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ABSTRACT
We present the results of a theoretical investigation of the

vertical impact of high-speed projectiles onto a water surface.
A model is developed to describe the evolution of the resulting
air cavity. Expressions for the cavity profile and pinch-off time
are obtained in the limit where collapse is caused primarily by
aerodynamic pressure. Theoretical predictions compare favor-
ably with experimental observations reported in the literature.

INTRODUCTION
When a solid object strikes a water surface with sufficient

speed, it creates an air cavity whose eventual collapse leads to
a vigorous jet and an entrained bubble. Accurate models of this
phenomenon are essential for the effective design of air-to-sea
projectiles as may be used to target under-water mines, torpe-
does, or enemy vessels [1]. A question of particular interest
is how to design a supercavitating projectile that fits entirely
within a sustained vapor cavity in order to achieve a drag-reduced
state [2]. In other situations, including the operation of propellers
and pumps, one tries to avoid the creation of cavities, whose
implosion causes noise, damage, and loss of efficiency [3, 4].
The water-entry problem is also relevant to applications in ship
slamming [5], stone skipping [6], and the locomotion of water-
walking creatures [7]. For a review of the water-entry literature,
see Seddon & Moatamedi [8], Aristoff & Bush [9], and refer-
ences therein.

Consider a solid sphere with radius R0 vertically impacting

a horizontal water surface with speed U0 as depicted in figure 1.
Let g be the gravitational acceleration and ρ the liquid density.
The flow of air into the cavity behind the sphere gives rise to a
characteristic pressure drop of ρaU2

0 , where ρa is the air density.
Provided that the Weber number W = ρU2

0 R0/σ� ρ/ρa and the
Froude number F = U2

0 /(gR0)� ρ/ρa, one may neglect curva-
ture pressure and hydrostatic pressure in favor of aerodynamic
pressure, respectively1. For very high impact speeds, U0 & Us,
where Us ≈ 340 m sec−1 is the speed of sound in air, the pres-
sure drop cannot be estimated using the incompressible Bernoulli
equation. Instead, one expects the flow of air to become choked,
so that the pressure drop reaches a maximum value that is inde-
pendent of the flow speed. Following Lee et al. [10], and based
on the cavity pressures recorded by Wolfe & Gutierrez [11],
we take the maximum pressure drop to be 1 atmosphere (patm).
Thus, in this high-W , high-F limit, one should observe two dis-
tinct types of cavity collapse depending on whether ρaU2

0 � patm
or ρaU2

0 � patm. In the first regime, the impact may be character-
ized by the air-liquid density ratio D̃ = ρa/ρ, and in the second,
by the product of the air-liquid density ratio and the Euler num-
ber E = patm/(ρaU2

0 ).
The influence of aerodynamic pressure on the evolution

of water-entry cavities has been considered by several authors.
Gilbarg & Anderson [12], Richardson [13], Birkhoff & Isaacs
[14], May [15], and Abelson [16] investigated experimentally
the cavity dynamics of high-speed projectiles, and offered some

1ρ/ρa ≈ 800 at standard temperature and pressure
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Figure 1. Schematic of the impact parameters. The angle at which the
cavity detaches from the sphere, θc, is referred to as the cone angle.

explanation for the observed cavity shapes and pinch-off charac-
teristics. A sophisticated model for the cavity dynamics of high
F impacts (F > 150) was developed by Lee et al. [10] by ap-
proximating the combined effect of the projectile and the cav-
ity on the fluid motion using distributed point sources along the
vertical axis. At a given depth, their model predicts the cavity
evolution only when the cavity diameter exceeds that of the pro-
jectile. Nonetheless, Lee et al. rationalize the observations of
Gilbarg & Anderson [12] regarding the apparent independence
of the dimensionless pinch-off time on the impact speed.

An alternative model for the cavity dynamics, based on the
solution to the Rayleigh-Besant problem [17,18] was introduced
by Duclaux et al. [19], and extended by Aristoff & Bush [9] to
account for aerodynamic pressure in the limit ρaU2

0 � patm. A
similar approach will be adopted in the present study, where we
shall reexamine this limit as well as its opposite, ρaU2

0 � patm.
In particular, we shall rationalize the observations of May [15]
regarding the dependence of the pinch-off time on the air density.

THEORETICAL MODEL
When a projectile, say a sphere, is shot vertically into wa-

ter, it creates an axisymmetric cavity that expands radially be-
fore closing under the combined influence of hydrostatic pres-
sure, surface tension, and aerodynamic pressure. The evolution
of the water-entry cavity is amenable to analytical treatment if
one assumes a purely radial motion, ru = RṘ, initiated by the
passing of the sphere and prescribed by that of the cavity walls

having radial speed Ṙ(t,z), where r is the radial coordinate and
u the radial component of the liquid velocity. Using the corre-
sponding velocity potential, together with the Bernoulli equation,
Duclaux et al. [19] obtained an approximate expression for the
evolution of the cavity wall R(t,z) at depth z:

ρ

2

(
d2(R2)

dt2

)
=−p(R,z), (1)

where p(R,z) is the pressure in the liquid at the cavity boundary
that resists the inertial expansion of the cavity and eventually
leads to its collapse.

The pressure at the cavity boundary may be separated into
three components. The first is the hydrostatic pressure, ρgz,
that increases with depth. The second is the curvature pressure,
σ(∇ · n̂). The third is the aerodynamic pressure that is due to
the flow of air into the cavity behind the projectile. By neglect-
ing any unsteadiness in the air flow, we may approximate the
aerodynamic pressure as CaρaU2

0 , where Ca is assumed to be a
constant. This assumption is consistent with previous experi-
ments that found that 7.5 < Ca < 10 and no appreciable pressure
gradients arose within the cavity over a substantial range of im-
pact speeds [16]. However, this expression for the aerodynamic
pressure is valid only when it does not exceed 1 atmosphere. If
CaρaU2

0 exceeds patm, the aerodynamic pressure should be lim-
ited to this value according to the assumed choked-flow condi-
tion. By explicitly including these pressures in (1), we obtain

ρ

2

(
d2(R2)

dt2

)
=−ρgz−σ(∇ · n̂)−min

(
CaρaU2

0 , patm
)
. (2)

In what follows we non-dimensionalize lengths by R0 and time
by R0/U0, so that (2) reduces to

1
2

(
d2(R2)

dt2

)
=− z

F
− (∇ · n̂)

W
−P , (3)

where P = min
(
CaD̃,ED̃

)
.

The boundary conditions for (3) are provided by the sphere
trajectory: R(t = 0) = 1 and Ṙ(t = 0) =

√
αU(z), where U(z) is

the dimensionless sphere speed when its center is at depth z. The
parameter α is related to the cavity cone angle, θc (see figure 1),
by geometry, α = cot2

(
θc− π

2

)
, and is taken to be constant. This

is consistent with our experimental observations at low F [20],
as well as those of May [15] at high F . The pinch-off time is the
minimum time over depths 0 < z < ∞ of the cavity collapse:

tpinch = min
0<z<∞

(t (z)+ tc (z)) (4)
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where t (z) is the time taken for the sphere to arrive at depth z,
and tc (z) is the collapse time for a particular depth. We note that
t = 0 corresponds to z = 0.

Using (3), and (4), Duclaux et al. [19] obtained expressions
for the pinch-off time and depth in the limit where cavity collapse
is influenced primarily by hydrostatic pressure, corresponding to
B = W /F � 1 and 1� F � P̃−1. In this limit, cavity col-
lapse is favored at depth. Aristoff & Bush [9] obtain analogous
expressions in the limit where cavity collapse is influenced pri-
marily by surface tension, corresponding to B = W /F � 1 and
1�W � P̃−1, where pinch-off is shallow. The influence of
aerodynamic pressure on the cavity dynamics was briefly con-
sidered by Aristoff & Bush [9] using a similar theoretical model,
but only for the case in which the pressure drop did not exceed 1
atmosphere.

Here we consider in detail the regime in which collapse is
influenced primarily by aerodynamic pressure, corresponding to
the limit W � P−1 and F � P−1, in which surface seal pre-
cedes deep seal. Since the parameter that we use to characterize
the aerodynamic pressure, P = min

(
CaD̃,ED̃

)
, does not depend

on the evolution of the cavity walls, we may consider both cases
CaρaU2

0 < patm and CaρaU2
0 > patm simultaneously. Integrating

(3) gives an expression for the evolution of the cavity radius:

R(t,z) =
√

1+2
√

αUt−P t2. (5)

At time τ, the cavity profile is thus defined parametrically by

R(t) =
√

1+2
√

αU (τ− t)−P (τ− t)2, (6)

z(t) =
Z t

0
U(t ′)dt ′, (7)

for 0 ≤ t ≤ τ. Using (5), we find the maximum radial extent of
the cavity

Rmax =

√
1+

αU2

P
, (8)

and the collapse time,

tc(z) =
√

αU +
√

αU2 +P
P

. (9)

Further insight into the cavity dynamics may be obtained
by taking the sphere speed to be constant over the time scale
of cavity collapse. Provided that |U0−U0 ·U(z)|/U0 � 1, we
may approximate U(z)≈ 1 and combine (6) and (7) to obtain an
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Figure 2. Theoretically predicted cavity profiles, given by (10) for (a)
fixed P = 0.005, varying α, and (b) fixed α = 0.1, varying P .

expression for the cavity profile:

R(z) =
√

1+2
√

α(τ− z)−P (τ− z)2. (10)

In figure 2, we plot the predicted cavity profile, given by (10), for
different values of α and P .

In this constant speed limit, the collapse time given by (9)
is depth-independent, so pinch-off occurs where the cavity was
first initiated, at z = 0, and the dimensionless pinch-off time may
be written as

tpinch =
√

α+
√

α+P
P

=

{
2
√

αP−1 for α/P � 1
P−1/2 for α/P � 1.

(11)

The theoretically predicted pinch-off time is found without con-
sidering the dynamics of the splash curtain, that may seal the
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cavity from above prior to its pinching off. Nevertheless, we ex-
pect (11) to be an upper bound for the pinch-off time. We note
that a simple balance between inertia and atmospheric pressure,
ρU2 ∼ min(CaρaU2

0 , patm), leads to the dimensionless pinch-off
time scaling tpinch ∼ P−1/2, which is retained when α� P in
(11). In this limit, the cavity collapses without initially expand-
ing. Impacting projectiles, however, transfer momentum into the
cavity, that necessarily expands owing to fluid inertia.

DISCUSSION
To test the applicability of our expression for the pinch-off

time (11) in the limit for which CaρaU2
0 � patm, we refer to a

previous experimental study on the influence of the air-liquid
density ratio on the water-entry cavity. May [15] recorded the
time of surface closure (either by the splash doming over or by
the cavity pinching off) for the water entry of half-inch diameter
steel spheres for the range 2 ·103 < F < 106. In figure 3, we re-
cast May’s data alongside (11), given by the black curve, where
we estimate α = 0.05 from published photographs. Good agree-
ment is obtained by choosing Ca = 40, a value that is roughly
consistent with those measured by Abelson [16]. Our model is
not highly sensitive to the choice of Ca, as evidenced by the up-
per and lower dash-dotted curves, that are given, respectively, by
(11) for Ca = 20 and Ca = 75. A scaling proposed by Birkhoff
& Isaacs [14], tpinch ∼ D̃−1, based on a purely dimensional ar-
gument, is also shown. The variation of the pinch-off time for a
given density ratio is small relative to the variation in F . This ob-
servation suggests that the pinch-off time is roughly independent
of the impact speed, and is consistent with (11). Experimental
data is not available to test our theoretical predictions in the limit
for which CaρaU2

0 � patm.
Owing to the pressure drop inside the cavity being limited

to one atmosphere, we expect two distinct dependencies of the
dimensional pinch-off time, t ′pinch, on the impact speed. For
U0 < Us, (11) predicts the dependence t ′pinch ∼ U−1

0 , and for
U0 > Us, the dependence t ′pinch ∼U0. We note that these trends
are compatible with those predicted by Lee et al. [10], and we
have taken the limit relevant to impacting spheres: α/P � 1.

In our comparison between experiment and theory, we have
directly measured the cone angle θc from available photographs,
and so inferred the value of α. Alternatively, one may express
α in terms of the drag coefficient, Cd , by equating the energy
lost via form drag, 1

2 ρU2CdπR2dz, to the energy of the radially
expanding fluid layer, which is given by:

1
2

Z R∞

R
2πrρu2drdz = ρṘ2

πR2dz. (12)

In writing (12), we have followed Duclaux et al. [19] by assum-
ing that the radial fluid motion extends over a region comparable
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Figure 3. Dimensionless pinch-off time versus air-liquid density ratio
D̃ for the water entry of half-inch diameter steel spheres for the range
2 ·103 < F < 106. Data reproduced from May [15], where we estimate
α = 0.05 from published photographs and take ρa = 1.2 kg m−3. The
solid curve denotes the theoretically predicted pinch-off time, and is given
by (11) for Ca = 40. The upper and lower dash-dotted curves are given,
respectively, by (11) for Ca = 20 and Ca = 75. The scaling proposed by
Birkhoff & Isaacs [14] is given by the dashed line. A characteristic error
bar is shown.

to the size of the cavity (R∞ ≈ 2.7R). Since Ṙ =
√

αU when
R = 1, we find that α is proportional to the drag coefficient:

α =
Cd

2
. (13)

Therefore, our assumption of constant α is consistent with the
choice of velocity potential, provided that Cd is also constant.
For a discussion of the drag on an impacting body, see Aristoff
et al. [20], where reasonable agreement between experiment and
theory is obtained by taking Cd to be a constant, corresponding
to its mean value over the time scale of cavity collapse.

CONCLUSION
We have presented the results of a theoretical investigation

of the cavity dynamics of water entry. Particular attention has
been given to the regime in which the cavity evolution is influ-
enced primarily by aerodynamic pressure that has characteristic
magnitude 10ρaU2

0 , but is limited to one atmosphere owing to
the air flow becoming choked. A theoretical model, developed
to describe the cavity dynamics, yields expressions for the cavity
profile and pinch-off time in this high-F , high-W limit. Ad-
ditional comparisons with experiments are needed to determine
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the range of validity of our theoretical model. Discrepancies be-
tween experimental observations and theoretical predictions may
arise from the neglect of the dynamics of the splash curtain, that
may seal the cavity from above prior to pinch-off, thereby alter-
ing the cavity evolution. In addition, the two-dimensional ge-
ometry of the cavity obliged us to approximate the radial extent
of the fluid motion [19]; shortcomings of this approximation are
discussed by Bergmann et al. [21]. Finally, cavitation has been
observed during water entry [22], and is known to affect the drag
on an underwater body [23], yet its role in the water-entry prob-
lem remains unexplored.
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