reduces to the well-known condition: 

0. u  . 

Ignoring the presence of non-condensable gas, the density of a 

mixture of the two phases liquid and vapour with volume 

fractions αl and αv respectively is: 

1, vlvvll
 , 

where ρl and ρv, the densities of liquid and vapour, may be 

temperature-dependent but are assumed not to vary in space or 

time. Substitution in Eq. (2) yields then either 
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in which S is a source term given by 
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So S is directly proportional to the expansion rate of the fluid 

and a model for S, to be given below, governs the evaporation 

and condensation processes which create or destroy cavitation. 

Sometimes such models for S are called mass transfer models, 

which might be misleading, because it seems to suggest that the 

source term affects the mass conservation only, while, as we 

shall see, it plays a role in the momentum transfer as well as in 

the vorticity dynamics (as a matter of fact in any conservation 

equation, see Eq. (1)). 

 

Momentum conservation 

The role of the source term in the momentum equation is 

twofold. First, by considering Eq. (1) with u  replacing Φ, we 

can write the momentum equation as 

. ,
u

uu F
t

 

where F represents the sum of the pressure and viscous forces 

and possibly external forces. The equation can be rewritten as 

,
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which implies the alternative formulation 

.
F

Dt

uD
 

This clearly brings out that the same force (with the pressure 

gradient as the most relevant contribution) will cause a stronger 

acceleration (or deceleration, if the force is negative) of the 

mixture fluid with decreasing density. Or conversely, if such 

strong accelerations are not observed the force must have 

adjusted. 

The second effect of the source term on the momentum 

transfer is via the stress tensor. The dynamic viscosity is, like 

the density, expressed as 

.vvll
 

But next to that, the stress tensor used in the Navier-Stokes 

equations contains also the expansion rate: 

ijiiijijij eepT
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If the RANS equations are applied to a mixture fluid, this term 

should of course be included. 
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Vorticity dynamics 

Cavitation observations often reveal complicated vortex 

structures and it is worthwhile to check also what the 

assumption of a variable-density mixture fluid implies for the 

equation governing the vorticity dynamics. This equation, 

following from applying the curl operator to the momentum 

equation, reads 

..)(
1

..
2

TV
B

puu
Dt

D
 

in which V.T. is shorthand for the viscous terms, while B  is the 

body force per unit of volume. 

The rate of change of the vorticity vector is thus influenced 

by five contributions. Two of them vanish if the fluid is 

incompressible, but are important in cavitation simulations, viz. 

the second and third tem on the right-hand side. The third term, 

is the so-called "baroclinic torque" which is often mentioned to 

be active in the tail part of an attached sheet cavity. In contrast, 

the second term is hardly ever mentioned, while it must play a 

significant role. It involves the rate of expansion as well as the 

vorticity vector itself. So it is not a production term in the strict 

sense that it can create vorticity where there was no vorticity 

before. But it will enhance the vorticity where the expansion 

rate is negative, and reduce the vorticity in the opposite case. 

Upon collapse of a vapour bubble, all vorticity it contains will 

be focused in a much smaller volume. The high vorticity 

observed at the tail of a partial cavity is partly due to this term. 

 

Turbulence model 

Needless to say that in the transport equations constituting 

the turbulence model the expansion rate plays its role as well. 

Like in the momentum equation, as long as the equations are 

formulated and solved in the strong conservation form, nothing 

needs to be added explicitly, but it is good to be aware of 

effects not present in an incompressible fluid. 

In all computations presented in this paper the turbulence 

model, a necessary ingredient of RANS simulations, is the SST 

version of the k-ω model [3]. This model, like most of its 

competitors, has been tuned to operate well in fully-developed 

turbulent boundary layers. But when computing the flow past a 

foil, one has to cope with the transition from a laminar to a 

turbulent flow state as well. For want of something better, we 

let the turbulence model, without adjustments, govern the 

transition process as well.  To our experience, this gives fair 

results, but we realize that due consideration must be given to 

the uncertainty about the location of transition in interpreting 

them. (Similar considerations apply to experiments, by the 

way). 

An as yet unresolved issue is whether turbulence models 

require specific modification for cavitating flows. Sometimes 

an extra reduction of the dynamic eddy viscosity is applied in 

the region where cavitation occurs. Such modifications have 

not been applied by us because their merit can only usefully be 

investigated with negligible discretisation errors, a task which 

we have not yet finished. 

 

Source term 

In order to complete the mathematical model, the source 

term S (or, equivalently, the expansion rate), controlling 

evaporation and condensation, must be set or expressed in 

terms of the other variables. Several formulations have been 

proposed, practically all having the deviation of the local 

pressure from the saturated vapour pressure, p-pv, as well as the 

volume fraction (αv or αl) itself as parameters. In this paper we 

follow largely Sauer‟s model [4], which with slight adjustments 

gives the following expressions for the source term: 

2

0
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,
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          (5b) 

in which the “bubble radius” R is related to αv and n0 by 

v

vnR
1

0

3

3
4  , 

and n0 is a free parameter, representing the number of nuclei 

per unit of volume. By eliminating R from Eqs. (5a) and (5b) it 

can be shown that the source term is anti-symmetric with 

respect to p=pv, viz: 

1/3 1/3 2/34
03

| |2
3( ) (1 ) ( ) .

3

v
v v v

v l

p pS
n sign p p  

but the expressions (5a) and (5b) are used in the numerical 

implementation. Among other things, it allows us to set a 

minimum (3x10
-5

 m) and a maximum (1.0 m) for R to avoid 

anomalous behaviour for αv→0, R→0 and αv→1, R→∞. The 

square root function of p-pv in Eqs. (5a) and (5b) has its 

foundation in the Rayleigh-Plesset equation. The source term is 

plotted as a function of αv and (p-pv)/ρ in Fig. 1. 

 
 

Figure 1: Sauer‟s source function 

 

We notice that Sauer‟s model gives a scale-dependent 

source strength if the parameter n0 is considered as a fluid 

property. After non-dimensionalisation the source term 

becomes: 

3 1/3 1/3 2/34 1
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It means that for the flow around two foils of different size but 

at the same cavitation number and Reynolds number the source 

term is weaker for the smaller foil. This is physically not 

unrealistic as explained in [5, section 5.4]. This effect can of 

course be suppressed by choosing n0 proportional to 1/c
3
. 

For use in later discussions it is important to list here the 

main properties of the source term: 

1. it is non-zero for 0<αv<1 only; 

2. it is positive for p<pv only; 

3. it is negative for p>pv only; 

4. referring to Eq. (1) and Eq. (3), the following relation 

holds for any material volume V: 

dV
S

dV
dt

d

v

v
 .             (6) 

If the volume is chosen large enough to contain the 

complete cavity, it implies that the rate of change of 

the cavity volume equals the integrated source term. In 

a steady flow the integral of S must vanish. (It provides 

an excellent check on numerical accuracy, particularly 

for unsteady flow simulations). 

5. in a steady flow and with ρl >> ρv Eq. (3) can be 

approximated as 

v

v

v

uS

1

.  ,              (7) 

which shows that under such conditions the source 

term must vanish where the flow is aligned with the 

liquid-vapour interface ( 0. vu ). 

We like to emphasize that only the second and the third 

property are related to the chosen model for S (most currently 

available models share these properties, though, the model 

proposed by Kunz [6] being a noteworthy partial exception), 

the others hold for any model. 

 

NUMERICAL SOLUTION 
The numerical solution of the six equations (two 

momentum components, mass conservation, vapour fraction 

equation and two equations of the turbulence model) is based 

on finite-volume discretisation with all variables collocated at 

cell centers. Although the equations are coupled, they are 

solved in a segregated way. By iteration the coupling is restored 

(SIMPLE algorithm). As is common in this approach a fourth 

derivative of the pressure is added as a regularization term to 

the continuity equation (pressure-weighted interpolation) to 

avoid checkerboarding. 

Three iteration loops can be distinguished: the time loop to 

advance the solution in time (not applicable to steady mode); 

the outer loop to solve the coupled equation set in each time 

step; the inner loop, to solve each equation separately, 

accounting for non-linearity and deferred corrections. 

The discretisation is nominally second order in space, 

except for the convection terms in the turbulence model 

equations and the transport equation for αv (first-order 

upwind). The QUICK scheme is applied to the convection 

terms of the momentum equations. So-called compressive (or 

anti-diffusive) schemes, meant to keep interfaces sharp, have 

not been applied. 

All computations were started in steady mode. A truly 

steady state solution could thus be obtained for flows with 

small cavities. Upon lowering the cavitation number, the steady 

mode resulted in a limit cycle process; in those cases the 

computations were continued in unsteady mode. For the 

computations in unsteady mode an implicit second order 

backward discretisation scheme was used for the time 

derivatives. 

Systems of algebraic equations are solved with GMRES, 

using an incomplete LU decomposition as preconditioner. 

Some further information on our flow code can be found in 

[7, 8]. 

NUMERICAL RESULTS 
We simulate the 2D flow past the NACA0015 foil at 6 

degrees angle-of-attack in a water tunnel. The foil shape is 

given by an analytical expression [9]. This expression implies a 

finite thickness at the tail, amounting to 3.15 per cent of the 

chord length. Instead of modifying the shape to get a pointed 

aft end, we have just rounded the trailing edge.  

We have chosen a chord length of 0.2 m and a height of the 

tunnel test section equal to 0.57 m. A coordinate system has 

been adopted with the origin at the centre of gravity of the foil, 

i.e. at a relative chord position of 0.3086, at midheight of the 

tunnel. The foil has been rotated by 6 degrees about this origin. 

With the inlet at x=-0.46172 m (two chords upstream of the 

leading edge) and the outlet at x=0.93828 m (four chords 

downstream of the trailing edge) we arrive at the configuration 

displayed in Fig. 2. 

 

 
Figure 2: Domain size and foil position 

 

Three grids of varying density were set up. In all cases a 

block-structured grid has been employed, consisting of an O-

grid around the foil, embedded in an H-grid (12 blocks). 

Hexahedral cell shapes (quadrilaterals in 2D) have been used 

exclusively. An impression of the (coarsest) grid near the foil 

can be obtained from Fig. 3. 

Full resolution of the near-wall flow is obtained by 

applying grid contraction towards the foil surface. The 

maximum height of wall-adjacent cells is non-dimensionally 

smaller than y+=1 in the wetted flow (no wall functions used). 

In refining the grids, care has been taken to make them 

geometrically similar so that a proper convergence study can be 

made. Grid G3 has twice as many cells in both coordinate 

directions as grid G1, i.e. grid G3 is obtained by splitting each 

cell of grid G1 into four sub-cells. Grid G2 has an intermediate 

density. The number of grid cells and the number of cell edges 

on the foil are summarized in Table 1. 
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Figure 3: Grid G1 in the vicinity of the foil 

 

 grid  # cells cell size # edges on foil 

G1 

G2 

G3 

27,808 

62,568 

111,323 

2.0h 

1.5h 

1.0h 

234 

351 

468 

 

Table 1: Grid characteristics (h = “typical cell size”) 

 

With a foil chord length of c=0.2 m and an inflow velocity 

of U∞=6 m/s, we arrive at a characteristic Reynolds number of 

Rn=1.2x10 
6
. The liquid and vapour densities were set as ρl = 

998.0 kg/m
3
 and ρv=0.024 kg/m

3 
(i.e. true physical values for a 

temperature of 24 
o
C). A low free-stream turbulence level was 

chosen, giving an eddy viscosity μt=0.01μl, where μl is the 

dynamic viscosity of water (μl=1.002 x 10
-3

 kg/ms). The vapour 

dynamic viscosity was set at μv=1.02 x 10
-5

 kg/ms.  

Boundary conditions were chosen as follows. On the foil 

surface zero velocity was imposed, while the pressure and 

vapour volume fraction were extrapolated from the interior 

solution. At the inlet plane a uniform speed u=U∞ in the x-

direction was imposed as well as a zero vapour volume 

fraction, while at the outlet a uniform pressure p=0 was 

prescribed and a zero normal gradient for all other quantities. 

The outlet pressure was also used as the reference pressure 

p∞=poutlet=0. On the top and bottom walls free-slip boundary 

conditions were applied. For the turbulent quantities the 

boundary conditions defined in [3] were used. 

Calculations in unsteady mode were done with a time step 

of Δt=0.0005 s, or non-dimensionally ΔtU∞/c = 0.015. The free 

parameter of Sauer‟s model, the number of nuclei per unit of 

volume, was fixed at n0=10
8 

(100 nuclei per cm
3
). 

 

Wetted flow 

The wetted flow was computed first to get the level and 

location of Cp_min and the lift and drag coefficients. The 

results are summarized in Tables 2 and 3. In Table 3 the 

pressure component of the lift coefficient and the frictional 

component of the drag coefficient have been given as well. The 

missing components CL_f and CD_p follow from CL-CL_p 

and from CD-CD_f, respectively. 

 

 

grid Cp_min Cp_max y+_min y+_max 

G1 

G2 

G3 

-2.0832 

-2.0796 

-2.0803 

1.0135 

1.0144 

1.0133 

0.016 

0.013 

0.009 

0.788 

0.511 

0.381 

Table 2: Extrema for Cp and y+ in wetted flow 

 

grid CL CD CL_p CD_f 

G1 

G2 

G3 

0.66329 

0.66605 

0.66731 

0.014323 

0.014190 

0.014178 

0.66320 

0.66597 

0.66772 

0.00859 

0.00876 

0.00882 

 

Table 3: Lift and drag coefficients for wetted flow 

 

That the Cp_max in Table 2 is slightly above 1.0 is because 

we simulate a tunnel configuration. There is a small pressure 

drop from inlet to outlet (a direct consequence of the 

momentum balance) and we have taken the pressure at outlet as 

the reference pressure for Cp.  

The convergence of CL and CD with grid refinement is 

monotone. The estimated numerical uncertainty of the CL-

value on the finest grid is below ±0.25 per cent. The 

convergence of Cp_min and Cp_max is not monotone, but the 

variation in value is below 0.0040 for Cp_min and 0.0015 for 

Cp_max. 

It is relevant to mention that the wetted flow did not show 

boundary layer separation. The boundary layer is laminar at the 

leading edge but becomes turbulent further downstream. Due to 

the difference in the pressure distribution on suction and 

pressure side, turbulence activity starts on the suction side at a 

relative chord position closer to the leading edge than on the 

pressure side, with little grid dependence. As an illustration, 

Fig. 4 shows two isolines of the eddy viscosity μt=μ and μt=10μ 

near the nose of the foil. It demonstrates that the flow at the 

leading edge is laminar and that transition takes place over 

quite some distance, since at μt=10μ the flow is not yet fully 

turbulent at the given Reynolds number (the maximum level of 

the non-dimensional eddy viscosity in this flow is above 300). 

 

 
 

Figure 4: Eddy viscosity relative to molecular viscosity in 

wetted flow on grid G3 

 

μt/μ 
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Cavitating flow global results 

The wetted flow results have Cp_min ≈ -2.08. Defining the 

cavitation number as 

2
2

1 U

pp v  , 

inception occurs at σ = -Cp_min. To study the development of 

the cavitation we computed the flow at σ=2.0 and subsequently 

lowered the cavitation number in steps of 0.10 to σ=1.4. We 

start with giving the reader an impression of the global results, 

before embarking on a more detailed description of the flow 

behavior.  

The variation of the lift and the drag with σ on grid G3 is 

given in Table 4; the table includes also the length of the cavity 

(measured on the αv=0.5 contour line) relative to the chord 

length. The lift increases until a maximum is reached at σ=1.9 

(CL=0.6778) and decreases then monotonically, leading to a 

loss in lift of some 8% at σ=1.4. An opposite trend is found for 

the drag: after an initial decrease, it increases with lower σ. 

 

σ CL CD CL/CD ℓ/c 

>2.1 

2.0 

1.9 

1.8 

1.7 

1.6 

1.5 

1.4 

0.6673 

0.6728 

0.6778 

0.6755 

0.6657 

0.6524 

0.6366 

0.6179 

0.0142 

0.0138 

0.0133 

0.0136 

0.0146 

0.0167 

0.0196 

0.0235 

47.1 

48.8 

50.8 

49.7 

45.4 

39.1 

32.4 

26.2 

- 

0.032 

0.070 

0.108 

0.144 

0.181 

0.217 

0.250 

 

Table 4: Variation of lift, drag and cavity length with σ  

on grid G3 

 

 

σ Cp_min -σ-Cp_min Scav_max Scav_min 

>2.1 

2.0 

1.9 

1.8 

1.7 

1.6 

1.5 

1.4 

-2.080 

-2.079 

-2.031 

-1.950 

-1.856 

-1.758 

-1.655 

-1.552 

< 0 

0.079 

0.131 

0.150 

0.156 

0.158 

0.155 

0.152 

- 

38.5 

49.5 

53.2 

54.1 

54.5 

53.9 

53.4 

- 

-43.3 

-70.8 

-49.3 

-36.3 

-24.3 

-18.6 

-13.1 

 

Table 5: Variation of Cp_min and non-dimensional source  

term extremes with σ on grid G3 

 

Table 5 gives information on the minimum pressure in the 

flow and on the extreme values of the non-dimensional source 

in the αv-equation: Scav=Sc/(ρvU∞). Interesting is that in all 

cavitating flow simulations the lowest pressure is below the 

vapour pressure. We will give further comments on this feature 

below. The maximum underpressure (-σ-Cp_min), occurring at 

the front end of the cavity, tends to become more or less 

constant with decreasing σ. So while the cavity keeps growing, 

the difference between the minimum pressure and the vapour 

pressure as well as the maximum of the source term (both at the 

front end of the cavity) stabilize.  

The development of the cavity with decreasing cavitation 

number is shown in Fig. 5. We have drawn the αv=0.5 contour 

line as an outline of the cavity.  

 

 

 

 

 

 
Figure 5: Computed cavity contour (αv=0.5) for 1.4 < σ < 1.9 

(dashed line is nose-tail line of the foil)  

 

Cavitating flow near inception (2.08>σ>1.9) 

We proceed with describing the details of the flow 

behavior close to inception. The cavitation model adopted 

implies possibly weak but finite vapour production at any 

location where the pressure is below the vapour pressure, p<pv; 

the possibility of static or thermal delay is not included. Thus at 

σ=2.0 some vapour is produced which appears as a very thin 

cavity. The length of the cavity ℓ (measured on the αv=0.5 

contour line) is about 3.2 per cent of the chord and has a 

length/thickness ratio in the order of 400. There is not a plateau 

of uniform pressure in the cavity. The lowest pressure occurs at 

σ=1.9 

σ = 

1.9 

σ=1.8 

σ = 

1.9 

σ=1.4 

σ = 

1.9 

σ=1.5 

σ = 

1.9 

σ=1.6 

σ = 

1.9 

σ=1.7 

σ = 

1.9 
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the front end of the cavity. Because it is below pv, the source 

term is positive there. Since the flow is steady, Eq. (6) implies 

that there must be compensating negative sources, which are 

found at the cavity tail. There is no flow reversal. Although the 

cavity can be viewed as an attached cavity in the sense that its 

position is locked with respect to the foil, the vapour is 

produced, then travels along the foil and finally condensates. 

Consequently, some streamlines must enter the cavity and leave 

it further downstream; the cavity surface cannot be a material 

surface. Although the cavity is very thin, it is noteworthy that it 

has the characteristic shape of a sheet cavity with liquid under 

its tail. In other words the tail of the cavity is lifted from the 

foil. Apparently the shape of the cavity is here a result of the 

velocity distribution (full condensation is accomplished over a 

longer distance for higher velocity) rather than of a re-entrant 

jet. Turbulence activity is delayed compared to the wetted flow 

and is seen only aft of the cavity. 

At σ=1.9 the cavity length has grown to 7.0 per cent of the 

chord. The length/thickness ratio has come down to 95. Though 

the cavity is thin, the interface between liquid and vapour is 

even thinner; part of the cavity is a 100 per cent vapour region. 

The flow underneath the cavity tail is on the verge of separation 

 

Features of the flow at σ=1.8 

At σ=1.8 a flow reversal zone has established itself under 

the tail of the cavity. Fig. 6 shows some details. Similar flow 

patterns in and near a partial cavity on other objects can be 

found in e.g. [6], [10] and [11]. At the front end of the cavity 

the streamlines penetrate the liquid-vapour interface, while they 

diverge strongly due to the expansion of the fluid, so that the 

angle between streamline and interface is small. Flow reversal 

sets in only where the cavity tail lifts from the foil surface. At 

this stage there is no vapour in the flow recirculation zone. 

 

 
 

 
Figure 6: Streamlines and cavity contour (αv=0.5) at front end 

(top) and aft end (bottom) at σ=1.8  (grid G3) 

 

 
Figure 7:  Comparison of pressure distribution on the nose of the 

foil at σ=1.8 and in wetted flow (grid G3) 

 

 

Informative and illuminating is the associated change of 

the pressure distribution on the suction side of the foil, 

illustrated in Fig. 7. A comparison is shown of the pressure 

distributions in the wetted flow and the cavitating flow (σ=1.8), 

while the position of the recirculation zone is marked with a 

grey band. The level of the vapour pressure is indicated with a 

horizontal line at Cp=-1.8. The cavity extends from x/c=-0.299 

to x/c=-0.191 (ℓ/c=0.11). The pressure on the foil in the 

cavitating flow is, compared to the wetted flow pressure, first 

higher, then lower and again higher. This corresponds of course 

with the global change in streamline curvature. In the wetted 

flow the convexity of the streamlines is slightly less than the 

convexity of the foil geometry due to the growth of the 

boundary layer. In the cavitating flow the convexity of the 

streamlines is, relative to the wetted flow, first reduced then 

increased and again reduced, in accordance with the expansion 

of the fluid as a result of cavity formation. 

Evidently, the pressure becomes different from the pressure 

in wetted flow only after the cavity has grown somewhat. The 

minimum pressure is below the vapour pressure; and it must be 

so, because else the source term would vanish (property 2 of 

the source term) and the cavity would disappear. It must be said 

that the pressure distribution at the front end can easily be 

manipulated with the formulation used for the source term in 

the cavitation model. In Sauer‟s model the evaporation starts 

slowly because the “bubble radius” R is very small for small 

vapour fraction (see Eq. (5a)). By replacing R by a constant the 

evaporation starts impulsively which tends to make the source 

term bigger, but the pressure will react and rise to a level closer 

to the vapour pressure so that a new equilibrium is established 

without resulting in significant changes of the flow or the 

cavity. So there is a delicate interplay between source and 

pressure gradient. 
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Flow in the developed cavity (σ=1.6) 

Upon further lowering the cavitation number, not only the 

cavity grows (with a strong reduction of the length-thickness 

ratio), but also the recirculation zone, the flow detachment 

point now being inside the cavity and approaching gradually 

the front end of the cavity. Also a plateau in the pressure 

distribution at Cp=-σ appears. Moreover, the numerical 

solutions do not converge to steady state anymore. Slight 

fluctuations persist in the tail region of the cavity.  

 
Figure 8: Comparison of pressure distribution on the nose of the 

foil at σ=1.60 and in wetted flow (grid G2) 

 

We shall now illustrate the main features of the developed 

cavity by presenting the details of the results at σ=1.60. First of 

all, Fig. 8 gives, in a similar style as Fig. 7,  the change in the 

pressure distribution with respect to the wetted flow for σ=1.60. 

The length of the cavity is ℓ/c=0.18 (from x/c=-0.30 to x/c=-

0.12) and the length-height ratio is about 20.  

Fig. 9 shows the cavity at σ=1.60, computed on each of the 

three grids, by a display of the vapour fraction distribution. The 

liquid-vapour interface tends to get thinner with grid refinement 

where the flow is roughly aligned with the interface. Although 

the cavity length stays almost the same with grid refinement, it 

is clear that the cavity outline changes somewhat. In  our 

calculations we found that the total vapour volume decreases 

with grid refinement for all cavitation numbers. It is an 

indication that numerical cavitation simulations have to be done 

on (locally) quite fine meshes to get rid of mesh resolution 

effects on the solution. These effects are in the first place 

apparent in the thickness of the interface and the penetration 

depth of liquid flow under the cavity. On the other hand, on all 

three grids the underlying flow pattern is essentially the same.  

This underlying flow pattern is only slightly different from 

what we saw at σ=1.80. The recirculation zone is more 

developed and the flow reattachment point has moved aft due 

to the increased size of the cavity. As a result the flow 

detachment point, which has moved only slightly, is relative to 

the cavity much further upstream and in the vapour region. It 

means that the recirculation zone is now partly filled with 

vapour. Since the recirculation zone is a material volume, the 

relation (6) must hold: in steady flow conditions the total 

source strength within the recirculation zone must vanish. In 

other words, the vapour created in the recirculation zone is also 

destroyed there. Thus the flow inside the zone is in a cyclic 

process of evaporation and condensation. As before, the cavity 

may be identified as an “attached” cavity, but in it the fluid, in 

vapour or in liquid phase, is continuously in motion.  

 

 

 

 
 

Figure 9: Vapour fraction distribution in cavity at σ=1.6 on grid 

G1(top), G2(middle) and G3(bottom) 

 

Flow close to aft end of cavity 

Turning next to the aft end of the cavity, we observe that 

the flow pattern, as it appears in our calculations, is in gross 

conflict with what earlier publications have made us believe. 

We have copied in Fig. 10 a sketch from [1]. It is a concept of 

the re-entrant jet flow structure from free-streamline theory. It 

has been around for more than 30 years and has been adopted 

in some potential-flow based methods for computation of 

cavitation. It is an ultimate attempt to let the cavity surface be a 

material surface. Although it is acknowledged by Franc & 

Michel to be a pattern that cannot exist in a 2D steady flow 

(where is the liquid entering the cavity via the re-entrant jet 

going?), it is for that reason not abandoned or rejected by them. 

They suppose that periods of development of the re-entrant jet, 

filling the cavity, are followed by periods of emptying. This 

would imply an intermittent presence of the re-entrant jet. We 

can hardly imagine such events to happen in the more or less 

steady flow regime that we study in this paper. 

αv 

αv 

αv 
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But there is more wrong with Fig. 10. It suggests that the 

streamline touching the foil at the reattachment point comes 

from the free stream outside the cavity. Consequently the 

pressure at the reattachment point should be expected to be 

close to Cp=1.0, which not even nearly happens. We think 

therefore that Fig. 10 is so much in conflict with physical 

principles and with measured and computed pressures in the 

stagnation point that it is untenable. 

 

 
Figure 10: Re-entrant jet model in [1] 

 

In the more or less steady regime studied in this paper, the 

flow behavior can hardly be interpreted as a re-entrant jet flow, 

let alone an intermittent re-entrant jet flow. Unsteadiness will 

rather arise from slight fluctuations of the source term. When 

listing the properties of the source term, we have pointed out 

that in a steady flow any source in a material volume must be 

compensated by an equivalent sink (see Eq. (6)). Whenever a 

slight imbalance occurs, however, the cavity will grow or 

shrink. So we see then a slight wandering of notably the tail of 

the cavity, but with a recirculation zone under the tail 

permanently present.  

 

Is the cavity a material surface? 

From all previous considerations it appears that the liquid-

vapour interface is not a material surface, neither at the front 

end, nor at the aft end of the cavity. As a matter of fact, even 

where the cavity surface is practically aligned with a streamline 

some evaporation or condensation may still take place. This 

becomes clear if we study the distribution of the source term.  

Fig. 11 shows two plots of the source term distribution at 

σ=1.60, one with the p=pv isoline and one with the αv=0.5 

contour line included. There is a high peak at the front end of 

the cavity while the negative sources are all concentrated at the 

aft end, but less peaky. Evidently, the positive values of the 

source term are found inside, the negative values outside the 

p=pv contour line. And we verified that in the converged 

solution the sum of sources and sinks vanishes. Notice further 

that the cavity contour does not coincide with the p=pv isoline. 

Clearly the flow field is not source-free. Eq. (6) does not 

exclude that possibility, however. But is it imaginable that there 

are no sources or sinks in a flow with a steady cavity? The only 

possibility would be that the liquid-vapour interface is a 

material surface throughout. Eq. (7) tells that such condition 

implies a zero source strength. But even the model illustrated in 

Fig. 10 is not compatible with that assumption. It would imply 

that the cavity is bordered by a closed streamline inside a flow 

recirculation zone (the cavity could fill this zone completely or 

partially). But why would the flow detach and reattach in those 

circumstances? 

If the vapour-liquid interface is not a material surface, 

there must be mass and momentum transfer across the 

interface. Considering the high density difference between 

liquid (about 998 kg/m
3
 at 24 

o
C) and vapour (≈0.023 kg/m

3
 at 

24 
o
C), such transfers can only take place at low rates to avoid 

enormous changes in the velocity field. At the front end 

therefore we see the streamlines entering the vapour region at a 

very small angle relative to the interface. So the velocity 

normal to the interface is very small, but finite. At the same 

time the streamlines diverge strongly. Together they prevent an 

enormous acceleration of the fluid. 

 

 
 

Figure 11: Source term distribution at σ=1.60 (grid G3) with 

p=pv contour (top) and αv=0.5 contour (bottom) 

 

The condition of a small angle between streamline and 

interface cannot be met everywhere at the rear end of the 

cavity, where locally streamlines leave the vapour region in a 

direction perpendicular to the interface. In order to reach a 

gradual mass and momentum transfer the interface is there 

relatively thick, possibly indicating a break-up of the sheet into 

bubbles. Also streamline contraction helps to keep the velocity 

field smooth in the phase transition there.  

One might argue that the present numerical approach 

cannot produce sharp liquid-vapour interfaces and is therefore 

prone to give misleading results. But imagine that the interface 

is perfectly sharp while it is not a material surface. Mass 

conservation then requires that the velocity component normal 

to the interface increases by a factor ρl/ρv, i.e. roughly 40000, 

across the interface. If that normal velocity would be only 

0.025% of the total velocity it would have to jump to 10 times 

the total velocity. Momentum conservation would require a 

pressure jump and a continuous tangential velocity component 

across the interface. So the consequence is an abrupt change of 

velocity, flow direction and pressure. This seems absurd and it 

is unlikely that we can have a sharp interface which is not a 

material surface. There remains the option of a sharp interface 

which is a material surface. That can occur locally, but not for 

the entire interface, as we have explained above. 

Sc/(ρvU∞) 

Sc/(ρvU∞) 
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Overall flow interpretation 

Thus we come to the following overall picture of what 

happens in and around a partial cavity, from the inception phase 

until the start of vapour shedding. If the pressure drops below 

the saturated vapour pressure the source term is activated, 

which results in vapour production. This source term is 

accompanied by a sink further downstream to establish the 

phase transition back to liquid (condensation). Flow reversal 

does not appear at this very early stage close to inception; there 

is no flow recirculation zone yet. The cavity has a fixed 

position relative to the foil but the vapour in it is travelling. 

Remarkable is that the cavity at its rear end is already lifted 

from the foil surface, so there is liquid beneath the cavity tail in 

absence of any re-entrant jet or reversed flow.  

Flow reversal sets in if the cavitation number is further 

lowered. It occurs first at the aft end of the cavity, under its tail. 

The recirculation zone is then completely liquid-filled. But with 

decreasing cavitation number the flow detachment point moves 

a little towards the front end of the cavity, while the 

reattachment point moves downstream with the growth of the 

length of the cavity; the recirculation zone is then partly filled 

with vapour, implying a continous cycle of evaporation and 

condensation inside that zone. The streamline ending in the 

reattachment point is evidently not coming from the free 

stream; it is the streamline bordering the recirculating flow 

zone. It explains why the pressure at the reattachment point is 

always far below the stagnation pressure Cp=1.0.  

As an illustration of the global flow pattern, cavity shape 

and streamlines at σ=1.4 are given in a schematic height-scaled 

plot in Fig. 12. Notice that the dividing streamline, i.e. the 

streamline bordering the flow recirculation zone, is somewhere 

in the middle of the cavity until it leaves the cavity at its tail. 

Notice also the streamline divergence at the front end of the 

cavity and the streamline convergence in the tail region due to 

phase changes. The contrast with Fig. 10 is evident. 

 
 

Figure 12: Streamline pattern near the cavity (red line) at σ=1.4 

(height magnified by a factor 2) 

 

Upon lowering σ, the cavity grows in length and height 

with a strong reduction of the aspect ratio. The conditions at the 

front end stabilize: the magnitude of the source strength and the 

difference between minimum and vapour pressure stay almost 

the same. In the tail region, however, the flow tends to become 

more and more unstable resulting in unsteady behavior, 

ultimately leading to shedding of cavitation. 

RELATION WITH EXPERIMENTAL RESULTS 
Having described the numerical results in detail, we must 

now consider how they correlate with experimental data and 

observations of partial cavities. 

In a global sense, i.e. with respect to lift and drag 

characteristics and cavity length, our results conform well with 

experimental information. As an example the cavity length 

predictions are compared with experimental data by Arndt, 

extracted from [12], in Fig. 13. The cavity length is plotted 

versus σ/2α, where α is the angle of attack in radians. Although 

the computations relate to small cavities only, they fit nicely 

with the experimental data covering a wider range. 

But the main interest here is in the details of the flow in 

and near the cavity. In that respect, Arakeri and Acosta [13, 14] 

were the first to demonstrate, by using the schlieren technique 

in a water tunnel experiment, the strong relation between 

cavitation and the behaviour of the boundary layer. A 

remarkable set of papers on the same subject was subsequently 

produced at the University of Grenoble by the group of Franc 

and Michel [15, 16, 17, 18]. Further corroboration of results 

came from Ceccio and co-workers in Michigan [19, 20], and 

many others [e.g. 21, 22, 23]. 

The global picture that has evolved from these studies is 

that if the wetted flow shows laminar boundary layer separation 

followed by reattachment due to transition to a turbulent flow 

condition, cavitation inception and development occurs inside 

the separation bubble. If there is no laminar separation, there 

either appears no cavitation at all (liquid under tension) or 

cavitation appears as isolated traveling bubbles, the bubble 

density varying strongly with the nuclei spectrum of the inflow 

and other details of the experimental set-up. The bubble density 

may be high enough to produce narrow banded or wedge-

shaped attached cavities, dependent on liquid and foil surface 

properties.  

 
Figure 13: Computed cavity length compared with 

experimental data 

 

We recall that for the case studied in this paper, the wetted 

flow is free of boundary layer separation. Which means that 
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flow conditions differ from those of most of the above cited 

experiments. But one thing is clear: our numerical cavitation 

model can in its present form not simulate traveling bubble 

cavitation. It says that evaporation starts, possibly at a slow rate 

but anyway, at any location where at a given instant the 

pressure is below the vapour pressure. The role of the 

parameter n0, the “number of nuclei per unit of volume”, is 

only to change the strength of the source term. We would have 

to add stochastic properties to let the evaporation start 

dependent on the availability of a nucleus for instance. 

Consequently, as we have observed above, at the early stages of 

computed cavity development, the computed cavity is 

seemingly attached, having the appearance of a sheet, but the 

vapour is traveling. This is in accordance with at least the 

experiments of Zhang et al. [21], further analysed in [22]. They 

report that just after inception there is no reverse flow 

anywhere around the closure region of the cavitation. The 

cavity simply closes, while the velocity component parallel to 

the foil surface remains positive. It is also consistent with a 

study by Farhat et al. [23]. They report that “exploding nuclei 

continuously feed the attached cavity at its detachment 

location, travel inside the cavity and collapse as they escape at 

the cavity closure”. That laminar separation of the boundary 

layer is not required for the development of an attached cavity 

has thus been shown in some experiments and is corroborated 

by our numerical simulations. 

But our numerical results further show that flow separation 

is invoked pretty soon after inception. Already for σ=1.90 the 

flow under the tail stagnates, while inception is at σ=2.08. So it 

is not surprising that in many experiments partial cavitation and 

boundary layer separation go hand in hand. 

But conspicuously experimentalists systematically report 

flow separation to occur upstream of the cavity, while that in 

our numerical simulations never happens. Experimentalists 

admit that in their flow concept there must be a region 

upstream of the cavity where the pressure is below vapour 

pressure without causing cavitation (the „cavity detachment 

paradox‟ [19]). Thus the existence of a small region at the front 

end of the cavity where the pressure is below the vapour 

pressure was conjectured [1, 5] and later also measured [19, 

23]. Interesting is that our numerical results clearly support at 

least this aspect of the problem and even indicate that it is a 

necessary condition. But in the numerical solutions vapour 

production starts in this region and cavitation appears before 

flow reversal sets in.  

We can only speculate about the reason for this apparent 

discrepancy between measurements and computations. One 

such speculation is that the strong streamline divergence at the 

front end of the cavity has wrongly been interpreted by 

experimentalists as flow detachment. Particularly when he/she 

is biased to think of a cavity surface as a material surface such 

interpretation could easily be made. Consider for example the 

flow pattern at the top of Fig. 6. If only the streamlines outside 

the cavity were available, it would seem that the flow is 

separating where the cavity starts, while actually it does so only 

much further downstream. 

Another concern is the possibility of scale effects and the 

nuclei content of the inflow. We observed that most of the 

above-cited experimental work has been done on small test 

objects. For small objects the onset flow speed must be high to 

obtain a sufficiently high Reynolds number, so that the time 

scale c/U∞ is small. Since nuclei need a finite time to grow to 

visible cavitation this time scale may be relevant. With regard 

to nuclei one might also say that in the computations suitable 

nuclei are unconditionally available at any location where the 

pressure drops below the vapour pressure. In an experiment this 

may not be so and evaporation may not occur or be delayed, 

while in the computations only the evaporation rate is variable. 

Evidently, here is a topic for discussion and also maybe a 

challenge for further experiments, e.g. to measure the flow 

inside the cavity. 

CONCLUSIONS 
Assuming a fluid of variable density, we have made 

numerical simulations of the partial cavity on a 2D NACA0015 

foil in the early stages of its development. The RANS equations 

supplemented with a turbulence model and a cavitation model 

form the mathematical model. Some effort has been made to 

explain the main features and the consequences of employing a 

model of this kind. By using three geometrically similar grids 

we could get an impression of grid density effects on the 

solution.  

The results have shown that just after inception a very thin 

attached cavity appears in which vapour is created at the front 

end, which travels with the flow and condensates at the rear 

end. The implication is that the liquid-vapour interface is not a 

material surface. Upon lowering the cavitation number the 

cavity grows and a flow recirculation zone appears under the 

tail of the cavity.  By further lowering the cavitation number  

the flow detachment point moves a little towards the location of 

minimum pressure on the suction side of the foil but stays 

downstream of the front end of the cavity, while the 

reattachment point moves aft with the tail of the cavity. Initially 

the flow recirculation zone is completely liquid-filled, but for 

lower cavitation numbers it contains vapour as well, so that it is 

partly overlapping with the cavity. Although the flow 

recirculation zone implies near-wall flow in the direction 

opposite to the main flow one can hardly call it a re-entrant jet. 

Some important conclusions are: 

 We were able to explain why the pressure at flow 

reattachment is far below the stagnation pressure. 

 We have confirmed experimental evidence that the liquid 

just ahead of the cavity is under tension. 

 We have made plausible that the liquid-vapour interface 

cannot be a material surface. 

 We have given evidence that an attached cavity is not 

necessarily associated with flow detachment. 

As a corollary the re-entrant jet model suggested by free 

streamline theory as a model for the cavity closure must be 

considered as invalid for more or less steady partial cavities. 

We do not claim that our numerical results represent the 

truth. Also we have no doubt that the numerical models for 

cavitation need to be extended and improved to cover a wider 

range of experimentally observed phenomena. But the 

mathematical model used has a sound physical basis. We are 

therefore confident enough to conjecture that the flow behavior 

in and near a partial cavity is quite different from what has been 

assumed for a long time. It is now up to other numerical 
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analysts, but certainly to experimentalists as well, to 

corroborate or to falsify the flow picture evolving from our 

results. 
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NOMENCLATURE 
c chord length 

CD non-dimensional drag force per unit span 

CL non-dimensional lift force per unit span 

Cp =(p-p∞)/(1/2ρU∞
2
) 

ℓ cavity length (measured on αv=0.5 contour) 

u  velocity vector 

U∞ undisturbed inflow (=reference) speed 

p pressure 

pv saturated vapour pressure 

p∞ outlet (=reference) pressure 

Rn Reynolds number 

S source function in αv-equation 

αv vapour volume fraction  

ρ mass density of mixture fluid 

σ =(p∞-pv)/(1/2ρU∞
2
) 

 

Subscripts: 

l liquid 

v vapour 
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