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ABSTRACT 

The extension to super-cavitating propellers of the 
numerical panel method developed by the Marine CFD Group 
of the University of Genova is presented and largely validated 
in the paper. 

The validation of the theoretical model for the cavity 
detachment and closure in the wake of the blade profiles is 
presented first on a typical super-cavitating profile for which 
theoretical and experimental solutions are known. Then the 3D 
panel method is applied on the complete series of Newton-
Rader trans-cavitating propeller for which experimental 
measurements in cavitation tunnel and numerical results 
obtained by other researchers have been recently published. 

The main dynamic characteristics such as thrust and torque 
coefficients versus the advance ratio and the cavitation index, 
but also the cavitation patterns, in terms of bubble length at 
various radii, bubble volume and extension on the trailing 
vortex wake are presented and discussed for various propellers 
of the N-R series, having different pitch and expanded area 
ratios. Good correlations are in general achieved for what 
regards not only cavitation patterns, but also thrust and torque 
breakdown consequent to the cavity inception and growth on 
propeller blades.  

INTRODUCTION 
The paper presents the latest developments of the propeller 

boundary element method developed by the Marine CFD group 
of the University of Genova in its main theoretical and 
numerical aspects. This development addresses the solution of 
the super-cavitating propeller problem, i.e. a propeller whose 
blades are interested by a cavity which also partially extends aft 
of the blade trailing edge.  

The method, in fact, initially developed for subcavitating 
propellers working in uniform inflow has been refined with 
several non-linearities, such as exact Kutta condition at trailing 
edge and adapted trailing vortex wake (Gaggero and Brizzolara 
(2007) [5]). Subsequently, it has been enhanced to deal with 
non stationary solutions (Gaggero and Brizzolara, (2008) [6]), 
relevant for solving the propeller problem working in a ship 
viscous wake and more recently to allow for a partial sheet 
cavitation on the face and back of the propeller blades 
(Gaggero and Brizzolara, (2008) [7]). The capability of the 

analysis method to accurately capture three dimensional effects 
of propeller geometry (including the hub) and cavitation effects 
on the performance can offer interesting opportunities when the 
method is integrated into an optimization procedure in order to 
address the problem of automatic refinement of an initial 
propeller design. Two recent studies (Gaggero and Brizzolara, 
(2009) [8] Brizzolara, Gaggero, Grasso, (2009) [2]) have 
shown that the optimization procedure, based on the said panel 
method, can lead to significant enhancements in terms of 
propeller efficiency and cavitation volume reduction on the 
blades.  

From the above latest developments, it becomes clear the 
advantage achievable extending the method to allow for other 
typologies of propellers, for which conventional lifting 
line/lifting surface design methods (developed for subcavitating 
propellers) loose their validity. In this field few very design 
methods exist, mainly using large approximations and a trial 
and error procedure from an initial design hypothesis is 
necessary to obtain the optimum propeller. Among different 
special propellers, an interesting class is represented by the 
trans-cavitating and then super-cavitating propellers. Trans-
cavitating propellers were at first presented by Newton-Rader 
and their geometry has several affinities with that of 
conventional sub-cavitating propellers: blade sections are 
unconventional foils with rounded leading edge (although with 
very small curvature radius), cusped trailing edge and the 
maximum thickness and camber is approximately at mid-chord. 
These propellers are of interest for applications on medium-
sized fast patrol vessels or crafts sailing in excess of 40 knots. 
At the lowest cavitation indexes (i.e. highest boat speeds) the 
back of the blade is interested by a full cavity length which 
extends also in the wake, while at moderate and low speed the 
behavior of these kind of propellers approaches (also in terms 
of efficiency) that of conventional propellers. This in 
opposition with pure supercavitating propellers, whose distinct 
wedge type profile shape causes rather large drag with 
consequent loss of efficiency at moderate and low revolutions. 

So the first step in this direction, as described in the paper, 
regards the extension of the mathematical model to allow for 
the solution of super-cavities in the wake of the profiles. While 
the solution by panel methods of the partial sheet cavity has 
been addressed by few research groups (Dang (1999) [3], Vaz 
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2006 [15], Fine (1992) [4], Kinnas et al. (1999) [11]), the 
problem of the solution of the (super-)cavity shape in the 
trailing vortex wake of propeller blade sections is, still, hardly 
attempted. The method developed by the authors has several 
affinities with that presented by Young (2002) [18] and Young 
and Kinnas [16, 19, 20], and applied on similar test cases in 
(Young, (2008) [17]), especially for the idealization of the 
cavity model aft of the blade trailing edge. The results 
presented in the paper, obtained practically for the complete 
range of Newton-Rader propellers are also compared with these 
other numerical results, where available. 
 
THEORETICAL AND NUMERICAL MODEL 

For the analysis of marine propellers performances, several 
theoretical and numerical approaches are, nowadays, available. 
From the 1960’s lifting line method, suitable even for the 
design than for the analysis, to the most recent RANS solvers, 
different codes have been developed on the basis of different 
theoretical assumption for the flow field around the propeller. 
Each of these methods has its own advantages and its own 
drawback. Lifting line and lifting surface codes, based on the 
hypothesis of inviscid, irrotational and incompressible fluid, are 
still the better established methods for the design of a propeller. 
Potential panel methods, with their capabilities to capture 
thickness effects and to take into account non linear effects like 
cavitation (at least sheet cavitation) could be employed for a 
first tentative analysis in steady and unsteady condition, 
applying RANS codes (that are still quite demanding in terms 
of computational resources) to increase accuracy of the 
performance prediction, visualize viscous effects and further 
refine the design to achieve better efficiency. The potential 
panel method steady solution for a propeller can be built  (see, 
for instance Lee, (1987) [9]) considering a right handed 
propeller rotating with constant angular velocity ω  in a 
axisymmetric incoming flow field ∞V (same conclusion can be 
drawn for the simpler case of a wing subjected to an uniform 
inflow, neglecting the angular velocity term). In the 
( , , )p p px y z  coordinate system that rotates with the propeller, 
the total velocity vector V  can be written as the sum of the 
relative undisturbed inflow relV  (known in the propeller 
reference system)  and the perturbation potential velocity indq , 
due to the velocity influence of the propeller itself on the 
velocity field: 

 
rel ind= +V V q  (1) 

 
where the relative velocity relV , in the propeller reference 

system, can be written as: 
 

rel ∞= − ×ωV V r  (2) 
 
With the assumption of an inviscid, irrotational and 

incompressible fluid, the perturbation velocity can be written in 
terms of a scalar function, the perturbation potential, that 
satisfies the Laplace equation: 

 

2 0
ind φ
φ

= ∇
∇ =
q

 (3) 

By applying Green’s second identity for the perturbation 
potential, the differential problem (3) can be written in integral 
form with respect to the potential pφ  at every point p laying 
onto the geometry boundaries. The perturbation potential iφ  
represents the internal perturbation potential, that must be set 
equal to zero in order to simulate fluid at rest inside the 
boundaries of all the bodies subject to the external inflow 
(blades, hub, wing). 
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The subscript q corresponds to the variable point in the 

integration, n is the unit normal to the boundary surfaces and 
rpq is the distance between points p and q.  

Equation (4) is a Fredholm integral equation and expresses 
the potential on the propeller blade as a superposition of the 
effects induced by a continuous distribution of sources on the 
blade and hub surfaces and a continuous distribution of dipoles 
(whose strength is equal to the potential itself in that point) on 
the blade, hub and wake surfaces that can be calculated, 
directly, via  boundary conditions, or, indirectly, inverting 
equation (4). 

For the solution of equation (4) a certain number of 
boundary conditions must be applied. The choice of the 
boundary conditions depends on the kind of the problem to be 
solved. On the wetted part of the body (the wing or the blades 
plus the hub not subjected to cavitation, i.e. not subjected to a 
pressure below the vapour tension) the kinematic boundary 
condition holds (the flow must be tangent to the body surface) 
and allows to define the source strengths in terms of the known 
inflow velocity relative to the propeller reference system: 

 
q

q
q

n
n
φ∂

= − ⋅
∂

V  (5) 

 
At the blade trailing edge the Kutta condition states that the 

flow must leave with a finite velocity or that the pressure jump 
at the blade trailing edge must be zero. In a steady problem, the 
Kutta condition allows to write the dipole intensities, constant 
along each streamlines (equivalent to each chordwise strip in 
the discretized formulation), on the wake, first, applying the 
“linear” Morino (Morino, 1974 [10]) Kutta condition:  

 

. . . . . . . .
U L

T E T E T E rel T Eφ φ φΔ = − + ⋅V r  (6) 
 
where the sup scripts U and L stand for the upper and the 

lower face of the trailing edge. After, the zero pressure jump 
can be achieved via an iterative scheme. In fact the pressure 
difference at trailing edge (or the pressure coefficient 
difference) at each m streamlines (or at each m blade strip for 
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the discretized problem) is a non linear function of dipole 
intensities on the blade:  

  
( ) ( ) ( )U L

m m mp p pφ φ φΔ = −  (7) 
 
So, an iterative scheme is required to force a zero pressure 

jump, working on dipoles strength on the blade (and, 
consequently, on potential jump on the trailing wake). By 
applying a Newton – Raphson scheme with respect to the 
potential jump on the wake φΔ , equal in the steady problem to 
the potential jump at blade trailing edge, the wake potential 
jump is given by:  

  

{ } { } { }
11 ( )k k kkJ pφ φ φ
−+ ⎡ ⎤Δ = Δ − Δ⎣ ⎦  (8) 

 
where the index k denotes the iteration, [ ]( ) kp φΔ  is the 

pressure jump at trailing edge obtained solving the problem at 
iteration k (corresponding to the kφΔ solution) and kJ⎡ ⎤⎣ ⎦  is the 
Jacobian matrix numerically determined (9): 

  
k

k i
ij k

j

p
J

φ
∂Δ

=
∂Δ

 (9) 

 
while, for the first iteration, the solution kφΔ  and  the 

corresponding  pressure   jump  is taken from  the  linear 
Morino solution (6). 

Moreover the wake should be a streamsurface: the zero 
force condition is satisfied when the wake surface is aligned 
with the local velocity vector. In the present method this 
condition is only approximated and the wake surface is 
assumed frozen and laying on an helicoidal surface whose pitch 
is equal to the blade pitch. Assuming that the influence of the 
cavity bubble is small in the definition of the wake surface, an 
approach similar to that proposed by Gaggero and Brizzolara, 
(2007) [5] can be adopted and the cavity solver could be 
improved using the aligned wake calculated for the steady non 
cavitating flow. 

Analogous (kinematic and dynamic) boundary conditions 
have to be forced on the body cavitating surfaces, in order to 
solve for the singularities (sources and dipoles) distributed 
there (Caponnetto and Brizzolara, 1995 [1], Fine (1992) [4], 
Mueller and Kinnas, (1999) [11], Young and Kinnas, (2001) 
[16], Vaz and Bosschers, (2006) [15]). 

Different approaches are possible: a fully linear approach, 
in which cavity velocities can be considered enough small to 
allow linearization of boundary conditions or a fully nonlinear 
one, in which singularities are located on the cavity surface that 
need to be found iteratively. On the other hand, an intermediate 
approach, the partial nonlinear approach, can be adopted, in 
order to take into account the weakly nonlinearity of the 
boundary conditions (the dynamic boundary condition on the 
cavitating part of the blade and the closure condition at its 
trailing edge) without the need to collocate the singularities on 
the effective cavity surface. If the cavity thickness can be 
considered enough small with respect to the chord, singularities 
can be placed on the body surface and problem nonlinearity can 
be solved with this assumption (see, for instance, figure 1). 

On the cavity surface SCB  the pressure must be constant 
and equal to the vapour pressure or the modulus of the velocity, 
obtained via Bernoulli’s equation, must be equal to the total 
velocity VapV  on the cavity surface. 

 

 
 

 
 

Figure 1: Exact (SC) and approximate (SCB) cavity surface 
definition. 

 
If p∞ is the pressure of the undisturbed flow field, p  is the 

actual pressure and ρ is the flow density, in a propeller fixed 
reference system, Bernoulli’s equation can be written in the 
following form: 

 
2 2 21 1

2 2 shaftp p gyρ ρ∞ ∞
⎡ ⎤+ = + − × +⎣ ⎦V V rω  (10) 

 
If Vapp  indicates the vapour pressure of the flow, the 

modulus of the corresponding vapour pressure  VapV , via 
equation (10) on the cavity surface, along each section of 
constant radius, , is equal to:  

 

( ) 2 22 2Vap Vap shaftp p gy
ρ ∞ ∞= − + + × −V V rω  (11) 

 
This dynamic boundary condition can be written as a 

Dirichlet boundary condition for the perturbation potential. 
In order to obtain a Dirichlet boundary condition from the 

dynamic boundary condition it is necessary, first, (following 
Brizzolara and Caponnetto, (1995) [1]) to define the 
controvariant components V α  and the covariant components 
Vβ of the velocity vector V : 

 
= V

V V V

α
α

α
β β β α β= ⋅ → = ⋅

V e

V e e e
 (12) 



 4  

 
where αe  are the unit vector of the reference system and ,α β  
are equal to 1, 2 and 3. Defining the square matrix gαβ α β= ⋅e e  
and its inverse gαβ , the covariant component can be written as: 

 
V V g

V g V g g V

β
α αβ

αγ β αγ γ
α αβ

=

= =
 (13) 

 
Combining equations (12) with equations (13) the velocity 

vector  V can be expressed in terms of the covariant 
components: 

 
g Vαβ

α β=V e  (14) 
 

 
 

Figure 2: local non orthogonal panel coordinate system. 
Vectors l and m are formed by the lines connecting panel sides 
midpoints. Vector n is normal to l and m. 

 
In the present case (figure 2) the local coordinate system is 

defined by the vectors l, m and n, where cosθ⋅ =l m , = 0⋅l n  
and = 0⋅m n . The gαβ  and the gαβ  matrix can, thus, be 
written in the following form: 

 

2
2

1 cos 0
cos 1 0

0 0 1

1 cos 0
1 cos 1 0

sin
0 0 sin

xy

xy

g

g

θ
θ

θ
θ

θ
θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 (15) 

 
while the expression of the gradient can be obtained, from 

(14) and (15), as: 
 

2
2

1 cos 0
1 cos 1 0

sin
0 0 sin

l
m
n

θ
θ

θ
θ

− ∂ ∂⎡ ⎤ ⎧ ⎫
⎪ ⎪⎢ ⎥∇ = − ∂ ∂⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥ ∂ ∂⎣ ⎦ ⎩ ⎭

 (16) 

 

The covariant component of the velocity on the non 
orthogonal reference system can be expressed as:  

 

l rel l

m rel m

n rel n

V + U
l l

V + U
m m

V + U
n n

φ φ

φ φ

φ φ

∂ ∂
= ⋅ = +

∂ ∂
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= ⋅ = +
∂ ∂
∂ ∂

= ⋅ = +
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V l
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V n

 (17) 

 

And, from equation (14) the velocity vector is given by: 
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( )

2

2
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m l
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V V
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(18) 

 

Assuming Vn vanishingly small, the normal component of 
the velocity can be neglected: in general it deteriorates the 
robustness of the solution and hardly influences the cavity 
extent as demonstrated by Fine (1992) [4]. 

Thus the modulus of the velocity becomes: 
  

( )2 2 2
2

1 2 cos
sin l m l mV V g V V V Vβα

α β θ
θ

= = + −V  (19) 

 
Considering l approximately aligned with the local surface 

flow, it is possible to solve (19) with respect to lφ∂ ∂  
(because, from equation (17) l lV U lφ= + ∂ ∂ ) obtaining: 

 

 
2

2

cos

sin

l m

m

U U
l m

U
m

φ φ θ
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V

 (20) 

 

Equation (20) can be integrated to finally achieve a 
Dirichlet boundary condition for the perturbation potential, 
equivalent to the dynamic boundary condition. On the 
cavitating surface, where Vap=V V , equation (20),  after 
integration between bubble leading edge and bubble trailing 
edge, yields to: 

  
. .

0
. .

2
2

( , ) ( ) cos
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Bub

Bub

T E

l m
L E

Vap m

m l m U U
m

U dl
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⎤∂⎛ ⎞ ⎥+ − +⎜ ⎟∂ ⎥⎝ ⎠ ⎦

∫

V

 (21) 

 
where the only unknowns are the values of the perturbation 

potential at the bubble leading edge. 
The kinematic boundary condition on the cavity surface, in 

steady flow, requires the flow to be tangent to the cavity surface 
itself. 

With respect to the local (l,m,n) orthogonal coordinate 
reference system (figure 2), the cavity surface SC  (in terms of 
its thickness t) is defined as: 
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( , ) ( , ) 0t - t= → =n l m n l m  (22) 

 
and the tangency condition, by applying the covariant and 

the controvariant representation of velocity vectors and gradient 
defined above, can be written as: 

 
( )
( )

( )

( , ) 0
( , ) 0

( , ) 0

t
V t
g V t

α
α
αβ

α β

⋅∇ − =
∇ − =

∇ − =

V n l m
n l m

n l m
 (23) 

 
Moreover:  
 

( )

( )

( )

( , )

( , )

( , ) 1

tt
l l

tt
m m

t
n

∂ ∂
− = −

∂ ∂
∂ ∂

− = −
∂ ∂
∂

− =
∂

n l m

n l m

n l m

 (24) 

 
And, from equation (16) and (23): 
 

{ }2

2

1 , ,
sin

1 cos 0
cos 1 0 0
0 0 sin 1

l m nV V V

t l
t m

θ
θ

θ
θ

⋅

− −∂ ∂⎡ ⎤ ⎧ ⎫
⎪ ⎪⎢ ⎥− ⋅ −∂ ∂ =⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭

 (25) 

 
Equation (25) yields to a differential equation for cavity 

thickness over the blade, with respect to the local reference 
system: 

 

2

cos

cos

sin 0

m l

l m

n

t U U
l m l

t U U
m l m

U
n

φ φθ

φ φθ

φθ

⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ − + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ − + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

∂⎛ ⎞+ =⎜ ⎟∂⎝ ⎠

 (26) 

 
To solve for the cavity planform shape, another condition 

is required on the cavitating surface: the cavity height at its 
trailing edge must be zero (cavity closure condition). 

This determines the necessity of an iterative solution to 
satisfy this, further, condition because the cavity height, 
computed via equation (26) is a non linear function of the 
solution (the perturbation potential φ ) and of the extent of the 
cavity surface (via the dynamic boundary condition):  

 
. .( ) 0T Et l =  (27) 
 
If the cavity thickness at the blade trailing edge is different 

from zero (this is a common situation, specially near the tip for 

propellers working at low values of cavitation index and for 
propeller geometries specifically designed to deal with these 
phenomena), the blade can be considered as supercavitating. 

Considering the wake geometry as a force free invariant 
surface coincident with the steady non cavitating flow wake 
obtained with the circumferential averaged inflow, with the 
assumption that the upper and lower sides of the supercavity 
downstream the trailing edge collapse into a single surface the 
linearized SCW surface on which the kinematic and dynamic 
boundary conditions have to be forced can be taken as the zero 
thickness trailing wake sheet itself. With these assumption, the 
integral problem (4) can be rewritten discriminating between 
field points on the solid surfaces (blades and hub) and points on 
the wake.  

For a point on the solid surfaces (wetted or cavitating):  
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For a point of the wake supercavitating surface, after the 

desingularization proposed by Fine (1992) [4], the potential φ+  
on the upper side of the wake cavitating surface (at this point 
only back supercavitation is taken into account) is expressed 
by: 
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in which the jump of the derivatives of the potential with 

respect to the normal direction on the wake cavitating surface  
(in the following referenced as Wσ ) represents a source 
distribution responsible of the cavity thickness aft the blade 
trailing edge.  

In the same way as previously done for the dynamic and 
kinematic boundary conditions on the cavitating region on the 
blade, an expression is needed for the Dirichlet type condition 
for φ+  and for the cavity thickness wt on the wake.  

As in Fine, (1992) [4], an orthogonal reference system 
(s,u,n), whose s unit vector is aligned with the mean flow 
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velocity on the wake, has been defined and the normal 
component of the velocity has been neglected for the same 
solution stability reasons observed for the blade cavitating 
surfaces. The Dirichlet boundary condition becomes:  

  

. .
2 2

. .

( , ) ( , )BladeTrailing Edge
BubbleT E

s Vap v
BladeT E

s u m l

U U

φ φ= +

− + −∫ V
 (30) 

 
In which also the wake cross flow terms Uv, whose 

influence was found to be small (as demonstrated by Fine, 
(1992) [4]) can be neglected. The term ( , )BladeTrailing Edgem lφ  is 
the value of the potential at the blade trailing edge on a 
supercavitating region, computed using equation (21) from the 
bubble leading edge to the blade trailing edge. 

Rearranging the kinematic boundary condition, an 
expression for the cavity thickness on the wake can be 
obtained. Following the work by Fine (1992)  [4] and by Vaz 
(2006) [15], the cavity thickness solves, on the local orthogonal 
reference system, the differential equation: 

  
2 2 W

Vap v W
t

U
s

σ
∂⎛ ⎞− =⎜ ⎟ ∂⎝ ⎠

V  (31) 

 
plus another differential equation concerning the cavity 

camber over the wake surface: 
  

2 2 0W
Vap v

C
U

s
∂⎛ ⎞− =⎜ ⎟ ∂⎝ ⎠

V  (31) 

 
for which the initial conditions are set from the cavity 

thickness at the blade trailing edge: 
 

. .

. .

( 0) ( )
1( 0) ( )
2

W T E

W T E

t s t l

C s t l

= =

= =
 (32) 

 
Another aspect concerning propeller cavitation that must 

be taken into account is midchord cavitation that is becoming 
common in recent designs: it is due to the attempt to increase 
efficiency, to the fact that, often, new design sections have flat  
pressure distributions on the suction side, or to the fact that a 
conventional propeller works in off design condition (Young 
and Kinnas, (2001) [16], Mueller and Kinnas, (1999) [11]). 

The non axisymmetric flow a propeller may experience 
inside a wake is, often, characterized by higher incoming 
velocities at certain angular positions with respect to the mean 
inflow considered, for instance, for the design: this traduces in 
small or negative angles of attack that may lead to face 
cavitation.     

In order to capture simultaneously face and back cavitation 
and to allow midchord detachment, the theoretical formulation 
is exactly the same explained above with reference to the more 
common case of back cavitation only. The face cavitation 
problem can be treated exactly as the back cavitation problem, 

thus defining and adequate reference system (the face non 
orthogonal reference system needs to have the corresponding l 
unit vector pointing along the versus of the tangential velocity 
on the face of the profile) and imposing the same dynamic, 
kinematic and cavity closure conditions with respect to this, 
new, local reference system (figure 3).   

 

 
 

Figure 3: Back and Face reference coordinate system. 
 
Arbitrary detachment line can be found, iteratively, 

applying a criteria equivalent, in two dimensions, to the Villat-
Brillouin cavity detachment condition (as in Young and Kinnas, 
(2001) [16], Mueller and Kinnas, (1999) [11]). Starting from a 
detachment line obtained from the initial wetted solution (and 
identified as the line that separates zones with pressures higher 
than the vapour tension from zones subjected to pressure equal 
or lower pressures) or an imposed one (typically the leading 
edge), the detachment line is iteratively moved according to: 

 
• If the cavity at that position has negative thickness, the 

detachment location is moved toward the trailing edge of the 
blade. 

• If the pressure at a position upstream the actual 
detachment line is below vapour pressure, then the detachment 
location is moved toward the leading edge of the blade. 

 

 
 
Figure 4: Blade numbering arrangement 

 
Equation (4) (in the case of partial cavitation) or equations 

(28) and (29) (in the case of supercavitation) are second kind 
Fredholm integral equations for the perturbation potentialφ . 
Numerically they can be solved approximating boundary 
surfaces with quadrilateral or hyperboloidal panels (Morino, 
(1974) [10]), substituting integrals with discrete sums and 
imposing the appropriate boundary conditions. The panel 
arrangement selected for this problem is the same adopted for 
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the steady propeller panel method (Gaggero and Brizzolara, 
(2007)  [5]), with all the surfaces discretized with panair like 
panels (each one composed by five flat subpanel) and with 
hyperboloidal panels (recently adopted in order to save 
computational time and achieve the same order of accuracy). 

For the partial cavitating condition and with respect to the 
blade numbering convention of figure 4, the linear system that 
solves equation 28 for the key blade (all the other blades, in the 
steady solution, are taken into account only via influence 
coefficients) becomes:  
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 (33) 

 
where jξ  is a cavitation index: if the j section is subjected to 
cavitation jξ  is equal to 1, otherwise jξ  is equal to 0. 

For the supercavitating case, only minor modification are 
required, as for instance presented by Fine, (1992) [4]. The 
linear system has to satisfy the integral equation for the field 
points on the solid surfaces and for the field points on the wake 
surfaces, together with Dirichlet boundary conditions extended, 
with equation (30), along mean flow direction on the wake. 
From this point of view the parameter Fij that appears on the 
linear system represents the value of the integral of equations 
(21) or (30) computed via a quadrature technique, while 0 jφ  
represents the known (calculated via extrapolation) value of the 
perturbation potential at the leading edge of each cavitating 
strip of the discretized problem. 

To find the correct discrete cavity planform it is necessary 
to impose the cavity closure condition and an iterative approach 
is needed because of the nonlinear dependency between the 
cavity thickness and the dynamic boundary condition.  
First, the linear system (33) is solved with a first guessed cavity 
planform (generally selected, from the fully wetted solution, as 
the set of panels subjected to a pressure below the vapour 
tension) and all the unknowns (dipoles, sources and cavity 
thickness) are computed with the current configuration of 
cavitating and non cavitating panels. With this first guessed 
cavity shape the closure condition, normally, is not satisfied. 
Hence, the shape is iteratively changed, adding (if the cavity 
thickness is still positive) or subtracting (if the cavity thickness 
is already negative), at the trailing edge of each cavitating 
section, a panel, and solving again the problem, with the new 
configuration of cavitating and non cavitating panels, until the 
cavity thickness at the bubble trailing edge is below a fixed 
threshold and, simultaneously, the derivative of cavity thickness 
at the same point with respect to the chordwise coordinate is 
negative (in order to select the stable solution). If more than a 
cavitating strip has a cavity thickness greater than zero at the 
blade trailing edge (when there is only one cavitating strip 
extended till the blade trailing edge, generally this section is 
that at tip, that is characterized by tip vortex cavitation that 
should be treated adequately), with the same criteria (cavity 
thickness below a certain threshold and negative cavity 

thickness derivative) the problem is solved again guessing an 
extension of the cavity on the wake and iterating until 
convergence. 

RESULTS 
For the validation of the developed numerical code, a 

series of computation has been carried out in order to check the 
ability to capture back and face cavitation, together with the 
convergence of the cavity bubble when it develops aft the blade 
trailing edge. The numerical validation of the method has been 
performed on the numerical results performed by Young and 
Liu, (2008) [17] with an affine panel method. 

A rectangular hydrofoil, with aspect ratio equal to 4, with a 
NACA 66 profile at 0° angle of attack has been computed in 
super-cavitating condition (σV = 0.24), with an increasing 
number of panels on the blade and on the wake. Eight different 
mesh densities have been considered. First the code has been 
tested for the convergence of the cavity shape changing the 
number of panels on the blade (15 fixed sections along the span 
and from 30 to 60 panels along the chord with a fixed value of 
panels on each wake strip equal to 100) and, after, with the 
finest grid, the mesh density in the wake has been changed 
(from 100 to 400 panels per strip), as presented in figure 6.  

The convergence of the solution, as shown, is good: the 
face cavity detaches from the leading edge (the 4% of chord 
camber determines, at 0° angle of attack, the inversion at 
leading edge of the pressure distribution), while the back cavity 
detaches almost at midchord, in accordance with the fully 
wetted pressure distribution presented for the section at 
midspan of the wing in figure 5.  
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Figure 5: Pressure distribution for the rectangular wing at 
midsection, NACA66 profile, t/c = 0.06, f/c = 0.04 α = 0° at σV 
= 0.24. Comparison between fully wetted solution and 
converged cavity solution. 
 



 8  

x/c
-0.4 -0.2 0 0.2 0.4 0.6 0.8

z/
c

-0.1

0

0.1

x/c
-0.4 -0.2 0 0.2 0.4 0.6 0.8

z/
c

-0.1

0

0.1

x/c
-0.4 -0.2 0 0.2 0.4 0.6 0.8

z/
c

-0.1

0

0.1

 

x/c
-0.4 -0.2 0 0.2 0.4 0.6 0.8

z/
c

-0.1

0

0.1

 
Figure 6: Face and back cavitation, rectangular wing at 
midsection, NACA66 profile, t/c = 0.06, f/c = 0.04 α = 0° at σV 
= 0.24. Convergence with number of panels on wake (100 top – 
400 bottom). 
 

 
 
Figure 7: Face and back cavitation, on the rectangular wing, 
NACA66 profile, t/c = 0.06, f/c = 0.04 α = 0° at σV = 0.24. 
 

In the case of propellers, a custom propeller, named E033, 
has been selected to analyze the performances of the numerical 
code. E033 is a four bladed CP propeller designed for high 
speed (35 knots) displacement vessels with a lifting surface 
code, allowing for partial cavitation at lowest cavitation 
indexes. It has a pitch ratio P/D=1.5 at r/R = 0.7, an expanded 
area ratio of AE/A0=0.685 and standard NACA16 profiles. A 
wide series of experiments is available for this propeller in 
cavitating conditions, including thrust and torque 
measurements and cavity sketches and photos, directly 
measured at the cavitation tunnel of the University of Genova. 

The prediction of the cavity planform seems to be quite 
accurate. Figure 8 compares the experimental cavity planform 
with that computed on the suction side of the blade in the case 
of the propeller operating in an uniform axisymmetric inflow. 

Figure 9, moreover, presents the numerical computation of the 
cavity planform highlighting its behavior on the wake, aft the 
blade trailing edge. Except the region near the tip (that is 
subjected to a strong tip vortex cavitation that the numerical 
method is still not able to compute) the agreement is good. The 
region near the blade tip is characterized by supercavitation 
mixed with the tip vortex: numerically, neglecting the last tip 
section, also these features are captured, at least in terms of 
supercavity “inception”.  The propeller performances, like 
thrust and torque and their breakdown lowering the cavitation 
index are themselves well captured for a large set of different 
working condition, as for instance presented in Gaggero and 
Brizzolara (2008) [7] and (2009) [8]. 

The Newton-Rader propellers (Newton and Rader, (1961) 
[12]) represent one of the possible solution to achieve 
multispeed performance without significant losses of efficiency 
between wetted and supercavitating conditions and thus, are 
optimal candidates to test the capabilities of the numerical code 
and to validate it in order to perform further analysis and 
designs computations. The Newton-Rader series is composed 
by twelve methodically varied three bladed propellers (diameter 
equal to 0.254m), that cover pitch ratios between 1.0 and 2.0, 
and blade area ratio from 0.48 to 0.95. All the propellers have 
been obtained varying systematically the geometry of a parent 
propeller, characterized by a pitch over diameter ratio equal to 
1.25, by a blade area ratio equal to 0.71 and designed for an 
advance coefficient of 0.993. This parent propeller, from its 
original design, had been modified two times at the leading 
edge, flattening the camber line, to avoid face cavitation that 
characterized the original design at high values of advance 
coefficient and these modifications have been, after, applied to 
all the twelve designs.  

 

Figure 8: Propeller E033, cavity planform J = 0.8, σN = 2.5 
(colours represent cavity thickness). 
 

For these propellers a huge amount of data is available, 
obtained at the Vosper Cavitation Tunnel by R.N. Newton and 
H.P. Rader and published for the Quarterly Transactions of the 
Royal Institution of Naval Architects in 1961. For all the twelve 
propellers the original work by Newton and Rader, (1962) [12] 
presents the thrust, the torque and the efficiency coefficients for 
nine different cavitation numbers at rate of advance intervals ∆J 
= 0.05 together with photographs showing the cavitation 
patterns at various working conditions. Unfortunately,  the 
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quality of the original images on the copy of the work available 
at the University of Genova library is quite poor, so no direct 
comparisons of cavity planform have been presented in the 
current work and only qualitative remarks and comparisons 
with other numerical calculations have been considered. 

 
 

 
Figure 9: Propeller E033, supercavitating pattern J = 0.8, σN = 
2.5. 
  

Almost all the propellers of the series have been tested. For 
all the cases the results have been obtained discretizing the 
propeller blade with 16 sections along the radius and 25 panels 
along the chord (both for face and back), with the vortex 
trailing wake extending for about three complete revolutions aft 
the blade trailing edge. With the numbering convention 
proposed by Newton and Rader, numerical values of thrust and 
torque have been computed for propellers A3/48/167, 
A3/48/206, A3/71/125, A3/71/166, A3/71/206, A3/95/124, 
A3/95/165 and A3/95/204. The attention, in particular, has been 
focused on propellers A3/71/125 (the parent propeller) and 
A3/95/124, tested at three different advance coefficients around 
the design one (0.9, 1.0 and 1.1), for which other numerical 
computations (from Young and Liu, (2008) [17]) are available.  
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Figure 10: Newton Rader 048, P/D 1.67, J = 1.2 
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Figure 11: Newton Rader 048, P/D 1.67, J = 1.3 
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Figure 12: Newton Rader 048, P/D 1.67, J = 1.4 
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Figure 13: Newton Rader 048, P/D 2.06, J = 1.4 
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Figure 14: Newton Rader 048, P/D 2.06, J = 1.5 
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Figure 15: Newton Rader 048, P/D 2.06, J = 1.6 
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Figure 16: Newton Rader 071, P/D 1.25, J = 0.9 
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Figure 17: Newton Rader 071, P/D 1.25, J = 1.0 
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Figure 18: Newton Rader 071, P/D 1.25, J = 1.1 
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Figure 19: Newton Rader 071, P/D 1.66, J =1.2 
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Figure 20: Newton Rader 071, P/D 1.66, J =1.3 
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Figure 21: Newton Rader 071, P/D 1.66, J =1.4 
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Figure 22: Newton Rader 071, P/D 2.06, J =1.4 
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Figure 23: Newton Rader 071, P/D 2.06, J =1.5 
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Figure 24: Newton Rader 071, P/D 2.06, J =1.6 
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Figure 25: Newton Rader 095, P/D 1.24, J =0.9 
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Figure 26: Newton Rader 095, P/D 1.24, J =1.0 
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Figure 27: Newton Rader 095, P/D 1.24, J =1.1 
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Figure 28: Newton Rader 095, P/D 1.65, J =1.2 
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Figure 29: Newton Rader 095, P/D 1.65, J =1.3 
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Figure 30: Newton Rader 095, P/D 1.65, J =1.4 
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Figure 31: Newton Rader 095, P/D 2.04, J =1.6 
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Figure 32: Newton Rader 095, P/D 2.04, J =1.7 

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
N

K
T
, 1

0K
Q

 

 

K
T
 exp. 10K

Q
 exp. K

T
 num. 10K

Q
 num

 
Figure 33: Newton Rader 095, P/D 2.04, J =1.8 
 

The experimental values and the numerical computations 
of thrust and torque, as shown from figure 10 to figure 33, in 
which the lines represent the numerical solutions and the dots 
the experimental measures (unless otherwise specified), 
compares, generally, well. Some discrepancies, for almost all 
the geometrical configuration tested, are, however, present, 
specially for high (with respect to the design advance 
coefficient) values of advance coefficient. The predicted thrust 
and torque coefficient for the parent propeller and for the 
propeller  A3/95/124 are very close to the numerical 
computations performed by Young and Liu, (2008) [17] with 
PROPCAV, a Boundary Element Method based on the same 
approach of the devised code and with the same capabilities 
(plus more others, like tip vortex cavitation and the blunt 
trailing edge options that are still in development in our 
numerical tool), so similar conclusion and justification for the 
discrepancies can be drawn.  

In fully wetted condition, with the increase of advance 
coefficient, the thrust and torque coefficients are overpredicted 
(see, for instance, the performance of propeller A3/48/167 at 
J=1.4, A3/48/206 at J=1.6, A3/71/125 at J=1.1, A3/71/166 at 
J=1.4, A3/71/206 at J=1.6, A3/95/124 at J=1.1 and A3/95/204 
at J=1.8). In cavitating condition the thrust and torque 
breakdown are better captured, but increasing the advance 
coefficient and lowering the cavitation index some differences 
can be highlighted with respect to the experimental measures. 
At low cavitation indexes the predicted thrust and torque 
coefficients, specially for the propeller with lower value of 
pitch over diameter ratio, are under predicted, and also this 
drawback of the numerical code is in accordance with the 
others numerical computations found in literature.  

The simplifying hypothesis on which the potential panel 
method is based could be the reasons of these discrepancies. 
For the solution of the problem, the force free condition on the 
trailing wake is only approximated. The trailing wake, 
following the work by Salvatore, (2004) [13] is approximated 
with an helical surface whose pitch is a weighted average 
between the hydrodynamic and the blade pitch at each radial 
position. A more consistent wake alignment scheme (like that 
proposed by Pyo and already included in the steady non 
cavitating version of the developed code, as in Gaggero and 
Brizzolara, (2007) [5]) should be included to correctly model 
the wake at very high values of advance coefficient, and an 
iterative scheme should be employed to capture the non linear 
effects between wake position and back and face cavitation at 
very low values of cavitation index.  

Moreover, at very high values of advance coefficient and in 
severe cavitating conditions, the viscous and turbulence effects 
(neglected by a potential solver) could be significant, for the 
alignment of the wake itself but also for the computation of 
face and back cavity detachment points. With the hypotheses of 
an irrotational, incompressible and inviscid fluid, the viscous 
effects are included only via standard viscous corrections, by 
means of friction coefficients applied on the wetted part of the 
blades. All the influence of the vortical structures and of the 
boundary layers on the development of the cavity is neglected: 
at high values of advance coefficient, as shown in figure 39, 
back midchord supercavitation and partial face cavitation are 
present on the blade at the same time and, even if in the present 
method midchord cavitation is treated with the same 
hypotheses of sheet cavitation, generally midchord cavitation 
leads to bubble cavitation, with a different dynamics on the 
performance of the propeller. 

Cavitation, moreover, is an intrinsic unsteady phenomenon 
also if the propeller is tested in steady, uniform flow. If, for 
high speed, supercavitating propellers are suitable because they 
move the cavity closure point well aft on the wake instead than 
on the blade, reducing erosion and granting more stable 
performances, in the case of midchord cavitation the 
unsteadiness, not captured by a simple sheet cavity model, 
together with the risk of bubble cavitation, could plays an 
important role. 

The analysis of the cavity planform of the tested propellers 
further highlight some of the peculiarities of Newton Rader 
propellers working in cavitating conditions. 
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As experimentally observed and reported in the work by 
Newton and Rader, face cavitation characterize model 
propellers with pitch over diameter around 1.25 (exactly 1.25 
for the parent propeller, 1.24 for the A3/95 propeller family) for 
advance coefficients greater than about 1.0.  

 
Figure 34: Back cavitation, Newton Rader 048, P/D 2.08, J 
=1.5, σV = 0.25 
 

 
Figure 35: Face cavitation, Newton Rader 048, P/D 2.08, J 
=1.5, σV = 0.25 
 

Also numerically this trend is verified. Almost in all the 
tested working condition the propellers are characterized by 
back midchord supercavitation (see, for instance, figure 34) and 
face leading edge cavitation when the advance coefficient is 
enough high (i.e. the angle of attack is locally negative, as in 
figure 39). As presented in figure 39 and 41, for J equal to 1 
and to 1.1 the parent propeller is affected by a quite evident 
face cavitation (a bit overestimated with respect to the 

experimental measures and the numerical analysis by Young, 
(2008) [17]), that become stronger lowering the cavitation 
index.  

 
 

 
Figure 36: Back cavitation, Newton Rader 071, P/D 1.25, J 
=0.9, σV = 0.25 
 

 
Figure 37: Face cavitation, Newton Rader 071, P/D 1.25, J 
=0.9, σV = 0.25 
 

With respect to the same working condition (J=1, σV = 
0.25) the face cavitation that affects propeller A3/95/124 (figure 
43) is less evident and, as suggested by Young, this could be 
responsible of the better performance, in cavitating conditions, 
of the propeller with 0.95 BAR. Same conclusion holds in the 
case of J=1.1 and σV = 0.40. The A3/71/125 propeller (figure 
41) has a face cavity less “evident” with respect to the face 
cavity of propeller A3/95/124 of figure 45 but, percentually, the 
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extension of the face cavity along the chord is greater for the 
A3/71/125 propeller, reducing its performance with respect to 
the same configuration but with BAR equal to 0.95. The most 
important effect of the blade area ratio can be, as expected, 
recognized in cavitating conditions: while, in fully wetted flow,  
 

 
Figure 38: Back cavitation, Newton Rader 071, P/D 1.25, J 
=1.0, σV = 0.25 
 

 
Figure 39: Face cavitation, Newton Rader 071, P/D 1.25, J 
=1.0, σV = 0.25 
 
 
 
 
 
 
 

the interference between blades and the viscous effects 
penalizes propellers with the greater blade area ratio, in 
cavitating flow the better performances can be achieved when 
the face cavitation is less relevant with  respect to the wetted 
area, that is greater for propeller with higher BAR values. 

 

 
Figure 40: Back cavitation, Newton Rader 071, P/D 1.25, J 
=1.1, σV = 0.40 
 

 
Figure 41: Face cavitation, Newton Rader 071, P/D 1.25, J 
=1.1, σV = 0.40 
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Figure 42: Back cavitation, Newton Rader 095, P/D 1.24, J 
=1.0, σV = 0.25 
 

 
Figure 43: Face cavitation, Newton Rader 095, P/D 1.24, J 
=1.0, σV = 0.25 

CONCLUSION 
The Boundary element method, developed at the 

University of Genova, has been extended in order to deal with 
suction side supercavitation in junction with contemporary face 
leading edge sheet cavitation. Theoretical and numerical details 
of the solution algorithm employed to solve steady potential 
flow on three dimensional lifting bodies, such as hydrofoils and 
propellers, have been presented in the paper. The accuracy and 
convergence of the method have been presented and discussed 
in the case of supercavitating three dimensional hydrofoils, 
showing good correlation with similar numerical simulations. 

The application of the method, in case of a propeller 
designed with standard NACA profiles as the propeller E033, 

 
Figure 44: Back cavitation, Newton Rader 095, P/D 1.24, J 
=1.1, σV = 0.40 
 

 
Figure 45: Face cavitation, Newton Rader 095, P/D 1.24, J 
=1.1, σV = 0.40 

 
evidenced excellent correlation with experimental results in 
terms of predicted cavity planform shape. 

Experimental validation studies, carried out on the 
complete series of Newton-Rader model propellers, evidence 
the ability of the devised code to capture quite well the 
propellers performances in very different working conditions, 
like subcavitating regime, partially cavitating and 
supercavitating conditions, even if with face cavitation. The 
agreement is excellent for advance coefficients around the 
design advance coefficient (0.993 for the parent propeller) for a 
wide range of different cavitation indexes, while a general 
overestimation can be recognized in off design condition, 
specially at higher values of advance coefficient.  
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Instead, the thrust and torque breakdown, corresponding to 
lower values of cavitation index, are always well predicted: 
with a fully developed super cavity bubble on the suction side, 
the performance of the propeller mostly depends only on the 
profile face geometry (because the back side has a pressure 
fixed to the vapour tension) and of its pressure distribution that 
is, generally, well computed. Moreover, it has been 
demonstrated that the face leading edge cavitation (that the 
current method tends to overestimate) plays an important role 
in reducing cavitating propeller performance and that should be 
avoided (for instance increasing blade area ratio or modifying 
blade leading edge, as already done by Newton and Rader but, 
probably, not sufficiently) in order to obtain good multispeed 
performances. 

Also the cavity planforms, at different cavitation indexes, 
qualitatively agree with the computed supercavity that are, 
instead, quite similar to the other numerical cavity shape 
available in literature. 

Further developments of the present method currently 
planned are the extension of the numerical scheme to treat  face 
supercavitation together with arbitrary points supercavity 
detachment, in order allow the code to solve finite trailing edge 
profiles. Finally, the supercavity model has to be included in 
the unsteady potential solver, allowing the computation of 
unsteady, supercavitating propellers performances. 
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