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ABSTRACT 

The effect of surface tension forces on the cavity flow 
parameters is considered for steady flow past a rounded-edge 
plate perpendicular to the incident flow. The fluid is assumed to 
be ideal, weightless, and incompressible. The problem is solved 
in a parameter region by finding analytical expressions for the 
flow potential and the function that conformally maps the 
parameter region into the flow region in the physical plane. The 
dynamic boundary condition includes the surface tension force, 
which is proportional to the free boundary curvature, and 
allows one to obtain an integral equation in the velocity 
magnitude on the free boundary. The integral equation is solved 
numerically by the method of successive approximations. The 
results of calculations of the effect of the Weber number and the 
plate edge radius on the geometry of the cavity and the drag 
coefficient of the plate are presented.   

 

INTRODUCTION 
The surface tension force arises at the phase interface as a 

result of the work done by the reversible isothermokinetic 
process of free boundary formation. According to the Young–
Laplace equation, a pressure jump proportional to the surface 
curvature develops across the phase interface. This complicates 
the dynamic boundary condition because the velocity on the 
cavity boundary depends on the cavity curvature. A significant 
difficulty in accounting for surface tension stems from the fact 
that, according to the theory of jets in ideal fluids, in the 
limiting case of the absence of surface tension the free surface 
curvature at the point of flow separation from a sharp edge 
becomes infinite. Introducing even a small surface tension 
coefficient into such a model results in an infinite force and the 
absence of cavitation. 

Attempts to account for the surface tension force in cavity 
flow problems have been made in Refs. [1 – 4]. In Ref. [3], the 
case of small surface tension coefficients is considered using 
the method of matched asymptotic expansions. In this case, the 
free boundary curvature at the separation point is equal to the 
curvature of the plate. Such a formulation of the problem gives 
rise to waves on the free surface. As shown in Ref. [4], these 
waves are unfeasible because they would require energy supply 

from infinity. In Refs. [1 – 2]  it is assumed that at the flow 
separation point the slope of the flow boundary is a 
discontinuous function. According to the theory of jets in ideal 
fluids, that assumption results in an infinite velocity and 
curvature at the separation point. This gives no way of 
obtaining a continuous transition to the limiting case of the 
absence of surface tension, for which the velocity at the 
separation point is finite.   

In this work we show that the point of flow separation 
from a smooth surface in the presence of surface tension is 
determined by the Brillouin–Villat condition in exactly the 
same manner as for neglect of surface tension. A sharp edge is 
considered as the limiting case when the curvature of the 
rounded plate edge tends to infinity. In this formulation, no 
physical contradictions occur in the solution of the problem, 
and the flow with zero surface tension force results as a 
limiting case.   

 
MATHEMATICAL FORMULATION AND THE METHOD 
OF SOLUTION 

We consider symmetric flow of an ideal weightless fluid 
past a curved, in the general case,  obstacle with the formation 
of a cavity downstream of the body. A schematic of the flow is 
shown in Figure 1. The wedge-shaped body of vertex angle α  
has a rectilinear part, which smoothly changes into a circular 
arc of radius R . The cavity detaches from the rounded part of 
the body at point O  at angle 0β  and closes on the curvilinear 

contour CDB , on which the velocity distribution is specified. 
Point C , which is the inflection point on the contour OCB , 
corresponds to the end of the cavity and the start of the closing 
contour. The maximum width H  of the body is chosen as a 
characteristic dimension.         

On the cavity boundary, the surface tension force gives rise 
to a pressure jump, which is determined from the Young–
Laplace equation  

 
τχ=− cPP    (1) 
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where P  is the pressure on the fluid of the cavity boundary, cP  
is the pressure in the cavity, τ  is the surface tension 
coefficient, dsdγχ =  is the cavity curvature, and γ  is the 
slope of the cavity contour. In the neighborhood of the 
separation point O , the cavity curvature becomes negative 
because for the chosen direction of increasing coordinate s  its 
value decreases when moving along the cavity contour. As 
follows from Eq. (1), surface tension reduces the pressure in the 
fluid on the cavity boundary.  
 
 

 
                                                                                                                                                                                                                                      

Figure 1: Schematic of cavity flow past curvilinear contour: а) 
physical plane; b) parameter region 
 
 

The Bernoulli equation for the irrotational flow under 
consideration 
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gives the velocity on the cavity boundary, which, in view of 
Eq. (1), can be written in dimensionless form as follows 
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the cavitation number. 
Since the flow is irrotational, we can introduce its 

potential φ  and the stream function ψ , which is the harmonic 
conjugate of φ , both defined in a parameter region, for which 
the first quadrant is chosen (Figure1b). By the conformal 
mapping theorem, the images of three points can be fixed 
arbitrarily; let the points 0=ς , 1=ς , and ∞=ς  in the 
parameter region correspond to points O, A, and B in the 
physical plane.  

The mathematical formulation of the problem is as 
follows: find the complex flow potential ψφ iw +=  that meets 
the nonpassing condition on the body and the dynamic 
boundary condition (3) on the free boundary. Following 
Zhukovsky’s [5] and Chaplygin’s [6 – 7] methods, the problem 
is solved by constructing expressions for the complex velocity, 

dzdw , and the derivative of the complex potential, ςddw , in 
the region of the parametric variable ς . If these expressions are 
found, the correspondence between the parameter region and 
the physical flow region is given by the mapping function 
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A method for the construction of expressions for the 

complex velocity and the derivative of the complex potential 
for a mixed boundary value problem is reported in Ref. [8]. 
One has to find the function dzdw  that satisfies the following 
boundary conditions 
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Here, )(ξβ  is the slope in the physical plane as a function of 
the real-axis coordinate in the parameter region. This angle 
decreases when moving along the body from point O  to point 
A , αβ −=)1( ; )(ηv  is the velocity magnitude on the free 

boundary as a function of the imaginary-axis coordinate in the 
parameter region.  

An expression for the complex velocity that satisfies the 
above boundary conditions (5) has the form  
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When ξς =  and ης i=  are substituted in turn into Eq. (6), it 
is apparent that the boundary conditions (5) for the complex 
velocity are satisfied.  

The derivative of the complex potential is found by 
Chaplygin’s singularity method [7] 
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where K  is a scale factor, which will be determined below. 
Substituting Eqs. (6) and (7) into Eq. (4) allows one to find the 
derivative of the mapping function )(ςzz =  as well as the 
dependences )(ξss =  (the coordinate along the body contour) 
and )(ηss =  (the coordinate along the free boundary): 
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The scale factor K  appearing in Eqs. (9) is determined from 
the condition for the length of the wetted part of the body  
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Cavity closure scheme.  The closure of the cavity is specified 
implicitly by specifying the velocity distribution along the 
closing contour CDB. The velocity on the contour CD 
decreases from the value WeHvc /21 χσ −+=  at point C 
down to the value ∞v  at point D. The velocity distribution 
along the segment CD  can be specified by the linear function 
 

svsvsv c ′+′−=′ ∞)1()(* ,    (11) 
 
where CDc Ssss /)( −=′  and cs  is the coordinate of the cavity 
closure point C determined from the cavity closure condition, 
which has the form 
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    (12) 
where ςς /1=′ . 
Taking the integral in Eq. (12) along an infinitely large contour 
with the help of the residue theorem, we obtain the following 
equation  
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The velocity distribution [ ])()( * ηη svv =  along the cavity 
closure contour CD must satisfy Eq. (12). This is achieved with 
the help of the coordinate cs  in Eq. (11), which affects the 
velocity distribution along the free boundary.  
 
Condition for cavity detachment from the rounded edge.  
The point of flow separation from the rounded edge is 

determined from the Brillouin–Villat condition [7], which is 
equivalent to the extremum condition for the velocity 
magnitude function on the contour of the body 
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Using the relation 
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Eq. (14), we obtain the following equation 
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Eq. (15) is an equation in the length  wS  of the wetted part of 
the body because this quantity affects the function 

[ ])()( ξβξβ s= , wSs <<0 . 
 
Boundary conditions and corresponding integro-
differential equations. 

For the known shape of the curved section of the body 
given by the function )(sβ , the function )(ξβ  is determined 
by the numerical solution of the integro-differential equation 
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where )(sχ  is the curvature of the body given as a function of 
the arc length s .  

In order to derive an integral equation in the function 
ηdvd )(ln , we first need to get an expression for the curvature 

χ  along the cavity boundary, i.e. along the imaginary axis η  
of the parameter region. The slope of the free surface is 
determined from equation (6)  as follows 
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Differentiating the above equation and taking into account 

equation (9), we find the curvature of the free surface 
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By substituting equation (17) into the dynamic boundary 

condition (3), we obtain the following integral equation 
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where  
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 Curvature of the free surface at the point of separation. In 
order to evaluate the curvature of the free surface at the 
separation point, where at 0=η  equation (17) has an 
indeterminate form, we differentiate the numerator and 
denominator of equation (17) to obtain: 
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The first limit in the above equation equals zero due to the flow 
separation condition (15). In order to evaluate the second term 
containing the singular integrals, we have to estimate the 
behavior of the functions ηdvd ln  at 0→η  and ξβ dd  at 

0→ξ  . From the Brillouin-Villat condition (14) it follows   
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In view of equation (9), it can be seen that for 0→η  

ηηηη ~)(vKdds = . Therefore, from equation (14) it 
follows 
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The behavior of the function ξβ dd  is determined in a similar 
way  
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0χ  is the curvature of 

the body at the point of separation . 
By substituting the estimates (20) and (21) of the functions 

ηdvd ln  and ξβ dd  into the corresponding integrals in 
equation (19) and taking into account that  
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we can find that the curvature of the free surface at the point of 
flow separation is equal to the curvature of the body, i.e. 
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NUMERICAL METHOD  
The body shape is chosen to be a circular cylinder of 

radius R ,   the length of the closure interval being related to R  
as 10/ =RSCD . In discrete form, the solution is sought on a 
fixed set of points jξ , Mj ,...,1=  distributed along the real 
axis of the parameter region and on a fixed set of points jη , 

Nj ,...,1=  distributed along its imaginary axis. The total 
number of points jη  was chosen in the range 20050−=N , 
and the total number of points jξ   was chosen in the range 

NM *3=  to check the convergence of the solution procedure. 
The points jξ  are distributed so as to provide a higher density 
of the points )( jj ss ξ=  at points O  and A , at which the 

derivative 
ξς

ςξ
=

= ddzdds  has singularities. The distribution 

of the points jη  is chosen so as to provide a higher density of 
the points )( jj ss η=  on the free surface near the point of flow 
separation. 
 The solution of equations (18) was found by the 
method of successive approximations applying the Hilbert 
transform to determine the (k + 1) -th approximation 
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⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′

= ∫
η

η
η

η
0

)(

0
)( )(lnexp)( d

d
vdvv

k
k . 

 
In each iteration step k  the integro-differential equation 

(16) in the function ξβ dd  was solved using the inner 
iteration procedure 
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In each iteration step l the parameters )(lK ,  Cη  and  wS  

were calculated from equation (10), (13) and (15), respectively. 
The integrals appearing in the system of equations were 
evaluated using the linear interpolation of the functions )(ξβ  
and ηdvd )(ln  on the intervals ),( 1 jj ξξ −  and ),( 1 jj ηη − , 
respectively. In the first iteration the functions )(ξβ  and 

ηdvd )ln(  were given as 0)( ≡ξβ  and ∞≡ vv )(η .   
The convergence of the inner iteration procedure required 

5 – 10 iterations to reach the condition 
( ) ( ) εξβξβ <−+ ll dddd 1  . The convergence of the outer 

iterations required from several hundreds to several thousands 
of iterations, and it was obtained applying the under-relaxation 
method. The value of the relaxation parameter depends on the 
number N of nodes along the free surface. With increase in the 
number of nodes jη , the relaxation parameter should be chosen 
smaller to provide the convergence of the solution. This is due 
to the singularity in the integral in (23), which is evaluated 
using the linear interpolation of the function )(ηF  on the 
intervals ),( 2/12/1 +− jj ηη . 

 

REZULTS  
Figure 2 shows the calculated results for cavity flow past a 

plate with a rounded edge of radius HR 05.0= . The cavity 
contour is depicted by a thin line, and the closing contour is 
depicted by a thick one. It can be seen that at large Weber 
numbers the flow parameters are little affected by surface 
tension. The effect of surface tension becomes noticeable at 

1000<We , and in this case the cavity length and height 
decrease. It may be expected that with a further decrease in the 
Weber number the flow, in the limit, becomes free of cavitation.  

Figure 3 shows the angle of flow turn on the rounded edge 
(the angle δ  is shown in Figure 1) versus the Weber number 
for different values of the edge radius. At large Weber numbers 
when the effect of surface tension on the cavity flow 
parameters can be neglected, the flow turn angle depends on the 
edge radius as follows: the smaller the edge radius, the smaller 
the flow turn angle. In the limiting case of zero edge radius (a  
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Figure 2: Effect of the Weber number on the cavity contour 
(thin lines) for cavity flow past a plate with edge radius 

HR 05.0=  at cavitation number 0.1=σ . The thick lines 
correspond to the cavity closure contours. 
 

 
Figure 3: Angle of flow turn on the plate edge versus the 
Weber number for different edge radii at cavitation number 

0.1=σ  
 

sharp edge), the flow turn angle tends to zero, which 
corresponds to the flow separating tangentially to the rectilinear 
part of the body. At Weber numbers smaller than 1000, the 
effect of surface tension becomes noticeable; the smaller the 
edge radius, the greater the Weber number at which this effect 
comes into play. It can be seen from Eq. (1) that the pressure 
drop across the cavity boundary in the neighborhood of the 
separation point increases with the edge curvature. Two 
characteristic regions can be distinguished in the graph: a 
region of strong dependence of the flow turn angle δ  on the 
Weber number ( 200<We ) and a region of weak dependence 
( 200>We ). 

Figure 4 shows the angle of flow turn on the edge versus 
the Weber number at different cavitation numbers. With 
increasing cavitation number the flow turn angle decreases, i.e. 
the effect of the Weber number diminishes. For 310>We , the 
flow turn angle depends almost not at all on the Weber number 
or the cavitation number.  
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Figure 4: Effect of the cavitation number on the Weber number 
dependence of the flow turn angle for edge radius 01.0/ =HR  
 
  

 
 
Figure 5: Effect of the cavitation number on the drag 
coefficient for edge radius 01.0/ =HR  
 
 Figure 5 shows the drag coefficient versus the cavitation 
number for different Weber numbers at edge radius 

01.0/ =HR . The drag coefficient decreases somewhat as the 
Weber number decreases.   
 Figure 6 shows the effect of the Weber number in the 
range 200 to 2000 on the cavity flow parameters for entrance 
edge radius 02.0/ =HR . Shown in the figure are the relative 
changes of the maximum cavity width, cc hh /Δ , and the 
corresponding distance to the plate, cc LL /Δ , as well as the 
relative change of the drag coefficient, xx CC /Δ , versus the 
cavitation number. It can be seen that with decreasing 
cavitation number the effect of surface tension increases, and 
the change of the above flow parameters correlates with the 
change of the angle of flow turn on the entrance edge.   

Figure 6: Relative change of the flow parameters at Weber 
numbers 2000=We   and 200=We  versus the cavitation 
number: the maximum cavity width cc hh /Δ  , the length 

cc LL /Δ  corresponding thereto, and the drag coefficient 

xx CC /Δ   
 

Figure 6 shows the effect of the Weber number in the range 
200 to 2000 on the cavity flow parameters for entrance edge 
radius 02.0/ =HR . Shown in the figure are the relative 
changes of the maximum cavity width, cc hh /Δ , and the 
corresponding distance to the plate, cc LL /Δ , as well as the 
relative change of the drag coefficient, xx CC /Δ , versus the 
cavitation number. It can be seen that with decreasing 
cavitation number the effect of surface tension increases, and 
the change of the above flow parameters correlates with the 
change of the angle of flow turn on the entrance edge.   
 

CONCLUSION 
The results presented above show that the effect of surface 

tension on the cavity flow parameters becomes noticeable at 
Weber numbers less that 103.  

For supercavitating axisymmetric flows, a greater effect of 
surface tension on the flow parameters may be expected due to 
a greater curvature of the axisymmetric cavity, which has both a 
meridional and a radial component. Besides, the effect of 
surface tension increases with decreasing cavitator diameter, 
which appears in the Weber number as a characteristic 
dimension.  
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