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Abstract

To characterize a field in the multilayer dielectric structure, a generalized
full-wave Green’s function is derived using two-dimensional spectral-domain
technique and it is transformed to space-domain. It is derived using a simple
structure where the current source lies between two layers bounded by sur-
face impedance boundaries called the "standard” structure. Reflection and
transmission coefficients at the surface impedance boundaries are used to
compute the coefficients of the Green’s function and this can be achieved by
simple iteration technique with the transmission line analogy. The multilayer
dyadic Green’s function derived in spectral-domain can be converted to space-
domain by use of Fourier-Bessel transformation. This space-domain Green’s
function is consistent with that of Sommerfeld approach for a grounded di-
electric geometry excited by a horizontal Hertzian dipole.

This method is versatile and can be used for the either closed or open
boundary problem. While the Sommerfeld’s approach is difficult to apply
in multilayer structure, the method in this report can easily be adapted to
multilayer geometry. The Green’s function for multilayer dielectric structure
as detailed here is used in the numerical modeling of monolithic microwave
integrate circuit, dielectric waveguides, and multilayer microstrip antenna

structures.
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1 Introduction

The electromagnetic wave propagation in multilayered media, both isotropic
and anisotropic, has been studied extensively by the use of full-wave analysis[1]-
[5]. In [1], a generalized spectral-domain Green’s function for multilayer di-
electricis computed with iterative method to find the contribution of all other
layers. In [2], a two-dimensional space-domain method of moments treatment
of open microstrip discontinuities on multi-dielectric-layer substrates is pre-
sented. In [3], a dyadic Green’s function in lossy media are investigated.
While an operator approach in spectral-domain is presented in [4], in which
a TE-TM decomposition and propagation matrices are used.

| In this report, a general formulation of the problem of a horizontal dipole
in a multilayered environment is presented. The formulation is consider-
ably simplified by seperating Green’s function into a transverse-electric(TE)
and transverse-magnetic(TM) terms. Moreover, this report contains deriva-
tion the Cartesian dyadic components as functions of cylindrical coordinates,
which were found to be more handy in many cases related to planar structures
which exibit a circular symmetry. This is done by means of a Fourier-Bessel
transform, which provides a tractable form of the dyadic Green’s function.

The aim of this report, therefore, is to evaluate the dyadic Green’s func-

tion for the multilayer planar structure, under a planar excitation, in the
Fourier domain and, then, transform it to space domain using Fourier-Bessel
transform. In fact, the dyadic Green’s function by itself can provide use-
ful information about the effects of the substrate, the characteristics of the

radiated field, and, finally, the power losses in the layers.



In part 1, the equivalent boundary value problem solved with the use
of electric and magnetic vector potentials. In part 2, according to the
nonuniqueness of resolution of Hertz vector potentials, dyadic Green’s func-
tion is derived with magnetic vector potential only and shown that these two

approaches produce consistent results.



2 Part1: Decomposition of fields using elec-

tric and magnetic vector potentials

2.1 Geometry and general formulation of the prob-
lem

The electromagnetic study of the structure, Figure 1, can be obtained from
Maxwell’s equations, with a time variation e?“*, where only an electric current
density J(7') is assumed to be present. With such a hypothesis the electric

field can be obtained via the following integral equation:
B() = [ G(i)- J(7) do’ (1)

where G (7|') stands for the dyadic Green’s function. In the most general
case G has 9 components, while for planar currents these 9 components are
reduced to only 4 components. Moreover, the symmetry of the geometry
makes it possibile to find some components of G in terms of the other com-
ponents.

The dyadic Green’s function is the solution of the fields due to a point

source and can be represented, in rectangular coordinades, by
GzzEZ + GzyZy + Gz, T2
G = | +Gyf + Gyii + Gy (2)
+G o2z + G2y + G, 22
where G;; is the i-th component of the field due to a unit j-directed current

source 6(F — ') 7. The well known relation between Hertz vector potentials



and the electromagnetic field is given by the following two equations

E = —jkZV x 1, + k*1. + VV - II. (3)

B = jkYV x 11, + k0, + VV -1, 4)

In addition to these equations, the relations between the Hertz potentials

and electric and magnetic vector potentials make the above expressions as it

follows:
E = —VxF—jupd+—VV.4 (5)
Jwe
A = VxA-jweF+—VV.F (6)
jwp
with
i, = —4 (1)
¢ T jwe
M, = ——F. (8)
Jwe

These two vector potential functions satisfy the wave equations:
VZA+RA = —J (9)
VF+EF = -M; (10)
where J; and M; are electric and magnetic current sources.
A field in any region can be completely defined by suitable components of
{Az, Ay, A,, F;, Fy, F,} and judicious choice of these two components make

the field decomposed [1],[6]. In the present chapter, the field is decomposed
using (A., F;), that is,

b
I

A, (z,y,2)2 (11)
= Fy(z,y,2)2 (12)

2>
|
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For an arbitrary surface current distribution in the zy plane between 11

and 21 layers, with £ and y components:
j(m)y) = J,(x,y):i:-!-Jy(z,y)g} (13)

the solution to £ and H or A and F can be written in terms of the known

Green’s function as follows
V) = [ [1Gus (FF) () + Gos, (7)) ds (14)

Since the multilayer geometry in this case is infinite in z and y, the two-

dimensional function Psi(7) can be defined as

U (kyy by, 2) = //oo U(z,y,z)e?*==+hs¥) drdy (15)

1 [ s itheo
\Il(z,y,z) = '('5?)3/[_00 ‘I’(kmky’z)e ilkza+kyy) dkzdky (16)

where

U =(E,H,J,AF). (17)

Now, the individual components of the electric and magnetic fields can

be written in terms of A, and F, as shown below:

2
o Lo
Bo= LCLira) (20)
2
B = 631;1; jul.w gxg; (21)



0A, 1 0°F,

By = =5 * 0noye: 22)
1 @*F, ,
H, = E w"i'k F,) (23)

2.2 Dyadic Green’s function in the spectral-domain

The field components in space-domain can be easily transformed to the

spectral-domain using a two-dimensional Fourier transformation.

i, = —jksz+££66£ : (24)
5, = jk,ﬁ‘,+%a£‘ (25)
o= L 2 A (26)
1. = A, f—;%i’ ~ (27)
i, = jk,/i,+wk—;%i‘ (28)
i = ML#(?(;;’-WF,) (29)

in which ~represents Fourier-transformed component. In source free region,

A and F satisfy the homogeneous wave equation

A;
F;

A,
F;

Vv? + K? =0 (30)

In the spectral domain this equation takes the form:

9 A,
(@_ui’) . =0 (31)




where
u2=k2+k:—-k2,kk=ko\/€_, (32)

This homogeneous wave equation is not a partial differential equation but
an ordinary differential equation and the general solution to the equation can

be written as

Au(kaykyy2) = (€7 +Tae*)a(ks, ky) (33)
Fy(ksykyyz) = (€7 +Tpe™)f(ks,ky) (34)
As shown in Figure 2, for the "standard” structure with x directed current

source between the interface of the two layer '11’ and '21’, the general solution

to a;; and f;; is given by

Ay (koo by 2) = (€% 4T gy, e7"0%)ayy (s, ky) (35)
Auy (B kyy2) = (€7 + Ty, €4%)an (ke ky) (36)
Fopy(keykyy2) = (€7 + T, e7) fra(kay ky) (37)
Fopy (ke kyyz) = (7% + T, ) fr (ks ky) (38)

At the interface, tangential electric fields are continuous and tangential mag-
netic field are discontinuous due to the z directed electric current source as

shown by the following equation:

By (ko ky,z=0) = Eg, (ks ky,z=0) (39)
By (keyky,z=0) = Ey (ks kyy2=0) (40)
H,, (kg ky,z=0) = H,,, (ks,ky,z=0) (41)
Hy, (kpykyyz=0) = Hy, (ks ky,z=0)=1 (42)



With the above 4 boundary conditions the unknown constants I'y and

I'r are determined and the functions ay;, az;, fi1 and f;; may be written in

the form:
fu = wito(l + Ui (43)
kg + k: [Uu(l - FFu )(1 + PFn) + u21(1 - Fle)(l + FFu )]
fu = wpo(l + T, ) (44)
k2 +k} [un(l =Tr, )(14TrR,) +un(l =Tk, )(1 4+ Tg,)]
—k,
BTN
enug(l —Ty,,) (45)
[611u21(1 + FAn)(l - FAn) + e21“11(1 + FAn)(l - FAu)]
k:
T R
enun(l —Tay,) (46)

[611u21(1 + FAu )(1 - rAzl) + 6211‘11(1 + FAzx )(1 - FAu )]
As a result, the elements of dyadic Green’s function for the electric field

due to an infinitesimal electric current source in spectral domain are given

as follows
A k’-'u —-u212 u; . —-u212 u
Ghy, = —;;f(e‘ 1 —T 4y € )an + jky(e7* — T,y €") f21(47)
u k .
2E1vJ.z- = _—y—ull'(e-unz - PAZI e )021 - ]kx(e_unz - FF'z: e’ )f21 (48)
wez
. k2 + k?
21 — z Y(e—¥212 u21 49
GE.J, oo (€77 4 T g,y 6" )an (49)
for z > 0 and
A kzu U112 -ty . u112 —-u
Gusz = '?1111(6 " — I1Aue u)all _Jky(e il FFne . )fll (50)
~11 kyU]l U112 -u11 . u112 -u11
EJ. = E(e —Laye™ )an + jkz(e"* + T e ) fir (51)
~ k2 + k2
11 = = Y(pu112 u11 2
GE:J: jwell (e + PAlle )all (5 )



for z < 0.
Finally, we note that the elements G;; of the spectral Green’s function
show very interesting properties, due to the geometrical symmetry of the

structure around z-axis, that can be summarized in the followings[5):

Grog,(—ky, key2|2) = —Gr,u, (ks by, 2]2) (53)
GE.a,(—ky ks, 2|2') = G,a,(ksy ky, 2|2) (54)
Grya,(~kys key2|2) = Gr,u,(ks, by, 2|2') (55)
Gr.a(~ky, key2|2) = =G, (ks ky, 2|2') (56)
Grya(=ky key2|2) = Gr,u,(ker by, 22) (57)

Moreover, if there were z directed current source, using the reciprocity

theorem and Parseval’s theorem we can deduce the following result

Gralkes kys21l22) = Goplke, by 2]21)
Vop#q(p=1,9;9=2). (58)
where 2z; and z; are the z coordinates of the chosen sources. We note that the

above result express an index permutation property of the spectral dyadic

Green’s function obtained in the Fourier transform space.

2.3 Space-domain solution of dyadic Green’s func-
tion

To find space domain Green’s function, a two-dimensional inverse Fourier

transform is need. The f;; and a;; are functions of &, and k,, so a transfor-



mation to polar coordinates is made both in coordinate space and k space.

T = pcosd, y = psing (59)
kz = Acos(, k, = A sin(, (60)

with
kzx + kyy = Apcos({ — ). (61)

Then, the Fourier transform defined in an earlier paragraph becomes

1 0o 21 .
¥(5,9,2) = L[ 00 ¢ 2)e e dgran. (62)

The function e/*?*(¢~#)-jt represents a plane wave whose propagation con-
stant is A, traveling in a direction which is normal to the z axis and which
makes an angle { with the z axis. Each plane wave is multiplied by an am-
plitude factor \i'(/\, ¢, z) and then is summed with respect to the propagation
constant, or space frequency .

If we take a close look at the components of dyadic Green’s function,
we see that in (),()-domain the components can be separated into A and ¢

functions, respectively. That is, for any componens the following is true:
()¢ 2) = A()\, 2) B(Q) (63)

and as a result, for a surface current source, the kernal of the Green’s function
has this form:
—Ajcos’( + Asin?(  —(A; + Az)cos(sin(
—(A1 + Az)cos(sin{  —Aysin?( + Azcos?( (64)
Ascos( Azsin(

10



In equation (64)

UnUi, _,, . wne 1 =T
A = %(e 212 — T4, ™ )—AA11 (65)
A2 = jupa(e™* = Tp,ene) ot (66)
Tr
— 1_
Ay = TH(wnt T, o)t A (67)
A
for 2 > 0 and
U21U11 oy 2 a1 =T
A = 21—1,11(6 1E =Ty, e )——TA“’1 (68)
. 1+T
Ag = _quo(e“uz_’_rFue—uuZ) +TFF11 (69)
A3 — _u2l(cuuz+I\Aue—uuz)l_TiAll (70)

for z < 0, with

Ty = 611u21(1 + FAln)(l = FAn) + e21"‘11(1 + PA::)(]' - PAu) (71)
Tr = ull(l - PFu )(1 + Fle) + u21(1 - an)(l + FFu)’ (72)

Now, one may use the following integral

2r .
/ cosml e df = 2r(—5)"Jn(z) (73)
0

27 .
/ sinmf =% g = 0 (74)
0

to evaluate the (-integration.

GE, . (p, ¢,2|2' = 0)

GEyJ:r (p7 ¢’ ZIZ, = 0)

The final results are in the form:

= %/om[ (A1 + Az)Jo(Ap)

+(A1 + Az) cos2¢ J2(Ap) |AdA (75)

11



GE,2.(p, 9,2l =0) = 5%_-/0 A3z cosd Ji(Ap)A2d) (77)

GE.3,(p, 6,22 =0) = Gg,1.(p,¢,2]2' =0) (78)
GE,5,(p, 6,22’ = 0) = % i (=41 + A2)Jo(\p)

“(Ar + As) c0s26 Jy(Ap) ]AdA (79)
GE,5,(p, 8,212’ =0) = tand Gg,,.(p, ¢,2|2' = 0) (80)

2.4 Fresnel coefficients at the other boundaries

The I's of the field expression are found to be reflection coefficients for a
transmission line which is terminated by the load of different characteristic
impedance. For the magnetic vector potential(A), the the equivalent trans-
mission line characteristic impedance is equal to §;;/¢;; which is identical to
the TM wave impedance. For the electric vector potential(F'), the equivalent
transmission line characteristic admittance is equal to ,3,-,- /ui; which is iden-
tical to the TE wave admittance. In addition, the reflection coefficient for A
/F is equivalent to that of a current/voltage wave of a transmission line.

With these analysis and Figure3, the reflection coefficients are deter-

mined:

12



with

1-T4.
T _ " Ang
Z'J'H 1 + FA.','+1 ZA'J“ (83)
1-TF.
T ____fuNlg
YtJ+l 1+ FF"H-I ZFu+l (84)

2.4.1 Grounded-substrate geometry

Since there are no reflection from the upper layer in Figure 4, the reflection
coefficients Iy ,T'r,,T4,,,I'r, are identical to zero. On a perfect electric
conductor(pec) the normal component of electric field is doubled by its im-
age, however, normal component of magnetic field is cancelled by its image.

Therefore, the following relations are true:

f421 =1, F’Fn = -1 (85)

and
Fayy = e~ (86)
e = —e™ Mot (87)

2.4.2 Substrate-superstrate geometry

For a substrate-superstrate geometry, Figure 5, the I'’s are calculated step

by step from the farthest layer as shown below:

T4y = O (88)
R (%9)

13



For the upper layer, the reflection coefficients are given by:

Tapy = T e 2 (90)
Psz = F;’n e 2undz (91)
where
Za,, — 27T
I'\ = 21 A2z
Azl ZAZI + Z};z
— (,321/621) - (,522/622) (92)
(Ba1/€a1) + (B22/€22)
Ye, = YT
1‘\ = 21 Fn
F YF;; T YF1;1
_ (Ba/pn) = (Br/p2) (93)
(ﬂzl/#zl) + (B22/ p22)
(94)
and
Us; = /\2 - k?j, k,'j = ko\/q (95)

2.4.3 Two-layer-substrate geometry

As shown in Figure 6, for an upward looking case, I'4,, and I'py; are equal

to zero. For a downward looking case, however,

T, = e lund (96)
Tp, = —e lund (97)
and
Z3, = jtanh(uigds)Za,2 (98)
Ya, = —jcoth(uiads)Yr;2 (99)

14



Finally, the I'4,, and 'r, are given as follows:

PAu =

2.4.4 Substrate-air gap-superstrate geometry

ZAu —j ZAu tanh(ulgdg)

e~ 2un dy

ZAu +] ZAu tanh(U12d2)
YFn +] Yp'u COth(ulgdz)

e~ 2un dy

YFu —j Yp‘n COth('ulgdz)

(100)

(101)

For a downward looking case, Figure 7, the reflection coefficients are given

by

while, for an upward looking case are identical to the form:

ZAzz — ZAza

FAzz =
FF22 =

with
T
A22

YT
P2

e-2u22d3

e—2u22d3

—2uy1dy

€

=2updy
b

I

—€

ZA:z + ZAza
YFz: - YFzs

YFzz + Yan

1 =Ty,

= Az2

1+FA22
1-Tg,

= ZF22

1+ PFzz

(102)
(103)

(104)

(105)

(106)

(107)

Finally, the I'’s at the air-gap layer are given by the following expressions

FAzx =

Ple =

e-2u21 dz

e—2u21d2

ZA!! + Z:{n
Yp, - Y};z
YF21 + YF:F

22

15
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ZA21 - ZA22

(108)

(109)



3 Part 2: Decomposition of fields using mag-

netic vector potential

3.1 Magnetic vector potential

To derive the generalized Green’s function for multilayer structure, a combi-
nation of Sommerfeld’s resolution[7] of a magnetic vector potential (or Hertz
potential II.) A = (A;,0,A,) for the z-directed dipole source on the im-
perfect ground plane, and the spectral domain technique are investigated.
Moreover, the equivalence between the former approach and this method is
also investigated. In contrast to the previous chapter, the potential Green’s

function is defined as
E(F) = / (K] +VV). G (#F) - () dv. (110)

The field equations with the vector potential A have the following form;
1 3%A, 1 9%A,

B = —jophet Oy s (111)
B = 5t 5p) (12
H, = 65;’ (114)
H, = -aa’:' (116)

Using the Fourier transform, the field expressions and wave equation for

16



vector potential can be transformed to the k-domain. The boundary condi-

tions can also be transformed to the k-domain.

- . k2 .k, 04,
E, = —(]w/t+J.Te')A,+;—€ Ep
i kok, x|k, DA
= - A + L=
E, ] we 0z
5 A+k,a/i, 1 9%4,
: T TR T e, Jjwe 022
H, = jk,A
7, = 0A, _Ar
i, = —jkA,

where

=R+ -, k=k/e

(117)
(118)

(119)
(120)
(121)
(122)

(123)

(124)

From the geometry of "standard” problem, the solution of the wave equa-

tion in the spectral domain in the both side of the interface can be assumed

to be

Azu (km ky, z)

~

Ay (ke ky, 2)

Ay (kzy by, 2)
fizn (kz, ky, z)

(€% + T'gy, €71%) Py (i, Ky)
("% 4+ T,,, 7)) Q11 (ky, ky)
(e7"%% + Ty, €¥2%) Pyy (ki ky)
(€7 + Ty €"2%) Q1 (Kzy Ky )

17
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Moreover, the boundary conditions in the spectral domain at the interface

z = 0 are the same as those of the previous chapter. From the electric and

magnetic fields boundary conditions, the four potential boundary conditions

shown below are obtained.

Ak by z2=0) = Ak ky,z =0)
A2 (kg by, 2 = 0) Ak by, 2 =0)

9 /'in P A2l

9z 9z 1
1 9AR 1 9AM . AR Al
21 ¥4 €11 z €21 €11

(129)
(130)
(131)

(132)

As a result, the four unknown function P’s and Q’s are determined in

terms of I'’s in each region.

14T,
Pu(ks,ky) = —z=
1471,
Py (kzy ky) = ——Sl—"
1 1
Qll(kza ky) = (a - ;;) :
jkz'(l + F211 )(1 + I1"’21)(1 + an)
Sl(ulh U2, an ’ F231 )Sz(un, U21, le1 ’ I‘:cn)
14T,
Qa(ks, ky) = I_H’__Qll(kz’ky)
. 2

where

S1 = & (ull, U1, L'zyy, F-’f-’n )
= "[u21(1 - an)(l + qu) + ull(l - qu)(l + oy )]
S, = Sz(un, U21, an ’ Fz‘n )
U1

= Eﬂ(l - an)(l + rzu) + _(1 - qu)(l + Fz?l)
€21 €11

18
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(134)

(135)

(136)

(137)

(138)



These results are similar in the form with T4 and TF of the previous chapter,

however, the I is defined somewhat differently.

3.2 Space-domain solution of dyadic Green’s function

The space-domain Green’s function of a vector potential @ with £ and g di-
rected current source is derived using 2-dimensional inverse Fourier transform
defined in the previous chapter. Moreover, the symmetry of the structure
considered here allows us to deduce some components of Green’s function

from the other components. The final results are given as following:

1 oo .
GiLi(p,2) = o= [ (€7 4Ty %) Pa(\)dalMp) MA  (139)

0

G (P $,2) = ocoss [ (€71 + Ty %) Qu(N) 1 (A0)A2dA (140)

for z > 0, and

1 00
Chnlp$2) = o /0 (€% 4 T, e~%) Py(NJo(Ap) AdA  (141)

G (p8,2) = 2i7rcos¢ /0 (€*1% 4 T, e”*1%)Q131(\)J1(Ap)A2d) (142)

z

for z < 0.

The P’s and @)’s are determined in the section 3.1, and I';’s and I',’s will
be determined by the boundary conditions at the other interfaces, that is,
tangential electric field must be zero on a pec and the normal component

should be enforced. For example, on a perfect electric conductor,

r = -1 (143)
I =1 (144)



in which the I's are reflection coefficients at the interfaces. For a multilayer
problem, the I's are calculated by iterative method as it has been demon-

strated at the end of the previous chapter

20



4 Conclusions

In this report, two types of Green’s functions, one is the electric field Green’s
function and the other is the potential Green’s function, are derived for
multilayer substrates geometry and shown that these two are equivalent.
According to the non-uniqueness of the resolution of the Hertz vector po-
tential, the former approach use TM - TE decomposition with electric(F)
and magnetic(A) vector potential. While the later use only magnetic vector
potential with two components, in which one component is parallel to the
current source and the other is perpendicular to the current source and its
surface.

A two dimensional Fourier transform pair and Fourier-Bessel transfor-
mation are used to convert the spectral domain Green’s function to space
domain form. The versatility of the spectral solution for multilayer structure
and the possibility of inverse transform to space domain allow us to develop
a powerful method of analyzing multi-dielectric layer structure regardless of

open or closed geometry. Moreover, the second kind of Green’s function can

be used to extend ready-made CAD program for a multilayer structure.
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Geometry of Multilayer Dielectric Substrates with Surface Current Source

Figure 1: Geometry of multilayer dielectric substrates with surface current

source
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Transmission-Line Analogy to Calculate Reflection Coefficients

Figure 3: Transmission line analogy to calculate reflection coefficients
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Figure 4: Grounded-substrate geometry
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Figure 5: Substrate-superate geometry
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Figure 6: Two-layer-substrate geometry
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Figure 7: Substrate-air gap-superstrate geometry
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