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Abstract

Sanders’ axial and normal displacement solutions are examined for two different ge-
ometries and loads : (a) an infinite long pipe containing a circumferential crack in bending
and tension, and (b) a semi-infinite long pipe containing a circumferential crack at the
fixed end in bending and tension. A paraboiic approximation of the axial displacement so-
lutions for the cracked pipes is given foréalciﬂ,atibnbf the crack opening area for leak-rate

evaluation.



1. Introduction

Although there are many available research results on the stress intensity factors
and energy-release rates for circumferentially cracked pipe in bending and tension [1,2],
few displacement solutions are available in the literature. Within the context of shell
theories, the axial displacement solutions can be used to evaluate the leak rates of the
cracked pipes containing pressurized fluids. The normal displacement solutions, on the
other hand, can be used to evaluate the moment carrying capacity of the cracked pipe
when finite deformation of the pipe is considered. Therefore, we examined the closed
form expressions of the axial and normal displacement solutions developed by Sanders and
Alabi [3-7] in this report for two different geometries and loads: (a) an infinite long pipe
containing a circumferential crack in bending [3,4] and tension [5], and (b) a semi-infinite
long pipe containing a circumferential crack at the fixed end in bending [6] and tension [7],
as schematically shown in Figure 1(a) and 1(b). Figure 1(c) shows the schematic plot of
the pipe cross section containing a circumferential crack. In the figure, R represents the

pipe mean radius, t represents the wall thickness, and 2a represents the total crack angle.

As the effects of transverse shear strain are found to be significant (8] only for a very
short crack where a = O(€?), the first approximation theory which is consistent with the
Kirchoff hypotheses are valid for finite crack problems. Here € is a small dimensionless

parameter defined as

2 t

¢ T /- 7R @

where v is Poisson’s ratio. In Sanders’ equation, the complex displacements and stress
functions of a pipe are given by two charateristic functions [5]. The total solution consists
of a nominal solution from each remote loading, an elementary solution, a semi-membrane
solution and an edge-effect solution. The physical displacements are calculated by taking
the real parts of the complex displacements from Sanders’ solutions for the two character-
istic functions. The simplification procedures in these semi-membrane solutions produce

errors no greater than those due to the use of the classical thin shell theory for R/t < 30.
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2. An Infinite Long Pipe with a Circumferential Crack in Bending and Tension

2.1 The Bending Case

Energy-release rate solutions for the combined bending and tension loading case were
given in reference [4] and more elaborate results for tension loading were given in [5]. The
expressions for the axial displacement u and the normal displacement w for bending
loading were derived by Sanders [3]. These dimensionless variables are related to the

physical axial and normal displacement, U and W, by

U= E—u (2)
cR
W = E:iw (3)

where ¢ is the nominal stress, E is Young’s modulus. In this bending case, the nominal

stress o is defined as:
M MR

=TRRC T 4
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where M is the remote bending moment, and I is the moment of inertia of the circular

cross section. The following constants depending only on the pipe geometry were obtained

by Sanders (3] as:

A =———=cosa
2
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Then the axial displacement u and the normal displacement w can be expressed in terms
of the quantities defined above as:

w = {e‘l{—B + Dcos6 + 3@(-‘4-{- C cos@ + 3cosf — -;-9sin9)} on the crack ;
0 off the crack ,

—v2D cosb — %P cos Z=2  off the crack . (7)

{ (2+ C)cosf — 36sinf on the crack ;
w =
V2

In Figure 2, the undeformed circular cross sections of the pipes are shown by the
dotted lines and the deformed shapes of the cross section containing the crack are shown
by the solid lines for o = 10°,30°,60° and 90° based on the normal displacement solutions
of equation (7). All the normal displacement solutions shown are normalized such that the
maximum values of the §-variation w are set at 10% of the radius R of the undeformed
cross section. For the cases shown, the pipe becomes “taller” under remote bending. When
finite deformation of the pipe is accounted for, this deformed shape tends to increase the
bending stiffness of the cracked pipe. The same kinds of ovalization were observed from the
experiments of Kanninen et al. [9] and Bruckner et al. [10] for circumferentially cracked
pipes with relatively large cracks. When the crack becomes small, in these experiments,
the cracked pipe deforms into a shape such that the pipe is “shorter”. This “shorter”
deformed shape agrees with the pre-buckling mode of a pipe of elastic-plastic materials
[11].

In Figure 3, the values of the axial displacement u normalized by ujs, which is the
maximum axial displacement at § = 0, are plotted as the functions of the normalized 6 by
a for a = 10°,30°,60° and 90°. Note that the maximum displacement up; at § = 0 can

be calculated easily from equations (5) and (6) as:

asec? @ — tan a

tana-}-\/itan%?‘- '

2
Uy = —Ie'l{atana + (1 —=cosa)(2 -

(8)

As shown in the figure, the four curves are remarkably close each other. When « is less

than 60°, the opening profile can be fitted almost exactly by a parabolic curve which is
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the solid line shown in the figure. When « is larger than 60°, for example 90°, as shown
in the figure, the solution still can be conservatively approximated by the parabolic curve.
The detail of the curve fitting will be discussed in Section 4, but we can asymptotically
calculate the values of ups and u as o — 0 (and consequently § — 0). The second order

expansions of ups and u have the simple expressions as:

Uy = -\é—ie_laz

u=¢e""( —2%a2 - ?92 ). (10)

Combining equations (9) and (10) yields a parabolic equation as:
—_— Y 2 .
1-(2) (1)

This is the equation plotted as solid lines in Figure 3 and the subsequent plots of the axial

displacement solutions.

2.2 The Tension Case

The displacement solutions for an infinite long pipe with a circumferential crack under
remote tension are given here based on the work in reference [5]. In the tension loading
case, o is the tensile stress in the pipe at infinity. The following quantities which were

dependent only upon the pipe geometry were defined by Sanders [5] as:

T —a T —«
Azsinacos———-—{—\/icosasin
V2 V2
T —« Q T —«

B = sin +

VT
AP =2(sina — acosa)

1, = _\{_5 T-a T-a T—a
3% ~ 3 5 7 (\/i)cos \/§]P (12)




AC =v2(8 - AD)

T—«

V2
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V2

Then the axial displacement u and the normal displacement w can be expressed in terms

2rAD = (sin2a — 2a cos 2a) sin +v2(a? + 2sin’ a

—3asin @ cos &) cos

of these quantities as:

u = { —e‘l{%z:(l —Ccosf+26%+ A)+ B—Dcosf} on the crack ; (13)
0 off the crack
—1+4+Ccosé on the crack ;
W=19 =v2Dcosf — %—P cos "—\7-2—9 off the crack . (14)

The deformed shapes of the cross section are shown in Figure 4 for « = 10°,30°,60°
and 90° based on the normal displacement solution of equation (13). The deformed shapes
are slightly different from those of the bending case and show the same type of ovalization
effects. The normalized axial displacements are shown in Figure 5. The shapes are slightly
closer to the asymptotic solid line than the bending case. The maximum displacement u s

is expressed as:

D) — a + /2tan I3
uy = Lot (g2 4 gl 080 E (15)

4 COS (0 tana+\/§tan"7"§ '

The asymptotic limits of ups and u as & — 0 are the same as equations (9) and (10) and

consequently equation (11) can be used for approximation.

3. A Semi-infinite Long Pipe with a Circumferential Crack at the Fixed End

in Bending and Tension

Energy-release rate solutions were given for this configuration by Alabi and Sanders
[7]. The complete results for the bending case were given in Alabi [6]. It was reported that

the proximity of the fixed boundary had an alleviating effect on energy-release rates.
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3.1 The Bending Case

The necessary constants for the displacement solutions were given by Alabi [6] as

Qa — COS @ SIn &
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\/ﬁco «a /s /3
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The displacement solutions are expressed in terms of the above quantities as:
-1 V2 1, .
=¢ {-br—br+(dr+dr)cosf+ —2—(—aR + crcosf — §Gsm9 +3cosf)} (17)
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Figure 6 shows the deformed shapes of the cross section for a = 10°,30°,60° and 90°
based on the normal displacement solution of equation (18). As the boundary is fixed,
the normal displacements appear only on the pipe part. It is clear that the pipe becomes
“taller” under remote bending loads. The axial displacement solutions are shown in Figure
7. The shapes for smaller cracks are closer to to the solid line which is the plot of equation
(11). The maximum displacement u s is expressed (from equations (16) and (17)) as:

2 2

1 asec’a—tana asec” o —tana

uyp = —ge—l{a tana+(1—cosa)[2 — =( -
4 2 ﬁtan%-}—tana \/itan-é’;—tana

)l (19)

The asymptotic limits of ups and u as & — 0 can be obtained easily from equations (17)

and (19) as:

up = e a (20)
u=¢e""( {2-012 - %592 ). (21)

Although the values are half of the values for the infinite long pipes, the same parabolic

approximation is possible and consequently equation (11) holds for this case also.

3.2 The Tension Case

The necessary constants for the displacement solutions were given by Alabi and

Sanders [7] as:

SIN @ — QX COS Q@

A= 1 - 1.
COS @ SIN 5= — =S1n & €os -3

V2 V22 V2

B SinQ — & COS Q&
= 1 t T—Q 1. T—Q
—=cosasin =2 + zsin a cos T==2
Vi V2 T2 7z
1 o a 1 | «

Tar = —=a® 4+ A(= cos —= — —=sin —=)

3

2% B
1

2\/§7rbR = —%ae’ + may — B(g- COS

2 V2

1 B
aR = —§a2 ——2\/§bR+a1— —.‘Z—COS

T —«




2\/—b1 ——a —aR—aI+§cos% (22)

1
-2—(a2 —4) 4+ 2v2b; +as}sin?a + %(a + 3cosasina) + AT
W\/idRsina = mersina + (—2ay — 2v/2b; + 2\/§bR) sina + BA — AT

7!' .
EcIsma ={ar+

T—
creosa =1+ crcosa — 2v2dg cosa — — cos
R I R 2 \/5
2v2d l—c cosa+Acos ® _creosa
cosa=1-— — COS —= —
I R D) \/§ I
I = —2sin® acos — sm—(a-}—5cosasma)
A = 2sin? a cos — a sin — (a + 5cosasina)

V2 2\/_ f

The displacement solutions are expressed in terms of the above quantities as:

2 1
= ¢ Y{—bp—br+(dr +ds)cosf + §(~1 - 502 —ap+ crcosb)} (23)

w=—1+(cR+c1)c059+2\/§d1c059—-;icos%. (24)

Figure 8 shows the deformed shapes of the cross section for « = 10°,30°,60° and
90° based on the normal displacement solutions of equation (24). It is clear that the pipe
becomes “shorter” under remote tensile loads as a becomes large. This ovalization effect
is opposite to the other cases. The axial displacement solutions are shown in Figure 9,
in which all three lines except for a = 90° are close to the solid line which is the plot

of equation (11). The maximum displacement u s is expressed (from equations (22) and

(23)) as

2 1 4 l—=cosa tana — a tana — o
upy = —€ 1a° + ——|2 - + . 25
M=y { cos o { \/itanl\;—,zﬂ +tana ﬁtan% —tana]} (25)

The asymptotic limits of up; and u as @ — 0 turn out as the same as equations (9) and

(10). Consequently, equation (11) holds for this case also.



4. Discussions

In terms of energy-release rates and stress intensity factors, Sanders’ solutions were
compared well with the finite element results of Forman et al. [12]. For the calculation
of the crack opening areas in pipes, Wiithrich [13] discussed several different methods and
presented some analytical formulae based on the solutions given by Erdogan and Kibler
[14]. But those solutions are good only for short cracks because the shallow shell thoery
is used. But simple expressions which are valid even for large cracks are possible for the
axial displacement and the opening area. As previously derived, equation (11) serves as
the asymptotic limit for the four cases as @ — 0. The area under this curve, 4,, as a — 0
becomes % which is one quarter of the total opening area for the infinitely long pipe and
one half of the total opening area for the semi-infinite pipe with a fixed end. To check the
validity of the above equation, all the axial displacement solutions were approximated by

the parabolic equations:
u

Lo e(f (et D)

o 3 - + 1. (26)
The area under each parabolic approximation, A,, and the parameter c are listed in Table
1 for the four cases. It is shown that the values of ¢ approach —1 asymptotically.

The areas are smaller than % at the most by 7% for all the cases studied. Therefore
equation (11) is a good conservative approximation of the axial displacement solutions for

leak rate calculations. The real physical opening area, A, can be approximately calculated

for an infinite long pipe as:

8
A=§R20H.LM% (27)
and for a semi-infinite long pipe as:
4
A=§R2auM% (28)

These results may be useful to check numerical or experimental results in the linear elastic

region since these solutions are not accounted for plastic effects.
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Figure 1

Circumferentially cracked pipes
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Figure 2 Normalized normal displacements of an infinite long
ipe with a circumferential crack subjected to remote bending.
m% a =10° (b) a = 30° () a = 60° (d) o = 90
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Figure 3 Normalized axial displacements of an infinite long
pipe with a circumferential crack subjected to remote bending.



(a) (b)

(c) (d)

Figure 4 Normalized normal displacements of an infinite long pipe
with a circumferential crack subjected to uniform remote tension.
@ o = 10° (b) o = 30° (©) a = 60° d a = 90°
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Figure 5 Normalized axial displacements of an infinite long pipe
with a circumferential crack subjected to uniform remote tension.



(a) (b)

(c) (d)

Figure 6 Normalized normal displacements of a semi—infinite long pipe with
a circumferential crack at the fixed end subjected to remote bending.
(a) a = 10° (b) o« = 30° (¢) aa = 60° d a = 90°



curver fitting

Figure 7 Normalized axial displacements of a semi—infinite long pipe with
a circurnferential crack at the fixed end subjected to remote bending.
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(c) (d)

Figure 8 Normalized normal displacements of a semi—infinite long pipe with
a circumferential crack at the fixed end subjected to uniform remote tension.
(a) a = 10° (b) a = 30° () a = 60° d a = 90°



curve fit

Figure 9 Normalized axial displacements of a semi—infinite long pipe with a
circumferential crack at the fixed end subjected to uniform remote tension.



o Ao C

10 0.666 -0.997
30 0.662 -0.975
60 0.649 -0.901
90 0.630 -0.794

(a)

o Ao c

10 0.666 -0.996
30 0.661 -0.966
60 0.644 -0.874
90 0.623 -0.753

o Ao c

10 0.667 -0.999
30 0.665 -0.991
60 0.659 -0.954
90 0.644 -0.872

(b)

o Ao c

10 0.667 -1.000
30 0.666 -0.999
60 0.663 -0.981
90 0.652 -0.916

(c)

Table 1 Crack opening area Ao and curve fitting parameter ¢ for

(d)

(a) an infinite long pipe in bending, (b) an infinite long pipe in tension,
(c) a semi-infinite long pipe with a fixed end in bending and

(d) a semi-infinite long pipe with a fixed end in tension.




