

(R)-3-(prop-2-ynyl)-4-((triisopropylsilyloxy)methyl)oxazolidin-2-one (10).

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the alcohol precursor ($74 \mathrm{mg}, 0.48 \mathrm{mmol}$), ${ }^{[\mathrm{S1]}} \mathrm{a} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of imidazole ($42 \mathrm{mg}, 0.62 \mathrm{mmol}$) and DMAP ($6.0 \mathrm{mg}, 0.048 \mathrm{mmol}$) was added, and the reaction was stirred for 10 min at rt . Then triisopropylsilylmethanesulfonate (0.16 mL , 0.58 mmol) was added and the reaction was stirred at rt for 12 h , quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted 3 x with diethyl ether, and the extract was dried over MgSO_{4}. The solvent was removed under vacuum, and the crude product was purified by column chromatography ($3: 1$ hexane/ethyl acetate) to yield $126 \mathrm{mg}(84 \%)$ of a thick yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.39(\mathrm{dd}, J=17.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.16(\mathrm{dd}, J=8.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.89(\mathrm{~m}, 3 \mathrm{H}), 2.27(\mathrm{t}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.02-1.103(\mathrm{~m}, 21 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 157.8,77.2,73.1,64.8,62.8$, 55.7, 32.6, 17.9, 11.8 IR (KBr film, cm^{-1}) 3246, 2940, 2865, 1753, 1490, 1463, 1250, 880 HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{SiNa} 334.1814$, found 334.1811 [M+Na] ${ }^{+}$

(R, E)-3-(4-hydroxyhept-5-en-2-ynyl)-4-((triisopropylsilyloxy)methyl)oxazolidin-2one.
To a 9.0 mL THF solution of alkyne $10(560 \mathrm{mg}, 1.8 \mathrm{mmol})$ cooled at $-50^{\circ} \mathrm{C}, n-\mathrm{BuLi}$ $(1.56 \mathrm{~mL}, 2.34 \mathrm{mmol})$ was added dropwise and the reaction was stirred for 30 min . Then a 1.0 mL THF solution of crotonaldehyde $(0.16 \mathrm{~mL}, 1.98 \mathrm{mmol})$ was added dropwise, and the reaction was stirred at $-50{ }^{\circ} \mathrm{C}$ for 1.5 h , quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted 3 x with diethyl ether, and the extract was dried over MgSO_{4}. The solvent was removed under vacuum, and the crude product was purified by column chromatography ($2: 1$ hexane/ethyl acetate) to yield $450 \mathrm{mg}(65 \%)$ of a thick yellow oil as two inseparable diastereomers with identical ${ }^{1} \mathrm{H}$ and and ${ }^{13} \mathrm{C}$ NMR data. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 5.82-5.90 (m, 1H), $5.59\left(\mathrm{dd},{ }^{1} \mathrm{H}, J=15.2,6.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=$ $18.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (dd, $J=8.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.04$ (sextet, J $=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, \mathrm{J} 18.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{t}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.73(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-1.11(\mathrm{~m}, 21 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.1$, $130.1,129.3,84.6,79.4,65.1,63.1,55.9,33.1,31.8,18.1,17.7,12.1 \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ HRMS 3401, 2942, 2865, 1739, 1463, 1436, 1249, 1106 (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{SiNa} 404.2233$, found $404.2228[\mathrm{M}+\mathrm{Na}]^{+}$

(4S)-3-(hepta-2,3,5-trienyl)-4-(hydroxymethyl)oxazolidin-2-one (11).
Tributyltin hydride ($0.79 \mathrm{~mL}, 2.98 \mathrm{mmol}$), AIBN ($61 \mathrm{mg}, 0.37 \mathrm{mmol}$), and the proparyl alcohol above ($708 \mathrm{mg}, 1.86 \mathrm{mmol}$) were mixed and stirred neat at $90^{\circ} \mathrm{C}$ for 5 h . The reaction was then cooled to $0^{\circ} \mathrm{C}$ and diluted with $5.0 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for $10 \mathrm{~min}, \mathrm{Et}_{3} \mathrm{~N}(0.52 \mathrm{~mL}, 3.72 \mathrm{mmol})$ was added and the reaction was stirred at $0^{\circ} \mathrm{C}$ for additional 10 min , after which $\mathrm{MsCl}(0.22 \mathrm{~mL}, 2.8 \mathrm{mmol})$ was added. The reaction was gradually warmed to rt , stirred for additional 30 min , quenched with $10 \% \mathrm{HCl}$, extracted 2 x with diethyl ether, and the extract was dried over MgSO_{4}. The solvent was removed under vacuum, and the crude product was purified by column chromatography (19:1, then 9:1 hexane/ethyl acetate) to yield a thick yellow oil. The oil was dissolved in 10.0 mL THF and treated with TBAF ($2.6 \mathrm{~mL}, 2.6 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexanes) for 1 h . The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted 3 x with ethyl acetate, and the extract was dried over MgSO_{4}. The solvent was removed under vacuum, and the crude product was purified by column chromatography ($4: 1$ ethyl acetate/hexane) to yield $177 \mathrm{mg}(45 \%$ over three steps from alcohol precursor) of a thick yellow oil as two inseparable diastereomers. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.88-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.75-5.9(\mathrm{~m}, 1 \mathrm{H}), 5.63-$ $5.70(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.27(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{dt}, J=17.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}) 4.24-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.04-$ $4.10(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{ddd}, J=16.5,10.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{ddt}, J=$ $16.0,7.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.60(\mathrm{dd}, J=12.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.73(\mathrm{dd}, J=6.5$, $1.5 \mathrm{~Hz}, 3 \mathrm{H}$), ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.8,206.5,159.0,158.9,129.53,129.46$, $125.5,125.4,96.7,96.5,88.0,87.9,64.9,60.6,60.58,56.4,56.2,41.8,41.6,18.4$ IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 3366,2920,2853,1730,1606,1490,1446,1046$ HRMS (EI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3} 209.1052$, found $209.1041[\mathrm{M}]^{+}$

(S)-3-((S,E)-hepta-2,3,5-trienyl)-4-((E)-3-oxo-3-(2-oxooxazolidin-3-yl)prop-1-enyl)oxazolidin-2-one (12a).

To a $4.0 \mathrm{~mL}-78{ }^{\circ} \mathrm{C} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of oxalyl chloride ($0.086 \mathrm{~mL}, 1.0 \mathrm{mmol}$), DMSO $(0.14 \mathrm{~mL}, 2.0 \mathrm{mmol})$ was added, and the reaction was stirred for 10 min . Then a 1.0 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of compound $11(105 \mathrm{mg}, 0.5 \mathrm{mmol})$ was added, and the reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1.25 h . The reaction was quenched with triethylamine ($0.42 \mathrm{~mL}, 3.0$ mmol), and was allowed to warm to $-20^{\circ} \mathrm{C}$. Then a $2.0 \mathrm{mLCH} \mathrm{Cl}_{2}$ solution of the Wittig reagent (generated in situ form the phosphonium bromide salt: $470 \mathrm{mg}, 1.0 \mathrm{mmol}$ and

DMAP: $146 \mathrm{mg}, 1.2 \mathrm{mmol}$ at $0^{\circ} \mathrm{C}, 20 \mathrm{~min}$) was transferred to the reaction mixture via cannula. The reaction was stirred at $-20^{\circ} \mathrm{C}$ for 10 min , then was allowed to warm to rt while stirring for additional 3 h , quenched with a pH 8 buffer solution of $\mathrm{NH}_{4} \mathrm{Cl}$ / $\mathrm{NH}_{4} \mathrm{OH}$, extracted 3 x with ethyl acetate, and the extract was dried over MgSO_{4}. The solvent was removed under vacuum, and the crude product was purified by column chromatography ($3: 2$ ethyl acetate /hexane) to yield $50 \mathrm{mg}(31 \%)$ of product $\mathbf{1 3 b}$ as a thick yellow oil and 23 mg (14%) of product 12a. Compound 13b was further purified by prep HPLC (HPLC parameters: RAININ, column: Varian Dynamax, $250 \times 21.4 \mathrm{MM}$ (L*1D) Flow, S/N 3007, Microsorb 60-8 Si R00083121C. Flow rate: $10 \mathrm{~mL} / \mathrm{min}, 80 \%$ ethyl acetate/hexane, retention time: 24-26 min).

For compound 12a: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (ddd, $J=15.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.92-5.94(\mathrm{~m}, 1 \mathrm{H}), 5.78-5.83(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.72(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~m}$, $1 \mathrm{H}) 4.53(\mathrm{dd}, J=16.3,7.8,1 \mathrm{H}), 4.43-4.47(\mathrm{~m}, 3 \mathrm{H}), 4.15(\mathrm{dt}, J=16.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ $(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=15.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.9,163.8,157.7,153.5,143.9,129.5$, $125.5,124.9,96.8,87.3,66.5,62.5,56.6,42.8,41.7,18.4 \mathrm{IR}\left(\mathrm{KBr}\right.$ film, $\left.\mathrm{cm}^{-1}\right) 2954$, 2923, 2849, 1771, 1753, 1686, 1640, 1608, 1383, 1218, 1032, 823 HRMS (ESI) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} 318.1216$, found $318.1221[\mathrm{M}]^{+}$

(9 S, 10S, 10a R, 10bS)-9-methyl-10-(2-oxooxazolidine-3-carbonyl)-9,10,10a,10b-tetrahydro-1H-oxazolo[4,3-a]isoquinolin-3(5H)-one (13b).

A thick yellow oil; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.06(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{dd}, J=$ $9.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.48(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=$ $9.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-4.10(\mathrm{~m}, 3 \mathrm{H}), 3.72(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.54 (q, $J=8.83 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.75$ (sextet, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.95$ (d, $J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 173.5, 157.4, 152.8, 132.0, 131.9, 126.6, $120.9,70.4,61.9,55.9,45.7,42.8,40.7,35.6,31.4,16.3 \mathrm{IR}\left(\mathrm{KBr}\right.$ film, $\left.\mathrm{cm}^{-1}\right) 2918,1751$, 1684, 1653, 1559, 1387, 1206, 1093, 1024, 758 HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}$, 341.1113 , found $341.1115[\mathrm{M}+\mathrm{Na}]^{+}$

(9R,10R,10aS,10bS)-9-methyl-10-(2-oxooxazolidine-3-carbonyl)-9,10,10a,10b-tetrahydro-1H-oxazolo[4,3-a]isoquinolin-3(5H)-one (13a).

To a 1.0 mL THF solution of $\mathrm{ZnCl}_{2}(24 \mathrm{mg}, 0.18 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}, 0.22 \mathrm{~mL}$ of $\mathrm{MeLi}(0.35$ $\mathrm{mmol}, 1.6 \mathrm{M}$ in diethyl ether) was added dropwise. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 10 min , then transferred via cannula to a 0.5 mL THF solution of $\mathrm{Ni}(\mathrm{COD})_{2}(6.4 \mathrm{mg}$, 0.023 mmol) cooled at $0^{\circ} \mathrm{C}$. The reaction mixture was cooled to $-20^{\circ} \mathrm{C}$ and stirred at -20 ${ }^{\circ} \mathrm{C}$ for 10 min , then a 1.0 mL THF solution of compound 12a ($23 \mathrm{mg}, 0.07 \mathrm{mmol}$) and titanium isopropoxide ($0.021 \mathrm{~mL}, 0.07 \mathrm{mmol}$) was added dropwise. The reaction was slowly warmed to rt , and stirred at rt for 1 h , quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted 3 x with ethyl acetate, and the extract was dried over MgSO_{4}. The solvent was removed under vacuum, and the crude product was purified by column chromatography ($2: 1$ ethyl acetate/hexane) to yield $14 \mathrm{mg}(64 \%)$ of a thick yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.02(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.85-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.51(\mathrm{~m}$, $4 \mathrm{H}), 4.03-4.16(\mathrm{~m}, 4 \mathrm{H}), 3.93-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=11.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=$ $17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.22 (dd, $J=12.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (sextet, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.84$ (d, $J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 173.9, 157.8, 152.9, 133.4, 131.8, 127.2, $123.4,66.5,62.3,53.1,431,42.9,39.9,31.4,30.5,16.5 \mathrm{IR}\left(\mathrm{KBr} \mathrm{film}^{2} \mathrm{~cm}^{-1}\right) 2958,2919$, 1758, 1687, 1388, 1217, 1038 HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}, 341.1113$ found $341.1109[\mathrm{M}+\mathrm{Na}]^{+}$

3,3-diisopropyl-2,11,11,12,12-pentamethyl-4,10-dioxa-3,11-disilatridec-7-yn-6-ol.

To a THF (60 mL) solution of TBS-protected propargyl alcohol ($1.31 \mathrm{~g}, 7.7 \mathrm{mmol}$), n $\mathrm{BuLi}\left(5.7 \mathrm{~mL}, 8.4 \mathrm{mmol}, 1.48 \mathrm{M}\right.$ solution in hexanes) was added dropwise at $-78^{\circ} \mathrm{C}$, and the reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . Then a 10 mL THF solution of the aldehyde $(1.51 \mathrm{~g}, 7.0 \mathrm{mmol})$ was added dropwise and the reaction was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h , then the temperature was brought up to $-40^{\circ} \mathrm{C}$, and the reaction was stirred at $-40^{\circ} \mathrm{C}$ for additional 2 h . The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted 3 x with diethyl ether, and the extract was dried over MgSO_{4}. The solvent was removed under vacuum, and the crude product was purified with silica gel column chromatography (10:1 pentane/diethyl ether) to yield $1.76 \mathrm{~g}(65 \%)$ of a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 4.45(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{dd}, J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ (dd, $J=10.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.06-1.12(\mathrm{~m}, 21 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H})$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 84.1,82.5,67.1,63.2,51.7,25.8,18.3,17.9,17.8,11.9$, 5.2 IR (KBr, $\left.\mathrm{cm}^{-1}\right) 3443,2939,2860,2720,2233,1463,1367,1126,1092,836$ HRMS (ES) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si}_{2} 409.2570$, found $409.2560[\mathrm{M}+\mathrm{Na}]^{+}$

Prepared as described below for the 26a to 17a conversion.

(4R)-methyl 2-oxo-3-(5-(triisopropylsilyloxy)penta-2,3-dienyl)oxazolidine-4carboxylate.

To a THF (4 mL) solution of the oxazolidinone methyl ester precursor cooled at $0{ }^{\circ} \mathrm{C}$, $(90$ $\mathrm{mg}, 0.62 \mathrm{mmol})$, KHMDS ($1.39 \mathrm{~mL}, 0.69 \mathrm{mmol}, 0.5 \mathrm{M}$ in toluene) was added dropwise and the reaction was stirred at $0^{\circ} \mathrm{C}$ for 30 min . After that, a 2 mL solution of the allenyl mesylate 17 ($314 \mathrm{mg}, 0.94 \mathrm{mmol}$) was added dropwise and the reaction was allowed to stir at rt for 12 h . The reaction was quenched with a pH 8 buffer solution of $\mathrm{NH}_{4} \mathrm{Cl}$ / $\mathrm{NH}_{4} \mathrm{OH}$, extracted 3 x with ethyl acetate, and the extract was dried over MgSO_{4}. The solvent was removed under vacuum, and the crude product was purified by column chromatography ($4: 1$ then $2: 1$ hexane /ethyl acetate) to yield $100 \mathrm{mg}(41 \%)$ of a thick yellow oil as a $1: 1$ mixture of two inseparable diastereomers ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 5.37-5.41(\mathrm{~m}, 2 \mathrm{H}), 5.17-5.21(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{dd}, J=9.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.47(\mathrm{~m}$, $3 \mathrm{H}), 4.33-4.36(\mathrm{~m}, 2 \mathrm{H}), 4.29-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.26(\mathrm{~m}, 5 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 3.75$ (ddd, J $=15.5,7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{ddd}, J=15.8,6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.04-1.10(\mathrm{~m}, 21 \mathrm{H}){ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 204.1, 203.6, 180.0, 170.1, 170.07, 157.3, 157.2, 94.9, 94.4, 87.9, 87.2, 64.3, 61.05, 60.8, 56.0, 55.7, 52.8, 52.7, 42.2, 41.7, 17.9, 17.8, 11.9, 11.87 IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2943,2866,1968,1767,1463,1410,1194,1089,1057,882,682$ HRMS (ES) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{SiNa} 406.2026$, found $406.2029[\mathrm{M}+\mathrm{Na}]^{+}$

(4S)-4-(hydroxymethyl)-3-(5-(triisopropylsilyloxy)penta-2,3-dienyl)oxazolidin-2-one (19).

To a 95% ethanol solution of oxazolidinone methyl ester identified above ($137 \mathrm{mg}, 0.36$ mmol) cooled at $0{ }^{\circ} \mathrm{C}$, sodium borohydride ($35 \mathrm{mg}, 0.86 \mathrm{mmol}$) was added portion-wise; the reaction was stirred at $0^{\circ} \mathrm{C}$ for 1 h , then brought to rt and stirred for another 1 h . The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted 3 x with ethyl acetate, and dried over MgSO_{4}. The solvent was removed under vacuum, and the crude product was purified by column chromatography ($4: 1$ ethyl acetate/hexane) to yield $102 \mathrm{mg}(80 \%)$ of a thick yellow oil. as a $1: 1$ mixture of two inseparable diastereomers ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 5.35-5.40 (m, 2H), 5.19-5.24 (m, 2H), $4.31(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 4.19-4.25 (m, $6 \mathrm{H}), 4.10(\mathrm{ddd}, J=15.5,5.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01$ (ddd, $J=15.5,5.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-$
$3.98(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{dd}, J=7.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{ddd}, J=15.5,7.0$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 1.02-1.10(\mathrm{~m}$, $42 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.9,203.8,158.7,158.6,94.5,94.3,88.5,88.4$, 64., $64.5,61.1,61.0,60.9,60.4,56.4,55.941 .7,41.2,17.91,17.90,12.0,11.9$ IR (KBr , cm^{-1}) 3416, 2944, 2866, 1970, 1733, 1463, 1194, 1092, 882 HRMS (ES) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{SiNa} 378.2077$, found 378.2068

(Diastereomeric mixture of 19 used here. Procedure with diastereomerically pure 19a is provided below.)

(S)-4-((E)-3-oxo-3-(2-oxooxazolidin-3-yl)prop-1-enyl)-3-((S)-5-(triisopropylsilyloxy)penta-2,3-dienyl)oxazolidin-2-one (20a) and (S)-4-((E)-3-oxo-3-(2-oxooxazolidin-3-yl)prop-1-enyl)-3-((R)-5-(triisopropylsilyloxy)penta-2,3-dienyl)oxazolidin-2-one (20b).

To a $3 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ solution of oxalyl chloride ($0.048 \mathrm{~mL}, 0.56 \mathrm{mmol}$) cooled at $-78{ }^{\circ} \mathrm{C}$, DMSO ($0.079 \mathrm{~mL}, 1.12 \mathrm{mmol}$) was added, and the reaction was stirred for 10 min . Then a $1.8 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of compound $19(100 \mathrm{mg}, 0.28 \mathrm{mmol})$ was added, and the reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1.25 h . The reaction was quenched with triethylamine $(0.24 \mathrm{~mL}, 1.68 \mathrm{mmol})$, and was allowed to warm up to $-20^{\circ} \mathrm{C}$. Then a $2.0 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ solution of the Wittig reagent (generated in situ form the phosphonium bromide salt: 263 $\mathrm{mg}, 0.56 \mathrm{mmol}$ and DMAP: $82 \mathrm{mg}, 0.67 \mathrm{mmol}$ at $0^{\circ} \mathrm{C}, 20 \mathrm{~min}$) was transferred to the reaction mixture via cannula. The reaction was stirred at $-20^{\circ} \mathrm{C}$ for 10 min , then warmed up and stirred at rt for additional 3 h , quenched with a pH 8 buffer solution of $\mathrm{NH}_{4} \mathrm{Cl}$ / $\mathrm{NH}_{4} \mathrm{OH}$, extracted 3 x with ethyl acetate, and the extract was dried over MgSO_{4}. The solvent was removed under vacuum, and the crude product was purified by column chromatography ($2: 1$ ethyl acetate /hexane) to yield $90 \mathrm{mg}(69 \%)$ of a yellow oil as a $1: 1$ mixture of two diastereomers separable by prep HPLC. HPLC parameters (Shimatzu, Column specification: Altima Silica. 5μ, Lot Number: 050700057, Part Number: 81118, Size: 250 mm , Flow Rate: $10 \mathrm{~mL} / \mathrm{min}, 1: 1$ ethyl acetate/hexanes. Retention time for compound 20a is 4.0 min , and for 20b is 5.2 min . Compound 20a: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=15.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.34-5.39(\mathrm{~m}, 1 \mathrm{H})$, $5.15-5.21(\mathrm{~m}, 1 \mathrm{H}), 5.47-5.64(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.26(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.25 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-4.11(\mathrm{~m}, 4 \mathrm{H}), 3.57$ (ddd, $J=15.6,6.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.04-$ $1.07(\mathrm{~m}, 21 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.2,163.6,157.4,153.2,143.9,124.4$, $94.5,87.3,66.2,62.2,60.9,56.3,42.5,41.4,17.9,11.9$ IR (KBr, cm^{-1}) 2941, 2864, 1754, 1727, 1682, 1660, 1649, 1083 HRMS (ESI) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SiNa} 487.2240$, found $487.2236[\mathrm{M}+\mathrm{Na}]^{+}$

Compound 20b: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=$ $15.3,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.41-5.46(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.16(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=15.3,8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.44-4.49(\mathrm{~m}, 3 \mathrm{H}), 4.24(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{dd}, J=4.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.13$ (m, 2H), 4.04 (dd, $J=8.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (ddd, $J=15.5,8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.03-1.10$ $(\mathrm{m}, 21 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.1,163.6,157.4,153.2,143.7,124.6,94.7$, 87.3, 66.2, 62.2, 61.0, 55.9, 42.6, 41.3, 17.9, 11.9 IR (KBr, cm ${ }^{-1}$) 2941, 2864, 1967, 1756, 1684, 1645, 1382, 1363, 1221 HRMS (ESI) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SiNa}$ 487.2240, found 487.2243.

Prepared as described below for asymmetrically prepared 20a.

(6R,7R,7aS)-7-(2-oxo-2-(2-oxooxazolidin-3-yl)ethyl)-6-((Z)-4-(triisopropylsilyloxy)but-2-en-2-yl)tetrahydropyrrolo[1,2-c]oxazol-3(1H)-one (23b).

To a 0.5 mL THF solution of $\mathrm{ZnCl}_{2}(15 \mathrm{mg}, 0.11 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}, 0.19 \mathrm{~mL}$ of $\mathrm{MeLi}(0.21$ $\mathrm{mmol}, 1.14 \mathrm{M}$ in diethyl ether) was added dropwise. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 10 min , then transferred via cannula to a 0.5 mL THF solution of $\mathrm{Ni}(\mathrm{COD})_{2}(2.4 \mathrm{mg}$, 0.0086 mmol) cooled to $0{ }^{\circ} \mathrm{C}$. The reaction mixture was cooled down to $-20^{\circ} \mathrm{C}$ and stirred at $-20^{\circ} \mathrm{C}$ for 10 min , then a 0.8 mL THF solution of compound 20 b (20 mg , 0.043 mmol) and titanium isopropoxide ($0.013 \mathrm{~mL}, 0.043 \mathrm{mmol}$) was added dropwise. The reaction was slowly warmed to rt , and stirred at rt for 2 h , quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted 3 x with ethyl acetate, and the extract was dried over MgSO_{4}. The solvent was removed under vacuum, and the crude product was purified by column chromatography (2:1 ethyl acetate/hexane) to yield $5 \mathrm{mg}(24 \%)$ of a thick yellow oil ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.61(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.48(\mathrm{~m}, 3 \mathrm{H}), 4.24-4.33(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{dd}, J=$ $9.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.55-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=10.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}) 3.00(\mathrm{dd}, J=18.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}) 2.75-$ $2.80(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~d}, J=0.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.04-1.09(\mathrm{~m}, 21 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,160.2,153.2,132.3$, $131.1,65.0,62.1,61.8,59.5,46.0,45.3,42.4,39.7,30.2,23.3,17.9,11.9$ IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 2960, 2925, 2864, 1771, 1751 1734, 1697, 1653, 1393, 1094 HRMS (ESI) m/z calcd. for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SiNa} 503.2553$, found $503.2546[\mathrm{M}+\mathrm{Na}]^{+}$

Methyl 2-((6R,7R,7aS)-3-oxo-6-((Z)-4-(triisopropylsilyloxy)but-2-en-2-yl)hexahydropyrrolo[1,2-c]oxazol-7-yl)acetate (24b).

To a 1.6 mL dry methanol stirred at $0^{\circ} \mathrm{C}, \mathrm{MeMgBr}(0.037 \mathrm{~mL}, 0.052 \mathrm{mmol}, 1.4 \mathrm{M}$ in 75:25 toluene/THF solution) was added dropwise and the reaction was stirred at $0^{\circ} \mathrm{C}$ for 10 min , followed by dropwise addition of 1.0 mL methanol solution of compound $\mathbf{2 3 b}$ (5 $\mathrm{mg}, 0.0104 \mathrm{mmol})$. The reaction was allowed to warm to room temperature and stir for 2 h, then it was cooled to $0{ }^{\circ} \mathrm{C}$, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted 3 x with ethyl acetate, and the extract was dried over MgSO_{4}. The solvent was removed under vacuum, and the crude product was purified by column chromatography ($2: 1$ hexane/ethyl acetate) to yield $3.5 \mathrm{mg}(79 \%)$ of a thick yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.61(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.43$ (d, $J=9.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.31(\mathrm{~m}, 3 \mathrm{H}), 4.19(\mathrm{dd}, J=10.0,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.67 (s, 3H), 3.61 (dd, $J=10.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.49-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.32$ (dd, $J=11.0,9.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.69 (sextet, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.29 (d, $J=17.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.14$ (dd, $J=17.0$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.04-1.10(\mathrm{~m}, 21 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.9$, 160.7, 131.6, 131.4, 64.4, 62.0, 59.6, 52.0, 46.2, 45.3, 40.6, 28.4, 23.5, 18.0, 12.0 IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2921,2864,1756,1463,1393,1058,882$ HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NO}_{5} \mathrm{SiNa} 448.2495$, found $448.2493[\mathrm{M}+\mathrm{Na}]^{+}$.

(R)-3,3-diisopropyl-2,11,11,12,12-pentamethyl-4,10-dioxa-3,11-disilatridec-7-yn-6-ol (25a).

Following the Carreira procedure, ${ }^{[\mathrm{S} 2]}$ zinc trifluoromethanesulfonate $(2.032 \mathrm{~g}, 5.6 \mathrm{mmol})$ was added to a flame dried round bottom flask, and the solid was dried under vacuum at $130{ }^{\circ} \mathrm{C}$ for 12 h then allowed to cool to rt . $(1 R, 2 S)-(-)$ - N-methylephedrine ($1.074 \mathrm{~g}, 6.0$ mmol) was then added as a solid, and the solid mixture was put under vacuum for 20 min . Toluene (25 mL) was added, followed by dropwise addition of freshly distilled triethylamine ($835 \mu \mathrm{~L}, 6.0 \mathrm{mmol}$). After the white slurry was stirred for 2 h under nitrogen at rt , a 12 mL toluene solution of t-butyldimethylsilylpropargyl ether (1.020 g , 6.0 mmol) was added dropwise via syringe pump over 20 min at rt . The reaction was stirred for 30 min , then a 12 mL toluene solution of the aldehyde ($864 \mathrm{mg}, 4.0 \mathrm{mmol}$) was added dropwise over 22 h at rt . The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted 3 x with diethyl ether, and the extract was dried over MgSO_{4}. The solvent was removed under vacuum, and the crude product was purified with silica gel column chromatography ($10: 1$ pentane/diethyl ether) to yield 890 mg of $\mathbf{2 5 a}$ as a colorless oil ($58 \%, 94 \% e e$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.45(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H})$,
$3.84(\mathrm{dd}, J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=10.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.06-$ $1.12(\mathrm{~m}, 21 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 84.1,82.5,67.1$, $63.2,51.7,25.8,18.3,17.9,17.8,11.9,-5.2$ IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3443, 2939, 2860, 2720, 2233, 1463, 1367, 1126, 1092, 836 HRMS (ES) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si}_{2} 409.2570$, found $409.2560[\mathrm{M}+\mathrm{Na}]^{+}$The ee of this reaction was determined by NMR analysis of the Mosher ester derivative of the (R)-propargyl alcohol and its racemate, comparing the signals at $\delta=5.81$ and $\delta=5.74$.

(S)-11,11-diisopropyl-2,2,3,3,12-pentamethyl-4,10-dioxa-3,11-disilatrideca-6,7-diene (26a).

Following the Myers protocol for allene synthesis, ${ }^{[S 3]}$ triphenylphosphine ($618 \mathrm{mg}, 2.36$ mmol) was loaded to a flame dried flask, and 10 mL of dry THF was added. The solution was cooled to $-15{ }^{\circ} \mathrm{C}$ (materials crystallize out of solution when temperature falls below $20^{\circ} \mathrm{C}$) and DEAD ($411 \mathrm{mg}, 371 \mu \mathrm{~L}, 2.36 \mathrm{mmol}$) was added dropwise. The reaction was stirred at $-15^{\circ} \mathrm{C}$ for another 10 min , and 8 mL THF solution of alcohol $\mathbf{2 5 a}(1.09 \mathrm{~g}, 2.82$ mmol) was added over 5 min . After 10 min , a 10 mL THF solution of NBSH (518 mg , 2.36 mmol) was added dropwise. The reaction mixture was stirred at $-15^{\circ} \mathrm{C}$ for 2 h , then brought up to rt and stirred for 12 h , quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted 3 x with diethyl ether. The ether solution was dried over MgSO_{4}, and the solvent was removed in vacuo. The crude product was purified by column chromatography (hexane/ethyl acetate, $50: 1)$ to yield $400 \mathrm{mg}(61 \%, 92 \% e e)$ of 26a as a yellow oil. The ee of this reaction was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the formed allene in presence of $\mathrm{Yb}(\mathrm{hfc})_{3}-\mathrm{Ag}(\mathrm{FOD})$ as a chiral shift reagent according to the following ratio: allene $: \mathrm{Ag}: \mathrm{Yb}=1: 2: 1.5(7.5 \mathrm{mg}$ of allene, 17.0 mg of $\mathrm{Ag}(\mathrm{FOD})$, and 34.0 mg of $\mathrm{Yb}(\mathrm{hfc})_{3}$ in $\left.1.5 \mathrm{mLCDCl} \mathrm{C}_{3}\right)$ and its racemate. The ee was determined by comparison of the ${ }^{1} \mathrm{H}$ NMR signals at $\delta=5.61$ and δ $=5.52 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.28-5.36(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{ddd}, J=6.0,4.5,2.8 \mathrm{~Hz}$, 2 H), 4.19 (ddd, $J=5.5,4.0,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.07-1.09(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H})$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.6,93.3,93.1,61.6,61.58,25.9,18.3,17.97,17.96$, 12.0, -5.1 IR (KBr, cm^{-1}) 2940, 1864, 1963, 1493, 1255, 1090, 836 HRMS (ES) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{Si}_{2} 393.2621$, found $393.2616[\mathrm{M}+\mathrm{Na}]^{+}$

(S)-5-(triisopropylsilyloxy)penta-2,3-dien-1-ol).

To a 20 mL ethanol solution of 26a ($760 \mathrm{mg}, 2.1 \mathrm{mmol}$) was added a catalytic amount of pyridine paratoluenesulfonate ($160 \mathrm{mg}, 0.62 \mathrm{mmol}$). The reaction was stirred at $55^{\circ} \mathrm{C}$ for 2.5 h , quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted 3 x with ethyl acetate, washed with sat. NaHCO_{3}, and brine, and dried over anh. MgSO_{4}. The solvent was removed in vacuo, and the crude product was purified by column chromatography (hexane/ethyl acetate, 10:1) to
afford $440 \mathrm{mg}(85 \%)$ of the corresponding alcohol as a light yellow oil. ${ }^{1}$ H-NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.38-5.44(\mathrm{~m}, 2 \mathrm{H}), 4.24-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.10-4.12(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $1.03-1.08(\mathrm{~m}, 21 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.5,94.4,93.4,61.3,60.3,17.9$, 11.9 IR ($\mathrm{KBr} \mathrm{cm}^{-1}$) 3356, 2941, 2864, 2890, 1964, 1462, 1093, 881 HRMS (ESI) m/z calcd. for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SiNa} 279.1769$, found $279.1743[\mathrm{M}+\mathrm{Na}]^{+}$

(S)-5-(triisopropylsilyloxy)penta-2,3-dienyl methanesulfonate (17a).

Triethylamine was added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the alcohol precursor above (200 mg , 0.78 mmol) cooled to $0^{\circ} \mathrm{C}$, and the reaction was stirred for 10 min . Then the reaction was cooled to $-25^{\circ} \mathrm{C}$ and mesyl chloride ($99 \mathrm{mg}, 67 \mu \mathrm{~L}, 0.86 \mathrm{mmol}$) was added. The reaction mixture was allowed to gradually warm up to $0{ }^{\circ} \mathrm{C}$, and then it was transferred to a separatory funnel, quickly and successively washed with ice cold solutions of $10 \% \mathrm{HCl}$, sat. NaHCO_{3}, and brine. The organic layer was dried over MgSO_{4}, and the solvent was removed under vacuum to produce 258 mg of compound $\mathbf{1 7 a}(98 \%)$ as a yellow oil that was used with no further purification. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.47-5.51(\mathrm{~m}, 1 \mathrm{H})$, $5.40-5.45(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{dd}, \mathrm{J}=1.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{dd}, J=2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}$, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=3) \mathrm{Hz},. 1 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 1.04-1.09(\mathrm{~m}, 21 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.4,94.8,87.6,67.9,60.6,38.2,17.9,11.9\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 2926,2853$, 1963, 1606, 1493, 1190, 1050 HRMS (ESI) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{SSiNa} 357.1532$, found $357.1529[\mathrm{M}+\mathrm{Na}]^{+}$

(4S)-4-((tetrahydro-2H-pyran-2-yloxy)methyl)-3-((S)-5-(triisopropylsilyloxy)penta-2,3-dienyl)oxazolidin-2-one (28a).

Using phase-transfer-catalyzed alkylation; a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ solution of the THPprotected hydroxymethyl oxazolidinone ($201 \mathrm{mg}, 1.0 \mathrm{mmol}$) was cooled to $5-10{ }^{\circ} \mathrm{C}$. To this vigorously stirred solution benzyltriethylammonium bromide ($136 \mathrm{mg}, 0.5 \mathrm{mmol}$) as the phase-transfer catalyst, 50% aqueous $\mathrm{NaOH}(1.25 \mathrm{~mL})$, and a 5 mL solution of the allenyl mesylate $\mathbf{1 7 a}(334 \mathrm{mg}, 1.0 \mathrm{mmol})$ were added dropwise and the reaction was allowed to slowly warm up to rt and further stirred for an additional 16 h at rt . The reaction was quenched with a buffer solution of $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{4} \mathrm{OH}$, and the organic layer was separated and the aqueous layer was extracted $3 x$ with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic fractions were washed once with cold 1.0 M HCl solution and twice with cold water and finally with cold brine solution. The combined extracts were dried over anh. MgSO_{4}. The solvent was removed under vacuum, and the crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$; hexanes: ethyl acetate $=4: 1$ then 2:1) to yield 102
$\mathrm{mg}(50 \%)$ of 28a as a thick yellow oil, together with ($62 \mathrm{mg}, 0.19 \mathrm{mmol}$) unreacted allenyl mesylate. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.42-5.36(\mathrm{~m}, 1 \mathrm{H}), 5.24-5.16(\mathrm{~m}, 1 \mathrm{H})$, $4.59(\mathrm{dt}, J=14.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{td}, J=9.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.23(\mathrm{~m}, 2 \mathrm{H}), 4.19-$ $4.12(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.44(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.49(\mathrm{~m}$, $8 \mathrm{H}), 1.08-1.03(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.9,203.8,158.11,158.0$, $99.2,99.0,94.2,94.2,87.99,87.97,66.7,66.3,65.02,65.01,62.4,62.2,61.3,61.1,54.3$, $54.1,41.9,41.6,30.4,30.3,25.3,25.2,19.2,19.0,17.93,17.91,11.9,11.7$; IR (film cm ${ }^{-1}$) 2941, 2868, 2358, 2336, 1751, 1448, 1227, 1127, 1034; HRMS (ES ${ }^{+}$) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{NO}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 462.2652$, found 462.2640 .

(S)-4-(hydroxymethyl)-3-((S)-5-(triisopropylsilyloxy)penta-2,3-dienyl)oxazolidin-2one (19a).

To a 5 mL ethanol solution of the THP-protected allenyl oxazolidinone 28a (36 mg , 0.082 mmol) was added a catalytic amount of PPTS (pyridinium p-toluenesulfonate) (6 $\mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction was stirred at $55^{\circ} \mathrm{C}$ for 2.5 h . The reaction was then cooled to rt and the solution was concentrated under vacuum to $c a 1 \mathrm{~mL}$ then ether was added to precipitate the PPTS. Sat. $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the product was extracted 3x with ethyl acetate, the combined organic layers were then washed with NaHCO_{3} and brine, and dried over anh. MgSO_{4}. The solvent was removed under vacuum, and the crude product was purified by column chromatography (hexanes: ethyl acetate $=2: 1$ then $1: 1)$ to produce $23 \mathrm{mg}(76 \%, 91: 9 \mathrm{dr})$ of $\mathbf{1 9 a}$ as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.46-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.32-5.27(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.23(\mathrm{ddq}, J$ $=13.3,5.7,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{dd}, J=8.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{ddd}, J=15.0,5.5,2.5 \mathrm{~Hz}$, 1 H), 3.97 (m, 1H), 3.91 (ddd, $J=8.0,6.5,3.0 \mathrm{~Hz}, \mathrm{H}$), 3.80 (dt, $J=12.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 (ddd, $J=11.5,7.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=7.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.12-1.11(\mathrm{~m}, 21 \mathrm{H})$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.1,158.4,94.3,88.7,64.3,61.4,61.0,56.7,17.9,12.0$ 42.0, IR (KBr, cm ${ }^{-1}$) 3419, 2942, 2865, 1967, 1733, 1445, 1365, 1247, 1090, 881, 681 HRMS (ES) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{SiNa} 378.2077$, found $378.2064[\mathrm{M}+\mathrm{Na}]^{+}$

S)-4-((E)-3-oxo-3-(2-oxooxazolidin-3-yl)prop-1-enyl)-3-((S)-5-(triisopropylsilyloxy)-penta-2,3-dienyl)oxazolidin-2-one (20a).

To a $2 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ solution of oxalyl chloride ($7.6 \mathrm{mg}, 7 \mu \mathrm{~L}, 0.06 \mathrm{mmol}$) cooled to -78 ${ }^{\circ} \mathrm{C}$, DMSO ($9.5 \mathrm{mg}, 7.7 \mu \mathrm{~L}, 0.12 \mathrm{mmol}$) was added, and the reaction was stirred for 10 min . Then a $1 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ solution of compound $\mathbf{1 9 a}(11 \mathrm{mg}, 0.03 \mathrm{mmol})$ was added, and the reaction was stirred at $-78^{\circ} \mathrm{C}$ for 1.3 h . The reaction was quenched with triethylamine ($19 \mathrm{mg}, 26 \mu \mathrm{~L}, 0.18 \mathrm{mmol}$), and was allowed to warm up to $-20^{\circ} \mathrm{C}$. Then a $1 \mathrm{mLCH} \mathrm{Cl}_{2}$ solution of the Wittig reagent (generated in situ form the corresponding phosphonium bromide salt ($24 \mathrm{mg}, 0.05 \mathrm{mmol}$) and DMAP ($7 \mathrm{mg}, 0.057 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}, 20 \mathrm{~min}$) was transferred to the reaction mixture via cannula. The reaction was stirred at $-20^{\circ} \mathrm{C}$ for 10 min , then warmed up and stirred at rt for additional 3 h , quenched with a buffer solution of $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{4} \mathrm{OH}$, extracted 3 x with ethyl acetate, and the extract was dried over MgSO_{4}. The solvent was removed under vacuum, and the crude product was purified by column chromatography (ethyl acetate/hexane, $2: 1$ to $1: 1$) to afford $10.5 \mathrm{mg}(74 \%)$ of 20a as a thick yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (dd, $J=15.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.34-5.39(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.21(\mathrm{~m}, 1 \mathrm{H}), 5.47-5.64(\mathrm{~m}, 1 \mathrm{H}), 4.45$ $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.26(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-4.11(\mathrm{~m}, 4 \mathrm{H})$, 3.57 (ddd, $J=15.6,6.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.04-1.07(\mathrm{~m}, 21 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 204.2, 163.6, 157.4, 153.2, 143.9, 124.4, 94.5, 87.3, 66.2, 62.2, 60.9, 56.3, 42.5, 41.4, 17.9, 11.9 IR (KBr, cm ${ }^{-1}$) 2941, 2864, 1754, 1727, 1682, 1660, 1649, 1083 HRMS (ESI) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SiNa} 487.2240$, found $487.2236[\mathrm{M}+\mathrm{Na}]^{+}$

(6S,7S,7aS)-7-(2-oxo-2-(2-oxooxazolidin-3-yl)ethyl)-6-((Z)-4(triisopropylsilyloxy)but-2-en-2-yl)tetrahydropyrrolo[1,2-c]oxazol-3(1H)-one (23a).
To a $0.5 \mathrm{~mL} 0{ }^{\circ} \mathrm{C}$ THF solution of anhydrous $\mathrm{ZnCl}_{2}(68 \mathrm{mg}, 0.5 \mathrm{mmol}), 0.67 \mathrm{~mL}$ of MeLi $(0.66 \mathrm{~mL}, 1.0 \mathrm{mmol}, 1.5 \mathrm{M}$ in diethyl ether) was added dropwise. After stirring for 10 \min at $0{ }^{\circ} \mathrm{C}$, the mixture was transferred by cannula to a $5 \mathrm{~mL} 0^{\circ} \mathrm{C}$ THF solution of $\mathrm{Ni}(\mathrm{COD})_{2}(12 \mathrm{mg}, 0.04 \mathrm{mmol})$. The mixture was cooled to $-20^{\circ} \mathrm{C}$, then an 8 mL THF solution of 20a ($100 \mathrm{mg}, 0.2 \mathrm{mmol}$) and titanium isopropoxide ($60 \mathrm{mg}, 60 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) was added dropwise. The mixture was slowly warmed to rt , and stirred for 2 h , quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with ethyl acetate, and the combined extracts were washed with brine and dried over MgSO_{4}. After filtration, the solvent was removed under
vacuum, and the crude product was purified by flash column chromatography (hexane/ethyl acetate, $2: 1$ to $1: 2$) to yield $78 \mathrm{mg}(77 \%, 94: 6 \mathrm{dr})$ of 23a as a thick oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.53(\mathrm{td}, J=6.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=9.0,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.41(\mathrm{dd}, J=12.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=7.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=9.0,4.0 \mathrm{~Hz}$, 2H), 4.08 (ddd, $J=12.5,5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.97 (ddd, $J=16.5,12.5,8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.83 (dd, $J=12.0,8.5,1 \mathrm{H}), 3.79(\mathrm{dd}, J=8.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{ddd}, J=14.0,8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.17 (dd, $J=12.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=18.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}) .2 .81(\mathrm{dd}, J=18.0,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.46-2.53(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.02-1.09(\mathrm{~m}, 21 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.7,161.2,153.4,132.9,131.5,68.3,63.7,62.2,59.5,48.8,43.3,42.7$, $42.3,33.8,2.5,17.9,11.9$. IR (KBr, cm^{-1}) 2940, 2864, 1773, 1750, 1470, 1387 HRMS (ESI) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SiNa} 503.2553$, found $503.2541[\mathrm{M}+\mathrm{Na}]^{+}$

Methyl-2-((6S,7S,7aS)-3-oxo-6-((Z)-4-(triisopropylsilyloxy)but-2-en-2-yl)hexahydro-pyrrolo[1,2-c]oxazol-7-yl)acetate (24a).

$\mathrm{MeMgBr}(104 \mu \mathrm{~L}, 0.125 \mathrm{mmol}, 1.2 \mathrm{M})$ was added dropwise to a 2 mL dry methanol stirred at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min and then 1.5 mL methanol solution of compound $\mathbf{2 3 a}$ ($12 \mathrm{mg}, 0.025 \mathrm{mmol}$) were added drop wise. The reaction was allowed to warm to room temperature and stir for 2 h , and then it was cooled to $0{ }^{\circ} \mathrm{C}$, quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted 3 x with ethyl acetate, and the extract was dried over MgSO_{4}. The solvent was removed under vacuum, and the crude product was purified by column chromatography (hexane/ethyl acetate, $4: 1$ to $2: 1$) to yield $7.8 \mathrm{mg}(75 \%)$ of $\mathbf{2 4 a}$ as a yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.56(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=9.0$, $8.0,1 \mathrm{H}), 4.27(\mathrm{dd}, J=9.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=12.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{ddd}, J=$ $13.0,6.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=12.0,8.5,1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.57$ (sextet, $J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.18(\mathrm{dd}, J=12.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{ddd}, J=18.5,14.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=$ $16.8,9.8,1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.03-1.08(\mathrm{~m}, 21 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.7$, $161.7,133.5,131.1,68.7,64.0,59.3,51.8,48.6,43.7,43.1,32.7,21.6,17.97,11.9$ IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 2940, 2864, 1751, 1734, 1457, 1386, 1164, 1063, 881, 779, 681 HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NO}_{5} \mathrm{SiNa} 448.2495$, found $448.2496[\mathrm{M}+\mathrm{Na}]^{+}$

References

[S1] Y. Ni, R. M. Kassab, M. V. Chevliakov, J. Montgomery, J. Am. Chem. Soc. 2009, 131, 17714-17718.
[S2] E. El-Sayed, N. K. Anand, E. M. Carreira, Org. Lett. 2001, 3, 3017-3020.
[S3] A. G. Myers, B. Zheng, J. Am. Chem. Soc. 1996, 118, 4492-4493.

