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ABSTRACT 
The shedding of a sheet cavity is governed by the direction 

and momentum of re-entrant and side-entrant jets and their 
impingement on the free surface of the cavity. Therefore, for an 
accurate prediction of the shedding of the sheet cavity it is 
important to predict the re-entrant and side-entrant jets 
accurately. It appears that these jets are inertia driven 
suggesting that a numerical method based on the Euler 
equations is able to capture the phenomena associated with 
unsteady sheet cavitation.  

Due to the dynamics of sheet cavitation, strong pressure 
pulses are generated, originating from the collapse of shed 
vapor structures. To be able to predict the dynamics of the 
pressure waves the fluid is considered as a compressible 
medium by adopting appropriate equations of state for the 
liquid phase, the two-phase mixture and the vapor phase of the 
fluid.  

In this paper a computational method for solving the 
compressible unsteady Euler equations on unstructured grids is 
employed to predict the structure and dynamics of three-
dimensional unsteady sheet cavitation occurring on stationary 
hydrofoils, placed in a steady uniform flow. In the two-phase 
flow region an equilibrium cavitation model is employed, 
which assumes local thermodynamic and mechanical 
equilibrium. In this model the phase transition does not depend 
on empirical constants to be specified. 

The three-dimensional unsteady cavitating flow about a 
three-dimensional hydrofoil (Twist11) is calculated. It is shown 
that the formation of the re-entrant flow and a cavitating horse-
shoe vortex are captured by the present numerical method. The 
calculated results agree reasonably well with experimental 
observations. Furthermore, it is demonstrated that the collapse 
of the shed vapor structures and the resulting high pressure 
pulses are captured in the numerical simulations.   

INTRODUCTION 
Cavitation is the evaporation of a liquid in a flow when the 

pressure drops below the saturation pressure of that liquid. The 
importance of understanding cavitating flows is related to their 
occurrence in various technical applications, such as pumps, 
turbines, ship propellers and fuel injection systems, as well as 

in medical sciences such as lithotripsy treatment and the flow 
through artificial heart valves. Cavitation does not occur in 
water only, but in any kind of liquid such as liquid hydrogen 
and oxygen in rocket pumps or the lubricant in a bearing. The 
appearance and disappearance of regions with vapor is a major 
cause of noise, vibration, erosion of surface material and 
efficacy loss in hydraulic machinery. In many technical 
applications high efficiency is required, which results in 
cavitation being hardly avoidable within the range of operating 
conditions. When cavitation occurs it needs to be controlled. 
Therefore, one needs detailed insight in the mechanisms that 
govern the cavitation phenomena. 

The present paper concerns the dynamics and structure of 
sheet cavitation, which occurs on lifting objects such as 
hydrofoils, blades of pumps and propellers. There are a number 
of closely related important aspects to sheet cavitation: 

• Shape and volume of the cavity. The topology of a sheet 
cavity is strongly related to the load distribution of the lifting 
object and thus to the pressure distribution on the surface of the 
object. Variations in volume cause pressure fluctuations in the 
liquid that might lead to strong vibrations of nearby structures. 

• Re-entrant flow at the closure region of the sheet cavity. 
The re-entrant and side-entrant flow dictate the behavior of the 
shedding of the sheet cavity. The shape of the closure region of 
the sheet cavity dictates the direction of the re-entrant and side-
entrant jets. 

• Shedding and collapse of vapor structures. The break-up 
of a sheet cavity causes a vortical flow of bubbly vapor clouds 
that is convected to regions with higher pressure. Here, these 
clouds collapse resulting in strong pressure pulses leading to 
unsteady loads on nearby objects as well as noise production 
and possible erosion of surface material. 

Since the 1990s numerical methods based on the Euler or 
Navier-Stokes equations have been developed to simulate 
cavitating flows. Although the development of these methods 
has been advancing quickly in recent years, they are still 
considered to be in a developing stage. The main problem in 
the numerical simulation of multi-dimensional unsteady 
cavitating flow is the simultaneous treatment of two very 
different flow regions: (nearly) incompressible flow of pure 
liquid in most of the flow domain and low-velocity highly 
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compressible flow of (pure) vapor in relatively small parts of 
the flow domain. In addition, the two flow regimes can often 
not be distinguished that clearly, for example in the transition 
region between vapor and liquid, i.e. the mixture region of 
liquid and vapor. 

Furthermore, unsteady three-dimensional cavitating flow 
calculations require an appropriate high-resolution mesh in the 
cavitating flow region, which demands substantial computer 
resources both in terms of memory and speed. 

In the present paper a numerical method for solving the 
Euler equations for 3D unsteady cavitating flow is described. 
The accurate prediction of the direction and momentum of the 
re-entrant and side-entrant jets and their impingement on the 
cavity surface form the basis of an accurate prediction of the 
shedding of the cavity sheet. The re-entrant jets are thought to 
be inertia driven, so it is expected that a mathematical model 
based on the Euler equations is able to capture the structure of 
sheet cavitation. 

 

DEFINITIONS DIMENSIONLESS PARAMETERS 

The dimensionless cavitation number � is defined as:  
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where p∞ [Pa], ρ∞ [kgm-3] and U∞ [ms-1] are the free-stream 
pressure, density and velocity, respectively and where psat(T) 
[Pa] is the saturation pressure of water at temperature T [K]. 

The dimensionless pressure coefficient Cp is defined as  
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with p the local pressure in the flow field. Neglecting skin 
friction, the drag and lift can be obtained from  

 d
S

p S= ∫F n
r r

, (3) 

with S the surface of the object, p the pressure on the surface of 

the object and n
r

 the unit normal pointing into the object, i.e. 
out of the computational domain. We choose the coordinates 
such that the lift force L is equal to Fz and the drag force D is 
equal to Fx. The dimensionless CL and CD coefficients are 
defined as 
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with S the projected surface area of the object.  
The void fraction α ≡ Vv/V  of the vapor within a volume V 

[m3] of a fluid follows from the fluid density ρ:  
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where Vv [m
3] is the volume of vapor within the volume V 

of the fluid and where ρv,sat(T) [kgm-3] and ρl,sat(T) [kgm-3] are 
the saturated vapor and liquid density at temperature T, 

respectively. 
The dimensionless total vapor volume Vvap is defined as 
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with c [m] the chord length of the hydrofoil and N the total 
number of control volumes in the computational domain. 

The Strouhal number Stc based on the chord length c is 
defined as 

 c
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≡ , (8) 

with f [Hz] the frequency of the shedding phenomenon.  
 

MATHEMATICAL FORMULATION 
Following Saurel et al. [15] and Schmidt et al. [16] the 

equilibrium cavitation model is adopted. This physical model is 
based on the assumption that the two-phase flow regime can be 
described as a homogeneous mixture of vapor and liquid that 
remains in thermodynamic and mechanical equilibrium. This 
implies that in the mixture locally the vapor and liquid have 
equal temperature, pressure and velocity. Under these 
assumptions, the flow of the mixture can be described by the 
homogeneous mixture equations together with an appropriate 
equation of state that covers all fluid states possible: the 
compressible pure liquid state, the compressible two-phase 
mixture state and the compressible pure vapor state. The 
equations of state must be such that the hyperbolic nature of the 
system of governing equations is preserved, which is necessary 
to represent the propagation of pressure waves in the fluid.  

The governing equations are the Euler equations in 
conservation form for the mixture variables written here for 
Cartesian coordinates as:  
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or in integral conservation form as:  
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Here, U = [ρ, ρu, ρv, ρw, ρE]T is the vector of conserved 

variables and ( ) ( ) ( ) ( )[ ], ,
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the flux vector 
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where the total specific enthalpy H [Jkg-1] is equal to  
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with the total specific energy E [Jkg-1] defined by  
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and with e [Jkg-1] the internal specific energy.  
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The normal component of the inviscid flux vector ( ) ⋅F U n
r r

 in 

equation (10) can now be found as 
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, (14)  

which yields  
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where û is the contravariant velocity component normal to the 

surface A defined by  

 ˆ
x y zu un vn wn= ⋅ = + +u n

rr
. (16)  

For closure of the system of equations it is necessary to adopt 
equations of state ρ = ρ(p,T) and h = h(p,T) that describe each 
of the three possible states: the liquid state, the vapor state and 
the mixture state. In the following the liquid phase is denoted 
by subscript l, the vapor phase by subscript v and saturation 
conditions by subscript sat. The speed of sound c [ms-1] within 
each state is obtained from [12]  
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LIQUID PHASE 

Following Saurel et al. [15] a modification of Tait’s 
equation of state is used to describe the pressure in the liquid 
state as a function of the density and temperature:  
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where for water K0 = 3.3·108 Pa and N = 7.15 are taken to be 
constant. A caloric equation of state that is a good 
approximation, see [12], is given by 

 ( ) ( ) ( )0 0,l l l l l vl l le T e T C T T eρ = = − + , (19)  

where Cvl is the specific heat at constant volume, T0 is a 
reference temperature and el0 is the internal energy at this 
reference temperature. For water these constants have the 
values Cvl = 4180 Jkg-1K-1, T0 = 273.15 K and el0 = 617.0 Jkg-1, 
respectively.  

VAPOR PHASE 

For the vapor phase the equation of state for a calorically 
perfect gas is used: 

 ( ) ( ) ( ), 1 ,v v v v v v vp e e Tρ γ ρ ρ= − , (20)  

with γ the ratio of the specific heats equal to γ = 1.327 for water 
vapor. The corresponding caloric equation of state is  

( ) ( ) ( ) ( )0 0 0,v v v v v vv v v le T e T C T T L T eρ = = − + + , (21)  

where Lv represents the latent heat of vaporization, T0 is a 
reference temperature and Cvv the specific heat at constant 
volume with values equal to Lv(T0) = 2.3753·106 Jkg-1, T0 = 
273.15 K and Cvv = 1410.8 Jkg-1K-1, respectively. 

MIXTURE PHASE 

In the mixture the two phases are assumed to be in thermal 
and mechanical equilibrium. Furthermore, the pressure in the 
mixture phase is taken to be equal to the saturation pressure:  

 ( )l v satp p p T= = . (22)  

The mixture density ρ and mixture internal energy e are defined 
by  

 ( ) ( ) ( ), ,1v sat l satT Tρ αρ α ρ= + − , (23)  

( ) ( ) ( ) ( ) ( ), ,1v sat v l sat le T e T T e Tρ αρ α ρ= + − , (24) 

where the void fraction α of the vapor is obtained from 
Equation (6). 

The saturation values, as a function of temperature, of the 
pressure psat(T), the liquid density ρl,sat(T) and vapor density 
ρv,sat(T) are given by the following analytical expressions [17], 
valid for the range T = [Tr,Tc] with Tr the temperature at the 
triple point and Tc the temperature at the criticial point:  
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where θ = 1-T/Tc, with pc and ρc the pressure and density at the 

critical point and where the coefficients ˆˆ, , , ,i i i i ia a b b c  and 

îc are included in Table 1. Table 2 gives an overview of the 

values of the parameters used in the equations of state for liquid 
and vapor. 

In Figure 1 the p-v diagram for water, with the isotherm at 
reference temperature T∞=298 K, is presented. The employed 
equations of state, i.e. modified Tait equation, the mixture state 
and the perfect gas equation of state are compared with IAPWS 
experimental data, see  [9]. 

 
Table 1: Parameters for the saturation relations [17].  

Tc = 647.16 K, pc = 221.2·105 Pa, ρc = 322.0 kgm-3,  

Tr = 273.15 K. 

i 
ia  ˆ

ia  ib  ˆ
ib  ic  îc  

1 0 0 1 0 0 0 

2 -7.85823 1 1.99206 1/3 -2.02957 2/6 

3 1.83991 3/2 1.10123 2/3 -2.68781 4/6 

4 -11.7811 3 -0.512506 5/3 -5.38107 8/6 

5 22.6705 7/2 -1.75263 16/3 -17.3151 18/6 

6 -15.9393 4 -45.4485 43/3 -44.6384 37/6 

7 1.77516 15/2 -675615 110/3 -64.3486 71/6 
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Table 2: Parameters for liquid and vapor phase of water. 

Liquid Vapor 

Parameter Value Parameter value 

N 7.15 γ 1.327 

K0 3.3·108 Pa Cvv 1410.8 Jkg-1K-1 

Cvl 4180 Jkg-1K-1 T0 273.15 K 

T0 273.15 K Lv(T0) 2.753·106Jkg-1 

el0 617.0 Jkg-1 el0 617.0 Jkg-1 

 
 
Figure 1: p-v diagram for water with isotherm at reference 

temperature T∞= 298 K. Presented are IAPWS experimental 

data [17] (open circles), saturation curves for liquid and vapor 

(dashed lines), saturation points SL and SV for liquid and vapor, 

respectively, modified Tait equation of state for the liquid, 
mixture state and perfect gas equation of state (solid lines). C is 

the critical point.  

 

NUMERICAL METHOD 
The homogeneous mixture equations presented in Equation 

(10) are solved employing an unstructured grid, edge-based, 
finite-volume method. Dividing the physical domain in control 
volumes Vi with boundary ∂Vi, Equation (10) can be considered 
for each control volume:  
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Defining the control volume averages iU as 
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with iV  the volume of control volume Vi. Taking into account 
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control volume Vi, Equation (28) can be rewritten as 
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The flux ( ) ⋅F U n
r r

can be evaluated by exploiting the rotational 

invariance property of the Euler equations [12], which states 
that 
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Note that the unit vectors 
1 2

, ,n t t
r rr

form an orthogonal system.  

Equation (30) can now be rewritten as: 
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The inter-cell flux ( )
x

F TU over face Sij can be approximated 

by the numerical flux ( , )
L R

H TU TU , where the extrapolated 

face values UL and UR depend on the control volume averages 

i
U  and 

j
U on either side of interface Sij. Before proceeding 

the following notation is introduced for the numerical flux:  
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where the unit normal vector 
ij

n
r

of face Sij defines the rotation 

matrices T and T-1.  
Applying equation (34) to (33) and assuming that the 

numerical flux H is constant over face Sij, the semi-discretized 
form of the finite-volume formulation reads: 

 ( )L R ij ij
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1
, , S

fi
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jit V =

∂
+ =

∂
∑

U
H U U n 0

r
. (35) 

Note that when the face Sij belongs to the boundary of the 
computational domain, then it is necessary to determine UL or 

UR from boundary conditions. Also, when 
L i

=U U and 

R j
=U U , then the finite-volume scheme is first-order accurate 

when an approximate Riemann solver is used. In this study the 
extension to higher order is achieved by considering piece-wise 
linear data reconstructions in each control volume based on the 
MUSCL approach of van Leer [13] . The extrapolated face 
values UL and UR are then obtained through 

 ( ) ( ),,L i i ij cg icg i
 = + ∇ ⋅ −
 

U U Ψ U x x
r r

, (36) 
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where ( )
,cg i

∇U is the gradient of the variables U at the centroid 

of control volume Vi and where 
ij

x
r
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,cg i

x
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 are the location 

v = 1/ρ [m3 kg-1] 
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of the center of the face Sij and the center of gravity of control 
volume Vi, respectively. Furthermore, the limiter function 

[ ]0,1∈Ψ  is applied to avoid spurious oscillations at the cell 

interfaces. Here, the limiter function of Venkatakrishnan [23] is 
used.  

Defining the residual 
n

i
ℜ at time level tn for control 

volume Vi as:  

 ( )ij ij

1

1
, , S

fi
N

n n n

i L R

jiV =

ℜ = ∑H U U n
r

, (38) 

then equation (35) can be written as  

 ni
i

t

∂
+ ℜ =

∂

U
0 . (39) 

To advance the solution from time level tn to time level tn+1 a 
standard low-storage four-stage Runge-Kutta time-integration 
method is employed, which is defined as follows: 

 
(0) n

i ii=U U , (40) 

 
( ) (0) 1k k

i i k itα −= − ∆ ℜU U , for k=1,…,4 (41) 

 
1 (4)n

i i

+ =U U , (42) 

with the coefficients αk equal to [0.1084,0.2602,0.5052,1.0], 
resulting in second-order accuracy in time, see Blazek [1]. For 
unsteady flow calculations the time step ∆t is a global time step 
defined as the minimum of the local time steps of all control 
volumes:  

 min i
i

t t∆ = ∆ , (43) 

where the local time step is defined by  

 ( )max ,
i

i

i i i

t C
c

∆ =
+u u

l
r r , (44) 

with ℓi a characteristic length of control volume Vi defined as 
the diameter of the smallest inscribed sphere of control volume 

Vi and where 
i

u
r

and ci are the local velocity vector and speed of 

sound in control volume Vi, respectively. The constant CFL 
number C is set to 0.8.  

In the present research a number of classical flux schemes 

has been investigated for the numerical flux ( , ),
L R ij

H U U n
r

. At 

first, the Jameson-Schmidt-Turkel (JST) scheme [6] with the 
preconditioning method of Weiss & Smith [25] has been 
investigated. However, it was found that for cavitating flows 
the JST scheme introduced small oscillations at sharp gradients 
of the density in the flow. These oscillations were disastrous for 
the stability of the numerical method.  

In the search for a more robust, stable and accurate scheme 
other flux schemes have been investigated, such as the HLLC 
scheme, see Harten, Lax and van Leer [6], Toro et al.  [22] and 
Batten et al. [1] , and the AUSM scheme and its extensions, see 
Liou [14].  

The stability and accuracy of the scheme is not only 
influenced by sharp gradients of the density in the flow. The so-
called low-Mach number problem is also very important. A 
popular technique to solve this problem has been to introduce 
suitable preconditioners. In more recent years, adaptation of the 

flux schemes by scaling or modifying the numerical dissipation 
in regions with low-Mach number flows have been found to be 
successful, e.g. Guillard & Viozat [5], Liou [14] and Schmidt et 
al. [16], [18]. In this research the flux scheme of Schnerr et al.  
[18] is employed, which overcomes the inaccurate calculations 
of the pressure field for (low-Mach number) liquid flows.  

BOUNDARY CONDITIONS 
The treatment of the boundary conditions is based on the 

conventional ghost-cells approach, which implies that the 
numerical flux over a boundary interface is determined with the 
same numerical flux as used for internal cells. When the face Sij 

considered is located on the boundary of the computational 

domain the right state UR for the numerical flux ( , ),
L R ij

H U U n
r

 

at the cell-interface can be reconstructed from the state Ug in a 
virtual control volume or “ghost” cell. The state Ug in the ghost 
cell is specified by applying suitable boundary conditions to 
obtain the control-volume averaged values of the ghost cell. 

During cavitation strong pressure pulses are generated. 
Non-reflecting boundary conditions are required that allow 
waves in the flow solution to leave the computational domain 
without any reflection at the in- and outflow boundaries. This is 
necessary to avoid that spurious reflected waves interfere with 
the time-dependent cavitating flow solution.  

For the in- and outflow boundaries, the time-dependent, 
non-reflecting boundary conditions for the hyperbolic Euler 
equations with arbitrary equations of state, which are derived in 
Koop [12], are employed. These boundary conditions are based 
on the method of Thompson [19], who introduced an unified 
formalism for the time-dependent non-reflecting boundary 
conditions for the Euler equations using the perfect gas law as 
the equation of state.  

The central concept is that a hyperbolic system of 
equations represents the propagation of waves and that at any 
boundary some of the waves are propagating into the 
computational domain while others are propagating outwards. 
The number and type of conditions at a boundary of a multi-
dimensional domain are defined by the eigenvalues of the 
Jacobian of the component of the flux vector in the direction 
normal to the boundary. Each of the five eigenvalues λi 
represents the characteristic velocity at which a particular wave 
propagates. The behavior of outgoing waves is completely 
described by the solution within and at the boundary of the 
computational domain, while the behavior of the incoming 
waves is specified by data external to the computational 
domain. 

Thus, because of the wave structure of the hyperbolic 
equations, the number of boundary conditions that may be 
imposed depends on the physics of the problem and may not be 
specified arbitrarily, i.e. the number of boundary conditions 
which must be specified at a point on the boundary is equal to 
the number of incoming waves at that point. The number of 
boundary conditions required at any point on the boundary may 
change in time. Also, the number of boundary conditions 
required at any time may vary with position on the boundary. 
For a subsonic inflow and a subsonic outflow four and one 
physical boundary conditions need to be specified, respectively.  
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For the solid walls on the hydrofoil and for the tunnel walls 
free slip boundary conditions are employed by using the non-

permeability condition, i.e. 0⋅ =u n
rr

. The values in the ghost 

cells at the solid walls of the foil are obtained by applying the 
Curvature Corrected Symmetry Technique for unstructured 
grids as proposed by Wang and Sun [24]. 

GEOMETRY 3D TWIST HYDROFOIL  
Foeth [4] has carried out experiments for a three-

dimensional twisted hydrofoil placed in the cavitation tunnel of 
Delft University of Technology. The hydrofoil is denoted as 
Twist11 hydrofoil, because of its varying geometric angle of 
attack from 0◦ at the tunnel walls to 11◦ angle of attack at mid-
section, see Dang [3], Koop et al. [11] and Foeth [4]. The chord 
length of the foil is equal to c = 0.15m. The foil spans the 
cavitation tunnel from wall to wall with the width of the tunnel 
equal to 0.3m, thus s = 2c. The foil is symmetric with respect to 
its mid-span plane. 

The spanwise varying distribution of the local geometric 

angle of attack ( )yα is designed to avoid interaction of the 

cavitation sheet with the tunnel wall. The local geometric angle 

of attack ( )yα  is defined by a cubic polynomial, such that it 

is αwall at the tunnel wall, αmax at mid-span and that its 
derivative in spanwise direction is zero at the wall as well as at 
mid-span: 

 ( ) ( )3 2

max 2 3 1 wally y yα α α= − + + , (45) 

where /y y c=  is the dimensionless coordinate in span-wise 

direction [ ]1,1y ∈ − , with 0y = defined to be at the mid-plane 

of the span and 1y = at the tunnel wall at the starboard side. 

Note that αwall is the rotation angle of the entire hydrofoil, 
which is chosen to be equal to the local geometric angle of 
attack at the tunnel wall. The sections of the hydrofoil rotate 

around / 0.75x x c= =  to reduce the optical blocking of the 

mid-section plane by the hydrofoil when viewing from the 
sides of the foil, which is illustrated in Figure 2(c), where the 
side view of the foil is presented. The foil considered is the 
Twist11 at -2◦ geometric angle of attack, yielding αmax = 11◦ and 
αwall = -2◦ in equation (45). The hydrofoil has a NACA0009 
section with its half-thickness distribution given by  

 ( )2 3 4

0 1 2 3 4
0.2

t
z a x a x a x a x a x= + + + + , (46) 

with /x x c= , where the coefficients are equal to a0 = 0.2969, 

a1 = -0.126, a2 = -0.3516, a3 = 0.2843, a4 = -0.1015 and with 
the thickness parameter t = 0.09. The hydrofoil is presented in 
Figure 2, where a 3D view, top view, side view and front view 
are shown.  

Note that the distribution of the hydrodynamic angle of 
attack will be different from that of the geometric angle of 
attack. Due to the spanwise lift distribution there is a 
downwash on the central part of the hydrofoil and an upwash 
near the tunnel walls. This follows from Prandtl`s lifting line 
theory applied to the twisted foil, see [11]. 

 
 

(a)

 

(b)

 

(c)

 

(d) 

 
Figure 2: 3D Twist11 hydrofoil at α= -2˚, flow is in x-direction. 

(a) 3D view (b) top view (c) side view (d) front view. 

COMPUTATIONAL DOMAIN AND MESH 
For numerical purposes the length of the test section is 

increased to minimize the effects of the implementation of the 
inlet and outlet boundary conditions. The hydrofoil is located in 
a channel with height 2c, a length of 3c upstream of the leading 
edge, a length of 2c downstream of the trailing edge and a 
width of s = 2c. Note that for the numerical flow simulation 
only the starboard half of the test section and the foil is 
considered, because of its geometric symmetry and the 
assumed hydrodynamic symmetry.  

The computational domain is divided into tetrahedral 
elements utilizing the software package ICEM-CFD. The 
surface of the foil is divided in 7 sub-surfaces, i.e. one surface 
wrapping around the leading edge and three surfaces on either 
side of the foil. Each surface has its own size of surface 
elements to ensure a fine mesh around the nose of the foil and a 
somewhat coarser mesh on the other surfaces of the hydrofoil. 
Note that the tetrahedrons close to the foil are much smaller 
than the tetrahedrons further away in the flow field.  

Following a limited grid sensitivity study [11] it was 
concluded that for single-phase water flow a total number of 
around 350k tetrahedrons is adequate for a sufficiently accurate 
solution on the surface of the foil, which results in 
approximately 69k control volumes in the complete 
computational domain. For cavitating flow a tetrahedral grid 
with a refinement along the suction side of the hydrofoil is 
considered resulting in 205k control volumes. Both meshes are 
presented in Figure 3.  

FULLY WETTED FLOW RESULTS  
First, the numerical method is validated utilizing the 

experimental data of Foeth [4] for single-phase water flow. The 
angle of attack of the hydrofoil is -2◦. The free-stream velocity 
U∞, temperature T∞ and pressure p∞ are equal to U∞ = 6.75 ms-1, 
T∞ = 297 K, p∞ = 0.97·105 Pa, respectively. At these conditions 
the pressures on the surface of the foil and the lift force on the 
foil have been measured. Foeth [4] reports a lift force of 455N, 
which amounts to a lift coefficient of CL = 0.46. 

The calculations are carried out with the first-order spatial 
reconstruction method for the first 50k iteration steps, after 
which the calculation is continued with the MUSCL type 
second-order reconstruction method applying the limiter 
method of Venkatakrishnan on the primitive variables [ρ, u, v, 
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w, e]T. The calculations have been carried out on the coarse and 
fine mesh presented in Figure 3. 

(a) 

 
(b) 

 
Figure 3: Computational mesh for 3D Twist11 hydrofoil. α= -2˚ 

Flow is from left to right. (a) 357k tetrahedrons, 69k control 

volumes (b) 1,096k tetrahedrons, 205k control volumes 

 
It is found that during the calculation phase with the first-

order reconstruction the computation converged rapidly. When 
switching to second-order the residuals decreased by two to 
three orders only. The reason for this stalling convergence 
behavior has been identified, see [12], to correspond to the very 
low Mach number in combination with the used limiter method 
for the second-order spatial reconstruction on unstructured 
grids. To improve the convergence behavior an additional 
calculation with the free-stream velocity increased from 6.75 
ms-1 to U∞ = 50 ms-1 has been carried out. For this higher 
velocity also a stagnating convergence is obtained, but at a two 
orders lower level.   

In Table 3 the measured value for the lift coefficient is 
compared with the calculated values for the free-stream 
velocity U∞ = 6.75 ms-1 on both grids and for U∞ = 50 ms-1 on 
the coarse grid. The lift coefficient for U∞ = 6.75 ms-1 is 
calculated to be equal to 0.445. Note that this value differs 
about 3% from the measured value of 0.46. It can be stated that 
this value is sufficient1 accurately predicted by the present 
numerical method. The calculated lift coefficient on the coarse 
and fine mesh are approximately equal, which verifies that the 
coarse grid is adequate for a sufficiently accurate solution for 
single phase flow. For inviscid flow at low Mach number the 

                                                           
1 Foeth [4] mentions that his calibration was verified by 

placing weights on the hydrofoil in an empty cavitation tunnel. 

A deviation of 3% from the calibrated value was found and 

Foeth applied a correction in the lift coefficient for this 
discrepancy, which is in the same range as the difference 

between measured and predicted lift coefficient. 

lift coefficient for the velocities U∞ = 6.75 ms-1 and U∞ = 50 
ms-1 should be about equal to each other, which is verified in 
Table 3.  

For this case of three-dimensional inviscid flow the drag 
force will not be zero. The wake downstream of the trailing 
edge contains vorticity stemming from the difference in 
direction at the trailing edge of the velocity on the suction side 
and that on the pressure side resulting in a trailing vortex sheet. 
This trailing vorticity induces an upwash/downwash 
distribution at the foil which increases/decreases the local angle 
of attack experienced by the foil. This results in the so-called 
induced drag, see also [11] and [12].  

From the good agreement between the experimentally 
obtained lift force and the calculated value and the agreement 
between the calculated lift coefficients for both velocities, we 
conclude that the present numerical method is capable of 
accurately predicting the lift force for low speed three-
dimensional single-phase water flow.  
 

Table 3: 3D Twist11 hydrofoil at -2˚ angle of attack. Measured 

lift coefficient and calculated lift and drag coefficients CL and 
CD for velocities U∞ = 6.75 ms-1 on coarse and fine grid and U∞ 

= 50 ms-1 on coarse grid. p∞ = 0.97·105 Pa, ρ∞ = 998.3 kgm-3, 

T∞ = 297 K. 

U∞  Numerical Experimental  
[ms-1] mesh CD [-] CL [-] CL [-] 

6.75 coarse 0.010 0.442 0.46 
6.75 fine 0.0083 0.445 0.46 
50 coarse 0.0098 0.454 - 

 
In Figure 4 Foeth’s measured Cp values at the surface of 

the hydrofoil are compared with the numerical results for the 
span positions, 50% (center), 40%, 30% and 20%, respectively. 
The experimental values are denoted by the open squares and 
the calculated values are presented with the closed circles.  

As can be seen in Figure 4 the numerical results 
correspond reasonably well with the experimental data. 
However, the experimental value at x/c = 0.3 at 40% span 
appears to deviate from the numerical results. Foeth [4] 
mentions that the value from this sensor may not be reliable. 
Furthermore, an overshoot in –Cp value at the trailing edge is 
observed in the numerical results. This is caused by the 
relatively badly shaped control volume around the trailing edge 
typical for a node-centered dual mesh. A solution has been 
found, see Hospers [7], by splitting the control volumes around 
the trailing edge in an upper and lower control volume allowing 
a discontinuous solution at the trailing edge. 

In Figure 5 the distribution of –Cp coefficient on the 
surface of the hydrofoil is presented for fully wetted water flow 
with U∞ = 50 ms-1. In the leading edge region on the suction 
side of the hydrofoil a clear low pressure region is visible. The 
design of the foil has been such that cavitation will occur in the 
center of the foil and that cavitation is avoided near the tunnel 
walls. Due to the span-wise varying angle of attack the pressure 
near the walls of the cavitation tunnel is much higher resulting 
in a lower –Cp value. 
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(a)

 

(b)

 

(c)

 

(d) 

 
 

Figure 4: 3D Twist11 hydrofoil at α -2˚. Experimental (open 

squares) and numerical (solid circles) distribution of the -Cp 

coefficient for U∞ = 50 ms-1, T∞  =297K, p∞  = 0.97· 105 Pa, ρ∞  
= 998.2 kgm-3 (a) y/s = 0.5, (b) y/s = 0.4, (c) y/s = 0.3, (d) y/s 

= 0.2. 

 

 
Figure 5: 3D Twist11 hydrofoil at α= -2˚. Distribution of -Cp 
coefficient on the surface of the hydrofoil. U∞ = 50ms-1,          

T∞ = 297K, p∞  = 0.97· 105 Pa, ρ∞ = 998.2 kgm-3. 

CAVITATING FLOW RESULTS  
The unsteady cavitating flow about the 3D Twist 11 

hydrofoil at -2˚ angle of attack is calculated and compared with 
the results of the experiments of Foeth [4]. Here the situation 
with steady inflow is considered at the cavitation number 

�=1.1. The geometry is symmetric with respect to the mid-span 

plane and in order to save computational time only the 
starboard-half of the test section and hydrofoil is calculated. 
This assumption of hydrodynamic symmetry is supported by 
the experimental findings of Foeth. To speed up the formation 
and shedding of the cavity sheet in the numerical simulations, 
the calculations are performed at a free-stream velocity of U∞ = 

50 ms-1. Note that to obtain a cavitation number equal to � = 

1.1 at a temperature of T∞ = 297K a free-stream pressure equal 
to p∞ = 13.75·105 Pa is chosen. To accelerate the calculations 
the numerical method has been parallelized by decomposing 
the computational mesh in 16 equal-sized blocks. 

First, a solution employing the first-order reconstruction 
method is calculated on the coarse mesh. The sheet cavity is 
found to become steady for this mesh and order of 
reconstruction. The calculation is continued with the second-
order reconstruction method on the coarse mesh. Then, it is 
found that resolution of the cavity sheet and its shedding is not 
represented adequately. The coarse mesh is too coarse to 
resolve the re-entrant jet and the shed vapor structures properly. 
The re-entrant flow is captured within one computational 
control volume and the sheet cavity occasionally sheds vortical 
vapor regions, which quickly dissipate.  

To improve the resolution in the region with cavitation, the 
finer mesh as presented in Figure 3(b) is constructed by 
refining the region along the suction side of the hydrofoil to 
approximately 10% chord length in normal direction to ensure 
that the sheet cavity is located in this refined region. The 
solution obtained on the coarse grid is used as the initial 
solution for the calculations on the fine grid by employing a 
solution-interpolation method.  

On the fine grid the corresponding numerical time step ∆tcfl 
is equal to ∆tcfl = 1.01·10-8 s. This small time step is required to 
meet the CFL condition and to be able to capture the pressure 
waves generated by the collapse of vapor structures. These 
waves travel at a velocity exceeding 1500 ms-1. 

The transient evolution of the cavitating flow can be 
illustrated through the time history of the total vapor volume 
Vvap as defined in Equation (7). This dimensionless quantity as 
a function of dimensionless time tU∞/c is presented in Figure 6. 

 

Figure 6: Dimensionless total vapor volume Vvap, Equation (7), 

for cavitating flow about 3D Twist11 hydrofoil at α=-2˚, � = 

1.1. Fine grid, ∆tcfl=1.01·10-8s. 
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Figure 6 clearly indicates that after a start-up time, the 
evolution of the total vapor volume becomes periodic in time 
and that the amplitude and period of the cycle is constant in 
time. The cycle illustrated by the dashed box in Figure 6 has a 
dimensionless period of TU∞/c = 1.7, which corresponds to a 
Strouhal number based on the chord length equal to Stc = 0.59. 

In Figure 7 the cavitation flow structures on the Twist11 
hydrofoil are presented at the time instants 1-6 indicated in 
Figure 6. The time ∆T between each picture is equal to 8.5·10-4s 
or ∆T U∞/c =  0.28. Two iso-contours of the void fraction are 
chosen to visualize the structure of the cavity sheet as can be 
seen most clearly in Figure 7(6). 

 
(1) Top view 

 

(1) Side view 
 

 
(2)  

 

(2)  

 
(3)  

 

(3)  

 
(4)  

 

(4)  

 

(5)  

 

(5)  

 
(6)  

 

(6)  
 

 
Figure 7: Twist11 hydrofoil at α=-2˚ for �=1.1. Formation of 

cavitating flow structures during one shedding cycle. Presented 

are the iso-contours of void fraction equal to α=10-3 and α=0.5. 
Pictures (1)-(6) correspond with points 1 - 6 in the time history 

given in Figure 6.  

 
In Figure 7(1) the total vapor volume is at its minimum. In 

the center of the hydrofoil the sheet cavity has disappeared and 
only a small spanwise cavitating vortex is visible. Also visible 
are two side lobes of the sheet cavity at one quarter and three 
quarters of the hydrofoil in span-wise direction. From Picture 
(1) to just after Picture (2) the total vapor volume increases, 
mainly due to an increase in volume of the detached vapor 
regions in the center of the hydrofoil. This detached vapor 

region, shaped as a horseshoe, decreases in volume between 
Picture (2) and (3) until it has disappeared just after Picture (3). 
Meanwhile, the sheet cavity starts to grow again from the 
leading edge in the center of the hydrofoil from Picture (2) to 
Picture (6), which explains the increase of total vapor volume 
up to Picture (5). This increase is counteracted due to the 
formation of a re-entrant flow between Picture (4) and (5) 
starting at the closure region of the cavity sheet and extending 
towards the leading edge of the hydrofoil in Picture (6) after 
which the cycle is repeated continuously. 

In his thesis Foeth [4] visualized and explained the 
structure of the shedding of the sheet cavity in detail and 
especially the formation of a cavitating horse-shoe vortex, the 
shape of the sheet cavity with distinct side-lobes and the 
formation of re- and side-entrant jets. In the numerical 
simulation the side-lobs of the sheet are clearly visible in 
Figure 7(3) just before the collapse of the cavitating horse shoe 
vortex. It should be noted that the conditions in the experiments 

are slightly different, i.e. α = -1˚ and � = 1.13. However, the 

effect of the slight increase in angle of attack is counteracted by 
the slight increase in cavitation number and thus, the two 
conditions are expected to be very similar. Foeth [4] mentions 
that the overall shedding of the sheet cavity did not change 
much compared to the conditions of the numerical simulations, 

i.e. α = -2˚ and � = 1.1. 

A very distinct feature of the shedding of the sheet cavity 
on the 3D Twist11 hydrofoil is the formation of a cavitating 
horse-shoe vortex in the center part of the hydrofoil. In Figure 
7(6)-(3) the formation and convection of such a cavitating 
horse-shoe vortex is clearly present in the numerical 
simulation. In Figure 7(6) the sheet cavity has reached its 
maximum extent in the center of the hydrofoil. Already a re-
entrant flow is moving upstream along the surface of the 
hydrofoil generating a circulation at the closure region of the 
cavity sheet. As soon as the re-entrant flow reaches the leading 
edge, a spanwise cavitating vortex is detached from the sheet 
cavity as visible in Figure 7(1). This cavitating vortex is 
convected with the flow as visible in Figure 7(2) and (3). The 
center of the vortex is convected upward, primarily by its self-
induced velocity, giving the vortex its horse-shoe shape. The 
height of the horse-shoe vortex is clear from the side view in 
Figure 7(3). It reaches up to 2-3 times the thickness of the sheet 
cavity. In the experiments of Foeth [4] the height of the shed 
vapor cloud is found to be an important feature. 

In Figure 8 the streamlines on the surface of the hydrofoil 
are presented at the time-instants 1-6 of Figure 6. The 
streamlines are colored by the void fraction to indicate whether 
it is a liquid flow or a flow of vapor. The vectors indicate the 
direction of the flow.  

In Figure 7(1) the vapor sheet in the center of the foil is at 
the leading edge of the foil and starts to grow. At the same time 
a flow of liquid is moving upstream, denoted by the blue color 
presented in Figure 8(1), and has reached the leading edge of 
the foil. Note the sharp transition from liquid to vapor at the 
mid-span of the hydrofoil in Figure 8(1). 

There, the flow moves upward and impinges on the 
interface of the cavity sheet above the re-entrant flow. The fluid 
impinging on the interface cuts off a region of vapor as visible 
in Figure 7(1). Around this vapor region a circulatory flow 
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(1) 

 
(2) 

 
(3) 

 
(4) 

 
(5) 

 
(6) 

 
Figure 8: Streamlines on  surface of 3D Twist11 hydrofoil at α 

= -2˚, �=1.1. Streamlines are colored by value of void fraction.  

Pictures (1)-(6) correspond with time-instants 1-6 presented in 
Figure 6. 

  

 
pattern is observed creating a spanwise (cavitating) vortex at 
the center of the hydrofoil, which is then convected with the 
flow as presented in Figure 8(2)-(5).  

The shed cavitating vortex has disappeared between 
Pictures (3) and (4) and the sheet cavity grows to its longest 
extent at the center of the hydrofoil, see Figure 7(3)-(6). At the 
closure line of the sheet cavity a region with high vorticity has 
developed, which will drive the re-entrant flow. As visible in 
Figure 8(4) the re-entrant flow at the closure line of the cavity 
starts as a side-entrant jet. Note that during the growth of the 
sheet, a re-entrant flow is already moving upstream underneath 
the vapor sheet, see Figure 8(3)-(6), which is confirmed by the 
experimental results of Foeth [4]. In the present numerical 
simulations it appears that although an upstream moving liquid 
flow is already present just behind the cavity sheet, it does not 
have enough momentum to reach the leading edge until the 
vapor cloud has collapsed just after time-instant 3, see Figure 
7(3) and Figure 8(3). More research, both experimentally as 
numerically, should be carried out to verify this observation. 
Also, the influence of the pressure pulses originating from the 
collapse of the vapor structures on the shedding mechanism and 
the formation of the re-entrant jet should be considered further.  

We remark that in Figure 8(2) the re-entrant flow appears 
to be directed outward from the plane of symmetry resulting in 
a flow pattern on the surface of the hydrofoil which is in very 
close agreement with that of the experiments of Foeth [4]. 

Between Pictures (3) and (4) the shed vapor regions 
collapse near the surface of the hydrofoil creating strong 
pressure pulses that propagate over the surface of the hydrofoil. 
Three time-instants, t1-t3, are selected between Pictures (3) and 
(4). Denote the time at Picture (3) with t0, then t1 to t3 are equal 
to t1 = t0+1.8·10-4 s, t2 = t1+10-5 s, and t3 = t2+10-5 s, respectively. 
In Figure 9(I)-(III) the solution for the pressure and two iso-
contours of the void fraction are presented for the times t1-t3, 
illustrating the origin and propagation of the pressure pulses 
above and on the surface of the hydrofoil.  

In Figure 9(I) the convected vapor region reaches a region 
with higher pressure. Inside the vapor region the pressure is 
equal to the saturation pressure. This pressure difference 
induces a local flow field directed towards the center of the 
vapor region and causes the vapor region to collapse. The 
inward moving liquid impacts at the center of the former vapor 
region and initiates an outward propagating spherical shock 
wave traveling at the speed of sound c in the medium as 
presented in Figure 9(II). The maximum pressure in Figure 
9(II) is 103 bar, which is  7.5 times the free-stream pressure p∞. 

In Figure 9(III) the shock wave is travelling radially 
outward from the region of collapse. Downstream the shock 
wave runs over the surface of the hydrofoil inducing a high 
loading on the foil. Upstream the shock wave hits the vapor 
sheet and due to the lower acoustic impedance ρc of the two-
phase flow region compared to that of the liquid, the shock 
wave is reflected as an expansion wave from the interface of 
the cavity sheet at which the pressure is constant. For the same 
reason the shock wave also reflects from the remaining vapor 
structures above the region of collapse. 

As visible in Figure 9(III) the pressure again returns close 
to the saturation pressure at the location of the former vapor 

α [-] 

α [-] 

α [-] 

α [-] 

α [-] 

α [-] 



 11  

region, which causes the liquid to cavitate again. In the present 
three-dimensional calculations the resolution of the 
computational mesh is not fine enough to capture this behavior 
in more detail. However, in Koop [12] we have shown that for 
two-dimensional cases this phenomenon is the reason for the 
so-called rebound of vapor clouds, which occasionally is 
observed during experiments.  

 
(I) Top view 

 
(II)  

 
 

(III)  

 
(I) Side view 

 
(II) 

 
(III)  

 
Figure 9: Top and side view of collapse of shed vapor 
structures on 3D Twist11 hydrofoil at α= -2˚. Presented are two 

iso-contours of void fraction, i.e. α=10-3 and α=0.5 and 

solution for pressure p. Denoting time-instant 3 in Figure 6 

with time t0, then Pictures (I)-(III) correspond with times t1 to 

t3, where t1 = t0 + 1.8·10-4 s, t2 = t1 + 10-5 s, and t3 = t2 + 10-5 s, 

respectively.  

From Figure 9 we conclude that with the present 
mathematical and numerical formulation it is possible to 
capture pressure pulses in the liquid flow, which are generated 
by the collapse of vapor structures. These pressure pulses are 
believed to be the origin of erosion of surface material due to 
cavitation. Further calculations on a finer mesh should be 
carried out to focus more on the collapse phase of the shed 
vapor structures.  

Note that between Figure 9(II) and (III) 1000 numerical 
time steps have been taken. It might be worthwhile to 
investigate methods such as multi-grid, preconditioning and/or 
implicit time-integration, which allow larger numerical time 
steps to be taken. However, the larger admissible numerical 
time steps should still resolve the propagion of high-frequency 
pressure pulses, which we believe to have a major influence on 
the self-oscillatory behavior of the sheet cavity and its 
shedding.  

CONCLUSIONS AND DISCUSSION 
In this paper the numerical results for the cavitating flow 

about the 3D Twist11 hydrofoil at -2˚ angle of attack are 
presented employing an equilibrium cavitation model in 
combination with the Euler equations. The used mathematical 
model for a compressible homogeneous water-vapor mixture at 
equilibrium saturation conditions offers a general applicable 
model for cavitation and does not have any free empirical 
parameters for phase transition.  

First, it is shown that the numerical method is able to 
accurately calculate single phase water flow about the three-
dimensional Twist11 hydrofoil compared to the experimentally 
obtained surface pressure data.  

For cavitating flow we have found that the shape of the 
sheet cavity and the outline of the closure region as predicted 
by the present numerical method compare quite well with the 
experimental results of Foeth [4].  

The 3D Twist11 hydrofoil has been designed to have a 
clear and controllable three-dimensional sheet cavity. It has 
been shown both experimentally by Foeth as numerically in 
this paper that the shape of the cavity and the closure line of the 
cavity determine the direction of the re-entrant flow and that 
the re-entrant flow from the sides dictates the behavior of the 
shedding cycle. Therefore, the shedding of a sheet cavity is 
governed by the direction and momentum of the re-entrant and 
side-entrant jets and their impingement on the cavity surface. 
The impingement of the re-entrant flow on the cavity interface 
and the detachment of a span-wise cavitating vortex is captured 
in the present numerical simulations based on the Euler 
equations. This confirms that these phenomena appear to be 
inertial in nature.  

The development of a re-entrant flow is predicted in close 
agreement with that seen in the experiments. During the growth 
of the sheet, a re-entrant jet is already moving upstream 
underneath the vapor sheet. Note that the predicted re-entrant 
flow is a flow of liquid.  

The formation of a cavitating horse-shoe vortex and its 
advection with the flow is captured in the present numerical 
simulations and these cavitating flow features agree quite well 
with the experimental observations.  

p [bar] 

p [bar] 

p [bar] 
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We have shown that the present numerical method is 
capable to predict the collapse of shed vapor structures and the 
subsequent high pressure pulses on the surface of the hydrofoil, 
which is important for the prediction of erosion and noise. 
Within experiments it is a difficult task to capture and/or 
visualize these pressure pulses and the associated unsteady 
loading of the foils. In order to further validate the numerical 
method it is important to gain more knowledge experimentally 
and numerically on the strength of the pulses in combination 
with unsteady sheet cavitation. Furthermore, the influence of 
the pressure pulses on the shedding mechanism should be 
investigated both numerically as experimentally, especially the 
influence on the formation of the re-entrant jet.  

At present the grid resolution is insufficient to be able to 
capture the phenomena related to smaller scale vapor structures. 
In the future methods need to be investigated to speed up the 
present numerical method. It might be worthwhile to 
investigate methods such as multi-grid, preconditioning and/or 
implicit time-integration, which allow larger numerical time 
steps to be taken. However, the larger admissible numerical 
time steps should still resolve the high-frequency pressure 
pulses, which we believe to have a major influence on the self-
oscillatory behavior of the sheet cavity and its shedding.  

The present paper focused on sheet cavitation on a 
stationary hydrofoil located in uniform inflow conditions. Foeth 
[4] also conducted experiments on hydrofoils placed behind 
two stacked hydrofoils with oscillating flaps generating an 
unsteady inflow. Huckriede [8] modeled these oscillating 
hydrofoils employing so-called ‘transpiration’ boundary 
conditions. The present research will be extended to 
numerically investigate the influence of unsteady inflow on the 
shedding of the cavitation sheet and compare the results with 
those of the experiments of Foeth.  

In Koop [12] we also conducted numerical simulations for 
the steady cavitating flow about a finite three-dimensional wing 
generating a cavitating tip vortex. Future work has to be carried 
out to investigate the interaction between the sheet cavity and 
the cavitating vortex. One of the difficulties lies in accurately 
predicting the internal structure of the cavitating vortex. Ton 
[20], [21] has investigated the so-called ‘Vorticity Confinement’ 
method. There it is shown that it is indeed possible to improve 
the numerical results for tip vortices. However, it is also shown 
that the vorticity confinement method is not yet robust and 
needs to explored further.  
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