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ABSTRACT 
Using multiphase computational simulations based on the 

Navier-Stokes equations, we examine the internal gaseous 

flows of artificially ventilated supercavities. These simulations 

indicate that air shear layers that develop on the cavity-wall 

(the air-liquid interface surrounding the cavity) are an 

important mechanism of air entrainment. This corroborates 

previous theory developed for toroidal cavities, and indicates 

that similar mechanisms occur in twin-vortex cavities and 

cavities closing on bodies. The importance of these shear layers 

on the cavity behavior potentially impacts computational 

simulations, experiments, and design-level models. Lastly, a 

more inclusive, semi-empirical air entrainment model is 

presented that attempts to accommodate the observed 

processes.  

INTRODUCTION 
Concept high-speed underwater vehicles surrounded by a 

ventilated gaseous supercavity (supercavitating vehicles) are 

potentially advantageous compared to fully wetted vehicles of 

similar mission. The primary benefit of supercavitation is drag 

reduction, which is thought to enable very high-speed vehicles. 

The benefit of ventilation versus vaporous cavitation is cavity 

stability. Stable cavities of course are also important. Buffeting, 

surface damage, large-scale vehicle vibrations and other 

negative consequences typically result from vaporous 

cavitation. With an artificially inflated cavity, the absence of a 

condensing gas alleviates this effect. Unfortunately, with such a 

vehicle, a supply or source of air must be carried onboard, 

introducing the gas economy problem. The gas economy 

problem presents the question of how much air must be carried 

to satisfy a given supercavitating vehicle mission. In this paper, 

an assessment of models and dynamics of the cavity air, which 

directly affects the amount of air to be carried, is performed.  

In a supercavitating vehicle, the hull form is typically 

designed for the cavitating flow conditions. This is analogous 

to supersonic aircraft, and their designs are specific to 

supersonic flight. Thus, the hull-form should be designed to be 

enclosed by a gaseous supercavity at supercavitation conditions 

of interest. Adequately enclosing the vehicle within the 

supercavity minimizes the viscous-drag and prevents cavity 

destabilization. Furthermore, design of vehicle subcomponents, 

propulsion, lifting surfaces, etc. require a predictive 

understanding of the precise supercavity shape. Geometric 

restrictions create the need for design-level models to 

approximate the cavity location, and an understanding of the 

controlling parameters that affect it.  

Supercavitating vehicle operation depends on an ability to 

supply air sufficient to fill the cavity. This problem may be 

reduced to ascertaining the amount of air entrained by the 

cavity, for given cavity conditions, size, vehicle speed, etc. 

Obviously this is equivalent to knowing the needed air supply 

rate to sustain a steady cavity and directly corresponds to air 

storage requirements. A characteristic feature of the supercavity 

is the cavity-closure type Typically they are classified as either 

twin- or toroidal-vortex cavities. Cavity-closure mode 

influences cavity stability and also appears related to the 

dominant mechanisms of air entrainment.  

In this work, computational fluid dynamics (CFD) is used 

to investigate the physical processes of air entrainment. Such a 

method, if successful, can provide the information needed for 

analysis and visualization without difficulties associated with 

physical observation of supercavities. Of course, in any 

framework other than direct numerical simulation, it is 

necessary that CFD-discovered phenomena must be validated 

experimentally. 

Using CFD solutions, we deduce mechanisms of air 

entrainment. In particular, evidence appears that corroborates 

theory, presented by Spurk [1], tying air-entrainment to cavity-

wall shear layers. The original work by Spurk [1] was limited 

to toroidal-vortex closing cavities. Although not surprising, the 

reviewed CFD solutions display evidence that the cavity-shear 

layers are also a primary mechanism of the air-entrainment 

from twin-vortex-closing cavities. Using such observations, an 

improved form of modeling the air-entrainment rate is 

proposed. Finally, this mechanism may not conform with the 

conventional viewpoint on supercavity air entrainment. 

 

BACKGROUND 
Theory developed for modeling supercavities, cavity-

closure modes, and the impact these closure modes have on the 

physical mechanisms of air entrainment is reviewed. The 

viewpoint and all investigations are restricted to horizontal 

supercavities driven behind an axisymmetric cavitator. 

Therefore buoyancy is considered and acts perpendicular to the 

free stream velocity. It is also known that the quality of the 

cavity interface may have a strong effect on the amount of air 

entrained. In this effort we restrict our consideration to cavities 

that separate rather cleanly from a cavitator and interfaces that, 

over the majority of the cavity length, appear laminar or nearly 
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so. The various air-entrainment rate mechanisms lead to models 

dependent on the cavity closure mode. 

 

Theoretical Cavity Predictions 
Scaling parameters and selected semi-empirical methods 

used to model supercavities are reviewed. From these semi-

empirical methods a closure problem arises introducing the 

need to model the air-entrainment rate 

 

Useful Scaling Parameters 

Several nondimensional quantities are typically considered 

for the scaling of ventilated supercavities. The primary factor is 

the cavitation number, σc, and is defined as 
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This is a nondimensional cavity pressure. It also inversely 

relates to cavity size (as cavity pressure increases so does 

cavity size). The air ventilation rate, Q, is normally 

nondimensionalized by the cavitator diameter, DN, and free-

stream speed, V∞. 
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It is useful within these parameterizations to use an equivalent 

disk-cavitator diameter, rather than the actual cavitator 

diameter thereby replacing DN with DN,Disk. The definition of 

DN,Disk is given in Eq. 3.  
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The flat circular disk cavitator of a size that yields the same 

drag as a given cavitator under consideration would be referred 

to DN,Disk. This is convenient as, cavity size and shape should 

scale with cavitator drag. Most conveniently, when generated 

by an axisymmetric cavitator at zero angle of attack, the drag 

then equivalences the cavities made by cavitators of differing 

geometric shapes. Thus, CQ can be defined using the equivalent 

disk diameter (as in Eq. 3) and the cavity size and shape should 

correspond to the cavity created behind another cavitator of the 

same drag. Note that the relation for CD,Disk substituted in Eq. 3 

is a linear form based on experimental behavior presented in 

May [2]. Lastly, the Froude number, FrN, is a strong scaling 

parameter given by 
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where g is the gravitational constant. Again, basing FrN on the 

disk, or FrN,Disk, is a common and useful convention.  

Other independent scaling parameters are less significant. 

For example, the Reynolds number, ReN=ρ∞V∞DNµ∞
--1

, is not 

important for scaling supercavities [3]. Also, typical 

supercavity applications involve high free stream velocities and 

large cavities with mostly small curvature. Therefore, the 

Weber number is large, and effects from surface tension should 

be negligible.  

 

Cavity Shape Approximations 

Potential flow assumptions are common for handling the 

stable regions of supercavities. Analytic solutions, based on 

elliptical cavities at the limiting case of σc=0, combined with 

empiricism enable quick, reliable, and accurate methods to 

predict twin-vortex cavity shapes as presented by Semenenko 

[3] and Logvinovich [4]. These methods use integral 

parameters such as drag coefficients, cD, cavitator radius, RN, 

and σ to define the cavity shape. This includes the cavity 

radius, Rc (defined in Eq. 5), the cavity length, Lc (defined in 

Eq. 6), and the axial profile, R(x) (defined in Eq. 7). Here, Rc is 

defined as  
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where k is an empirical parameter that is about 1.0. An 

approximation of Lc is given as  

,
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The empirical parameter A is around 2.0. Finally, for a disk-

cavitator, the cavity radius can be expressed along the cavity 

length as 
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In this relation, another empirical parameter, κ, is introduced, 

which is also approximately unity. Also, x1 is the location 

where the two relations are matched; these relations define the 

region where the cavity separates from the cavitator geometry 

for x≤x1, and the analytic cavity shape for x>x1. A matching 

length, x1, of 2RN is typically used. The one-third relation, for 

x≤x1, is well suited for disk-shaped cavitators, but can be easily 

substituted for another relation that can represent other 

cavitator shapes.  

Finally, one can also consider buoyant cavities. Based on 

the momentum theorem, the axis deflection of the supercavity 

is a result of the combined effects of cavity buoyancy and 

downwash from a lifting cavitator. This is directly computed, 

as given in Semenenko [3], as 
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Here, R(x) is the local cavity radius and Q(x) is the volume of 

cavity air occupied from x=0 to x. The separate gravity and lift 



 

terms are indicated with subscripts and cL is the cavitator

coefficient.  

The above relations provide an efficient, and accurate, 

prediction of the cavity shape. The cavity shape along the axis 

(Eq. 7) can simply displaced using the effect of 

(Eq. 8). In general, the only unknown quantities ar

on the cavitator, i.e. cL, cD. The remaining parameters are either 

specified (i.e. V∞, ρ∞, σc) or empirical (i.e. k, κ, 

of these relations require approximations or models 

entrainment rate for a given cavity pressure, 

ventilation rates, the cavity size can then be determined. This 

process motivates and exploits the Fr-dependent 

relations of air entrainment and the motivation for improving 

such models.  

 

Cavity-Closure Modes  
Prior to discussing the models of air entrainment, it is 

important to understand cavity-closure modes and 

on air entrainment rate. In this work, only two closure modes 

are examined; these being the previously mentioned twin

vortex and toroidal-vortex cavity-closure patterns. 

the cavity types are displayed in Fig. 1. These types of closure 

modes are generally descriptive of cavities generated by 

axisymmetric cavitators in a mean flow perpendicular to the 

gravity force vector and closing without obstruction. Cavities 

closing with interference from a body or pierced by control 

surfaces may still be approximated by the following d

but there are additional complications. 

Figure 1: Sample CQ-σ curve with corresponding cavity types.

The diagrams are from Semenenko [3]

 

Twin-vortex closing cavities are rather large, stable, cavities 

that are obviously formed under the influence of a buoyant 

force. As these cavities are longer than toroidal closure cavities

they are more subject to buoyant effects. It was empirically 

determined by Campbell and Hilborne [5] that twin

cavities form when σFrN,Disk values are less than unity. The 

salient feature of such cavities is the axially aligned, twin

vortex structure that forms at the cavity closure. These twin 

vortices contain the entrained cavity air. 

With negligible or little relative gravitational effects, the 

toroidal-vortex cavity form occurs. Empirical evidence 

3 

is the cavitator-lift 

The above relations provide an efficient, and accurate, 

prediction of the cavity shape. The cavity shape along the axis 

using the effect of gravity and lift 

only unknown quantities are the forces 

. The remaining parameters are either 

 and A). Closure 

or models of the air-

 σc. For steady 

ventilation rates, the cavity size can then be determined. This 

dependent CQ-σc 

relations of air entrainment and the motivation for improving 

ussing the models of air entrainment, it is 

closure modes and their impact 

air entrainment rate. In this work, only two closure modes 

are examined; these being the previously mentioned twin-

closure patterns. Diagrams of 

These types of closure 

vities generated by 

a mean flow perpendicular to the 

closing without obstruction. Cavities 

closing with interference from a body or pierced by control 

surfaces may still be approximated by the following discussion, 

 
curve with corresponding cavity types. 

[3]. 

vortex closing cavities are rather large, stable, cavities 

are obviously formed under the influence of a buoyant 

As these cavities are longer than toroidal closure cavities, 

It was empirically 

that twin-vortex 

than unity. The 

salient feature of such cavities is the axially aligned, twin-

vortex structure that forms at the cavity closure. These twin 

With negligible or little relative gravitational effects, the 

vortex cavity form occurs. Empirical evidence [5] 

suggests that these cavities form for 

than unity. At the cavity terminus, axisymmetric reentrant jets 

form into toroidal-shaped vortices that shed from the cavity. 

These vortices contain the entrained 

 

Air-Entrainment Models 
As previously discussed, steady s

air to be supplied at the same rate it is leaked.

easier to close the problem inversely, that is by establishing the 

air-entrainment rate for a given cavity size. The idea here is to 

develop models for CQ over a range of cavity sizes. And then 

using this modeled behavior to determine 

at a given CQ. These models are discussed for both cavity

closure types.  

 

Twin-Vortex Cavities  

The major mechanism of air

vortex-type cavity is through the vortex tubes. 

of air entrainment exist. Campbell and Hilborne

model of air entrainment based on 

circulation about the cavity centerline, 

the cavity. This circulation correlates

vortex cores, which results in the first expression of Eq. 

that VVT is the velocity of the air traveling out of the cavity, 

through the core of the vortex tube. Using approximations of 

the RC and LC, similar to Eqs. 5 and 

roughly V∞, Eq. 9 is becomes a fully closed expression for the 

air entrainment as approximates in the last relation
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Note that differences between experime

expected to be a direct result of errors in the assumed value of 

VVT [5]. Thus, we introduce the entrainment model in a form 

where VVT  may be modified via 

maintain consistency with Eqs. 

LC/DN,Disk. A slightly modified form is presented as 
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Note that a disk-drag behavior of c

and recall that the parameters A and 

that are roughly 2.0 and 1.0, respectively. 

 

Toroidal-Vortex Cavities 

The air entrainment from cavities with toroidal

closure occurs via gaseous, toroidal

Recent theory from Spurk [1] 

occurring upstream of these toroidal vortices are important, and 

that the air transported along interfacial shear layers to the end 

of the cavity consists of the air that eventually fills the toroidal 

cavities. The general concept is displayed in the 

presented in Fig. 2, where the concept of the

layers entraining air from the cavity is d

 

suggests that these cavities form for σFrN,Disk values of greater 

than unity. At the cavity terminus, axisymmetric reentrant jets 

shaped vortices that shed from the cavity. 

entrained cavity air.  

As previously discussed, steady supercavitation requires the 

supplied at the same rate it is leaked. As a result, it is 

easier to close the problem inversely, that is by establishing the 

entrainment rate for a given cavity size. The idea here is to 

a range of cavity sizes. And then 

using this modeled behavior to determine σ, or the cavity size, 

. These models are discussed for both cavity-

The major mechanism of air-entrainment from a twin-

pe cavity is through the vortex tubes. Multiple models 

Campbell and Hilborne [5] presented a 

of air entrainment based on a correlation of the 

ion about the cavity centerline, to the buoyant loads on 

correlates to the radius of the twin 

results in the first expression of Eq. 9. Note 

is the velocity of the air traveling out of the cavity, 

of the vortex tube. Using approximations of 

and 6, and assuming that VVT is 

fully closed expression for the 

as approximates in the last relation. 
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differences between experiments and theory are 

a direct result of errors in the assumed value of 

the entrainment model in a form 

may be modified via an improved model, and to 

maintain consistency with Eqs. 5 and 6 for DC/DN,Disk and 

slightly modified form is presented as  

)
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cD,Disk≈0.82(1+σ) is assumed, 

and k are empirical parameters 

that are roughly 2.0 and 1.0, respectively.  

entrainment from cavities with toroidal-vortex 

toroidal-shaped, shedding cavities. 

 suggests that mechanisms 

occurring upstream of these toroidal vortices are important, and 

transported along interfacial shear layers to the end 

that eventually fills the toroidal 

The general concept is displayed in the diagram 

, where the concept of the air-cavity shear 

layers entraining air from the cavity is displayed. Here, a shear 
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layer forming within the air forms at the air-water interface; the 

air in this shear layer remains attached to the water and 

becomes the air that eventually escapes from the cavity. 

 

 
Figure 2: Diagram of the air-boundary layers within a cavity, 

theorized as an important mechanism for air entrainment. The 

diagram is from Spurk [1]. 

 

This concept of cavity-shear layers dragging air from the 

cavity was previously hypothesized, as mentioned in May [2], 

however, was only recently incorporated into a valid air 

entrainment model by Spurk [1]. The theory agrees well with 

experimental measurements at high FrN conditions and for 

reentrant cavities with little buoyant effects. In a reduced, rather 

general, form, Spurk’s air-entrainment model is given as 
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σ
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where kQ is an empirically determined constant that is based on 

a single reentrant cavity data point. Note that other forms of 

this entrainment model based on laminar or turbulent boundary 

layers are presented, however, this empirical form is used as it 

calibrates well for both laminar and turbulent shear layers. 

DESCRIPTION OF COMPUTATIONAL METHODS 
Computations are performed using the finite-volume solver, 

UNCLE-M, which is described by Lindau et al. [6]. The solver 

is valid for n-species and is valid for homogenous-mixture 

multiphase simulations. The codes incorporates higher-order 

numerics, RANS/DES/MILES turbulence modeling 

approaches, and the use of structured-overset grids. 

Furthermore, the solution technique is applicable for 

incompressible, mixture-energy-conserving compressible 

flows, and flows with liquid-vapor phase change. Spatial and 

temporal requirements have already been determined to be 

sufficient by Kinzel [7].  

In these simulations, the interface of a cavity is explicitly 

defined from the transport of the species mass. Thus, the 

gaseous and liquid regions are fully described by the Navier-

Stokes equations. The realizable-scaled level-set method 

described in Kinzel [7] is also used to alleviate dissipating the 

interface. Wall functions based on Spalding’s boundary layer 

model are applied. The approach is reasonable from the viscous 

sublayer to the log-region of the boundary layer. Such an 

approach is extremely useful for the multiphase flows of 

interest, where with the mixed air or water regions, the needed 

wall spacing can vary considerably.  

Some general assumptions are present in the numerical 

simulations. First, most cases model the attached liquid 

boundary layers as laminar. This is justified by considering the 

-favorable pressure gradients that characterize flow on the 

cavitators. All flows are treated as incompressible; this has 

potential to affect instantaneous pressure fields but is expected 

have a minor impact on the largely stable cavities examined. 

Finally, homogenous multiphase assumptions are invoked, i.e., 

it is assumed that no slip velocities exist between the air and 

water. This is valid for these cases based on the following 

arguments: (1) buoyant-driven velocities and time scales are 

small relative to the convective length of the supercavity; (2) 

velocity gradients are low in the mixture regions, implying that 

equilibrium in velocities of each constituent is to be expected; 

finally, (3) we are fully resolving the primary bubble of 

interest.  

 

COMPUTATIONAL RESULTS 
Using CFD simulations of multiphase supercavitating-fluid 

flows, that resolve much of the dynamics of the liquid, air, and 

viscous regions of the flow field, the mechanisms of air 

entrainment can be examined. Such an application of CFD is 

useful, as visualization of numerical simulations is 

straightforward. Experimental-based visualization, on the 

contrary, encounters visualization difficulties within the 

gaseous regions. For example, smoke visualization has a 

tendency to fill the cavity and not yield much insight. Particle 

image velocimetry (PIV), suffers from light and laser sheet 

distortion and light refraction that makes it impossible to 

visualize through foamy cavities. Thus visualization issues are 

eliminated with a Navier-Stokes-based CFD approach. In 

addition the viscous effects on the dynamics of the air filled 

cavity can be systematically investigated. 

 

Description of Test Cases 
Several representative test cases are used in these analyses. 

The cases include isolated cavitators and cavities interacting 

with bodies. 

 

Axisymmetric Disk Cavitator 

A ventilated disk cavitator is represents a basic case. Two 

conditions are simulated for this geometry: (1) a limiting case 

at FrN=∞, ReN=90×10
6
, CQ=0.5; and (2) a case based on the 

experiments of Campbell and Hilborne [5] FrN=15.54, 

ReN=62,200, at a range of CQ values. For the buoyant cases, 

solution is three-dimensional with assumed lateral symmetry. 

Additional details are described in Kinzel [7].  

 

Cone-Shaped Cavitator 

A 15°-half-angle, conical cavitator based on a summary of 

experiments by Kiceniuk [8], is also investigated. The cavitator 

is set to a lifting configuration, relevant for trimming or 

maneuvering a vehicle. Based on the actual diameter, rather 

than the commonly used effective-disk diameter, the 

corresponding conditions are: ReN=3.2×10
7
, FrN=72.0, and 

CQ=1.0. Additional details of the modeled geometry, mesh, 

resolution studies, and validation are available in Kinzel [7]. 
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Supercavitating Body 

Lastly, a case with significant cavity-body int

investigated. The case is based on experiments conducted in the 

University of Minnesota, St. Anthony Falls Laboratory’s high

speed water tunnel [9][10]. Conditions correspond

56,000, FrN=26.7, and a range of CQ values w

Results compared favorably with the experiments

the favorable outcome was dependent on modeling of

strut, requiring fully three-dimensional integration with no 

assumed symmetry, as reported in the work of Kinzel 

[11]. These experiments and simulations display a Gilbarg

Efros-type closure, where the cavity terminates with a

jet onto the body [9]. The geometry of the body is modeled as 

specified by Schauer [10]. However in the present effort, since 

it does not impact the physics under consideration 

aforementioned support strut is omitted. Additional

be found in the work of Kinzel [7]. 

 

Air Entrainment Behavior 
Consider the method of air-entrainment proposed by Spurk 

[1], this suggests that shear layers should be 

mechanism in determining the amount of entrained air

rate of air entrainment is defined, and given as  

(a) Streamlines traced backwards 

(b) Streamlines traced backwards from the minimum

Figure 3: Air entrainment and recovery for twin vortex cavity on a cone cavitator. 

velocity is indicated by the black arrow. The streamlines (colored by pressure gradient) are traced backwards to indicate the origin. 

The contour lines display the local air entrainment rate, 

indicating air. 

 

Streamlines indicating the flow history are also displayed 

in Fig. 3. These streamlines are traced backward in time from 

various CQ,l magnitudes at the penultimate CQ,l 

is presumed that, at this aft axial station, positive 

indicate entrained air that will exit the cavity. In Fig. 

streamlines are traced from the maximum CQ,l

streamlines all originate from the injection port,

the injected air is immediately entrained into the shear layer 

and proceeds directly out of the cavity. To examine the history 

of recirculating air, in Fig. 3 (b), the streamlines 

originating from the most negative CQ,l values. 

core of this cavity then behaves like a wake. There is some 
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body interactions is 

based on experiments conducted in the 

aboratory’s high-

corresponding to ReN of 

were simulated. 

with the experiments. However, 

the favorable outcome was dependent on modeling of a support 

dimensional integration with no 

reported in the work of Kinzel et al. 

display a Gilbarg-

type closure, where the cavity terminates with a reentrant 

The geometry of the body is modeled as 

However in the present effort, since 

it does not impact the physics under consideration the 

omitted. Additional details can 

entrainment proposed by Spurk 

suggests that shear layers should be the evident 

determining the amount of entrained air. A local 

 

,Q l g
C u Vα=

This variable highlights aftward moving air through the cavity, 

which can be (roughly) interpreted as entrained air. 

 

Cavity Air Escaping a Twin-Vortex Cavity

To the authors’ knowledge, previous 

from twin-vortex cavities neglected

mechanisms of air entrainment. However, based on these CFD 

simulations, it becomes clear that it is 

of the entrained air. This process is first investigated on the 

twin-vortex supercavity forming behind cone

and is presented in Fig. 3. In these plots, a grey

plot along the centerline highlights the cavity in black. Several 

contour-line plots at various axial locations display the 

contour levels, and streamlines of the cavity flow are pictured. 

In Fig. 3, the values of CQ,l are clearly highest near the cavity 

interface. This strongly suggests that gaseous axial flow occurs 

due to water tugging on air, a clearly 

However, this process continues through to the vortex tubes and 

dominates the air entrained from the cavity.

 

 

Streamlines traced backwards from the maximum CQ,l regions 

Streamlines traced backwards from the minimum CQ,l regions 

Air entrainment and recovery for twin vortex cavity on a cone cavitator. The cavitator is colored cyan and the oncoming 

The streamlines (colored by pressure gradient) are traced backwards to indicate the origin. 

The contour lines display the local air entrainment rate, CQ,l. The background is a contour plot of the air volume fraction with black 

Streamlines indicating the flow history are also displayed 

. These streamlines are traced backward in time from 

 contour plot. It 

at this aft axial station, positive CQ,l values 

In Fig. 3 (a), the 

Q,l level. These 

port, suggesting that 

is immediately entrained into the shear layer 

To examine the history 

(b), the streamlines are traced 

. The air in the 

core of this cavity then behaves like a wake. There is some 

interaction with the interface shear layer, but the net forward 

flow in the wake region is zero. This picture suggests 

air from the core becomes entrained by the interface 

along the length of the cavity, but is stripped 

layer near the cavity terminus. Although Spurk’s hypothesized 

flow structure, characterized by the

layer [1], is clearly observed in this twin

additional physical processes are apparent. Namely, that these 

shear layers can be thinned as they approach the cavity 

terminus. 

 

Air Escaping a Reentrant Cavity Formed Over a Body

Contours: C1.0 

Streamlines:

dp/dx DN

0.25 

 

C u V∞ . (12) 

moving air through the cavity, 

which can be (roughly) interpreted as entrained air.  

Vortex Cavity 

previous theories of air leakage 

neglected shear-layer regions as 

However, based on these CFD 

clear that it is fundamental component 

This process is first investigated on the 

vortex supercavity forming behind cone-shaped cavitator, 

In these plots, a grey-scale contour 

plot along the centerline highlights the cavity in black. Several 

at various axial locations display the CQ,l 

contour levels, and streamlines of the cavity flow are pictured. 

clearly highest near the cavity 

interface. This strongly suggests that gaseous axial flow occurs 

a clearly expected physical process. 

However, this process continues through to the vortex tubes and 

rom the cavity. 

 

 

The cavitator is colored cyan and the oncoming 

The streamlines (colored by pressure gradient) are traced backwards to indicate the origin. 

. The background is a contour plot of the air volume fraction with black 

rface shear layer, but the net forward 

flow in the wake region is zero. This picture suggests that some 

from the core becomes entrained by the interface shear layer 

but is stripped from the shear 

Although Spurk’s hypothesized 

flow structure, characterized by the interface attached  shear-

, is clearly observed in this twin-vortex cavity, 

tional physical processes are apparent. Namely, that these 

be thinned as they approach the cavity 

Escaping a Reentrant Cavity Formed Over a Body  

Contours: CQ,l -1.0 

Streamlines: 

N/(q∞σ)σ)σ)σ)    
-0.25 
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Air entrainment from a cavity surrounding, and impinging 

on, a vehicle body is examined. Streamlines are used to 

investigate the predicted airflow through the supercavity and 

shown in Fig. 4. The red streamlines are seeded aft of the 

vehicle, in the air that is clearly entrained from the cavity, and 

are traced backward. As before, the streamlines indicate a clear 

path from the ventilation ports, into the shear layers, and out of 

the cavity region. The purple streamlines are seeded within the 

cavity region; here the cavity air remains isolated and 

recirculates within the cavity.  

Also in Fig. 4, a contour plot of CQ,l is provided along the 

plane of symmetry. The predicted cavity interface is pictured 

with the grey isosurface, clipped just outside the centerline to 

allow visualization within the cavity. Consider the air flow 

away from the shear layer entrainment region. It is evident that 

CQ,l is only positive near the ventilation ports, and quickly 

diminishes away from these ports as the air recirculates back 

towards the cavitator, and is finally entrained along the cavity 

interface. Along the interface, high positive values of CQ,l are 

observed, indicating that the air is pulled to the rear of the 

cavity through shear-layer mechanisms. The flow hypothesized 

by Spurk [1] is again observed for modeled cavities interacting 

with a body.  

 

 

 

 
Figure 4: RANS prediction of a ventilated supercavitating body at CQ=0.45, FrN=26.7, ReN=56,000. The contours display the local air 

entrainment, CQ,,l, and the streamlines indicate the path of the entrained air (red) versus cavity air (purple). 

 

 
(a) ReN = 6.2×10

6
 

 
(b) ReN = 6.2×10

5
 

 
(c) ReN = 6.2×10

4 
(Experimental conditions) 

  
(d) ReN = 6.2×10

3
 

  
(e) ReN = 6.2×10

2
 

Figure 5: Reynolds number effect on the supercavitating flow 

occurring around a disk cavitator at CQ=0.283 and FrN=15.54. 

The filled contour plot through the centerline displays CQ,l. The 

black contour lines outline the location of the cavity interface. 

Note that the air is ventilated on the back face of the cavitator.  

 

Reynolds Number Effects in a Twin-Vortex Cavity 

Reviewed modeling tends to suggest the importance of 

cavity shear layers as a mechanism of air entrainment. 

Consequently, one would expect Re effects evident in the shear 

layer regions. Such studies highlight the effects expected with a 

lack of Re scaling. In Fig. 5, contour plots of CQ,l are displayed 

at varied ReN values. In this model, the ventilation port covers 

about 2/3 of the rear face of the cavitator. The air jet exiting the 

port appears to be highly sensitive to the ReN value. At 

increased ReN values (6.2×10
4
 to 6.2×10

6
) the jet extends 

axially, then eventually dissipates roughly two cavitators 

diameters downstream of the jet. Following the dissipation of 

the jet, the air appears to be entrained into the shear layer. 

Alternatively, for low ReN values (6.2×10
2
 to 6.2×10

3
), the jet 

immediately dissipates and the cavity shear layers thicken just 

downstream of the separation point from the cavitator. In this 
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0.0                 CQ,l               1.0 

 

0.0                 CQ,l               1.0 

 

0.0                 CQ,l               1.0 
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vicinity, the shear layer thickness displays a strong ReN effect. 

In Fig. 5, one can easily see the trend of increased shear-layer 

thickness with a decreasing ReN. Interestingly, following the 

dissipation of the jet, the cavity-shear-layer thickness does not 

display a strong ReN effect.  

 

DISSCUSSION 
The development of these air-shear layers and their impact 

on the air entrainment rate is crucial for many analysis 

methods. In this section, we highlight potential issues resulting 

from these shear layers.  

 

CFD Predictions: Influence of Shear Layer Importance 

The accurate prediction of the CQ-σc relation for a 

supercavitating-fluid can be sensitive to the approach that these 

gaseous shear layers are handled. This is, of course, dependent 

on the solution method. For example, potential flow methods 

eliminate this effect as the cavity air is modeled (rather than 

simulated). Therefore, in these approaches the amount of 

entrained air most come from another correlation. However, in 

viscous simulations where the fluid dynamics of each phase is 

considered, the treatment of these shear layers should be 

important (Kinzel et al. [12]). Here we briefly discuss how the 

modeling approach effects the results of the simulations.  

It is customary, to interpret the effect of turbulence on mean 

flow via an effective or  eddy viscosity. However, models of 

the eddy viscosity rely on empiricism that tunes it to a specific 

turbulent region, which is most often for the turbulent wall-

bounded flows. Using such an approach, modeling issues arise 

in other turbulent shear layer regions, i.e. the viscous sublayer 

within the boundary layer and separated flows. In single-phase 

flows, the wall bounded viscous sublayer is accommodated 

using damping functions to moderate the turbulence model near 

the walls and large scale separated flow may be simulated 

(rather than modeled) using approaches such as Detached-Eddy 

Simulation (DES). This ultimately yields a physically 

reasonable model of turbulence. According to Spurk’s theory 

[1] and the present computational results, complexities of 

single-phase flows exist with the addition of shear layers that 

also appear to be air boundary layers on the air-water interface. 

In terms of cavity predictions, the modeled turbulence levels at 

the cavity interface are intimately connected to the modeled air 

shear layer and ultimately the simulated air entrainment rate 

and/or the CQ-σc relation.  

 

Examination of the Turbulence Model Effects 

Turbulence model sensitivities are evaluated for the 

axisymmetric disk cavitator configuration. The most 

straightforward and extreme comparison is an evaluation of a 

particular case with and without RANS-type turbulence 

modeling (RANS vs. no TM). This comparison is made on a 

single computational grid. A high-resolution mesh through the 

interface regions is used in these studies, specifically, 

∆r~0.01RN corresponding to roughly sixty cells through the 

cavity-interface shear layers. The predicted air-shear layer 

velocity profiles near the cavity interface are displayed in Fig. 6 

enabling comparisons with and without turbulence modeled. 

The intention is to understand the limits, or bounds, of the 

possible solutions. In this plot, a measure of velocity magnitude 

on the horizontal axis, and the vertical axis is the inward 

distance from the cavity interface. A velocity of one indicates 

that the air is traveling at the same speed of the water, positive 

velocities indicate forward , and negative velocities indicate 

reversed flow.  

 

 
Figure 6: Predicted cavity boundary layers for the axisymmetric 

disk cavitator using RANS and simulation with no turbulence 

model (no TM). The plotted distance is from the cavity 

interface, radially into the gaseous cavity. The velocity 

magnitude is chosen to allow for the effects of skewness of the 

cavity and the sign(U) distinguishes entrained air from 

recirculating air in the cavity. 

 

The general trend indicates significant differences between 

results obtained from the two modeling approaches. Just past 

the cavitator, by 2.8 disk radii, there is little difference between 

the solutions with and without turbulence models, indicating 

minimal localized influence of modeled turbulence. However, 

progressing further aft of the cavitator, 15.5 and 20.8 radii, the 

solutions progressively deviate. This deviation indicates 

differences arising from an integrated effect; consistent with the 

boundary layer hypothesis. As the deviations are examined, the 

laminar profiles exhibit a more rapid decrease from the water 

velocity at the interface, than does the RANS case. The RANS 

case, having a greater quantity of air moving close to liquid 

velocity, i.e. exhibiting a larger displacement thickness, 

entrains more air. It is clear that there is direct link with the 

turbulence modeling approach and the amount of air within this 

layer. 

On further inspection, considering the results with no TM, 

the solutions tend to approach a roughly constant velocity 

region just outside of the shear layer. This is consistent with the 

conservation of mass for the axisymmetric, steady flow. Thus, 

the area integrated air velocity profile must be equal between 

the two cases. As the laminar case displays thinner shear layers, 

a consistent CQ is achieved through the increased centerline 

velocity to compensates for the net decrease in the shear layer.  

This computational investigation suggests that the amount 

of air entrained into the cavity-shear layers can be impacted by 

the turbulence modeling approach. Considering RANS relative 

to no TM, the amount of shear-layer entrained air is increased. 
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This is expected to be a result of the modeled eddy viscosity 

thickening, i.e. increasing the entrainment mechanisms of, the 

shear layer. 

 

Specific Issues with Turbulence Model Behavior 

It is apparent from the preceding case that the approach to 

modeling turbulence impacts air entrainment in the cavity shear 

layers. By review of fully three-dimensional, unsteady 

supercavitating flow simulations, additional insight into the 

turbulence model behavior may be deduced. In this case, the 

cavity is forced to close on a body. The predicted eddy 

viscosity field, νt, for a Detached Eddy Simulation (DES) and 

an Unsteady RANS (URANS) simulation at similar cavitation, 

Reynolds, and Froude numbers are shown in Fig. 7. Note the 

peak in the modeled eddy viscosity at the interface; however, 

the DES simulation clearly exhibits lower values in eddy 

viscosity than the URANS. As is expected of a turbulent 

simulation method intended to resolve features in wake-like 

separated flows, it appears that the general formulation of DES 

reduces this effect. In comparison to the values near solid 

surfaces, where the turbulence model damping functions reduce 

the eddy viscosity, the values are too high in the cavity 

interface shear layers, which is not desired. However, it was 

shown, by Kinzel et al. [12], that the capture of the correct CQ-

σc relation was sensitive to the turbulence modeling approach, 

and that the DES formulation captures the trend well. When the 

DES modeling approach has been applied, even in cases where 

the resolution and time-step sizes are expected to be too coarse 

for proper turbulent simulation, the results are improved 

fortuitously. This improvement appears due to the reduction in 

modeled eddy viscosity away from physical walls. These 

evident turbulence modeling deficiencies may be overcome via 

a modified approach, appropriately treating interface attached 

shear layers. 

 

 
(a) URANS  

 
(b) DES 

Figure 7: Comparison of the predicted cavity (α=0.5 contour 

displayed with a black line) and the modeled eddy viscosity 

using URANS and DES turbulence model. 

 

Impact of Shear Layers on Experiments 
Despite the expected presence of interface attached shear 

layers, in assessment of supercavitating objects, ReN scaling is 

not normally considered a factor. Thus far, the shear layer 

assessments presented have focused on effects that are limited 

in scope due to the idealization of the case. Practical 

configurations are not limited to isolated cavitators. If ReN 

scaling does, in fact, alter the air-entrainment rate, the effect 

seen on an isolated cavitator is expected to be less pronounced 

than in more complex, i.e. practical, configurations. Other 

factors dependent on ReN scaling manifested in the gaseous 

cavity flow may also exist. In particular, CFD predictions 

presented in Kinzel et al. [12] suggested that geometric-

induced hysteresis effects are sensitive to the eddy viscosity. 

Additional practical considerations such as interface stability 

and interaction with ventilation schemes are also expected to be 

Reynolds number dependent and must be considered for scaling 

of real applications.  

 

IMPROVED MODELS OF AIR ENTRAINMENT 
It is suggested that the theory of Spurk [1], previously 

validated for slender, reentrant, axisymmetric supercavities, is 

applicable to buoyant ones as well. This hypothesis is based on 

insight gained through supercavity computations. The current 

level of numerical modeling may not capture all of the relevant 

physics, principally the interfacial air shear layer is not 

adequately modeled. High interface-perpendicular resolution 

reduces the magnitude of this issue, along with other observed 

deficiencies, such as the turbulence model sensitivities. This 

type of error reduction via increased resolution is consistent 

with the overall shear layer based entrainment conjecture. 

Based on this behavior, we modify current air-entrainment 

models to account for the observed effects. These effects 

include (1) shear layer contributions to the air entrained from a 

twin-vortex cavity and (2) stripping of volume from this 

displacement layer by mechanisms at the rear of the cavity. It is 

noted that due to streamline convergence in the external liquid 

flow, a pressure increase will always be expected at the rear of 

twin vortex cavities. This elevated pressure should have a 

thinning effect on the attached shear layers, diminishing the 

volume flow of entrained air that actually leaves the cavity. The 

air returning to the cavity will be considered recovered, while 

the remaining entrained air rides in a diminished shear layer as 

it enters the vortex tubes. Because the interface-attached, air 

boundary layer profile is actually thinned, steepened, and 

stabilized through this adverse pressure gradient, it is by no 

means undergoing the same process as a classic boundary layer 

separation. Therefore, although tempting, we avoid the word 

separation. 

 

Concept Overview 
Incorporating the observed physical mechanisms into air 

entrainment models should improve such models. Combining 

previously developed models, i.e. the approach of Spurk [1] 

based upon cavity-shear layers for toroidal closure cavities and 

of Campbell and Hilborne [5] for twin-vortex cavity closure, a 

more complete model is possible. Incorporation of the observed 

mechanisms of entrained shear-layer thinning at the cavity 

closure is also needed.  

In Fig. 8, components of the model are presented. The shear 

layers, or more precisely estimations of an effective 

displacement thickness, are colored grey. The regions outside 

of the shear layers, colored white, is the cavity-flow region, 

which is assumed to recirculate within the cavity. This is 

 

    0.0      νt (m
2
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conceptually analogous to hydrodynamic design approaches 

that model external flows as inviscid and use integral 

boundary-layer methods to obtain a displaced surface and shear 

surface forces. Of course, the true cavity air is anything but 

inviscid flow as it is mostly a recirculatory wake. However, 

restricting this to a lumped-volume perspective, inviscid 

assumptions are sufficient. 

 
 (a) Twin-Vortex Cavity 

 
(b) Sectional properties 

Figure 8: Elements of economy in a twin-vortex cavity. The 

gray regions of the cavity represent the air within the interfacial 

shear layers. The white regions represent the cavity regions, not 

directly impacted by the water flow.  

(a) Near-horizontal plane through the cavity containing 

cavitator, cavity, and both vortex tubes.  

(b) Two selected axial planes. A-A through the maximum cavity 

radius location. B-B is through one of the vortex tubes. 

 

Some initial points can be made about the modeling 

approach conceptualized in Fig. 8. Based on agreement with 

the theory of Spurk [1], toroidal cavities tend to have a net zero 

axial flow within the white cavity region. Essentially, the gray 

regions directly fill the shedding toroidal cavities. With twin-

vortex closure, complexities in this concept arise. Thus, several 

points are mentioned before going through the model, as 

outlined below:  

(1) Cavity-Shear Layer Velocity: The shaded-gray regions 

of the cavity are assumed to travel at the velocity of the 

neighboring water flow, i.e. 1SLV V σ∞= + , however, for 

simplicity, VSL is assumed to be equal to V∞ at entry to the 

vortex tubes.  

(2) The case of Vc < 0 and VTV,p = 0, for CQ<CQ,SL: The 

condition occurs when the vortex tubes are too small to 

allow the assumed entrained shear-layer air to freely exit the 

cavity (at the free stream velocity). Assuming that the 

vortex tube radius is governed by the circulation of water 

flow around the cavity [5] and that the cavity shear-layer air 

velocity is that of the neighboring water flow, this condition 

occurs.  Note that based on the assumed modeling, the 

amount of entrained shear-layer air brought to the rear 

portion of the cavity is independent of closure behavior. 

Thus, in the condition where the vortex tubes are too small 

to allow 100% of the cavity-interface entrained air to flow 

through the assumed vortex tubes at less than or equal to the 

free stream velocity, a portion of the shear layer entrained 

air must be stripped from the shear region and reenter the 

cavity.  

(3) The limiting case of Vc = 0 and VTV,p = 0, for CQ=CQ,SL: 

In this case, the assumed vortex tubes have sufficient cross 

sectional area to relieve the air within the shear layers, i.e. 

the ventilation rate Q is equivalent to 2V∞ AVT,TOT. Note that 

shear layer thinning at the aft and of the cavity will cease to 

be significant. 

(4) The case of very high ventilation rate, Vc > 0 for 

CQ>CQ,SL: The vortex tubes open to an area larger than the 

shear layer air can provide, promoting pressure-gradient 

driven axial flow through the tubes. In this case, the amount 

of shear layer entrained air is actually enhanced by the wake 

flow.  

(5) When a body is present: If the body is fully contained 

within the white-cavity region, thus does not interfere with 

the cavity-shear layer, these entrainment mechanisms 

remain (at least under point (2)) nearly unaffected. 

Although, the magnitude of the axial velocities within the 

cavity may be increased due to area constrictions, this has 

little effect on the eventual flow through the vortex tubes. 

This is consistent with conventional thinking that solid 

objects internal to an established cavity should not affect the 

cavity ventilation requirements or shape.  

 

These considerations shape the proposed model. In general, 

we propose a model composed of multiple components, given 

by 

, ,Q Q SL Q p
C C C= + . (13) 

Here, CQ,SL is the contribution from shear-layer effects, 

paralleling Spurk [1]. CQ,p is driven by pressure gradients, and 

is derived from the work of Campbell and Hilborne [5]. 

 

Shear-Layer Air Entrainment 
The entrained-air-through-shear-layers mechanisms is first 

modeled. Although the method presented by Spurk [1] fully 

accounts for the air entrained in the shear layers, it does not 

consider the quantity that might be stripped off the shear layer 

at cavity closure by an adverse pressure gradient. This concept 

is essentially an addition to the model of Spurk.  
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The quantity stripped from the shear-layer, or recovered air, 

can be determined by considering the remaining mechanisms 

effecting air entrainment. Here we quantify recovered air by 

taking the difference between the ventilation rate and the 

volume flow rate in the theoretical cavity interface shear layers. 

The flow rate in the shear layers is obtained using Eq. 11, and 

calibrated to a toroidal cavity for a given FrN and ReN. To study 

this effect, consider a recovery factor defined as  

( ) ,

,

1 1
Q

Q RQ Q Spurk RQ

Q Spurk

C
C k C k

C
= − → = − . (14) 

Physically, kRQ is the fraction of air initially entrained by the 

cavity-shear layer that is recovered and returned to the cavity. 

Estimating values of kRQ given the air-entrainment rate should 

yield an improved modeling of air entrainment. Note that Eq. 

14 only remains valid for CQ<CQ,SL. Regardless, it is easy to 

ascertain the validity of this approach based the so-obtained 

reasonable kRQ values, discussed below.  

Positive kRQ values represent air recovery (from the liquid 

attached shear layer). When kRQ is between zero and one, a 

portion of the cavity-shear layer air is recovered and returned to 

the cavity. Without accounting for this air recovery, a 

straightforward application of Spurk [1] over predicts the air 

entrainment rate. Note that, via alteration of the undisturbed 

cavity air flow, it seems possible that other forms of recovery 

could occur. 

This air recovery is the observed mechanism in the CFD 

simulations and, since it represents a decrease in the air 

displacement thickness is thought of as a thinning of the liquid-

attached shear layer. Note that since the rear of the cavity is 

smaller in diameter than the center, as the entrained air is drawn 

aftward, the local displacement thickness may not necessarily 

be getting smaller. However, the integrated displacement area, 

at least, must get smaller. Also, since the natural consequence 

of this process is a more stable boundary layer, even though 

recovered air is forced back into the wake due to an adverse 

pressure gradient, it is not referred to as a boundary layer 

separation.  

Negative kRQ values indicate that the total ventilation rate is 

higher than that entrained by the boundary layers, implying that 

an additional mechanism of entrainment is occurring and cavity 

shear layers may become less significant. Presumably, in this 

condition, a favorable axial pressure gradient exists. This is 

contrary to the weak adverse gradient expected for the case of a 

positive kRQ. Small to moderate negative values of kRQ may be 

within the range of observed cavity behavior. However, very 

large negative values of kRQ imply excessive ventilation and are 

probably not desirable.  

 

Recovery Factor Behavior in Hysteretic Cavities 

The data collected in experiments conducted by Campbell 

and Hilborne [5], include hysteretic phenomena with twin-

vortex and toroidal cavity closures. It is noted here that cavity 

hysteresis has been demonstrated to occur over a range of 

ventilation rates for horizontal, buoyant cavities aft of 

axisymmetric cavitators. (See, e.g. Campbell and Hilborne [5] 

for a more complete discussion of the hysteresis.) This data is 

useful to further develop the general physics of air-entrainment 

and the recovery factor. The particular data set applied here was 

developed from measurements using a ventilated circular disk 

cavitator running at FrN=16 and ReN=62,000. In Fig. 9 (a), a 

straightforward application of Eq. 11 (the unmodified model 

developed by Spurk [1] for non-buoyant cavities) is compared 

to the data. The Spurk theory yields an excellent prediction for 

the toroidal cavities occurring on the right portion of the curve, 

through the increasing-CQ hysteresis region. Beyond the 

hysteresis region, Eq. 11 clearly over predicts the ventilation 

rate (CQ) required for a given cavity pressure (σc). In the 

present modeling effort, the amount over predicted by Eq. 11 is 

assumed to be recovered air. Assessed in terms of kRQ, and 

computed using Eq. 14, these quantities are plotted in Fig. 9 

(b). 

The trends in Fig. 9 (b), the kRQ-σc plot, are as expected 

with some particularly interesting behavior in the hysteretic 

(gray shaded) region. For toroidal cavities, kRQ remains near 

zero. For twin-vortex cavities, kRQ is bound between zero and 

one, suggesting that cavity shear layer recovery is occurring. 

Lastly, an interesting feature is observed. For the twin-vortex 

regime (Q-decreasing curve), kRQ is maximized at a near 

constant value of 0.64. This behavior implies that, in this 

region, the relative amount of air recovered from the 

entrainment shear layer remains constant and that the separated 

shear layer could be a dominating contributing mechanism to 

hysteresis. For the toroidal-vortex cavity, on the Q-increasing 

curve, kRQ takes on a small negative value just prior to the 

cavity transition to twin-vortex. Perhaps, this is due to toroidal 

structures entraining additional cavity wake air along with the 

shear layer entrained air. Regardless, the consistency of the 

modeling with the data supports the concept of kRQ.  
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(b) Corresponding kRQ, behavior 

Figure 9: In part (a), is a comparison of a hysteretic CQ-σc 

curve for a disk cavitator, from Campbell and Hilborne [5], to 

theory of Spurk [1]. Part (b) displays the corresponding kRQ 

curves, for the hysteretic cavity is provided. 

 

Approximating the Recovery Factor 

Using physical arguments and experimental data, the 

recovery factor can be approximated. On the CQ-σc space, there 

are essentially three regions that need to be considered, i.e. 

twin-vortex, hysteretic, and toroidal. Using Cambell and 

Hilborne’s data [5], a path to approximate this behavior is 

proposed. First, we assess kRQ as a function of σFr; this 

incorporates, the empirically determined, twin-vortex to 

toroidal transition criterion. Thus, a Heaviside function 

enforces this criterion in the kRQ approximation for σFr values 

greater than one [5], i.e. H(1-σFr). For the twin-vortex range, 

outside of the hysteresis region, a polynomial function with a 

minimum at σFr =1, kRQ=1 is fit to the. Finally, it was observed 

above that within the hysteretic region of the twin-vortex 

cavities kRQ is maintained at a constant value, kRQ,Hys. This and a 

minimal value of zero are used to bound the function. The 

approximation is given as 

( )

( )( )( ) ( )
2

0 2 ,max min 1 , ,0 1

RQ

RQ Hys

k Fr

A A Fr k H Fr

σ

σ σ= + − − ,

 
(15) 

where the values of A0 and A2 were determined via a least 

squares fit to the data. For this specific, Campbell and Hilborne 

[5], case, A0=0.815, A2=-17.36, kRQ,Hys=0.654, and the 

Heaviside function is approximated as H(1-σFr) ≈ 

0.5[1+tanh(1000{1-σFr})]. The results of this are plotted 

below in Fig. 10. Note that the approximation follows the data 

quite well.  

 

 
Figure 10: Recovery factor versus σFr for the experiment and 

approximate function. Note that the fit is a polynomial fit to the 

data left of the hysteresis region.  

 

The modeling appears to conform well to this particular 

case. The amount of shear layer entrained air, CQ,SL, from Eq. 

14 using the empirical correction to the recovery factor, kRQ, is 

compared to experimental measurements in Fig. 11. It is 

apparent that the model performs well throughout the 

experimental data. However, it appears that, approaching the 

highest CQ and lowest σc values, the model behaves 

aphysically.  

 

 
Figure 11: Predicted air entrainment rates using the proposed 

model with shear recovery, Spurk’s model (CQ,Spurk), and 

experiments from Campbell and Hilborne [5]. 

 

Although the presented approximation is a fit to data, a 

model is preferred. Such a model could enable an analytic 

function that remains valid over a range of conditions. It is 

presumed that this approximation is valid only for this 

particular ReN and FrN. However, with additional data the 

parameters A0, A2, and kRQ,Hys could be empirically determined 
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using extended ReN and FrN data sets and optimization 

algorithms, and should enable the approximation to be valid 

over various cavitator configurations and conditions. 

 

Shear-Layer Air and Hysteresis 
Consider the model behavior with respect to experimental 

measurements displayed in Fig. 12. CQ,CHm, (Eq. 10) with an 

assumed vortex velocity, VVT=V∞ is compared to CQ,Spurk (Eq. 

11) and hysteretic experimental data [5]. Interestingly, CQ,CHm 

and CQ,Spurk intersect within the twin-vortex cavity hysteresis 

region.  

 

 
Figure 12: Predicted air entrainment rates using Campbell & 

Hilborne’s model (CQ,CHm), Spurk’s model (CQ,Spurk), and 

experiments from Campbell and Hilborne [5].  

 

The point of intersection of the CQ,CHm and CQ,Spurk curves 

appears to be related to the phenomenon. Based on the 

presently developed physical models, this intersection occurs 

when the twin vortex tubes are sufficiently large to support the 

shear-layer air with no recovery. As this value of σc roughly 

corresponds to the smallest, decreasing-CQ, twin-vortex cavity 

reported from the experiments, it may be an indicator of the 

mechanism that induces the transition from twin-vortex back to 

toroidal cavity closure. Perhaps, it may be interpreted that the 

cavity remains in a twin-vortex state provided that the vortex 

tubes can support the entrained air within the cavity attached 

shear layers.  

However, this differs from the previous suggestion that, 

rather than fully being transported out the vortex cores, some 

air is recovered from the shear-layers in this region. In fact, the 

data seems to support the recovery concept. So, it is suggested 

that the vortex cores not need be adequate to support the entire 

shear layer, but perhaps just the high-velocity, most tightly 

entrained, portions. Then, the more slowly moving attached 

portion of the shear layer would be the air most susceptible to 

recovery. Although this is an appealing concept and fits the 

present data nicely, it is not yet sufficiently supported by data 

or observations.  

 

Pressure Driven Air Entrainment 

Referring to the modified form of the model of Campbell & 

Hilborne (CQ,CHm defined in Eq. 10), the velocity of air through 

the vortex tubes must be ascertained. As the true vortex tubes 

may certainly range in description from a cloud of bubbles to a 

clean air-filled tube-like structure, a single velocity is difficult 

to deduce. However, given the repeatable nature of these events 

in the physical record and knowing that it is needed for the 

model, it is suspected that a representative value can be found. 

Campbell and Hilborne [5] assumed a value equal to the free-

stream velocity, and mentioned the uncertainty in this 

assumption. Rather than directly alter this approximation, 

consider it combined with separated shear layer effects. Define 

a pressure driven term as the difference between CQ,CHm and 

CQ,Spurk and use the recovery factor to determine when shear- 

effects are significant. This further modified rate is then 

( )
2

, , ,

,

max ,0 1
RQ

Q p Q CHm Q Spurk

RQ Hys

k
C C C

k

 
= − −  

  .

 

Within this context, CQ,CHm and CQ,Spurk both assume that 

VVT=V∞. Therefore, they concurrently assume vortex-tube 

cross-sectional areas. Thus, this particular model assumes a 

vortex velocity behavior of 
2

,

1
RQ

VT

RQ Hys

k
V V

k
∞

 
= −  

  .

 

The combined results are plotted in Fig. 13 and conform nicely 

to the data.  

 

 
Figure 13: Air entrainment rates using the proposed model, 

Campbell & Hilborne model (CQ,CHm), and experiments from 

Campbell and Hilborne [5]. 

 

Application of Model 
Finally, the model is applied over a broad range of Froude 

numbers to display that it continues to produce valid results 

outside of this single case. Using the 1 inch diameter cavitator 

data from the experiments of Campbell and Hilborne [5], the 

model results show to continue to produce valid results in Fig. 

14. Note that the model predicts the entrainment rate quite 

reasonably though this range, and although not plotted, 
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similarly for the entire data set from Campbell and Hilborne 

[5]. In these cases, the empirical parameters (A0, A2, and 

kRQ,Hys) are established using a least-squares fit to the data. 

Furthermore, the constant kQ is determined using the 

observation from Fig. 12 that CQ,CHm and CQ,Spurk intersect at the 

lowest CQ point that can sustain a twin-vortex cavity. Note that 

this is only observed for a single case and needs additional 

hysteretic data for further assessment. In any case, this allows 

the approximation of the toroidal-vortex cavity ventilation rates 

as well as the components from shear mechanisms. 

 

 
Figure 14: Air entrainment rates using the proposed model, 

Campbell & Hilborne model (CQ,CHm), and experiments from 

Campbell and Hilborne [5]. 

 

Summary of the Present Model 
As the model is developed throughout the preceding, it is 

summarized here. From Eq. 13 we define the air entrainment 

rate as the combination of shear-layer air and air exiting 

through pressure-gradient mechanisms as. 

 

, ,Q Q SL Q p
C C C= + . (18) 

The shear-layer air is defined through a modified form of the 

model of Spurk, accounting for separated via a recovery factor, 

given by Eq. 14 as 

( ), ,
1

Q SL RQ Q Spurk
C k C= −  & 
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1 1 1
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Q Spurk Q
C k

σ

σ σ σ
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(19) 

Note that recovery factor is presently an empirically determined 

term, estimated here using Eq. 15. Finally, the pressure driven 

term is given by the difference between the shear layer air and 

the equivalent vortex size. Then assuming a modified model for 

the axial velocity through the vortex tube. The model is given 

as 

( )
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N Disk
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kFr

π σ

σ

+
= . 

(20) 

These terms account for the proposed form of the model. 

CONCLUSIONS 
CFD has been used to analyze the air flow within 

supercavities. Results strongly corroborate the theory of Spurk 

[1] derived for toroidal cavities, suggesting this theory is 

relevant to cavities closing with twin-vortices and on bodies as 

well. For twin-vortex closing cavities, the theory of Spurk, 

requires modulation. 

These CFD results were used to arrive at improved models 

of air entrainment, address issues with CFD turbulence 

modeling approaches, and highlight potential experimental 

scaling issues. When applied straightforwardly RANS 

approaches tend to over predict the amount of air entrained 

within cavity shear layers, ultimately overpredicting CQ. Next, 

Reynolds number effects of the internal cavity air flow are 

evident. Although integral effects may be small, such as cavity 

size and/or pressure, the internal flow effect is significant. This 

may be an overlooked scaling issue. Lastly, an improved air-

entrainment model is proposed that combines classical theory 

with that of Spurk [1] and accounts for the shear-layer air 

recovery. 

Application of numerical simulations in this fashion is not 

a substitution for physical experiments. However, the 

computational modeling applied is expected, with sufficient 

resolution, to fully support the physical phenomena observed. 

Regardless of this, only physical experiments are expected to 

be able to validate or correct the conclusions drawn here. 

Ventilated supercavities developed behind axisymmetric 

cavitators are known to follow scaling relationships that fix the 

dimensionless cavity size and cavity pressure given the 

ventilation rate and Froude number. For a largely steady cavity, 

it is also appropriate to treat the ventilation and an entrainment 

rate as an identity. The essence of the cavity air entrainment 

process is the cavity interface attached air shear layer. This was 

made clear by Spurk [1]. The entrainment process begins rather 

abruptly as the ventilation air feeds the shear layer. The shear 

layer develops from the cavitator detachment point to the cavity 

terminus. However, the air velocity profile is actually negative 

with respect to the moving interface. Therefore adverse 

pressure gradients, typically occurring at the aft end of the 

cavity, tend to stabilize, and thin the shear layer. As the 

entrained shear layer develops, the local amount of entrained 

air grows until the cavity reaches its maximum diameter. At the 

maximum diameter, the amount of shear layer entrained air is 

also a maximum but, as it is convected aftward, it is gradually 

diminished until the region of cavity closure. At the cavity 

closure region, the amount of air actually departing the cavity is 

finally determined. If the closure mechanism is toroidal vortex, 

the shear layer entrained air at the closure will exit unabated. If 
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the closure mechanism is twin vortex, some portion of the shear 

layer entrained air will be stripped off and recovered. 
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NOMENCLATURE 
 

Symbols  
CL three-dimensional lift coefficient, L/(q∞A) 

CD three-dimensional drag coefficient, D/(q∞A) 

CQ ventilation rate coefficient, QV∞
-1

D
-2

 

CQ,l local air entrainment rate, αu/V∞ 

CQ,CHm modified Campbell and Hilborne model of CQ 

CQ,Spurk modified Spurk model of CQ 

CQ,p pressure-gradient driven CQ terms 

CQ,SL shear-layer driven CQ terms 

DN cavitator diameter  

g gravity 

H heavyside function 

kQ empirical constant for shear-layer entrainment rate 

kRQ portion of recovered shear-layer air  

Lc cavity length 

Q ventilation rate 

Rc cavity radius 

RN cavitator radius 

Re Reynolds number, ρVL/µ  

V velocity 

VVT axial velocity in vortex tube  

Greek Symbols  

α air volume fraction 

µ  molecular viscosity  

ν  dynamic viscosity  

ρ  density  

σc cavitation number based on cavity pressure, (p∞-pc)/q∞ 

Subscripts  

c reference to cavity properties 

Disk reference shape to an effective disk  

l  reference to local properties  

N reference to cavitator diameter 

∞ reference to free stream  
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