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ABSTRACT 
The applicability of numerical prediction method for 

cavitation around marine propeller was studied. A commercial 
CFD code was applied for computation of 10 different 
propellers. The computed cavitation patterns and pressure 
fluctuations were compared with model test. As the result, it’s 
shown that this method can be used for the prediction of the 
behavior of sheet cavitation and the pressure fluctuation of the 
1st order of blade frequency component. 

 
 

INTRODUCTION 
It has been well known that unsteady cavitation occurring 

on marine propellers operating behind ship accounts for major 
part of propeller-induced hull vibratory forces. To prevent or 
control this harmful effect, prediction methods for unsteady 
cavitation and pressure fluctuation has been studied. But it’s 
still difficult to achieve sufficient accuracy because of the 
complexity of cavitation phenomena. In these days, some 
results have indicated that numerical simulation using 
commercial CFD code provides reasonable cavitation pattern, 
and some of them have shown the possibility to predict 
pressure fluctuation [1, 2, 3, 4, 5]. However there have been 
few comparisons between CFD simulations and experiments, 
so it’s still difficult to evaluate the applicability for actual 
design work. Therefore, in this study, 10 propellers which 
designed for actual commercial ships were calculated using 
commercial CFD in similar methodology, and compared with 
corresponding model tests to discus its applicability. 

NOMENCLATURE 
Ae/Ad expanded area ratio 
Dp diameter of propeller 
Kt thrust coefficient  

Kt=T/ρN2Dp4 
N shaft rotating speed 
P/D pitch ratio at 70% radius section 
Po ambient pressure 
Pv vapor pressure 
T propeller thrust 
Z number of blade 
ρ density of fluid 
σn cavitation number 

σn=(Po-Pv)/(0.5ρ N2Dp2) 
θ blade angler position 

θ=0 shows the blade position at vertical upward, and 
increase in rotational direction. 

θs skew angle 
 
 

COMPUTATIONAL METHOD 
ANSYS CFX® is applied for computational simulation of 

cavitation and pressure fluctuation. This software solves RaNS  
(Reynolds averaged Navier-Stokes) equation using finite 
volume method, and can deal with cavitation phenomenon 
using VOF (Volume of Fluid) method. In this study, SST k-
omega model was adopted for turbulence model.  
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The overview of computational domain and computational 
grid on propeller surface are shown in Figure 1. Propeller is set 
in cylinder with free-slip wall, and only small cylindrical 
domain around propeller is rotating with transient rotor-stator 
connection. The topology of computational grid near propeller 
is almost similar to Kawamura et al. [2]. The y-plus values of 
the grids on blade surface are about 1 to 3, depending on local 
flow pattern. The number of grid is about 1.8 million, and 
required CPU time for each computation is about 24 hours 
using 6 CPU parallel computing in PC-cluster. 

 

 
 

Figure 1: Computational domain and grid  
(Left : overview of domain, Right : grid on propeller surface) 

 
 
As inflow boundary condition, wake distribution is given. 

The wake distribution is the flow field at the propeller plane 
behind ship, and it’s obtained in the absence of propeller. An 
example of wake distribution is shown in Figure 2, and this 
pattern is changed corresponding to each ship and its loading 
condition. 

 

 
 
Figure 2: An example of wake distribution 
(The contour shows velocity in axial direction, which 
normalized by ship’s speed. The black circle shows the 
diameter of propeller disk.) 

 
 
For unsteady computation, the revolution angle in 1 time 

step was set to 6 deg. i.e. 1 revolution consists from 60 steps. 
This time stepping is thought too coarse to express detailed 
phenomena of cavitation, but it was chosen to predict low 
frequency approximate phenomena in reasonable computation 

time for actual design work. Also the low frequency 
components of pressure fluctuation are highly important 
because they cause whole hull vibration, which is difficult to 
reduce by small modification of hull structure.  

 

OVERVIEW OF MODEL TEST 
To compare and validate computational results, model tests 

were done. These model tests were carried out in cavitation 
tunnel as shown in Figure 3 and Figure 4. This cavitation tunnel 
is closed jet type. The measurement section’s shape is 710 mm 
square. The propeller is set in the center of measurement 
section and driven by the dynamometer set at upstream 
position. In the cavitation tunnel, the wake distribution was 
simulated with wire-mesh set at upstream position of propeller. 
The thrust coefficient Kt and cavitation number σn are adjusted 
to each ship’s operating condition by controlling flow speed 
and pressure in tunnel. 

In the tests, cavitation patterns were observed and sketched 
through window beside propeller, and pressure fluctuations 
were measured with pressure transducers on flat plate set above 
propeller. These pressure fluctuations were analyzed by FFT to 
obtain the amplitudes of the blade frequency components [6]. 

In this study, typical Dp of model propeller is 250 mm, and 
N is 25 rps. 

 

 
 
Figure 3: General arrangement of cavitation tunnel 

 
Figure 4: Test arrangement in cavitation tunnel 
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APPLIED PROPELLERS 
The principal particulars of applied propellers are shown in 

Table 1. These propellers were chosen from different ships and 
types. 

 
 
 

Table 1: Principal particulars of applied propellers 

index 
type of 

ship 
type Z P/D Ae/Ad 

θs 

(deg,) 

prop.A A FPP 6 Abt.1.0 Abt.0.8 Abt.30 

prop.B B CPP 4 Abt.1.4 Abt.0.7 Abt.40 

prop.C1 C CPP 4 Abt.1.1 Abt.0.6 Abt.40 

prop.C2 C FPP 5 Abt.1.0 Abt.0.8 Abt.30 

prop.C3 C FPP 5 Abt.1.0 Abt.0.8 Abt.30 

prop.C4 C FPP 6 Abt.1.0 Abt.0.7 Abt.30 

prop.C5 C FPP 6 Abt.0.9 Abt.0.7 Abt.30 

prop.D1 D FPP 5 Abt.0.9 Abt.0.6 Abt.20 

prop.D2 D FPP 5 Abt.0.9 Abt.0.7 Abt.20 

prop.D3 D FPP 6 Abt.0.9 Abt.0.7 Abt.30 

*FPP: Fixed Pitch Propeller 
*CPP: Controllable Pitch Propeller 
 
 

COMPUTATIONAL RESULTS AND DISCUSSION 
COMPUTATIONAL CONDITIONS 

All computations were carried out in model scale. The 
loading and pressure conditions were adjusted to each ship’s 
operating condition by same way of model tests. 

 
CAVITATION PATTERNS 

Here computed cavitations are visualized using iso-surface 
of void fraction, and compared with cavitation patterns 
observed in model tests. In this study, 20% is adopted for the 
void fraction value corresponds to cavity surface. 

Comparison of cavitation patterns of prop.A are shown in 
Figure 5. In computation, thin sheet cavitation appears at early 
phase (θ=0deg.) although there is slight and unstable bubble 
cavitation in model test. As blade rotates, computed cavitation 
area shifts to trailing edge and the shape becomes similar to 
model test result, and finally computed cavitation disappears at 
tip of blade similarly to model test. On the other hand tip-
vortex cavitation isn’t shown clearly in computation. 

In the case of other propellers, this tendency of difference 
and similarity between computation and model test was almost 
same with prop.A. From these results, it can be said that the 
fundamental behavior of sheet cavitation seems to be well 
predicted by computation, although there is some difference at 
early phase. 

 
 
 
 

 

θ=0deg.  

θ=18deg.  

θ=42deg.  

θ=48deg.  

θ=60deg.  

θ=72deg.   
 

Figure 5: Comparison of cavitation patterns (prop. A) 
(Left : computed, Right : model test) 

 
 
Figure 6 shows the comparison of cavitation pattern in 10 

propellers. Computed results seem to be able to predict the 
difference of sheet cavitation area between 10 propellers. So it 
can be expected to select better propeller by using this 
computation. 

 
 

θ=0deg. 

θ=20deg. 

θ=40deg. 

θ=70deg. 

θ=50deg. 

θ=60deg. 
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prop.D1       prop.D2       prop. D3 

 
Figure 6: Comparison of cavitation patterns in l0 propellers 
(Upper: computed, θ=42deg., Lower: model test, θ=40deg.) 
 

PRESSURE FLUCTUATIONS 
Pressure fluctuation induced by propeller is one of 

important performance factors for propeller design, because it 
is major source of hull vibration. In computation, time history 
of pressure was sampled at the point in open space just above 
propeller. After that, the computed pressure was multiplied by 
solid boundary factor, to compare with those of model tests 
which measured on solid plate. Here solid boundary factor 
expresses the image effect [7], and the value was assumed as 
2.0 in this study. 

A comparison of typical time history of pressure is shown 
in Figure 7.  In the computation, the pressure fluctuation looks 
like some kind of sine curve. In the model test, the rough shape 
of signal still looks different from the simple curve of 
computation.. And also there are some high frequency pressure 
pulses. 
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Figure 7: Comparison of time history of pressure above 
propeller (prop.D3)  
 
 

To obtain amplitudes of blade frequency components, 
Fourier Transformation was applied to time history of pressure, 
which was multiplied by solid boundary factor. 

Comparison of blade frequency components of pressure 
fluctuations between computations and model tests are shown 
in Figure 8 and Figure 9. As for 1st order components, the 
agreement between computation and model test is fairly good. 
Also the tendency in similar ship’s propellers is predicted fairly 
well by computation. On the other hand, the 2nd order 
components are quite underestimated in computation. It can be 
expected from the difference of time history of pressure, shown 
in Figure 7. 
 

To predict this 2nd or higher order components, higher 
accuracy of computation is required, especially in prediction of 
the changing rate of cavitation volume. Also it’s important to 
simulate bursting of tip vortex cavitation, which has strong 
relation with pressure pulse as shown in Figure 7 [8]. For such 
computation, higher resolution both in time and space is 
necessary. And also some modification of cavitation model, 
including collapse of cavity bubbles may be necessary. 

 
In this study, time stepping of computation was set coarse 

(6 deg./step) and 2nd order components of pressure fluctuation 
were not predicted well as mentioned above. Therefore, an 

pressure pulse
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computation with finer time stepping (1deg./step) is carried out 
for prop.D3 as trial. Computed time history of pressure is 
shown in Figure 10. With change of time stepping, the pressure 
fluctuation changes from simple curve as shown in previous 
computation (Figure 7), and some higher frequency fluctuation 
appears. 
 

 

Exp.

C
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prop. A prop. B
prop. C1-5 prop D1-3

 
 
Figure 8: Comparison of the amplitude of pressure fluctuation  
(1st order components) 
(Horizontal axis: model test, Vertical axis: computed, Dotted 
line indicate equal line with solid boundary factor = 2.0) 
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Figure 9: Comparison of the amplitude of pressure fluctuation  
(2nd order components) 
(Horizontal axis: model test, Vertical axis: computed, Dotted 
line indicate equal line with solid boundary factor = 2.0) 
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Figure 10: Time history of pressure computed with finer time 
stepping (revolution angle in 1 time step = 1 deg.) 
 
 

CONCLUSION 
The applicability of CFD for marine propeller cavitation 

was studied using 10 propellers for commercial ships. 
Computed cavitation patterns and pressure fluctuations were 
compared with those of model test. The results are summarized 
as follows. 

 
(1) Computation predicted the fundamental behavior and area 

of sheet cavitation fairly well. 
(2) There was some difference of sheet cavitation when the 

blade comes top position (θ=0deg.). Also tip-vortex 
cavitation wasn’t shown clearly. 

(3) As for 1st order blade frequency components of pressure 
fluctuation, the tendency in similar ship’s propellers was 
predicted fairly well. 

(4) The 2nd order components are quite underestimated in 
computation. It can also be expected from the difference of 
time history of pressure fluctuation. 

(5) By a test computation with finer time stepping, some higher 
frequency fluctuation appeared in time history of pressure. 

 
Thus, it can be said that CFD computation can predict the 

behavior of sheet cavitation and the 1st order component of 
pressure fluctuation. On the other hand, it’s still difficult to 
predict detailed cavitation and higher order components of 
pressure fluctuations. 

To improve the accuracy and applicability of computation, 
more study for computational resolution both in time and space 
is necessary. And also some modification of cavitation model, 
including collapse of cavity bubbles may be necessary. 
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