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ABSTRACT pecially, the dispersion in the sense that waves of different wave

One-dimensional nonlinear dispersive waves in liquids con- lengths propagate with different phase velocities is an importar
taining a number of microbubbles are theoretically studied based property, which is caused by bubble oscillations.
on two-fluid averaged equations derived by the present authors. Egashiraet al.[11] have derived a set of averaged equations
The set of equations consists of the conservation laws of masshased on a two-fluid model. On the basis of these equations, w
and momentum for gas and liquid phases, and the equation of have analyzed one-dimensional linear dispersive waves in but
motion of the bubble wall. The compressibility of liquid is taken bly liquids [11-13]. By considering the compressibility of the
into account, and this leads to the wave attenuation due to bub- liquid phase, we have shown the existence of the two propag:
ble oscillations. By using the method of multiple scales, two types tion modes of pressure waves, i.e., slow mode and fast mode.
of equations for nonlinear wave propagation in long ranges are In the present paper, we shall extend the previous studie
derived. In a moderately low frequency band, the behavior of [11-13] to nonlinear wave motions. The one-dimensional non
weakly nonlinear waves is described by the Korteweg—de Vries— linear dispersive waves in liquids containing a number of smal
Burgers equation. On the other hand, in a moderately high fre- spherical gas bubbles of slow mode are theoretically investigate
quency band, the nonlinear modulation of quasi-monochromatic The compressibility of the liquid phase is taken into account in
wave train is described by the nonlinear Sgtiinger equation  the same way as the previous studies, and this leads to an atte

with an attenuation term. uation effect due to acoustic radiation caused by bubble oscille
tions.

Figure 1 shows the linear dispersion relation of slow mode

INTRODUCTION [11]. Here, Band A and Band B in Fig. 1 correspond to the mod-

The characteristics of sound waves in bubbly liquids are con- erately low and high frequency bands, and these are regards
siderably different from those in single phase fluids [1-10]. Es- as the weakly and strongly dispersive bands, respectively. W
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are written as follows:
Band B (Strong dispersion)
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Figure 1. The dispersion relation of the slow mode in a bubbly quiescent
liquid [11]. Band A and Band B correspond to the weakly and strongly
dispersive bands, respectively.

wheret* is the time x* is the space coordinate normal to the wave
front, a is the volume fraction of the gas phagk< a < 1), p*

is the densityu* is the fluid velocity,p* is the pressure, and the
subscriptss andL denote volume-averaged variables in gas anc
shall prescribe both Band A and Band B by an appropriate scal- liquid phases, respectively. In addition to the volume-average
ing of parameters. The weakly nonlinear propagations of pres- pressuregg andpf, P* is introduced as the liquid pressure av-
sure waves in both Band A and Band B are studied by the use eraged on the gas-liquid interface. Here and hereafter, the supe
of the method of multiple scales. As a result, the behaviors of script* +” denotes dimensional quantities.

waves in Band A and Band B are described by the Korteweg—  As the interfacial momentum transpdft, we employ the
de Vries—Burgers equation [3,14] and the nonlinear Sdimger following model of the virtual mass force [12, 15, 16]

equation [5, 14] with an attenuation term, respectively.

In this paper, we shall demonstrate that appropriate scalings i} . (Deus Dput
of a set of physical parameters enable us to do systematic deriva- F* =—pB1opg ( Dt* Dt )
tions of the Korteweg—de Vries—Burgers equation and the nonlin- Decr D0
felar Schivdinger equation from a set of basic equations for bubbly — Bopi (Uug — uf)% — Bsa(ug —up) I;tF:L )
ows.

where the values of coefficierfis, 3, andpz may be set a%/2.

FORMULATION OF THE PROBLEM Here, the operato®g/Dt* andD, /Dt* are defined as

We shall analyze one-dimensional nonlinear dispersive

waves in mixtures of a liquid and a number of small spherical De _ i+u* 0 ©)
gas bubbles on the basis of the averaged equations. At an initial Dt* — at* = Cox*’
state, the mixtures are assumed to be uniform and at rest. The DL d )
pressure waves are generated by oscillations of a sound source in Dt* = ot U ox+ 7
the bubbly liquid.
The compressibility of liquid phase is taken into account. The Keller equation for oscillations of the spherical bubble

For the simplicity, we neglect the viscosity of gas phase, the n the compressible liquid is introduced as follows [17]:

thermal conductivity of gas and liquid phases, the phase change
across the gas-liquid interface, and the Reynolds stress. )
;. 1DcR R*DéR*+§ 1 1 DGR\ (DgR
¢/, Dt Dt*?2 2 3¢, Dt Dt*
) (pL +P )? (8)

Clo Dt )Py PioClo Dt*

Governing equations

The system of governing equations of bubbly flows is com- = (1+
posed of the mass and momentum conservation laws, the equa-
tion of motion for the bubble wall, the equations of state for gas
and liquid, and so on [11-13]. For the one-dimensional waves, whereR* is the bubble radiuss’, andpj, are, respectively, the
the conservation laws of the mass and momentum for gas andspeed of sound and the density in liquid phase at the initial unpel
liquid phases based on a two-fluid model by Egaséiral. [11] turbed state. The second term in the right-hand side of Eq. (8) i
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responsible for the wave attenuation due to the acoustic radiationwhereT* andL* are the characteristic time and length, respec-

due to bubble oscillations. tively. We introduce the new independent variables defineld by
In order to close the system of equations (1)—(5) and (8), the x, and a small nondimensional parameték 1):

following equations are used: (i) the polytropic equation of state

for gas, tn=€™, Xn=¢€"™ (M=0,12 ), (14)
L& _ [ ¥ ©) wheretg =t and Xy = X represent fast scales, wherdas- ¢t,
P&o P/ X1 = €X, and so on, represent slow scales, and are called as sic

variables. The small parametedenotes a typical amplitude of

(P&, andpi, are, respectively, the pressure and density inside the Waves. By using chain rules and Eq. (14), the differential opera
bubble in the unperturbed state, arid the polytropic exponent), ~ tors can be expanded as follows [14]:

(ii) the Tait equation of state for liquid, 5 5

_ 0 20 3
PLocid [ PL " A o A +OE), (15)
PL=Plot =0 KP’“) 1}’ (10 0_0 .0 29 +0(e) (16)
Lo 0X Oxg Oxq X2 '
(pf is the liquid pressure in the unperturbed state, mrdr7.15

is used if the liquid is water), (iii) the conservation law of mass The four dependent variables, ug, Ui, andR, are nondi-

inside the bubble mensionalized and expanded in a power series a$ follows:
o R\ ? /0o =1+¢ay + &%+ O(e?), (17)
G _
oo (R*) ; (11) Us/U™ = el + £2uc2 + O(e3), (18)
Ui /U= 8LI|_1-|-82U|_2-1-0(83)7 (29)
(Ry is the bubble radius in the unperturbed state), (iv) the pressure R /Ry =1+ &Ry + 2R, + 0(83)7 (20)

balance at the gas-liquid interface,

. . . whereqy is the initial volume fraction and * is the characteristic
ps— (pf +P*) = 20 + 4 %’ (12) velocity. In Egs. (17)—(20) and the following equations, all ex-
R R Dt pansion coefficients are @(1). The characteristic velocity *

is a typical propagation speed of waves, the characteristic tim
T* is a typical period of the incident wave, and the characteristic
lengthL* =U*T* is a typical wavelength.

Furthermore, the expansion of the liquid dengityis de-
fined as

wherec* is the surface tension, and is the liquid viscosity.
Note that all the variables in the initial unperturbed stafg,
Plor P&or Pior PGoy @andRy, are constants.

The liquid viscosityp* in Eq. (12) has dropped in Eq. (4).
This is because the perturbation of the liquid density is regarded
as significantly small compared with that of other variables, al-
though the liquid compressibility is taken into account in the
present study. Therefore, we neglect the term of coupling of the
liquid viscosity and compressibility in the momentum equation
with the assumption of spherical symmetry.

Pl /Pio=1+€%pL1+e¥ po+O(e22), (21)

wherea(> 1) is an integer number, whose explicit values are to
be determined in the following sections, by considering the con
ditions of each problem. We shall remark that the expansion o
the liquid density begins wit®(e?) in Eq. (21), which is because

Perturbation expansions the compressibility of liquid is very small compared with that of
We shall use the method of multiple scales (see, e.g., [14]), gas.
to derive the so-called far-field equations, which describe slow Substituting Eq. (21) into the Tait equation (10) gives the

variations of behavior in the propagation process of long ranges expansion of the liquid pressupg as
of weakly nonlinear waves.
Firstly, the timet* and the space coordinaté are, respec-

tively, normalized by pL= *pL —
PLoY
v X _ _Plo | ca2PL1 _ao2ni1PL2 O(s2-2+2) (22
t:F, X= P, (13) - piOU*2+£ V2 +e V2 + (8 )7 ( )
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whereVeP is introduced as a measure of the ratio of the character-
istic velocity and the speed of sound in liquid in the unperturbed
state,

Y _veb = o). 23)
Clo

The parameteY is of O(1) andb is a real number to be deter-

mined. Since the perturbation in the liquid pressure should begin

with the O(¢) term in Eq. (22), as in the expansions (17)—(20),

the following condition is required

a—2b=1. (24)
Hence Eq. (22) may be rewritten as
pL= pL0+5% +82% +0(e®). (25)

In addition, the nondimensional pressures for gas and liquid
in the unperturbed statpgo andpy g, are introduced as

>k k

Pao
piOU *2

(26)

=0(1),

Pco =

respectively. The ratio of initial densities of gas and liquid is
assumed to be dd(3):

Peo _ g3, @7)
PLo
The nondimensional liquid viscosityis introduced as
L= 2“7 —O(1). (28)
epLoRoU ™

NONLINEAR WAVE OF WEAK DISPERSION
In this section, we shall analyze the weakly nonlinear prop-

agation of pressure waves in the moderately low frequency band,

i.e., Band A in Fig. 1. Band A is regarded as the weakly disper-
sive band.

whereA andQ are constants db(1) (Q corresponds to a nor-
malized frequency of wavesyy* = 1/T* is a frequency of the
sound source, andy is the eigenfrequency of linear spherical
symmetric oscillation of single bubble,

. _ [3yPg— 20" /Ry
wp=y L9
ProRY’

For the simplicity, the effects of liquid compressibility and vis-
cosity are neglected in Eq. (32), i.ey; is the same as the eigen-
frequency obtained from the linearized Rayleigh—Plesset equz
tion.

The set of scalings (29)—(31) shows that the focused wav
motion is of low frequency compared with the eigenfrequency
of bubble, of large wavelength compared with the initial bubble
radius, and of small propagation speed compared with the spe¢
of sound in the liquid phase.

Comparison of Eq. (24) with Eqg. (29) yields= 2, and
hence the expansions of the liquid density (21) and the liquic
pressure (25), respectively, may be rewritten as

(32)

(33)
(34)

o; /Pio=1+¢€%pL1+€3pL2+O(e*),
PL = PLo+€PL1 +&€2pL2 + O(e3),

where the expansion coefficients in Eq. (34) are defined as

PL1
V2’

PL2

o (35)

PL1 = PL2 =

The following analysis in this section requires only the slow
variablest; = €t, and therefore Eq. (15) may be simplified into

(36)

First-order equations

We substitute expansions (17)—(20), (33) and (34) into ba
sic equations (1)—(4) and (8)-(12), and use scalings (29)—(31
derivative expansion (36), and so on. As a result, we firstly ob.
tain the following set of linearized equations as the first-ordel

To characterize the problem, we shall choose the scalings of equations: the mass conservation law in gas phase,

three parameterf)*, L*, andT*, as follows:

2 —o(/E=ViE (29)
Clo
% = O(v/&) = A, (30)
w* 1
@ = Tk =0(Ve) = Qvk, (31)

4

0aq 0R; Ouc
e 32475 37
oty ot 0X ’ (37)
the mass conservation law in liquid phase,
aa1 aULl .
O(OaTO—(l— O)W =0, (38)
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the momentum conservation law in gas phase,

ou au oR
Big — Py —3¥Peoy =0, (39)
X
the momentum conservation law in liquid phase,
oury 5UG1 opu1 _
(1— 0o+ PBado) 3% —P1a 0, T (1—ao)—5= =0, (40)
and the Keller equation,
2

Pt &zR=0. (41)

Eliminatingay, ugi, U 1, andp1 from Egs. (37)-(41), the
linear wave equation can be derived as

0°R1  ,0°Ry
w P (42)
where the phase velocity, is
ve — [ 3090(1— o+ B1)ypeo+ Bi(1 - 00)A%/Q? (43)
P 3[3100(17(10) ’

Similarly to the well-known speed of sound in the incompress-
ible liquid containing gas bubbles [2, 3], is in proportion to
1/4/00(1—0p). This is the reflection of the fact that the expan-
sion of the liquid density starts wit®(g?) in Eq. (33), i.e., the
compressibility of liquid may be regarded as so weak. Now, we
choose the characteristic veloclty as

U* — 300(1 — 0o+ B1)YPgo/ Pio + Br(1 — ao) RyPw? (44)
3B100(1—0p) ’
and this leads top = 1. RewritingRy into f in Eq. (42), we have

o
ox2

0°f

— 45
2 (45)

That is, the near field is described by the linear wave equation

(45), and the dispersion and dissipation effects of waves due to

bubble oscillations do not appear there.

Second-order equations
Let us derive the second-order equations. By the use of th
same procedure as the derivation of Eq. (42), we have

%Ry
ot

%Ry

- W = H(Xat07t1)7

(46)

where the inhomogeneous terid, is composed of the partial
derivatives of the first-order expansion coefficients (@i, R1)
with respect to, to, andt;.

Focusing on the right-running wave, the phase funcfias
introduced as

$=x—to. (47)

Rewriting Egs. (37)—(41) b§ and integrating them with respect
to ¢, we can expressy, Ugy, U 1, andpgi, as multiples off =
Ry, and hence the inhomogeneous tefirin Eq. (46) may be
regarded as a function ¢fandt;.

The solvability condition or the non-secular condition re-
quires

H($.t1) =0. (48)
From Eg. (48), we can derive a far-field equation
of of 0°f 0 f
n +Co (15+le0¢ +C2W+C3$—07 (49)

where the coefficients of advective, dissipative, and dispersiv
terms,Cy, Cp, andCs, are given by

(1—0g)A%V?
0=~ 0 (50)
Y,
2 = _760(092 , (51)
AZ
C3 = @7 (52)

respectively. ClearlyCy andC, have negative values, whi(@;
has a positive value. In the present paper, the explicit represel
tation of the coefficient of the nonlinear ter@ is not shown
because of the complexity of expression.

Introducing a modified phase functign

¢ = ¢ — Cot1 = x—1to — Coty, (53)
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Figure 2.  Wave profiles of the first-order liquid pressure P 1 in the case
of g =002 A=0.1 Q=04 V =03 By =P = 0.5 and
—10n< ¢ <10 (@)t =0, (b)ty =3, () t1 = 7, (d) ty = 10

we readily rewrite Eq. (49) into

03 f

ot
092

of of
— +Cf—+C

ot a0 (54)

Equation (54) is the so-called Korteweg—de Vries—Burgers equa-
tion (KdV-Burgers equation) [3]. The KdV-Burgers equation
(54) describes the behavior of waves in the far field character-
ized byt; and¢, where the weak dissipation and weak dispersion
effects appear and compete with the weak nonlinear effect.

In Fig. 2, we show some examples of time evolutions of
wave profiles of the liquid pressumg ;, evaluated by the nu-
merical calculation of KdV-Burgers equation (54) with a finite
difference method.

NONLINEAR WAVE OF STRONG DISPERSION

In this section, we focus on the moderately high frequency
band, i.e.,, Band B in Fig. 1. Band B can be regarded as the
strongly dispersive band. We shall study the nonlinear mod-
ulation of a quasi-monochromatic wave train in the long-range
propagation of weakly nonlinear waves with a strong dispersion
effect.

We shall define the scalings of parameters, as

UT* =0(e?) = Ve?, (55)
Clo
D _ow=a (56)
w*
— =T"w*"=0(1) = Q, 57
o w =0(1) (57)

where we determin@* = 1/wy. The set of scalings (55)-(57)
shows that the frequency is comparable with the eigenfrequenc
of bubble, the wavelength is also comparable with the initial bub-
ble radius, and the propagation speed of waves is very small con
pared with the speed of sound in the liquid phase.

Although the method of averaged equation is usually prohib.
ited to be applied to such short waves, the plane wave problel
may be excluded from the restriction because the average vo
ume can be sufficiently large along the plane parallel to the wav
front [13]. Nevertheless, the assumption of spherical symmetn
of bubble oscillations should be validated. We will address this
problem in a future work.

Comparison of Eq. (24) with Eqg. (55) yields= 5, and
therefore, in the present analysis, the liquid compressibility is
assumed to be very small compared with the analysis in the pre
vious section. Hence the expansions of the liquid density ani
pressure are, respectively, given as

(58)
(59)

Pt /Pio=1+€pL1+£%L2+ O(e"),
PL = PLo-+E€PL1 +€°pLa+ O(€3).

The expansion coefficients in Eq. (59) are definedpy =
pLj/V?(j =1,2,3,4,5). We therefore emphasis that the liquid
compressibility cannot be neglected.

The analysis in this section requirgsts, x;, andx, as the
slow variables, and hence Egs. (15) and (16), respectively, me
be rewritten into

o a0
E afto‘i’satfl € E, (60)
o 0 0

First-order equations

By using the same procedure as the derivation of Eq. (42
from Eqs. (37)—(41) in the previous section, we have the follow-
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ing set of linear equations,
6(11 aRl aUGl
3 2T 2
oty Oty 0Xo o (62)
002 (1-qg) 2t _ g (63)
05t o
6UG1 aULl aRl
_ = _3 —= =0 64
B1 3o B ot oYPeog =0 (64)
ou 1 Oug1 op1
(1 GO+B1GO)TtO BlGOTtO +(1 GO)W =0, (65)
0%Ry PL1
2R L
o +Ri1+ A2 0, (66)
and these can be reduced to the single equation
L[R] =0, (67)
where the linear differential operatdj is defined as
=9[4 (1-do+PByypeo] 9 A7 0F
YE (300 Bul-co) | o 30003
(68)

Equation (67) corresponds to the linear wave equation with the
dispersion term.

We take the solution of Eq. (67) as the form of a quasi-
monochromatic wave train which evolves into a slowly modu-
lated wave packet [18]:

Ry :A(tl,tz,Xl,Xz)eie—FC.C., (69)
with the phase function
0 = K'xg — w" (K")tg = kxo — Q(K)to, (70)

whereA is the slowly varying complex amplitude which depends
onty, to, X1, andxy, k= k*L* is the normalized wave number,
denotes the imaginary unit, adt. denotes the complex conju-
gate.

Note that the solution (69) describes a monochromatic wave
train whenA is independent of eithét andt, or x; andx,.

The linear dispersion relation is obtained by substituting
Eq. (69) into Eq. (67), as follows:

Ak (1—Q?)
30

(1—0ao+B1)Ypco

D(k,Q) = B1(1—ao)

k?—-Q?=0,
(71)

or

_ 3ao(1—0o)Bs
“= j:Q\/30(0(1 — 0o+ P1)yPco — A%B1(1— o) (Q2 - 1)

(72)
The cutoff frequency)c is given as
30(1—ao+B1)ypco
Qc=,4/1 73

The dispersion relations calculated from Eq. (71) are showi
in Fig. 3.

0| (a) 1
%
ap = 0.05 g\
D/
—ol
Q sf a=0
A=05
0 2 4.6 8 1
k
s () Z00
A=0.1 LA
6_
ao’o'os
Q
4_ -
a0=0.1
2_ -
0 2 4 6 8 10
k

Figure 3. The dispersion relations in the bubbly liquid in the case of Bl =

0.5, y=1, peo = 1, and typical values as follows: (a) 0g = 0.05:
A=0.050.10.5;®)A=0.1 0g=0.010.050.1.
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Second-order equations

Substituting the solution (69) into the set of equations (62)—
(66) and integrating them with respect tpand Xy, we have
01, Us1, U1, and pr1 expressed by multiples d%;. Then, the
second-order equation is obtained as

L4[Ro] = Ha(xg, X1,10,t1), (74)

with the inhomogeneous term

wherel is a real constant.

From the non-secular condition of inhomogeneous equation
(74), the second term in the right-hand side of Eq. (75) should
vanish. We therefore obtain the following solvability condition

oD
Q

%
otp

0A

Hp = FAZe?® —
2= +i < Vg e

) d®+cc, (75)

A
oty

0A

vg=— = 0.
gaX]_

(76)

Here, the normalized group velocity, is calculated by linear
dispersion relation (71), as follows:

_dQ  300Q(k)
Y= Gk = K(3uo 1 A2K2) 7
The particular solution of Eq. (74) is given as
R, = _ T peeece (78)
D(2k,2Q)

As in the case of first-order equations, substituting the solution
(78) into the set of equations @(e?) gives the explicit repre-
sentations ofi,, Ugy, U2, andpy2.

Third-order equations

Let us proceed to the next-order problem in order to deter-
mine the behavior of the slowly modulated wave packet as a re-
sult of long range propagation with weak nonlinear and strong
dispersion effects.

The slightly lengthy calculations give the third-order equa-
tion

Ll“:{?] - H3(X07X17X27t07t17t2)a (79)

with the inhomogeneous term
Hy =163 4 10e?® 4+ r3d® +Ma+coc., (80)

wherel ' (j =1, 2, 3,4) are the complex variables includiny
and its derivatives. The explicit representatiort gfis

_ oD\ [. /0A 0A 1dyg PA ,
M= <_6Q> {I (61:2 +VgaX2> 2 dKk ox 2 +V1AI“A+iVA| .
(81)
From the solvability condition of Eq. (79), we have
. [ 0A A ldVg A ,
' <at2+VgaX2> Tk e [APA+iv2A =0, (82)

where the derivativelvg/dk is calculated by the expression of
group velocity (77), as

2
% _ 90pA°Q (k) ’ (83)
dk (3010 +A%k2)2
and the real coefficient is given as
Ak?
S — TTERVG 4
V2 2(3(]0+A2k2)( f+ )a (8 )

andv, has a positive value. The explicit representation of the rea
coefficient of the nonlinear termy is not shown here because of
the complexity of expression.

By making use of the solvability conditions of the second-
order (76) and the third-order (82), and the definitions of deriva:
tive expansions (60) and (61), we obtain

C(0A  0A\  ldvg %A on L
— — = AFA A)=0. (85
|<at+vgax>+2dk62+s(vl|| +iv2A) (85)
Furthermore, Eq. (85) can be rewritten into
0A  1dvg 0°A P
— Al“A A=
5 T2k 92 +V1|AI“A+ivoA=0, (86)
through the variable transformations
1=t =1, &=¢g(X—Vgt) =Xx1— Vgls. (87)
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Equation (86) agrees with the well-known nonlinear
Schibdinger equation [5, 8] if the coefficient, equals to zero.
The fourth term in the left-hand side of Eq. (86) describes the
attenuation effect of waves due to bubble oscillations. Therefore,
Eq. (86) describes the behavior of the slowly modulated wave
packet with the weak nonlinear, strong dispersion, and weak dis-

12

11

10

sipation effects. _
Let us putA = gd", whereg is the amplitude anth is the

phase. Substituting it into Eq. (86) gives the following set of

equations:

- 3
95: ~ 27k |oez 9\ag) | TV (88)

0 ldvg [ *h _(dg) (oh

oh _ vy lf#g_ <6h>2

We shall solve the set of equations (88) and (89) with a finite dif-
ference method. Figures 4 and 5 show some examples of the time

evolutions of the amplitudg and phasé, where the coefficients
v1 andv, are selected as specific values.

2 L -
(a) T=0 (b)
7=0.5
12+ 4
g 15F {9
1Lk i
1L i 08F 1
-10 -5 0 5 10 10 5 0 5 10
3 3
T T T T T 07F T T T T ™
12 F 1
(c)
T=1 0.6 F E
1} 4
g g 05} i
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Figure 4. The profiles of the amplitude g in the case of V1 = 4, Vo =
0.2, dvg/dk = —1,and —10< E <10 (@ T=0, (b) T= 0.5, (¢)
T=1L@dTt1=4
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Figure 5. The profiles of the phase h in the case of V1 = 4, Vo = 0.2,
dvg/dk=—1and —10< & <10:1=0,0.1,05,1,2 3,4

CONCLUSION

The weakly nonlinear analyses of pressure waves in bubbl
liquids have been carried out based on the two-fluid average
equations. We have derived the equations describing wave m
tions in far fields by the use of the method of multiple scales anc
the appropriate scaling of parameters.

In the moderately low frequency band, the KdV-Burgers
equation describes the behavior of waves in the far field, wher
the weak dissipation and weak dispersion effects appear ar
compete with the weak nonlinear effect.

In the moderately high frequency band, the nonlinear
Schiddinger equation with the attenuation term can be derivec
as the far field equation of the quasi-monochromatic wave train
It describes the weakly nonlinear modulation with the weak dis-
sipation effect, caused by the strong dispersion effect.

Copyright © 2009 by ASME
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