ABSTRACT

A METHODOLOGY FOR SOLVING PROBLEMS

IN ARTIFICIAL INTELLIGENCE
by
Suk In Yoo

Chairman: Keki B. Irani

For the development of a general and efficient approach for solving problems, a
metholodogy for deriving a heuristic for the A ° algorithm is discussed. A sys-
tematic approach for modeling a problem using the knowledge in the problem
domain is first presented in which a set of elementary units and a set of attributes
of the problexh are defined. Algorithms to derive a beuristic for A’ are then
developed for this problem model. The procedure for modeling a problem and deriv-
ing the heuristic for the problem is illustrated by several examples, namely, the &
puztle problem, the traveling salesman problem, the robot planning problem, the
consistent labeling problem, and the theorem proving problem. For problems such as
the 8-puzzle problem, the traveling salesman problem, the robot planning problem,
and the consistent labeling problem in which the goal is completely defined, our
problem solving approach results in good efficiency. For problems such as the
theorem proving problem in which the goal is partially defined, our approach results

in poor efficiency.

For deriving the heuristic for A ° which results in better problem solving effi-

ciency, various other versions of the basic problem model are suggested. The

versions zre given by partitioning the set of elementary units and the set of attri-
butes of the problem. Some of these models are compared against each other for

complexity for deriving the heuristic and for tightness of the derived heuristic.

A METHODOLOGY FOR SOLVING PROBLEMS

IN ARTIFICIAL INTELLIGENCE

by

Suk In Yoo

A dissertation submitted in partial fulfillment
of the réquirements for the degree of
Doctor of Philosophy
(Computer, Information, and Control Engineering)
in The University of Michigan
1985

Doctoral Committee:

Professor Keki Irani, Chairman
Professor Kuei Chuang
Associate Professor Ramesh Jain
Professor Normar Scott
Assistant Professor Paul Scott

In Memory of My Brother,

Seok Yoon Yoo

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to Professor Keki‘ Irani, his thesis
committee chairman, for his interest, guidance, and encouragement throughout the
course of this work. Thanks are extended to other committee members, Professor
Kuei Chuang, Ramesh Jain, Norman Scott, and Paul Scott, for their comments and
suggestions.

Financial support from Robot Syatemé Division in the Center for Research on
Integrated Manufacturing (CRIM) under the AFOSR Grant F49620-82-C-0089 is
gratefully acknowledged.

The author wishes to thank his parents and parents-in-law for supporting and
encouraging him to pursue this endeavor.

Finally, above all, the author wishes to express his deepest gratitude to his
wife, Hye-jung, bis son, Raymond Soonwon, and his daughter, Ginnie Sujin.
Without their endless patience and encouragement, this thesis would not have been

possible.

TABLE OF CONTENTS

DEDICATION ..orestnttniicsiinsistisinssssssssesssssssssnsssssssssessssssssessesssssssesans
ACKNOWLEDGEMENTScuuiiririirinnnncnnsnnnnicnnicissnensisinsesssssssssessesssases
LIST OF FIGURES ...utercicinnncnnennennnneninncnsnsssssissssssssssessesnesssssnns
LIST OF TABLEScuicitisitcensnnsnssssnssnsnnsaisissssessssssssssssssssssssonsaneseas
LIST OF APPENDICESiicninnnnennnnisnsisniissisnssesssscssessssssesssenes

CHAPTER

1. INTRODUCTION
1.1 Background teessetesasennanseseestessesaresseseseeanensessaras

1.2 Motivation, Problem, and Approachccceevrervrcccnnnen.
1.3 Literature SUIVEYcccccceccnsriissnncrncssenncosnessasasnsesnssssonsanses
1.3.1 Problem Representationccccoceeevrcercrnercnnrnnccenencns
1.3.2 Search Methodscciveevurininierersnrcencnnicnsnsnnne
1.3.3 The Generalized Problem Solving Process

2. REPRESENTATION OF A PROBLEM
2.1 INtroduction ...cccccccveminseescinnnecsnsssensersenssnssssnconssssssassassssasonsees
2.2 State-Space Representationccccevevecvcuncrercnnssencnccsaeenens
2.3 A Problem Model M ...t
2.3.1 Modeling Procedureccooveeerornnrcenerrncreecaeerennen
2.3.2 Length of a Path between Two States

3. HEURISTIC SEARCH ALGORITHM
3.1 INtroductioncccceecceenrseceereecensecesnesaenenneseesesessesssesesnsannns
3.2 Search Algorithm A®cocuievivvrnirciiinrineeeneneresaesneseeanns
3.3 HeUriStiC weueueneecniecicctiinecetinrcertennsse s e sesnesas e sasnsssesneans
3.3.1 Relaxed Successor Condition Formula
3.3.2 Heuristic Derived using the Problem Model M
3.4 EXBIMPIES ...ooierireieicicrnceeccntececeneteeecne st sae e saesnesaeesaeessnssnnes

iv

e
n

- -

10

11
11
13
13
28

35
35
37

61

3.5 PoWer Of HEURISLIC ...ucceiieeriirevrrrerercnerecsssssesnssesesssosssssosssssssanans 63

A PROBLEM MODEL M, AND HEURISTIC

4.1 Motivationcceueruennne essesseessnesnsnsnerstsasaesaessneresbsnesneabes 74
4.2 Goal Condition Formulacccocvevreverververnrcccnncncsncnnssasncens 80
4.2.1 Relaxed Goal Condition Formulaccccceevrecuenncn.. 81
4.3 A Problem Model M, S 83
4.4 Heuristic Derived using the Problem Model M, 85
4.4.1 The Case of Constant Rule Costccccceeeurrurnnee. 85
4.4.2 The Case of Nonequal Costs of Rules 86
4.5 EXAmPIEScouevuiereriirnnnnnisnnisssnsnisaesnosissnissonessssssessessssssnsassasssens 86
4.6 Power of Heuristicccocvrersenscscnnnncnesnnnsunnnsnscscssnneessasnsnsas 90

AN EXTENDED PROBLEM MODEL

0 W 0 (17 £ R — 93
5.2 Partition of the Set EUcccecercennenceen. essesesssassansnsonsanens 93

5.2.1 A Problem Model M,ccoerrcrncnceccensnsnnnees 95

5.2.2 Heunistic Derived using the Problem Model M, 06
5.3 Partition of the Set ATcovvvrveeeiceereccscncsennecncssecnnaes 106
5.4 An Extended Problem Model M,ccccuveicncivccnnnncnnne 109

HEURISTICS

6.1 INLrodUCliOncccocveeirecnsaincncsncsacnsncnsessassnnnsessnassasassssssanoranans 117
6.2 Heuristic Derived using the Problem Model M; 117

6.2.1 The Case of Constant Rule Costccccceeveenenen. 120

6.2.2 The Case of Nonequal Costs of Rules 124
6.3 Complexity and Tightness of Heuristiccccccvveeruecccccrinnenn. 133
0.4 EXamPIes ...ttt seensene e senessnesnas 144
0.5 DiSCUSSION ...ccccvirerecnaercscersuneranscsancrseorenacsssssnssnsaesssnssnasssnsennes 145

SEARCH ALGORITHM H*

7.1 MOtIVALIODcouiinineriritincitneniecnincinsiesenscsescsaresssssssesssses 150
7.2 Algorithm H® ..cooniicccecceeeeeesesscnne 152
7.3 EXBIMPLE c.uoieiiiiiieicntitncnetcnennnsecescetenesnssenssnsssssesnasans 158

7.4 Search Efficiency of Algorithm Heccoecveviccenvenvnenaennnns 159

8. CONCLUSION

8.1 Summary and Contributioncccceeveeeverreecrueerreerssenersaneennes 168
8.2 Future Research vereseeseesnsosannenssnnesssansaseneens 169
8.2.1 Solving a Problem with Partially Known
Goal Position Valuesccccoeeceereceerecsseccnnecsnecsanne 169
8.2.2 Automated Problem Solving Systemc.cucuu....... 170
APPENDICES reeeseentetensssesesnsesssesstsnsensaeaseatessstentesaseassssssrtesnesnsestessessssansnte 171
BIBLIOGRAPHYcuccirrerceccnncrnncnnesnssssnnenssnsasanse veeveneeessesnsesterassnneraenns 220

Figure

2.1

2.2

23

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

4.2

7.1

7.2

73

74

LIST OF FIGURES

The 8-Puzzle Problemc.ocoeiiriiirnecinnniicninancsnensessseessensessssssncens
The (5-city) Traveling Salesman Problemucveueecurvvvnncnnennnene.

The Robot Planning Problemccceeveeeeeeereuruncnrnrenseeneresnsansssnssnsnesenes

Search Tree for Solving the 8-Puztle Problemccounvueneennnnne..
Search Tree for Solving the (5-city) TSPccorvnicrvenrnrcrccensnnnessncnnee
Search Tree for Solving the Robot Planning Problem
The (0-city) Traveling Salesman Problemccourcuevrvcccrncnnnnnnnee.
Search Tree of A® using h(€;) ..ccccveeeeveurnrnennrnnenancninnennssansssssssscsacessessens
Search Tree of A® uSiBE B ceooevenevenocnicciicceccenererecrersesenaesnreeaes
Search Tree of A® using by «oecoveriieimncniccscce e nenes
Search Tree of A® using MSTeieeirccrrceesesaeeeneneesecessnsessesesssans
Search Tree for Solving the CLP using A®cccovvivcivincerccinnnnrunennes
Search Tree for Solving the CLP using Backtracking R
Search by H* Based on Version M) (....ooiiorcceeeecrnnecsessennne
Search by H* Based on Version Mj22)cvinrnrnninnnnicnincnsenensenee
Search by H* Based on Version M33)miieriinrncteeenennene

Search by Backtracking using Operator ¥.cccocrnervenrvccncnccennennes

14

15

17

65

67

69

70

71

72

91

92

166

7.6 Search by Backtracking using Operator &,

eee
Vil

oo

LIST OF TABLES

Table
3.1 Heuristics in the (B8-city) TSPccoiveeirrecteitereenineenreesassennesessensesaesens 73
6.1 Heuristics in the Consistent Labeling Problemccccceeucueennennen. 147
6.2 Heuristics in the Robot Planning Problemccccoceivuivvevnniccinvennecunnnnnen. 148
6.3 Heuristics in the (5-€ity) TSP ..ottt 149

Appendix
A.
B.

C.

LIST OF APPENDICES

Proofs in Chapter 3eevrerceerneeeneerrneesneennreesseesssessnesnne
Proofs in Chapter 6coeeveeeenreereererecerecreennescresneneeeeseseene

Argument-lccoveiinnnnininnnnnininnersnnienniissaenes eeeeeeeseeeseeseseeeeeeen

CHAPTER 1

INTRODUCTION

1.1. Background

Many human mental activities such as solving problems, learning, reasoning,
and understanding language are said to demand sntelligence. Over the past few
decades several computer systems are claimed to have been built to perform tasks
which need intelligence. Most of the work on building these kinds of systems has
been done in the field called Artificial Intelligence (Al). As Al systems underwent
experimentations, development, and improvement, several of those of wide applica-
bility have been produced and refined. Of special interest in this research is the area

of Problem Solving.

A problem can be viewed as a system which can be in one of a number of
states. A problem can be moved from one state into another by appying rules. Solv-
ing a problem, then, is to determine a sequence of rules that can take a problem

from a given initial state to a desired or goal state.

1.2. Motivation, Problem, and Approach

In general, a problem is given by a quadruple, (S,R ,e,,,¢,), called a state-
space formulation, in which S is a set of states, R is a sct of rules, ¢,, € S is the

initial state, and ¢, €S is the goal state. When the problem is given by

(S,R ,eia ¢,), the solution is given by a sequence of rules which takes the problem
from e,, to ¢,. Determining a solution to a problem involves a search in the state-
space. There may be many search methods for finding a solution to a problem.
Search methods can be classified into two types, blind search methods and heuristic
search methods, depending on whether or not the knowledge of the problem is used
in the search. The biggest shortcoming of the blind search method, such as the
breadth-first or the depth-first, is that the required storage and time grow exponen-
tially with the problem size. For solving problems, in most cases, a heursitic search

method is thus preferred.

A well-known beuristic search method is the algorithm A °, devised by Hart
and Nilsson [Hart68]. Algorithm A ° is a best-first search, which selects the most
prﬁmising path to the g§a| based on the numeric value assigned to each intermedi-
ate state generated during the search. The numeric value for each state e, is given
by an evaluation function f(e,) = g(e,)+ A(e,) where g(e,) is the minimum
cost of the p;th utablishe& so far from e¢,, to ¢, and A(e,’) is the Aeuristic estimate
of the minimum cost of the path from ¢, to the goal ¢,. The most interesting pro-
perty of A’ is in the admissibility. It guarantees an optimal solution because for
every e, € S, the value of A(e,) is required to be not greater than the minimum

cost A °(e,) of the path from ¢, toe,.

Problem-dependent approaches for deriving A(e,) have been developed for
some problems such as the 8-puztle problem gnd the traveling salesman problem. |
However, for the general problem solving procedure, a problem-independent
approach for deriving h(e,) is necessary. Some results for problem-independent

approaches have been published. Gaschnig [Gas79] introduced the notion of similar-

ity of problems. As the heuristic of a problem to be solved, he uses the minimum
cost of the path of a simpler problem which is similar to the original problem. There
is, however, no systematic methodology for generating this similar version of the ori-
ginal problem. Guida and Somalvico [Gui79] viewed a problem as a directed graph.
According to their method, an auxiliary problem is created by adding arcs to the
directed graph of the original problem. The minimum cost of the solution to the
problem is then the heuristic of the original problem. It is not easy, however, to
derive the simple auxiliary problem. Pearl [PeaSS] suggested generating a set of
relaxed problems by refining and deleting some of the predicates describing the rules
of the problem or deleting some of the predicates describing the goal state of the
problem. Of the set of relaxed problems which can be generated by his method, a
simplified problem was characterized by the two properties, decomposability and
semi-decomposability. The latter characterization can be detected by either commu-
tativity of rules or partial order on rules. Although the simple problem with decom-
posability provides efficient computation of the heuristic using parallel operations,
according to the author, its occurrence is rare and can be achieved by deleting a
large fraction of the predicates. In this research, we suggest a methodology for
modelling a problem which always leads to a simple problem with a decomposable
goal.

We will first suggest a systematic approach to represent a state-space of a
problem in such a way that the heuristic A(e,) is automatically abstracted. Based
on the problem model we will then develop a procedure to derive A(e,). A set of
rules of the problem and the goal state of the problem are described by the first
predicate formulas. As mentioned above, Pearl generates a set of relaxed models by

deleting some predicates which are either the components of the formulas describing

the rulcs. of the problem or the components of the formulas describing the goal state
of the problem. We, on the other hand, generate one relaxed model by relaxing the
formulas which describe the rules and the goal state, in such a way as to generate
simplified rules and a subgoal for each of the elementary units of the problem. Each
subgoal is then realized independently by applying the corresponding simplified
rules. The independent achievement of each subgoal reduces the complexity of the
derivation of the heuristic. The processing time is further reduced by parallel pro-
cessing. To improve the effciency of the derived heuristic, various versions of the
problem model are presented. Each version is given by partitioning the set of ele-
mentary units and partitioning the set of attributes of the problem. Each step of
our procedure is illustrated by five examples, namely, the 8-puzile problem, the
traveling salesman problem, the robot planning problem, the consistent labeling

problem, and the theorem proving problem.

The rest of this dissertation is organized as follows.

In Chapter 2 we formulate the problem model M in which a set of elementary

units and a set of attributes of the problem are defined.

In Chapter 3 we develop the general procedure, based on the problem model

M, to derive the heuristic A (e,) of search algorithm A °.

In Chapter 4 we formulate the problem model M,, a more general version of
M, in which the goal condition formula to represent the goal state of the problem is

defined. The procedure, based on M, to derive A(e,) is developed.

In Chapter 5 we first formulate the problem model M, in which a set of

objects of the problem is defined by partitioning the set of elementary units defined

for M,, and then we formulate the problem model M, in which a set of features of

the problem is defined by partitioning the set of attributes defined for M,.

In Chapter 6 we develop the general procedure, based on M,, to derive heuris-
tic A(e,). The value of A(¢,) varies depending on the set of objects and the set of
features defined. For a given set of objects and a set of features, the complexity for
deriving the heuristic h(c;) and the tightness of the derived heuristic A(e,) are

examined.

In Chapter 7 we present search algorithm H °, which is a slightly modified ver-
sion of algorithm A ‘. Algorithm A * selects for expansion the state with minimum
value of the evaluation function f . If more than one state has the same minimum
value of f, A’ selects the one with the maximum value of g. If more than one
state has the same minimum value of / and the same maximum value of g, A °
selects any of these arbitrarily. Sometimes this arbitrary selection may result in a
poor search efficiency which would be protected by some specific selection. H’
algorithm further clarifies the selection strategy in the case in which more than one
state has the same minimum value of f and maximum value of g. Search efficien-
cies of A° and H’ based on the same heuristic A (e,) are illustrated by an example.
One further feature of H_' is that it detects, based on the heuristic A (e,), the state
e, which is not one of the intermediate states for solution, and prunes ¢, from the
search tree. This feature improves the search efficiency, in case the problem has no

solution, by preventing the fruitless expansion of the state such as e, which will not

contribute to the solution.

Finally in Chapter 8 we summarize the results of our research and discuss

future research.

-1.3. Literature Survey

In this section several works concerning problem solving reported by other Al
researchers are reviewed. Two key factors of problem solving are problem represen-
tation and the search method. The works related to problem re;;resentation are
first reviewed, and the search methods developed so far are then discussed. Finally,
some approaches to developing the generalized problem solving process are reviewed

and their limitations are discussed.

1.3.1. Problem Representation

A problem representation is simply a technique for éonceptnalizing a problem.
Humans often solve a problem by‘ finding a way of thinking about it that makes the
solution easy. Likewise, a problem should be represented in such a way that the
search for a solution is simplified or reduced, or that it penhits a transformation to

some other form which makes a more efficient search possible.

A common representation scheme is the state-space representation [Bar8l,
Hun78, Jac74, Nil80]. In this representation, a problem consists of a countable set
S of states and a set R of rules (operators), each of which map some of the states
of S into others. A problem is solved when a sequence of operators is found so that
some goal state is produced when this sequence of operators is applied to the initial

state.

A scheme which is often distinguished from the state-space representation is-
the problem-reduction representation [Bar81, Jac74]. In the problem-reduction
approach, an initial problem description is given. It is solved by a sequence of
transformations, defined as operators, that ultimately changes it into a set of sub-

problems whose solutions are intuitively clear, called primitive subproblems. An

opcrator may change a single problem into several subproblems. To solve the
former, all the subproblems must be solved. The problem reduction representation
consists of three components: an initial problem description, a set of operators for

transforming problems to subproblems, and a set of primitive problem descriptions.

1.3.2. Search Methods

A problem represented in the state-space formulation is commonly ident_iﬁed
by a directed graph in which each node is a state and each arc is the application of
an operator transforming a state to a successor state. The search for a solution is
conducted to make the state-space graph contain a solution path. All the search
methods may be classified into two search types according to whether or not the
search uses some information embedded in the problem domain for efficiency. The
search method not using such information is called a blind search method (or
uninformed search method), and the one using such information is called a heuris-

tic search method (or informed search method).

A blind search method expands nodes in an order which uses no specific infor-
mation about the problem to determine which is the most promising node which can
lead towards a goal node. Although the blind search method, in principle, can pro-
vide the solution to a problem, it is often impractical for nontrivial problems. Typi-
cal blind search methods are either breadth-first search, depth-first search,
uniform cost search, or bidirectional search [Bar81, Hun78, Jac74, Nil80]. Each

of these search methods are briefly reviewed.

A breadth-first search expands nodes in the order in which they are generated,
while a depth-first search expands the most recently generated node first. A uniform

cost search can be viewed as a generalized version of a breadth-first search in that

all the rules (arcs in the search graph) may have different costs. This search evalu-
ates each node in the order of the cost of the path from the initial node to this
node. The cost of a path is computed as the costs of all the arcs lying in the path,

and the node on the minimal cost path is expanded first.

Each of the searches explained above uses forward reasoning, i.e. it works from
the initial node towards the goal node and uses rules that each maps a node to a
successor node. In some cases the search could nse. backward reasoning as well,
moving from the goal to the initial node. The bidirectional search is based on both
forward and backward reasoning, using any of the above search methods for each
reasoning.

Sometimes information embedded in the problem can be used to reduce the
secarch. The heuristic search method uses information of this sort. Typically the
beuristic information can be used in deciding which node is to be expanded next, or
which successor node(s) is(are) to be generated in the course of expanding a node, or
which nodes to be pruned from the search tree. The most studied and popular
heuristic search is a best-first search using some heuristic information for deciding
which node to expand next [Gas77, Hart68, Harr74, Hun78, Jac74, Nil80, Poh?ba,

Pob77, San70).

The heuristic search in which each node is partially expanded or some nodes
are pruned out was investigated by [Dor67, Mic70]. A best-first search is the one
that always selects the most promising node as the next node to expand. Thus the

“technique to measure the promise of a node is a key to the best-first search.

The measure of the promise is usually called an evaluation function, f. An

evaluation function has been defined in several ways. The best known definition

was developed by [Hart88] in which, for s given node n, f(n)=g(n)+ h(n)
where g(n) is the cost of the currently evaluated path from the initial node to the
node n, and A(n) is the Aeuristic eatimate of the minimum cost of the path remain-

ing between n and some goal node.

Hart and Nilsson [Hart68] introduced algorithm A°, which has been the most
studied search algorithm for problem solving. Algorithm A °, used for performing
the best-first search, with the evaluation function defined as above, includes the sig-
nificant property that the optimal solution is guaranteed because the heuristic esti-
mate A (n) satisfies ihe condition, called admisasbility. The value of A(n) satisfies
admissibility if it is not greater than the minimal cost of the path from the node n
to the goal state. The value of A(n) satisfies monotonicity if, for every successor
node m of n, it is not greater than the sum of A(m) and the cost of the arc

between the two nodes n and m [Hun78, Jac74, Nil80, Pea84].

Pobl [Poh70b) introduced algorithm HPA. HPA also implements the best-first
search. | For HPA, the evaluation function is defined as
J(n)=(l1-w)g(n)+ w-h(n) where v is the weighting factor varying from 0 to
1. Thus HPA may implement several search algorithms by altering the value of w.
For example, if w == 0, HPA becomes a uniform cost search, but if v = 0.5, HPA
becomes algorithm A °. A further flexible defintion of an evaluation function was
suggested by [Poh73] who allowed the weighting factor v to be dynamically
changed according to the given node n, ie., f(n) = (1-w(n))g(n) + «w(n)i(n). |

Ther are also more algorithms for playing two or more person games [Bar8l,

Ber79, Hun78, Jac74, Knu75, Nil80]. We will not be concerned with such games.

10

1.3.3. The Generalised Problem Solving Process

In this section some studies of the generalized problem solving process are

reviewed.

Search algorithms such as A ° and HPA find a solution to a problem efficiently
if a nontrivial heuristic estimate A (¢,) can be derived efficiently for each state e, of
the problem. Some results of a general approach for deriving A (e,) were discussed

in section 1.2.

The General Problem Solver (GPS) devised by Newell and Simon [New72]
employs means-end analysis for solving problems. Means-end analysis is a control
‘mechanism using an operator-difference table to find an operator which can reduce
differences between the current state and the goal state. If | the current state does
not satisfy the conditions necessary for applying the operator wlﬁch can reduce
differences, a new subgoal is created to satisfy the missing conditions and mean-end
analysis is again applied for achieving this new subgoal. This recursive approach
may work well if no more than one operator affecfs the difference of the same
object, or the difference affected by each operator is easily formulated. Otherwise it
is not easy to derive the operator-difference table. For example, in the 8-puzzle
problem the difference of each tile can be affected by every operator. For a given
state, one operator should be selected based on the operator-difference table, which
can redu?e the difference oi each tile from its goal position. The formulation of the_
c;perator-diﬂerence table in this problem can then be viewed as the derivation of the
heurstic A(e,) for each state e,. The approach using GPS may be one level higher
than the approach using heuristic A(e,). Thus even based on GPS, a general

approachv for deriving A (e,) is still necessary for efficient problem solving.

CHAPTER 2
REPRESENTATION OF A PROBLEM

2.1. Introduction

The representation of a problem is one of the basic and important aspects of a
general problem solver. Generality and efficiency of a problem representation may
be trade-offs because of the variety of problems. If a representation scheme involves
a broad class of problems, it tends to bear few special features which characterize
problems, so that some useful information for problem solving may be lost in such a

representation scheme.

In this chapter, one abstract structure representing a problem is presented
from which a beuristic for efficient problem solving can be systematically and
automatically abstracted. First in section 2.2 a well-known state-space formulation
for representing a problem is briefly reviewed and its short coming is pointed out.
In section 2.3 one mathematical structure representing a problem is formulated,
which bears a more detailed version of the state-space formulation and in which the

short coming of the state-space formulation is overcome.

2.2. State-Space Representation

A state-space formulation is the well-known representation scheme of a prob-

lem for graph search [Bar81, Hun78, Jac74, Nil80]. It consists of four components: a

11

12

set of states each of which is a data structure describing the condition of the prob-
lem at each stage of its solution process, a set of rules each of which is a specifica-
tion of transformation of one state into some other state, the initial state of the

problem, and the gda! state of the problem.

Definition 2.1: A-problem is a quadruple, <S,R ,¢;, ,¢, >, where
- S is a set of states,
- R is a set of rules,
- ¢,, is the initial state,

- ¢, is the goal state.

When a problem is formulated in a state-space, its solution is given by a
sequence of rules which takes a problem from the initial state to the goal state. In
order to find such a sequence the state-space is searched starting from the initial
state. The initial state is expanded by applying all the applicable rules to it. All the
resulting successor states are marked unexpanded. If the goal state does not exist
among the unexpanded states, then one of the unexpanded states is again selected
for expansion and all of its applicable rules are applied to produce the successor
states. This process is repeated until the goal state is produced as one of the succes-
sor states of some expanded state. Once the goal state is produced, the sequence of

rules forming the solution is then retrieved from the search space.

Each state of a problem from the state-space formulation is, however, arbi-
trarily represented so that a heuristic for the efficient search can not be systemati-
cally derived. We suggest in the next section a methodology to represent a state-

space of a problem in such a way that the heuristic is systematically and automati-

13
cally derived.

2.3. A Problem Model M

In this section we first show how to construct an abstract model of a problem.
We motivate each step of this construction by drawing upon three well known prob-
lems, namely, the 8-puzzle problem, the traveling salesman problem, and the robot
planning problem. Next, based on the problem model we evaluate the upper and
lower bounds of the length of a path between two states of the problem. These
values will be the basis for deriving a heuristic for efficient problem solving search,

which will be discussed in the next chapter.

2.3.1. Modeling Procedure

For the illustration of the procedure for modeling a problem the following three

problems are considered.

The 8-Pussle Problem [Gas77, Nil80, Pea83]: Given two. configurations on a
3x3 board, the initial and the goal shown in Fig.24, the problem is to reach the goal
configuration starting from the initial configuration by pushing one of the tiles adja-

cent to the blank space either up, down, left, or-right.

The Traveling Salesman Problem [Nil80, Pea83]: A salesman must visit
each of the cities on a map. The problem is to find a minimum distance of the tour,
starting at one city, visiting each city precisely once, and returning to the starting
city. One instance of this problem is, as shown in Fig.2.2, the (5-city) traveling
salesman problem in which the 5 cities are denoted by A, B, C, D, and E, and the

starting city is A.

14

Figure 2.1 The 8-Puszle Problem

16

Figure 2.2 The (5-city) Traveling Salesman Problem

16

The Robot Planning Problem |Nil80]: A robot bas a reportoire of primitive
actions, picking up some obejcts and moving them from place to place. The prob-
lem is to synthesize a sequence of robot actions that will achieve some goal state
starting from the initial state. One instance of this problem is, as shown in Fig.2.3,
to find a sequence of robot actions for a robot which is able to pick up and move a

block from location L; to location Lj,¢,j=123.

In what follows we introduce the components of a problem before we give its
formal definition:
A Set EU of Elementary Units:

We first notice that a problem, in general, involves some basic units which we
choose to call elementary units. We designate the set of the elementary units by
EU = {6,,8,,...,6,}. In the case of the 8-puzzle problem each a; is a tile or
the blank, in the case of the traveling salesman problem an ¢, is a city, and in the
case of the robot planning problem an s; is a block.

ttribute : tates:

Next, a problem is characterized by one or more attributes whose values deter-
mine the state of the problem during a process of solution. We designate the set of
attributes of a problem by AT == {Ab, Ab,, ..., Ab,}. We designate the set of

all possible values of an attribute Ab, by Dom(Ab,). Thus the state space S of a
|]
problem can be written as S = _)(l Dom (Ab,). The 8-puzile problem has only

one attribute, namely, the arrangement of the tiles and the blank. When the
arrangement is strung out, each element of Dom (Ab,) is a 9-tuple each component

of which is the tile or the blank in that position. If each tile ¢, ¢ € {1,...,8}, is

17

Robot

l/ Arm
A
c — 8
A 8 C
L, Ly L; L, L Ls

Figure 2.3 The Robot Planning Problem

18

denoted by ¢, and the blank is denoted by ¢,, then <t;,8,,8;,85,80,8,,8¢.05.85> is
one element of Dom (Ab,), and hence a state of the 8-puzzle problem. The traveling
salesman problem has two attributes, namely, (1) the set of cities already visited,
and (2) the city currently being visited. Thus, in this case Dom (Ab,) = Pw(EU)
where Pw(EU) represents the power set of EU, and Dom (Ab,) == EU. Finally the
robot planning problem has four attributes, namely, (1) the arrangement of block(s)
on location L,, (2) the arrangement of block(s) on location L ,, (3) the arrangement

of block(s) on location L, and (4) the block held by the robot arm. Thus
4

S = .XlDom (Abd;) where each Dom (Ab;), s =1,2,3, is a set of ordered tuples of &
g==

blocks, 1<k <3, and the empty tuple NULL, and Dom(Ab,) = EU U {¢} in
which the element ¢ means that the robot arm holds no block. For example the ini-
tial state e¢;,, and the goal state ¢, from Fig.2.3 are, respectively,
e, = <(A,C)(B),NULL ,¢> and

e, = <NULL,NULL (C,B,A) ¢>.

Set itjop V
One can then talk about the “position value in a state” of an elementary unit.
Itis an m-tu‘ple, where m is the number of attributes of a problem. Each component
of the m-tuple will be called the position value of the elementary unit with respect
to a pafticular attribute in that state. Thus in the above example of the &puzzle
problem, the position vclue of the tile 1, ¢, witb respect to the only attribute Ab,
is 2, and the position value in that state of ¢, is <2>. The set P(Ab,) of the posi-

tion values of an elementary unit with respect to the attribute Ab; for the &puzzle

problem is {1,2,..9}, and the set, P = X P(A},), of all position values is

=1

19

P = {<1>,£2>,..,<9>). For the traveling salesman problem the set
P = {<T,I><T,NI>,<F,>,&<F,NI>}) where T and F mean that a city
has been already visited and not visited respectively, and / and NI/ denote that a
city is identical and not identical to the city currently being visited. The robot plan-
ning problem has the set
P = {{n,,n,,n,,s >:n, €{0,1,23}, k=123, « € {H,NH}}. For each
k =123, each nonzero value of n; means the position of a block on location L; and
the value 0 of n; means that a block does not exist on location L; . The values, H
and NH, mean that a block is held and not held by the robotv arm respectively.

it oti
We now define a position function pf: EUXS — P and a set of sub-

position functions apf .y : EU XS — P(Ab;), ¢ = 12,..,m, such that for each
e, €S and for each o € EU, pf(0;,¢,) = <apf,“l(a, ves)y cpf,“’(a, 'es),
-89S as_(81,¢,)> where pf (a;,¢,) is the position value of 6, in the state ¢, , and
sp/ as (8, ,¢,) is the position value of s, with respect to the attribute Ab; represent-
ing e,. For example, let ¢, = <{A,B}, D> in the (5-city) traveling salesman

problem. Then for the city B,

pf (B,e,) = <apf i (B,e,) apf s (B .e;)> = <T,NI>.

Se 0 es:

During the process of solving, a problem is transformed from one state into
another by the application of a rule of the problem. The transformation from one
state into another is brought about by the change in the position values of elemen-

tary units in the two states. Let s be the maximum number of elementary units thus

20

affected by a rule for a problem. We shall represent the name of a rule by an s-tuple
where each component of the name is the name of the elementary unit affected by
the rule, the names appearing in the order of the indices of the elementary units. If
a rule affects less than s elementary units, its s-tuple name is filled up by any arbi-
trary but fixed symbol such as “¢+”. For example, suppose for a given problem
s = 3, and a rule affects only two elementary units ¢; and ;, then the name of the
rule is <a;,8;,4> where ¢ < j. In the two problems, the 8-puzzle problem and
the traveling salesman problem, each rule affects two and only two elementary
units. However in the robot planﬁing problem only one elementary unit, which is
the block either to be picked up or to be put on by the roBot. arxﬁ, is affected by
each rule. In general, then, we will represent a rule, r, by <z2,2,5,...,2,> where
z;'s are the names of the elementary units or ¢ arranged in the order stated above.
We will denote the set of rules by the symbol R.

ccessor Relati C

If arule r, = <z,2,,...,2,> is applicable in a state ¢; and when applied
takes the problem from the state ¢, to ¢; we say that the successor condition
| formula, SCF, which is a first-order predicétc formula, takes the value true for the
argument
(20, ..-,3,,pf (6,,¢;)...pf (8,,¢,),pf (8,,¢;),....pf (84,¢;)). A ternary relation

SUCCR C R XS XS is defined as follows:

SUCCR = {(<z),...,3,>,¢;,6;): <2,,..,2,>ER, ¢; €S, ¢ €S,

SCF(’ IR))P, (.]!c,')r--:?! (‘. 9‘,’),Pf (‘lvcl)r"-rpl (‘l '€})) = lruc }

The first predicate formula SCF is given by the disjunction of rule-formulas,

rz,---2,<2,,...,2> €R. Eah ruleformula r_z, - - - 2, for a particular

21

rule <3,,3,,...,3,> is specified without explicit reference to the states ¢; and
e;. It provides the condition which some states ¢, and ¢; must satisfy for
<12,2 ...,3,> to be applicable in state ¢;, and when applied, for it to take the
problem to the state ¢;. From now on, in the expression for an SCF, pf (q,,¢,)
fiil be designated by y_s, and pf (s, ,¢;) will be designated by z_s,. For example,
in the case of the 8-puztle problem, the rule <z2,,2,> which affects the position
values of the z; and the tile 2, assuming 2z, is the blank, the successor conditon for-

mula, scf , can be written in PROLOG-like-languaget as follows:

(r_ty ty(22,0200 8, %y 8y, ..., sy tg,02 8,02 8, ..., 0 t,);
r_ b to(02,820,080 0y by, ..., ty te, 02 8,02 0, ..., %2 L)

r_ty by(%z,,%2,,% 8,0 8y, ..., 0y by, %2 8,02 L, ..., 02_t)

...;
r_t tg(0z, 02,0 b, %y ty, ..., Y by, %2 8,02 0, ..., %2 t))

- acf (02,,%2,,% 8 %y by, ..., oy tg, %2 8 %28, ..., %2_1,) (2.1)
where for every & € {t,,t5, ..., 183},

bt (22,020 8,00 b, ..., by, 02 0, ..., 0 ..., %2 ty)
- (['31"32] = [‘5 o0])' Pa‘v(’y—‘b oY, %2 0,02 4),

member (02_t;,[02_ty, . .., % b 1,02 b oy, ..., 02 t)), (2 ty=1y_1;).

t In this language, the varisble starts with the symbol ‘o', the function starts with the Jower
case letter, the symbol “,” between two predicates stands for the logical AND, and the symbol *;"
between two predicates stands for the logical OR. The two-argument function member is the built-in
function which returns the value true if the first argument is the element of the second argument
[Clo81).

posv(oy_t, ,%u_t; %2t ,%2_4;)
- member ([oy_t ,5y_ty ,2:_t ,22_;),{[2,1,1,2],[4,1,1,4],[3,2,2,3),[1,2,2,1},
[5,2,2,5),[2,3,3,2),16,3,3,0).[5,4,4,5),
[7,4,4,7)11,4,4,1),16,5,5,8),[4,5,5,4),
[8,5,5,81.[2,5,5,2],5,6,6,5],(9,6,6,9],
[3,6,6,3],18,7,7,8, [4,7,7,4,10,8.8.9),

[7,8,8,7),[5,8,8,5],18,9,9,8],[6,9,9,6]]).

As another example, we give below the formula, scf , for a (5-city) traveling
salesman problem of Fig.2.2. Each rule <z,2,> affects the position values of two
cities 2, and z, where z, is the city currently being visited and z, is one of the
nonvisited cities (z, becomes the original starting city A if all the cities were
visited).

(r_AB(%z,,%25,%y A, %y B,...,%y E,ez A%z B,...,FE)
r_BA(%z,,%25,%y A,y B,...,% E,ez A,z B,...,6 * F)
r_AC(%z,,92,,%y A,%y B,..., % E, oz A,2: B,..., % E)
r_CA (vz,,‘zz,'y_A oy B,...,% E,ez A,e: B,... 6 o E)

r_DE(#z2,,22,,%y A,y B,..., % E,*z: A,»: B,...,6 ¢_E)
r_ED(%z,,%2,,¢y A,%y B,..., % E,*: A,: B,..., ¢ _F))

- ocf (02,,%2,,% A,%y B,...,%y E ez A,z B,...6 o FE) (2.2)

where

(1) forevery s, € {B,C,D ,E},
r_e;A(0z,,%2,% A,..%y 6e,...,% E, ez A, 0 q,6...,6 ¢ F)
= ([92y,02,)=[0;,A]), (%4_a,=|T ,NT]), (%y_s; =[F ,1]), (%4_A =T ,NI)),
(#z_a;,=([T ,NI)), (¢:_A =[T,I]), (*:_¢ - W e).
in which ¢, € {B,C,D,E}, ¢;%tq,,
(2) for every o; € {A,B,C,D ,E}, and for every o, € {B,C,D ,E}, 0,54,
r_6;a,(%2,,%2,,...,°%.6;,.,°%.8@;,...,%6,...,%.4q,,...,%_F)
- ([‘31"12]-—-(‘5 y8; D’ (‘L‘o’ =[F vll)’ (y_e; '=[F vN”)9 (*z_a; ‘%[T’Nll)’

('Z_C,' B[F !'])7 (“1—‘1= .o)
in which o; € {A ,B,C,D ,E}, o/ %q,, ¢;5q,.

For the robot planning problem the successor condition formula scf is as fol-
lows:
(r_A(*2,,%_A,*y_B,%y C,%: A,z B,s:-C),
r_B(*z,,% A,*y B,% C,*:_A,%: B,s: C)
r_C(%z,,% _A,*y B,%y _C,s:_A,*:_ B,s: C))
- scf (02,9 _A,%y B,%y C,: A, ,%: B,*: C) (2.3)

where

r_A(*z,,% A,*y B,sy C,*: A,*: B,*:_C)
- (‘_zl = A)t (‘V—B * <0,0,0,H >)r (.LC # <0!O’O’H>)’

(3% € {123} B € (123}X Bm € (L23}N(2 k+1), (m > k+1),
(A = <k, 00,NH>),(%B = <I,00,NH >),

(%_C = <m 0,0,NH >));

34

((5y_A = <0,k ,0,NH>), (#%_B = <0,l,0,NH >),
(%y_C = <0,m 0,NH >));
((sy_A = <0,0,k NH>),(*_B = <0,,l,NH >),
(%_C = <0,0,m ,NH >)))),
(¢4 = <0,00,H>),(#:_B = #y_B),(#:_C = #y_C).
r_A(ez,,%y A,%y B,%y C,*: A ,‘z_B,fz_C)
- (2, =A), (%A = <0,00,H>),
(3k € {1,2,3} A € {1,23}X Im € {1,23}N(! 2 k+1),(m 2 k+1),
(((#2_A = <k, 0,0,NH >), (*:_B = <I,0,0,NH >),
(#2_C = <m 0,0,NH >));
((#2_A = <O,k ,0,NH >), (z_B = <0,l 0,NH >),
(#:_C = <0,m 0,NH >));
((»:_A = <0,0,k NH >),(*:_B = <00,/ ,NH >),
(#2_C = <0,0,m ,NH >)))),
(#2_B = ¢y B),(#:_C = # C).
r_B(*z,,%5y A ,%y_B,sy C,%:_A,»: _B,*:-C)
i~ (92, = B), (sy_A %% <0,0,0,H>), (*_C % <0,0,0,H >),
(3k € (1,23} P € {1,23}N 2m € {1,23}N(I 2 k+1),(m 2 k+1),
(((*y_B = <k,00,NH >), (*y_A = <I,0,0,NH >),

(%_C = <m ,0,0,NH >));

26

((%y_B = <0,k ,0,NH >),(*y_A = <0,!,0,NH >),
(%y_C = <0,m ,0,NH >));
(4B = <0,0,k ,NH>),(sy_A = <00,/ ,NH >),
(%_C = <0,0,m ,NH >)))),
(#2_B = <0,00,H>),(#_A = sy A),(%:_C = & _C).
r_B(*z,,%y A, ,% _B,sy C,z_ A,z B,%:-C)
i~ (%2, = B), (B = <0,0,0,H>),
(3% € {123} P € (1,23} Bm € {1,23}X(! 2 k+1),(m 2 k+1),
((#2_B = <k 0,0,NH>), (%:_A = <I,00,NH >),
(#2_C = <m ,0,0,NH >));
((2_B = <0,k O,NH >), (*:_A = <0, ,0,NH >),
(#2_C = <0,m ,0,NH >));
((#2_B = <0,0,k NH>), (%:_A = <0,0,l ,NH >),
(#:_C = <0,0,m ,NH >)))),
(424 = sy A),(2:.C = %_C).
r_C(9z,,%y_A,*y B,sy C,¢: A,*: B,:-C)
- (91, =0C),(%y_A ¥ <00,0,H>), (5B # <0,0,0,H>),
(3k € (1,23} P € {1,23}X 2m € {1,23}X(I 2 k+1),(m 2 k+1),
((#y_C = <k ,00,0NH>), (*%y_A = <I,00,NH>),

(%y_B = <m 0,0,NH>));

((sy_C = <0,k,0,NH>),(%y_A = <0,/ ,0,NH >),
(®y_B = <0,m ,0,NH >));
((%y_C = <0,0,k,NH>), (% A = <00,/ ,NH>),
(%y_B = <0,0,m ,NH >)))),
(02.C = <0,00,H>),(#:_A = sy A),(#:_B = #_B).
r_C(*2,,%_A,%y B,%y C,*: A,: B,¢:-C)
- (92, = C), (%_C = <0,00,H>),
(3k € (1,23} Y € (1,23} Zm € {1,23}X(I 2 k+1),(m 2 k+1),
(((#:_C = <k, 00,NH >),(*:_A = <I,00,NH >),
(#2_B = <m 0,0,NH >));
((#2_C = <0,k ,0,NH >), (*:_A = <0,l ,0,NH >),
(#2_B = <0,m ,0,NH >));
((#2_C = <0,0,k ,NH >),(*:_A = <0,0,l ,NH >),
(#:_B = <0,0,m ,NH >)))),
(2.4 = oy A),(%:_B = #_B).

Finally, we define a problem, M, as an ordered ten-tuple.

Definition 2.2

A problem, M, is an ordered ten-tuple,

M = (EU,AT P,S,pf ,R ,SUCCR ,c e,y ,¢,),

where

27

EU is a set of elementary units, EU = {8,,6,,...,8,},
AT is s set of attributes, AT = {Ab;,Ab,, ..., Ab,},

P is the set of position values of an elementary unit with respect to the m

attributes, given by the cartesian product of P(Ab,), i =1,...m,

]
P = ,Xl P(AY;)
)=
where P(Ab;) is a set of position values of an elementary unit with respect to
the attribute Ab;,
S is the set of states, given by a cartesian product of Dom (Ab,), i=1,...m,
L]
S = X Dom(A};),
Ab EAT

i==]

where Dom (A,) is the domain of the attribute Ad,,

pJ/ is a position function, pf : EU XS — P, such that, for any (e,,c,) in
EUXS,
pf (8 ,e;) = <opfpy(85,¢5)s0Pf as (8,65)>,

where each sub-position function, spf,y : EUXS — P(Ab;), i=12,.,m,
returns the position value of each elementary unit with respect to the attribute
Ab, representing the given state,
R is a set of rules in which each rule, r,, is represented by an ordered tuple of
s elementary units,

R = {r;:(r; €(EUY), 1SS | EU |, i=12,..1},
SUCCR C R XS XS is a terpary relation such that for any (r,¢,,e;) in
R XS XS, (r;,¢j,e;) € SUCCR if and only if ¢; is the state in which the

rule r; is applicable and ¢; is the state resulting when r, is applied to ¢,

SUCCR = {(<3,,...,3,>,,¢)(<3y,...,5>€R) N
(¢, ES) N (e, €5S) N
(SCF(3),...,2,,p] (81,¢;),.pf (85,¢;),p] (81,61),-1pf (8 ¢4)}=truc))}
where SCF(2y, - ., 8,881, - -, ¥ 8,281, - --,2,) is & successor con-

dition formula,

- ¢ is a cost function, ¢: SUCCR — R where Ris a set of reals, such that, for
any (r;,e;,e;) in SUCCR, ¢(r;,¢;,¢;) = w if and only if w is the cost of

the rule, r;, between the state, ¢;, and its successor state, ¢;,
- ¢,o is an initial state, ¢,, € S,

- ¢, is a goal state, ¢, € S.

2.3.2. Length of a Path betwe=n Two States

As will be shown in the next chapter, the estimation of the cost of a path, if
one exists from the state e, to the goal state ¢, , is the key to using the heuristic
search method for efficient problem solving. In this section we define, based on the
problem model M, the upper and lower bounds of the length of a path between two
states ¢, and ¢,. In the next chapter, a heuristic for the efficient search is derived

based on these values.

Definition 2.3

A path from the state ¢, to the state ¢, in which ¢, 5 ¢,, is an ordered pair
(s, n) of two nonempty sequences, p=r, - ER’ and
ne=-¢c,e, - "¢ ¢, €S’, in which (r,,¢,,¢,) € SUCCR, (r;,¢;_1,¢,) € SUCCR,

and (r, ,¢,_;,¢,) € SUCCR, i==2,..l-1.

Definition 3.4

For two states ¢, 2nd ¢, of the problem, if there is a path (p,9) from ¢, to ¢, ,

then e, is a descendent state of e, . Further if the number of rules in p is one, then

descendent state ¢, is called a successor state of e, .

Definition 2.5

For a given path (p,9) between two states e, and e, the length of (p,9) is the

number of rules in the sequence p.

The cost of the path from one state ¢, to some other state ¢, is then deter

mined recursively.

Definition 2.6

Let (p,n), in which p=r,---r, ER* and n=1—c,¢,--- ¢ 1¢, €S’, be a

path from the state ¢, to the state ¢,. Then the cost of (p, n) is
1. COST(p,n)=c(ry,e..e,) if p=r,€ER,
2. COST(p,n) = c(ry,¢,,¢,) + COST (1,)

if p=1r117, n=1¢,f,and(,f)isapathfrome,toe,.

The upper bound of the length of a path between any two states of the prob-

lem is given in Lemma 2.1.

Lemma 2.1

If K is the cardinality of the set P of position values, and n is the cardinality
of the set EU of elementary units of the problem, then K'* is greater than the

length of any path between two states of the problem.

30

Proof

By definition, each state of the problem is given by a set of position values of
all n elementary units in the set EU. Since each elementary unit assumes up to K
position values, the maximum number of states of the problem is not greater than
K" . Thus the minimum number of rules of the path between any two states is not

greater than K* -1. Q.ED.

Before presenting the lower bound of the length of a path between two states
¢, and ¢, let us define the subpath (p(s,),7(s,)) for the elementary unit ¢; from

¢, toc,.

Definition 2.7

Let (p) be the path from the state ¢, to the state ¢, where
p=r, - rER’ and p=c,e;- ¢, €S’. Then a subpath for the ele-

mentary unit ¢; € EU from ¢, to ¢,, which alters the position value of 6, from
pf (s,,¢;) to pf (s;,e,), is (p(s,)78,)) such that
(V) pla)=r;y---ra,r; €{ry,...,n}, j=1,.k,
(2) nle))=c1¢;; - -eae, ,e¢; €0 € {es e, ... e), 5=1,.k,
(3) (r,5.e; €5) € SUCCR, j==1,...,k,
(4) pf (a,,¢;))=pf (a;,¢,), pf (8;,ey) = pf (a,.¢,),
p/ (o;,e;;) # pf (o;,¢;), j=1,..k, and

p/ (s, e)= pf (s;,64,), I =1,...k-1.

31

Each rule, when applied to a state, changes the position values of at most s ele-
mentary units from their current values to some other values. The lower bound of
the length of a path (p,n) from the state ¢, to the state ¢, may then be derived by
deriving the lower bound of the length of a subpath (s,),7(s,)) for each ¢, € EU
in which pf (s;,¢;) 9 pf (¢;,e,). The lower bound of the length of the subpath

(p(s,),n(s;)) is given by Lemma 2.2.

Definition 3.8

The pair (g;1,9;1) € P? of position values of an elementary unit e, is comput-
able if there exist a sequence of position values g;;- - - ¢, € P’ such that for
each ¢ € {1,....k-1}, there exist two states ¢;;, ¢;;,; where pf (e,,¢;) = ¢ji,

p/ (8, ,¢/i41) = gji+1, and ¢;;, is the successor state of ¢j;.

Definition 2.9
For each elementary unit o; € EU, and for each computable pair (g, ,g;) of

position values of s;,

1. Min_LEN(<gq,,q1>,8)=0 if g; = ¢,

2. Min_LEN(<gq;,q >,8,) =1 if (g; ¥ ;) and there exist a path (p,9) from
one state ¢, to some other state ¢, such that p=r € R, g; = pf (a,,c,).
and ¢, = pf (¢;,¢,),

3. Otherwise,

Min_LEN(<gq;,q; >,8;) =1+

min({Min_LEN (<g;,q; >,8;): (¢ € P) N (Min_LEN(<g,,q;>,8,) = 1)

N (<gq;,q > is the computable pair of s;)}).

Lemma 3.2

Let (#(a,),n(s;)) be the subpath for the elementary unit o, from the state ¢,
to the state ¢,. Then Min_LEN(<pf (s;,¢,),pf (o;,,)>,0;) is not greater than
the minimum number of rules in Ag;).

Proof

Let (p(a;)n(a;)) be the subpath for o from e, to e, where
pMo;)=r;, - ry and 1e;) = ¢;1¢;,- - - - ez e, . Then we will show
Min_LEN(<p/f (s;,¢,).pf (8;,¢,)>,8;) < k by induction.

Suppose k = 0. By definition of (¢{a;).n(s;)), pf (a,,¢,) = pf (a,,¢,). Then

by definition of Min_LEN , Min_LEN (<pf (s;,¢,),pf (8,,¢,)>,8;) = 0. Thus
M"'—LEN(<p! (‘o' €3)’P! (‘i 1‘,)>v‘i) S k.
Suppose k =1. By definition of (p(s,)ns,)), pf(;.e,y) = pf (s;,¢,),

pf (a,,e;;)= pf (6;,¢,), and (;),¢;),¢,) € SUCCR. Then by definition of

Min_LEN, Min_LEN (<pf (8;,¢,)f (& ¢,)>,8,) = 1. Thus
M"l_LEA’((P! (‘.‘ 1€y)’pf (ﬂ.‘)C,)>"o') S k.
Suppose k = n+1. By definition of (p(a,)ms,)), pf (o, ,¢,) = pf (a;,¢,),

P! (‘a 1€in+1') = Pl (‘i 1€y)' and P, (‘l 1€im’) = pl (‘l 1€im +l)! m=1l,.,n. By

definition of AMin_LEN, for each m € {1,..,n},

A!lﬂ_LEA’((p, (.i ,C’-.')vpl (‘i ,C’)> 9..') +1

> Min_LEN(<pf (s, ,¢,a)./ (0,,6,)>,9,)

and by induction bypothesis, Min_LEN(<pf (s;,¢,5).p/ (s;,¢,)>,0,) < n.
Then since pf (s;,¢,2) = pf (s ,¢,,)

n + 1= Min_LEN(<pf (6;,¢;2),pf (8,,¢,)>,8,) + 1

2> Min_LEN(<pf (¢;,¢;1).pf (a;,¢,)>,8;).

Thus, Min_LEN(<pf (s;,c,).pf (s,,¢,)>,8;) < k. QED.

Corollary 2.2.1
For every two states ¢, and e,, Min LEN(<pf (s;,c,),p/ (a;,¢,)>,8;),
o; € EU is not greater than the length of a path (p,7) from ¢, to ¢, .

Proof

Let (p,n) be the path from the state e, to the state ¢,, and (p(q,).9,)),
o; € EU, is the subpath for ¢, from ¢, to ¢,. By defintion of (p{a,),(a,)). the
length of p{a;) is not greater than the length of p. From Lemma 2.2,
Min_LEN((p'[(o,,¢,).0f (a;,¢,)>,8;) is mot greater than the length of
(s,), a;)). Thus Min_LEN(<pf (s, ¢,),pf (8;,e,)>,8;) is not greater than the

length of (p,9). Q.E.D.

Lemma 2.3

For every two states, ¢, and e,, the length of a path (p,9) from ¢, to ¢, is

pot less than -: Y, Min LEN(<pf (o,,¢,).pf (a,,¢,)>,0,) where B, is the set
s,€8,,

of elementary units each of which has two different position values in the states e,
and €y Bsy = {.i: ('o' € EU) n (P! (‘i ’e:) 7£ Pf (‘s 16y))}

Proof

34

Let (p,n) be a path from the state ¢, and ¢,, and B,, be the set of elementary
units which have two different position values in ¢, and ¢,. Suppose the cardinal-
ity of the set B,, is k. Then the path (p,9) contains at least k subpaths
(p(s;),a,)), &; € B,,, each of which alters the position value of o; from pf (s, ,e,)
to pf (a,,¢,). The value of each Min LEN(<Zpf (s;,e,),pf (s;,¢,)>,6;) is not
greater than the length of the subpath (s(s,),7{e;)). By defintion, any rule in the

sequence p affects the position values of at most s elementary units. Thus, the value

of 1 Y, Min_LEN(<pf (o;,¢,).pf (a;,6,)>,0,) is not greater than the length of
’ 8, eBx,

the path (p,9) from ¢, to ¢, in which

B:y = {‘i: ('i € EU) n (P! (‘i ,C,) # pf (0,‘,(,))}- Q'E"D'

CHAPTER 3

HEURISTIC SEARCH ALGORITHM

3.1. Introduction

In this chapter we present, based on the problem model M, a systematic
approach to derive a heuristic for the A * algorithm. In section 3.2 the search algo-
rithm A ° is briefly reviewed, and in section 3.3 algorithms to compute the heuristic
for A are developed. In section 3.4 the heuristic generated by our approach is illus-
trated by three problems, the 8-puzile problem, the (5-city) traveling salesman prob-
lem, and the robot planning problem. In section 3.5, the power of the derived heuris-
tic is compared against other problem-domain heuristics reported in the literature

for the 8-purile problem and the traveling salesman problem.

3.2. Search Algorithm A*

A heuristic may be applied at several points in a search to improve its effi-
ciency. Typical points are (1) selection of a node to be expanded next, (2) selection
of successor(s) to be generated from a node selected for expansion, and (3) selection
of nodes to be pruned from the search tree. As discussed in section 1.3.2, the search
technique which selects the most promising node as the next mode to expand is

called the best-first search.

35

Algorithm A * is the most studied version of best-first searches. Each state e,
of the problem is evaluated as the sum of the cost, g (e,), of the best currently esta-
blished path from the initial state e,, to ¢,, and the heuristic estimate, &(e,), of
the minimum cost of the path from ¢, to the goal state ¢,. The value of the
evaluation function of a state ¢, is f (¢,) = g(e,) + A(c,). Among all the unex-

panded states, A° selects for expansion one state with the minimum value of

/ (e;).

Algorithm A°
Begin

/# Initialize three sets OPEN, CLOSED , and AG 3/

OPEN := CLOSED := AG = ¢;

/¢ Generate a tree TREE where a root is the initial state ¢;, */

AG = AG U {e¢,. };

OPEN := OPEN U {e,.};

CHOOSE: If (OPEN == ¢), then return (No Solution);

Compute the evaluation function f (e,) for each state e, in OPEN
where [(e,) = g(e,) + A(e,);

Select the state e, in OPEN such that for each ¢, in OPEN,
1. (e)) < [(e,), or
2.1 ()= [(¢e,) and g(e,) > g(e,)

|+ Update the sets OPEN, CLOSED , and AG ¢/

OPEN = OPEN - {¢, };

CLOSED := CLOSED U {e,};

AG := OPEN U CLOSED;

If (¢, = the goal state ¢,),

then return (Solution Path on TREE from e¢;, to ¢,);

/* Expand the selected state ¢, s/

W(e,):= {e;: ¢; is the successor of e, };

If (W(e,)=¢)

then jump to CHOOSE;

/¢ Establish a path on TREE from e, to each ¢; of its successors #/

For each ¢, € W(e,),

if (¢, ¢ AG), attach to e; a pointer back to ¢, and update OPEN,
OPEN := OPEN U {e¢;};

37

if (e, € AG), direct its pointers along the path on TREE yielding the lowest
gla);

if (¢, € CLOSED required pointer adjustment),

reopen ¢; , OPEN = OPEN U (¢, };

Jump to CHOOSE;
End-algorithm

The significance of A ° is in its admissibility. It guarantees the optimal solu-
tion, if one exists, because A(e,) < A°(e,) for every state ¢, € S where A°(e,) is
the minimal cost of the path from ¢, to the goal state ¢,. If the heuristic A(e,)
satisfies the condition of monotonicity that A(e,) < h(e,) + ¢(r;,¢,,¢,), then A °

can reduce its processing time by not reopening a state already in the set CLOSED .

The heuristic A(e,) satisfying the admissibility and monotonicity has been
developed for several problems. For example, in the 8-puzzle problem the value of
h(e,) can be the number of misplaced tiles as compared to th? goal configuration,
or it can be the sum of the Manhattan distances that each tile is from its goal confi-
guration [Gas77, Nil80, Pea84]. However, a heuristic such as these is typically depen-

dent on the problem.

Although literature is full of suggestions about how to use a given heuristic
h(e,), not much has been proposed about how to find A (e,) itself. In the next sec-
tion we present a general approach, based on the problem model M, to compute a

heuristic A (e,) of a problem.

3.3. Heuristic

The difficulty in computing the minimal cost A°(e,) of the path from the
state ¢, to the goal state ¢, comes from the fact that the number of constraints to

be satisfied for evaluating a state and its successor states grows exponentially with

the length of the path from ¢, to ¢,. One of the most general ways to reduce this
difficulty is to simplify the problem and estimate A °(¢,) from the simplified prob-
lem. The efficiency of computation of A(e,) depends on the method of simplifica-
tion of the problem and the degree of simplification. However, with increasing sim-
plification the estimated heuristic may drift further away from the actual minimum

cost.

We base the computation of our A(e,) on two simplification steps: (1) the cost
of the path (p,9) from the state ¢, to the goal state ¢, is estimated in terms of the
minimal costs of the subpaths (xs;),n(s;)), o; € EU, and (2) the cost of each sub-

path (p(s;),7(s,)) is estimated using relaxed successor condition formulas SCF f"

and, for the case of nonequal costs of rules, also, SCF(Ré', b8,

defined later. We will call SCFf", the relaxed successor condition formula for an

elementary unit ¢;, and SCF fé',b >y, .8, thE relaxed successor condi-

tion formula for the s elementary units a,,, ..., s,;. We first define two relaxed
formulas SCFF and SCF (R<", b 8>, o) and discuss the way to derive

SCF,’?" and SCF fé', e8>, o) Finally we discuss the way to compute

A(e,) based on these relaxed formulas.

3.3.1. Relaxed Successor Condition Formula

As defined in section 2.3, the value of a successor condition formula
SCF(zy,...,2,,4.64,...,46,,2.6;,...,2.6,) depends on a rule
<z,,...,1,>, the position value y_o, of each elementary unit ¢, in a state ¢,,

and the position value :_g; of each elementary unit g, in a state ¢, .

A set of n relaxed formulas SCFf"(Lai ,5_6;), 8, € EU, is derived. Each
SCF f"(u_a,— ,2_6;) constraints only two position values y_s, and :z_e, assumed by

the elementary unit o; in ¢; and ¢;, respectively.

Definition 3.1

Let SCF(2;,...,%,,0.65,.--,8 8,,2_8},...,2_6,) be the 2n+s variable
successor condition formula of a problem. Then for each o, € EU, the relazed suc-

cessor condition formuls for e, is the two-variable formula SCF, .’?"(y_c,- ,2_8;) such

that for every (z,,...,z,,q,,...,q,—,...,q.,q,',...,q,-',...,q,') in
RXP.XP', if SCF(‘]:”')’nql:'-')%':“'}qgﬂl‘ :'°°99i'r"':qu')

= truc, then SCFf"(q.- ,¢;) = true, and no other pair of argument values satis-

fies SCFR! .

There are various ways to derive each relaxed formula SCFf"(y_a,- ,2_6;),

e, € EU. It is especially easy if the formula SCF is given in PROLOG. PROLOG

bolds the following fact [Clo81).

Fact 1

Anonymous variable, denoted by *_", in PROLOG is the variable which does

not bear explicitly its corresponding value.

Assertion 3.1

Let e¢l(vy, . .., vx) be a clause with K variables, v,, . . ., v, given in PRO-
LOG. Then for each 1 < K < K, the relaxed clause el(vy, ..., vp_,...,_)
T

derived by substituting anoymous variables, _, for the variables, v, _,, .

40

such that for each argument <gy,...,qx,...,qxk> of the variables
<O, ooy Oty o>, il elgy, ..., 9, - .+, QK) = true, then
cl(g1, . - ., Gy’ 1 yoes) = true and mo other sct of K " argument values satisfies
the clause el(v,, ..., 9\,)
Proof

Let el(vy, ..., 0 ,..,0x) be the clanse with K variables, and
el(vy, ..., 9 s) be the relaxed clause derived by substituting anonymous
variables, _, for the variables v, .,...,vx. First, suppose the argument
<Qp -5 Qs -9 > satisflies the clause el(v,, ..., 0, ..., 0¢), ie
gy, ..., 9, --,9x) = true. Then by Fact 1,
(g1, - -) G’ smseees) = true with g, . .., gx corresponding to the values

of the K-K' anonymous variables. Next, suppose for the argument

<qi--.s 9>, cl(qy, - -y @ 1y) == true. Then, by Fact 1, there exist
some K-K values Q' 417 - - - » 9k corresponding to the K-K ' anonymous vari-
ables such that el(qy, ..., 5 .95 4y, 0k)=true. The argument
<1 - o s Qg 4y - - - » Gk > satisfies the clause

ey, oo o0 0 1h oo stk). Q.E.D.

Using the property in Assertion 3.1, the relaxed formula SCF,’?" is easily
derived when the formula SCF is given in PROLOG. Let the successor condition
formula scf in PROLOG be given by the disjunction of rule-formulas
r.8,; -"6;,<6;;,...,8;> € R, where each r_a,; - - - e, is given ir the

conjunctive normal form with }; clauses, ¢l;;, j=1,...1;.

41

('__l" e ‘ll("ll ey 02,,% 64,...,%_6,,°2 68,,..., %8,);
eooy
.6 " ‘lK("l: ey ‘30 ».y—.lr cv ey ‘y—.u v‘z_.l: s ey ."—‘u))

- oef(%2y, ..., %3,,% 6;,..., % 6,,%_8;,...,%_6,)
where for each t==1,. K,

r_6y °°° .d("lt ceey03,,0 68,,...,%_6,,%.68,..., 'Z_O.)

= ehy(e henely (00)

Then, the relaxed formula scf_g; _rel for a; is given by the disjunction of relaxed
rule-formulas r_e,; - - -6, _rel, <a;;,...,84>€ER. Eachr_a;; - -6, _rel
is derived by substituting anonymous variables, _, for the variables other than

sy_e, and #z_g; in the l; clauses ¢l;;, j=1,....,;.

(r_eyy - -0,y rel(%y_e;,2:_q,);
r_6x - o _rel(vy_a;,*:_a,))

- scf_o, _rel(*y_s;,%_sa;)
where for each t=1,...K,

_8) " 8y _fCl(.y-‘i ’ ‘Z_‘.’)
= el e s Y8 o yeer y 02 8 s ey),

t"u’(_ yorrrm 2 P8y g geeeg 9820, 5 geeey)

For example, the relaxed formula (3.1) is derived for the tile ¢t5 from the for-
mula SCF in the equation (2.1) for the 8-puztle problem, and the relaxed formula

(3.2) is derived for the city B from the SCF in the equation (2.2) for the (5-city)

43

traveling salesman problem.

(r_ty ty_rel(oy_tg, oz _t;);
el
r b g _rel(oy tg, ez t;);
e

r_t by rel(ey ts, 22 t5,)) - acf_tg rel(oy tgs, 22 tg) (3.1)
where
(1) for every ¢ # t,,

r_t 8 _rel(oy_tg, 2 t;)
- (L Yo lglli b])v posv (- Yom S P)r

member (#z_t;,|_,...,_,%2_tg,_ ...,]), (22t =12y_¢,).

(2) for ‘5,

'_“ ‘5__"’(’y_‘ 5 ’Z_‘ 5)
= (L._]=lt 4]), poav(_,%y_ts,_,%:_t;),

member (¢z_t;,[_,...._]), (#2_t; =+y_t;).

The relaxed formula derived for the city B from SCF in the (5-city) traveling

salesman problem is as follows:

(r_AB_rel(%y_B,*:_B);
r_BA_rel(#y_B,*:_B);
r_AC_rel(%y_B,+*:_B),

r_CA_rel(*y_B,*:_B),

.
seey

43

r_BE_vel(*y_B,*:_B);

r_EB_rel(*y_B,*:_B);

t_DE_rel(*y_B,*:_B);

r_ED_rel(%y_B,¢:_B)) :- scf{_B_rel(%y_B,*:_B). (3.2)
where

(1) forevery s, € {A,C,D,E}, andforevery s; € {C,D,E}, o, % o,

r_a;8;_rel(*y B,*:_B)
- (L — ’=[¢i L])r (-=[F 9”)1 (- =[F ,NI]), (- =[T ’Nll)r (- '=[Fr”)’

(#2_B==#y_B),(_=_).
and for every o, € {C,D ,E},

r_e;A_rel(%y_B,*:_B)

= (Lo =l[a;,A]), L =[T ,NI)), C=[F,I]), (L =[T,NI]), (_=[T ,NI]),
(_=I[T.1]), (#s_B=2y_B), (_=_).

(2) forevery s, € {C,D,E},

r_Ba;_rel(#y_B,*:_B)

= (Ls=1=(B,s;]), (*s_B=[F ,I]), (L =[F,NI]), (*_B=[T ,NI]),
(—=[F.I]), (C=_).

and

r_BA_rel(#_B,*:_B)

= (L,=]=[B,A]), (L =[T,NI)), (5_B=[F,I]), (_=[T,NI]),
(#2_B=|T ,NI)), (L =[T,I]), (L=_).
(3) forevery s, € {A,C,D,E},

r_e,B_rel(*y_B,*:_B)

44

= (L=]=[s,,B]), (_=[F,I]), (*y_B=I[F ,NI}), (_ =[T ,NI}), (¢:_B=[F 1),

(=_)

As discussed above, the relaxed successor formula is given by relaxed rule

formulas. The rule corresponding to each relaxed rule-formula will be called the sim-
plified rule. Thus, for given two states ¢, and ¢,,
if SCF! (pf (;.¢,)pf (8,,¢,)) = true, pf (4;,¢,) % pf (8;,¢,), then we ean say
that e, can be moved from its position value pf (s,,c,) in ¢, to its position value
p/ (¢, ,¢,) in ¢, by one and only one simplified rule.

As will be discussed in the next section, a set of relaxed formulas SCFf",
s, € EU, is sufficient to derive a heuristic for a problem in which the costs of rules

are equal. For a problem in which costs of rules are unequal, however, one more

relaxed formula with less relaxation is necessary to derive the heuristic.

Definition 3.2
Let the successor condition formula
SCF(zy,...,2,,y.8;,.-.,3.6,...,3.6,,...,2_6,) be in the disjunction of

rule-formulas, r_&,; - - 8,;, <68;;,...,8;> €ER, whereeachr_s,;, ---a, is

the conjunction of some clauses. Then the relaxed formula
SCF{L",b B>y, .,) for the s elementary units, ¢,;, ..., s,;, is given by
the disjunction of relaxed ruleformulas, r_3,:---3,8,; --- e, _rel,

<6j4,..-,8;> €ER, where each r_2,---2,8,; --- 8, _rel is derived from
r_e,; - 6, by substituting anonymous variables, _, for the variables other than

3, 4.6, and z_g;,1=1,..,.

46

For example, the relaxed formula SCF{L", ,8,>.0.2) for the two cities, D and
E, in the (5-city) traveling salesman problem of Fig.2.2. is given by the following:

('—3 132"8—",(2, 'z, ‘LD ’ .LE ’ ".D ’ ‘I_E);

r.z 1328‘4—"‘(i b ’32, ‘H_D ’ ‘LE ’ ’Z_D ’ 'Z—E);

r.z l’?A C-"'(2 1 2 2 ‘H_D ’ .'_E ’ .I_D ’ "—E);

r_2,2,CA_rel(22,,%2,,%y D,y E,o: D, s:_E),

r_2,2,DE_rel(#z,02,,9y D ,oy E ,¢: D ,¢: E);

r.2 l’?ED—'e'(7,,%2,, ‘LD ’ ‘LE ’ "—D ’ ‘I_E))
- ocf_(<2,,2,>,D,E)_rel(%y_ D, E,*: D,s: E).

where
(1) r_2,2,DE_rel(#z,,22,,%_D ,%y E,¢: D ,*:_F)
i~ ([#2,,%2)=(D ,E})), (%_D =|F ,1]), (% _E =|F,NI)), (#2_D =[T ,NI]),
(#2_E=[F,I]), (_=_).
r_2,3,ED_rel(%z,,02,,%y_D ,%y E ,¢: D, %:_F)
i~ ([#2,%25)=[E ,D]) (s_E =[F ,I}), (¢y_D =|[F ,NI)), (¢z_E =|T ,NI)),
(2D =[F,I]),(_=_).
(2) r_=2,2,DA_rel(#z,,%2,,9y D, oy E ¢: D, *: E)
= ([#2,,%25]=[D ,A]), (%y_E =[T ,NI]), (9y_D =[F ,I]), (_=[T ,NI}),

(#2_D=|T ,NI)), (_=]|T,I]), (#:_E=9y_E).

460

r_s,2,EA_rel(93,,%2,,%_D ,%_E, oz D ,o: E)
i~ ([#31,%32)=[E ,A]), (4D =[T ,NI)), (9_E =[F ,I]), (_ =T ,NT}),
(#z_E=[T ,NI)), (_=[T 1]), (#s_D =2#_D).
(3) forevery s; € {A,B,C},

r_2,2,0, D_rel(#2,,92,,9% D ,%y E,z D ,%: E)
== ([92y, %25)=[e;, D)), (L =I[F 1)), (%D =[F ,NI]), (_=[T ,NI]),
(#2_D =[F ,I]), (#z_E=1y_E).
r_2,3,68; E_rel(%z,,%2,,%y D ,%y_E,*: D,*: E)
i~ ([2y,%2,)=]a; ,E]), (L =IF J)), (9_E=[F ,NI}), (_=[T,NI]),
(#2_E=[F,I}), (#:_D=2y_D).
(4) forevery s; € {B,C},

r_z,2,Da; _rel(%1,,%3,,%_D % E,*_D,% E)

== ([921,%22)=ID ,8;)), (D =[F J)), (L =[F ,NI]), (+:_D =[T ,NI}),
(=[F.I)),(2_E=2E).

r_z,2,Ea; _rel(#2,,%3,,% D ,%y E ,92.D ,0:_E)

i~ ([#2y,%25)=[E ,8;]), (_E =[F ,I]), (L =[F ,NI]), (#s_E =[T ,NI]),

(_=|F 1)), (#:_D =19y D).
(5) forevery o, € {B,C},

r_3,3,0, A_rel(¢2,,%2,,% D, %y E,%: D ,%: E)
= ([‘31’ .12l=[‘5 'A])r (‘y—D =[T1Nll)v (’y—E':[T ,NI]), (- =[F 9'])1
(_=[T,NI)), (_=[T,NI)), _=|T 1)), (#2.D=2+y D), (#:_E=9_E).
(8) for every o, € {A,B,C}, and for every o, € {B,C}, ¢, %s;,

r_2,3.0,8; rel(ez,,92,,0 D , E, ez D,z F)

47

- ([‘zh‘z 21-[‘5 v‘j])» (— -IF ’l])v (- -[P er])v (.. -[T 9NI]),

(-=[F.I]),(¢2.D=2%_D),(%:_E=14y_E).

3.3.3. Heuristic Derived using the Problem Model M

In this section we describe the procedure to derive the value of the heuristic

h(e,). We first discuss the case for which each rule has the same cost w.

3.3.2.1. The Case of Constant Rule Cost

Suppose (p,n) is the path from the state ¢, to the goal ¢,. The problem then

reduces to estimating the minimum number of rules in a sequence p.

Let B,, be the set of elementary units whose position values in the state e,

and the goal ¢, are different,
Bu = {'i: (.i € EU) n (P! ('o' 1€) # P, (‘hcg))}

If (p(a;), a;)), 8; € B,,, is the subpath of (p,9), then the minimum number of rules
in the sequence p is not less than the minimum number of rules in the sequence
/e,). Further the minimum number of rules in p(s;) is not less than the minimum
number of simplified rules required to take s; from its position value pf (g, ,c,) to
P/ (s;,¢,). (This is proven by Lemma 2.2 in Chapter 2 and Lemma 3.1 in Appen-
dix A.) The minimum number of simplified rules to take e, from pf (s,,¢,) to
pf (a,,¢,) is recursively derived from the fact that for every two distinct position

values ¢, and g, of s, if SCF, f"(q,v ,0;) = true, then one and only one simplified
rule is required to take g; from g; to g; .
Let Ldist(<pf (a;,¢,).pf (8;,¢,)>,0,) be the minimum number of simplified

rules to take o, from pf (o;,¢,) to pf (s;,¢,). Then the value

48

h'(e,) = max({w Ldist(<pf (a,,¢,).p/ (s, 16y)>,8) 6 € Bl’ }) (3.3)

is an admissible and monotone heuristic. (The proof is given by Lemma 3.3 in

Appendix A.) If the set B,, has more than one element, then the value

h®(e,) = “: GZB w -Ldist(<pf (s;,¢,).p/ (8; 16y)>,e;) (3.4)

is also an admissible and monotone heuristic. (The proof is given by Lemma 3.2 in
Appendix A.) Further, if the problem such as the 8-puzzle problem has some ele-
mentary unit(s) whose position value(s) is(are) affected by every rule, another
admissible and monotone heuristic, as proven by Lemma 3.4 in Appendix A, is given

by

A -(e:) = 2 w -Ldist (<PI ('o’ 1€)rp, (.i yCg)> 18;)

1
- I 0 l 8, €B,, (3'5)
s,¢N

The set {1 is the collection of elementary units whose position values are affected by

every rule of the problem:

1= N {24,...,23,}-{*}.
<y ..., s, >€R

For example, in the 8-puztle problem 3 == {¢, }. The best admissible and monotone
heuristic A(e,) can then be given by the maximum value of A°(e,), A°(¢,), and
A® (e,):

h(e,) = max({h’(e,), h*(e,), A= (e,)}). (36)
The admissibility and monotonicity of A(e,) is proven by Lemma 3.5 in Appendix

A.

49

Algorithm HEU, presented later, computes the heuristic A(e,) in (3.6) based
on algorithm DIFF. Algorithm DIFF generates the sets DIST (l,e,,pf (s, ,¢,)),
{=1,..,| P |-1, for each o, € EU. For each pair <gq;,pf (9;,¢,)> in the set
DIST (1,8;,pf (a;,¢,)), Ldist(<q;,pf (a;,¢,)>,8,) = 1. DIFF also generates the
set of two distinct position values, pf (s;,¢,) and pf (s; ¢,), of 6; in which there is
no path from the state ¢, to the goal ¢,. Each of these pairs, contained in the set
DIFF (¢ -LIMIT ,a;,pf (8; ¢,)), LIMIT = | P | |EV] will be called a noncomput-

able pair. The input I,,,(e,) for each o; € EU to algorithm DIFF below is given

by Ipn(‘i) - {P’ (‘i 1€g)}

Algorithm DIFF (P, {SCFf"(y_c,-, 2¢) e €EEU}, {I,,(q) 6 € EU})
Begin
Foreach ¢, in EU do
begin
For each ¢, in I,,,(q;) do
begin
P2(a;,q,) == {<q g, >: (% €P) N (@ %)}
/* Find every pair of position values of s, between one state and */
/# its successor ¢/
LEN1(s;) = {<q .0 >:(0: €P) N (o €P) N
(9 % @) 0 (SCF(qi0)) = true)};
/* Generate the set DIST (1,s,,9,) */
DIST (1,8,,9,) := {<q:,9, >:(<q .9, > € P2se,,q,)) N
(<g:.9,> € LEN1(a,)};
/* Update P 2(s,,q,) and LEN 1(q,) ¢/
P2(6,.9,) = P%s;.q,) - DIST(L,8,.,);
LEN 1(s;) := LEN)(s,;) - DIST (1,8, ,q,);
n=2;
While (P2(s,,g,) ¥ ¢ and n < |P |-1)do
begin
DIST (n ,8,,q,) == {<qi,9,>:(<q:,q,> € P2a;,9,) N

(3<q.q >X3<g .9, >X(<q .0 > € LENI(s,)) N

50

(<t ,g, > € DIST (n-1,8,))));

/* Update the set, P2(q,,q,) ¢/

P2s; rqg) = P Ya, +dy) - DIST (n s 1dy);

If (DIST (n ,6;,9,) = ¢), then go to NEXT;

n:=n+1l;

end-while
NEXT:If (n < | P |-1),
then DIST (k ,6;,q,) ;== ¢, k==n+1,..,| P |-1;

/* The length between each pair of position values left in P 2(q,,q,) ¢/
/# is not computable ¢/
DIST (s -LIMIT ,6; ,q,) := P2(s; ,q,), where LIMIT = | P | |EV];
end-for-do

end-for-do
Return DIST (k,e;,q,),for k € {1,...,| P |-1,4-LIMIT }, o; € EU;
End-algorithm

Although the complexity of algorithm DIFF depends on the cardinality of each
set DIST (k ,e;,q,) k=1,...,| P |-1, s; € EU, it is easily shown to be bounded by
O(n | P |*) when the binary search is used.

For example, each set DIST (k,s,,pf (a;,e,)) derived for the 8-puzzle problem,
the (S-city) traveling salesman problem, and the robot planning problem given in

the section 2.2 is as follows.

The goal state from Fig.2.1 is given by ¢, = <t;t4t;8,t) t5tst 85>, By defin-
ition of the position function pf , pf (4 ,¢,) =5, pf (t1,¢,) = 1, pf (t2¢,) = 4,
PI (‘mc,) = 7» pl (“,C.) = 8: PI (‘s’c,) = 99 P! (‘o'c,) = 6’ P, (‘7!‘,) = 3)

and pf (t5,¢,) = 2. Then by algorithm DIFF, for each #; € {t,,t}, ..., t;},

LEN l(‘t) = {(_1,2),(2,1),(2,3),(3,2),(4,5),(5,4),(5,6),(6,5),(7,8),(8,7),(8,9),(9,8),

81

(1,4),(4,1),(4,7),(7,4),(2,8)(5,2),(5,8),(8,5),(3,8),(6,3),(6,9),(9,6)}..
DIST“»‘l ’P, (‘b 07)) - DIST(I,‘5 15) - {(4v5):(°»5)1(215)1(8!5)}’
DIST (2)“ !5) - ((l)5)'(3)5))(715)’(9'5)}'

DIST (k 4 5) = ¢, k=3,..8.
DIST (1,t1,pf (ty,¢,)) = DIST(1,8,,1) = {(2,1),(4,1)}.
DIST(2,¢1,1) = {(3,1),(5,1)(7,1)}.
DIST(3,t,,1) = {(6,1),(8,1)}.
DIST(4,¢,,1) = {(9,1)}.
DIST(kt,1) = ¢, k=5.8.
DIST (1,85,pf (t3,¢,)) = DIST (1,8,,4) = {(2,4),(6,4),(8,4)}.
DIST (2,85,4) = {(2,4),(6,4),(8,4)}.
DIST (3,8,4) = {(3,4),9,4)}.
DIST(k t,,8) = ¢, k=A,..8.
DIST (1,4,pf (ts,e,)) = DIST(1,85,7) = {(8,7)(4,7)}.
DIST (2,t5,7) = {(5,7)(0,1){1,7)}.
DIST (3,4,7) = {(2,7)(6,7)}.
DIST (4,t5,7) = {(3,7)}.
DIST(k ts,7) = ¢, k=5,.8.
DIST (1,6 ,pf (tye,)) = DIST (1,4,,8) = {(7,8),9,8),(5,38)}.
DIST (2,¢,,8) = {(6,8),(4.8)(2,8)).
DIST (3,t,,5) = {(1,8)(3.8)}.
DIST(kt,5) = ¢, k=4,.38.
DIST (1,45,pf (t5,¢,)) = DIST(1,¢4,9) = {(8,9),6,9)).
DIST(2,t5.9) = {(5,9),(7,9)(3,9)}.

DIST (3,85,9) = {(2,9),(4,9)}.

DIST (4,85,9) = {(1,9)}.
DIST (k t9) = ¢, k=S5,..8.
DIST (1,86,pf (16,¢,)) = DIST(1,t4,8) = {(5,6).(3,6),(9,)}.
DIST (2,t4,8) = {(2,6),(4,6),(88)}.
DIST (3,t4,8) = {(1,6),(7,6)}.
DIST(k ts,0) = ¢, k=4,..8.
DIST (1,84,pf (t1,¢,)) = DIST(1,¢,3) = {(2,3),(6,3)}.
DIST (2,t1,3) = {(1,3),(5,3)(9,3)}.
DIST (3,,,3) = {(4,3),(8,3)}.
DIST (4,4,,3) = {(7,3)}.
DIST(k t13) = ¢, k=5,.8.
DIST (1,4,pf (tg,¢,)) = DIST(1,84,2) = {(1,2),(3,2),(5,2)}.
DIST (2,t5,2) = {(4,2),(6,2),(8,2)}.
DIST (3,t4,2) = {(7,2)(9,2)}.
DIST (k 85,2) = ¢, k=4,.8.
As shown above, for each elementary unit {;, every pair of position values of

a, is computable in this problem.

e {5-cit veling Salesma b

From Fig.2.2, the goal state ¢, in this problem is that the salesman visited
each city once starting the city A _and came back to A. Then by definition of the
position function pf , pf (A ,e,) = <T,I>, pf (B,e,) = <T,NI >,
pf(C,e,)= <T,NI>, pf (D,,)=<T,NI>, and pf(E,,)= <T,NI>.

By algorithm DIFF , for each city ¢, € {B,C,D ,E},

LEN 1(a,) = {(<F ,I>,<T ,NI>)(<F,NI>,<F,>)}.

DIST (1,s;,p/ (8;,¢,)) = DIST (1,6;,<T ,NI >) = {(<F,I>,<T,NI>)).
DIST (2,8, ,< T NI >) = {(<F ,NI >,< T ,NI >)}.

DIST (3,6;,<T ,NI>) = ¢.

There are some noncomputable pairs of position values of a; which become the ele-

ments of DIST (s -LIMIT ,a,) where s == 2 and LIMIT = 4° = 1024.

DIST (s -LIMIT ,8; ,<T ,NI >) = {(<T,I >,<T,NI >)}.
For the city A,

LENYA)= {(<F, >,<T,NI>)(<T,NI><LT,>)}.
DIST(1,A ,pf (A ,¢,)) = DIST(1,A,<T,I>)= {(<T ,NI>,<T,I>)}
DIST (2,A ,<T ,I>) = {(<F,I>,<T,>)}.
DIST (3,A ,<T ,I>)=¢.
The set of noncomputable pairs of position values of A is
DIST (s -LIMIT ,A <T ,I>)= {(<F,NI>,LT,I>)}.
The Robot Planning Problem
From Fig.2.3, the goal state ¢, is <NULL,NULL {C,B,A),NH >. The goal
position value of each block is pf (A ,¢,) = <0,0,3,NH >,
pf (B,e,) = <002,NH>, and pf (C,e,) = <0,0,1,NH>. Then by algorithm

DIFF , for each block o, € {A ,B,C},

LEN 1(0;) = {(<n,0,0,NH >,<0,0,0,H >),(<0,n,,0,NH >,<0,0,0,H >).
(<0,0,n3,NH >,<0,0,0,H >),(<0,0,0,H >,<n,,00,NH >),
(<0,0,0,H >,<0,n,,0,NH >),(<0,0,0,H >,<0,0,ns,NH >):
n € {1,2,3), k=123).
DIST (1,A,<0,0,3,NH >) = {(<0,0,0,H >,<0,0,3,NH >)}.

DIST (2,A,<0,0,3,NH >) = {(<n,,0,0,NH >,<0,0,3,NH >),

54

(<0,n,,0,NH >,<0,0,3,NH >),
(<0,0,n5,NH >,<0,0,3,NH >):
n € (1,23}, k=12, n,€ {1,2}).
DIST (k ,A ,<0,03,NH>) = ¢, k=3,..9.
DIST(1,B,<0,0,2,NH >) = {(<0,0,0,H >,<0,0,2,NH >)}.
DIST(2,B,<0,0,2,NH >) = {(<n,,0,0,NH >,<0,0,2,NH >),
(<0,n,,0,NH >,<0,0,2,NH >),
(<0,0,n5,NH >,<0,0,2,NH >):
n; €{1,23), k=12, ns€ {1,3}}.
DIST (k ,B,<0,02,NH>) = ¢, k=3,.9.
DIST(1,C,<0,0,1,NH >) = {(<0,0,0,H >,<0,0,1,NH >)}.
DIST (2,C,<0,0,1,NH >) = {(<n,,0,0,NH >,<0,0,1,NH >),
(<0,n,,0,NH >,<0,0,1,NH >),
(<0,0,ny,NH >,<0,0,1,NH >):
n € {1,23), k=12, n,€ {2,3}}).

DIST (k,C,<0,0,1,NH>) = ¢, k=3, .9.

3.3.2.2. The Case of Nonequal Costs of Rules

In this section, we discuss the procedure to derive the heunstic A(e¢,) for the
case of nonequal costs of rules as in the traveling salesman problem. Let (p,7) be a
path from the state e, to the goal state ¢,. We will estimate the cost of the
sequence p by estimating the cost of minimum number of rules in the sequence

#la,), o, € B,,, where (p(s,),1(a;)) is the subpath of (p,).

Suppose Ldist (<pf (s;,¢,),pf (0,,¢,)>,8,) = K,. Then as mentioned before,

the number of rules in the sequence p(a,) is not less than K;. Furthermore, for each

86

n € {1,..K;), there exist at least one rule <saj;,, ..., 85, > with some a,",.an,- ,
which will be denoted by <6};,,...,8,,...,65 >, in the sequence q,) and
two corresponding states, ¢;, and ¢, -, in the sequence 7{q;) such that
(<Oknsevvs8yenn,tin>ehn 1€’) € SUCCR,

Ldist(<pf (q;,e1.)0/ (8;,¢,)>,6;) = n, and

Ldist(<pf (s, ,¢;,).pf (8;,¢,)>,8;) = n-1. (The proof is given by Lemma 3.6 in
Appendix A.) We first determine a lower bound of the cost of such rules for each n.
Then the cost of minimum rules in the sequence p(s,) is not less than the sum of K;
such lower bounds. Let this sum be given by LOCS(q;,¢,,pf (q;,¢,)). Then the

heuristic A(e,) is given by

hie,) = max({l'.(es), A®(e,;), 4% (e,)}) (3.7)

where
h*(e,) = max({LOCS (s, ¢, ,pf (‘h‘g)): s, € Bu D (3-8)
h.(cs) = '! 628 LOCS(‘. 1€y vP, (‘o’ 1)))v (3.9)

- 1
)=y g, o e el (e) (3.10)

6dnN

Although the way to generate the value LOCS(q, ¢, ,pf (a,,¢,)) is formally
described by algorithm LOCS, we will briefly explain it here. As mentioned above,
LOCS (a, ¢, ,pf (a,,¢,)) is the sum of K; lower bounds of
c(<¢{h, R l,i,),c‘, ¢)y n=1,...,K;. Then it suffices to explain
the way the lower bound of ¢(<@ljn, ..., 8,..., 0845 > ci 1€’) for each

n € {1,..K;} is derived.

Let each set C(¢;,¢,), ¢ € EU, contain every pair of two position values of
o; which can be assumed in a state and its successor state which result when a
sequence of simplifed rules is applied to ¢, .

First we derive every rule <a} jreces a,‘,-) € R with some c,;'~-=c,-, which
will be denoted by <c{,~, Y c,‘,-). such that for some

<gqy ,ql," > € C(a,j,e,)for each /,
(l) SCF(Ré',l 3, >0}, .”,,_,.",)'(.;'j:---:‘i:-'-l"‘)’yqlir'--:%’y

cesos o 915s o294 - '°)qaj)'= true,

where SCF (R<‘i,, n>a. . “ is the relaxed successor formula for

the s elementary units o{,-, ceey By, a,‘,-, and
(2) Ldist(<g,,pf (s;,e,)>,8;) = n and Ldist(<q; ,pf (s;,¢,)>,8;) = n-1.

It is easy to see that the original rule <¢{.,, ey 8y ..., 80> satisfies
the above conditions (1) and (2) because for each ! € {1,...,4 },
<pf (9du,e1a)pf (a6,)> € Clahasey),
SCF(’Z’., ,,,,, >0 ._'h)(’:h: P P YRR T L 1T
PS (8, €10)i S (810,10),PS (814018407 s S (8; 18400)] (8 r€4,7) = true,
Ldist(<pf (s;,e1,)0/ (8;,¢,)>,6,) = n, and
Ldist(<pf (o;,¢,,)pf (0;,¢,)>,0,) = n-1.

Next, for the fixed s, we select the lower bound of the costs
c(<a{,., Y P a,i.>,e,. 1€4a’) of all the rules

<a{j, R P a,';-> derived above.

57

Algorithm DESC below generates the sct C(s,,e,) for each o, € EU when
the state ¢, is given. Each set DIST(l,s,,q;), ¢4 € P, used for DESC is gen-

erated by algorithm DIFF with the input /,,,(s;) = P.

Algorithm DESC (¢,)
Begin
Foreach g, in EU do
begin
Cloies):={<q,a >:(a €EP) N (& EP) N
(SCFF (g ,q4) = true) N

(@ = p/ (a;1¢,)) U

(BJX(J € {l’---; | P "l}) n (<pl (‘o’ 1€)191 > € DIST(J 18 Q%))))},
end-for-do] |

Return C(s;,¢,), o, € EU;
End-algorithm

For example, when the state ¢, = <{A,C},D> in the (5-city) traveling
salesman problem, the value of LOCS(B,e,,pf (B,e,)) for the city B is derived.
Since pf (B,e,) = <F,NI> and pf (B,¢,) = <T,NI >,

Ldist ((<F ,NI>,<T,NI>),B) = 2. Algorithm DESC generates

C(A,e,)={(<T,NI><T,>)(<LT,NI>LT,NI>)(LT,I>,LT,I>)},

C(B,e,) = {(<F,NI >,<F,>)(<F,><T,NI>)(<F,NI><F,NI>),
(<F,JI>,<F,>)(<T,NI><T,NI>)},

C(C.e,) = {(<T,NI>,<T,NI>)},

C(D,e,)={(<F,><T,NI>)(<LF,><F,>)(<T,NI>,<T,NI>)},

C(E,e,) = {(<F,NI >,<F,>)(<F,I>,<T,NI>)(<F,NI>,<F,NI>),

(<F,0>,<F,>)(<T,NI><T,NI>)}.

First we derive the lower bound of the cost of rules for n=2. Two rules
<D ,B> and <E,B > satisfiy the conditions (1) and (2) given above:
for the rule <D,B>, there exist (<F,NI>,<F,I>)€ C(B,,) and
(<F,0>,<T,NI>)€ C(D,e,) such that
SCF{&, +,>0.8)(D,B,<F,NI><F,I><F,1><T,NI>)=truc,
Ldist ((<F ,NI >,<T ,NI>),B) =2, and Ldist((<F,I>,<T ,NI>),B)=1.
For the rule <E,B>, there exit (<F,NI>,<F,I>)€ C(B,e,) and
(<F,I>,<T,NI>)€ C(E,e,)such that
SCF{, +,>£8)(E,B,<F ,NI><F,I><F,I><T NI >)=tru,
Ldist ((<F ,NI >,<T ,NI>),B) = 2, and Ldist ((<F,/>,<T ,NI>)B)=1.
The lower bound for n =2 is then given by the minimum cost of <D ,B> and

<E,.,B>.

Similarly for n =1, two rules <B,A > and <B,E > are derived. For the
rule <B,A >, there exist (<T ,NI >,<T,/>)€ C(A,e,) and
(<F,I>,<T,NI>)€ C(B,e,) such that
SCF{&, +,>5.4)(B,A,<T ,NI><F,I><T,I><T,NI>)=true,

Ldist ((<F,I>,<T,NI>),B) =1, and Ldist((<T ,NI >,<T,NI>),B)=0.
For the rule <B,E>, there exist (<F,/>,<T,NI>)€ C(B,,) and
(<F,NI>,<F.,I>)€ C(E,e,)such that

SCF{%, +;>.5.5)(B,E,<F,I><F,NI><T,NI><F,>)=truc,
Ldist((<F,/>,<T,NI>),B)=1, and Ldit((<T ,NI>,<T,NI>)B)=0.
The lower bound for n =1 is then the minimum cost of <B,A > and <B,E>.
The cost of each rule <a;,q; > is given by the distance between two cities a, and

6; . Thus, from Fig.2.2,

LOCS (B e, ,pf (B ¢,)) = min({10,10}) + min({7,10}) = 10 + 7 = 17.

Algorithm LOCS (¢, ,¢, ,pf (8; ,¢,))
Begin

/* Find the length from pf (o;,e,) to pf (a;,¢,) ¢/

d=d = Ldist(<pf (8 ,¢,).pf (8 g)>,8);

[* I the pair <pf (o;,¢,),pf (8;,¢,)> is noncomputable, ¢/

/* do not go further ¢/

If(d =o-|P|IEV]),

then begin

LOCS := v, 'd, where v, is the maximum cost of the rule;
Return LOCS ;
end-if

/* At each of d intermediate stages, refine the set C(a;,¢,) */

/+ which is generated from algorithm DESC s/

While (d' »£0) do

begin
/* Find all position values each of which has the length of d " from ¢/
/* the position value, pf (s;,¢,), of &; with respect to the goal state, ¢, ¢/
D(s; v" 2/ (8 1€g)) == {qj:(ql‘ €EP)N

(<q;.pf (85.,¢,)> € DIST(d' 0 ,pf (5.,¢,))};

/* Refine the set C(q;,¢,) at the stage of distance d' from pf (e, eq) ¢/
CC(a,¢,,d ,pf (8,¢,)) = {<qi,q >:(<qi,0, > € Cla5,¢,)) N
(9 € D(ay,d" ,pf (as,¢,)) N (Ldist(<g; ,pf (6,¢,)>,0) = d' -1)};
/* Update the intermediate stage s/

d =d -1
end-while;
|+ At each of d stages, select every applicable rule ¢/
v =],
While(1 v < d)do
begin

W(v,o5,¢,,pf (o 1Cg)= {c(<6y,...,08,...,0, >,€5,¢j;):
(3<qlvql’ > € C(‘l 1€s)r '=lv"".s l#k)

(3<q: .9 > € CC(a;,¢,,v,pf (8.¢,)))
(@ = pf (a1,¢;), 1=1,...8) N (¢ =pf (81,¢;;), I=1,...4) N

60

(SCF(L",‘ :,>,c,,...,¢,)(.l: ceer 8y,
915 - - 'rquql’ PRI w?c') = true)};

ve=y+];
end-while;
/* Derive the lower bound of the cost of minimum rules in p{q;) s/

LOCS := é min(W(" 18} 4€4 D’! (‘l 1€)))v

=]
Return LOCS;
End-algorithm

The complexity of DESC(e,) and the complexity of LOCS (s, ,¢, ,pf (s;,¢,))
are given, respectively, by O(n | P |®) and

max({O(|R | | P |**), O(]| P |®)}) where | R | is the cardinality of the set R .

The proof of the admissibility and monotonicity of the value of A(e,) in the

formula (3.7) is given by Lemma 3.9 in Appendix A.

Algorithm HEU below describes the procedure for deriving the heuristic A (e,)

for either case of equal cost of the rule and nonequal cost of the rule.

Algorithm HEU (¢,)
Begin
B:g - {ﬂ,‘! (.i € EU) n (P, (‘i ,C,)# P, ('i 1€g))} ’

If (the cost of each rule of the problem is the same w),
then begin
W (e) =< T wLdint(<pf (s,e,)pf (6,)>0,)
8,€B,,
h .(cs) = max“"' -Ldist (<pf (s, 1€s)’P! (s 1€y)>’°i): s € Bu }),
(s 22)
then begin
b®(e,) = —— X w-Ldist(<pf (616,)] (0,.¢,)>,0,);
- l n I 8, €B,,
XY
/* Return the maximum of A°(e,), A°(e,), and A ™ (¢,) ¢/
return max({A°(e,), A°(e,), 5™ (¢,)});
end
else return max{{h*(c,), h°(¢,)});
end-if;

61

If (the cost of each rule of the problem is not the same),
then begin
call DESC (e,);

b(e,)im S L LOCS(s.c,,pf (o.e,))
s, €B,,
A’ (e,) = max({LOCS (e ¢, ,pf (o 1€y): 6 € Bu)
(e 22)
then begin

() m —1 | e)
‘ (‘l) Py l n l ..gul‘ocs(.l ,C. !pI (.l ,C'))1
CX-29]
/¢ Return the maximum of A°(e,), A*(e,), and A™ (e,) ¢/

return max({b'(c,)) h.(cs)’ A® (C,)})’
end

else return m‘x(“‘ ¢ (‘x)r A’ (es)})r
end-if;
End-algorithm

3.4. Examples

In this section, the heuristic A(e,) computed by the algorithm HEU is illus-
trated by three examples, the 8-puzzle problem, the (5-city) traveling salesman prob-
lem, and the robot planning problem.
The 8-Puzzle Problem

Let the state e, = <tp,t,,05,8;,t4,8 ,85,0,,¢;> where the goal state ¢, of
Fig.2.1 is given by ¢, = <t;,t4,85,82,8) ,8¢,05,t4,t5>. Then the set B,, of elemen-
tary units whose position values are different between e, and e, is

B,, = {t,,t,,04,t4.t; }. For the elementary unit ¢,,
Ld'.“(<P! ('2,8‘)’p] (‘21‘,)>1‘2) = th‘(<lr4>"2) = 1.

Similarly, Ldist (<pf (t,,¢,).pf (‘lrcl)>"l) =],
Ldist(<pf (tg,¢,)pf (‘8»3,)>,t3) =2, Ldist(<pf (tgse,)pf (‘ovcg)>,t6) =1,
and Ldint (<pf (f ¢,)] (4,605 1) = 1.

The cost of the rule in this problem is 1. Thus,

ble,) = T Lt (<pf (5,)0] (6:6,)>,0)

- %(1+1+2+1+1) -3

In this problem, the set 3 = {¢, }. So, by definition of A*(e,) and A™ (e,),

h(e,) = max({Ldist (<pf (s;,¢,).pf (s; 1€g)>,8): 6 € Bu })
= max({1,2}) = 2.

M (e) =L X Ldist(<pf (e:,e,)0 (8,,)>,8;)
8-1,48,-(4))

- -: (14142+1) = 5.

The maximum value of 5°(e,), A*(¢,), and A™ (¢,) is given by the heuristic (e,).
Thus, A(e,) = 5. The search tree for solving this problem is given in Fig.3.1.
The (S-city) traveling salesman problem

Refer to Fig.2.2. The goal state ¢, = <{A,B,C,D,E}, A >, and the cost of
each rule, <s;,s; >, is given by the distance between the two cities, 6; and a,, on
the map. Let the state e, = <{A,B},C>. Then, by definition,

B,, = {A,C,D,E}, and s = 2. From the algorithm DIFF,

Ldist(<pf (A ,e,)pf (A ,e,)>,A) = Ldiat (K<T NI >,<T,I>>A)=1,
Ldist(<pf (C e,)pf (C ,e,)>,C) = Ldist (<<F,I><T,NI>>,C) =1,
Ldist(<pf (D e,).pf (D ,e,)>,D) = Ldist(<<F ,NI > <T ,NI>>D) =2,
Ldist(<pf (E e,).pf (E s¢,)>,E) = Ldist(< <F ,NI > ,<T,NI>>E)=2.

Based on this, the algorithm, LOCS, provides the following:

LOCS(A e, ,pf (A,e,)) = LOCS(A,e,,<T,S>)=6.

LOCS(C,e, ,pf (C,e,)) = LOCS(C e, ,<T ,NS>) = 5.
LOCS(D ¢, ,pf (D 1¢,)) = LOCS(D je¢, ,<T ,NS>) =5 + 6 = 11.

LOCS(E e, ,pf (E,¢,)) = LOCS(E ¢, ,<T,NS>) =6 + 6 = 12.

In this problem) == ¢. Thus A™ (¢,) == A(e,). Then,

A(e,) =2 g‘;? LOCS (6; ¢, ,pf (8; ¢,))--;(o+s+u+'n)-= 17.

‘.(cl) = max({LOCS(a, 1€ 1?! (‘i 1€y)) 8 € Bu }) = 12.

By algorithm HEU, hk(e,) = max({h°(e,), A’(e,)}) = 17. The search tree for
finding the optimal solution to this problem is given by Fig.3.2.
The Robot Planning Problem

The goal state of Fig.2.3 is ¢, = <NULL ,NULL (C ,B,A),¢>. Suppose the

state ¢, = <(A),(B),NULL,C >. Then B,, = {A,B,C}. For each block of B,,,

Ldist(<pf (A e,).pf (A ,e,)>,A) = Ldiat(<(1,0,0,NH (0,03 NH)>A) = 2.
Ldist(<pf (B¢,),p/ (B,e,)>,B) = Ldist (<(0,1,0,NH),(0,0,2,NH)>,B) = 2.

Ldist(<pf (C e,).pf (C,e,)>,C) = Ldist(<(0,0,0,H)0,0,1,NH)>,C) = 1.

This problem has the value 1 of s and 1 = ¢. Thus A’(e,) = max({2,2,1}) =1,
and A°(e,) =2+ 2 + 1 = 5. The heuristic A(e,) = max({A°(e,), °(¢c,)}) = 5.

The search tree for solving this problem is given by Fig.3.3.

3.5. Power of Heuristic

The power of the heuristic computed by the general algorithm HEU is illus-
trated by two problems, the 8-puzzle problem and the traveling salesman problem.
In each case we compare our heuristic A (e,) against the respective problem-oriented

beuristics given in the literature.

64

The 8-Puzzle Problem

Two well-known admissible heuristics for this problem [Gas77, Nil80, Pea83,

Pea84] are
(1) A,(e,) = the number of tiles out of their goal places,
(2) Aye,) = the sum of Manhattan distances that each tile is from its goal place.

It is not difficult to see that A,(e,) is the better heuristic than A,(e,). The

value of A (e,) given by algorithm HEU is the same as & (e,):
h(e,) = hje,) Ve, €5
e Traveli es

Three well-known techniques for generating an admissible heuristic are Maz-
imum of the sums of the row and column minime of the Reduced Mileage Matrix, A,
[Harr74), In-out estimator, h;,_,., [Pob73], and Minimum-Spanning Tree, MST,
[Hel71, Pea83). Each of these bears its own advantage over others depending on the
given instance of the problem. The value of our A (e,) is comparable to any of these
three, Ay, A,,_,.;, 3nd MST, in that there are instances of the problem for which

h(e,) is better than any of A, A,,_,., and MST.

As one example given in [Poh73] and shown in Fig. 3.1, we solved the problem
completely using A(e,) and the three heuristics mentioned above. The number of
nodes expanded with A (e,) was 10 as shown in Fig.3.5; with A, was 10 as in Fig.3.6;
with A, _,, was 9 as in Fig.3.7; and with MST was 12 as in Fig.3.8. Further, for
the purpose of comparision, we have Table 3.1 showing the values of the four dif-

ferent heuristics for the states generated during the solutions of the problem.

<ENNE> CSTERe> <INeB>

<EI34> <Onebe>

Figure 3.1 Search Tree for Solving the 8-Pussle Problem

s

<{A) B> <A .C> <(A}D>

/N

<{ABE> <{ABD> <ABC> <AGB> <ACD> <AOE>

DN

<(ABE.C> <{ABBD> <AROD> <{AROE>

<{ABDH.C>

<{ABRCDH A>

Figure 3.2 Search Tree for Solving the (5-city) TSP

67

NOMNILE>

<qABNILC> SAQNILNLLE>

VARVAN

ARONILLE> ABLOE> UONLLEBS> ACBNILNLLS>
SULMDBOA> ANLLO D>

<NULBALO$> <NUAICALS> JABNLLC¢> JANLLICH¢>

<NUILNILCDBA>

ULLIXILICRAL 6>

Figure 3.3 Search Tree for Solving the Robct Planning Problem

B i\&
/

2
D
2
| 3
F E

Figure 3.4 The (8-City) Traveling Salesman Problem

M

7

<UA>
<{h B> <(A)C> <(AL.E> <A F>
<(ABC> <ABD> <ABE <ABRP> <AMB> J(AFC> <(AMD> <AnE>
<(ARCID> <(ABGE> <(ARCIF> <(ABFIC> <(ABF)D> <(ABRFIE> <{ADF}.B> <(ADF}C> <(ADF)E>
N
<(ARCH D> <{ARCHF>
<{ABCDRF>

<{ABRCDEF}A>

Figure 3.6 Search Tree of A ° using A(c,)

70

<{A} B> <(A)C> <(A B> <{(A}F>
<(ABC> <(ARD> <ABE> <ABF> <AMB> <JAMC> J(AND> <AE>
<{ABCID> <(ABRG.E> <(AROF> <{ABF.C> <(ABF)D> <(ARFIE> <{ADF)B> <(ADF)C> <(ADF} 2>
<{ABCH D> <{ARCHF>
<{ABCDEF>

<{ABCDEF}A>

Figure 3.6 Search Tree of A* using h,

71

<AA>

<{A).B> <(A}C> <A <{A}?>

/,\/I\

<ABC> <ABD> <ABE> <ARF> <ANE> <ANC> <AND> <ANE>

/N AN NN

<(ABC)D> <(ARCLE> <(ABOF> <(ABMC> <(ABF)D> <IARF)E> <(ADF)B> <{ADF)C> <{ADF) E>

<{ABCH D> <{(ARCHYF>

<{ABRCDRF>

<{ABCDEF)A>

Figure 3.7 Search Treeof A° using &, _,,,

73

LS Sujsn , v Jo 004], Yo4wog g'g 9anBjq

<vWdaqouyv)>

<4d'Waouv)-

<a'WaoVv)> <a'qao'v)> —

< <L WOUV)> <qUIUY)» < d'douv), <aidauyvy..
<zlWav)>_ <o'lavi> <a'Wav)> <alov)> <TWovi> <a'Wovi> <alav)> <aluv)> <o / /_

<TUv)> <qUWvl> <o'Wv)> <guv)> <sav)p> <@'av)> <quv)> <owv)>

Y N

<&Liv)> <a'tv)> <Q'lv)> <a'tv)>

<

<vy>

73

| Values of Heuristics I

State ¢, Bip-gt | hg | K | MST
<¢, A> 12 10] 10 9
<{A}, B> 10 10| 9 | 10
<{A}, C> 10 10| 10 9
<{A},E> 05 | 10| 95| 9
<{A},F> 1 nj|iws|n
<{AB},C> 75 | 8| 78| 7
<{A,B}, D> 75| 7| 7 | 17
<{AB},E> 7 7| 7 7
<{AB},F> 5 | 7| 7 7
<{AF}, B> 9 8| 8 9
<{AF}, C> 905 | 10| 95| o
<{AF},D> 9 o| 85| 9
<{AF}),E> 9 o| 85| 9
<{A,B,C}, D> 65 | 7| 7 6
<{A,B,C},E> 6 6| 55| o
<{A,B,C}, F> 7 7| 65| o
<{A,BF},C> 8 8| 8 8
<{ABF},D> 85 | 8| 7 8
<{ABF},E> 75 | 8| 7 8
<{AF,D}, B> 75] 6| o 7
<{AF)D}, C> 85 | 10| 85| 7
<{AFD}, E> 7 7| 7 7
<{AB,C.E}, D> 3 3| 3 3
<{A.B,CD.E}, F> 1 1| 1
<{ABCDEF}.A> | o o| o 0

Table 3.1 Heuristics in (8-city) TSP

CHAPTER 4

A PROBLEM MODEL M, AND HEURISTIC

4.1. Motivation

In Chapter 2, we formulated the mathematical structure M which can model a
problem and we illustrated it by three examples, the 8-puzzle problem, the traveling

salesman problem, and the robot planning problem.

Some problems in which the goal state ¢, is not completely defined in advance
cannot be modelled by the structure M. Consider two well-known problems, the
problem of theorem proving wusing resolutions [Nil80] and the consistent labeling

problem (the constraint satisfaction problem) [Hara78, Hara79].

Theorem Proving Problem using Resolutions: Given a set of well formed
formulas, another well formed formula, called the goal, is to be derived. For the
resolution method, the negated goal formula is added to the set of given formulas
and the expanded set is converted into a set of clauses, called the set of initial
clauses. The problem is to derive a contradiction, represented by the clause NIL,

by applying a sequence of resolutions to the set of initial clauses.

One example of this problem considered in this chapter is given by the four ini-

tial clauses, A UB, A U~B,~A UB,and ~A U~B.

74

7%

The Consistent Labeling Problem: When a set of partial consistent labels
is given, each of which is allowed for &; units, ¥, < n, the problem is to find the
consistent label for all the n units. According to Haralick et o [Hara78, Hara79),
this problem can pe given by a compatibility model (U,L,T,Cy). U is the set of
units, L is the set of labels, T C U¥ is the set of all N-tuples of units which
mutually constrain one another, and Cy C (U XL)V is the set of all 2N-tuples
(wily, - - -, wn,dy) where (15, . . ., Iy) is a permitted label of units (u,, . .., uy)
in T. A label ({;,..., 1) is a consis’ent label of units (u, ..., ux) with respect
to the compatibility mode! (U,L,T,C;) i and only if
{f1,...,in}€{L,...,K} and (y,...,%)€ET imply the 2N-tuple
(wiphiys - - -5 %y,li,) € Cr; that is, the label (§, ..., [,) is a permitted label of
units (v, , . . . » Uiy). When U and L are understood, such a label (I,, ..., I} is

a (T,Cy)consistent label of (u,, ..., ux). The problem is then to find a con-
sistent label of units (u,, ..., u,), where U = {u,, ..., u,}, with respect to the

compatibility model (U,L,T,Cz).

One example of this problem considered in this chapter is given by a compati-

bility model (U,L,T,Cy) such that

U=1{1234},L = {e,b,c}, T = {(1,3),(1,4),(2,3),(2,4),(3,4)}, and

Cr=Ci;sN CyyN Coy N Cyy N Cyy

where

Cys = {(1,6,3,¢),(1,6,3,8),(1,¢,3,¢)}, Cyy = {(1,8,4,0),(1,b 4,¢)},

Ca = {(2,6,3,8),(2,8,3,0),2,6,3,8),(2,c,3,¢)},

Ca = {(2,0,4,¢).2,b ,4,¢),(2,c ,4,8),(2,c ,4,0)},

Cs = {(3,0 ,4,8),(3,b ,4,¢),(3,¢ ,4,b)}.

70

Suppose each of two problems, the theorem proving problem and the con-

sistent labeling problem, is modelled by the structure M in Definition 2.2.

I Proving Probl sing Resoluti
In this problem a set EU of elementary units is the set of initial clauses and all
resolvent clauses which can be generated by applying a sequence of resolutions to

the initial clauses. From the above example,
EU = {NIL,A,~A,B,~B,A UB,AU~B,~A UB,~A U~B}.

The cardinality of the set EU is then 3* where # is the number of symbols
apprearing in the initial clauses. Next, this problem has only one attribute Ab,,
namely, the status of each clause as to whether or not it has already been generated
by resolutions: AT == {Ab,}. Thus the state-space S of the problem is
S = Dom(Ab,) = Pw(EU) where Pw(EU) is the power set of EU. For example,
if four clauses, A UB, A U~B, ~A U B, and ~A U ~B, are given initially,
then the initial state ¢;,, = {A UB,A U~B,~A UB,~A U~B}. Aset P
of position values is P = P(Ab,) where P(Ab,;) = {T,F}. The values T and F
mean that a clause has been and has not been generated respectively. Each rule
(resolution) in this problem affects the postion value of only one elementary unit
which is the clause to be the resolvent. Thus R is the set of unary tuples of all
resolvents. For the above example,

R = {<NIL >,<A >,<~A>,,<~B>}, and the successor condition for-

mula SCF defining the relation SUCCR is

(r_NIL(#z,,°y NIL ,*y A ,....,0y_~A U ~B,#:_NIL ,*:_A,. . ¢:_~A U~B)

r_A(sz,,5y NIL,*y A,.,%y_~A U~B,%:_ NIL,*:_A,.,¢:_~A U~B)

77

r_~B(*2,,%_NIL ,sy A ,...,¢0y ~A U~B,:_NIL, s: A,., :_~A U~B))

-—ocf (#2,,%y NIL ,2y A ,...,0y_~A U ~B,¢:_NIL ,z_A ..., ¢:_~A U~B).
where

(#zy = NIL), ((*y_NIL =F), (%y_A =T), (%y_~A=T), (¢z_NIL =T),
(sy_cl=2:_cl, ¢l 9 NIL, ¢l € EU));
((*u_NIL=F),(#%y_B=T),(#9y_~B=T),(#:_NIL=T),

(*y_cl=2:_cl, ¢l 5 NIL, ¢l € EU)))

i~ ¢_NIL(%2,,%_NIL ,%_A,...,%_~A U~B,*:_NIL,%:_A,.. *2_~A U~B).
(1z2y=A)((%yA=F),(2yA UB=T),(%y_~B=T),(%2_A=T),

(s clmoz_cl, cl £ A, ¢l € EU));

(9_A=F), (%A U~B=T), (9 B=T),(*:.A=T),

(*y_cl=12:_cl, el % A, cl € EU)))

i~ r_A(%2, % NIL,%y_A,.,0%_~A U~B,#z_NIL,#:_A,..¢_~A U~B)
(¢2,=~B), ("¢ ~B=F),(*y-A U~B=T),(5y A=T), (2. ~B=T),
(sy_el=12:_cl, cl % ~B, ¢l € EU)),

(9 ~B=F),(*y_A U~B=T),(¢y_ ~A=T) (2_~B=T),
(sy_cl=2:_cl, cl 9 ~B, ¢l € EU)))

-~ r_~B(%2,,%_NIL,%y_A,...,%y_~A U~B,#:_NIL,*:_A,.,:_~A U~B)

The goal state e, of this problem, if it exists, is then a set of some clauses
including the initial clauses and the empty clause NIL . This set for ¢, is, however,
not known in advance before a solution path, a sequence of resolutions generating
NIL , is found. At the time when the problem is modelled for solving, the goal state

is only partially known.

78

The Consi Labeling Probl

Suppose the problem is given by a compatibility model (U,L,T,Cy). A set
EU of elementary units of the problem is then the set U of n units to be labeled.
This problem bas only one atrribute Ab,, namely, the labels of the units. Thus,
each element of Dom(Ab,), and hence a state of the problem, is given by
<uyly, ..., 4,0, > where each [;, i=1,...,n, is either the label of the unit u; or
the value nl if «, is not labeled. A 'set P of position values is then P = P(Ab))
where P(Ab,) is the set of labels to be given and the symbol nl. P =L U {nl}.
From the example given above, P = {8 ,b,c,nl}. Each rule in this problem affects
the position value of only one elementary unit which is the unit to be labeled. Thus,
from the given example, R = {<1>,<2>,<3>,<4>}, and the successor condi-

tion formula SCF is given by

(r_1(ez,,2p_1,..., *z_4);
r_2(ezy,00 1,...,%_4)
r_3ezy,0y 1,. .., %z_4);
r_4(ez;,001,..., %_4))

- scf (ez,,%y_1,9y_2,%y_3,9y_4,%:_1,0z_2,0:_3,#:_4).
where, for each k € {1,2,3,4},

r_k(ez,,%_1,..., %_4)

- (92, =k) oy k =nl)(e:_l = 9oyl I=1,.4, 1| #k),
member (#z_k ,[a ,b ,c]),
Cg_13(#:_1,¢:_3),Cg_14(*:_1,2:_4),Cg_23(+:_2,#:_3),

Cg_24(+:_2,%2_4),Cg_34(2:_3,2:_4).

7

Cg_13(*:_1,9z_3)

 member ([#2_1,02_3)[a,c | b bLlc e Lo nlL[b nl).fe],
[nl,e),[nl ,b])[nl,c].[nl ,nl]}).

Cg_14(#:_1,%z_4)

i~ member ([#2_1,22_4),[{a,b],[b,c],[a ,nl],[b ,nl],[nl,b][nl,c],
[nl,nl])).

Cg_23(*:_2,4:_3)

i~ member ([¢:_2,2_3},[[a,8][a,b],[b,8],[c,c].la,nl],[b,nl],
le nt}lnl,o Lint 5 Lint | [nt nt]).

Co_24(#:_2,%:_4)

i~ member ([#2_2,22_4},[[a,c|,[b,c][c,a],[c 8] ,[a nl],[b,nl],
[e ,nl),[nl ¢ Linl 8 },[nl ;b],[nl ,nl])).

Cg_34(+:_3,¢:_4)

i~ member ([#2_3,z_4],[[a,6],[6 ,c],[c ,b],[a ,nl],[5,nl],[c nl],
Int .}l Linl b L[nt ,nl).

A goal state e, of this problem, if exists, will be given by
¢ = <uply,...,u,,0.> where (I,,..,,) is the consistent label of units
(4y, . .., %,) with respect to the compatibility model (U,L,T,Cz). This labeling
(Iy, . .., 1) is, however, determined only after a sequence of consistent unit-labels
is derived. At the time when this problem is modeled for solving, the goal condition
can only be described by the conjunction of partially defined consistent labels for k;

units, k;, < n.

As shown in the above two examples, the modcl M is inadequate for some

problems because the goal state ¢, is not known. Such an inadequacy can be over

80

come by representing the goal by the first-order predicate formula, which will be

called the goal condition formula.

4.2. Goal Condition Formula

We first define the goal condition formula as follows.

Definition 4.1

The goal condition formula Goal(p_s,, ..., p_s,) is the first predicate for-
mula with n variables p_o;, i=1,..,n, such that each p_g, stands for the goal

position value of the elementary unit g, .

For example, the goal formulas for the theorem proving problem and the con-

sistent labeling problem from section 4.1 are given by (4.1) and (4.2), respectively.

goal(*p_NIL ,#p_A ,...,*p_~A U ~B) (4.1)
= (*p_NIL=T),(*%p_A UB=T),(%_A U~B=T),
(p_~A UB=T),(%p_~A U~B=T).
goal(*p_1,%p_2,%p_3,p_4) (4.2)
- C_13(#p_1,%p_3), C_14(*p_1,%p_4), C_23(*p_2,¢p_3),
C_24(*p_2,%p_4), C_34(*p_3,%p_4).

where
C_13(sp_1,%p_3) :~ member ([+p_1,%p_3]/[[a,c],[6 .0][c,e]]).
C_14(*p_1,p_4) - member ([#p_1,%p_4][[a,b].[b,c]]).
C_23(#p_2,%_3) :- member ([+p_2,%_3][[a,a][a,b][b,a]le,c]).

C_24(*p_2,%p_4) :- member(|*p_2,%p_4)|[a,c],[b,c])]c,a])lc.b])).

81

C_34(%p_3,%p_4) :- member([sp_3,op_4],[[s,6],[6,c])[c,b])).

4.2.1. Relaxed Goal Condition Formula

As discussed in Chapter 3, in order to compute the heuristic A(e,), for each
elementary unit a;, its position value pf (a;,¢,) in the goal state ¢, was derived
and compared with its position value pf (s, ,e,) in the state e, . If the goal is given
by the formula Goal, however, a goal position value pf (g, ,¢,) of each elementary
unit e, is not derived directly. It is derived by relaxing the formula Goal with
respect to 6,. A goal position value of each elementary unit e; is derived by the

corresponding relaxed goal condition formula G'ocl,’.'"(p_c,-).

Definition 4.3

Let Goal(p_s;,...,p_s,) be the goal condition formula. Then for each
o, € EU, the relazed goal condition formula for a; is the one variable formula
Goal,’f"(p_a,—) such that for every (g¢y,--.,¢,.--,9.)€EP" i

Goal(g,, ...,Q,-.-,0s) = true, then Goalf"(q,-) = true, and no other value

of the argument satisfies Godf".

For each elementary unit 6, € EU, the goal set G (s,) of position values of a;

is given by
G(a)={q:: (s € P) N (Goal}(g) = true)}.
Since the G(a,) is derived from the relaxed goal formula, every value of G(a;) is

not necessarily the position value of ¢, in the goal state although all the postion

values of ¢, in the goal state are elements in G(a,). This will be shown later by

83

one example.
The way to derive Gocl,'f" from Goal is similar to the way we derived
SCF,’?" from SCF. Let goal be the goal formula given in PROLOG and let it be

in the conjuctive normal form with / clauses ¢l;, j=1,...,1.

'Od(’p-.h .. - ’ ’p—'l)
= ely(...),e-0eh(..0)

Then the relaxed formula goal_ s, _rel for e, is derived by substituting
anonymous variables *_" for the variables other than #4p_a; in each of the | clauses

el;\ 5=1,..1.

goal_s, _rel(*p_s;)

- Cll(__ yoorrm 1 IP_6f o yeensm),...,C‘l (_ yorosm 1 OP_ 64 o geeer)

For example, the relaxed goal formula goal NIL_rel in (4.3) is derived for the
clause NIL from (4.1) for the theorem proving problem. The relaxed goal formula
goal_1_rel in (4.4) is derived for the unit 1 from (4.2) for the consistent labeling

problem.

goal_NIL_rel(*p_NIL) (4.3)
- (’P-NIL =T)’ (—=T)’ (—=T)’ (—=T)’ (-=T)'
goal_1_rel(*p_1) (4.4)

- C_13(*p_1,_), C_14(#p_1,_), C_23(_,_), C_24(_,_), C_34(_,_).

From the formula (4.3), the goal set G(NIL)= {T} is derived. Similary,
using a corresponding relaxed goal formula, each goal set for the theorem proving

problem is derived as follows:

G(A)= G(~A)= G(B)= G(~B)= {T,F}, and
G(AUB)=G(A U~B)= G(~A UB)= G(~A U~B)={T}.

For the consistent labeling problem, from the formula (4.4) the goal set

G(1) = {e,b}. Similarly, for each unit k € {2,3,4},

G(2)={a,b,c}, G(38)={b,c), and G(4) = {b,c).

We mentioned above that every value of the goal set G (g;) is not necessarily
the position value of 6, in the goal state. This is easily observed from the above
example of the consistent labeling problem. A goal state ¢, in this example will be
¢, €{(1,6,2,6,3,0,4,c)(1,6,2,¢,3,c,4,b)}. A goal position value of each unit
kef{1,234) in e is then pf(le)€E{b,e}, pf(2¢,)€E {a,c},
pf (3,¢,) € {b,c}, and pf (4,¢,) € {b,c}. Thus, we can see that for the unit 2, its
position value b is in the goal set G(2), but is not the actual goal position value,
pf (2,¢,).

As explained in Chapter 3, our approach to compute the heuristic A(e,) is
based on the minimum number of simplified rules which takes each elementary unit
e, from its current position value pf (so,,c,) in the state e, to its goal position
value pf (s;,¢,) in the goal state e,. Thus, the closeness of h(e,) to A°(e,)
strongly depends on whether or not there is a solution p#th which takes each g,

from pf (e, ,e,) to each element of G (s;).

4.3. A Problem Model M,

In this section a problem model A, with a goal condition formula is presented.
The problem model A{, is a slightly modified version of the problem model Af in

Definition 2.1 in that the goal state ¢, is replaced by the goal condition formula

84

Goal.

Definition 4.3

A problem, M, is an ordered ten-tuple,

M, = (EU ,AT,P,S,pf ,R,SUCCR N e, ,Goal),

where

< EU is a set of elementary units,

- AT is s set of attributes,

- P is the set of position values of the elementary unit,
-« S is the set of states,

- pJ is a position function, pf : EU XS — P,

- R is aset of rules,

- SUCCR C RXSXS is a ternary relation describing the rule, its applicable

state, and its resulting state,
- ¢ is acost function, ¢: SUCCR — R
- e, is an initial state, ¢,, € S,

- Goal is the goal condition formula with n variables, p_a,, ..., p_s,, where

each p_g, stands for the goal position value of the elementary unit s;.

The formulation of the model M, was illustrated by two examples, the
theorem proving problem and the consistent labeling problem, in the prevoius sec-
tion. In the next section, the heuristic A(e,) computed on the problem model M, is

discussed.

86

4.4. Heurlstic Derlved using the Problem Model M,

Based on the model M, the formula to compute the heuristic A(e,) is
developed for the case where the rules have equal costs as well as for the case where

the costs of the rules are not equal.

4.4.1. The Case of Constant Rule Cost

In Chapter 3, the formula in (3.6) to compute l;(c,) was developed based on
the actual goal position value pf (s;,¢,) of each elementary unit o,. As explained in
section 4.1, when a problem is modelled by M,, a possible goal position value of
each elementary unit e; is given by the goal set G (o,). Thus the formula in (3.6) is

slightly modified for the model M, as follows.

Let the set B(e,)={0;:(o; € EU) N (pf (s;,¢,) ¢ G(s;))}. Then the

heuristic A (e,) is given by

h(e,) = max{{h’(e,), h*(e,), 4% (¢,)}) (4.5)

where

h*(e;) = max({min({w List(<pf (s,¢,),0 >.8,): &t € G(q,)}): 8, € B(e,)}),

B(e,)=2 ¥ min({w-List(<pf (a,,¢,)0 >,8): ¢ € G(s;)}),
? 4€B(¢,)

1 Y min({v-Lit(<pf (e,) >,8,): @ € G(s;)})
“Inl 8,€B(¢,)
X34}

h®(e,) =

Each value Ldist(<pf (o,,¢,),q1 >,8,), @ € G(g,), is derived by algorithm

DIFF with the input I,,,(e;) = G(s;).

4.4.3. The Case of Nonequal Costs of Rules

For the case of nonequal cost of a rule, the formula in (3.7) to compute A(e,)
is modified as follows:
A(e;) = max({A° (e,), h*(e,), 4" (e,)}) (4.6)
where
A’ (e;) = max({min({LOCS(s;,¢;,q1): ¢ € G(4;)}): 6; € B(e,)}),

ko(e,)=2 ¥ min({LOCS(s;,es,q1) @ € G(s;)}),
4€B(s,)

A" (C,) = 2 min({LOCS(c, €s Qi): % € G(‘i)})

- |01 ,€5(e,)
s¢0

The heuristic A(e,) in each of (4.5) and (4.6) satisfies the conditions of admis-

sibility and monotonicity. This will be discussed further in Chapter 6.

4.5. Examples

In this section the heuristic & (¢,) computed by the formula (4.5) is illustrated
by two examples of the theorem proving problem and the consistent labeling prob-
lem given in section 4.1.

ovi blem usi olutiops

The initial state of the problem is
¢ ={AUBA U~B,~A UB,~A U~B}. Asderived in section 4.1, every
clause ¢l in the set EU except the initial clauses and the empty clause N/L has the
goal set G(¢l) = {T ,F} = P. Every nongoal state ¢, is given by some subset of
EU-{NIL} including the initial clauses. Thus by definition, B(e,)= {NIL}

because pf (NIL ,e,) = F and G(NIL)= {T}. The value of s is 1. Then

87
A (e,) == A®(c,) = Ldist (<F,T>NIL) = 1.

Thus, the heuristic A(e,) == 1 for every monequal state ¢,. For the goal ¢,,
A(e,) = 0.
The Consistent Labeling Probl

Consider the state e, given by e, = (1,8,2,nl ,3,nl 4,nl). First each relaxed

goal condition formula Goal,""' (p_s;), 8; € {1,2,3,4}, is derived.

gael_1_rel(#p_1)

- C_13(*p_1,_), C_14(*p_1,_), C_23(_,_), C_24(_,_), C_34(_,_)
goal_2_rel(*p_2)

= C_13(_,), C_14(_,_), C_23(#p_2,_), C_24(*p_2,_), C_34(_,_)
goal_3_rel(*p_3)

= C_13(_,%_3), C_14(_,_), C_23(_,*p_3), C_24(_,_), C_34(#p_3,_).
goal_4_rel(*p_4)

= C_13(_,), C_14(_,%p_4), C_23(_,_), C_24(_,*p_4), C_34(_,%_4).

Then each goal set G(q,;), o, € {1,....4},is G(1) = {a,b}, G(2) = {e,b,c},
G(3)={b,c}, and G(4)= {b,c}. The minimum length Ldist(<g,,q, >,q;)
between every two position values ¢; and g, of each unit ¢,, in which ¢; € P and
g € G(e;), is derived by algorithm DIFF. Ldist(<g,,q,>,8)=4k if
<g;.9, > € DIFF (k e, ,q,).

For the unit 1, G(1) = {a,b }. Thus

DIST(1,1,8) = {<nl,a >}, DIST(1,1,b) = {<nl,b>}
DIST (k,1,6) = DIST(k,1,b) = ¢, k=23.

The noncomputable pair <g,,g, > of position values of the unit 1 is given by the

88
sets DIST(a-LIMIT 1\,a) and DIST(s-LIMIT 1,b) where o+ =1 and
LIMIT = 4* = 256.

DIST(256,1,8) = {<b,8 >,<c,8>}, DIST(256,1,}) = {<a,b >,<¢c,b >}.

For the unit 2, G(2) = {s,b,c}.

DIST(1,2,8) = {<nl,e >}, DIST(1,2,b) = {<nlb >},
DIST(12,¢) = {<nl,e >}.
DIST (k ,2,6) = DIST (k,2,8) = DIST(k 2,c) = ¢, k=23

The noncomputable pair <g;,g,> of position values of the unit 1 is in

DIST (256,2,8), DIST (256,2,), and DIST (256,2,c):
DIST (256,2,8) = {<b,8 >,<c,8>), DIST(256,2,b) = {<sa,b >,<c,b>},
DIST(258,2,c) = {<6,c >,<b,c >}.
For the unit 3, G(3) = {b,c }.

DIST(1,3,b) = {<nl,b >}, DIST(13,c) = {<nl,c>)}
DIST (k 3,b) = DIST(k 3,c) = ¢, k=23.

The noncomputabfc pair <g,,q,> of position values of the unit 3 is in

DIST (256,3,b) and DIST (256,3,c):

DIST (256,30) = {<sa,b >,<c,b>)}, DIST(256,3,c) = {<a,c>,<b,c>}.

For the unit 4, G(4) = {b,c }.

DIST(1,4,6) = {<nl,b >}, DIST(1,4,c) = {<nl,c >}
DIST(k 4,8) = DIST(k 4,b) = ¢, k=23

The noncomputable pair <gy;,q, > of position values of the unit 4 is in

DIST (256,4,b) and DIST(256,4,c):

89
DIST(256,4,0) = {<a,b>,<c,b>), DIST(256,4,c) = {<a,c> <b,c>}.

Then, for the state ¢, == (1,8,2,n!,3,nl 4,nl), the position value of each unit
s, €{1,234) in ¢, is pf(lie,)=19, pf(2,¢,)=nl, pf(3,c,)=nl, and

pf (4,¢,) = nl. Thus by defintion, B(e¢,) = {2,3,4}.

b(e,)= Y min({Ldist(<pf (k,e,).q,>k): (g, € G(Kk))})
be{2,34)

= l+141 = 3.

A* (e,) = max({min({Ldist (<pf (k,e,),q, >,k): (g, € G(k))}): k € {2,304)})
= max{{1,1,1,}) = 1.

Since the value of s is 1, A™ (e,) is not defined. Thus, the heuristic A (e,) is

h(e,) = max({A°(c,), 4°(¢,)}) = max({3,1}) = 3.

As another example, suppose the state e, is (1,¢,2,nl,3,b,4,n!). Then
B(e,) = {1,2,4}. For the unit 1, each pair <pf(l,¢,).q,>, q, € G(1), is not
computable where pf (1,¢,) = ¢ and G(1) = {e,b}. Thus

min({Ldist (<pf (1,¢,),9, >,1): g, € G(1)})

== min({Ldist (<c ,8 >,1), Ldist(<c,b >,1)}) = 256.
For the units 2 and 4,

min({Ldist (<nl,a >,2), Ldist(<nl,b>,2), Ldist(<nl,c>2)}) =1,

min({Ldist (<nl,b > 4), Ldist (<nl,c >,4)}) =1.

So, h®(e,) =256+ 1+ 1 =258 and A’(e,) = max({256,1,1}) = 256. The heuris-

tic A(e,) is then 258.

80

4.8. Power of Heuristic

In this section, we will discuss the efficiency of the heuristic A(e,) for solving
the two problems, the theorem proving problem and the consistent labeling prob-
lem.

T} Proving Problem using Resoluti

For every nongoal state ¢, , the heuritic A(e,) is computed to be 1. Thus, A’

using A (e,) results in the breadth-firat search.
e istent

A simple and well-known search technique for solving this problem is the back-
tracking algorithm with specific unit-labeling order [Hara80]. (More efficient and
sophisticated techniques will be discussed in Chapter 7.) Although the order in
which each unit is labeled affects significantly the search efficiency of the backtrack-
ing algorithm, the best unit-labeling order is not known in advance. We will com-
pare the worst case results for the two methods when applied to one example given
in section 4.1. As shofm in Fig.4.1, A° using A(e,) expands 10 nodes before the
solution is found. The backtracking algorithm expands 11 nodes with the unit-

labeling order such as 2-1-3-4, which is shown in Fig.4.2.

81

e 4 2¢ &c
1€ [} q u“ “ " 0 ‘,b
ERW N
:]
: + b . ab
]
: s
0 : -i»
: 3¢
]
.
'
]
°)

{ |.s.z.c.3.e.q.5>

Figure 4.1 Search Tree for Solving the CLP using A *

2b ac PP
10/l) ol Y \ia
0
A
] . ’ N
¢ 3y 3¢ . 7 4b
' ' . .
° © o o ‘.’ 0
] 3‘
'
'
o &

{ l.a..z.¢.3.C.d.b)

Figure 4.2 Search Tree for Solving the CLP using Backtracking

CHAPTER &

AN EXTENDED PROBLEM MODEL

6.1. Motivation

In Chapter 4, we presented the problem model M, and developed the general

formula, based on the problem model M, for deriving the heuristic A (e,).

The overall search efficiency of algorithm A ° wusing the heuristic h(e,)
depends on the complexity for deriving A(e,) and the tightness of the A(e,)
derived. In this chapter, a more general version A, of the problem model M, is
first suggested for improving the tightness of the derived A (e,). For AM,, a set of
objects of a problem is defined to be a partition of the set EU of elementary units.
Next, for reducing the complexity for deriving h (e,), a more general version Af. of
the problem model Af, is suggested. For M,, a set of features of a problem is

defined to be a partition of the set AT of attributes.

5.2. Partition of the Set EU

Let (p,n) be the path from the state ¢, to the goal state ¢,. The heuristic
h(e,) is then, by definition, the estimated minimum cost of (p.5). In Chapter 3, we
suggested A (e,) computed in terms of the estimated minimum cost of the subpath

(p{ ;). a,)) for each elementary unit 6, € EU. The subpath (4 s,).7(q,)) takes the

93

94

elcmentary unit o, from its position value in the state ¢, to its position value in the
goal ¢,. Suppose the heuristic A(e,) is computed by estimating the minimum cost
of the subpath which takes simultaneously more than one elementary unit from
their position values in ¢, to their position values in ¢,. Then a tighter value of
h(e,) may be expected because the relaxed constraint considered for evaluating the

subpath becomes closer to the original constraint.

Let n{(EU) be a partition of the set EU. Each block o, in a(EU) will be called
an object of a problem and the ordered tuple of position values of all elementary
units in an object o, will be called the position value of the object o,. For each
object o,, let (p(o,)7 0,)) be the subpath of (p,n) such that (1) po,) = r, - - - rf,
each r; is one of rules in p, and n{o,) = ¢, - - - ex e, , each ¢, ¢, is one of
the states in 5, (2) each r; in p{o,) affects the position value of the object o,, and
each (r;,¢;,¢,-) € SUCCR, and (3) the position values of o, in the states ¢, and
e, are the same, and the position values of o, in the ¢, and the goal ¢, arc the
same. The heuristic A(e,) is then estimated by estimating the minimum cost of the

subpath (p{o,),n{0,)) for each o, € n{EU).

As shown in Chapter 6, in most cases, for a given partition of the set EU, the
complexity for deriving A(e,) and the tightness of the derived A (e,) are trade-offs.
Two partitions x,(EU) and m,(EU) of EU which provide, respectively, the least
complexity for deriving A(e,) and the be:t tightness of the derived A(e,) are
X, (EU) = {0,: 0,=EU} and x/(EU) = {0;: 0, ={6e; }, a4 € EU}.

For deriving the heuristic h (e,) based on the partition s{EU) of the set EU, a
problem model M, is first formulated in which a set of objects is given by »(EU).

A general procedure for deriving A (e,) based on M, follows.

95

6.2.1. A Problem Model M,
Definition 5.1

A problem, M,, is an ordcred tcn-tuple,

M, = (f(EU),AT,Q,S.f,R,SUCCR c e, ,Goal),

where
- m(EU)is a set of objects, given by the partition of the set EU,
- AT iss set of attributes,

- Q is a set of position values of an object,

= i) = P Le, |
Q o,EyEU)Q(o) o,Ett(JEU)

where Q (o,) is a set of position values of an object o, assumed in a state, and

| 0; | is the cardinality of the set o,,

. S s a set of states,

- [is a position function, ff M{EU)XS — @, such that for every o, € a{EU)
and forevery e, € S,if o, = {a,, ..., 03 }

Ro,,e;) = <pf(6,1,6,), . ..,pf (6, ,6,)>

where ¢y <l if y <1 for j,0l=1,.k,,
- R is a set of rules,
- SUCCR C R XS XS is aternary relation,
- ¢ is a cost function, ¢: SUCCR — R

- ¢;» is an initial state, ¢,, € S,

- Goal is the goal condition formula.

For example, suppose the set s{EU) of objects in the consistent labelicg prob-
lem in section 4.1 is given by
EU) = {0,,05,05: 0, = {1}, 0, = {2}, 03, = {3,4})}. Then, the set Q(o,) for

each o, € n(EU) is

Qo) = Q(o)=P ={nl,a,b,c}).

Qogy)=P X P = {<nl,nl>,<nl,e>,<nlb>,<nl,c>,
<a,nl>,<e,6>,<0,b >,<0a,c>,
<b,nl>,<b,8>,<b,b >,<b,¢;' >,

<c,nl>,<c,8>,<c,b>,<c,c>}.

The position value of each object in the state ¢, is given by the position function f.
For the state ¢, = (1,8,2,n! 3,c 4,nl), Ro34¢,) = <c,nl> and

o) = <a>.

§.2.2. Heuristic Derived using the Problem Model M,

As mentioned before, when a problem is modelled by M|, the heunistic &(e,) is
computed in terms of the estimated minimum cost of the subpath ({0,).7{o,)) for
each object o, € s{EU). The procedure to estimate the minimum cost of the sub-
path (p{o,),m0,)) of the object o, is very similar to the ome to estimate the
minimum cost of the subpath (p(q,),7(¢,)) for the elemetary unit e, discussed iu
Chapter 4. The formal algorithms for estimating the minimum cost of (p{o,)70,))
based on M, will not be 'presented here because in Chapter 6 the corresponding for
mal algorithms are developed based on the problem model Af, which is a more gen-

eral version of M,. In this section, we will briefly explain the procedure, using one

97

example, for the case of constant cost of rules.
First, for each object o, € x{ EU), the relaxed successor formula SCF,’?" and
the relaxed goal formula Goal,’?" are derived. SCF ,’f" describes the constraints of

two position values of each elementary unit of o, assumed in one state and its suc-

cessor state. Goal,’f" describes the constraint of the position value of each elemen-

tary unit of o, assumed in the goal state. Suppose an object

o, = {a,5, ..., 8, } C EU.If the successor formula SCF in (5.1) is given by the

disjunction of rule-formulas r_a,; ---6;, <6@,;,...,08;3> €R, where
r_6,; - - a, is given by the conjunction of some clauses, then the relaxed formula

SCF,’?" in (5.2) is given by the disjunction of the relaxed rule-formulas

r_a,; - - a, _rel. Each relaxed rule-formula r_a,; - - - @, is derived by substi-
tuting anoymous variables, _, for the variables other than y_s,; and :_a,;,

j=l,...,f.' .

(r_ay; - --a,(*2,,...,9%,,%a,, ..., %a,,%6,...,°%_8a,);
v}
r_8yx G2y, ...,02,,% @8, ...,% ¢a, %@, ...,2%_a,))

- sef(#2,,...,%2,,% 6, ...,%_¢,,%_0a,, ...,%_a,) (5.1)
where for each k € {1,...K },

r_8y; ey = clyy(l)el, ()
The relaxed formula is then,

(f__al‘ A ﬂ"_'C’(‘y_dn, o s ey ’y_.“. ‘z_ﬂ“, e ey ’:__0“' ’

ACTYIRRRE Wt | LR RV TR PR SRS ™)
= ocf_o,_rel(*y a,y, ..., % 0,,% 0, ...,_q,) (5.2)
where for each k € (1,...,K },
r_ay o, vel(vy e, ..., 0y 0;,% 8, ..., 6;)
el Gy MGy, 28y 08y, .,),
/9 RN PR TR MIERN (PE R PN §
Similarly, the relaxed goal condition formula Goal,’?" for the object o, is derived

from the goal formula Goal. Let the goal formula goal in PROLOG be given by the

conjunction of ! clauses cl,;, j=1,..I.

goal(¢p_ay, ..., % 6, ...,%_a;,...,%_a,)

= elyy(..),enelg(.).

Then, the relaxed goal formula goal_o, _rel for the object o, is derived by substitut-
ing anonymous variables, _, for all variables other than #p_a;, a; € o,. in each
clause cl" ,5=1,.1.

goal_o, _rel(*p_a;,, ..., *p_a,)

= ey, et ey, .,)

evey

C"[(__, s e ¥P8yy C .P_C.g',_, .. "-)'

The goal set G (o,) for each object o, € #(EU) is defined from the correspond-

ing relaxed goal formula Goal,f’":

;.]
G(".‘)"{<qm---;N,>1(<?m-~;m,>EP ‘) n (kl - loo' ') n

(Goal® (g1, - - .) qu) = true)}.
Then, the heuristic A (e,) for the case of constant cost v of a rule is given by
h(e,) = max{{A’(,), h*(e,), A= (e,)}) (5.3)
where
A (e,) = max({min({w -Ldist (< Mo, ¢,)3, >,0:): §, € G(0;)}): o, € B(e,))),

he) =2 ¥ min({v-Ldist(<fo,c,)d,>0) q, € C(s,)}),
8 ,,€B(c,)

h™(e,) = m’:_(-ib_).) .,e?(.,) min({w-idist((ﬂ(oi,c,),t}, >,0,):q, € G.(o,- })
o, g Q(r(EV))

The value of s is the maximum number of objects in x{EU) whose position values
are affected by any rule. The set B (e,) is the collection of all the objects such that
for each o, € B(e,), Mo, ¢,) € G(o,). The value Ldist (<o, ¢,)4 >,0,) is the
lower bound of the length of the subpath (Ao,),1(0,)) for the obj;ct o,. This value
is recursively derived from the fact that idiat((ﬂo, ¢)0 >,0,) =1 if and only
if Mo, ,e,)# ¢ and SC’F,’?"(ﬂo,.c,).qi) = true. Finally the set Q(={ELU)) is the
largest subset of x{ EU) such that for each object in Q(x{ EU)), its position value is
affected by every rule of the problem.

For example, consider the consistent labeling problem modelled by Af,. Let
nEU) = {0,,00,04: 0, = {1}, 0. = {2}. 05, = {3,4}}. First, each relaxed goal

formula Goal‘f", o, € "(EU), is derived as follows:

goal_o,_rel(#p_1)

100

= Co13(ep_1,_), C_14(%p_1,_), C_23(_,_), C_24(_,_), C_34(_,.)

goal_o, rel(*p_2)

= C_13(_,_), C_14(_,_), C_23(*p_2,_), C_24(*p_2,_), C_34(_,_).
goal_oy,_rel(*p_3,%p_4)

= C_13(_,%_3), C_14(_,*p_4), C_23(_,*p_3), C_24(_,%_4),

C_34(p_3,%_4).
where
C_13(*p_1,%p_3) :- member([#p_1,%p_3],[[a,c],[b,b][c c])).
C_14(*p_1,%_4) :- member ([+p_1,%p_4][[s,b][b,c])).
C_23(*p_2,%_3) :- member ([+p_2,%p_3][la,a][a,b],[b,e8][c,c]]).
C_24(p_2,%_4) :- member ([#p_2,%p_4}[[a,c],[b,c].[e 8]]c,b]]).

C_34(#p_3,#p_4) - member([*p_3,%p_4),{[0,8],[b,c],lc,b]])-

Each goal set (.?(o,-) is then given by

é(o,) = {a,b}, é(oz)= {a,b,c}, é(o,,) = {<b,ce>,<¢,b >}

Next, three relaxed successor formulas SCF,f"(y_o.-,Z.O.), 0, = 04, 04, 04,

are given as follows:

(r_3(ey_1,2:_1); r_2(sy_1,2:_1);
r_3(oy_1,2:_1), r_4(*y_1,2_1))

- acf_o,_rel(sy_1,#:_1).
where

r_1(esy_1,2_1)

101

- =) (gt =nl), (C=_) (=) (=)
member (#:_1,a,b,¢]), Cg_13(#z_1,_), Cg_14(2_1,_), Cg_23(_._),
Co_24(_,_), Cg_34(_,_)
r_k(sy_1,02_1) for k=234,
m (Cmk), (L o= nl), (1= 1), (C=_) (L=_),
member (_,[a,b,¢c]), Co_13(#:_1,_), Co_14{*:_1,_), Cg_23(_,_),

Co_24(_,_), Co_34(_,)

(r_1(_2,22_2); r_2(*y_2,%:_2);
r_3(oy_2,%2_2); r_4(*y_2,%:_2))

- scf_o, rel(oy_2,2:_2).
where

r_2*y_2,%_2)
= =) (2 =nl), C=_) (=) (=)
member (#2_2,[a,b ,c]), Cg_13(_,_), Cg_14(_,_). Cg_ 23(%_2,)
Cg_24(*:_2,_), Cg_34(_,_).
r_k(sy_2,:_2) for k=134,
- L=k), (L =nl), (g 2=2_2),(=_)(=")
member (_ Ja,b,c]), Co_13(_,_), Co_14(_._), Co_23(*:_2._),

Cg_24(*:_2,_), Co_34(_,_)

(r_M(sy_3.0y_4,0:_3,2:_4), r_2(#y_3,0y_4,%:_3.%:_ 4)
r_3(ey_3,0y_4,%:_3,2:_4); r_4(*y_3.%y_4,%:_3,%_ 4))

= acf_og, rel(oy_3,2y_4,%:_3,%:_ 4).

where

102

r_3(*y_3,%y_4,%:_3,%:_4)
= (e=3) (g 3=nl), (y_4=2_4),(_=_),(_=)
member (#2_3,[¢ ,b,c]), Cg_13(_,9z_3), Cg_14(_,*:_4), Cg_23(_,*:_3),
Co_24(_,%:_4), Cg_34(*:_3,2:_4).
r_4(%y_3,0y_4,:_3,%:_4)
= (e=4), (a4 =mnl), (9 3=2_3),(_=_) (=),
member (#2_4,{a b ,c]), Cg_13(_,*z_3), Cg_14(_,*:_4), Cg_23(_,*:_3),
Co_24(_,*z_4), Cg_-34(*:_3,:_4).
r_k(ey_3,%y_4,¢:_3,%:_4) for k=12,
= (L=k) (L =nl), (9 3=0:_3),(y_4=2_4),(_=_)
member (_ [a,b,c]), Cg_ 13(_,#:_3), Cg_14(_,*:_4), Cg_23(_,*:_3),

Cg_24(_,%z_4), Cg_34(*:_3,+:_4).

For each object o,, the value l:ds'ot(<&, WG >,0,)is 1 if <¢},~ ,qi > is the element of
the set DIST (1,0, ,q;). Each set DIST({,0,,¢), I=1,...,| Q(0,)| -1, is recursively
defined from the fact that for every pair <¢},— s > of position values of o,,
<g,, > € DIST(1,0,,q;) if and only if SCFF(q, ,q,) = true. (For details,
refer to algorithm GDIFF in Chapter 6.) Every pair <q,,q; >, ¢, 7 ¢; of position
values of o, which is not included in any of thc sets DIST(l.o,,q;).
I=1,..,] Q(o,)]-1, becomes the element of the set DIST(K .o,,q;).
K=i4-]P | 'EY! Each pair in the set DIST (K ,o, ,q;) is called a noncomputable
pair.

For the above example,

DIST(1,0,,8) = {<ul,a >}, DIST(1,0,,b) = {<nlb>}.

DIST (k,0,.6) = DIST (k,0,,b) = ¢, k=23

103

DIST(1,0,,8) = {<nl,e >}, DIST(1,0,b0) = {<nl,b >},
DIST(1,05¢) = {<nl,c >}.

DIST (k,092) = ¢, k=23, z2=ab,c.

DIST(1,04,,<b ¢ >) = {(<nl,c >,<b,e >)(<b,nl>,<b,c>}.
DIST (2,04,,<b,c >) = {(<nl,nl >,<b,c >)}.

DIST (1,04,<c,b >) = {(<nl,5 >,<c,b>)(<e nl>,<c,b>)).
DIST (2,0 ,,<c ,b >) = {(<nl,nl >,<c,b >)}.

DIST (k,0442) = ¢, k=3,.15, 2=<b,e>,<c,b>.
The set DIST (K ,o, ,&,), K = 1:256 = 256, of noncomputable pairs is given by

DIST (256,0,,8) = {<b,8 >,<c,6 >}, DIST(256,0,b) = {<e,b >,<c,b>)}.
DIST (256,05,8) = {<b,8 >,<c,8>}, DIST(256,0,b) = {<ea,b>,<c,b>}.
DIST (256,0,,¢) = {<a,c >,<b,c >}.

DIST (256,05,,<b ¢ >) = {(<nl,6>,<b,c >)(<nl,b>,<b,c>),
(<e,nl>,<b,e>)(<e,nl>,<b,c>),
(<6,6>,<b,e>)(<8,b>,<b,c>),

(<a,c >,<b,c >)(<b,86>,<b,c>),
(<b,b>,<b,e>)(<c,8>,<b,c>),
(<e,b>,<b,e>)(<c,e>,<b,e>)}

DIST (256,03,,A,,<c¢ ,b >) = {(<nl,6 >,<c,b >)(<nl,c>,<c,b>)

(<a,nl>,<c,b>)(<b,nl> <c,b>)

(<e8,6>,<c,b >)(<s,b >,<c,b>),

(<a,e>,<c,b>)(<b,6>,<c,b>),

(<b,6>,<c,b>)(<b,e >,<c,b>),

(<c,6>,<e,b>)(<c,e>,<e,b>)}.

104

Based on each set DIST (k,o, ,6,) derived above, we can derive the beuristic A(e,)
of the formula (5.3). For example, let e, = (1,a,2,nl,3,b ,4,nl). Then
hie,)=14+1=2.1f ¢, = (1,nl 2,0l 3,06, 4,nl), h(e,)=1+1+ 256 = 258. In
section 6.4, the search efficiency using A(e,) derived on the model M, will be com-

pared with that using A (e,) derived for the model M,.

Next, for the case of nonequal costs of rules, the heuristic for ¢, is given by the

formula (5.4).

h(e,) = max({A’(e,), A’(c,), ™ (e,)}) (54)
where

h* (e,) = max({min({LOCS (0; ¢, .4,): 4, € G(o,)}): 0; € B(e,)}),

b (e,)=1 ¥ min({LOCS(o,.e,.4,): 4, € G(o)}),
’ 0,€B(e,)

.,y 1 0 e o) o € Clo.
A= (e,) TOED) .&%J(") min({LOCS(o;,2,,9,): ¢, € G(o;)}).
o ¢ Q(s(EV))

The value I;OCS(o,- ,€s ,(},) is the estimated minimal cost of the subpath
(Ao,)1 0,)) for o, which takes o, from its position value ffo,,e,) to its position
value 6, € (;’(o,-). As discussed in section 3.3.2.2, we need one more relaxed succes-
sor formula with less relaxation for deriving l:OCS(o,» ,Cs ,&,). For each rule

<‘“,...,‘.()ER,lctthcutZ(.“,..;,ﬂ")be
Z(‘lt:"':"l)={oi:°l Eﬂ(EU),{G“,...,G,g}nO‘ #é}

Then, we can derive the relaxed successor formula SCF{Z",, ,,,,, 5,>20ep.))

which describes the constraints of position values of only those objects in the set

Z(dy,...,6,). The detailed procedure for deriving this relaxed formula and gen-

105

erating the value I:OCS (o, ,¢, ,&,) based on this relaxed formula will be given in
Chapter 6. Here we show the value of I;OCS(0,,¢, ,é,) by one example.

Let n(EU) = {o.p,0cp,08: 0ap={A ,B}, ocp é{C D}, og={E}} in the
(5-city) traveling salesman problem of Fig.2.2. The goal position value of each
object o, € s(EU) is losp.¢,) = (<T,I>,<T,NI>),

RKocp.e,) = (<T,NI><T,NI>), and flog,,)=(<T,NI>). Suppose
¢, = <{A },E>. Then, based on the relaxed successor formula SCF,”?" for each

object o, , we can derive the following:

l:dl'“ (<m 04B ,Cs):ﬂ 0AB 1€,)>1°AB)

= Ldist(<(<T,NI>,<F NI>)<T 0> <T,NI>)>005)=2.

l:ds'at (<focp e,)Rocp.¢5)>,00p)

= Ldist (<(<F ,NI >,<F ,NI>)(<T,NI > <T ,NI>)>00)=3.

l:dm (<Mog .5)Mok ¢,)>,0¢)

= Ldist (<(<F ST ,NI>)> 0p) = 1.
Based on each value of I;dc':t and the second relaxed successor formula

SCF(R<", L83>.2(e,.05)) » WE €2D derive the following:

l:OCS(oAB,c, Mosp.e,)) =7+6=13
LOCS (ocp &5 MRocp e,) =6+ 5 +7 = 18.

l:OCS(oE 1e5,Mog .¢,)) = 6.
The heuristic A (e,) is then
h(e,) = max({h*(e,), °(e,)}) = {18, 18.5} = 18.5

In this problem, the value A™(e,) is equal to A°(¢,) because x(EU) = ¢. The

search efficiency of A * using A (e,) will be discussed in section 6.4, and the value of

100

h(e,) for each state e, generated during the search will be given in Table 6.3.

In this section, we have discussed a preblem model M, and the procedure to
derive the heursitic A(e,) based on the model M,. The problem model M, is a
more general version of the problem model M, in that the valve of the beuristic
h(e,) derived ‘using M, can be also derived wusing M, with

nEU) = {{q;}: o; € EU}.

5.3. Partition of the set AT

In the previous section, we snggested a partition n{ EU) of the set EU of ele-
mentary units for improving the accuracy of the heuristic A(e,). For a given
«(EU), how?ver, we may need to reduce the complexity for deriving A (e,). In this
section we suggest a partition x{AT) of the set AT of attributes for reducing the
complexity for deriving A (e,).

As discussed in the previous section, when a set x{ EU) of objects is given, the
heuristic A(e,) is computed in terms of the estimated minimal cost of the subpath
(#{0,),10,)) for each object o, € x(EU). Suppose the problem has m attributes:
Af = {Ab,,...,Ab,}. Then the position value of each object o,,
o, = {e,;,...,8;}, is given by the ordered m tuple, <p,, ..., p.}>. Each p,,
Jj=l,.,m, is itsell given by the ordered k, tuple, p, = <q,,,...,q; >, in
which each g;;, I=1,...,k,, is the position value of the elementary unit ¢; with
respect to the attribute Ab,. It is obvious that as the value of m begomes large, the
complexity for estimating the cost of the supath (p(o,)7 0,)) becomes large. (For

details, see Section 6.3.) To reduce the estimation complexity, the position value

<py, ...,pm> of each object o, can be partitioned into several blocks,

107

<Py, sPit)s---r(Pms---»Pm)>, in which each block is the position value
of o, with respect to the set A, of attributes, A; C AT.

For each A; C AT, let (p(o,,A,)0;,A,)) be the subpath of (p(0,),n0,))
such that (1) po;,A;)=r, - --ry, each r; is one of rules in po,), and
moi,Aj)=cje, - - eney ,each ¢, ¢, is one of states in 10,), (2) each rule r,
in the sequence p{o,,A;) affects the position value of o, with respect to A;, and
each (r;,¢;,¢,-) € SUCCR, and (3) the position values of the object o, in the
states ¢, and e, with respect to A; are the same, 2nd the position values of o, in
the state ¢, and the goal ¢, with respect to A; are the same. Then, the subpath
(r{0;),70,)) can be estimated with a reduced complexity by estimating each sub-
path (p{0;,A;)m0;,4,)), A; C AT.

Let x(AT) be some partiﬁon of the set AT of attributes of the problem:
AT)={A,,...,A.}). Each block in #{AT) will be called a feature of the
problem. The position value of the obejct with respect to each feature A; is defined

by the subposition function, off, : ®{(EU)X S — ';{ Q(o0,;,A;), where Q(0,,A;)
! o, €f(EL’)
is the set of position values of o, with respect to A,:

fo |
Q(o;,A;) = [Ab:éA,P(Abﬂ)]

in which P(Abj;) 1=1,.., | A, |, is the set of position values of the elementary
unit with respect to the attribute Ab;;. For each object o, in x{EL’) and for each

feature A; in /(AT),if o, = {6,;,..., 6, } and A; = {A};,,..., Ab,; }, then

‘ﬁAl(oi ey) = (<‘P]Ab“(‘nlvcs | ‘P!Ab',l(‘il'c:)>, ...,

108
<‘PIA6,,(°.'&,»¢:))] ‘P!Ab,"(‘il,ves)>)

in which each ap!,“ﬂ, {=1,...,d;, is the subposition function which returns the posi-

tion value of the elementary unit with respect to the attribute Abj;.

The cost of the subpath (p(0;,A;),%0,,A,)) for each object o, and each
feature A; is estimated using the corresponding relaxed goal formula and relaxed
successor formulas. To derive the relaxed goal formula and the relaxed successor for-
mula for each o, and A;, the extended versions the goal formula Goal and the suc-

cessor formula SCF are formulated.

In Chapter 2, we defined the successor condition formula SCF, when the prob-
lem has n elementary units and each rule is given by the ordered s elementary units,
to be the 2n+s variable first predicate formula. The first s variables z,, ..., 2,
stand for the rule r = <z,,...,2, >, each y_sa,, 1=1,.,n, of the next n vari-
ables stands for the position value of the elementary unit a, assumed in the state e,
in which r is applicable, and each z_a,, 1 =1,...,n, stands for the position value of
g, in the state e, resulting when r is applied to ¢,. Supposc the problem has m
attributes, Ab,, ..., Ab,, Then each position value of the elementary unit a, in
the state will be given by the ordered m tuple, in which each element p,;,
J=1,..,m, in the tuple is the position value of a, with respect to the attribute

Ab, .

; The 2n+s variable successor condition formula SCF can be converted into

the 2mn+s variable formula by replacing each y o, and z_a,, s=1,..n, by
<y e, Ab;, ...,y 6, _Aby,> and <:z_e,_Ab,, ...,z e _Ab, >, respectively.
Each variable y_s, _Ab,, s=1,..,n and j=1,..m, in the newly formed formula
stands for the position value of s, with respect to Ab, in the state ¢,, and each

2_a, _Ab; stands for the position value of o, with respect to Ab, in the state ¢, .

109

This newly formed 2mn+s variable formula will be called an extended successor
condition formula, denoted by ESCF . Similarly the n variable goal condition for-

mula, Goal(p_s,, ..., p_a,), can be converted into the mn variable extended

goal condition formula, denoted by EGoal.

6.4. An Extended Problem Model M,

In this section, we present a problem model M, in which a set x(AT) of
features of a problem is given by a partition of the set AT of attributes. The prob-

lem model M, is a more general version of the problem model M, in that the heuris-

tic A (e,) derived on M, is also derived on M, with (AT) = {AT}.

Definition 5.2

A problem, M, is an ordered ten-tuple,

M, = (xEU),x(AT),Q,S,F,R ,SUCCR ,c e, ,EGoal),

where

- x{EU) is a set of objects, given by the partition of the set EU,

nMEU) = {01: c ey 0['}, o, CEU, i=1,.,,,

- m(AT)is a set of features, given by the partition of the set AT,
fAT)={A,, ..., A}, A CAT, j=1...
- @ =1<Q(o,,Ay), ..., Q(0,A)> in which each Q(o,,4,), i=l,..L.

J=1,...,0,, is the set of position values of the object o, with respect to the

feature 4,

Q(o,,A;) = [M:éAIP(Ab,,)] o, |

110

where P(Abj) is the set of position values of an elementary unit with respect
to the attribute Ab,;, and | o, | is the cardinality of the set o, ,
S is the set of states,

F = <aff, g aﬂM‘.v> in which each oﬂA’, J=1,..,l,, is the subposition

function, off, : {(EU)XS — H Q(o0;,A;), such that for every
! o, EX(EV)

o, € s(EU) and for every ¢, € S,il o, = {g;,,...,0;} and

A" - {Ab“, .o ,Abﬂ}), then

s (05r62) = <o 0>
where each 1}, , §=1,....k; , is
@ = <opf ps (84,8,)r--s0pf M,,,(‘.‘l €5)>
in which each subposition function spf b, v=l,..,d;, returns the position
value of an elementary unit with respect to the attribute Ab;,,
R is the set of rules,
SUCCR CRXSXS is a ternary relation such that for each
(ri.e;,6,) ER XS XS, (r,,65,6,)€ SUCCR if and only if ¢, is the state
in which the rule r, is applicable and ¢, is the state resulting when r; is
applied to ¢, :
SUCCR = {(<z,,...,23,>,¢,)(<1,....,2,>€R) N
(; ES) N (e, €S5) N
(ESCF(zy, . .., 3,,<opf oy (8),€,),00pf ms_(81.6;)>, . . .,

<opf as (80185)ees0pf as_(84,6,)>,<apf 5y (81,65)-s0Pf 4 _(81,64)>,

111
...,<‘P,A‘ l(8y ,C})r*w"!ﬁl.(‘n 1€})>) = frue))}

where ESCF (...) is the extended successor condition formula,

- ¢ is a cost function, ¢: SUCCR — R, Rthe set of reals, such that, for any
(ri,ej,e;) in SUCCR, c(r,,¢j,e;)=w if and only if w is the cost of the
rule r; between the state ¢; and its successor state ¢;,

- e,y is an initial state, e¢,, € S,

- EGoal is the extended goal condition formula with n-m variables,
p_s; _Abj, i=1,.,n, j=1,..m, where each p_a, _Ab; stands for the goal

position value of the elementary unit a; with respect to the attribute Ab,.

In Chapter 6, we will discuss the procedure for deriving the heuristic A(e,)

based on the model M,. In this section, we explain the derivation of the relaxed

goal condtion formula EG”"(::{A,) and the relaxed successor condition formula

ESCFﬁf{A’) for each o; € M{(EU) and A; € x(AT).

Let the object o, be given by o, = {a,,,...,e;}, ¢, € EU, v=1,.k,,
and the feature A; be given by A; = {Ab,,, ... ,Abﬂ'}, Ab,, € AT,
wr=1],.,d;. Suppose the extended goal condition formula egosl in PROLOG is
given by the conjunction of I clauses cl,,, i=1,...l,

egoal(*p_a, Ab,, ..., *p_a, Ab,. ..., Op_cl_Ab,‘l, c.., %p_a,_Ab_,

'p_a,-l_Ab,, “ ey ’p_o.-l_Ab”, v ey ‘P_ﬂ.l_Ab"J, “ ey ‘P_..l__Ab-,

112

‘p_lg._ﬁbl, c ey 'p_a,‘._Ab,-,, ey ’p_lg._ﬁb”’, o e ey "p_l.g'_Ab. '
*p_a, _Ab,,..., % e, _Abj,, ..., ‘p_a._Ab,»,’, c..,%_a, _Ab,)

= elp(e)renrely(...).

Then, the relaxed goal formula egoal_(o;,A;)_rel for the object o; and the feature
A; is given by the conjuction of the ! relaxed clauses cly _rel, k=1,...,l, in which
each ¢l _rel is derived from the clause ¢l; by substituting anonymous variables,
— for all variables in cl; other than #p_g,, _Ab;,, i=1,..k;, v=1,...d,.
egoal_(o;,A;)_rel(%p_a,_Abjy, ..., *p_0;y_Abj,,
op_sy Abjy, ..., %p_a; _Aby))
= ey, oo so,
‘P«-‘il—Ab; 19~ 'p—‘il—Abﬂ,v
‘P-‘d,-—“bjl! RS .P-cit,—Abjl}o
- * ")),
t"'(_, e e e gy

%p_s,,_Ab,,, ..., 'P-"‘-"’I‘,'

‘P-‘I‘,—Abjl’ o ooy .P_‘ﬂ..Ab,‘)!

Similarly, the relaxed successor condition formula

ESCF {i“ A,)(!L". _Ab,,z_ 0, _Ab;) for o, and A, is derived from the extended suc-

113

cessor condition formula ESCF . Let the extended successor condition formula esc f
in PROLOG be given by the disjunction of rule-formulas ¢_a,; - - - a,;,
<6,4,...,84> €ER, where each r_a,; : - ¢, is given by the conjunction of
some clsuses. Then the relaxed successor formula escf_(o;,A,)_rel for each o, and
A, is given by the disjunction of relaxed rule-formuals r_a,; - - - a0, _rel,
<6y4,...,84> €R, where each r_a,; - - - a,; _rel is derived by substituting
anonymous variables, _, for all variables other than #y_g,, _Ab;, and #_a,, _Ab,,,

v =1,...,k.' 0 '=l,...,‘,' .

For example, the extended successor formula escf of the (5-city) traveling

salesman problem of Fig.2.2 is given by

(r_AB(*z,,%2,,%y_A_Ab,, ¢y A_Ab,,...,5y_E_Ab, sy E_Ab,,
02_A_Ab,,#z2_A_Ab,, ..., s:2_E_Ab, ez E_Ab),)

r_BA(%z,,%2,,%_ A_Ab,,*y A_Ab,,...,%y_E_Ab, sy E_Ab.,,
o2 A_Ab 92 A_Ab,, ..., 0:_E_Ab, *:_E_Ab,);

r_ED(#x;,92,,%y A_Ab,, oy A_Ab,,...,5y_E_Ab, ¢y E_Ab,,
02_A_Ab,, 02 A_Ab,, ..., ez _E_Ab, *:_E_A}b),))
- escf (#2,,92,,0y A_Ab,, sy A_Ab,,... oy E_Ab, ey _E_Ab,,
02_A_Ab, 2z_A_Ab,, ..., #z_E_Ab, sy E_Ab,)
where

(1) foreverys, € {B,C,D,E},

r_a,A(%1,,%2,,..,% o Ab, oy 8, Ab, ..., #: s _Ab, #_a _Ab,,..)
i= ([#2y,%22]=[0;,A]), (¢y_0;_Ab,=T), (ey_a;_Ab.=NI),

(*y_a; _Ab,=F), (%_a,_Ab,=1I), (%y_A_Ab,=T), (#y_A_Ab,=NI),

114

(2:_8, _Ab;=T), (9:_a;, _Aby=NI),(22_A_Ab;==T) (0:_A_Ab,=]),

(oz_8;_Aby=sy a;_Ab,), (#z_6;_Ab,=1y_a;_Ab,).

in which «; € {B,C,D,E}, ¢;%q;,
(2) forevery s, € {A,B,C,D,E}, and for every o; € {B,C,D ,E}, o0,
r_o,8;(%2,,%2,, ..., % 6, _Ab;, %y o, _Ab,,.. % e; Ab,, ey s Ab, ...,
02_o, _Ab, %z & _Ab,, ..., % _6;_Ab, ¢ s;_Ab,,..)
= ([92y,025)=[s;,8,]), (*u_o; _Ab;=F), (oy_s; _Ab,=I),
(’y_c,- _AblBF), (’y_cj _Ab 2‘=Nl), (‘I_l" __Ab IBT), (‘Z_l,' _A62=NI),
(*2_a; _Aby=F), (#:_a; _Aby=1I),(2:_a;_Ab;=1y_a;_Ab,),

(22_08;_Ab,=0y o, _Ab,).

in which & € {A ,B,C ,D ,E}, l;%l.‘, l,#d,‘ .
Then, for the object o; = {A ,B} and the fearure A; = {Ab,}, the relaxed succes-

sor formula escf_(o,,A;)_rel is given by

(r_AB_rel(sy_A_Ab,, sy B_Ab, #z_A_Ab,,*:_B_A})).

r_BA_rel(sy_A_Ab,, sy B_Ab,,*z_A_Ab,,*:_B_Ab))

.
seey

r_ED_rel(sy_A_Ab,, oy _B_Ab,, 2:_A_Ab,,*z_B_Ab,))
- eacf_(o,,A;)_rel(# A_Ab,, sy B_Ab, 2 A_Ab, ¢y B_Ab)).
where
(1) r_AB_rel(*y_A_Ab,, sy B_Ab,,*:_A_Ab, *:_B_Ab,)
= (L.-]=[4,B)), (s_A_Ab=F), (_=I),

(*y_B_Ab,=F),(_=NI), (*2:_A_Ab=T),(_=NI),

116

(02 B Aby=F), (_=]), (L=_)(_=_)
(2) r_BA_rel(#y_A_Ab,,oy_B_Ab,, ¢:_A_Ab,,e:_B_Ab,)
= (L.-]=([B,A]), (L=T), (L =NTI),
(#3_B_Ab,==F), (_=1I), (*4_A_Ab;=T), (_=NI),
(#2_B_Aby=T), (_=NI),(ss_A_Ab;=T),(_=1),(_=_),(_=_).
(3) foreverys; € {C,D,E),
r_a; A_rel(sy_A_Ab,,5y_B_Ab,,%:_A_Ab,+:_B_Ab))
= (L= J=la;,A]), (9B_Ab,=T), (_=NI),
(=F), (L=I),(*y_A_Ab;=T), (_=NI),
(L=T),(L=NI),(#_A_Aby=T), (_=I), (#:_B_Ab,=sy_B_Ab,).
(4) forevery s, € {C,D ,E},
r_As, _rel(%y_A_Ab,, sy B_Ab, #:_A_Ab, +:_B_Ab))
= (Lo]=[A,0;]), (4 A_Ab,=F), (_=I), (_=F), (_=NI),
(*4_B_Ab,=F), (_=NI), (#_A_Ab,=T), (_=NI),
(_=F),(_L=1),(#2_B_Ab,=#_B Ab),), (_=_).
(5) forevery s, € {C,D,E},
r_Ba, _rel(%y_A_Ab,,#y_B_Ab,,#:_A_Ab, +:_B_Ab,)
= (L.=)=[B,q;]), (4_B_Ab=F), (_=I),(_=F), (L =NI),
(*4_A_Ab,=T), (_=NI), (#:_B_Ab,=T), (_=NI),

(=F), (L =I) (22 A_Aby=12y_A_Ab,).(_=_).

118

(6) forevery s, € {C,D,E},
r_ea, B_rel(oy_A_Ab,, oy B_Ab,, e:_A_Ab, e:_B_Ab,)
= (L,]=[e;,B]), (L=F), (_=I), (4_B_Aby=F), (_=NI),
(*y_A_Ab,=T), (_=NI), (#2_B_Ab,=F), (_=I),

(L=T), (_=NI),(#:_A_Abm=sy A_Ab,), (_=_).

CHAPTER 6

HEURISTICS

6.1. Introduction

In this chapter, we will first discuss a general procedure to derive the heuristic
h(e,) based on the problem model M, suggested in section §.4. This procedure is
similar to the procedure for deriving A(e,) we have developed and which was based
on the problem model Af in section 3.3. Each algorithm necessary for the procedure
is derived by generalizing each step of the associated algorithm developed based on

the model M.

We will further discuss the complexity of the procedure for deriving & (e,) and

the tightness of the derived A (e,).

6.2. Heuristic Derived using the Problem Model M,

Let a problem be modelled by the structure A, in which

M, = (x(EU),x(AT),Q@,S,F ,R ,SUCCR ,c e, ,EGoal),

where

- m(EU)is a set of objects, given by the partition of a set EU,

(EU)={o0y,...,0}, o, CEU, i=1,.],

117

118

x{AT) is a set of features, given by the partition of a set AT,

MAT)={Ay,...,A), A; CAT, j=1,.,1,

6 = <Q(0,Ay), ..., Q(o,',A,')> in which each Q(o;,4;), ¢=1,.,l,,
J=1,...,I,, is the set of position values of an object o, with respect to a

feature 4,

Q(o0;,A;) = [A.'?(GA’P(M,-,)] le. |

where | o, | is the cardinality of the set o;, | A; | is the cardinality of the set

A

j» and P(Abj;) is the set of position values of an elementary unit with

respect to the attribute Ab;,
S is the set of states,

F = <, p + - - » 8as, > in which each subposition function,
affy : /(EU)XS — y Q(0;,A;), sj=1,.,,, is such that for every
! o, EX(EV)

o, Ex{EU) and for every ¢, €S, if o, ={q,,...,0;} and

A’ = {Ab,l, . o ,Abj‘l}, then
‘JA,(W €) = <&I: R &t,>
where each ¢, I=1,...k; , is

al = <‘P!Abl ,(ail €3)P“»'P,Ald,(‘il €5)>

in which each subposition function spf Ab, v=1,...,d;, returns the position

value of an elementary unit with respect to the given value of the attribute

Ab,,,

119

R is the set of rules,
SUCCR CRXSXS is a ternary relation such that for every
(ri.es.6y) €E R XS XS, (r;,¢,,e;) € SUCCR if and only if ¢, is the state in
which the rule r; is applicable and ¢, is the resulting state when r; is applied
toe,:

SUCCR = {(<a;;,...,8,>,¢;,¢;):(<2y,...,5,>€ER) N

(¢; ES) N (e €S) N
(ESCF (64, « - ., a;,,(apfA;l(a,,e,-)9S as_(81,€5)>, .. .,
<Opf 41 (801€;)-s8PS 4a, (84 1€;)>,<0pf 43 (81,61),-i8P] a1 (81,64)>,
ces <0PS a4 (80 161)ys8PS a3 (84,61)>) = truc))}

where ESCF(2y, ...,2,,4 6, _Ab,, ...,y 8, Ab,,..., 5 6,_Ab, ...,
y o, Ab,,...,2.6,_Ab,, ...,z 6, _Ab,,.,z_ 8, _Ab, ...,z 6, _Ab,)is
the extended successor condition formula,
¢ is a cost function, ¢c: SUCCR — R, Rthe set of reals, such that, for any
(ri.e;,e;) in SUCCR, ¢(r;,e;,e;)= w if and only if « is the cost of the
rule r; between the state ¢; and its successor state ¢, ,
¢, is an initial state, ¢,, € S,
EGoal is the extended goal condition formula with m -n variables, p_o, _Ab,,
t=1,..,n, y=1,.,m, where each p_a, _Ab, stands for the goal position value

of the elementary unit e; with respect to the attribute Ab;.

We now explain the procedure for deriving the heuristic A(e,) based on the

problem model M,.

120

Let (p,n) be the path form the state ¢, to the goal state ¢, of the problem,
and (p{o,,A,),m(0;,A;)) for each o, € x(EU) and A, € x{AT) be the subpath of
(pm). We will estimate the heuristic & (e,) by estimating the minimum cost of each
subpath (p{0;,A,),%(0,,A,)). First we consider the case for which the rules have

the constant cost w.

6.2.1. The Case of Constant Rule Cost

For a problem in which the rules have the same cost w, the estimation of the
minimum cost of the subpath (p(o;,A,),m(0;,A;)) is reduced to the estimation of
the minimum number of rules in the sequence p(0;,A;). The sequence po;,A;)

takes o; from the position value off, (o, ,¢5) to the position value o, (0;,¢,).

Let ESCF@:{A)) be the relaxed successor formula for the object o, and the
feature A;. Then, the estimated minimum number of rules in the sequence
Ao, ,A;), which will be denoted by ltdi:t((aﬁ,,'(o‘ ,€s),cﬂAJ(o,- 1€9)>,0;,A,), is 1 if
and only if oﬁAl(o,- g) ¥ cﬂAJ(o,- ,¢,)), and
ESCF@:{Al)(aﬂA,(o; yCs),OJA’(O.' 6y)) = true. We first determine a set
LEN 1(o0;,A;) of two distinct position values <@ ,&, > of o, with respect to A,
such that idist((t}, ,&, >,0;,A;) = 1. Based on the set LEN1(o;,A,), we recur
sively derive the value of Itdiat((oﬂA’(o,- yCs),aﬁ'Al(o,,c,)>,0,,A;) for any arbi-
trary state e, and the goal e¢,. Algorithm GDIFF generates the sets
DIST(1,0,,A;,4,), 1=1,..,] Q(0;,A;)|-1. For each pair <g;,q,> in the set
DIST(1,0;,A;,4,), Ldist(<dy.4,>,0;,A;) = I. Each pair <, 3, > of distinct
position values of o, with respect to A,, which is not included in any of the sets

DIST (1,0;,A; ,q,), 1=1,...,| Q (o +A;)|-1, is called a noncomputable pair. All the

131

noncomputable pairs will be contained in the set DIST(K,o,,A;,g,)
K=g4|P|I|EYI

Let EGul(R,:f A’)(Op_o,- _Aj;) be the relaxed goal condition formula for o; and
A;. Each position value % €Q(o;,A j) of o; with respect to A, satisfies the for-
mula EGoalﬁffAI)(G,) if g is the goal position value of o; with respect to A;.
Thus, the goal set &‘;(0;) which contains all the possible goal position values of o,

with respect to A; is given by
Gp (o) = {a::(m € Q(o;,A4;) N (EGoalf;:)y)(qi) = true))}.
Then, the heuristic A(e,) is given by

h(e,) = max({h*(c,), A*(c,), A% (e,)}) (6.1)

where
A (e,) = max({min({w Ldist (<off (0;.¢,)4, >9.A;) §; € Gy (0,)}):
oiEBA,(es)’ Aj € R(AT)}),

b (e,) = max({= z)min({w-ia.'u(<.m,(o,~,c,),<},>,a,-,A,-):

iy € G, (0,)}): A; € HAT))),

= = l
h (C,) max({;_ln(ﬂ(EU»l 0,6842,(‘:)

o, ¢ Q((EV))

min({sr -Ldist (<ofly (0:.¢,)3, >0 A;): 4, € Gy (0,))): A; € AT)}).

The set B, (c,) = {o;: (o, € (EU)) N (sffs (0,.6,)§ Gy (0:))}. The admissi-

bility and monotonicity of the heuristic A(e,) in the formula (6.1) are proven by

122
Claim 3 in Appendix B.

Algorithm GDIFF
Begin
For each o, in x(EU) and each A in n{AT) do
begin

/* Find every pair of distinct position valucs of o, between one state and +/

/* its successor ¢/

LEN1(0; A;) == {<q,@ >: (%, % € Q(o,,4;)) N

(@ %a)N (CSCF(’ET&,)(&. 1)= true));
For each 1}, in é‘;("‘) do
begin
Q2(0;,A;,q,) = {<qi,q,>: (9: € Q(0;,4;) N (% % ¢,));
/* Find the set DIST(1,0;,A,,q,) ¢/
DIST(1,0; A v&g) = {<al »&, >: (<at ,i, > € Q2o Aj !&;) N
(<a.9, > € LEN1(0;,4;)));

/* Update the set, Q 2(o, ,A, ,6,) s/
Q2(0;,A;,4,) = Q@ 2(0;,A;,q,) - DIST(1,0,,A; ,q,);
/* Update the set, LEN 1(o, ,A;) ¢/
LEN(o;,A;) := LEN1(o;,A,) - DIST (1,0, ,A; ,&,);

D= 2;
While (Q2(0;,4;.,4,) % ¢ and n < [Q(o,,4;)]-1)do
begin

DIST(n ,0,,A;,q,) := {<¢;,q,>:(< 0,9, > € Q20,,A;,q,)) N
(3<§t 1&l>x 3<&lr&g >X<al 9&I> € LEN— l(O,‘ ’Aj)) n

(<419, > € DIST (n-1,0,,4,,3,))};

[* Update the set, Q 2(o; ,A; ,c},) i

Q2(o0,,A;,q,) := Q2o0;,A;,q,) - DIST(n 0,,A;,q,);

If (DIST (n ,0,,A, ,r},) = é), then go to NEXT;

n:=n+1;

end-while
NEXT:If (n < | Q(0;,A,)]-1),
then DIST(1,0,,A;,q:) = ¢, I=n+1,..,]| Q(0;,A,)|-1;

/* Every pair left in @ 2(o,,4, ,q,) is noncomputable */
DIST(K ,0;,A;,4,) == Q2(o,,4;,q,), K =a-|P|IEVI;

123

end-for-do
end-for-do
Return DIST(l,o0,,A, ,6,),
where [€ {1,...,| Q (0, ,4;)[-1, s-|P|1EV]}, and g, € 6,4,(0,)
End-algorithm

The beuristic (e,) derived from the formula (6.1) can be illustrated by the
robot planning problem of Fig.2.3, where EU = {4 ,B,C} and
AT = {Ab,Ab,,Abs,Ab,}. Let this problem be modellcd by M, in which
HEU) = {o,: 0, = {1}, i=A ,B,C} and
"AT) = {A;: A; = {Ab;}, §=1234}).

From Fig.2.3, the goal state ¢, = <NULL ,NULL (C,B,A),¢>. Thus
aﬂAl(o,- 6)=0, i=A,B,C, j=1.2.
cﬂ’Aa(oA) =3, JJA"(oB e) =2, ‘JA,(OC) = 1.
afis (o, .,)= NH, i=A,B,C.

Algorithm GDIFF then generates, based on the relaxed successor condition formula

ESCF(\!!4) for each o, € (EU) and A; € n{AT),

LEN (1,0, ,A;) = {<1,0>,<2,0>,<3,0>,<0,1>,<0,2>,<0,3>},

LEN1(1,0,,A,) = {<NH ,H>,<H,NH>),

where 1=A4 ,B,C, and 5=1,23.

DIST (1,0;,4, 0) = {<1,0>,<2,0>,<30>}, i=4,B,C, j=1.2.
DIST(1,0,,A ,NH) = {<H,NH>}, i=A,B,C.
DIST (1,0, A 3.3) = {<0,3>}, DIST(2,05,A,3) = {<1,3>,<2,3>}.

DIST(1,05.,A4,2) = {<0,2>}, DIST(2,05,A52) = {<1,2>,<32>}.

124
DIST (1,0c,A51) = {<0,1>), DIST(2,04,A51) = {<2,1>,<31>).

Suppose the state e, = <(A)NULL,(C),B>. Then by definition
BA,(C.)= {04}, BA,(‘:) =4, BA,(%)= {04,081}, and BA.(C.)= {op}.
Since s =1, (r{EU)) = ¢, and w = 1, from (6.1)
h(e;) = max({A°(c,), A’ (e,), h™(e,)}) = 2

where A°(e,) = A™ (e,) = max{{1,0,2,1}) = 2 and A’(e,) = max({1,1,1,1}) = 1.

As another example, if e, = <(A,C),NULL (B),¢>, then A(e,) = 4.

6.2.2. The Case of Nonequal Costs of Rules

In this section, we consider the heuristic A(e,) in the case for which the costs
of rules are not the same. As before, we estimate A (e,) by estimating the minimum
cost of the subpath (p(o,,A;)n(0;,A;)) for each o, € ®(EU) and A; € n(EU).
However, for the case of nonequal costs of rules, we need one more relaxed successor
formula to estimate the minimum cost of each (p{o,,4,), 0;,A;)). We first discuss
this newly defined relaxed successor formula and ti:en explain the way to estimate

the minimum cost of (p(o,,A;)70, ,A,)) using this relaxed formula.

For each rule <a;;,...,8,> € R,let the set Z(a,,, ..., 0,)be
Z(U“,...,G,‘)={0‘10‘ E’(EU)' {‘lt:---;‘n)not ¢¢}

Suppose the extended successor formula ESCF is given by the disjunction of rule-
formulas, r_e,; - - - e,, <6, ---6;> € R, where each r_a,; - - - @, is given by

the conjunction of some clauses. Then, the relaxed successor formula

ESCF{E,. . & >.2(e e.)a,) for the objects in Z(ay,...,q,) and the

feature A; is given by the disjunction of relaxed rule-formulas, r_a,, - - - ¢, _rel,

126

<ay,...,68;> €R. Each relaxed rule-formula r_a;, - - - a,_rel is derived
from r_a,, - - - a, by substituting anonymous variables, _, for the variables other
than 2z, for ¢=1,.,0, and y_ o, Ab;,,, :z.¢, Ab, for ¢, €9,
op €Z(ay,...,8,), Abj, €EA;. The derived relaxed formula
ESCFl¢! 552003, .., 0a)A,) will describe the constraints of two position
values of each object o, in Z(a,,, ..., 8,) with respect to the feature A; in two
states ¢, and ¢,. ¢, is the state in which the rule <a,,, ..., 6, > is applicable,
and e, is the state resulting when <a,y, ..., q, > is applied to e, .

We now explain how to estimate the minimum cost of the subpath
(o;,A;)0;,A;)) for the object o, and the feature A;. Let
I.:di:r(<aﬁ,4‘(o,- yCs),aﬁA)(o,»,e,)>,0,,A,) be K;;. Then, it is obvious that for each
n € {1,..,K;;}, there exist at least one rule <6l4a,...,84% > in the sequence
#(0,,A;) and two corresponding states, ¢;, and ¢, -, in the sequence 1o, ,A;) such
that (1) {6340, ..., 84} N o, %6, (2) (<8}4, ..., 81> ,1.¢,,) € SUCCR,
(3) Ldist (<ofly (0,40)8 (0;,16,)>,0,,4,) = n, and (4)
i;dt'at(<oﬂAJ(o, 'Chy’),uﬂA](o, 1€,)>,0,,A;) = n-1. By determining a lower bound
of the cost of such rules for each n, we can estimate the minimum cost of rules in
the sequence p(o,,A;). Let this estimated value GLOCS(o,,4; e, ,cﬁAl(o, ¢,)) be
given by the sum of K,; such lower bounds. Then, the beuristic A(e,) is given by

h(c,)=max({h'(c,),h'(c,). h=(e;)}) (6.2)

where
h*(e,) = max{{min({GLOCS (0,4, ¢, 4,): 4, € Gy (0,)})

0,€B4 (e,), A; € {AT))),

120

A®(e,) = max({-!; 63:()min({GLOCS(o,,A,,c,,é,): é, € 6A,(o,-)}

Aj € x(AT))),
- - 1 : A -~)
h™(e,) mu((i-lﬂ(r(EU))l .'EB%:(")mm({GLOCS(o,,A,,c,,q,).
o.¢ US(EV))

iy € Gy (0,)}): A; € HAT))).

The set By (¢,) = {0;: (o; € {EU)) N (aff,(0;,6,) € Gy, (o).

Each step for deriving GLOCS(o,,A; ¢, ,OJA’(O, ,Aj)) is given by algorithm
GLOCS. Here we briefly go over the step to derive the lower bound of
c(<8ltay--r8ia>rCha /€3,) in the sequence p{0;,A;) for each n € {1,...K;; }.

For two states ¢, and ¢, if ESCF{! 4)(sfs(0m ¢,)04 (0m e,)) = true,
where ESCF@:"AI) is the relaxed successor formula for the object o; and the

feature A;, then we will say that e, is the resulting state when a simplifed rule with
respect to o, and A; is applied to ¢,. Let the set C(o,,A;,e,) for each
on € 7(EU) and A; € n{AT) have every pair of position values of o, with respect
to A; which can be assumed in one state and its successor state which result when a

sequence of simplified rules with respect to o, and A, is applied to ¢, .
First, we derive every rule <a{,, ..., 81> € R such that
(1) {‘;‘lr~-':‘o‘l}noo 74¢,and

(2) for some (g, ,q,',)€ C(o,,Aj,e,) for each o, € Z(d{,, cee, a,‘,),

m=l1,.1,.,T,

127

ESCF(’Z’. 3,>.2(s; ."’)'Al)(a:h e vy .:lv&lr ceey &i!"’ar '&l 10y

s/

g ,...,6,'-)=¢rue,and

Ldist (<§ 085 (0,,,)>,0,,4;) = n,

Ldist (<q;' fls (0:,¢,)>,0i,4,) = n-1.
It is obvious that the original rule <sij,, ..., 6li.> in the sequence p(o, Aj) is

also included in the above.

Next, for the fixed s, we select the lower bound of the costs

e(<8lins- -y 00 Cha ,¢;,) of all the rules <a}y, ..., a}> derived above.

Algorithm GDESC below generates the set C(o;,A; ¢,) for each o; € n(EU)
and A; € 7{AT) when the state ¢, is given. The set DIST(l,o,,A; ,q;) for each

% € Q(o0;,A;) used for GDESC is generated by algorithm GDIFF with

5;4}(01)’—" Q(oa 'Aj)

Algorithm GDESC (¢,)
Begin
For each o, in x{EU) and each A, in n{AT) do
begin
CloiA;,6,) = {<b.@ >: (@t € Q(0,,4;) N (& € Q(o,,4,)) N
(CSCF (TA,)(&;) =true) N

((d = offa (0,6,)) U
(KU € {1 Q0,14 1-1)) N
(<afls (0.6,) > € DIST(1,0,,4, 4)};

end-for-do

Return C(o,,A;,¢,) for o, € f(EU), A; € n{AT)
End-algorithm

128

Algorithm GLOCS below generates the lower bound, given by
GLOCS(0;,A; ¢, ,é,), of the cost of the subpath (g, ,4;)1 o,,A;)) from ¢, to ¢,

in which é, = :JA’(O, g).

Algorithm GLOCS (o, ,A; ¢, ,&,)
Begin
/* Find the length between two position values, aﬂ,, (o, ,¢,) and q, s/
d =d = Ldut(<aﬂ4 (o, ,c,)q, >,0,,A;)
/¢ If the pair <cﬂ4l(o, ,€s),q, > is noncomputable ¢/
/* do not go further ¢/
If(d =a-]P|IEV])
then begin
GLOCS := wg,,'d, where v, is the maximum cost of the rule;
Return GLOCS ;
end-if
/* At each of d intermediate stages, refine the set C(o,,4;,¢,) ¢/
[+ generated by algorithm GDESC 3/
While (d' 5 0) do
begin
/* Find all position values each of which has the length of d' from c}, s/
D(o,.A,,d ,q,) = {;h:({lg € Q(o,,A;)) N
(Ldist (< q;,9,>,0,,4;) = d)};
/* Refine C(o; ,A,- ,¢5) at the stage of distance d from the value &, s/
CClo;.A, 0 d 14y) = (<@’ >: (<t > € Clo,,45,¢,)) N
(@ € D(o;,A;,d" ,q,) N (Ldist(<q .4, >,0,,4;) =d" -1)};

/* Update the intermediate stage ¢/

i =d -1
end-while;
/* At each of d stages, approximate all tke applicable rules ¢/
v=];
While(1 < v < d)do
begin

W(r,0,,4;,6,q,):={c(<ay,...,8,>.¢.e4)

(0, € Z(<eay, ..., 8,;>)

129

Z(<‘llr R | .nl>)='{°l € ’(EU, {‘Hr ey ‘ut} No # ¢}) n
(3<q.@ > € CloA;,e,), 0 €Z(<8yy,...,8,>),
I=1,..,8, 0] % o,;)

(3<&: ,6," > € CC(O.‘ rA; 165 ,¥ ’i’)X(&l = ‘ﬁAl(olrck), ’=1,---,‘,.--,l¢)
n(y = o5 (01,4) I=1,.,0,.,8) N
(ESCF(Ré'sl, e, 8,2 .2(< 8y, ... ,l,)).A,)(‘lh e ooy By

alr . -:i.,,éx ’ ”’:&o,) = true))};

v=yv+];
end-while;
/* Generate the lower bound of the cost of the subpath (p(o; ,A,)., ,4,)) */

4 .
GLOCS := E min(W (v,o, vAj €319y));

o =1

Return GLOCS;
End-algorithm

The admissibility and monotonicity of the heuristic A(e,) in the formula (6.2)
are proven by Claim 4 and Corollary 4.3 in Appendix B.

As one example of the heuristic (e,) in (6.2), the (5-city) traveling salesman
problem given of Fig.5.2 is considered. Let this problem be modeled by Af, in which
s{EU) = {o0,: 0, = {s}, y=A,B,C,D ,E} and

| AT)= {A,, Ay A; = {Ab,}, A, = {Ab,}}. Then from the goal state

¢, = <{A,B,C,D,E},A>

afl4(0;,¢,)=T, _i=.4 ,B,C,D E.

‘ﬂA:(aA ,C,) = 11 ‘ﬂAz(oi 1‘,) = A'I’ '.=B)CvD)E-

By algorithm GDIFF ,

130

DIST(1,0,,A,,T) = {<F,T>), i=A,B,C,DE.
DIST (1,04 ,A 5,1) = {<NI 1>},

DIST (1,0,,A ,,NI) = {<I ,NI >), i=B,C,D,E.
Suppose the state ¢, = <{A,B},C>. Then by
BA,(‘:) = {oc,0p,0p } and BA,(‘:)= {oc,04}.
By algorithm GDESC,

C(os,Ape,)={<T,T>}, C(op,A;,6,)={<T,T>}.

C(o;,Ae,) = {<F,T><F,F><LT,T>}, i=C,D,E.

definition

C(0;,A 4¢,) = {<NI,NI > <NII><I,NI><II>}, i=A,B,C,D,E.

By algorithm GLOCS,

GLOCS(og A e, ,T) = min({<C,A >,<C,D>,<C,E>})
= min({6,5,9}) = 5.

GLOCS (op ,A ¢ ,T) = min({<D,A >,<D,C>,<D,E >})
= min({10,5,6}) = 5.

GLOCS (og A 1,e,,T) = min({<E,A >,<E,D >,<E,C>})

= min({13,6,9}) = 6.

GLOCS(oc,A ,¢, ,NI) = min({<C,A >,<C,B>,<C,D><C,E>)})

= min({6,7,5,9)) = 5.

GLOCS (04 ,A ¢, ,]) = min({<B,A >,<C,A >,<D A >,<E.A>})

= ({7,6,10,13}) = 6.

Thus by the formula (6.2),

l‘(c:) = max({h‘(c,)’ h'(cs)v h-(cs)}) = max({8.6,8}) =8

where h®(e,) = h™(e,) = max({-; (5+5+8), é(sw)}) — 8, and

131

h*(e,) = max({5,5,6,50)) = 6.

Finally we present two algorithms SNUM and OMEGA. SNUM generates the

value of 4 when the set s{EU) of objects and the set R of rules are given, and

OMEGA generates the set {}(x{EU)) when the set x{(EU) of objects and the set N

are given.

Algorithm SNUM (#«(EU), R)
Begin
/# Initialize the value of s ¢/
s :=0;
While (R £ ¢ and s < s) do
begin
Select one rule <a,,...,s,> from R;

OSET := {o,:(0; € x(EU)) N (o, N {a,, . -.

If (¢ < the cardinality of the set OSET),
then s := the cardinality of OSET;
end-while

Return s ;
End-algorithm

Algorithm OMEGA (=(EU), 1)
Begin
Qx(EV)) := {o;: (o; € {(EU)) N (o; € O)};
Return Q)(x{EU));
End-algorithm

, 8,) # 8));

Algorithm HO below computes the heuristic A(e,) based on two formulas (6.1)

and (6.2).

Algorithm HO (¢,)
Begin

/* Find all goal position values of each object with respect to each feature +/

For each o, € (EU) and A; € n{AT) do

132

be_;ln
Gy (0,) = {a:(q € Q(o,,4,)) N (Goalfy!y) (i) = true));
end-for-do
For each A; € o{AT) do
begin .
BA,“:) := {o,: (o, Ex{EU)) N (‘ﬁA,("o’ s) € GA,(’.)8
end-for-do
If (the cost of each rule of the problem is the same w),
then begin

ho(e,) = max({'%- 682:()mm({w 'zd'.“(<‘ﬁA,(°a 1€)vég >,90, 944;‘):

& € Go (0,))): A € HAT)});
b (e,) = max({min({w -Ldist (< offy (0 ¢,)y 0,4,)

&l € GA,(’:’ 13 Aj € x(AT), °|'EBAI(¢:)});
If(s > 1and Q(x(EU)) 5 ¢)

then begin
1
h- e = m e
(e) “({,-m(n(EU))I .,et%.:,(e.)
o, N(x(EV))

min({w 'idiat (<oﬁAl(o, '€),t}, >.0,,4,):

& € Gy (o)) 4, € {AT))):

return A(e,) = max({h°(e;), h*(e,), A= (e;)}):
end
else return A(e,) = max({{h°(ec,), h°(c;)});
end-if;
If (the cost of each rule of the problem is not the same),
then begin

A(e,) =max({~ ¥ min({GLOCS(o,,4;.¢, .4,)
0,8, (o)

& € Gy (0,)}): A, € HAT)

A (e,) = max{{min({GLOCS (0, A, ¢, .¢,): 4, € Ga (0,))):

133

A; €En(AT), 0.'53,4,(‘:)
If (s > 1and N(r(EU)) 9 ¢)
then begin

= = l
h®(e,) m"({;-ln(,r(EU))l .,esz,:,(c,)

o, ¢ Q(«(EV))
min({ GLOCS (o, ,A, ¢, ,4,):

@y € Ga (0,): A, € H(AT)});

return A(e,) = max({A°(c,), A*(c,), 8™ (e,)});
end
else return h(e,) = max({h*(e,), h'(e,)});

end-if;

End-algorithm

6.3. Complexity and Tightness of Heuristic

In this section we examine the complexity of the procedure of deriving the

beuristic & (e,) based on the problem model M,. Also the tightness of the heuristic

h(e,) is derived.

The complexity of the procedure for deriving the hecuristic A(e,) is given by
the complexities of the following algorithms: algorithm GDIFF in the case of equal
cost of the rule, and algonthm GDIFF, GDESC, and GLOCS in the case of

nonequal cost of the rule (the complexities of the procedures for deriving the relaxed

formula, the value of s, and the set (}(x{ EU)) are neglected).

The complexity of each algorithm, when the binary search method is used, is

given by the following O -function:

C:(GDIFF)=0(¥ £ 1Q(e,.4,)1")

o, EX(EU)A,Ex(AT)

134

2. C2(GDESC(e,)=0(&£ ¥ 1Q(0.4,)1%,
0, €x(EU)A, €5(AT)

3. Cz(GLOCS(o,,A ¢, ,4,)) =

O(E 'Q(O.-,Aj)lz n IQ(°t9A,)|2)
<y ..., s, >€R o N{ey, ..., 6)#¢
o, n {.l """ s, }# L e’(EU), L} #’u

Thus, the complexity of the whole procedure for deriving the heuristic A(e,),

which will be denoted by Cz(HO (e,)), is
1. in the case that the costs of rules are equal,

Cz(HO (e,)) = Cz(GDIFF), (6.3)

2. in the case that the costs of rules are unequal,

Cz(HO (e,)) = Cz2(GDIFF) + Cz(GDESC(e,)) +

Y Ci(GLOCS(o0,,4;,65,4,) (64)
o, €X(EU)A,E€5(EU)q, €Gy (o,)

Let M{'7) denote the version of A, which bas the set of objects x,(EU) and
the set of features 7,(AT). Then from the equations (6.3) and (6.4), we can easily
see that Cz(HO(e,)) derived using M, ;) is less than or equal to C2(HO(e,))
using M 1) if the set x;(EU) is the refinement of the set x4 (EU), and the set

%;(AT)is the refinement of the set x, (AT).

Theorem 1

Let M{7) and MJK'L) be two versions of the problem model M,. If the set
2 (EU) of objects defined for M}’*!) is the refinement of the set xx(EU) of
objects defined for M{X:’) and the set %,(AT) of features defined for A{{"’) is
the refinement of the set x{"L) of features defined for Af{¥ L) , then for every state

¢, Cz(HO(e,)) derived using M«.!"” is less than or equal to Cz(HO (e,)) derived

136

using MJK"‘) .

Let us then consider the accuracy of the heuristic HO (e,) derived using each
version of the problem model M,. First consider the value of A(e,) derived on the
model version MJ'/) in which x,(EU) = {EU) and x,(AT) = {AT}. If the
goal condition formula EGoal defined for M}' J) completely describes the goal

state ¢, and the cost of each rule is the same, then for every state e,

[

h(e,) = h°’(e,), i.c., the value of A(e,) becomes the minimal cost of the path from
¢, to ¢,. This is easily derived from the fact that each state is uniquely defined by
a set of given position values of all the elementary units. Next we will compare two
values of the heuristic HO(e,) derived using two different versions Mr.,‘" 4) and

MIKL) of the problem model M,.

Lemma 6.1
Let M}"” and MQ(K'“ be two versions of the problem model M, in' which
the set x,;(EU) of objects defined for Mz("’) is the refinement of the set ny (EU) of
objects defined for M{XL) . Then
1. 8k 1) is less than or equal to 3(,',) where i(K',_) is the value of s derived on
the model M {KL),

2. the cardinality of the set)z, (EU)) is less than or equal to the cardinality of

the set (s, (EU)).

Lemma 6.1 can be directly derived from algorithm SNUM and OMEGA. The
value of ‘.UJ) derived using the model M.}"” is equal to the value of s given for

the problem model M, if the set x;(EU) of objects defined for M ;) is

136

7;(EU) = {{a,}): s, € EU}. Then by Lemma 6.1, in problems such as the con-
sistent labeling problem and the robot planning problem where the value of s is 1,

the value of a‘(K.L) derived on any version MJX'L) of the problem model M, is 1.

Let MJ"Y) and M{KL) be two versions of M, such that x,(EU) is the refine-
ment of 7 (EU) and »;(AT)= x,(AT). To compare the two values of A(e,)
derived using M," J) and M}K) we will first compare the estimated cost of the
subpath (o ox;,A;)Mo, ,A,)) for ok, € xx(EU) and A, € n;(AT) derived using
ME9) with the estimated cost of the subpath (p{0;y,A4;)% 0s,4;)) for each
0 C oxi, o;a € x;(EU), derived using M{"/).

Based on the definition of the relaxed goal condition formula EGoal(’Eff a,) for
each o, € x(EU) and A, € x(AT), we can easily derive the property of Lemma 6.2

below.

Lemma 6.2

Let AM{"?) and M{¥L) be two versions of the model M, such that x,(EU)
is the refinement of x,(EU) and x;(AT)=x, (AT). Then for each
A; € x;(AT), and for each ok; € x5 (EU) and each oy € x,(EU), k=1,...,xr,
such that oy C og;, it bolds that for every <y, ..., > € Q(og,,4;)
where g € Q(oa A,)0t k=l.x, i <TGy ..., Tne > € Ga(ox). then

g € Gy (o) k=1, 0.

For example, let the consistent labeling problem given in the section 5.2 be

modeled by two structures M{'Y) and MIK?) in which

t When gy is the tuple of | elements, §jy is given by the sequence of I elements in Q14 - For
example, if ¢y = <q,, ..., qn >, then <...,Q4 4. D> = <...,q‘, e ey QR gD

137

n(EU) = {{1},{2},{3}.{4}}, xx (EU) = {{1},{2,3}.{4})}, and

#)(AT) = m (AT) = {A,: A, = {Ab,}}. The goal set G, (o,) for o5, = {23}
in #x (EU) is then G, (ox,) = {<a,b>,<c,c >}, and the goal sets G, (o),
Gy fon2) for o5y = {2}, o), = (3} in x,(EU) are

64,(0151) = {<a>,,<c >}, &4,(01.-2) = {,<c>}, respectively.
Then, for each <gx;;,9xi2> € 5,4,({2;3}). 9% € &A,({2}) and ¢y, € EA,({?’})-
However, not vice versa: <4 > € &A‘({2}) and , <e> € éh({3}), but

<b,b>, <b,e> ¢ G, ({23)).

Lemma 6.3

Let M{")) and MK} be two versions of the model M, such that x,(EU)
is the refinement of xy(EU) and x;(AT) = x, (AT). Then for each A; € x,(AT)
and for each oy, € xx(EU) and oy € x,(EU), k=1,...,w, such that o3 C o,,

it holds that for each e, € S and for each <g;y,...,qLe> € &Al(om—), if

(aﬂ,.)(ox,- €5), <qh1s - - - » Qliw >) is computable, then

Ldist ((’HAI(W(' €5), <Tsixs + « - 5 Ghw >)s0K; Ay)

2 Ldist ((JJA,(OI“ 1€y),a,.}),OM ,A’), k =l,...,w.

Although Lemma 6.3 is proven in Appendix B, it is easily understood by one
example. Let the 8 purtle problem given in Fig.2.1 be modeled by two structures
M) and MKL) in which x,(EU) = {{t,}: 4, € EU},
xc(EU) = {{t, .0, }.{t;}: &, €EU, ¢, £ 4,, 4, 5% 1,}, and
X (AT)==nx,;,(AT)={A;: A, = {Ab;}}. Suppose of;, in =x(EU) s

ox, = {8 ,¢,}, and oy,,, 00 in x;(EU) are o, = {4, }, 05, = {t,}. Then. when

138

given two states ¢, and ¢, such that pf(f,,c,)=4, pf(t,¢)=2,
pf (t,¢,) =35, and pf (ty,¢,) =1, compare Ldist((<4,2>,<51>),{t, .4 },A,)
and each of I:diu((4,5),{t;},A,) and i:din((2,l),{t,},A,). First from the relaxed
successor formula ESCF ﬁ}:., J.ap for the object {4 ,¢,},

(<4,2>,<1,2>), (<1,2>,<2,1>), (<2,1>,<5,1>) € LEN1({t, ,t,},4,) is
derived. Then, based on LEN1({t, ,¢,},A,),

(<1,2>,<5,1>) € DIST(2,{t; ,£,},A,,<5,1>) and

(<4,2>,<5,1>) € DIST(3,{; ,¢,},A,,<5,1>) are derived. Next from each of two
relaxed successor formulas ECSF&::,,A‘) and ECSF&:'J'A‘) ,(4,5) € LEN1({t, },A,)

and (2,1) € LEN 1({t,},A,) are derived. Thus

1= Ldist ((4,5),{8 },A,) = Ldist ((2,0),{¢,},4,)

< Ldist((<4,2>,<515){t, ,#,),4;) = 3

in which Lemma 6.3 holds.

Note that for the problem model M,, the cost of the rule <a,;,...,a,; >
between two states e, and e, was given by ¢(<eay;, ..., 8, >,¢,¢,) for some
function ¢. Suppose for a problem, such as the traveling salesman problem, it holds
that for every (<ay;, ..., a3 >,¢,,¢,) € SUCCR,
c(<ey,...,8,>,6,,)=/ “(a,, ...,8,) for some function f ". Then,
the estimated cost, GLOCS(oy;,A,,¢,,<qpy, - - -, qne >), of the subpath
(Mo,,Aj)0,,A,;)) is equal to or greater than the estimated cost,
GLOCS(o01s ,A; e, ,<giz >). of the subpath (p(os Aj)oue.A,)) for each
og € 0;, 03 € x;(EVU). Otherwise, if the cost is not independent of ¢, and ¢,

then GLOCS(ox;,Aj,¢,,<Qsy, - - -, Qe >) may be less than or greater than

139

GLOCS (05 ,A; e, @) of (p(01a,A;) oss ,A})). (for details, see ARGUMENT-1

in Appendix C).

Lemma 0.4

Let the cost of the rule ¢(<s,, ..., 8, >, ,e,),
(<&, ...,8,>,,)€SUCCR, be independent of ¢, and ¢,. Then for each
A; € x;(AT) and for each ok; € nx(EU) and oy € x;(EU), k=1,...,¢, such

that o, C oy, it bholds that for each ¢ €S and for each
<Fh‘h s ey -q-li- > € GA,(’KS)1 ;Im € GA,("!-'&)r

if (<lﬁAJ(OK; 15 L <Thits - - - » Qtiw >) is computable, then
GLOCS(OK,' 'Ai yCg ’<alil) c ey E].‘. >) _>_ GLOCS(O,.} ,A,‘ yCg ,ém), k =],...,w.

By Lemma 6.2 and Lemma 6.4, we derive Corollary 6.4.1 below.

Corollary 6.4.1

For each A; € n,(AT) and for each oy, € xx(EU) and oy € x,(EU),
k=1,..,w, such that o053 C og,,

min({GLOCS (ok; ,A; €5, <qpi1s - - - » Gtiw >): <Qhi1s - - -, Qe > € Gy (0x,)})

2 min({GLOCS(olib vA, 1€s ,&Iil >) &ll'l € GA)(OIAI)})v k =],..., .

Based on Corollary 6.4.1, we can compare the two values of the heuristic A(e,)

derived using two different versions M{’*/) and M{¥:t) of the problem model M.

Theorem 2

Let the cost of the rule c(<ay, ..., 8, >,¢,¢,),

(<ey,...,8,>,¢ '€y) € SUCCR, be ipdependent of ¢, and e,. Let M.‘,“'” and

140

MJ{KL) be two versions of the problem model M, in which x,(EU) is the refine-
ment of xx (EU) and x,(AT) = x, (AT). Then for each state ¢,, the value of the
heuristic HO (e,) derived using MJ'-/), denoted by HO(; ;fe,), is less than or

equal to HO x , ¢,) derived using MKL)
1. if;(l(,l)- l, or

2. if Q(xy(EU)) = Q(x,(EU)) and, for each object ox, € xx(EU), each rule
affects the position value of at most one object oxy € x;(EU), ok C ok,

with respect to each feature A; € x,(AT).

The proof of Theorem 2 is given in Appendix B. Theorem 2 compares the
values of HO (e,) derived using two versions M) and MIKJ) of M,, respec-
tively, where x;(EU) is the refinement of xy (EU). Next we will compare the values
of HO(c,) derived, respectively, using two versions M{') and M,(K L) in which
x;(EU) = xx(EU) and x,(AT) is the refinement of x,(AT). As before, to com-
pare two values of HO (e,) derived using M}"” and M}K"') , we will first compare
the estimated cost of the subpath (p{o,,A4;,).mo; As;)) for o, € x;(EU) and
Ay € x;(AT) derived using Mé"” with the estimated cost of each subpath

(P01 A ;8)0, , Ay) for Ayjy © AL, Asjs € x,(AT).

Lemma 6.6

Let M{7) and MJXL) be two versions of the model Af; such that x,(AT)
is the refinement of #, (AT) and x;(EU) == myx(EU). Then for each o, € =;(EU),
and for each A;; € x (AT) and each A,; € ,(AT), k=l,.,v, such that
Aji € Ay, it holds that for every <gy,,--.,9,,> € Q(o,,A;,) where

at € Qlo; Aup) k=10, if <gjy, ..., 0> € Gy, (0,). then

141

alﬁ € GA,’,(ol)9 k =lv'"1” .

As in Lemma 6.2, Lemma 6.5 is easily derived based on the definition of the

relaxed goal condition formula EGoclﬁffAl) for each object o, € n{EU) and each

feature A; € x(AT).

Lemma 6.8

For each o, € 7;(EU) and for each A;; € n,(AT) and A,; € n,;(AT),
k=1,.,v, such that A,; C A,;, it bolds that for each ¢, € S and for each
<@j1r - -1 81j0 > € Gy, (o)), gt € Gy,,(0,),

if (<affa, (0,,,).<0sj15 - - - @sj» >) is computable, then

Ldist((sfls, (016,),<qujs, - - - » Qjo >),0i,AL;)

> Ldist((of4,,(0; 1,).0s8)0i A sjs) k=1,...v.

The proof of Lemma 6.6 is given in Appendix B. One example in which Lemma
6.6 holds is given by the robot planning problem of Fig.2.3. Let this problem be
modelled by M{'/) and M{¥L) in which
%/ (EU) = xx (EU) = {04 ,05,0c: 04 = {A}, 0p = {B}, oc = {C}},
2 (AT)={Ap: Ay = {Ab;}, k=1.234}, and
7 (AT) = {ALy: ALy = {Ab,, ..., Ab}).
Suppose two states ¢, = <(A),NULL (C),B > and
e, = <NULL ,NULL (C,B,A),¢>. Then when modeled by AM{//), from e,,
3fa, (04 .6) =1, affs, (04,6,) =0, sff4 (04,6,) =0, and affy, (04,¢,) = NH;
from e, offy,(0a,e,) =0, affy[(0s,¢,)=0, affy (04,¢,)=1, and

3fia, {04 ,¢,) = NH. As given in the section 6.2, I:diat((l,O),oA yAji)=1 and

142

Ldist((0,1),04,A,5) = 1. When modelled by MJXL), from the state e,,
o4, (04 ¢;) = <1,0,0,NH > and from ¢, off,, (0, ,¢,) = <0,0,1,NH>.

Then Ldiat ((<1,0,0,NH >,<0,0,1,NH >),0, ,A.,) = 2. Thus,

9 = Ldist ((<1,0,0,NH >,<0,0,1,NH >),04 ,AL ;)

2 Ed‘“ ((1,0),'0A ’All) = l.;d‘.“ ((011))°A rAJS) =].

Lemma 6.7

Let the problem have the cost of the rule c¢(<a,,...,sq,>,c,e,),
(<ey,...,8,>,¢,e) € SUCCR, be independent of ¢, and e,. Then, for each
0; € x;(EU) and for each A;; € x,(AT) and Ay; € x,(AT), k=1,..,v, such
that A,; C Ay, it bholds that for each e, €S and for each
<@Uji -1 QUp> € é';,4‘,(0.‘), st € a,4,,.(".'),

if(<aﬂA‘l(o, 16s h<Tsj1s - - - » T754 >) is computable, then

GLOCS(O,- 7ALj 1Cq ,<-q-l,‘p s Elh >)

Z GLOCS(O' ,A Jsk yCq ’él;‘), k =],..,0.

The proof of Lemma 6.7 is given in Appendix B. To assist in the understand-
ing, Lemma 6.7 is illustrated by one example, the (5-city) traveling salesman prob-
lem given in Fig.2.2. As before, let this problem be modeled by two structures
M{?) and M{KL) in which x;(EU) = xx(EU) = {o,: 0, = {i}, i=A,.,E},
7, (AT)={Ap: Az = {Ab;}, k=12}, and
7, (AT)= {AL;: Ay, = {Ab,Ab,}}. Suppose there are two states
¢, = <{A,B},C> and ¢, =<{A,B,C,D,E},A>. When modelled by
Mz("’) , for ¢, offy (oc.e,)=F, affy (oc,e,)=1, sffy, (0p,e;)=F, and

ofla,{0p €)= NI;for e,, sf,, (0c,e,) =T, aff4, (0c,e,) = NI,

143

offa,(0p,¢,) = T, and offy (op,c,) = NI. Then, as shown in the section 6.2,
GLOCS (oc,A;y,¢5,T) =5, GLOCS (o ,A .65 ,NI) = 5, and
GLOCS (op,A e, ,T) = 5. However, when modeled by ML) for e,
of4, (oc e,)= <F,I>, and afiy, (op e;) = <F,NI>; for e,
sffa, (oc ¢g) = <T ,NI>, and offy (0p,c,)= <T,NI>. Then by GLOCS
GLOCS(oc,AL 1,65, <T ,NI>)=5 and
GLOCS (0p,ALy,e,,<T,NI>)=5+6=11. Thus,

5= GLOCS(oc,AL,,¢,,<T ,NI>)

> GLOCS(oc,A e, ,T) = GLOCS(oc,Ayse5 ,NI) =5, and
11 = GLOCS(@D A€, <T,NI>)

2 GLOCS(OD ,A_“,C, ,T) = §.

By Lemma 6.5 and Lemma 6.7 we can derive the property in Corollary 6.7.1

below.

Corollary 6.7.1

For each o, € m/(EU) and for each A;; € x, (AT) and A,; € x,(AT),
k=1,..v, such that A,; C A;;, it holds that for each ¢, € S and for each
<@Ujv--- Uy > € 6A‘,(°.'), if (<offy, (0;.¢,),<Tyj1s - - -5 Gy >) is comput-

able, then
m’n({GLOCS(On 1ALj 1€s ’<'q-ly 1r <= EJ" >) <-q.J;1r LRI -q-.hv > € GA‘J(O.)})

Z mm({GLOCS(o, ,AJ,} »€Cg ,a],'g >) am € GA”‘(O,)}), k =],...,v.

Based on Corollary 6.7.1, we can compare the two values of the heuristic A(e,)

derived using two different versions M{/-/) and M{'t) of the problem model M,.

144

Theorem 3 given below is proven in Appendix B.

Theorem 3

Let the problem bave the cost of the rule c(<s,, ..., e, >,c,,¢)),
(<ey,...,8,>,¢,,¢,) € SUCCR, be independent of ¢, and ¢,. Let M{'?) and
MJKL) be two versions of the problem model M, in which x;(EU) = =, (EU)
and x;(AT) is the refinement of x (AT). Then, for each state e,, the value
HO(; s(e,) derived using MJ17) is leas than or equal to the value HOk 1\e,)

derived using ML)

6.4. Examples

In this section the search efficiencies of A ° in terms of expanded states (nodes)
are discusscd using three examples, the consistent labeling problem, the robot plan-
ning problem, and the traveling salesman problem. We use the heuristics derived
using various versions of the problem model M,.

Consiste beli oble

Let the problem given in section 4.1 be modelled by three structures Af 2“") ,
M$D and MY respectively, in which x,(EU) = {{1},{2},{3).{4)}.
n(EV) = {{1}.{2.3},{4}}, =(EU)={{1,4},{23}}, and =x,(AT)={{4b,}},
¢=1,23. Then the number of expanded states until the solution is found is 10
when the problem is modelled by Mz"'l) , 5 when modelled by M{**), and 5 when
modelled by A{{>% . Table 6.1 contains three values of the beuristic derived on the

three models.

e Robot i b

145

Let the problem given in Fig.2.3 be modelled by Af{"") and MJ*?, respec-
tively, in which #,(EU) = x{EU) = {{A },{B},{C }},
T(AT) = {{Ab,,Aby,Aby,Ab,}}, and m(AT)={{Ab,},{A8,},{Abs},{Ab,}}.
The number of expanded states is 8 when the problem is modelled by either of
M) and M§*?) . However, as shown in Table 6.2, the value of the beuristic used
for A ° varies depending on which of Af 4“) or M§*?) models the problem.

e (5-cijt aveli esma ob

Let the problem of Fig.2.2 be modelled by M "), M*?) and M, respec-
tively, in which x(EU) = x{EU) = {{A },{B},{C }.,{D }.{E }},
n(EU) = {{A,B},{C,D},{E})}, m(AT) = {{Ab,,Ab,}},
7 AT) = {{Ab;},{Ab,}}, and =y (AT)= {{Ab,,Ab,}}. Then the pumber of
expanded states is 8 when modelled by M{"!); 26 when modelled by MJ>? ; and 14
when modelled by M 13'3) . For each model, the value of the heuristic A(e,) for the

state ¢, generated during the search is given in Table 6.3.

6.5. Discussion

We have suggested various problem models M, M, M,, and M,. The prob-
lem models A, M,, and M, are, however, related to one another by the values of
the heuristic A(e,) derived for them. (The problem model Af can be given by the

model A, when the goal state is described by the corresponding goal formula.)

1. The value of h(e,) derived using the model M, is equal to the value of A(e,)
derived using the model M, when a set x{ EU) of objects for M, is given by

HEU) = {{0,}: o, € EU).

140

2. The value of A(e,) derived using the model Af, is equal to the value of A(e,)
derived using the model M, when a set x{AT) of features for M, is given by
x(AT) = {AT}.

We have shown in section 6.3 that the complexity for deriving the beuristic

h(e,) and the tightness of A(e,) derived depend on the set of objects and the set of

features defined for the problem model M,.

The number of attributes of the problem is in general much less than the
number of elementary units of the problem. Thus in order to derive a fair heuristic
with a reasonable complexity, the problem can be modeled by the sturcture Mg("’)
in which #,(EU)= {{e,}: o, € EU} and »(AT) = {AT}. The state-space of
the problem is then searched based on the heuristic derived on M*!). If the search
efficiency is not satisfiable, then the problem of the same type is modeled by some

other structure, based on Theorem 2 and 3, guaranteeing better search effciency.

147

Values of Heuristics

State ¢, HO(fe;) | HOpofe,) | HOysfe,)
(1,nl,2,nl,3,nl,4,nl) 4 4 4
(1,3,2,n1,3,nl,4,nl) 3 3 3
(1,b,2,n1,3,nl,4,nl) 3 -3 3
(1,¢,2,n1,3,nl,4,nl) 259 259 258
(1,n1,2,3,3,nl,4,nl) 3 3 3
(1,n1,2,b,3,nl,4,nl) 3 258 258
(1,n1,2,¢,3,nl,4,nl) 3 3 3
(1,n1,2,n1,3,3,4,nl) 259 258 258
(1,nl,2,n1,3,b,4,nl) 3 3 3
(1,n1,2,nl,3,¢c,4,nl) 3 3 3
(1,n1,2,n1,3,nl,4,3) 259 259 258
(1,n],2,nl,3,nl,4,b) 3 3 3
(1,n1,2,n1,3,nl,4,¢) 3 3 3
(1,3,2,3,3,nl,4,nl) 2 2 2
(1,3,2,b,3,nl,4,nl) 2 257 257
(1,32, ,3,0l,4,nl) 2 2 2
(1,b,2,3,3,nl,4,nl) 2 2 2
(1,b,2,b,3,nl,4,n!) 2 257 257
(1,n1,2,b,3,nl,4,c) 2 257 257
(1,¢,2,3,3,nl,4,nl) 258 258 257
(1,¢,2,b,3,nl,4,nl) 258 . -
(1,¢,2,¢,3,0l,4,nl) 258 258 257
(1,b:2,b,3,nl,4,c) 1 256 256
(1.a.2.¢,3.c.4.nl) 1 1 1

Table 6.1 Heuristics in the Consistent Labeling Problem

148

Values of Heuristics

State € HO {1 l“:) H012 2)(‘:)
<(A,C),(B),NULL,¢> 6 3
<{A),(B),NULL,C> s 3
<(A,C),NULL,NULL B> 3 3
<(A)(B){(C),¢> 4 2
<(A,C),NULL,(B),¢> 6 4
<(A,C,B),NULL,NULL,¢> o 3
<NULL,(B),(C),A> 3 2
<(A),NULL,(C),B> 3 2
<NULL,(B,A),(C),¢> 4 2
<NULL,(B),(C,A),¢> 4 3
<(A,B),NULL,C),¢> 4 2
<(A),NULL,(C,B),¢> 2 1
<NULL,NULL/C,B),A> 1 1
<NULL,NULL(C,B,A).6> (] 0

Table 6.2 Heuristics in the Robot Planning Problem

149

Values of Heuristics
State €, HO(U“]) HOpofe,) | HOyy 3“1)

<{A},B> 22.6 11.5 17
<{A},C> 24 12 18.5
<{A},D> 25.5 4 19.5
<{A}LE> 23 12 18.5
<{A,B},C> 17 8.5 14.5
<{A,B},D> 18.5 10 10
<{A,B}.E> 16 8 14.5
<{A,C},B> 19 9.5 15.5
<{A,C},D> 23 1.5 19.5
<{A,C},E> 23 11.5 19.5
<{AD},B> . 11 18.5
<{AD},C> . 1.5 21
<{AD},E> - 1 17.5
<{AE},B> . 8.5 18
<{AE},C> . 11 15
<{AE},D> - 9 12
<{A,B,C},D> 19 13 19
<{A,B,C},E> 16 10 16
<{ABE},C> 15 10 15
<{ABE},D> 11 6 11
<{A,B,D},C> - 13 22
<{A,BD},E> - 9 15
<{A,C,D} B> - 13 23
<{A,C,D}.E> . 10 17
<{A,C,E},B> . 10 -
<{AvC’E}vD> ® 10 -
<{A,D,E},B> - 7 13
<{AD,E},C> . 7 12
<{A,B,C,D},E> . 13 .
<{A,B,C,E},D> - 10 .
<{A,C,D,E},B> . 7 7
<{ABE,D},C> 6 6 6
<{AB.CDE}.A> 0 0 0

Table 6.3 Heuristics in the (5-city) TSP

CHAPTER 7
SEARCH ALGORITHM H*

7.1. Motlvation

In Chapter 3, we discussed algorithm A ° which searches the state-space of a
problem for finding a solution to the problem. Algorithm A ° evaluates the promise
of each state to the goal state by means of the evaluation function f . For each
state ¢, the evaluation function f (e,) is given by f (¢,) = g(e,) + A(e,) where
g(e,) is the minimal cost of the path established so far from the initial state ¢;, to
e,, and A(e,) is the heuristic estiamte of the minimal cost of the path from ¢, to
the goal state ¢,. During a search, A ° selects the state for expansion which has the
minimal value of f . If more than one state bave the same minimal value of f,A°
selects the one which has the maximal value of g since the state with larger value of
g is probably closer to the the goal state. If more than one atau‘ has the same
minimal value of f and the same maximal value of g, A * selects any of these arbi-
trarily. This arbitrary selection may result in the worst possible search efficiency.
For example, if two unexpanded states ¢, and ¢, bave the same minimal value of
J and the same maximal value of g, but the selection of c; results in more states

expanded than the selection of ¢, then A * may arbitrarily select the less efficient

state ¢, for expansion.

160

161

For example, consider the consistent labeling problem, given in the section 5.4,
whick is modeled by mJf') where =,(EU)= {{1},{2},{3),{4)} and
x,(AT) == {{Ab,}}. As shown in Fig.6.] and Table 6.1, when the state-space of
this problem is searched through the tree, the initial state
¢,a ™= (1,nl,2,nl 3,nl 4,nl) has 12 successor states, three of which have the value
259 for f, and nine of which have the value 4 for f . Since all of these nine states
have the same value 1 for g, according to the arbitrary selection strategy, algorithm
A° may select for expansion any of the nine .'stata,. Suppose the state
e, = (1,nl,2,b ,3,nl 4,nl) is selected for expansion. Then § successor states of e,
are generated: ¢ = (1,6,2,0 3,nl 4,nl), e, =(1,0,2,0 3,nl ,4,nl),
e,s = (1,¢,2,6 ,3,nl 4,nl), ¢,y = (1,0,2,0 3,8 ,4,nl), and
s = (1,nl,2,b ,3,nl 4,c). The two states ¢, and ¢, of these are then pruned out
from the search tree because, based on the values of A(e,) and A(e,), they are
known to be states not on the solution path. Among ¢,,, ¢,,, and e, suppose ¢,
is selected for expansion. However, from the definition of the successor condition for-
mula, no successor state of ¢, is generated. Thus ¢, , is next selected for expansion.
The only one successor state e, ,, of ¢,, is generated. The state e, ,, is then, based
on the selection strategy of A °, selected for expansion. Since no successor state of
e, is generated, finally the state ¢, is selected for expansion. However its succes-
sor state is identical to e, which was shown to have no successor state. Thus A °
goes back to the first level of the search tree and selects for expansion one of eight
unexpanded successor states of e, with the value of 4 for f. Suppose
e, = (1,nl,2,6,3,nl 4,nl) is selected. Three successor states of ¢, are then gen-

erated: e, = (1,0,2,8,3,n! 4,nl), e, = (1,6 ,2,8 ,3,nl 4,n!), and

163

ey3 = (1,¢,2,6,3,nl,4,nl). The state ¢, is first pruned out because from its beuris-
tic value A(c,,) it is known to be a state ot on the solution path. The states ¢,
and e, have the same value of 4 for / and the same values of 2 for g. Suppose ¢,,
is selected for expansion. However no successor state of ¢, is generated. The state

¢ is next selected. Two successor states of e,, are generated:

y2
ey = (1,6,2,6 3,0 4,nl) and ¢, = (1,0,2,6 ,3,nl 4,c). Selection of either of ¢,
and e, 2, results in the goal state ¢, = (1,6,2,8,3,0,4,c) generated as the successor
state. Then in total 10 states are expanded until the solution is found if the state ¢,
is first selected for expansion among the nine successor states of e,, which have the
value 4 for / and the value 1 for g. However, if the state ¢, is first selected
instead of ¢, , then at most 6 states are expanded until the solution is found. The
same result is obtained if any state among the eight states except e, at the first
level is selected for expansion. As shown in this example, sometimes, the careful
selection of the state even in the case that more than one state has the same
minimal value of f and the same maximal value of g can improve the search effi-
ciency significantly.

In this chapter we explore the selection strategy for expansion which clarifies
further the basis of selection for the case that more than one state has the minimal
value of f and the maximal value of g in the evaluation function. The search effi-

ciencies based on this selection strategy and the arbitrary selection strategy will be

illustrated by an example.

7.2. Algorithm H°

Io this section, we present algorithm H° which is similar to algorithm A °

except that two more properties are implemented: (1) the basis of selection of the

153

state for expansion is presented for the case that more than one unexpanded state
have the same minimal value of / and the same maximal value of g, and (2) a
state which is not on the solution path is detected during search and pruned out

from the search tree.

Algorithm H° results in better search cfficiency than A ° if the problem has
no solution because, as in the property (2) above, it prunes out some of intermediate
states in advance based on their beuristic values. If the problem has a solution, the
search efficiency of H* compared with A ° depends on the problem. As illutrated in
the section 7.1, if the arbitrary selection strategy of A ° results in a bad search effi-
ciency, then H* results in better search efficiency. If not, however, H* may result

in a worse efficiency than A °.

Suppose two unexpanded states ¢, and e, have the same minmal value of f :
1 (e;) = f (¢,). Algorithm A ° then compares the values of g (e,) and g(¢,), and
selects ¢, if g(e,) is larger than g(e,). This is based on the argument that the
state ¢, with a larger value of g is probably closer to the goal state ¢, . Based on a
similar argument a further clarified selection strategy for algorithm H° can be
developed. Suppose the states ¢, and e, have the same maximal value of g:
g(e;) = g(e,). Then the two beuristics A(e,) and (e,) are the same. When the
problem is modeled by the structure M,, the heuristic A(e;) for each state ¢; is
derived on a set of the estimated costs of the subpaths each of which alters the posi-
tion value of the object o, € ”{EU') with respect to the feature A; € x{AT) from
oﬂ’A’(o, ,€;) to some ;I, € C.;:A)(o,-). For each o, € x(EU) and A, € x(AT), the
estimated cost of the subpath is given by

min({t -l..-ds'at(<cﬂAl(o, ,Ch),&, >,0,,A;) &, € &A;“')}) if each rule has the same

164

cost w, and min({ GLOCS (o, ,A, ,¢; ,i,): i, € &"(0,)}) otherwise.

The estimated cost of the subpath for each object o, and feature A, , however,
becomes more accurate as (1) each position value ip the set &A'(O,') is closer to the
actual goal position value, and (2) the relaxed constraints of two states, where one is
the successor of the other, given by the relaxed successor formula for o, and A; are

closer to the original constraints of the two states.

Suppose for some object o; in x(EU) and some feature A; in x{AT), each
position value in &A’(o,-) is very close to its goal position value, and the relaxed
constraints of two states, where one is the successor of the other, given by the
corresponding relaxed successor formula ESCFﬁffA’) are very close to the original
constraints of the two states. Then, for two states ¢, and ¢, such that
J(e;) = f(c,) and g(e,) = g(e,), if the estimated cost of the subpath for ¢, and
A; given for A(c,), is less than that for A(e,), then the state ¢, is probably closer
to the goal ‘state ¢, because e, has the smaller value of the most accurately
estimated cost of the subpath for o, and A; than ¢,. If ¢, and e, have the same
values of the most accurately estiamted cost of the subpath, then their values of the

pext most accurately estimated cost of the subpath are compared.

However, for given a set x{EU) of objects and a set x{AT) of features, it is
not easy to derive in advance a pair (o0;,4,) € x{(EU)Xx{AT) which bas the
relaxed goal formula generating the postion value very close to its goal position
value and the relaxed successor fonhula generating two position values very close to
its two positon values assumed in one state and its successor. We suggest below one
way to approximate such a pair (o,,4;). We first define the partial ordering rela-

tior <7 on the set /(AT) of features of the problem.

156

Definition 7.1
The relation <y defined on the set x{AT) is the partisl ordering relstion such

that for each (A; ,A,) € ’(AT),

(Ai 9“,’) € 5 T
if and only if (1) the cardinality of A; is less than that of A, or (2) the cardinality

of A; isequal tothat 4; and ¢ < 5.

Corollary 7.1.1

The partial ordering set (s{(AT), <y) is totally ordered

Based on the totally ordered set (x(AT), <), we define the partial ordering
relation <; on the set Pl which is the cartesian product of the set x(EU) and the
set 5(AT). The pair (o,,A;) € PI has the relaxed goal formula generating the posi-
tion value very close to its goal positon value and the relaxed successor formula gen-
erating two positon values very close to its two position values in one state and its
successor. (o,,A;) is then approximated by the least upper bound of the partial ord-

ering set (Pl, <;), which will be denoted by LUB(PI, <;).

Definition 7.2

Let a set Pl be the cartesian product of the set x{ EU) of objects and the set
#{ AT) of features of the problem: Pl = x{(EU)X#{AT). Then the partial ordering

relation <; defined on Pl is such that for every <o,,A, > and <o¢;,4;> in P,

(<o,,A;>,<0;,A;>)€ <; if and only if

(1) the cardinality of o, is less than that of o;, or

150

(2) the cardinality of o, is equal to that of o; and FLAG(<;,0; >) = true, or

(3) the cardinality of o; is equal to that of o, FLAG(<9;,0,>) = false, and
i <k,
where FLAG is the procedure which compares the cadinalities of two goal sets

Gy,(;) aud Gy (o) for esch A; € %{AT):

Algorithm FLAG (<e;, ¢; >)
Begin
While ((AT) 5 ¢) do
/* Select the Least Upper Bound of (x(AT), <) ¢/
A; = LUB(x(AT), <),
If the cardinality of Gy, (o,) is less than that of GA (o),

then return (true);
/* Update the set (AT) ¢/
HAT) o= (AT) - (4,);
end-while
return (fele);
End-algorithm

Corollary 7.2.1

The partial ordering set (P, <;) is totally ordered.

Algorithm SELECT below selects one state for expansion among all the unex-

panded states given in the set OPEN .

Algorithm SELECT (OPEN)
Begin
For each ¢, in OPEN do
Compute [(¢,) = g(c,) + A(e,);

end-for-do
MOPEN := {¢,: (¢, € OPEN) N (f (¢,) is minimum)};
If (only one state is contained in MOPEN),
then return (¢, € MOPEN);
[+ Update MOPEN in which each state ¢, has the maximum g(e,) ¢/

167

MOPEN :== {e¢,: (e, € MOPEN) N (g(e,)is maximum)};
If (only one state is contained in MOPEN),
then return (¢, € MOPEN);
While (PI 9 ¢) do
begin
(0;,4;) = LUB(PI, <,);
If the problem has the same cost w of rules,
then begin
For exch ¢, in MOPEN do .
d; = min({w 'L‘;"(<‘”Al(°i 163)jg >,9 vAj): i. € GA,(’:’)}):
end-for-do
end-if;
If the problem does not have the same cost of rules,
then begin
For each ¢, in MOPEN do .
d, = min({GLOCS(o;,4; ¢, v&;): i' € GA,(‘.’ M
end-for-do
end-if;
/* Update the set MOPEN s/
MOPEN := {¢,: (¢, € MOPEN) N (d, is minimum)}
If (only one state is contained in MOPEN),
then return (e, € MOPEN);
/¢ Update the set Pl ¢/
Pl := PI- {(o,,A;)};
end-while
/* Return any state in MOPEN s/
return (e, € MOPEN);

end-algorithm
In algorithm H° the selection of the state for expansion is given by algorithm:
SELECT above and the state which is not on the solution path is pruned out in

advance from the search tree.

Algorithm H*
Begin

158

/* Initialize three sets OPEN, CLOSED , and AG ¢/
OPEN == CLOSED == AG :== ¢;
/* Generate a tree TREE where a root is the initial state ¢;, ¢/
AG 1= AG U {e¢;,);
OPEN := OPEN U {e.);
CHOOSE: If (OPEN == ¢), then return (No Solution);
Compute the evaluation function f (e,) for each state e, in OPEN

where f (¢,) = g(¢,) + h(e,);
/* Remove the state ¢, from OPEN which holds that A(e,) > LIMIT ¢/
OPEN := OPEN - {c,: (¢, € OPEN) N (h(e,) 2> LIMIT))};
/* Select one state ¢, in OPEN for expansion ¢/
e, :=SELECT (OPEN),
/* Update the sets OPEN, CLOSED , and AG ¢/
OPEN := OPEN - {¢, };
CLOSED := CLOSED U ({e,});
AG = OPEN U CLOSED;
/* If e, satisfies the goal condition formula EGoal, then return the solution ¢/
I (EG“'(‘p!Al,(. 1,6)!"-n'P!Al.(.l 1Cs)) = fruc)

where EU = {a,,...,6,} and AT = {Ab,,..., Ab_},

then return (Solution Path on TREE from ¢, to ¢,);
/* Expand the selected state ¢, ¢/
Wi(e,) == {e;: ¢; isthesuccessorof e¢,};
If (W(e,)=¢),
then jump to CHOOSE;
/* Establish a path on TREE from e, to each ¢; of its successors s/
For each ¢, € W(e,),
if (¢, ¢ AG), attach to ¢; a pointer back to ¢, and update OPEN,
OPEN := OPEN U {e,});

if (¢, € OPEN), direct its pointer along the path on TREE yielding the
lowest g(e;);

Jump to CHOOSE;
End-algorithm

7.3. Example

For illustration of algorithus H°, the consistent labeling problem modeled by

each of the three versions Mg“"), M.}"": , and M;!”) given in section 6.5, is

169

considered.

Version M{'!): The set #,(EU) of objects and the set #,(AT) of features are,
respectively, ®,(EU) = {{1),{2),{3},{4)) and x(AT) = {A;: A, = {A},}}). By
definition of the partial ordering relation <,;, (<{2},4,>,<{1},4,>)€ <,
(<{1},4;>,<{3},A,>) € <;, and (<{3},A;>,<{4},A;>)€ <;. Then as
shown in Fig 7.1, when the initial state is expanded and 12 successor states are gen-
erated at the first level of the search tree, H® selects for expansion the state in
which the unit 4 is labeled by either & or ¢. At most 6 states are then expanded
until the solution is found.

Version M9 : x,(EU) = {{1},{2,3),{4)} and
%(AT) = {A;: Ay = {Ab,}}. By definition of <,

(<{1},4,>,<{4},A4;>) € <; and (<{4},4,>,<{2,3},A;>)€ <;. Then as
shown in Fig 7.2 at most 4 states are expanded until the solution is found.

Version M : x(EU) = {{1,4),{2,3}) and x)(AT)={A: 4, = {A},}}.
By definition of <;, (<{1,4},4;>,<{2,3},A,>) € <;. Then as shown in Fig 7.3,
at most 4 states are expanded until the solution is found.

As compared with the number of expanded states using A ° for each version,
10 for MV 5 for Mf*? , and § for M{>®), H* results in better search efficiency
than A °. In the next section, we further compare algorithm H ° using the beuristic

HO (e,) against other problem-oriented search algorithms.

7.4. Search Efficiency of Algorithm H*

The efficiency of algorithm H°® is compared against the problem-oriented

search approach for the consistent labeling problem The backtracking sca-ch in

160

Fi g
igure 7.1 Search by H’ Based on Version M "

161

Figure 7.2 Search by H’ Based on Version M %%

163

Figure 7.3 Search by H’ Based on Version MBS

163

which a Jook-abead operator @ or ¥ is incorporated, by Haralick ef ol [], s s
well known heuristic search for solving the consistent labeling problem.

As explained in section 4.1, let the consistent labeling problem be given by one
compatibility model (U,L,T ,Cy) where U is the set of units, L is the set of labels,
T C U” is the set of all N-tuples which mutually constrain one anotber, and
Cy C(UXL)" is the set of all 2N-tuples (,,0;, ..., wy,Iv) where (I}, ..., Ix)
is a legal labeling of units (w,, ... ,uy)in T.

One look-ahead operator &5, N < K, when applied to Cy, refines C; by
removing some 2N-tuples which do not contribute to a globally consistent labeling

[Harr78, Harr79):

0I&'(cl')-'“.l' oll':"')'lévlﬂ,)ecl': for all .A'H'l"":'léeup

there exist Iy, , ..., €L suchthat (I, ,..., I)is a consistent label-

ingof (v, ,...,ux))

When the &4 operator is incorporated into the backtracking search algorithm, at
each state ¢, during search, the refined constraint relation Cy is first generated
from Cy by removing some elements which are mot compatible with the labeling
given in ¢, . Next by repeatedly applying the operator & to C,: , the most refined
constraint relation C;-’(e,) for the state ¢, is generated. Based on Cy (e,). the
pext unit labeling for the successor state of ¢, is determined.

The other look-ahead operator ¥, N < K, when applied to T, identifies
(unit, label) pairs that are extendable to consistert labelings, and refines Cy by

removing all 2N-tuples that do not consist of such pairs.

104

¥e(T)={(w)ET: for all w,...,ex €U, there exist
0y ..., k€L such that (w,,l,)ET, 1<n <K-1, and

(I . - ., Ix-q,0) is a consistent labeling of (s, . .., ux_;,8)}.

When the ¥, operator is incorporated into the backtracking search algorithm, each
state ¢, during search is represented as an ordered pair (, ,E,), where I, is the set
of (unit, label)'s done in ¢, and E, is the set of possible extensions to J,. Each set
of I, and E, is then refined by applying ¥, repeatedly. Based on the pair (l,' E,')
of two refined sets I, and E, , the next unit labeling for the successor state of e,
is determined.

Search efficiency increases as the value of K increases in both cases of &, and
¥y . However, a large value of K is not allowed in most cases because the complex-

ity for applying ®x and ¥, grows exponentially with the value of K.

Algortihm H° using the heuristic A(e,) is not, in general, comparable with the
backtracking algorithm using a look-ahead operator ¢, or ¥, . The efficiency of
H’ using A(e,) varies depending on what version of the problem model M, is used,
and the efficiency of the backtracking algorithm using ¢4 or ¥, varies depending
on what value of K is used. We will just compare the efficiencies of two

approaches by one example.

Haralick et ol illustrated two operators ¥, and ¢4 by one consistent labeling
problem [Harr78), which is the one given in the section 6.5. As shown in Fig 7.4,
when the operator ¥, is incorporated into the backtracking algorithm, 7 nodes are
expanded, and as shown in Fig 7.5 wken & is incorporated, § nodes are expanded.

However, the complexity for applying @ is much higher than that for applying V..

166

As discussed in the section 7.3, when the heuristic A(e,) derived using the version
M) is used for algorithm H°, 6 nodes are expanded. When A(e,) derived using

cither of MJ*?) and M§*? is used for H*, 4 nodes are expanded.

168

L= ¢
E = ¥R
€/ 1
I,s {(l.&?!
:‘:t B, = {<c2.a) <2.e¥(L.b?
' €1.cr<q.47}
&/
6 I,.= {u.s)(:.c)}
L:¢ L=¢ E.= { 3.e2¢(4.00}
E‘: + EI»'*

| L [arar¢aed<hed]
€= {<a.82)

—— _

0 I~={<t.n7(;.¢)(;.¢7(4.57}

£ye ¢

Figure 7.4 Search by Backtracking using Operator v,

167

1= ¢
R,* R
e "
1,= {¢1.a0]
=9 Rz §C102¢2.203.2¢4.8)]
R, ¢
2¢
9
3¢
0
ab
6

<|.a.z.¢:.3.c.4.b)

Figure 7.5 Search by Backtracking using Operator ¢
3

CHAPTER 8

CONCLUSION

8.1. Summary and Contribution

Heuristics have played an important role for efficient problem solving. Specially
well studied are the admissible heuristics for the A * algorithm. A general technique
to derive the heuristic for A ° may thus contribute to a general and efficient prob-

lem solving procedure.

In this research, we presented a methodology for deriving a heuristic for A °
for a given problem. A mathematical model representing a general problem was for-
mulated in which a set of elementary units and a set of attributes of the problem
were defined. The algorithm to derive the heuristic for A ° was then developed for
this problem model. To improve the efficiency of the algorithm to derive the heuris-
tic, various other versions of the basic problem model were suggested using the
notion of the partition of the set of elementnary units and the partition of the set of
attributes. The complexity for deriving heuristic using each version of the problem

mode] and the tightness of the derived heurnistic were examined.

Our approach for solving problems was illustrated by several examples, the &
puzzle problem, the traveling salesman problem, the robot planning problem. the

consistent labeling problem, and the theorem proving problem. For the problems,

168

169

the 8-puztle problem, the traveling salesman problem, and the consistent labeling
problem, the efficiency of our problem solving approsch was comparable to thoee of
other heuristic problem solving approaches which are specifically developed for each
of these three problems. For the theorem proving problem, our approach resulted in
the breadth-first search, the efficiency of which drastically reduces as the problem
size grows. A better complete search method is suggested in [Nil80]. As will be dis-
cussed below, the poor efficiency of our approach for solving the theorem proving
problem is mainly due to the fact that the constraints of the goal position values of

some elementary units are not known in advance.

8.2. Future Research

In this section we address the research issues which can be further developed

based on the current result from our research.

8.2.1. Solving a Problem with Partially Known Goal Position Values

The heuristic h(e,) for a problem was computed based on a goal position
value of each elementary unit of the problem. A goal position value of an elemen-
tary unit o, was derived from the relaxed goal formula for s;. Some problem such
as the theorem proving problem has the goal formula in which the constraints of the
goal position values of some elementary units are not defined. If the constraint of
the goal position value of of an elementary unit 6, is not given, any position value
of e, can be derived to be its goal position value. In most cases, the value of the
heuristic A (e,) derived based on this nonconstrained goal position value becomes so

loose that the search using A(e,) results in poor efficiency.

170

A new approach for deriving the tight heuristic for s problem with partially

known goal position values should be developed.

8.3.3. Automated Problem Solving System

We suggested several problem models for antomatic problem solving with vari-
ous search efficiencies. Once a given problem is modelled by one of our suggested

schemes, a solution to the problem is automaticlly geneméd.

Our problem solving approach is semi-automatic in that a modelling procedure
is done by the programmer. If some technique is developed which automatically
models a given problem into our suggested scheme, the fully automatic problem
solving system can be formulated. This technique may be achieved by developing
some formal language to represent a problem. When a problem written in a certain
language is given to the solving system, the system would analyze it and formulate

each component for our problem model.

APPENDICES

171

173

APPENDIX A

PROOFS IN CHAPTER 3

Lemma 3.1
For each elementary unit o, € EU and for each computable pair (g;,9,) of 6,
in which g; € P and ¢, = pf (q;,¢,),

L“.“(<'j "9y >"i) < M"“-LEN(<';' 9y >,8)
Proof

Let (g, ,9,) be the computable pair of position values of the elementary unit s;
in which ¢g; € P and g, = pf (s, ,¢,). For simplicity, Min_LEN(<g;,9, >,8;) is
denoted by M(g; ,q,,e,;) and Ldist(<g;,g, >,6,) is denoted by L(g;,q,,s;). Then
we will show L(g;,q,.8) < M(q;,9,,8;) by induction on Min_LEN. Suppose
M(q;,9,,8;) = 1. By definition there exist some r = <sz,,...,3,> €R, and
e,, ¢, €S such that g; = pf (s;,¢,), ¢, = p/ (o, ,¢,), and
SCF(zy,...,3,,pf (81,6,),..00 (8;,¢;),....0f (8a,¢;)p] (8),85),...01 (8, ,¢4),...,
p/ (s,.¢,)) = trée. By definition of the relaxed formula SCFf",
SCFF(q;,q,) = truc . Then by definition of DIST, <gq,,q,> € DIST(1,8,,q,)
and L(qg;,9,,8)=1. Thus L(q,.9,.8) < M(qg;,q,.9,). Suppose
M(g,.q,,8;) = m+1. By definition of M(q,,q,,s,) = m +1, there exists some
¢: € P such that M(g;,g,.6,) = m and M(qg,,q;) = 1. By induction hypothesis,
however, L(q;.g,.8,) < M(q;,q,,8,), and by the above result L(g,,q)=1.
Then <g,.9,> € DIST(l,s,,g,) for some | < m, and <gq,,q; > € LEN1(s,).
Thus if <gq,.9,> ¢ DIST(n,q,,q,) for n=,.1, then

<g,.9,> € DIST(l+1,s,,q,). Therefore

173

L(qj [} v'i) 5 I +1 S m +1 -M(Qj 141 »8,) QE'D

Lemma 3.3
Let w be the cost of each rule of the problem, and for each state ¢, the heuris-

tic A°(e,) be given by

bo(e) =1 T w-Ldist(<pf (6;.,)0 (8;,6,)>,8;)
¢, €B,,

where B, = {s;:(s; € EU) N (pf (a;,¢,) % pf (s,,¢,))}. Then the value of
A° (e,) satisfies the admissibility and monotonicity.

Proof

Admissibility: Let e, be the state of the problem. For admissibility, we will
show A°(e,) < h°(e,) in which A°(e,) is the minimal cost of the path from ¢, to

the goal state ¢,. From corollary 2.2.1 in Chapter 2,

b)) 2 T wMin LEN(<pS (46,)p] (4.6,)>.0,)
6, €8,

where B,, = {o,: (¢, € EU) N (pf (s, ,¢,) 5 pf (s, .¢,))}.
From lemma 3.1 above, for each ¢, € EU and for each ¢, € S,

Al‘.n.LEA"(<P! (‘i €3))PI (‘i !‘,)>).i) 2 Ldist ((P! (.l 1€y)vpl (‘n vcg)>1‘o)
Thus

ho(e,) > B e Ldint(<pf (6,0)pf (8.6,)>0) = b°(c,)
8,€E,,

where B,, = {a,:(s, € EU) N (pf (o,,¢,) 7 pf (s,,¢,))}.

Monpotopicity: Let e, and e, be two states of the problem such that for some
ruler =<a,,...,6,>€R,(<a,,...,6,>,¢,.¢,) € SUCCR. For monoton-
icity. it suffices to show A°(e,) < c(<a;....,0,>.¢,.¢,)+ h®(¢,) Suppose

B,, is the set of elementary units each of which has two different position values in

174

¢, and the goal state ¢,. By definition of the rule <s;,...,s,>, the set B, is

gves by B,, C B,, U {s,,...,6,}). Then

lg)=] B e Ldt(<al (e)ef (s,6)>,0)
o¢ (o‘,, iy .8)

+ .: g w-Ldist (<pf (s, ,¢,).p/ (a,,6,)>,8;)
a,e(a;, . ” .6}

By definition of Ldist, for each o; € {s), ..., s,},
if L‘“‘(<P! (‘i 1€y)’P, (.i 1€g)>’..i) = K 2 1, then

Léist(<pf (s, ,¢,).pf (8;1¢,)>,8,) 2 K-1. Thus,
Y wLdit(<pf(s;,¢,)pf (8,,)>,8;)

,€B,
o ¢ {:, . ' .8)

h%(e,) 2

+1 oy . [le((pl (6.6)2/ (8i,¢,)>,8;) - l]
’ {Qau)
..e .',---o‘o

25 L eLdu(<el (se)pf (a)>)
ogley....8)

+31 T eLdint(<pf (0,600 (8,,6,)>,8,) - s

Therefore, A®(c,) < A%(e,) + c(<ey,...,8,>,e,.¢,). Q.ED.

Lemma 3.3

For each state ¢, , the heuristic 4°(e,) given by

A'(e;) = max({v -Ldist(<pf (s, .¢,)pf (8,.¢,)>.0,) 6, € B}
where B, = {a,:(s, € EU') N (pf (s,,¢,) ¥ pf (s,.¢,))}. satisfies the admissi-

176

bility and monotonicity.

Proof

Admissibility: For the state ¢, , let the set
B,, = {a;:(s; € EU) N (pf (s;,¢,) % »] (s;,¢,))}. By Lemma 2.2 and Lemma
3.1,for each s; € B,,

w-Ldist(<pf (s; e,)] (s 1€)>,6) < ‘.(es)
where A°(c,) is the minimum cost of the path from ¢, to ¢,. Thus,

h(e,)< b .(cc).

Monotonicjty: Let ¢, and e, be two states such that for some rule
<6),...,6>, (<a,...,8,>,,,)€ SUCCR. By definition of the rule
<6),...,6>,B, CB,, U {s,...,6,} where B, is the set of the elemen-
tary wnits which have two different position values in ¢, and ¢,. By definition of
Ldist, for each o, € EU, if Ldist(<pf (s;,c,)pf (a;,¢,)>,8)=K 21, then
Ldist(<pf (s;,¢,)pf (8,,¢,)>,8;) > K-1. Let o; € B,, be such that

A '(C,) =v 'L‘;‘"(<P, (‘i 1€)tpf (.i 1€g)>"i)
Then by definition of Ldist,
Ldist (<P, (‘d 1€y)rP, (.o' 18y)> '8,)

ZLJ'.“ (<PI (‘i 1€y)vp! (‘i ,C,)),l,) -1
Thus,

h’(c,) 2 w-Ldist(<pf (s,,¢,)p] (8,,¢,)>,8;)

2w -Ldist (<pf (s;,¢,)pf (o,,¢,)>,8,) - «

= h’(e,)-v. Q.E.D.

Lemma 3.4

176
For every state ¢, , the heuristic A" (¢,) given by

o(e,) = —i— & w-Ldist(<pf (,6,)p] (8;,6,)>,8),
1 |ﬂ| s, €B,,
s, €0

where B, = {&:(6; € EU) N (pf (&;16,) % pf (4,,¢,)), satisfies the admissi-
bility and monotonicity.
Proof

Admissibility: Let e, be the state of the problem. For admissibility, we will
show A®(c,) < h°(e,) where A°(e,) is the minimal cost of the path from ¢, to
the goal state ¢,. Let the cardinality of the set B, -1 be k. Then the path (p,9)
from e, to ¢, contains at least k subpaths (p(s;)(s,)), for o, € B,,-N1. By
Lemma 2.2 and Lemma 3.1, each Ldist (<pf (s;,¢,)2/ (8;,¢,)>,8,), 6; € B,, - 0},
is the Jower bound of the length of the subpath ()s,),%(s;)). By definition of the
rule, each rule in the path (p,9) affects the position values of at most s elementary
units including all the elements in the set f1. Each rule in the path then affects the

position values of at most (s - | {1 |) elementary units not contained in 3. Thus, the

valge of — 1 — Y Ldist(<pf (s, ,¢,)pf (e,,¢,)>,6) becomes the lower
8- 0] 4, -a)

bound of the length of the path (p,9) from ¢, to ¢,. Since each rule bas the same

cost «r,

A (e,) = —— ¥ w-Ldist(<pf(s,,¢,).0] (8;¢,)>,8,)
'-lnl.,e(a,,-n)

< h'(e,)

Morotonicity: Let e, and e, be two states of the problem such that for some

ruler = <e;,...,6,>€R,(<6;....,6,>,.])€ SUCCR . For monotoni-

177

city it suffices to show A™(¢,) < ¢(<s,,...,8,>,¢,,¢,) + A™(¢,). By defini-
tion of the set 1, N C {o,,...,0,}). Suppose B,, is the set of elementary units
each of which has two different position values in ¢, and the goal state ¢, . Then by
definition of the rule <s,,...,8,>, the set B, is given by

B, CB,, U {s,...,0,}). Then

A" (C,) = w-Ldist(<pf (s; &y)of (s €y)>,e;)

1
I8 g,
6,€(ey ...,0,}

t—— % w-Ldist(<pf (8¢,)0f (81,)>18)
-0 & €B,
6¢{ey....0q)

By definition of Ldist, for ¢; € EU,
if Ldist(<pf (a;,¢,).pf (8;,¢,)>,8,) =K 2 1, then

Ldist(<pf (o '€y)pf (& »Cy)>,8) 2 K-1. Thus,

()
1 L | . i
2] g, [© LA ()] (01>, -1]

+—1 Y e-Ldint(<pf(s,¢,)p] (s;,¢,)>.8,)

8- ln' ..EB”
o ,¢ (e, ..., s,)
> —1 Y w-Léint(<pf (s,.e,)p] (8,,¢,)>,8)-(s-]0])
l-lﬂ' s,¢0,6EB,,
o,€{e,, ..., s}
+ — Y w-Ldist(<pf (e,,¢,)pf (8,,¢,)>,8,)
- l n l .‘GB"
6, ¢ (e, s}

178

= A%(c,)- c(<qy,.,0,>,¢,,¢) Q.E.D.

Lemma 3.6

For every state ¢,, let A(e,) = max({h®(e,), 8°(¢c,), A" (¢,)})- Then the
value of A (¢,) satisfies the admissibility and monotonoxity.
Proof

Admissibility: Let ¢, be the state of the problem. By Lemma 3.2, Lemma 3.3,
and Lemma 3.4, each of A°(e,), A’(c,), and A™(e,) satisfies the admissibility.
Thus A(e,), the maximal value of A°(e,), A’(¢,), and A ™ (¢,) satisfies the admissi-
bility.

Monotonicity: Let e, and e, be two states of the problem such that for some
rale r, €ER, (r,,e,,e,) € SUCCR. For monotonocity, it suffices to show
h(e,) < h(e,) + c(r;,¢,,¢,). By Lemma 3.2, Lemma 3.3, and Lemma 34,
h(e,) S h%(e)) + e(rise,e,) h'(e,) S h'(e,) + €(r; ¢, ¢,), and
A®(e,) < A"(e,) + c(r,,¢5,¢;). Thus

h(es) = max({h®(c,), h°(e,), h=(e,)})

< max({A°(c,), A*(c,), A" (¢,)}) + c(rise,0ey)

= h(e,)+ c(r,,e5,e,). Q.E.D.
Lemma 3.6
Let (p(c,).7(a,)) be the subpath for 6, € EU from the state ¢, to the state ¢,
where ple,)=1r, ---r,, and nfe)=¢, R N Then if

Ldiet (<pf (e, .¢,).pf (8,.¢,)>.6,) = K, < m, foreach n € {i...K,}. there exist

arule r,,. kn € {j1,. ,Jm}, in the sequence p(s,), and two corresponding

179

states, ¢,, and ¢, -, in the sequence g(s,) such that (r;,,e;,,¢,,-) € SUCCR,
Ldit (<pf (s, ,¢10)0/ (8;,¢,)>,8;) = n, and
Léint(<pf (o ,¢;,).pS (8,¢,)>,8;) = n-1.
Proof

Let (s,),7(s;)) be the subpath for o; € EU from the state ¢, to the state ¢,
where p;) =1,y = -~ 7;; and o(6;) = ejue; - €y, . By definition of
(l&)n(e;)) pf (8.¢;:) = pf (a;,¢jsy), k=2,..,m, pf(8;,¢;u)=p[(s;,ec,),
and pf (e ,¢;;') = pf (8;,¢,). Thus, Ldist(<pf (s, ,cju)pf (8:,¢,)>,8)) = K;
and Ldist (<pf (s;,¢,,)01 (816,)>,4;) =0. ... (1)

By definition of Ldist, for exh k€{l,..m}, if
Léist(<pf (& ,¢;1).pf (8;,¢,)>,8;) = L, then
Léist (<pf (;,¢;4°)ipf (8;,¢,)>,8)) > L-1. ... (2)

From (1) and (2), for each n € {1,...,K;}, there exist at least one rule r,;,,
kn € {ym, ..., 51}, and two corresponding states, ¢;, and e, -, such that
(74e s€4n 1€,) € SUCCR, Ldist (<pf (s, ,¢;,).pf (8,,¢,)>,8,) = n, and

Ldist(<pf (o,,¢;,).pf (8,,6,)>,8,)=n-1. Q.ED.

Lemma 3.7

For each state ¢,, and for each elementary unit 6, of the problem,
LOCS (s, ¢, ,pf (s, ,¢,)) is the lower bound of the cost of the subpath (p{s,).7(q,))
for o, from e, to the goal state ¢, .
Proof

Let (pla,).m(a,)) be the subpath for s, from the state ¢, to ¢,. If

Ldist(<pf (o, ,¢;).pf (8,,¢,)>,8,)=HK,, then by Lemma 36, for each

180
s € (l,...,K,‘ },

there exist at least one rule ry, in A(s;), and two corresponding states, ¢;, and
¢, »in (&) such that (r,, ¢4, ,¢,.-) € SUCCR,

Léist (<pf (8,1)2 (8:.,6,)>,8;) = n, and

Léist (<pf (& 40 Ipf (8,6,)>,8) = n-1.

By algorithm LOCS,

4
LOCS (s, ,¢c,,pf (s, 1y)) = 2 min(W(v,s; ¢, ,pf (s; 1€)))

where
W(v,e ¢, ,pf ('i:e')) - {c(<8),...,8,...,8 >,¢j ’eii):

(3<e0’ > € Clan,e,), 1=, 1IN I< 010" > € CC(8,65,81 (8,.¢,)))
((ql - 'I (.l!ej)! l‘l,...,‘l) n (ql‘ - 'I(‘l:cjj)r 'Bl’""‘) n
(SCF(L‘,:,,...,l,>.l,,...,¢,)(‘h R TEERFL 'S JURREFE TR ¥

q;,...,q,",_...,q,')mlruc)}.
For each n € {lr'"rKi)r min(w(“ 18, ,Cg ’P! (‘o' 1€g))) S ¢ ('h 1€hn 164y’) because
€ (he 1240 1€10) € W(n 8, ,¢,,pf (8;,¢,)). Therefore

K,
LOCS(‘a €s »P! (.l ,C’)) S 2 ¢ ("' »€kn ,C‘-')

0 =]

< the cost of the subpath (p(s,).1(q,)). Q.E.D.

Corollary 3.7.1

For each state ¢, and for each elementary unit a,. LOCS(a, ,¢,.pf (a,.¢,)) is

the lower bound of the cost of the path (p,n) from ¢, to the state ¢, .

181

Lemma 3.8

For every two states ¢, and ¢, such that for some rule v, € R,

(ra,¢,,¢,) € SUCCR, and for every elementary unit e, € EU such that
pf(ae;) % pf (8ire,),
LOCS (s, ,¢5,pf (8;,¢,)) < LOCS(6;,¢,,p] (8;,¢,)) + (14,5 ,¢,).
Proof
Let ¢,, ¢,, and 7, be such that (rs,¢, ,c,)E SUCCR, and for some g,

pf (a;.e;) % pf (s ,C') and Ldist(<pf (s;,¢,)0/ (s; 1€)>,8;) = K;. Then by

definition of Ldist, Ldist(<pf (s;.e,).pf (8;,¢,)>,6;) = K; > K;-1. By defini-

tion of LOCS,
LOCS(I, €y ’PI (‘i '€y)
K,-1 K’
— Zlmin(W(n,e; 1Ey 2/ (s 1&g) + EK min(W(n g, 6y PJ (s €y)
where

W(v,e,¢e,,pf (0;,¢,)) :={c(<6y,...,8,,...,8>,¢,¢)
(3<q.@ > € Clae,), I=1,.1,19X3<q,,q, > € CC(s,,¢,.p] (s,.e,))
W =pf(8,¢) l=1,.0) N (q,' = pf (8,¢};), I=1,.,0) N

(SCF(R<¢'1, 5,>.6, ..., c,)(‘l!"'!‘nﬂl""’ 0’9; N"tq")g'"“))}-

Since C(a;,e,) C C(e;,¢,), 84 € EU, and

CC(e,,e,,n,pf (8,,¢,)) C CC(e,,e, n,pf (o,,e,)). for each n € {1....,K,}.

Win 18, ,€y »f (‘a 18y)) g W(n,s, s S (s, '€y).
Thus.

183

LOCS(.. o‘, v’l (.l "'))
K,-1 K’
> S’min(W(n,e,c,.pf (s,¢,))+ Ex min(W(n,e;,¢,.pf (s;,¢,))

== LOCS (s, ,¢,,p] (8;,¢,)) - min(W(K;,a, ¢, ,p/ (s;,¢,)))
(1)

X’
+ E min(w(” 18, €y v’! (‘.‘ 1y))

s =K,
(A-1) ... It K; = K; - 1, then from the equation (1)

LOCS(‘n Sy r'! (.i 1€y))
2 LOCS(s;,¢e,,pf (s &g)) - min(W (K, ,s, ¢, ,pf (s, 1€g)
2 LOCS(s; ¢, ,p/ (s; »Cg) - e(ri,e, 1‘,)
because min(W(K;,s; ¢, ,p/ (s; Sy)) € c(rae, 1€y)
(A-2) ... It K;' > K; - 1, then from the equation (1)
LOCS(‘I 1€y »P! (‘i)))
K’

> LOCS(s;,¢,.0f (8¢, + Y min(W(n,a;.e,.pf (a,.,)))

=K +1

because W(K,,¢;,¢,,pf (s,,¢,)) C W(K‘,c, v¢5,pf (8,,¢,)). Thus

LOCS(a,,¢,.p] (s, ,¢,))

.>- LOCS(‘. 1€ 1Pl (‘o 9‘,)) -€ ('& €y 1¢g)

From (A-1) and (A-2), for every (r;.c,,e,) € SUCCR, if pf (s,,¢,) % pf (o, .¢c,)

for some e, € EU, then

LOCS (o, ¢5.,p/ (8, ,¢;))

2 LOCS(a,,¢,,pf (a,,¢,)) - c(r;,¢5,¢,). Q.ED.

Lemma 3.9

183
For each state ¢, of the problem, the beuristic A°(¢,) given by

b)) = T LOCS(s .01 (8,)

where B,, = {a;:(s; € EU) N (pf (8;,¢,) % p/ (8;,¢,))}, satisfies the admiasi-
bility and monotonocity.
Proof

Admissibility: Let e, be the state of the problem, and B,, be the set of ele-
mentary units which have two different position values in ¢, and ¢, as shown

above. For admissibility, we will show A°(e,) < A°(¢,) where

h'(e,) = -: ZB LOCS (s, ,¢,,p]f (8;,¢,)), and A°(e,) is the minimal cost of the
o€ B,

path (p,9) from ¢, to ¢, . Let the cardinality of B,, be K. Then by definition of the
subpath, a path (p,9) from ¢, to ¢, has at least K subpaths (s(s;),%(s,)), s, € B,, .
By Corollary 3.7.1, each LOCS (s, ¢, ,p/ (8;,¢,)), 8; € B,,, is the lower bound of
the cost of (p,n). Since each rule in the path (p,n) affects the position values of at

most s elementary units,

b)) = T LOCS(s,se0 0] (6,6, S e).
¢, €8,

Monotonicity: Let e, and e, be two states of the problem such that for some
rule <sy,...,6,> €ER,(<s,,...,6,>,¢,,)€ SUCCR. For monotonocity,
we will show 4°(e,) < A°(e,) + ¢(<ay,...,8,>,¢,,¢,). By definition of the

rule <e,....,q,>,theset B, C B, U {a,,...,s,}. Then

ho(e,) = _i Y LOCS(s,.¢y.pf (0,.c,))

ol
s €8,

s.cle; .o}

184

+ -i 2 LOCS(C. ,C, ’Pl (.. ,C'))
s, €B,,

ogley....8)
1 | ~
- _; ..628' LOCS(.. ,C. IP! (.l ,C' » (l)

o,€E{e,8,)

‘ .IGBI'
sdley....8)

By Lemma 3.8, for each o; € B,,,

LOCS(C, A 9’! (‘i 1€y »

< LOCS(s; s€y 1 (8;,¢,) + e(rs,¢5,¢4).
Thus from Eq(1)

)2, B [L0CS (060,01 (i) - ¢ a5

s,€{s,0,)
+ % 2 LOCS(‘! €y :’I (‘n 1€y))
.|€8u
.oq{‘ll"'l.o,
>1 v LOCS(e,,,.0 (8,6,) - €(ri 65 .8,)
‘ 8,€B,,
6 €{0,8)

+3 % LOCS(s,.e,.pf (85,))
’ 8, €B,,
0,¢{s, ... s}

= h*(e,) - c(ri,e5,¢) QE.D.

185

APPENDIX B

PROOFS IN CHAPTER 6

Claim 1
Let «w be the cost of each rule of the problem, and for each state ¢, the beuris-

tic A(e,) be given by

b () = max(5 Z)min((w-il;’at((oﬂ,‘l(oi,e,),i,>,o,-,A,-):

§y € G (0,))): A; € x(AT)})

where s is the maximum number of objects which have two different position
values in one state and its successor state, and the set
By (&) = {o;: (% € HEU)) N (fy (0i1e,) € Gy,(0))}. Then the value of
h° (e,) satisfies the admissibility and monotonicity.
Proof

Admissibility: Let (p,n) be the path from the state ¢, to the goal state ¢, of
the problem, and (o, ,A,)¢, ,A,)), o, € (EU), A, € x{AT), be the subpath of
(p,n) which alters the position value of o, with respect to A, from oﬂA’(o, €5) to
oﬂ,}(o, ,¢,). The value of ltli:t((oﬂ 0,,¢)4 0,,6,)>,0,,A,) is the lower bound
of the length of the subpath (p(o,,A,)0, ,A,)). By definition of the set 6.4,(".),

o1 (0,.¢,) € Gy (o,). Then

mln({i’d“‘ (<.ﬁA,(°| €)'&' >’°l 1A;): é] E &Al(on)})

< Ldist(<offy (0, ¢,)afix (0,.¢,)>.0,,A,).

186

Let the et EA’(c,) for esch A; € x{AT) bave K, objects:
EA'(c,)= {0;y,..., o,x'}. Then for each A; € (AT), the path (p,9) bas at Jeast
K, subpaths, (s0;;,4,),50;;,A;)), i =1,...,K; , each of of which slters the position
value of o/; with respect to A; from cﬂA’(o,-; e,) to oﬁ,,’(o,-,- 1€y)- Thus the value of

Y min({idiﬂ((aﬂ"(o,-,- '€s),i, >,0;iA,): i, € &A,(o,-)}) can be the sum of
.)-GBA,(‘J)

lower bounds of the lengths of the K; subpaths, (p{0,i,4;)m¢i,A})), i =1,..K;.
Each rule in the path (p,) affects the position values of at most 2 objects with
respect to each A; € (AT). Thus, the lower bound of the length of the path (p,9)

can be

mu({-; ;:()min({’:"‘“(<‘ﬂAl(°ji »€s)»i, >1‘ji vAj): i' € &A’(‘i)}
0,€ a, e

A; € x(AT))).

If each rule has the cost v and A °(e,) is the minimal cost of the path (p,9),

h'(e,)Zmax({-% E;V;()min({u-1','4.'.:(<.ml(o,,.,e,),a,>,o,-,-,,4,-):

4y € Gy (0,))): A; € HAT))) = A*(c,).

Mopotonicity: Let e, and e, be two states of the problem such that for some
ruler = <q,....,8,>€R,(<q,,...,6,>,¢,,¢)€ESUCCR. For monoton-
icity, it suffices to show A°(e,) < c(<se,....,6,>.¢,.¢,)+ B°(¢,) Suppose
é‘;“’) is the set of objects such that for every object o, € é,l(e,),

oﬂA:(o, .)€ C:A,(o,). Foragivenrule <a,....,68,> let Z(s,....,6q,)be

Z(ay,....0)="{0:(0, EMEL)) [(o, N {a, ...,8} %6l

187

By defintion of the rule <s,,...,s,>,
the set B, (¢,) = B, (¢,) U Z(s,, ..., 8,). Then
A(e,) = mx({-: ¥y min((tﬂ'£“"(<lb,(°.~ ey)iy .04,)

.neall(‘,)
0,d2(ey ...,8,)

@y € s (0,))): A; € o(AT)))

tmaf{2 L min({w-Ldat(<efly (01, ey >0i.A;)
' e, (e,) !
0,€Z(0,, ..., s,)

& € G (0,))): A, € HAT))).

By definition of I.:liu, foreach o, € Z(s,,...,8,),
if Ldiat (<ofly (0,6,)3, >,9,,4;) = K > 1, then

Ldist (<affy (,,¢,)d, >0, 4;) > K-1. Thus

M) 2ma({= ¥ min{w-Ldint (<ofly (0,64, >10,4,)
: ..GB"(C,)
06,82(e;, . ..8)

&y € Gu(0))): A, € (AT))) +

max({—l, p) min({u-[l.,.diat(<aﬁ“(o, vCs),&,),o, A,) - l]:
’ 0,68"(5) ’
0,62(0,.' ., 8)

& € Ga (0,)}) A, € H{AT)))

> ma\'({-l, y min({u-idi:t((:ﬂ_‘l_(o, €,).1}, >,0,.A4,)
s 0,€E, (¢,) ‘

‘.ff\.l - ‘o)

188

i' € &A‘(Oi)}) A; € ’(AT)})"’

max({4 T min({w-Ldist (<ol (0,6)iy >,0,,4;) - 973
s o, GBA,(‘l)
0,€2(e,. ..., s,)

& € Gy () A; € H(AT)))

= A%(e,)-w = h°(e,) - c(<s,,...,6,>,¢,) QE.D

Corollary 1.1
The heuristic A°(e,) given by
A®(e,) = max{{min({w 'l:"."(<‘ﬂ.4,(°i 1€g),i, >,0,,A;): é, € &A,('i »):

A; € x(AT), ¢,€B, (c,)})

satisfies the admissibility and monotonicity.

Claim 2

The heuristic 5™ (e,) given by

1
i- | Q(AAT)] .,eBE(c.l

0. €Q(p(AT))

h*® (e;) = max{{

min({Ldist (<affs (0,.€,).4, > 10,4,): 4, € Ga (0,)}): A, € H{AT)})

satisfies the admissibility and monotonicity

Proof

189

Admissibility: Let (p,n) be the path from the state ¢, to the goal state ¢, of
the problem, and (x(0;,4,)m¢,,4,)), o, € (EU), A, € (AT), be the subpath of
(p.m) which alters the position value of o, with respect to A; from cJA'(o.- e,) to
ofla (e ¢,). The value of idiot((aﬂo,- e),ofko,;,¢,)>,0,) is the lower bound of
the length of the subpath (o, ,4;)n(¢,,4;)). By definition of the set éA‘(O,‘),

off1,(6; ¢,) € Gy (9,). Then

min({l.:lict (<‘ﬁ,ql(°.' "c‘),i, >,0,,A,): i, € &Al('d)

< Ldint(<ofly (03¢, hafla, (0,6,)>,0,4;)
For each A, € {AT), j=1,..L, let the set B,(c,) have K; objects:

éAl(e,)={o,»,,. ..,ojK)}. Then the path (p,9) has at least K; subpaths,

(Aoji,A;)moji,A;)), § =1,..,K;, s0 that the value of

I)min({ild.'.z(<.g,l(.,.,- 2)y > 10554,) §, € Gy ()

can be the sum of lower bounds of the lengths of K, subpaths,
(Ao, ,A;)Mo, i,A,)), §=1,.,K;. However, by definition of s and)(x(EU)), each
rule in the path (p,n) affects the position values of at most s objects including each
object o; € N(m{EU)) with respect to the feature A,. Thus, the lower bound of the

length of the path (p,9) can be, for each A, € x(EU),

T 2 min{{Ldist(<a 0,,6).9,>,0,,A,) € G, (90,)}).
- | UEUN | oeby te) a fa 06)4, 1) 9 € Ga (o)}
o, € O{rEL))

If each rule has the cost v, and the value of & °(¢,) is the minimal cost of the

path (p.n). then

100

» 1 .
$ole) 2 mallo—m R BN ey ™™
o ¢ QAs(EV))

(v -Ldint (<offy (05,6,), >10,4;): §, € Go (0,))): 4; € {AT)))

-h"(e,).

Monotonicity: Let e, and ¢, be two states of the problem such that for some
ruler =<s,,...,6,>€R,(<e,,...,8>,,)€ SUCCR. For monoton-
icity, it suffices to show A™(e,) < c(<a,, oo 8,,6,,6,)+ A% (e,) where

c(<ey,...,8,>,6,¢)=w. Foragivenrule <a,,..., 6> let
Z(ay,...,8)={0:(0; Ex(EU)) N (ox N {s,,...,8,} % ¢)}.

By defintion of the rule <s,,...,s,>,

the set B, (¢,) = By (¢,) U Z(s;, ..., s,). Then

1
b= (c,) = >
(ey) = max{{— |Q(HEU)| o,e8, (¢,)§e Q((EV))

0,62(e, ...,8)

min({w 'zd‘.“(<.ﬁ,{,(’i vey)’é’ >v°|' 1‘4)): i, € &AJ(°| ») A} € ’(AT)})

1

- - z
¢~ | EV))| oe8, (o0 ax(EV)
0,€EZ2(s,y ..., s,)

ax({

min({w 'Ed’.’t(<‘ﬁAl(°i ,C,)va’ >o°l 9A)): a, € &A‘.(on)}) A, € l"(47.)})

By definition of I-..dial ,foreach o, € Z(s,,...,8,)

if Ldiot (<offy (0,6,)8, >,0,,4;) = K > 1, then

181

Léist (<afly (0,,¢,).3, >10,4;) 2 K-1. Thus

1 .
A" > .
() 2 madl o- | Ux(EU))| oe8, (.,));,'erx-(w))mn(

o, z("-..,.‘)

(0-Ldist(<afls (01,6,)3, >10,,A;): 4, € G (8,))): A; € H(AT)}) +

1 i
max({ s- | O(x(EV))| *.€5, (¢, Lz:'e a(-(sv»m(
0,€Z(sy,...,8s,)

(o [Laint (<ol (016,04 >0::4;) - 1] §, € Gy (0,)): 4; € HAT)))

1 .
2 max({-)Y min(
- | UHEU D) o8, ()og istEV)
0.@’(‘» ccce .0)

{” 'l:".“(<‘ﬂA,('i 1€)’&' >,9 'A))‘ ag € &A,(?i))) Aj € '(AT)}) +

1 .
mald o~ | Q(x(EV))| (-.es‘,(e.).Eo?e m-usv»m 8

(i -Ldist (<offa (0,6,)4y >,0,,4;) - €3): 4, €6 (0,)}): A, €XAT)})

= h%(e,)- v =A"(¢,)-c(<@y,...,6,>,.,) QED.

Claim 3

For every state ¢, of the problem, let
hie,) = max({h°(e,). h’(e,), h™(e,)}). Then, the value of A(e,) satisfies the
adrissibility and monotonocity.

Proof

192

Admissibility: By Claim 1, Corollary 1.1, and Claim 3, each of A°(¢,), A*(e,),
and A" (¢,) satisfies the admissibility. Thus, A(e,), the maximum value of A°(¢,),
h’(e,), and A™ (e,) satisfies the admissibility.

Monotonicity: Let ¢, and ¢, be two states of the problem such that for some
7, ER, (ri,¢;,¢,) € SUCCR. By Claim 1, Corollary 1.1, and Claim 3, (1)
ho(ey) < A°(e;) + e(rivesrey), (2) A'(e,) < A°(e;) + c(riresse,), and (3)
A" (e,) < h"(c,) + c(r;se, ;). Then

k(ey) = max({h°(c,),A*(e,).h" (¢,)})
< max({A°(e,),h* (e, 18" (e,)}) + e(riseq0ey)
= h(e,) + ¢(r;,¢5,¢,). Q.E.D.
Claim 4
For every state ¢, of a problem for which the costs of the rules are unequal,

the heuristic A°(e,) given by

Iu(¢,)=max({-!; eég()min({GLOCS(o,,A,-,c,,&,):

& € Gy (0,))): 4, € {AT)))

satisfies the admissibility and monotonicity.
Proof

Admissibility: Let (p,9) be the path from the state ¢, to the goal state ¢, of
the problem. For admissibility, we will show A°(e,) is not greater than A°(e,). the
minimal cost of the path (pn). Let each (plo,.4,)n0,.4,)). o, € o(EL).
A, € M AT), be the subpath of (p,9) which alters the position value of o, with

respect to A, from oﬁAJ(o, 85) to oﬁA,(o,).

193

Let i, € 64,(’.‘) be i, - oﬁ,l(o,- ¢,). We will first show that the value of
GLOCS (o;,A; ¢, ,i,) is the Jower bound of the cost of the subpath
(W o,4; 00,4,)). The value K;; = Ldist(<efly (0;.¢,)4, >,0;,4,) is the lower
bound of the length of the subpath (p(o;,4,)me;,4,)). The cost of

(Ko, ,A;)m0,;,A;)) is then not greater than the value of Ao, ,4; ¢, ,g,) where
- x” -
A(o vAj 1314,) = '2 min(we (' '0; ’Aj €54,))
=1

The set W(l,0,,A;,e, ,6’) = {c(r,,es,eu): (r),¢,64) €E SUCCR, ¢, is the des-
cendant state of ¢,, and idiu (<oﬂ41(o ,e,'),6, >,0,A;)=1, and
i;‘l.lf (<lﬂA’(0,' 1Chi),&, >,0, ,A,‘) - '-1}

By algorithm GLOCS,

K,
GLOCS(O, ,A, »€s ,é’) - Z min(W(U 0, :A; »€g ’a'))
=]

where

“'(!',0. 9Aj 1Cg !6') = {‘(<‘ll; cooy By >'¢l 1€kt): (0, € Z(l“, e sy ‘u» n
(3<&hél' > € C(OI’A; 1€)' o € z(‘tl’ SN N)v l=lv""’l’ o # 0.)
(3<él '6.' > € CC(’. :A) 1€ ¥ ’é'))((6[= ‘ﬂA'(Ol 'Ci)r ’=l,..-,l.,...,0‘) n

(¢ = afs (o) I=1,.i i) N

(ESCF(IL":, . 8,>.2(<e,,, ,.,,>),Al)(‘1h ce -y By -élv) &n,'&l Y an,)
= true))}.

Since W€ (l,0,.4,,¢,,q,) C W(l.0,.4,.¢,,q,). I=1...K,,. GLOCS(o, .4, .¢, .q,)
is not greater than A(o, e, .A, .q,). Thus.

win{{ GLOCS (o, .A, .c,,é,): é, € &A'(o,)}) can be the lower bound of the cost of

104

the subpath (40,4,)50, ,A,)).
Let the set EA,(%) bave N, objects, EAJ(c,)- {e;1, ..., o,-N’}. Then the
path (p,9) contains at least N; subpaths, (f0;,4,)%(s;;,4;)), i =1,...,N;, and the

valoe of Y min({GLOCS (o, ,A, ,e,v,i,): i, € &A,(Oa))}) is the sum of the
o, GBA (‘l)
)

lower bounds of the costs of the N; subpaths. By definition of s, however, each
rule in the path (p,5) affects the position values of at most s objects with respect to

each feature A; € x(AT). Thus, A°(¢,) given by

max({-} 82()min({GLOCS("‘ Ajres 9y) 4 € 6.4,(‘-’)}): A; € x(AT)}) is not
0, € 4, ¢

greater than the minimal cost A °(e,) of the path (p,9) from ¢, to ¢, .

Mornotonicity: Let e, and ¢, be two states of the problem such that for some
rule <s,,...,6,> €ER,(<s,,...,6,>,¢,,)€E SUCCR. For monotonocity,
it suffices to show A°(¢,) < A°(e,) +¢(<ay,...,6,>,¢,¢) Let the set
Z(6y,...,e,),<6,,...,8>€ER,be

Z(e),...,8)=1{o:(0, Ex{EU)) N (o, N {a;,...,8,} 9 ¢)}.
By defintion of the rule <a,,...,s,>, the set éA‘(c,) is given by

Bs(¢y) =By (e,) U Z(s,,. .., 8,). Then

Ale,)=max({2 ¥ min({GLOCS(o;,A,.c,.q,)
? O,EB"(c,)
0,€2(s,. _.4q)

i € G4 (o,))): A, € AT)))

195

+max{{d L min({GLOCS(s; A, e, 4,)
' .OGB"(.’)
0,€2(0,...,09,)

i) € G (0:)): A; € H(AT)))

=max({4 ¥ min({GLOCS(0; A, ¢, 4,)
s o,EB,)(c,)
0,€2(sy,...,8,)

% € G4 (,)))): A; € (AT)))

tma({4 L min({GLOCS(o;,A; e, .4,):
8 e€B,(4) 1)
0,8Z(sy ...,8,)

4 € G (0:))): 4; € x(AT))).

Assertion 1: For each o, € x(EU), A; € x(AT), and 6’ € -G.Al(o,-),
GLOCS (o,,A, ¢,,9,) < GLOCS (0, ,A;,e,,q,) + c(<ey, ..., 8>,¢.¢).

To prove Assertion 1, let K, = idi:t((oﬂ,‘l(o,.c,),1}, >,0,,A;). Then by

definition of l:dict , I.;list(<:ﬂ,4’(o, '€y),1}, >,0,,A;) = K‘; 2 K,;-1. By algorithm

GLOCS,
GLOCS (o, A, ¢, ,4,)
K, -1 . K, X
= Y min(W(n,o,,4,,c,.0,))+ Y min(W(n.o,.4,.¢.q,)
s=] '=K'1
where
“'(!‘ 10, vAJ €y '&l) = {t(<°lt Coe oy By €5 €4): (o, € 2(0”' ey By)) n

(3<q.q > € Cloj.A .e,) 0, € Z{ay....,6,) i=1..8. 0 5 0,)

190

(3<in 1&: >€ CC(’i !Aj 165 Y vi')X(il - "A’('l »€8)' l-ly-"v'. reeerdy) n

(al’ — ‘JA,(’I 1€k), I==1,....8,...,8) n

(Escpféls,, 8,2 8(<0y, .. .,c,,>).A,)(‘lh ceey By lih s ey ic,val' yeccy io:)
= fruc))}.
Since C(0;,A;,¢,) € C(04,A;,¢,), o € x(EU), A; € x(AT), and
CC(9;,A;,¢,,m,4,) C CC(0;,Aj ¢, ,4,), n=1,..K,,

W(n 29 ,A’ 1€y ,a') g W(ﬁ 1A ,A, M ,a’), n -l,...,K"j .

Thus,
GLOCS (o, ,A, ¢, ,4,)
X,-1 X X, .
2 2 min(W(n 204 ,A,’ 165 19)) + 2;(min(W(" 1% ’Ai 1y 29y))
s =] 8 =Ry

= GLOCS(0,,A, ,¢, ,q,) - min(W(K;;,0,,A; ¢, ,4,))

, (3)
+ Y min(W(n,o,,4;.e,.4,)
l=K,,

4) .. If K,; = K,; - 1, then from Eq. (3),
GLOCS (o, ,A; ,e, ,4,)

> GLOCS (0, A, ¢, 4,) - min(W (K, 0, ,A, ,¢, 4,))

2 GLOCS(’; 7A, €3 9&')' C(<.1, ---, 8 >v¢3 7‘,)

because min(W (K, ,0,,4, ¢, .&, NS e(<8;....,8,>,¢,,¢,)

(5).. ¥ K,, > K,, - 1, then from Eq. (3).

GLOCS (o, .4, .¢,.4;)

197

K,

> GLOCS(0;,A;,6,.9)+ YL min(W(n,o,,4,,¢,.4,)

=K, +1

because W(K,;,0,,A; ¢, ,6,) C W(K,j,0,,A; e, ,i,). Thus

GLOCS(0; ,A; ¢, ,4,)

> LOCS(0;,A;,6,,9,) - c(<8y,...,8,>,,c,)

From (4) and (5), Assertion 1 holds. Q.E.D. of Assertion 1.

Based on Assertion 1, from Eq. (1),

Mle,)=max({= ¥ min({GLOCS(o; A} ¢,.q,)

’ ‘leBAl(")
0,6E2(8y ...,8,)

& € Gy (o)) A; € 5(AT)))

+ma{{2 ¥ min({GLOCS(s; A} ,e,.0,):

' oneh, (o)

& € Ga () A; € HAT)))

>mai{d %
’ .IGB‘,(.I)
0,€2(e,, ..., s,)

min({ [GLOCS(o,- Aj e, ,é,)-e(<sy,..

& € Ga (0,)} A, € HAT)))

-y 8, .6,)]:

+ max({-}. v min{{ GLOCS (o, A, .t,-f},):

ad
’ '.654"%)

0.62(.1 '.1)

198

@) € G, (0,))): A; € (AT)))

2on((~ ¥ min({GLOCS (o;,4; ¢, 4,)
’ ’neall(‘:)

0,€2{e,;. ..., s,)

& € Go(0))): A; EMATI)) - e(<ay,. .., 8,5 ,6,8,)

+mad{2 ¥ min({GLOCS(o;,4; e, .4,):
‘ .aeall(‘n)

0¢2(e;0,)

iy € Gy (0.)))): Aj € HAT)))
= h%(e,)-c(<ey,...,8,>,6,.) QED.

Corollary 4.1

For each state ¢, , the heuristic given by

b*(e,) = max({min({GLOCS (0,4, ¢, .4,): 4, € Gy (9,)})

A; € x(AT), o,EBA)(c,)})
satisfies the admissibility and monotonicity.

Corollary 4.2

For eachs state ¢, . the heuristic A™ (¢,) given by

|
h™(e,) = max({-)
: 8- 'n(ﬂ(El'))l 0’5[‘}‘(':)
0 £ TEL)

min({GLOCS (o, A, ¢, .q,).

109

§) € Go (%,))): A; € 5(AT)))

satisfies the admissibility and monotonocity.

Corollary 4.3
For every state ¢, , the heuristic given by
h(e,) = max{{h®(c,), A’(c,), A™ (¢,)}) satisfies the admissibility and monotono-

city.

Proof of Lemma 6.3

Let o); € xx(EU) and ;3 € =;,(EU), k==l,...,0, such that o;3 C e;, and
let <Tis, - -, The > € Gy (ox;) a0d s € Gy (00).
(A-1) ... By definition of the relaxed successor condition formulas, ESC’F&: 4,) and
ESCFi 4)), for every <Gay, .-, %me> € Q(oxiA;), Gmt € Qo ,4;),
k=1, 0, if ESCF@“'M’)(<E.,, cees Qme > <qhts « + + 5 Qip >) = truc, then

ESCF (ﬁ;: A,) (Gt »qss) == true, k=1, o, but not vice versa.

Let <Gy, -5 Gie > € QoA), qn € Qo3 ,A;), k==l,...,0.
(1) ... (<« -5 Qo > <qii1s - « - » Griw >) is computable, then th>re exist some
<%a1 -+, 9me > € Q(0k; ,A;) and some nonnegative integer n such that
(<Ga1s - s Tme > <1y - - s Giw >) € DIST (n 0,4 , <y, - - - 5 Gho >),
(<Trr - -+ T >1<Tm1r - - - » Gme) € LEN (04 ,4;), and
(<@ -+ G > <Ghiyy - - - » Gnw >) € DIST (k,04,,A,,<Qps1, - - -, Qe >) for
k 9 1,.,n. Thus
(<@ -+ %> <W1r---» Ue>) EDIST(n+1,05,,A, ,<Qu1s - - -, Qe >)-

Based on (A-1), for each k € {l,..c}, il (qa.q1z)¢ DIST(d,0,, A, it):

300

d ok 1,..,n,then (95 ,0/a) € DIST(n 41,03 WA M)
Otberwise, (i i1a) € DIST (4,052 A, ira) where d < .
(2) .. U (<Qys - » Q1w 29 <Wi1s + « + » Giw >) I8 DOt computabdle, then from (A-1),
each (ga 972), & ==1,...,w, is either computable or not computable.

From (1) and (2), for each <@y, ..., T > € Q(oxi.A;), ta € Q(oga,4;),
and each <@y, ..., The > € 54,(01(.') 42 € &A,(Ou), k=1,.,0,

L“.“«<;ll: ce ey .'-b >r<-q-h'h ey -'-Ii. >))’Ki 'A;)
> Ldiot((qa 912)osa »A;), k=1,.,0. Q.ED.

Proof of Lemma 6.4

Let o, € xx(EU) and oy € x;(EU), k=],...,0, such that ;3 C oy, and
let <Qhys---, 00> € &A’(Oxg) and g3 € 6,)(0“‘). From Lemma 6.3, for each
e, €S and each A; € x,(AT),
if I.:lial((ofA’(oK,- €5 1 <Tpi1s - - - » Qliw >)0xi »Aj) = N;, then for each k=1,. v,

Léist ((efa, (01 v¢,). 912)02 »A;) = N; - 04 where 0 is the nonnegative integer.
Foreschrule <e;,...,68,> ER,let Z(<s6,,...,6,>,x5x(EU)) be
Z(<ey,...,8,>%x(EU)) = {og €xx(EU):0p N {s,,...,8,} % ¢}
TLen, by algorithm GLOCS, for the object oy, € x5 (EU),

GLOCS(O]{.‘ ,A,' »Cs ,<.q-l.'1;) -q-li- >)

N,
= ,zlmin(Wl 05,4 ¢, <@urs - - - » Qe >))

where

WiliogisA, 6 <Tprs - - s Te D)= {1 (0, ..., o)

201
(<ey,...,6,>ER) N (ox, €E 2(<8y,...,8,>,2(EU))) N
(Vo € Z2(<sy,...,8,>2x(EU))k=],..,L)
(A<Tukw -+ -» Toxe >1<Tw1s + - Tate >)
€ CC(oxisA;,65,<Qi1s - - - » Qliw >))

(3<x1.9x1 > € Clon,A; .,) A< > € Clog ,A;,¢,))
(Escpfé,l,, o8, >8(<ey, ..., >,t‘(BU)),Al)(.l) ey 8 vil(l) ey

- - a al -l -l al
<EK1r -2 Qikw P QKL OK 1 5+« » 5 UKL 5 = + + 5 Qo > 5erGKL) ™= truic)}

For each oy; € x;(EU), k=1,...,0,

N,-o, .
GLOCS(’I& vAj 1€s sQ1ik) e ‘2 nin(W(l 195k 9Aj 1€ Q12))
=]

where
W“t‘lﬂi vAjocnyilil)- {I “‘(.b ceey .o): (<'l: e, 82> € R) n

(’In’l € Z(<‘l: .o, 8 >"I(EU))) n

(Vog € Z(<s,,...,6,>,x(EU))k=1,.,M)

(3<Quis qua> € CC oy Ajses 0)X 3<an.an > € Co,A ¢,))-..
(3<@ns -+ > > € Clopy A, e, WESCF{&,, &>2(<ey ..o >5(EV))A,)
(61« s & @1 oo s Qs+ s QoW1 5o - s Qs - - - » i) = true)}

(B-1) ... For each k € {1,..w}, there exist n,, ..., ny o, € {1,..,N,}, where
nyn, il ixy, i,5€({1,..,N 0,4}, such that for each ¢ € {1,..N,—0,)
(<Tats - s Tme >, <Tm1s - - -) Tme >) € CCl0g, 14, 6,1 < T - - -1 The >)
a0d (Gt Gmi) € CC 04,4, ¢, v ,qia). The property of (B-1) is easily derived
from the sequence of N, pairs from aﬂA)(oK,) <Gy, Qe D

(B-2) ... Foreach v € {1,...,N,—0, }, k=1,...,¢,

and for every <e¢,,...,8,> €ER,
iffo%(0y,...,0,)€ W(n,,ox,A,,6,<Gx1, -, 8pe >) then
] (sy,...,8,)€ W(v,0n WAjes s)

To show the property of (B-2), suppose there exists some <s,,...,6,> € R
such that f*%(e,...,8,)€ W(n,,0x,A;,6,,<T1,---,0he>) but
F5%(ay, ..., 8)¢ W(v,00,A;,¢,qu) k €{1,..v0).

(B-3) ... Then by definition of the set W (v, 05 ,4; ¢, .45), it is not true that for
the object o,; and for each o, € Z(<6y,...,8,>,%,(EU)), o % o0y,

s=1,..M,

(3<illil 9&1;& > € cc(‘lﬂ 9‘;’ 1€s v' .im)X 3<im;ll'1 >€ c(‘lhAj 1€))

(3<tm:9ne> € Clons Aj e, ESCF{e,o> 54, (80 -, 8,
Qi s Qs - Qolit s - -+ o ks - - - » ng)=true)
where 2, = Z2(<e,,...,6,>,x,(EU)).
(B-4) ... However, by assumption that
J%(ay,...,8,) € W(n,,ox Aj1€s,<qn1y -« - 5 Qlig >), it is true that for the
object ok, and for each oy € Z2(<sy,...,8,>,x(EU)), op, ¥ oy,

s=1..L,

(a<E-,Kl: sy EI'KI >!<EI:K1 IR ia,,Ku >)
€ CC(’}\’: rAj 1€g +My v<.q.l|l"°1ilw >))

(3<é}\'l’él\:l >€ C(OLKI'A) 1€))(3<éKMv&l~:’M> € C(OU\’MpA,‘,Cg))

Rel . - -
(ESCF‘é’l s, >'z"A!)(¢1, .« v ey “ ,qh-l, ey <ql.,\'l' o0y q.'K. >,....

éI\'M 'él\’l ---- <-q’-,Kl 1 ey .q.n, Ke > v---.-éh"M>) = truc)

303

where 2y = 7(<ey,...,8,>,2x(EU)).

Then, by definition of the relaxed successor formulas ESCF(L",»8,>.3.4,) snd
ESCF (R<", v ..8,>.05.4,) it is true that for the object oy, C oy and for each
o, €EZ(<sy,...,8,>,x(EU)), €({l1,.,L}, such that

o C opm €2(<6y,...,8>x(EU), m €{1,..M},

il ke ™= o> Gm ™= oo 1 >r WheTe @xm s Gkm € @ (0%m A j) and

%ir 9 € @(04,4;), then
(3<tera »&-‘,m> € CC(osx A; 5,0 ,1a)X 3<qan > € Clo1,A; e,))---

(3<6H. vil;. > € C(’E ’Aj 165)X‘ESCF(Ré'l,, R N >.I,.A))("l; ceey 8y,

o at

- a al at
ﬂn»---:'I-,m,---:!u.ﬂu:o--:ﬂ.,m;~--;¢1L)"'"“¢)~

Since (B-3) and (B-4) are contradictions, the property (B-2) holds. Then from

(B-1) and (B-2), for each k € {1,...,v},

GLOCS(OK. ,A" »Cg ,<a],'l, . ey ‘q.l,, >) Z GLOCS(OM ,Aj »€g 961“) QED.

Proof of Theorem 2

To prove HO(; ;fe,) < HO(x 1)e,) where x,(EU) is the refinement of
xx(EU) and 7,(AT) = x, (AT), it suffices to show (1) A{; sy(e,) < Alk 1)(e,),

(D) A1 (e;) < bk Ly(e;), and (3) A 5)(e;) < Ak 1) (e,)-

Case (1): B0 5y(e;) < bk 1)(e,)
From the formula (6.1), for each state e,, the values of Al ;)(¢,) and

h{; 1)(e,) are, respectively,

304

M 1) (e,) = max({— Y min({GLOCS 0k, /A; €0\ <Tnss - - - » Tive D)
.(K-l) 0‘,€B‘" (‘1)

<Titr - - - Tuw > € Ga (0,))): 4; € 2,(AT)))

where BY (¢,) = {oxi: (ox; € 2x(EV)) N (ofly (oxi.6,) € Gy (ox:)): and

Aynle)=ma{{—1— ¥ min({GLOCS(oz A; ¢, i)
0(1.0) oy ea", (e,)

@2 € Gy (o)) A; € x,(AT)))

where B] (¢,) = {os: (o € 3/(EV)) N (ofly (o1 €,) € G (01).

By Corollary 6.4.1,

hlx 1) (e,) = max({- 1 Y min{{GLOCS(ok; ,A;,e;,<Tnrs - - - Qe >):
‘(K-’).‘-EBA" (‘:) ()
1

<Tirr - -+ Tre > € Gy (0))): 4; € 7, (AT)))

1 1
2 max({- _
! dx.0) -..egé «,) ¥ (o 7k (EU)%, (EU))

Y min({GLOCS (o4 ,A; e, ,q1a) qus € Gy (ot)})
o4 €5,(EV)
.li g.‘l

where # (ox, ,#x(EU),x;(EU)) is the maximum number of objects o,; € x,(EU)
each of which is the subset of oy, € x5 (EU) and has two different position values

in one state and its successor state.

Condition 1: Let i(K'L) = 1. Then from Eq.(1),

305

Mx)(e,) 2 mx({.‘.eg -~ & 0, ¥ (om #x (EU), (ED)) (3)
4 0 Cog,

min({ GLOCS (0,3 ,A; ¢, 8): Ora € &4,(01.1 }): Aj € x,(AT)}).

By definition of 3(,',), for every ox; € xx(EU), # (e, ,xx(EU),x;(EU)) < o'(,',).

Then from Eq.(2),

1

M 1)(e,)2 max{{~
8(1,7) o, EB“) (e,)0:: Gll(.w)

s =%

min({ GLOCS (o2 1A e, i : 41 € Gy (0)}): A; € %,(AT)})

-maf{—1 ¥

20.0) eu e8] (o))

win({GLOCS (osa ,A; ¢, 012): 412 € &4,(01.1 }): A; € x,(AT)}))
= ‘(l.l)(c:)

Condition £ Let # (o, ,x; (EU),x;(EU)) = 1 for oy, € xx(EU).

Then, from Eq(1),

1
Al 1) (e;) 2 max({- Y Y)
O(K.J) og, €BF (¢,)01 €x,(EV)
! 04 Cop,

min({ GLOCS (0,3 ,A, ,¢, 91a): Qua € Gy lo)}): A, € x,(AT)}).

From Lemma 6.1, ‘-(K.L) < ;(,_,). Thus, from Eq.(3).

|
M. (e) 2 max({—
8(1,7) og,€B5 (s,)% €7,(BV)
! o Cog,

min({ GLOCS (o /A €4 i1): §1a € Gy (0)}): A; € x,(AT)))

- m;x((_‘_!.

2(1,9) 0:0531' (e)

min({GLOCS (o A; € it): €12 € Ga (0))): A; € 5,(AT)))
- ‘(l.l)(‘s)-

Case (2): {1 sy(e,) < bk 1)(e)

The heuristics A ;) (e,) and A{; ;) (¢,) are, respectively,

‘(K,L)(cs) - max({min({GLOCS(oK, ’Aj 1€s :<.q-lih ce ey .q-lo'. >)

<Tisr - -2 Tin > € Ga (05) A; € 2,(AT), o €BL (e,)}),
and

k{1 7)(e;) = max({min({ GLOCS (03 ,A; ,€; .91)

G € Gy (o))): A, € 7,(AT), 04 €B] (e,)))

By Corollary 6.4.1, for each A; € x,(EU) and for each o, € xx(EU),
0;4 € x;(EU) such that oy C oy,
mxn({GLOCS(oA, 7Aj 1€s v<-q-1|1; s oey Eht >) <-q-lul,- ety Ehc > € GAJ(O'\-I)})

> min({GLOCS (04 ,A, ,¢, .12): Qs € Gu (051)})-

Thus, h{) ;)es) S hly 1)le,)

307

Case (3): Al s)(e,) < Ak 1)(e,)

The valeus of Afx 1) (¢,) and Af] ;) (¢,) are, respectively,

1

Ak 1) (€)= max({~ %
(kL))= |0k (EUD] o e8f o)
.‘l¢q"(w»

min({GLOCS(oK,- nAj 1Cs ’<‘q-h')) .'—h >):

<@i1s -2 Thie > € &A,(Ox.' }): A; € x,(AT)})

and
1
h(7.5)(e;) = max({- 2
(' J) 3 ‘(",)— In(‘l(EU))l 'HEBA" ('l)
o ¢ Qs,(EV))

win({ GLOCS (04 ,A; ,¢5 952): qra € &A,(Om }): A; €x,(AT)}).

Condition 1: Let 3 1) = 1. Then |Q(xx(EU))| =1.
It a1y~ |0k (EVU))| =0, only Ak 1)(e,) and ik r)(e,) are defined. If

8.y |8(x;(EU))| 9 0, then by Corollary 6.4.1,

hix 1)(e;) = max({ 2; min({GLOCS (053 ,A, ¢, .) qia € Ga (o5)}):
.‘,EB‘} (‘:)

A) € ’J(AT)})

1
2max({ Y} - - =
or.€BX (¢,) (1.~ | U= (EU)) | o €9, (EC)
N LT EO‘,. .Iie Q'\'[(EL'))

308

lllll({ GLOCS('I& rAj 1€g vihl)" ilil € &A,('hl)}) Aj € ’J(AT)))

1
= max{{-)
0,0y |0x(EUN | ,, e8] ()
o § sy (EV))

win({ GLOCS (0,3 ,A; ,¢, 02) Gus € &4,(011)}): A; € x,(AT)}))
- ‘(-l,l) (e;)

Condition £ Let ﬂ(ﬂ’x (EU)) == fl(XI(EU)) and # (.Ki ,IK(EU),l’l(EU)) =].
If dcr) =dke)- |Da(BU))| and a(x) = axp)- | Qxx(EU))|, then
axr) Sy

By Corollary 6.4.1

1
ki) (&) = max{{— . X
%(K.7) ox,€BS (¢)or. € Ol (EV))

min({GLOCS(oK, ,A’ €y ’<Elil’ csey Eh. >)
<-q-lll’ LRI | Eh. > € GA,(’K!)}) A; € ’J(AT)})

> max({—— %

8(1.7) og.€Bf (e,) o €x;(EV)
! 00 Cop.. 0, €0(1,(EC))

min({GLOCS (0g ,A, ¢, gt): g1 € éA_,(old)}): A, € =,(AT)})

> max({—)
‘U,J} 0“€BA" {e,)
010 € O3, (EL'))

min({GLOCS (03 ,A; ¢, tus) €1a € &4,('1&)}): A; € x,(AT)})
- A0 (e) QED.

Proof of Lemma 6.6

Let A;; € x,(AT) and A, € x,(AT), k=1,..,v, such that 4,; C 4,,,
and let <qj;y,...,9;,> € &4,,(0.‘), and g);; € &4,,(0.‘).
(C-1) ... By definition of the relaxed successor condition formulas, ESCF@:{A‘I, and
ESCF(is,,), for every <Gap -, Tm> € Q(0,,AL;), Gmt € Q(0;,A),
k=1,..,0,if ESCFﬁf{A‘,)(<'q'.,, oo s Ome 2y <Wj1s -+ o 5 Qsje >) = truc, then

ESCF{:{A, ’)(:1.; ,im) = true, k=10, but not vice versa.

Let <Gy, ---, 0> € Q(o,,A;;)and gz € Q(o0;,As3), k=1,...,0.
m..H(<qyy, ..., 4:>.<qy1 - “s s, >) is computable, then there exist some
ponnegative integer n and some <Gpy,---,0me> € Q(o,,AL),
gt € Q(o, A), k=1,..,c, such that
(<Tm1r - Gme > <Qj1s - - - » Qsjy >) € DIST (n ,0,,A1, ,<Qy51, - - - 5 Qip >);
(<@ -+, 6> <Tm1s - - - » Ime >) € LEN)(0,,A,,), and
(<Tire -+ s Ta >0<Tpjar - - - » Ty2>) € DIST(k 0,41, <Tpy1s + - - 1 Tgpo >).

k #1,.,n. Thus,

(<Tigr -+ T >0 Ty1r - - - » e D) E DIST(n 41,0, 41, ,<Tpy 1o - - - » T).
Based on (C-1). for each k € {I,..t}. if (qu ,&,,-,)¢ DIST(d,0,.A;.9:1)
d # 1...n, then (qa .gs;) € DIST (n+1.0,.4,, .¢13).

Otberwise, (g .g,u) € DIST (d .0,.A}; .q);) where d < n.

310

(2) ... ¥ (<@ - - -5 G >,<Wsj1s - - - » 415 >) is DO computable, then from (C-1),
exch (3,972), k=1,...,v, is either computable or not computable.

From (1) and (2), for each <@, ..., 0% > € Q(0;,AL;), qu € Q(o;,4,;),
k=1,.v, and for esch <y, ..., 5> € Gy (0) s €Gy (o),
k=10,

Ldist ((<;ll: sy -q-b >v<-q-.ljh seey ;Jjo >)o‘i’ALj)

2 Ldist ((al ’aljl)r.i A sk)v k=1,..0. Q.E.D.

Proof of Lemma 8.7

From Lemma 6.7, if Ldist (offy, (0.6) <Tsjns - - - » Tsjo >hoi AL} = N,
then for each &k € {1,...,0}, i:l:'n ((of1, ’(05 '€s),i,,-,)0;,Asit) = N; -3 where
o, is the nonnegative integer.

Foreachrule <e;,...,6,> €ER,let Z(<s,,...,8,>,x,(EU)) be
Z2(<ey,...,8,>%(EU))={o, €Ex;(EU) 0, N {8,,...,8,}) o ¢}.

Then, by algorithm GLOCS, for the object o, with respect to the feaure

AL" € RL(AT),

GLOCS(o,,AL; 65, <WQsj1s -+ > Qup >)

N,

; min(W(l,o, vALj 1€g v<.q..l,]r sty -q-.lj' >))

=]

where

“-(I,O' ,.41_,' y€g ’<-q.ljl’ c ey ;J”>) == {!“d(ll, L)!

(<¢‘, .c..,0, > € R) n (0‘ € Z(<.p ..., 8, >vxI(EL’))) n

(Vo, € Z(<ay,...,8,>m(EU)n=]i.,M)

311

(a<"-lh'h c 0oy -'-Uo >v<i’ﬂ’.il 9o til’ﬁ))
€ CC(0,,AL; ¢, <Qsj1s -+ - 2 Wjs >))

(3<@ity > € C(oyALj e,). I<u @u> € Clon AL e,))
(ESCF(L":, 5,>.2(<e0,...,0 >.t,(BU)).A‘,)(‘b ey 8y :GLI: ey

<;Ul: seey ill.n >,---,§w»iu 200 <al.il r"'r-q-ll.o'v >r"tiUl) = frue)}

For the object o; with respect to each feature A;; € x;(AT), k=1,..,v,

N,-o,

GLOCS (o, ,Ajjs ¢, ,q13) = '2 min(W(l,053 ,4;,¢,,9s;1))
=]

where
W('y.i 9Aljt €3 161}'&) - {, ”“(‘l: ceey 8y): (<.l’ ooy 8 > € R) n

('i € z(<.lr ceey @, >v‘l(EU)» n
(Vo, € 2(<6;,...,8,>,2,(EU))n=1,..,M)

(3<quji Qi > € CC(0;,A 1,6, 051) 3< 051005y > € C(01, Az 18,)--

(3<am 9> € Cloy. Az e, WESCF{&, . . s >z2(<ey. . ..o >m(EU)AL)

a !

a - . alt a !
(80, - -, &0Qu0 - Qujk Qa1 s - -« 5 QUjks - - - 5 Qun) = true)}

(D-1) ... For each k € {1,..,v}, there exist n,,...,ny_,, € {1,.,N,}, where
n, ¥n, il i9%j, i,5€({1,.,N-0,4}, such that for each v € {1,..N, -0, }
(<Tats -+« s Tme > <Tm1s -+ - s Gme D) € CC(0,,AL; 14 B0, <Tpjs - - -1 Tpe >)

and (gu ,é,:,) € CC(o,,A i ¢4 ,u‘,ém). The property of (D-1) is easily derived

from the sequence of N, pairs from off, (0;,e,)to <gj;y, - .-, @ >.

(D-2) ... For each v € {1..N,-0,}. k=1,..v, and <a,,...,¢,> €ER. if
(e, ...,8,)€ W(n,.0,.4,,.¢,.<qyy, - - ., Qs >), then

f ‘”‘(‘l! <.y 8) € “'("’»0. 'Ahl 'y 'éhk)

313

To show the property of (D-2), suppose there exists some <¢,;,...,8,> €R
such that [*%(s,,...,8,)€ W(n,,0,,A.;,¢,<Tsj1s---,0s>) but
15 (61, ..., 8,) ¢ W(w,0,,45,,¢,,051) k €(1,..0).

(D-3) ... Then by definition of the set W(w ,0,,4,; ¢, ,i,,-,), it is not true that for

each o, € Z(<sy,...,6,>%,(EU)), im=l,. . ,.M,

(3<quji it > € CC(0; Asa re5 sis X 3< @40 > € Cloy A e,))--

(3<im,i;u> € C(’M’Aljl 1€)XESCF&':,, R >.Z,,A‘,)(‘v ceey By,

- a a al al al
vm---:'lu,‘u---:!nhqn;---:Iu,h---,lm)""“)

where 2, = Z(<e,,...,8,>,5(EU)).
(D-4) ... However, by assumption that
T%(ey,...,8)€E W(n,,0;,AL;,6,,<qsj1, - - - » Qsjp >) it is true that for each

0; € Z(<Cl, ceey By >,IK(EU», jgl,oo‘,..,--o,M,

(3(<7.,L1: s :iu,l.v >a<;l,l.l IR :;;L'>) €
CC(‘.' rALj »€s 9<-q-ljlr sy -q-ljo >))

(3<q1,91 > € ClogAL;,e,))d I<qp aw> € Clow AL e,)
(ESCF(:,:, s, >,Z,,A,ﬁ)(‘l! ERFA :éLh e <.in,l.lr e .il.l-! > ey
ém,iix v---,<"l'.:,u) i.'.l_.>,...,¢},_'~>) = frue).

Then by definition of the relaxed successor formulas ESCF (R<", w....5,>.2.4,) and

ESCF {2',1 5, >.2;.4,) 1 it s true that for each

Om € Z(<°x,- .., 0 >v”I(EU))v if al,- = <EJ-U e ’Elllu > and
éL‘- = <.q-.l'-l PRI !EJ'MI> where éL-' &L’- € Q(oo 'ALj) and

éJm . 9/-& € Qlo,. A), k=1,...,v, then

313

(3<qujs s > € CC(0;,A 8 ,¢6,9 0158) 3<qudu> € CloyAj.c,))...
(<na-tna> € Clow Ay e ESCFE, . o>a4)(00 0,8,

al

im, .o -,au,'u .. -.anm!m' .. -;il;,'h s :il'm)" true).
Since (D-3) and (D-4) are contradictions, the property (D-2) holds. Thus from
(D-1) and (D-2), for exch k € {1,...,9},

GLOCS (0;,AL; ,€5,<sj1s - - - » 150 >) 2 GLOCS(0;,A 51 ¢,) Q.ED.

Proof of Theorem 3
To show HO(; sfe,) < HO(k)¢,) where %,(EU) = x4 (EU) and x,(AT)
is the refinement of x,(AT), it suffices to show that (1) Af 5)(e,) < Mk 1)(e,),

(2) A1) () < Mkpy(e,), and (3) b7 5y (es) < Bk 1) (e,)-

Case (1) ‘(l,l)(cs) < ‘(K,L)(cs)
From the formula (6.1), for each state e,, the values of A(x (e,) and

{1 1) (e,) are, respectively,

1 . - -
‘(.K.L)(cs) = max({- E min({ GLOCS (o, ALy 5 <Quj1s -+ -5 Qupe >)
S(KL)eeBg (o)

<-q-J)l’ st ilp > € GA‘,('u)}) ALJ' € a’l.(AT)})

where B‘:‘“ (e,) = {o,: (0, €E xx (ELU')) N ('ﬂA‘,(ﬂ.’C.)e &A‘,(%)}: and

1 . .
h{ 1)(e,) = max({= Y min({GLOCS (o, ,A ¢ s):
2(1.9) 0,684, (¢,)

Gt € Ga,, (0,)}): Asys € 7,(AT)))

where B), (¢,) = {0,: (0, € ;(EU)) N (s, (0,,6,) € G, (0,)}.

314

Since c'(,',) - i(x'“, from Corollary 6.7.1,

Mis)(e)=mad{—— ¥ miol{GLOCS(o,,AL; < - - -, To D)
‘(K.L)O,EB““(c,)

<@y .- W>€ &A,,(Oi)})= AL €Ex (AT)))

>ma({—— ¥ T min({GLOCS(0,A .8, 0)
91,0 0,68"“ (e,)‘IAﬁ G'C'Y”
g =",

G € Gy, (0;)}): Auj € x (AT)))

= max{{-z L Y min({GLOCS(e,,A s e, 0551)
201.0) oe8], | ()

@i € Gy, (0,))): Arj € %, (AT)))
= Al s)(e;)

Case (2): A{; s)(e;) < bk 1)(e;)

The values of A(; ;)(e,) and k(x ;)(¢,) are, respectively,
M 1)(e;) = max({min({ GLOCS (¢, ,AL; €, ,<Qsj1s - - - » Qsjo >):
<@jvr -1 Q> € Gy (0,)}): AL € m (AT), 0.63.4',; (e, D)),
k) 1)(e,) = max({min({ GLOCS (o, ,A ;s ¢, ,0s51): Q12 € Ga,,(0,)})
At €7,(AT), o EB/{,, (e.)})

Then, based on Corollary 6.7.1, A; ;y(e,) < A{k 1)(¢,).

Case (3) h(7 s)(e,) S bk 1y(ey)

316

The values of Af7 ;)(¢,) and Ak 1) (¢,) are, respectively,

1
Alk 1)(e,) = max({ dx1)- |0(xx(EV))| o.eb?“(c.)

o, ¢)¢ (EV))

min({GLOCS (o; AL, 1€, ,<Tsj1s - « - » Usjo D)

<@, Up> € 64,,(‘.‘)}): AL; € 5, (AT)}), and

1
k- - ry
1. (e) m”‘“‘(u)- 10(x,(EV))| .,eb}z“ ()
o, ¢ 0z, (EV))

min({GLOCS (o;,A s ¢, 9551): Qs € 64,,(0.')): Ajip € 2,(AT)}).

Since !K(EU) - t,(EU), ;(K.L) - ;(l,l) and n(l’K(EU» - ﬂ(t,(EU » Thns,

by Corollary 6.7.1, Af} 5y(e,) < Afk 1)(e,)- Q-E.D.

318

APPENDIX C

ARGUMENT-1

Let oy; € 2y (EU) and oy € 7,(EU), k=1,...@ such that oy C oy;, and
let <Qiigy--.,Qe> € EA’(OK,') and ¢ € &";("‘), k=1,.,0. Then from
Lemma 6.3, for each state e, € S
it Ldist ((oJA’(oK,- 165), <Thi1s - + + » Ghiw >),0ki 1A) = N, then for each k=],...,0,
I:la':t ((‘fA,(05 ,¢) tia) 0sa »A j) = N; - 04 for some nonnegative integer o .

By algorithm GLOCS,

GLOCS(’K.‘ rAj »€s a<7h'b sy ;Ii' >)

N _ - (A-1)
- 'z min(W(l,0x;,A;,¢, ,<Tpiss - - - » Triw >))
=]

where

W(l,ox; Aj e LTy -1 Qe >) ={c(<oy, ..., 8,>,.,6.)
(<64 -..,86,>,6,,60) € SUCCR N (ok, € Z(<sy,...,8,>x(EU)) N

(VO& € Z((ll, cee, 8, >,I'K(EU)), k=l,...,L.)

(H<Tikrr - -+ » Trce >r<Tict s - - - » Tow >)
G CC(‘K;’ 9A,)¢3 9<EI|17 c ey 71.‘- >))

(I<k1dxr > € ClogyA; ¢,) I<qiq G > € Clog.A,.e,))
(ESCF?:;, o 8,>.2(<e, ¢,>.t‘(EU)).A,)(¢l» -0 8 vél\’l’)

.....

<EU\'1J s ey EIK- >""’&KL ,;lm PACIR RN <EU\'I P] EIA’. >7--"6KL) = true)

w here

Z(<ay,...,8,>ak(EU)) = {o, €Exx(EU). 0, N {a,....,0,} 5 ¢}

17

GLOCS (012 A, ¢, fa) (A-2)

No)

- ‘2] min(W(’).I“ 'A) »Cs pé“)), k -l"u." ’

where

W(l,on Aj e 16]&) - {c(<ay,...,8,>,6,,)
(<.lr ooy 8y >vcn rcn)e SUCCR n (’lil € z(<‘l) ceey >,’I(EU))) n
(VO& € Z(<Ct, voey By >,71(EU», k-l,...,M)

(3<qua q0a > € CC(oki A e, ,05a) 3<q011 > € Clo1,A; ¢,)-.e

(I<qm 9> € Clons,A; e,)XESCFE':,...,sp.z(«,,...,a,>.c,(w))..4,)

a alt a

e a at
(.l:"‘-)‘aﬂlly'--"Ufk:"':qﬂhqll :~-~:!ua:-'—;ﬂm)="“)-

From Eq.{(A-1),

GLOCS(‘Ko' »Aj »€s '<.q-lilt se ey .'-h'c >) (A-3)
N -2, .
= ‘21 min(w(’)’lﬁ vAj 1€ 1<ilil: ey -lio >)) +
N
E min(W ({,0, ’Aj €5 <qh1s - - - » Qo >))-
{=N,-04 +1

(A-4) ... By definition of CC (o, ,A,,6;,<quy) - - - » 'q',:, >), Coy,A;,e,),

og € Z((l,, ey @, >,RK(EU», and ESCF{:‘:

8,>.2(.)4,)» €Very element
c(<8),...,8>,,,6,) in each set W(l,ox,A4,,¢,<qny .-, 0 >)
l € {1,.,N -max{({oy: k=1,.,0})}, is the element of either of « sets,

W(l‘ 1058 A j €5 A), k=1,...,, for some l' € {1,..N,-0, }.

(A-5) ... Some element ¢(<a,, ..., s, >,c,,6,)in the set
Wi(l.og, A, & <1 Qe >) €N, -min({oy: k=1..¢})+1,. N} is

pot the element of any of the w-{N,-05) sets Wl ,oM,A_,.e,,&,,,).

318

| =1,..,N,-0,4,km=], o, if ¢, and ¢, are two descendent states of ¢, such that
Ldist ((‘JA,(‘KG +€q),<i,“,. vy -'.Ii' >)’.Ki ,A,) == | and
Ldist ((OJA'(OM 1Cs),i,“ LN ,A’) - "

where N;-min{{o;: k=1,..,0})+1 < I' <.

Claim 1: Based on (A-4), for each k € {},...,w},

if the element ¢ (<@, - . . , 8, >,€a1,6ar) Which is to be
min(W(l,0x,,A;,6,,<Ts1, - - - , Giw >)) is the element of the set
W(l, 0,4,) | € {1,...N;—04 },

then GLOCS(’K-’ rAj 1Cs 1<Fh'l) sy -q-li- >) Z GLOCS(’I.& vAj 1€s ,';m)

Claim 2: Based on (A-5), for each k € {1,...»}, if

(1) for each I € (1,..,N;-max{{o;,: v=1,..,0})}, the value ¢(r, e, ,6n) which
is to be min(W(l,0x;,A;,¢,,<@51, - --,Qse >)) is less than the value of
min(W(l,0:a,A; ¢, ,01a):

(2) for each ! € {N,-max({c,,: v=1,...,0})+], ..., N,-min({o,,: v=1,..,0})},
the value ¢ (7, ,c,,¢4:) which is to be

min(W (l,0x,,A4,,6,,<qpys---,q4e>)) is equal to the value of

min(W (l,054,A, ¢, .05z).

(3) for each ! € {N,-min({o,,: v=1,...,e }}+1,..., N, }, the value ¢ (r;.c.;,€0)
which is to be min(W(l,0x,,4,,¢,,<@p1, - - -, Qe >)) is DOt element of any
of the v sets W(l,o4 .4, W), t=l..w. and the value of

Y c(ry.en.en) where V = {N, -min({o,,: v=1..,wc})+1,. N} is such
lev

that for some L € {1,...,N, -max({o,,: v =1,...v })}.

319

min(W(L ,0x; .4, /€5 1 <Tpi1s - - - » e D)) + L € (ru €0 m1)
eV

< min(W(L,0.3,A; ¢, 'ila'l)}

then GLOCS(’K. vAj 1€ o<;ﬁ 192 .'-lw >) S GLOCS(’IJ 'Aj 1€ .im)

BIBLIOGRAPHY

220

231

BIBLIOGRAPHY

[And81)

Anderson.J, Greeno.J, Kline.P, and Neues.D, * Acquisition of problem-solving
skill”, Cognitive Skills and Their Acquisition, Andersion.J (eds.), Lawrence Erl-
baum Associates Publishers, Hillsdale, N.J., (1981)

[Bar81]
Barr.A and Feigenbaum.E, The Hendbook of Artificial Intelligence, Vol.1,3, Wil
liam Kaufman Inc., Los Altos, Ca., (1981)

[Ber79)
Berliner.H, "The B’ tree searching algorithm: A best-first proof procedure”,

Artificial Intelligence, Vol.12, (1979)

[Bun78]
Buchanan.B and Mitchell. T, "Model-directed learning of production rules”,
Pattern-Directed Inference Systems, Waterman.D and Hayes-Roth.F (eds.), The

Rand Corporation, Santa Monica, Ca., (1978)

[Car81]
Carbonell.], "A computational model of analogical problem solving”, Proc IJCAI,

(1981)

[Clo81]
Clocksin.W and Mellish.C, Programming in Prolog, Springer-Verlag Berlin Heidel-
berg New York, (1981)

|Coh83]
Cohen.P and Grinberg.M, "A theory of heuristic reasoning about uncertainty”, Al

Magatzine Vol.4, No.2, Summer, (1983)

[Dor87)
Doran.J, "An approach to automatic problem-solving”, Machine Intelligence,
Vol.1, Collins.N and Michie.D (eds.), New York, American Elsevier, (1967) 105-123

|[Ern83]
Ernst.G and Banerji.R, "On the relationship between strong and weak problem

solver”, Al Magatine, Vol.4, No.2, Summer, (1983)

[Gas77]
Gaschnig.J, "Exactly how good are heuristics !: towards a realistic predictive
theory of best first search™, Proc IJCAI Aug. (1977)

[Gas79a)
Gaschnig.J, Performance Measurement and Analysis of Certain Secarch Algo-
rithme, Ph.D Thesis, Dept. of Computer Science, Carnegie-Mellon Univ.. May,

(1979)

[Gas79b)
Gaschnig.J, "A problem similarity approach to devising heuristics: first results”,

Prec 1JCAI, (1979)

[Gui79)
Guida.G and Somalvico.M, "A method for computing heuristics in problem solv-
ing”, Information Science, vol.19 (1979) pp.251-259

[Hara78]
Haralick.R, Davis.L, and Rosenfeld.A, "Reduction operations for constraint satis-
faction”, Informetion Science, vol.14 (1978) pp.199-219

[Hara79)
Haralick.R and Shapiro.L, " The consistent labeling problem: part 1", JEEE trans.

Pattern Analysis end Machine Intelligence, vol. PAMI-1, No.2, April (1979)

Haralick.R and Elliot.G, "Increasing tree search efficiency for constraint satisfac-
tion problems”, Artificial Intelligence, vol.14, (1980) 263-313

[Harr74)
Harris.L, " The Heuristic Search under Conditions of Error®, Artificial Intelligence,

vol.5, (1974)

[Hart68]
Hart.P, Nilsson.N, and Raphael.B, *A formal basis for the heuristic determination
of minimum cost paths”, JEEE trans. Sys. Sci. Cybernetics, vol.4, NO.2, (1968)

[Hel71]

Held.M and Karp.R, "The traveling salesman problem and minimum spanning
tree”, Operation Research, vol.19 (1971)

[Hun78)
Hunt.E, Artificial Intelligence, Academic Press, New York, (1978)

[Jac74)
Jackson.P, Intreduction to Artificial Intelligence, Petrocelli Books, New York,
(1974)

[Knu?$)
Knuth.D and Moore.R, "An analysis of alpha-beta pruing”, Artificial Intelligence,
vol.6(4), (1975) 203-326

[Row 73]
Kowalski.R, "A proof procedure using connection graphs™, J Ase. Comput.
Marh.. vol.22 (1975) 572-595

[Len&2]
Lenat.D, "The nature of heuristics”, Artificial Intelligence, vol.19, (1952)

Mai7]
Maitolli.A, "On the complexity of admissible search algorithms”, Artificiel Intelli-
gence, vol.8, (1977)

[Mes70]

Mesarovic, "Systems theoretic approsch to formal theory of problem-solving”,
Theoretical Approsch to Nonnumericel Problem Solving, Banerji.R and
Mesarovic.M (eds.), Springer-Verlag, Berlin. Heidelberg. New York, (1970)

[Mit82a)
Mitchell. T, "Toward combining empirical and analytical methods for inferring
beuristics”, Technical report, LCSR-TR-27, Univ. of New Jersey, Rutgers (1982)

[Mit82b)
Mitchell.T, "Generalization as search”, Artificial Intelligence, Vol.18, (1982) 203-

226

Micos]
Michie.D, Fleming.J, and Oldfield.J, "A comparison of heuristic, interactive, and
unaided methods of solving a short-route problem”, Machine. Intelligence 3,
Michie.D (eds.), Edinburgh University Press, Edinburgh, (1968) 245-255

[New72)
Newell A and Simon.H, Human Problem Solving, Prentice-Hall Inc., Englewood

Cliffs, N.J., (1972)

[Nil80]
Nilsson.N, Principles of Artificial Intelligence, Tioga Publ. Co., Palo Alto, Ca.,
(1980)

[Pea83]
Pearl.J, "On the discovery and generation of certain heuristics”, Al Magatzine,
vol.4, No.1, WinterSpring, (1983)

[Pea84)
Pearl.J, Heuristics: sntelligent search strategy for computer problem solving,
Addison-Wesley, (1984)

[Pob?0a)
Pokl.l, "First Results on the effects of error in heuristic search™, Machine Intells-
gence, Vol.5, Meltzer.B and Michie.D (eds.), Edinburgh Univ. Press, Edinburgh,

(1970)

[Pob70b)
Pobl.l, "Heuristic search viewed as path-finding in a grapb™, Artificial Intells-
gence, Vol.1, (1970)

[Poh?3]
Pobl.l, "The avoidance of (relative) catastrophe. beuristic competence, genuine

334

dynamic weighting and computational issues in beuristic problem-solving™, Proc
IJCAI (1973)

[Pob77]
Pohll, "Practical and theoretical consideration in heuristic search algorithms®,
Maschine Intelligence, Vol.8, Ekock.E and Michie.D (eds.), Ellis Howard Ltd., Chi-

chester, England, (1977)

[Ren83]
Rendell.L, "A new basis for state-space learning systems and a successful imple-
mentation”, Artificiel Intelligence 31, (1983)

[Sam59) |
Samuel.A, "Some studies in machine learning using the game of Checker”, IBM J.

Research and Development, Vol.5, (1959)

[Sam67] |
Samuel.A, "Some studies in machine learning using the game of Checker 2:
Recent Progress”, IBM J. Research and Development, Vol.11, No.6, (1967) 601-617

[San70]
Sandewall.E, "Heuristic search: concepts and methods”, Proc NATO Advence

Study Inst., Menaggio, Italy, (1970)

[Ste82]
Stefik.M and Conway.L, "Towards the principles engineering of knowledge®, Al
Magatine, Vol.3, No.3, Summer, (1982)

[Wat70]
Waterman.D, *Generalization learning techniques for sutomating the learning of
beuristics”, Artificial Intelligence, Vol.1, (1970) 121-170

