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ABSTRACT
One-dimensional nonlinear dispersive waves in liquids con-

taining a number of microbubbles are theoretically studied based
on two-fluid averaged equations derived by the present authors.
The set of equations consists of the conservation laws of mass
and momentum for gas and liquid phases, and the equation of
motion of the bubble wall. The compressibility of liquid is taken
into account, and this leads to the wave attenuation due to bub-
ble oscillations. By using the method of multiple scales, two types
of equations for nonlinear wave propagation in long ranges are
derived. In a moderately low frequency band, the behavior of
weakly nonlinear waves is described by the Korteweg–de Vries–
Burgers equation. On the other hand, in a moderately high fre-
quency band, the nonlinear modulation of quasi-monochromatic
wave train is described by the nonlinear Schrödinger equation
with an attenuation term.

INTRODUCTION
The characteristics of sound waves in bubbly liquids are con-

siderably different from those in single phase fluids [1–10]. Es-

pecially, the dispersion in the sense that waves of different wave-
lengths propagate with different phase velocities is an important
property, which is caused by bubble oscillations.

Egashiraet al. [11] have derived a set of averaged equations
based on a two-fluid model. On the basis of these equations, we
have analyzed one-dimensional linear dispersive waves in bub-
bly liquids [11–13]. By considering the compressibility of the
liquid phase, we have shown the existence of the two propaga-
tion modes of pressure waves, i.e., slow mode and fast mode.

In the present paper, we shall extend the previous studies
[11–13] to nonlinear wave motions. The one-dimensional non-
linear dispersive waves in liquids containing a number of small
spherical gas bubbles of slow mode are theoretically investigated.
The compressibility of the liquid phase is taken into account in
the same way as the previous studies, and this leads to an atten-
uation effect due to acoustic radiation caused by bubble oscilla-
tions.

Figure 1 shows the linear dispersion relation of slow mode
[11]. Here, Band A and Band B in Fig. 1 correspond to the mod-
erately low and high frequency bands, and these are regarded
as the weakly and strongly dispersive bands, respectively. We
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Figure 1. The dispersion relation of the slow mode in a bubbly quiescent

liquid [11]. Band A and Band B correspond to the weakly and strongly

dispersive bands, respectively.

shall prescribe both Band A and Band B by an appropriate scal-
ing of parameters. The weakly nonlinear propagations of pres-
sure waves in both Band A and Band B are studied by the use
of the method of multiple scales. As a result, the behaviors of
waves in Band A and Band B are described by the Korteweg–
de Vries–Burgers equation [3,14] and the nonlinear Schrödinger
equation [5,14] with an attenuation term, respectively.

In this paper, we shall demonstrate that appropriate scalings
of a set of physical parameters enable us to do systematic deriva-
tions of the Korteweg–de Vries–Burgers equation and the nonlin-
ear Schr̈odinger equation from a set of basic equations for bubbly
flows.

FORMULATION OF THE PROBLEM
We shall analyze one-dimensional nonlinear dispersive

waves in mixtures of a liquid and a number of small spherical
gas bubbles on the basis of the averaged equations. At an initial
state, the mixtures are assumed to be uniform and at rest. The
pressure waves are generated by oscillations of a sound source in
the bubbly liquid.

The compressibility of liquid phase is taken into account.
For the simplicity, we neglect the viscosity of gas phase, the
thermal conductivity of gas and liquid phases, the phase change
across the gas-liquid interface, and the Reynolds stress.

Governing equations
The system of governing equations of bubbly flows is com-

posed of the mass and momentum conservation laws, the equa-
tion of motion for the bubble wall, the equations of state for gas
and liquid, and so on [11–13]. For the one-dimensional waves,
the conservation laws of the mass and momentum for gas and
liquid phases based on a two-fluid model by Egashiraet al. [11]

are written as follows:

∂
∂t∗

(αρ∗G)+
∂

∂x∗
(αρ∗Gu∗G) = 0, (1)

∂
∂t∗

[(1−α)ρ∗L]+
∂

∂x∗
[(1−α)ρ∗Lu∗L] = 0, (2)

∂
∂t∗

(αρ∗Gu∗G)+
∂

∂x∗
(

αρ∗Gu∗G
2
)

+α
∂p∗G
∂x∗

= F∗, (3)

∂
∂t∗

[(1−α)ρ∗Lu∗L]+
∂

∂x∗
[
(1−α)ρ∗Lu∗L

2
]

+(1−α)
∂p∗L
∂x∗

+P∗
∂α
∂x∗

=−F∗, (4)

wheret∗ is the time,x∗ is the space coordinate normal to the wave
front, α is the volume fraction of the gas phase(0 < α < 1), ρ∗
is the density,u∗ is the fluid velocity,p∗ is the pressure, and the
subscriptsG andL denote volume-averaged variables in gas and
liquid phases, respectively. In addition to the volume-averaged
pressuresp∗G andp∗L, P∗ is introduced as the liquid pressure av-
eraged on the gas-liquid interface. Here and hereafter, the super-
script“ ∗ ” denotes dimensional quantities.

As the interfacial momentum transportF∗, we employ the
following model of the virtual mass force [12,15,16]

F∗ =−β1αρ∗L

(
DGu∗G
Dt∗

− DLu∗L
Dt∗

)

−β2ρ∗L(u
∗
G−u∗L)

DGα
Dt∗

−β3α(u∗G−u∗L)
DGρ∗L
Dt∗

, (5)

where the values of coefficientsβ1, β2, andβ3 may be set as1/2.
Here, the operatorsDG/Dt∗ andDL/Dt∗ are defined as

DG

Dt∗
≡ ∂

∂t∗
+u∗G

∂
∂x∗

, (6)

DL

Dt∗
≡ ∂

∂t∗
+u∗L

∂
∂x∗

. (7)

The Keller equation for oscillations of the spherical bubble
in the compressible liquid is introduced as follows [17]:

(
1− 1

c∗L0

DGR∗

Dt∗

)
R∗

D2
GR∗

Dt∗2 +
3
2

(
1− 1

3c∗L0

DGR∗

Dt∗

)(
DGR∗

Dt∗

)2

=
(

1+
1

c∗L0

DGR∗

Dt∗

)
P∗

ρ∗L0
+

R∗

ρ∗L0c∗L0

DG

Dt∗
(p∗L +P∗), (8)

whereR∗ is the bubble radius,c∗L0 andρ∗L0 are, respectively, the
speed of sound and the density in liquid phase at the initial unper-
turbed state. The second term in the right-hand side of Eq. (8) is
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responsible for the wave attenuation due to the acoustic radiation
due to bubble oscillations.

In order to close the system of equations (1)–(5) and (8), the
following equations are used: (i) the polytropic equation of state
for gas,

p∗G
p∗G0

=
(

ρ∗G
ρ∗G0

)γ
, (9)

(p∗G0 andρ∗G0 are, respectively, the pressure and density inside the
bubble in the unperturbed state, andγ is the polytropic exponent),
(ii) the Tait equation of state for liquid,

p∗L = p∗L0 +
ρ∗L0c∗2L0

n

[(
ρ∗L
ρ∗L0

)n

−1

]
, (10)

(p∗L0 is the liquid pressure in the unperturbed state, andn = 7.15
is used if the liquid is water), (iii) the conservation law of mass
inside the bubble,

ρ∗G
ρ∗G0

=
(

R∗0
R∗

)3

, (11)

(R∗0 is the bubble radius in the unperturbed state), (iv) the pressure
balance at the gas-liquid interface,

p∗G− (p∗L +P∗) =
2σ∗

R∗
+

4µ∗

R∗
DGR∗

Dt∗
, (12)

whereσ∗ is the surface tension, andµ∗ is the liquid viscosity.
Note that all the variables in the initial unperturbed state,c∗L0,
ρ∗L0, ρ∗G0, p∗L0, p∗G0, andR∗0, are constants.

The liquid viscosityµ∗ in Eq. (12) has dropped in Eq. (4).
This is because the perturbation of the liquid density is regarded
as significantly small compared with that of other variables, al-
though the liquid compressibility is taken into account in the
present study. Therefore, we neglect the term of coupling of the
liquid viscosity and compressibility in the momentum equation
with the assumption of spherical symmetry.

Perturbation expansions
We shall use the method of multiple scales (see, e.g., [14]),

to derive the so-called far-field equations, which describe slow
variations of behavior in the propagation process of long ranges
of weakly nonlinear waves.

Firstly, the timet∗ and the space coordinatex∗ are, respec-
tively, normalized by

t =
t∗

T∗
, x =

x∗

L∗
, (13)

whereT∗ andL∗ are the characteristic time and length, respec-
tively. We introduce the new independent variables defined byt,
x, and a small nondimensional parameterε(¿ 1):

tm = εmt, xm = εmx (m= 0, 1, 2, · · ·), (14)

wheret0 = t andx0 = x represent fast scales, whereast1 = εt,
x1 = εx, and so on, represent slow scales, and are called as slow
variables. The small parameterε denotes a typical amplitude of
waves. By using chain rules and Eq. (14), the differential opera-
tors can be expanded as follows [14]:

∂
∂t

=
∂

∂t0
+ ε

∂
∂t1

+ ε2 ∂
∂t2

+O(ε3), (15)

∂
∂x

=
∂

∂x0
+ ε

∂
∂x1

+ ε2 ∂
∂x2

+O(ε3). (16)

The four dependent variables,α, u∗G, u∗L, andR∗, are nondi-
mensionalized and expanded in a power series ofε, as follows:

α/α0 = 1+ εα1 + ε2α2 +O(ε3), (17)

u∗G/U∗ = εuG1 + ε2uG2 +O(ε3), (18)

u∗L/U∗ = εuL1 + ε2uL2 +O(ε3), (19)

R∗/R∗0 = 1+ εR1 + ε2R2 +O(ε3), (20)

whereα0 is the initial volume fraction andU∗ is the characteristic
velocity. In Eqs. (17)–(20) and the following equations, all ex-
pansion coefficients are ofO(1). The characteristic velocityU∗
is a typical propagation speed of waves, the characteristic time
T∗ is a typical period of the incident wave, and the characteristic
lengthL∗ ≡U∗T∗ is a typical wavelength.

Furthermore, the expansion of the liquid densityρ∗L is de-
fined as

ρ∗L/ρ∗L0 = 1+ εaρL1 + εa+1ρL2 +O(εa+2), (21)

wherea(> 1) is an integer number, whose explicit values are to
be determined in the following sections, by considering the con-
ditions of each problem. We shall remark that the expansion of
the liquid density begins withO(εa) in Eq. (21), which is because
the compressibility of liquid is very small compared with that of
gas.

Substituting Eq. (21) into the Tait equation (10) gives the
expansion of the liquid pressurep∗L as

pL ≡ p∗L
ρ∗L0U

∗2

=
p∗L0

ρ∗L0U
∗2 + εa−2b ρL1

V2 + εa−2b+1 ρL2

V2 +O(εa−2b+2), (22)
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whereVεb is introduced as a measure of the ratio of the character-
istic velocity and the speed of sound in liquid in the unperturbed
state,

U∗

c∗L0
≡Vεb ≡O(εb). (23)

The parameterV is of O(1) andb is a real number to be deter-
mined. Since the perturbation in the liquid pressure should begin
with the O(ε) term in Eq. (22), as in the expansions (17)–(20),
the following condition is required

a−2b = 1. (24)

Hence Eq. (22) may be rewritten as

pL = pL0 + ε
ρL1

V2 + ε2 ρL2

V2 +O(ε3). (25)

In addition, the nondimensional pressures for gas and liquid
in the unperturbed state,pG0 andpL0, are introduced as

pG0 ≡ p∗G0

ρ∗L0U
∗2 ≡O(1), pL0 ≡ p∗L0

ρ∗L0U
∗2 ≡O(1), (26)

respectively. The ratio of initial densities of gas and liquid is
assumed to be ofO(ε3):

ρ∗G0

ρ∗L0
≡O(ε3). (27)

The nondimensional liquid viscosityµ is introduced as

µ≡ µ∗

ε2ρ∗L0R∗0U∗ ≡O(1). (28)

NONLINEAR WAVE OF WEAK DISPERSION
In this section, we shall analyze the weakly nonlinear prop-

agation of pressure waves in the moderately low frequency band,
i.e., Band A in Fig. 1. Band A is regarded as the weakly disper-
sive band.

To characterize the problem, we shall choose the scalings of
three parameters,U∗, L∗, andT∗, as follows:

U∗

c∗L0
≡O(

√
ε)≡V

√
ε, (29)

R∗0
L∗
≡O(

√
ε)≡ ∆

√
ε, (30)

ω∗

ω∗B
≡ 1

T∗ω∗B
≡O(

√
ε)≡Ω

√
ε, (31)

where∆ andΩ are constants ofO(1) (Ω corresponds to a nor-
malized frequency of waves),ω∗ ≡ 1/T∗ is a frequency of the
sound source, andω∗B is the eigenfrequency of linear spherical
symmetric oscillation of single bubble,

ω∗B ≡
√

3γp∗G0−2σ∗/R∗0
ρ∗L0R∗20

. (32)

For the simplicity, the effects of liquid compressibility and vis-
cosity are neglected in Eq. (32), i.e.,ω∗B is the same as the eigen-
frequency obtained from the linearized Rayleigh–Plesset equa-
tion.

The set of scalings (29)–(31) shows that the focused wave
motion is of low frequency compared with the eigenfrequency
of bubble, of large wavelength compared with the initial bubble
radius, and of small propagation speed compared with the speed
of sound in the liquid phase.

Comparison of Eq. (24) with Eq. (29) yieldsa = 2, and
hence the expansions of the liquid density (21) and the liquid
pressure (25), respectively, may be rewritten as

ρ∗L/ρ∗L0 = 1+ ε2ρL1 + ε3ρL2 +O(ε4), (33)

pL = pL0 + εpL1 + ε2pL2 +O(ε3), (34)

where the expansion coefficients in Eq. (34) are defined as

pL1 =
ρL1

V2 , pL2 =
ρL2

V2 . (35)

The following analysis in this section requires only the slow
variables,t1 = εt, and therefore Eq. (15) may be simplified into

∂
∂t

=
∂

∂t0
+ ε

∂
∂t1

. (36)

First-order equations
We substitute expansions (17)–(20), (33) and (34) into ba-

sic equations (1)–(4) and (8)–(12), and use scalings (29)–(31),
derivative expansion (36), and so on. As a result, we firstly ob-
tain the following set of linearized equations as the first-order
equations: the mass conservation law in gas phase,

∂α1

∂t0
−3

∂R1

∂t0
+

∂uG1

∂x
= 0, (37)

the mass conservation law in liquid phase,

α0
∂α1

∂t0
− (1−α0)

∂uL1

∂x
= 0, (38)
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the momentum conservation law in gas phase,

β1
∂uG1

∂t0
−β1

∂uL1

∂t0
−3γpG0

∂R1

∂x
= 0, (39)

the momentum conservation law in liquid phase,

(1−α0 +β1α0)
∂uL1

∂t0
−β1α0

∂uG1

∂t0
+(1−α0)

∂pL1

∂x
= 0, (40)

and the Keller equation,

pL1 +
∆2

Ω2 R1 = 0. (41)

Eliminatingα1, uG1, uL1, andpL1 from Eqs. (37)–(41), the
linear wave equation can be derived as

∂2R1

∂t2
0

−v2
p

∂2R1

∂x2 = 0, (42)

where the phase velocityvp is

vp =

√
3α0(1−α0 +β1)γpG0 +β1(1−α0)∆2/Ω2

3β1α0(1−α0)
. (43)

Similarly to the well-known speed of sound in the incompress-
ible liquid containing gas bubbles [2, 3],vp is in proportion to
1/

√
α0(1−α0). This is the reflection of the fact that the expan-

sion of the liquid density starts withO(ε2) in Eq. (33), i.e., the
compressibility of liquid may be regarded as so weak. Now, we
choose the characteristic velocityU∗ as

U∗ =

√
3α0(1−α0 +β1)γp∗G0/ρ∗L0 +β1(1−α0)R∗20 ω∗2B

3β1α0(1−α0)
, (44)

and this leads tovp≡ 1. RewritingR1 into f in Eq. (42), we have

∂2 f

∂t2
0

− ∂2 f
∂x2 = 0. (45)

That is, the near field is described by the linear wave equation
(45), and the dispersion and dissipation effects of waves due to
bubble oscillations do not appear there.

Second-order equations
Let us derive the second-order equations. By the use of the

same procedure as the derivation of Eq. (42), we have

∂2R2

∂t2
0

− ∂2R2

∂x2 = H(x, t0, t1), (46)

where the inhomogeneous term,H, is composed of the partial
derivatives of the first-order expansion coefficients (e.g.,uG1,R1)
with respect tox, t0, andt1.

Focusing on the right-running wave, the phase functionϕ̂ is
introduced as

ϕ̂≡ x− t0. (47)

Rewriting Eqs. (37)–(41) bŷϕ and integrating them with respect
to ϕ̂, we can expressα1, uG1, uL1, andpL1, as multiples off =
R1, and hence the inhomogeneous termH in Eq. (46) may be
regarded as a function ofϕ̂ andt1.

The solvability condition or the non-secular condition re-
quires

H(ϕ̂, t1) = 0. (48)

From Eq. (48), we can derive a far-field equation

∂ f
∂t1

+C0
∂ f
∂ϕ̂

+C1 f
∂ f
∂ϕ̂

+C2
∂2 f
∂ϕ̂2 +C3

∂3 f
∂ϕ̂3 = 0, (49)

where the coefficients of advective, dissipative, and dispersive
terms,C0, C2, andC3, are given by

C0 =− (1−α0)∆2V2

6α0Ω2 , (50)

C2 =− ∆3V
6α0Ω2 , (51)

C3 =
∆2

6α0
, (52)

respectively. Clearly,C0 andC2 have negative values, whileC3

has a positive value. In the present paper, the explicit represen-
tation of the coefficient of the nonlinear termC1 is not shown
because of the complexity of expression.

Introducing a modified phase functionϕ

ϕ≡ ϕ̂−C0t1 = x− t0−C0t1, (53)
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Figure 2. Wave profiles of the first-order liquid pressure pL1 in the case

of α0 = 0.02, ∆ = 0.1, Ω = 0.4, V = 0.3, β1 = β2 = 0.5, and

−10π≤ ϕ≤ 10π: (a) t1 = 0, (b) t1 = 3, (c) t1 = 7, (d) t1 = 10.

we readily rewrite Eq. (49) into

∂ f
∂t1

+C1 f
∂ f
∂ϕ

+C2
∂2 f
∂ϕ2 +C3

∂3 f
∂ϕ3 = 0. (54)

Equation (54) is the so-called Korteweg–de Vries–Burgers equa-
tion (KdV–Burgers equation) [3]. The KdV–Burgers equation
(54) describes the behavior of waves in the far field character-
ized byt1 andϕ, where the weak dissipation and weak dispersion
effects appear and compete with the weak nonlinear effect.

In Fig. 2, we show some examples of time evolutions of
wave profiles of the liquid pressurepL1, evaluated by the nu-
merical calculation of KdV–Burgers equation (54) with a finite
difference method.

NONLINEAR WAVE OF STRONG DISPERSION
In this section, we focus on the moderately high frequency

band, i.e., Band B in Fig. 1. Band B can be regarded as the
strongly dispersive band. We shall study the nonlinear mod-
ulation of a quasi-monochromatic wave train in the long-range
propagation of weakly nonlinear waves with a strong dispersion
effect.

We shall define the scalings of parameters, as

U∗

c∗L0
≡O(ε2)≡Vε2, (55)

R∗0
L∗
≡O(1)≡ ∆, (56)

ω∗

ω∗B
≡ T∗ω∗ ≡O(1)≡Ω, (57)

where we determineT∗ ≡ 1/ω∗B. The set of scalings (55)–(57)
shows that the frequency is comparable with the eigenfrequency
of bubble, the wavelength is also comparable with the initial bub-
ble radius, and the propagation speed of waves is very small com-
pared with the speed of sound in the liquid phase.

Although the method of averaged equation is usually prohib-
ited to be applied to such short waves, the plane wave problem
may be excluded from the restriction because the average vol-
ume can be sufficiently large along the plane parallel to the wave
front [13]. Nevertheless, the assumption of spherical symmetry
of bubble oscillations should be validated. We will address this
problem in a future work.

Comparison of Eq. (24) with Eq. (55) yieldsa = 5, and
therefore, in the present analysis, the liquid compressibility is
assumed to be very small compared with the analysis in the pre-
vious section. Hence the expansions of the liquid density and
pressure are, respectively, given as

ρ∗L/ρ∗L0 = 1+ ε5ρL1 + ε6ρL2 +O(ε7), (58)

pL = pL0 + εpL1 + ε2pL2 +O(ε3). (59)

The expansion coefficients in Eq. (59) are defined bypL j =
ρL j/V2 ( j = 1, 2, 3, 4, 5). We therefore emphasis that the liquid
compressibility cannot be neglected.

The analysis in this section requirest1, t2, x1, andx2 as the
slow variables, and hence Eqs. (15) and (16), respectively, may
be rewritten into

∂
∂t

=
∂

∂t0
+ ε

∂
∂t1

+ ε2 ∂
∂t2

, (60)

∂
∂x

=
∂

∂x0
+ ε

∂
∂x1

+ ε2 ∂
∂x2

. (61)

First-order equations
By using the same procedure as the derivation of Eq. (42)

from Eqs. (37)–(41) in the previous section, we have the follow-
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ing set of linear equations,

∂α1

∂t0
−3

∂R1

∂t0
+

∂uG1

∂x0
= 0, (62)

α0
∂α1

∂t0
− (1−α0)

∂uL1

∂x0
= 0, (63)

β1
∂uG1

∂t0
−β1

∂uL1

∂t0
−3γpG0

∂R1

∂x0
= 0, (64)

(1−α0 +β1α0)
∂uL1

∂t0
−β1α0

∂uG1

∂t0
+(1−α0)

∂pL1

∂x0
= 0, (65)

∂2R1

∂t2
0

+R1 +
pL1

∆2 = 0, (66)

and these can be reduced to the single equation

L1[R1] = 0, (67)

where the linear differential operatorL1 is defined as

L1 ≡ ∂2

∂t2
0

−
[

∆2

3α0
+

(1−α0 +β1)γpG0

β1(1−α0)

]
∂2

∂x2
0

− ∆2

3α0

∂4

∂x2
0∂t2

0

.

(68)

Equation (67) corresponds to the linear wave equation with the
dispersion term.

We take the solution of Eq. (67) as the form of a quasi-
monochromatic wave train which evolves into a slowly modu-
lated wave packet [18]:

R1 = A(t1, t2,x1,x2)eiθ +c.c., (69)

with the phase function

θ = k∗x∗0−ω∗(k∗)t∗0 = kx0−Ω(k)t0, (70)

whereA is the slowly varying complex amplitude which depends
on t1, t2, x1, andx2, k≡ k∗L∗ is the normalized wave number,i
denotes the imaginary unit, andc.c. denotes the complex conju-
gate.

Note that the solution (69) describes a monochromatic wave
train whenA is independent of eithert1 andt2 or x1 andx2.

The linear dispersion relation is obtained by substituting
Eq. (69) into Eq. (67), as follows:

D(k,Ω) =
∆2k2(1−Ω2)

3α0
+

(1−α0 +β1)γpG0

β1(1−α0)
k2−Ω2 = 0,

(71)

or

k =±Ω

√
3α0(1−α0)β1

3α0(1−α0 +β1)γpG0−∆2β1(1−α0)(Ω2−1)
.

(72)

The cutoff frequencyΩC is given as

ΩC =

√
1+

3α0(1−α0 +β1)γpG0

β1(1−α0)∆2 . (73)

The dispersion relations calculated from Eq. (71) are shown
in Fig. 3.
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Figure 3. The dispersion relations in the bubbly liquid in the case of β1 =
0.5, γ = 1, pG0 = 1, and typical values as follows: (a) α0 = 0.05:

∆ = 0.05, 0.1, 0.5; (b) ∆ = 0.1: α0 = 0.01, 0.05, 0.1.
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Second-order equations
Substituting the solution (69) into the set of equations (62)–

(66) and integrating them with respect tot0 and x0, we have
α1, uG1, uL1, and pL1 expressed by multiples ofR1. Then, the
second-order equation is obtained as

L1[R2] = H2(x0,x1, t0, t1), (74)

with the inhomogeneous term

H2 = ΓA2e2iθ + i

(
−∂D

∂Ω

)(
∂A
∂t1

+vg
∂A
∂x1

)
eiθ +c.c., (75)

whereΓ is a real constant.
From the non-secular condition of inhomogeneous equation

(74), the second term in the right-hand side of Eq. (75) should
vanish. We therefore obtain the following solvability condition

∂A
∂t1

+vg
∂A
∂x1

= 0. (76)

Here, the normalized group velocityvg is calculated by linear
dispersion relation (71), as follows:

vg =
dΩ
dk

=
3α0Ω(k)

k(3α0 +∆2k2)
. (77)

The particular solution of Eq. (74) is given as

R2 =
Γ

D(2k,2Ω)
A2e2iθ +c.c.. (78)

As in the case of first-order equations, substituting the solution
(78) into the set of equations ofO(ε2) gives the explicit repre-
sentations ofα2, uG2, uL2, andpL2.

Third-order equations
Let us proceed to the next-order problem in order to deter-

mine the behavior of the slowly modulated wave packet as a re-
sult of long range propagation with weak nonlinear and strong
dispersion effects.

The slightly lengthy calculations give the third-order equa-
tion

L1[R3] = H3(x0,x1,x2, t0, t1, t2), (79)

with the inhomogeneous term

H3 = Γ1e3iθ +Γ2e2iθ +Γ3eiθ +Γ4 +c.c., (80)

whereΓ j ( j = 1, 2, 3, 4) are the complex variables includingA
and its derivatives. The explicit representation ofΓ3 is

Γ3 =
(
−∂D

∂Ω

)[
i

(
∂A
∂t2

+vg
∂A
∂x2

)
+

1
2

dvg

dk
∂2A

∂x2
1

+ν1|A|2A+ iν2A

]
.

(81)

From the solvability condition of Eq. (79), we have

i

(
∂A
∂t2

+vg
∂A
∂x2

)
+

1
2

dvg

dk
∂2A

∂x2
1

+ν1|A|2A+ iν2A = 0, (82)

where the derivativedvg/dk is calculated by the expression of
group velocity (77), as

dvg

dk
=− 9α0∆2Ω(k)

(3α0 +∆2k2)2 , (83)

and the real coefficientν2 is given as

ν2 =
∆k2

2(3α0 +∆2k2)
(4µ+V∆2), (84)

andν2 has a positive value. The explicit representation of the real
coefficient of the nonlinear termν1 is not shown here because of
the complexity of expression.

By making use of the solvability conditions of the second-
order (76) and the third-order (82), and the definitions of deriva-
tive expansions (60) and (61), we obtain

i

(
∂A
∂t

+vg
∂A
∂x

)
+

1
2

dvg

dk
∂2A
∂x2 + ε2(ν1|A|2A+ iν2A) = 0. (85)

Furthermore, Eq. (85) can be rewritten into

i
∂A
∂τ

+
1
2

dvg

dk
∂2A
∂ξ2 +ν1|A|2A+ iν2A = 0, (86)

through the variable transformations

τ≡ ε2t = t2, ξ≡ ε(x−vgt) = x1−vgt1. (87)
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Equation (86) agrees with the well-known nonlinear
Schr̈odinger equation [5, 8] if the coefficientν2 equals to zero.
The fourth term in the left-hand side of Eq. (86) describes the
attenuation effect of waves due to bubble oscillations. Therefore,
Eq. (86) describes the behavior of the slowly modulated wave
packet with the weak nonlinear, strong dispersion, and weak dis-
sipation effects.

Let us putA = geih, whereg is the amplitude andh is the
phase. Substituting it into Eq. (86) gives the following set of
equations:

g
∂h
∂τ

=
1
2

dvg

dk

[
∂2g
∂ξ2 −g

(
∂h
∂ξ

)2
]

+ν1g3, (88)

∂g
∂τ

=−1
2

dvg

dk

[
g

∂2h
∂ξ2 +2

(
∂g
∂ξ

)(
∂h
∂ξ

)]
−ν2g. (89)

We shall solve the set of equations (88) and (89) with a finite dif-
ference method. Figures 4 and 5 show some examples of the time
evolutions of the amplitudeg and phaseh, where the coefficients
ν1 andν2 are selected as specific values.
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Figure 4. The profiles of the amplitude g in the case of ν1 = 4, ν2 =
0.2, dvg/dk = −1, and −10≤ ξ ≤ 10: (a) τ = 0, (b) τ = 0.5, (c)

τ = 1, (d) τ = 4.
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Figure 5. The profiles of the phase h in the case of ν1 = 4, ν2 = 0.2,

dvg/dk =−1, and−10≤ ξ≤ 10: τ = 0, 0.1, 0.5, 1, 2, 3, 4.

CONCLUSION
The weakly nonlinear analyses of pressure waves in bubbly

liquids have been carried out based on the two-fluid averaged
equations. We have derived the equations describing wave mo-
tions in far fields by the use of the method of multiple scales and
the appropriate scaling of parameters.

In the moderately low frequency band, the KdV–Burgers
equation describes the behavior of waves in the far field, where
the weak dissipation and weak dispersion effects appear and
compete with the weak nonlinear effect.

In the moderately high frequency band, the nonlinear
Schr̈odinger equation with the attenuation term can be derived
as the far field equation of the quasi-monochromatic wave train.
It describes the weakly nonlinear modulation with the weak dis-
sipation effect, caused by the strong dispersion effect.
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