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ABSTRACT 
To reduce the friction drag of the hulls of high-speed craft, 

seaplanes, and hydrofoil boats, steps are made on their 

undersurfaces. The effect is achieved due to the formation of a 

gas cavity aft of the step, which reduces the wetted area. The 

wetted area can also be reduced by striking a compromise 

between the cavity size and the wetted lengths of the planing 

surfaces by changing the center-of-mass position of the planing 

boat and the geometry of the stepped hull. The proper choice of 

the shape of the stepped bottom and the design parameters may 

also offer other useful effects, for example, the effect of surface 

wave energy regeneration on the system of planing surfaces. 

This paper presents a solution method for two-dimensional 

mathematical problem of planing of the stepped air cavity hulls 

of a high-speed crafts. The method allows predicting and 

quantifying the above-mentioned effects. The key feature of the 

proposed approach is that the problem is solved in natural 

physical formulation. All the required characteristics – the 

cavity shape and length, the free boundary shape, the wetted 

lengths of the planing surfaces, and the trim angles are 

determined from a specified cavitation number, Froude number, 

and center-of-mass position.   

The Froude number is determined from the displacement. 

When, in addition, the center-of-mass position is specified, 

additional unknowns appear in the problem – the wetted 

lengths and the trim angles. In this case, to the singular integral 

equation of planing must be added the force and the moment 

balance equations. As a result, a logically closed system of 

integral equations is obtained. However, the system features 

parametric nonlinearity in the form of the unknown limits of 

integration – the cavity length and the wetted lengths. The 

nonlinear problem is solved by sequential minimization of the 

residual of the system using nonlinear-programming 

techniques.  

The calculations have shown that the wave amplitude in 

the wake of the planing boat depends of the cavitation number 

and the design factors of the step and the planing boat. At 

negative cavitation numbers, an additional lift develops due to 

artificial air injection into the cavity under the bottom, which 

changes the draft and the trim angles. The calculated data 

suggest that the wake amplitude can be minimized by 

optimizing the cavitation number and the design and setting 

angles of the steps. 

INTRODUCTION 
The designing of high-speed craft, seaplane takeoff/landing 

systems, hydrofoil boats, and other types of modern vehicles 

calls for theoretical studies on the planing of variously designed 

lifting surfaces aimed at improving the hydrodynamic 

characteristics. The bottom design with a step or a system of 

steps with air cavities aft of the steps reduces the friction drag 

and offers some new hydrodynamic qualities. In particular, of 

both scientific and practical interest is Academician Pavlenko’s  

[1] idea to determine the proper relative position of the surfaces 

being flown past such that the power consumption is minimized 

due to wave energy regeneration.   

Butuzov [2–4] conducted a theoretical study and 

calculation of two-dimensional cavities under the bottom of a 

ship and on a planing surface. In [2], the bottom cavity is 

modeled by a cavity downstream of a wedge under a solid 

horizontal wall. A similar model was considered in other works, 

too, for example, in [5]. In [3, 4], the cavity on the planing 

surface aft of the step is analyzed using a simplified planing 

model and Ryabushinsky’s cavity scheme to join the solid and 

the free boundaries. In the simplified planing model in [3, 4], 

the free liquid boundaries fore and aft of the planing boat are 

represented as a straight solid wall, and the lengths of the 

wetted sections, the cavity length, and the trim angle are 

specified. Note that under such limitations on the model the 

problem of determination of the planing surface shape optimal 

in terms of hydrodynamic resistance is considered in [3].  

Clearly the actual phenomenon of planing differs greatly 

from its simplified models. The main reason is that when a 

water-displacement ship or a planing boat is in motion, its 

position on the water surface cannot be specified arbitrarily.  

This position is governed by the speed, the position of the 

center of mass, and the bottom shape. If there is a cavity under 

the bottom, its shape and length are not known. The cavity size 

will mainly depend on the cavitation number and other 

parameters such as the Froude number and the bottom 

geometry. The physics of this phenomenon is such that the 

cavitation number must be specified. For natural vapor 

cavitation, it is governed by the vapor pressure under given 
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conditions. For artificial ventilation it is governed by the 

artificially produced pressure. Thus the cavitation number may 

be both positive and negative. Accordingly, the cavitation-

induced physical effects on the planing surface will be 

different. In particular, at a negative cavitation number an 

additional upthrust develops thus reducing the draft.  Hence the 

hydrodynamic efficiency of high-speed craft can be controlled 

with the help of steps, aft of which cavities are formed, and 

artificial ventilation of bottom sections.  

A comprehensive study of the effect of cavities on the 

hydrodynamic characteristics of planing boats requires 

computational methods that suit the physics of the phenomenon 

as fully as possible. Ref. [6] reports a method of analysis of a 

planing surface, which allows one to determine the wetted 

length, the pressure distribution, and the trim angle from a 

specified planing boat displacement, geometry, and center-of-

mass position. The method is suitable for the analysis of a 

system of planing surfaces, and it allows for the presence of 

cavities between them, which are represented as boundaries 

with given pressure. A general approach to the study of a 

system of planing surfaces is presented in [7].  

In this work, a method of analysis of a planing hull with a 

cavity under the bottom aft of the step is described. Examples 

of calculations that demonstrate the capabilities of the method 

are provided, and the obtained results and physical effects are 

discussed.  

 

PHYSICAL PROBLEM FORMULATION 
Consider a stepped planing boat moving at constant 

velocity 0V  over an undisturbed surface of an infinitely deep 

ideal incompressible liquid (Fig. 1). The boat has two surfaces 

interacting with the liquid, whose wetted lengths, 1l  and 2l , 

are not known in advance and have to be found as part of the 

solution of the problem. The problem is considered in two-

dimensional formulation [8]. The spacing between the trailing 

edges of the surfaces is L . The level of the undisturbed liquid 

surface coincides with the x -axis. The weight (volume 

displacement) of the boat is ∆ , and its center of mass is 

situated distance b  from the trailing edge of the second planing 

surface,   ∆  and b  being given quantities. 

 

 
 

Figure 1: Schematic of flow past a planing boat with a 

gas cavity under the bottom aft of the step 

 

The motion of the boat is modeled by the motion of a 

system of two flat plates rigidly joined into an integral 

structure, the x-projections of the wetted sections of the plates 

being the segments  [ ]11 , BA  and [ ]22 , BA . It is assumed that 

the angles of the plates with the travel direction 1α  and  2α  

are small, and the premises of the linearized theory of liquid 

wave motion hold true. The mathematical model of the physical 

problem is a boundary-value problem for the perturbed velocity 

potential, and the boundary conditions are transferred to the 

axis 0=y .  On the segments [ ]ii BA , , 2,1=i ,  the unknown 

pressure drops – the functions ( ) ( )( ) 2
00 /0, Vpxpxi ρ−−=γ , 

( )ii BAx ,∈ , 2,1=i , are sought, where 0p  is the pressure on 

the free boundary, ( )yxp ,  is the pressure in the liquid, and ρ  

is the liquid density; the trim angle iα  and the draft h  are not 

known either. The pressure cp  in the cavity aft of the step is 

specified by the cavitation number ( ) 2
00 /2 Vpp c ρ−=σ .  No 

pressure drop occurs on the free surface at 1Ax <  and 2Bx > , 

and the free surface shape is not known. The Froude number  

gaVFr 0=  is determined by the characteristic length 

3 / ga ρ∆=  where g  is the gravitational acceleration. It is 

assumed that the free surface boundary and the plate boundaries 

being flown past constitute a streamline.  

   

MATHEMATICAL FORMULATION 
The boundary-value problem for the velocity potential 

( )yx,ϕ  is as follows: 

0,0 <=ϕ+ϕ yyyxx    (1) 

( ) ( )
,0,

dx

xd
xy

η
−=−ϕ      ∞<<∞− x   (2)  

( ) ( ) ( ),0, xxxx γ=νη−ϕ       ∞<<∞− x   (3)  

.,0, −∞→→ϕϕ yyx    (4) 

( ) ( ),,, 0 yxy ϕ=∞−ϕ    (5) 

where ( )xη  is the shape of the streamline made up by the free 

surface boundary and the plate boundaries being flown past, 
21 Fr=ν , and 

( )
( ) [ ]

[ ]







∈σ−

><

∈γ

=γ

,,,2/

,,,0

,,,

21

21

ABx

BxAx

BAxx

x

iii

 

is the function that gives the dimensionless pressure drop along 

the whole of the liquid surface. The condition (2) is the 

kinematic condition for smooth flow past the boundary, the 

condition (3) is the dynamic condition for the pressure on the 

boundary, which is the Bernoulli equation, the condition (4) is 

the condition for disturbance attenuation at a great depth, and 

the condition (5) means that the flow potential is specified at 

infinity fore of the boat – undisturbed flow or steady-state 

independent waves.   

The kinematic and dynamic conditions written in the form 

(2) and (3) are not satisfied at points 1A , 1B , 2A , and 2B . 

However, they are valid in the sense of generalized functions.  

The problem (1)–(5) is solved using the Fourier method for 

the construction of fundamental solutions. Taking the 

generalized Fourier transform of (1)–(5) gives   

( ) ( ) ( )λΓ=λν−λ H ,   (6) 
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where ( ) ( )[ ]( )λη=λ xFH  and ( ) ( )[ ]( )λγ=λΓ xF  are the 

generalized Fourier transforms of the functions ( )xη  and ( )xγ , 

respectively. 

Eq. (6) is satisfied for the generalized function  

( ) ( ) +













ν−λ
λΓ=λ

1
regH  

( )[ ] ( ) ( )[ ] ( )ν+λδ+ν−Γ+ν−λδ+νΓ+ 00 BBAA ,     (7) 

where reg  stands for regularization, A , B , 0A , and 0B are 

complex constants that specify the free wave amplitudes, and  

( )λδ  is the delta function. The constants A  and B  are 

determined from the emission condition, and their values are as 

follows: iA π= , iB π−= .  The constants 0A  and 0B  are the 

amplitudes of the free independent waves that correspond to the 

potential ( )yx,0ϕ  in (5).  

The inverse transformation of (7) gives the free surface 

shape:  

( ) ( ) ( ) ( )[ ] +−ν−−νγ=η ∫
∞

∞−

dssxsxQsx sin,  

xbvxa ν++ cossin 00   (8) 

where  

( ) =












ν−λ
=ν − 1

, 1
regFxQ  

















ν+

π
ν+νν

π
−= xxxx Si

2
sinCicos

1
, 

Si  and Ci  are the integral sine and cosine, and  0a , 0b  are 

real constants.  

Differentiating (8) gives the boundary condition (2) 

required for the determination of the function ( )xγ : 

( ) ( ) ( ) =







−ννπ+−νν+

−
γ

π ∫
∞

∞−

dssxsxR
sx

s cos,
11

 

( ) ( )xbxax ν−νν−′η−= sincos 00 , ∞<<∞− x , (9) 

Where 

( ) ( ) ( ) xxxxxxR νν−ν







ν+

π
=ν sinCicosSisgn

2
, . 

The integrals in (8) and (9) are replaced with the integrals 

between the finite limits 1A  and 2B . 

To Eq. (9) must be added the force and the moment 

balance conditions [6]: 

( ) ν=γ∫
2

1

B

A

dxx ,   (10) 

( ) ( )bBxdxx

B

A

−ν=γ∫ 2

2

1

.  (11) 

The system of Eqs. (9)–(11) forms the basis for the 

stationary planing theory. In the case of a single planing surface 

these three equations provide a complete solution to the 

problem, i.e. make it possible to determine the pressure 

distribution, the wetted length, and the trim angle.  

With a cavity under the bottom, we have two rigidly joined 

planing surfaces of unknown length. Because of this, Eq (9) is 

written as a system of two equations for each surface. As a 

result, the following system of integral equations is obtained 

from (9)–(11):  

( ) ( ) ( ) +−ν
π

σ
−−νγ

π ∫∫
2

1

1

1

,
2

,
1

1

A

B

B

A

dssxKdssxKs  

( ) ( ) =−νγ
π

+ ∫
2

2

,
1

2

B

A

dssxKs  

( ) ( )xbxaxf ν−νν−
′

−= sincos 001 , 11 BxA << , (12) 

( ) ( ) ( ) +−ν
π

σ
−−νγ

π ∫∫
2

1

1

1

,
2

,
1

1

A

B

B

A

dssxKdssxKs  

( ) ( ) =−νγ
π

+ ∫
2

2

,
1

2

B

A

dssxKs  

( ) ( )xbxaxf ν−νν−
′

−= sincos 002 , 22 BxA << , (13) 

where ( ) ( ) 







ννπ+νν+

π
=ν xxR

x
xK cos,

11
, , ( )xf1  and 

( )xf 2  are the functions that describe the shape of the sections 

being flown past. In our case, ( ) xkhxf iii += , 2,1=i ,  

where ih  are the drafts, iik α= tan , and iα  are the trim 

angles. 

 Eqs. (12) and (13) include two unknown functions, ( )x1γ  

and ( )x2γ ,  two unknown constants – wetted lengths 

111 ABl −=  and  222 ABl −= , and the unknown trim angle 

1α  or 2α  (the second is determined from the rigid geometry 

of the structure). 

The condition (10) has the form  

( ) ( ) ( ) ν=γ+−
σ

−γ ∫∫
2

2

1

1

221
2

B

A

B

A

dsslLdss .  (14) 

The condition (11): 

( ) ( )[ ] ( )∫ ∫ =γ+−−+
σ

−γ
1

1

2

2

2
2
1

2

211
4

B

A

B

A

dsslllLsdss  

( )blL −+ν= 1 . (15) 

The geometrical condition for cavity closure: 

( ) ( ) ( )( )[∫ −−−+ν+−−+νγ
1

1

21211 sin,

B

A

sllLsllLQs  

( ) ( )( )] −−ν+−ν− dsssQ sin,  

( ) ( )( )[∫ −−−+ν+−−+ν
σ

−
2

1

2121 sin,
2

A

B

sllLsllLQ  

( ) ( )( )] +−ν+−ν− dsssQ sin,  
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( ) ( ) ( )( )[∫ −−−+ν+−−+νγ+
2

2

21212 sin,

B

A

sllLsllLQs  

( ) ( )( )] =−ν+−ν− dsssQ sin,  

( ) ( ) hllL ∆+α⋅−α∆+α⋅−−= 1112 antant  (16) 

where 12 α−α=α∆  and ( ) ( )1112 lflfh −=∆  are specified 

as design factors in conditions of linear approximation. 

 

NUMERICAL METHOD 
The system of integral equations (12)–(16) may be solved 

by any of the familiar methods of solution of singular integral 

equations. Its key feature is that it is parametrically nonlinear in 

the unknowns 1l  and 2l . The use of any numerical method 

gives a system of algebraic equations of the form 

BAX = ,   (17) 

where the vector X  is made up by the unknown values of the 

functions ( )x1γ , ( )x2γ , and 1α , which enter into the system 

linearly, while the elements of the matrix ( )21 , llAA =  depend 

on the unknowns 1l  and 2l , which are responsible for 

nonlinearity. The vector B  is made up by elements from the 

known values of the right-hand sides of Eqs. (12)–(16). 

For the solution of systems of this type, it turns out to be 

efficient to use the familiar method [9] of reduction of the 

problem (17) to the minimum search problem   

( )[ ] ( )[ ]
21 ,

2121 min,,
ll

BXllABXllA →−−
Τ

. (18) 

In this work, the singular integral equations are solved 

using the discrete singularity method [10], and the problem (18) 

is solved using the Nelder–Mead flexible polyhedron method 

(downhill simplex method) [11].  

RESULTS 
It makes sense to relate the scales of values of the variables 

that are specified in the problem and define the geometry of the 

planing boat to the scale of the generated waves. Eq. (7) at 

( ) constc ==λΓ  is the Fourier transform of the free surface 

shape generated by the delta-function pressure pulse 

( ) ( )xcx δ=γ  of strength c  traveling at velocity 0V . In this 

case, ( ) ν=γ= ∫
∞

∞−

dxxc .  Then the inverse transform of (7) will 

be (without taking into account independent waves, 00 =a , 

00 =b ) 

( ) ( )[ ]xxQx ν+νν=η sin, . 

Since 2/Silim π=ν
∞→

x
x

 and 0Cilim =ν
∞→

x
x

, 

( ) xxQ
x

ν−=ν
∞→

sin,lim . Hence 

( )




>ν−

<
=η

±∞→ .0,sin2

,0,0
lim

xxv

x
x

x
 

This expression gives an estimate of the scale of the 

planing-induced waves for the linearized theory. For example, 

at Froude number 2=Fr  the wave amplitude will be 0.5 and 

the wavelength will be 25.13, and at 5.1=Fr  the amplitude 

and the wavelength will be 0.88 and 14.14, respectively.  

With this in mind, presented below are the results of 

calculations at 15=L (spacing between the trailing edge and 

the step), 7.0=∆h (step height), 0=α∆ (the planing surfaces 

fore and aft of the step are parallel), and with the center of mass 

situated distance 10=b from the trailing edge.  

Figs. 2 from a) to h) show the cavity and free boundary 

shape for the cavitation number ranging from 2.0=σ  to 

0224.0−=σ  at 2=Fr .  Bold lines in opposite to fig. 1 show 

the free surface, thing line segments show the wetted 

boundaries of planing hull.  The free surface boundary consists 

of three areas. The left area begins in minus infinity and ends in 

a zero point, where a y-axis passes - in the contact point of free 

surface with beginning of the wetted area of planing hull. The 

middle area is the free boundary of cavity after step and right-

hand area is the wake border.  

 

 

 
a) 2.0=σ  

 

 

 
b) 1.0=σ  

 

 

 
c) 05.0=σ  
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d) 0.0=σ  

 

 

 
e) 01.0−=σ  

 

 

 
 

f) 017.0−=σ  

 

 

 
g) 02.0−=σ  

 

 

 
h) 0224.0−=σ  

 

Figure 2: Shape of the free surface, the cavity aft of the step, 

and the wetted boundaries of the planing boat at 2=Fr . 

 

The cavitation number 0224.0−=σ  for parameters 

mentioned above is close to the value such that second wetted 

length goes to zero.  That means that subsequent increase of 

pressure in cavity can lead to tearing of stream from back edge 

and subsequent undesirable unsteady effects.  

Figs. 3 from a) to f) show the cavity and free boundary 

shape for the 7.1=Fr  and the same center of mass situated 

distance 10=b from the trailing edge. In this case the critical 

cavitation number is close to 035.0−=σ .  

 

 

 
a) 1.0=σ  

 

 

 
b) 05.0=σ  

 

 

 
c) 0.0=σ  

 

 

 
d) 02.0−=σ  
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e) 03.0−=σ  

 

 

 
f) 035.0−=σ  

 

Figure 3: Shape of the free surface, the cavity aft of the step, 

and the wetted boundaries of the planing boat at 7.1=Fr . 
 

 

 

Note that design parameter combinations and planing boat 

and step dimensions do not all allow one to construct a 

physically feasible flow or make the residual of the system 

(12)–(16) or the value of the objective function in (18) smaller 

than a preset small number.  However, for all the results 

presented in the paper the objective function did not exceed 
710−

. 

For the rather small Froude numbers for parameters 

mentioned above, the flows were constructed for only negative 

cavitation numbers. The samples of such flow for 5.1=Fr  

and 2.1=Fr  are shown on the Figs. 4 from a) to c).  

 

 
a) 5.1=Fr , 04.0−=σ  

 

 

 
b) 5.1=Fr , 05.0−=σ  

 

 
c) 2.1=Fr , 06.0−=σ  

 

Figure 4: Shape of the free surface, the cavity aft of the step, 

and the wetted boundaries of the planing boat at 5.1=Fr  and 

2.1=Fr . 

 

 

The pressure distributions along the solid boundaries are 

shown in Figs. 5 from a) to d). They illustrate the pressure 

distribution for some cases presented in figures 2, 3 and 4. The 

cases for positive cavitation number, for zero and for two 

negative values are shown.  

 

 

 
a) 2=Fr , 2.0=σ  

 

 

 
b) 7.1=Fr , 0.0=σ  
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c) 5.1=Fr , 05.0−=σ  

 

 
d) 2.1=Fr , 06.0−=σ  

 

Figure 5: Calculated pressure distributions along the 

solid boundaries  

 

 

Figure 6 show the cavity length versus cavitation number 

at the parameters indicated above 

 

 
Figure 6: Calculated cavity length versus cavitation 

number at 0.2=Fr  (squares)  and 7.1=Fr  (circles). 

Unfortunately, experimental data for confirmation of 

calculation model for a stepped planing hulls are unknown to 

the author. Present in literature information on air cavities 

under a bottom is relative to the crafts of displacement type, 

where the task of determination of the wetted surfaces, draft 

and trim angle is not set.  Necessary experimental data can be 

obtained in specially set experiments with planing models in 

speed pools. 

Adequacy of calculation model of author is received only 

on the basis of theoretical analysis by comparing with known 

data in limiting cases. At a zero height of step and approaching 

of step to the trailing edge calculation data correspond known 

results for a planing plate with given load and given  gravity 

centre position [6]. 

DISCUSSION 
The calculations show that the shape of the cavity aft of the 

step is governed by two factors, namely, by the Froude number 

and the cavitation number. The Froude number governs the 

cavity curvature, which correlates well with the curvature of the 

generated waves, and the cavitation number governs the cavity 

length. At large Froude numbers the cavity curvature is small, 

and it increases as the Froude number decreases. The waves 

generated on long cavities at sufficiently small cavitation 

numbers are of the same length as the waves in the wake of the 

planing boat.  

The pattern of contact of the cavity boundary with the 

second planing surface depends on the cavity curvature in the 

vicinity of the contact point. The curvature is governed by the 

ratio between the cavity length and the wavelength at a given 

Froude number. Different contact patterns are illustrated in 

Figure 4. 

The charts of pressure distribution on a figure 5 show that 

local pressure drops along the corps of planing hulls with cavity 

can be large or small, as for example on a figure 5 c).  

Calculation information about pressure distribution is necessary 

for correct determination of strength properties of the corps of 

planing hulls. Such information is also useful for prediction of 

character of possible corps deformations. 

At negative cavitation numbers the pressure in the cavity is 

higher than that on the free surface, and thus an additional lift 

develops under the bottom. It can be seen from the plots of the 

cavity and free boundary shape that at negative cavitation 

numbers the planing boat draft decreases. The wave amplitude 

in the wake decreases too.  

If the second planing surface aft of the step finds itself on 

the trailing wave front, the wake amplitude increases. If the 

surface finds itself on the leading wave front, the wake 

amplitude decreases.    

The analysis of the calculated data shows that one can 

select an optimum combination of design parameters and 

factors such that the wave amplitude in the wake is a minimum. 

The calculated data suggest that the consumption of energy to 

form the wake decreases due to fact that the second planing 

surface aft of the step uses the energy of the wave generated by 

the first surface.   

Multistep planing surfaces with controllable angles of 

setting may enhance this effect many-fold.  
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The method of solution of the stationary problem described 

in this paper may by used for approximate evaluation of the 

effect of independent waves. Cavity planing over a wave 

surface may be studied using a quasistationary model. In this 

case, motion over the wave surface is modeled by a succession 

of stationary positions of the planing boat relative to the wave. 

To do so, the phases of the independent waves should be 

changed in Eqs. (12) and (13).  

The above-described approach to the solution of the 

mathematical problem of the planing of a system of connected 

surfaces with a cavity, which is based on the method of singular 

integral equations, is universal. It is suitable for the solution of 

3D problems and nonstationary problems in actual 

nonstationary formulation. The computational algorithms used 

and tested in this work may form a good basis for the 

development of engineering design software. 

In connection with the possibility of application of 

approach to the 3D models, it is necessary to note that the basic 

restriction is conditions for correctness of application of the 

linearized theory. A planing body with a step can be 

axisymmetrical too. However in a model, not taking into 

account a flow in an air environment only shape of the part of 

body submerged in a liquid is important.  

In 3D case the calculation of wetted surface form before a 

step and cavity form in a plan, which determines the form of 

the wetted surface after a step, becomes considerably 

complicated. In such nonlinear task, instead of two parameters, 

as in two-dimensional theory, it is necessary to find two curves. 

The author does hope that the results and conclusions of 

this work will stimulate further studies of the general physical 

regularities of cavitation-assisted planing. This, in its turn, will 

contribute to the realization of various technical ideas of new 

types of water-surface high-speed vehicles. 

CONCLUSION 
The capabilities of the solution method for the problem of 

planing of a stepped hull with a cavity aft of the step have been 

demonstrated. The proposed method makes it possible to solve 

the problem in actual physical formulation – to determine the 

wetted lengths of the planing surfaces, the trim angle, and the 

draft from a specified center-of-mass position, cavitation 

number, and Froude number.    

The new results obtained have shown the efficiency of the 

approach.  They have made it possible to elucidate the 

qualitative features of cavity planing for actual conditions of a 

specified displacement and a free trim angle. It is shown that 

the proposed theory can predict possible applications of natural 

and artificial cavitation to the control of high-speed craft 

hydrodynamic characteristics. The possibility of providing 

appropriate technical conditions by means of air injection and 

step designs that minimize the wake is an example of such a 

prediction. 
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NOMENCLATURE 

( ) 2
00 /2 Vpp c ρ−=σ  − cavitation number 

0p  − pressure on the free boundary 

cp  − pressure in the cavity 

ρ  − liquid density 

0V  − velocity of planing boat motion  

gaVFr 0=  − Froude number, 
21 Fr=ν  

g  − gravitational acceleration 

3 / ga ρ∆=  − characteristic length 

∆  − volume displacement 

1l , 2l  − wetted lengths  

( ) ( )( ) 2
00 /0, Vpxpxi ρ−−=γ  − pressure drops on wetted 

lengths, 2,1=i  

( )yxp ,  − pressure in the liquid 

[ ]ii BA ,  − x-projections of the wetted sections of the plates 

(segments of  wetted lengths), 2,1=i  

( )xη  − shape of the streamline (free surface boundary and 

the plate boundaries being flown past) 

( )xγ  − dimensionless  pressure drop along the whole of 

the liquid surface 

 ( )yx,ϕ  − velocity potential  

iα  − trim angles, 2,1=i , iik α= tan   

L  − spacing between the trailing edges of the planing 

surfaces  

 b  − distance  from the trailing edge of the second planing 

surface to center of mass  

( ) xkhxf iii +=  − shapes of the planing sections, 2,1=i   

ih  − drafts, 2,1=i  

0a , 0b  − real constants, amplitudes of independent waves 

( )λΓ  − generalized Fourier transforms of the function 

( )xγ   

( )λH  − generalized Fourier transforms of the function 

( )xη  

( )λδ  − delta function 
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