Supporting Information
© Wiley-VCH 2010
69451 Weinheim, Germany

Regioselective Nickel-Catalyzed Reductive Couplings of Enones and Allenes**
Wei Li, Nan Chen, and John Montgomery*

ange_201004740_sm_miscellaneous_information.pdf
Contents
A. General information..S1
B. Experimental procedure and characterization data...S2
C. 1H and 13C NMR spectra...S10

A. General Information

All reagents were used as received unless otherwise noted. Solvents were purified under nitrogen using a solvent purification system (Innovative Technology, Inc., Model # SPS-400-3 and PS-400-3). Ni(COD)$_2$ (Strem Chemicals, Inc., used as received) and triphenylphosphine (PPh$_3$) were stored and weighed in an inert atmosphere glovebox. All reactions were conducted in flame-dried glassware under a nitrogen atmosphere. 1H and 13C spectra were obtained in CDCl$_3$ at rt, unless otherwise noted, on a Varian Mercury 400 or Varian Unity 500 MHz instrument. Chemical shifts of 1H NMR spectra were recorded in parts per million (ppm) on the δ scale from an internal standard of residual chloroform (7.27 ppm). Chemical shifts of 13C NMR spectra were recorded in ppm from the central peak of CDCl$_3$ (77.0 ppm) on the δ scale. High resolution mass spectra (HRMS) were obtained on a VG-70-250-s spectrometer manufactured by Micromass Corp. (Manchester UK) at the University of Michigan Mass Spectrometry Laboratory.

Compounds 6a1, 6b1, 6c1, 6d2, 6e3, 6f4, 6g5, 6h6 and 6i7 were prepared according to literature procedure. Enone reagents were used as received.

Regioisomeric ratios were determined on crude reaction mixtures using NMR and/or GCMS. GCMS analyses were carried out on an HP6890 Series GC System with a HP-5MS column (30m x 0.252 mm x 0.25µm). The trisubstituted alkene stereochemistry was determined by NOE in the following cases: compound 1a and Table 2, entries 12 and 13.
B. Experimental Procedure and Characterization

General Procedure for the Ni(COD)$_2$/PBu$_3$ Promoted Reductive Coupling of Enones and Alkynes

To a solid mixture of Ni(COD)$_2$ (0.03 mmol) and triphenylphosphine (PPh$_3$) (0.06 mmol) was added toluene (1 mL) at rt. After stirring for 5-10 min at rt, triethylsilane (0.6 mmol) and then enone (0.3 mmol) were added by syringe to the dark red mixture, followed by syringe drive addition of allene (0.45 mmol) in toluene (4 mL) at 1 mL/hr at 50 °C. The reaction mixture was stirred at 50 °C until TLC analysis indicated disappearance of the enone. The reaction mixture was concentrated, and then diluted with ethyl acetate. A solution of tetrabutylammonium fluoride (n-Bu$_4$NF) (0.6 mmol) in THF was added to the reaction mixture and stirred until TLC analysis indicated disappearance of the enol silane product. The reaction mixture was washed with brine, dried over magnesium sulfate, filtered, concentrated, and the residue was purified by column chromatography on silica gel.

5-(Cyclohexylmethyl)hex-5-en-2-one (Table 1, entry 6)

Following the general procedure, 3-buten-2-one (25 mg, 0.30 mmol), propa-1,2-diienylcyclohexane (55 mg, 0.45 mmol), Ni(COD)$_2$ (8 mg, 0.03 mmol), PPh$_3$ (16 mg, 0.06 mmol), and Et$_3$SiH (97 µL, 0.60 mmol) were stirred for 6 h at 50 °C. The product (49 mg, 84 %, 93:7) was obtained as a colorless oil after SiO$_2$ chromatography (2 % ethyl acetate in hexanes). 1H NMR (500 MHz, CDCl$_3$) δ 4.70 (br s, 2H), 2.56 (m, 2H), 2.24 (m, 2H), 2.16 (s, 3H), 1.90 (d, J = 7.5 Hz, 2H), 1.66 (m, 5H), 1.39 (m, 1H), 1.17 (m, 3H), 0.83 (dq, J = 3.5, 12.0 Hz, 2H); 13C NMR (125 MHz, CDCl$_3$) δ 208.4, 146.6, 110.2, 44.7, 41.8, 35.4, 33.2, 29.8, 29.4, 26.5, 26.2; IR (film, cm$^{-1}$) 2922, 2851, 1719, 1448; HRMS (ESI) m/z calcd for C$_{13}$H$_{22}$ONa [M+Na]$^+$ 217.1568, found 217.1560.

5-Methylenedodecan-2-one (Table 2, entry 1)
Following the general procedure, 3-buten-2-one (25 mg, 0.30 mmol), nona-1,2-diene (55 mg, 0.45 mmol), Ni(COD)\(_2\) (8 mg, 0.03 mmol), PPh\(_3\) (16 mg, 0.06 mmol), and Et\(_3\)SiH (97 \(\mu\)L, 0.60 mmol) were stirred for 6 h at 50 °C. The product (43 mg, 73 %, 78:15:7) was obtained as a colorless oil after SiO\(_2\) chromatography (2 % ethyl acetate in hexanes). ¹H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 4.74 (s, 1H), 4.67 (s, 1H), 2.58 (app t, \(J = 7.0\) Hz, 2H), 2.28 (app t, \(J = 7.5\) Hz, 2H), 2.16 (s, 3H), 2.01 (app t, \(J = 7.5\) Hz, 2H), 1.42 (m, 2H), 1.28 (m, 8H), 0.88 (t, \(J = 7.0\) Hz, 3H); diagnostic signal for minor regioisomer: (5.16 ppm); ¹³C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 208.5, 148.6, 108.8, 41.9, 36.3, 31.8, 29.8, 29.7, 29.3, 27.7, 22.6, 14.0; IR (film, cm\(^{-1}\)) 2927, 2856, 1720, 1442; HRMS (ESI) m/z calcd for C\(_{13}\)H\(_{24}\)O \([M]\)^+ 196.1827, found 196.1831.

5-Benzylhex-5-en-2-one (Table 2, entry 2)

Following the general procedure, 3-buten-2-one (25 mg, 0.30 mmol), propa-1,2-dienylbenzene (52 mg, 0.45 mmol), Ni(COD)\(_2\) (8 mg, 0.03 mmol), PPh\(_3\) (16 mg, 0.06 mmol), and Et\(_3\)SiH (97 \(\mu\)L, 0.60 mmol) were stirred for 6 h at 50 °C. The product (28 mg, 50 %, 91:9) was obtained as a colorless oil after SiO\(_2\) chromatography (2 % ethyl acetate in hexanes). ¹H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.29 (m, 2H), 7.21 (m, 3H), 4.81 (s, 2H), 3.36 (s, 2H), 2.57 (t, \(J = 7.5\) Hz, 2H), 2.27 (t, \(J = 8.0\) Hz, 2H), 2.12 (s, 3H); ¹³C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 208.1, 147.4, 139.2, 128.9, 128.3, 126.1, 111.4, 43.3, 41.7, 29.7, 29.1, 27.7, 22.6, 14.0; IR (film, cm\(^{-1}\)) 3026, 2922, 1716, 1440; HRMS (ESI) m/z calcd for C\(_{13}\)H\(_{16}\)O \([M]\)^+ 188.1201, found 188.1197.

7-(tert-Butyldimethylsilyloxy)-5-methylenedodecan-2-one (Table 2, entry 3)

Following the general procedure, 3-buten-2-one (25 mg, 0.30 mmol), tert-butyldimethyl(nona-1,2-dien-4-yloxy)silane (114 mg, 0.45 mmol), Ni(COD)\(_2\) (8 mg, 0.03 mmol), PPh\(_3\) (16 mg, 0.06 mmol), and Et\(_3\)SiH (97 \(\mu\)L, 0.60 mmol) were stirred for 6 h at 50 °C. The product (83 mg, 85 %, >95:5) was obtained as a colorless oil after SiO\(_2\) chromatography (2 % ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 4.75 (s, 1H), 4.73 (s, 1H), 3.77 (quint, \(J = 6.0\) Hz, 1H), 2.57 (dd, \(J = 7.0, 9.5\) Hz, 2H), 2.29 (t, \(J = 7.5\) Hz, 2H), 2.18 (dd, \(J = 6.0, 13.5\) Hz, 1H), 2.15 (s, 3H), 2.14 (dd, \(J = 6.5, 14.0\) Hz, 1H),
1.20–1.47 (m, 8H), 0.88 (t, J = 7.0 Hz, 3H), 0.87 (s, 9H), 0.04 (s, 3H), 0.03 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 208.2, 145.4, 111.8, 71.1, 44.4, 41.8, 36.8, 31.9, 30.0, 29.8, 25.8, 24.8, 22.6, 18.0, 14.0, -4.4, -4.5; IR (film,cm⁻¹) 2930, 1720, 1644, 1462; HRMS (ESI) m/z calcd for C₁₀H₃₈O₂SiNa [M+Na]⁺ 349.2539, found 349.2530.

6-Methylene-9-oxodecyl acetate (Table 2, entry 4)

Following the general procedure, 3-buten-2-one (25 mg, 0.3 mmol), hepta-5,6-dienyl acetate (69 mg, 0.45 mmol), Ni(COD)₂ (8 mg, 0.03 mmol), PPh₃ (16 mg, 0.06 mmol), and Et₃SiH (97 µL, 0.60 mmol) were stirred for 6 h at 50 °C. The product (46 mg, 68 %, 79:21) was obtained as a colorless oil after SiO₂ chromatography (10 % ethyl acetate in hexanes). 1H NMR (500 MHz, CDCl3) δ 4.73 (s, 1H), 4.68 (s, 1H), 4.05 (t, J = 6.5 Hz, 2H), 2.57 (app t, J = 7.5 Hz, 2H), 2.27 (app t, J = 7.5 Hz, 2H), 2.15 (s, 3H), 2.04 (s, 3H), 2.02 (t, J = 8.0 Hz, 2H), 1.62 (m, 2H), 1.46 (m, 2H), 1.36 (m, 2H); diagnostic signal for minor regioisomer: (5.13 ppm); 13C NMR (100 MHz, CDCl₃) (signals for both isomers included) δ 208.5, 208.3, 171.1, 148.0, 133.9, 125.7, 124.5, 109.1, 64.4, 42.3, 42.0, 41.8, 36.1, 33.5, 29.8, 29.5, 28.5, 28.4, 28.2, 28.1, 27.3, 27.2, 26.4, 26.1, 25.9, 25.5, 23.0, 20.9, 16.0; IR (film,cm⁻¹) 2936, 1738, 1644, 1440; HRMS (ESI) m/z calcd for C₁₃H₂₂O₃ [M⁺] 226.1569, found 226.1580.

(Z)-10-Hydroxy-5-methyldec-5-en-2-one (Table 2, entry 5)

Following the general procedure, 3-buten-2-one (25 mg, 0.3 mmol), hepta-5,6-dien-1-ol (50 mg, 0.45 mmol), Ni(COD)₂ (8 mg, 0.03 mmol), PPh₃ (16 mg, 0.06 mmol), and Et₃SiH (97 µL, 0.60 mmol) were stirred for 6 h at 50 °C. The product (47 mg, 85 %, 78:13:9) was obtained as a colorless oil after SiO₂ chromatography (10 % ethyl acetate in hexanes). 1H NMR (500 MHz, CDCl₃) δ 5.14 (t, J = 7.0 Hz, 1H), 3.62 (app t, J = 7.0 Hz, 2H), 2.47 (m, 2H), 2.27 (m, 2H), 2.14 (s, 3H), 2.00 (q, J = 8.0 Hz, 2H), 1.88 (s, 1H), 1.65 (s, 3H), 1.55 (m, 2H), 1.37 (m, 2H); diagnostic signal for B: (5.11 ppm); diagnostic signal for C: (4.72 ppm and 4.66 ppm); 13C NMR (125 MHz, CDCl₃) (signals for all isomers included) δ 208.9, 133.6, 126.1, 124.9, 109.9, 109.0, 62.7, 62.6, 42.3, 41.9, 41.8,
33.5, 32.5, 32.2, 29.9, 29.5, 27.5, 27.3, 26.0, 25.9, 25.7, 25.3, 23.0, 18.6, 15.9; IR (film, cm⁻¹) 3414, 2931, 1713, 1449; HRMS (ESI) m/z calcd for C₁₁H₂₀O₂Na [M+Na]⁺ 207.1361, found 207.1365.

5-Benzyloxy methyl-hex-5-en-2-one (Table 2, entry 6)

Following the general procedure, 3-buten-2-one (25 mg, 0.30 mmol), propa-1,2-dienyloxymethyl benzene (66 mg, 0.45 mmol), Ni(COD)₂ (8 mg, 0.03 mmol), PPh₃ (16 mg, 0.06 mmol), and Et₃SiH (97 µL, 0.60 mmol) were stirred for 6 h at 50 °C. The product (41 mg, 63 %, 79:21) was obtained as a colorless oil after SiO₂ chromatography (10 % ethyl acetate in hexanes). Spectral data for this compound was previously reported and matched with the current data.⁸

2-(Cyclohexylmethyl)dec-1-en-5-one (Table 2, entry 7)

Following the general procedure, 1-octen-3-one (38 mg, 0.30 mmol), propa-1,2-dienylcyclohexane (55 mg, 0.45 mmol), Ni(COD)₂ (8 mg, 0.03 mmol), PPh₃ (16 mg, 0.06 mmol), and Et₃SiH (97 µL, 0.60 mmol) were stirred for 6 h at 50 °C. The product (53 mg, 71 %, >95:5) was obtained as a colorless oil after SiO₂ chromatography (2 % ethyl acetate in hexanes). ¹H NMR (400 MHz, CDCl₃) δ 4.70 (s, 2H), 2.54 (dd, J = 7.6, 9.6 Hz, 2H), 2.42 (t, J = 7.2 Hz, 2H), 2.25 (app t, J = 8.0 Hz, 2H), 1.91 (d, J = 7.2 Hz, 2H), 1.55-1.74 (m, 7H), 1.10-1.47 (m, 8H), 0.89 (t, J = 7.2 Hz, 3H), 0.84 (dq, J = 3.2, 12.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 210.9, 146.9, 110.2, 44.7, 42.8, 40.9, 35.4, 33.2, 31.4, 29.4, 26.5, 26.3, 23.5, 22.4, 13.9; IR (film, cm⁻¹) 2924, 1716, 1643, 1448; HRMS (ESI) m/z calcd for C₁₇H₃₀ONa [M+Na]⁺ 273.2194, found 273.2188.

5-(Cyclohexylmethyl)-3-methylhex-5-en-2-one (Table 2, entry 8)

Following the general procedure, 3-methyl-3-buten-2-one (25 mg, 0.30 mmol), propa-1,2-dienylcyclohexane (55 mg, 0.45 mmol), Ni(COD)₂ (8 mg, 0.03 mmol), PPh₃ (16 mg,
0.06 mmol), and Et₃SiH (97 µL, 0.60 mmol) were stirred for 6 h at 50 °C. The product (32 mg, 51 %, >95:5) was obtained as a colorless oil after SiO₂ chromatography (2 % ethyl acetate in hexanes). ^1^H NMR (500 MHz, CDCl₃) δ 4.74 (s, 1H), 4.72 (s, 1H), 2.70 (sextet, J = 7.0 Hz, 1H), 2.36 (dd, J = 6.5, 14.5 Hz, 1H), 2.14 (s, 3H), 1.95 (dd, J = 8.0, 14.5 Hz, 1H), 1.89 (dd, J = 7.0, 14.0 Hz, 1H), 1.67 (m, 5H), 1.39 (m, 1H), 1.10-1.27 (m, 3H), 1.07 (d, J = 7.0 Hz, 3H), 0.84 (dq, J = 4.0, 13.5 Hz, 2H); ^13^C NMR (100 MHz, CDCl₃) δ 212.3, 145.1, 112.2, 45.1, 44.0, 38.9, 35.4, 33.4, 33.1, 28.0, 26.5, 26.3, 26.2, 16.2; IR (film, cm⁻¹) 2924, 1713, 1642, 1449; HRMS (EI) m/z calcd for C₁₄H₂₄ONa [M+Na]^+ 231.1725, found 231.1715.

3-Methyl-4-methylene-1-phenylundecan-1-one (Table 2, entry 10)

Following the general procedure, 1-phenyl-but-2-en-1-one (44 mg, 0.30 mmol), nona-1,2-diene (55 mg, 0.45 mmol), Ni(COD)₂ (8 mg, 0.03 mmol), PPh₃ (16 mg, 0.06 mmol), and Et₃SiH (97 µL, 0.60 mmol) were stirred for 6 h at 50 °C. The product (59 mg, 72 %, 93:5:2) was obtained as a colorless oil after SiO₂ chromatography (2 % ethyl acetate in...
hexanes). ^1^H NMR (500 MHz, CDCl$_3$) δ 7.96 (dd, $J = 1.0$, 6.5 Hz, 2H), 7.56 (tt, $J = 1.5$, 8.0 Hz, 1H), 7.46 (t, $J = 8.0$ Hz, 2H), 4.79 (s, 1H), 4.76 (s, 1H), 3.16 (dd, $J = 5.0$, 16.0 Hz, 1H), 2.91 (dd, $J = 8.5$, 16.0 Hz, 1H), 2.85 (m, 1H), 2.06 (m, 2H), 1.46 (quint, $J = 6.5$ Hz, 2H), 1.29 (m, 8H), 1.10 (d, $J = 6.5$ Hz, 3H), 0.89 (t, $J = 7.0$ Hz, 3H); diagnostic signal for minor regioisomer: (5.17 ppm); 13C NMR (100 MHz, CDCl$_3$) δ 199.7, 154.2, 137.3, 132.8, 128.5, 128.0, 107.6, 44.8, 35.4, 34.7, 31.8, 29.4, 29.2, 28.0, 22.6, 20.0, 14.0; IR (film, cm$^{-1}$) 3067, 2927, 1688, 1642, 1448; HRMS (ESI) m/z calcd for C$_{19}$H$_{28}$O$_3$Na $\left[M+Na\right]^{+}$ 295.1780, found 295.1777.

7-Methyl-6-methylene-9-oxo-9-phenylnonyl acetate (Table 2, entry 11)

Following the general procedure, 1-phenyl-but-2-en-1-one (44 mg, 0.30 mmol), hepta-5,6-dienyl acetate (69 mg, 0.45 mmol), Ni(COD)$_2$ (8 mg, 0.03 mmol), PPh$_3$ (16 mg, 0.06 mmol), and Et$_3$SiH (97 µL, 0.60 mmol) were stirred for 6 h at 50 °C. The product (63 mg, 70 %, 90:5:5) was obtained as a colorless oil after SiO$_2$ chromatography (5 % ethyl acetate in hexanes). 1H NMR (500 MHz, CDCl$_3$) δ 7.95 (dd, $J = 1.0$, 8.0 Hz, 2H), 7.56 (tt, $J = 1.0$, 6.0 Hz, 1H), 7.45 (t, $J = 8.0$ Hz, 2H), 4.80 (s, 1H), 4.75 (d, $J = 1.5$ Hz, 1H), 4.06 (t, $J = 6.5$ Hz, 2H), 3.14 (dd, $J = 5.5$, 16.0 Hz, 1H), 2.92 (dd, $J = 8.0$, 15.5 Hz, 1H), 2.85 (sextet, $J = 7.0$ Hz, 1H), 2.08 (dt, $J = 3.0$, 7.5 Hz, 2H), 2.05 (s, 3H), 1.64 (m, 2H), 1.49 (quint, $J = 7.5$ Hz, 2H), 1.37 (m, 2H), 1.10 (d, $J = 6.5$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 199.5, 171.1, 153.7, 137.2, 132.9, 128.5, 128.0, 107.8, 64.5, 44.7, 35.2, 34.5, 28.4, 27.5, 25.7, 20.9, 20.1; IR (film, cm$^{-1}$) 3068, 2934, 1738, 1687, 1448; HRMS (ESI) m/z calcd for C$_{19}$H$_{26}$O$_3$Na $\left[M+Na\right]^{+}$ 325.1780, found 325.1777.

6-(tert-Butyldimethylsilyloxy)-3-(3-cyclohexylprop-1-en-2-yl)-1-phenylhexan-1-one (Table 2, entry 12)

Following the general procedure, 6-(tert-butyldimethylsilyloxy)-1-phenylhex-2-en-1-one (91 mg, 0.30 mmol), propa-1,2-dienylcyclohexane (55 mg, 0.45 mmol), Ni(COD)$_2$ (8 mg, 0.03 mmol), PPh$_3$ (16 mg, 0.06 mmol), and Et$_3$SiH (97 µL, 0.60 mmol) were stirred for 6 h at 50 °C. The product (100 mg, 78 %, >95:5) was obtained as a colorless oil after SiO$_2$
chromatography (2 % ethyl acetate in hexanes). 1H NMR (500 MHz, CDCl$_3$) δ 7.93 (dd, $J = 5.5$, 7.0 Hz, 2H), 7.55 (tt, $J = 0.5$, 7.0 Hz, 1H), 7.46 (t, $J = 8.5$ Hz, 2H), 4.82 (s, 1H), 4.77 (d, $J = 1.0$ Hz, 1H), 3.58 (m, 2H), 3.08 (dd, $J = 6.5, 16.0$ Hz, 1H), 2.96 (dd, $J = 7.5, 16.5$ Hz, 1H), 2.75 (quint, $J = 6.0$ Hz, 1H), 1.91 (dd, $J = 7.5, 15.0$ Hz, 1H), 1.87 (dd, $J = 7.0, 14.5$ Hz, 1H), 1.68 (m, 5H), 1.52 (m, 5H), 1.18 (m, 3H), 0.88 (s, 9H), 0.84 (m, 2H), 0.03 (s, 6H); 13C NMR (100 MHz, CDCl$_3$) δ 199.6, 149.6, 137.3, 132.8, 128.5, 128.0, 110.3, 63.1, 43.4, 42.7, 40.9, 35.3, 33.5, 33.4, 30.3, 29.8, 26.6, 26.3, 25.9, 18.3, -5.3; IR (film, cm$^{-1}$) 3070, 2926, 1689, 1641; HRMS (ESI) m/z calcd for C$_{27}$H$_{44}$O$_2$SiNa [M+Na]$^+$ 451.3008, found 451.3010.

(Z, E)-5-Butynon-5-en-2-one (Table 2, entry 13)

Following the general procedure, 3-buten-2-one (25 mg, 0.3 mmol), nona-4,5-diene (56 mg, 0.45 mmol), Ni(COD)$_2$ (8 mg, 0.03 mmol), PPh$_3$ (16 mg, 0.06 mmol), and Et$_3$SiH (97 µL, 0.60 mmol) were stirred for 6 h at 50 °C. The product (35 mg, 59 %, 78:22) was obtained as a colorless oil after SiO$_2$ chromatography (2 % ethyl acetate in hexanes). 1H NMR (500 MHz, CDCl$_3$) δ 5.14 (t, $J = 7.5$ Hz, 1H$_{\text{maj}}$), 5.09 (t, $J = 7.0$ Hz, 1H$_{\text{min}}$), 2.52 (app t, $J = 8.0$ Hz, 2H$_{\text{min}}$), 2.46 (app t, $J = 7.0$ Hz, 2H$_{\text{maj}}$), 2.27 (app t, $J = 9.0$ Hz, 2H$_{\text{maj}}$ + 2H$_{\text{min}}$), 2.15 (s, 3H$_{\text{maj}}$), 2.14 (s, 3H$_{\text{min}}$), 1.98 (m, 4H$_{\text{min}}$), 1.95 (app t, $J = 7.0$ Hz, 4H$_{\text{maj}}$), 1.31 (m, 6H$_{\text{maj}}$ + 6H$_{\text{min}}$), 0.89 (m, 6H$_{\text{maj}}$ + 6H$_{\text{min}}$); All observable signals are reported as a mixture of the two stereoisomers. 13C NMR (125 MHz, CDCl$_3$) (major and minor peak listings given) δ 208.8, 137.9, 137.7, 125.8, 125.1, 42.7, 42.6, 36.4, 30.7, 30.6, 30.3, 29.9, 29.8, 29.7, 24.1, 23.1, 22.7, 22.4, 18.4, 14.0, 13.9, 13.8; IR (film, cm$^{-1}$) 2958, 1719, 1641, 1461; HRMS (ESI) m/z calcd for C$_{13}$H$_{24}$ONa [M+Na]$^+$ 219.1725, found 219.1721.

(Z, E)-4-Cyclododecenylbutan-2-one (Table 2, entry 14)
Following the general procedure, 3-buten-2-one (25 mg, 0.3 mmol), cyclododeca-1,2-diene (74 mg, 0.45 mmol), Ni(COD)$_2$ (8 mg, 0.03 mmol), PPh$_3$ (16 mg, 0.06 mmol), and Et$_3$SiH (97 µL, 0.60 mmol) were stirred for 6 h at 50 °C. The product (55 mg, 78 %, 87:13) was obtained as a colorless oil after SiO$_2$ chromatography (2 % ethyl acetate in hexanes). 1H NMR (500 MHz, CDCl$_3$) δ 5.32 (t, J = 7.5 Hz, 1Hmaj), 5.10 (t, J = 8.0 Hz, 1Hmin), 2.52 (app t, J = 7.5 Hz, 2Hmin), 2.46 (app t, J = 7.5 Hz, 2Hmaj), 2.30 (app t, J = 8.5 Hz, 2Hmaj), 2.26 (app t, J = 7.5 Hz, 2Hmin), 2.14 (s, 3Hmaj + 3Hmin), 2.03 (m, 4Hmaj + 4Hmin), 1.42 (m, 6Hmaj + 6Hmin), 1.24 (m, 10Hmaj + 10Hmin); 13C NMR (100 MHz, CDCl$_3$) (major and minor peak listings given) δ 208.9, 137.5, 136.0, 129.1, 126.3, 42.5, 42.4, 35.2, 30.0, 29.9, 29.8, 27.3, 27.2, 26.8, 26.4, 25.9, 25.8, 25.3, 25.0, 24.9, 24.7, 24.6, 24.5, 24.3, 24.2, 23.9, 23.7, 22.8, 22.4, 22.2; IR (film, cm$^{-1}$) 2928, 1717, 1641, 1445; HRMS (ESI) m/z calcd for C$_{16}$H$_{28}$ONa [M-H]$^+$ 235.2062, found 235.2068.

Foot Note

6. Ng, S.-S.; Jamison, T. J. Am. Chem. Soc. 2005, 127, 7320. (racemic mixture of 6h was prepared using the same procedure)
C. 1H and 13C NMR Spectra

Table 1, entry 6
Table 2, entry 2
Table 2, entry 3
Table 2, entry 4
Table 2, entry 5
Table 2, entry 6
Table 2, entry 7
Table 2, entry 8
Table 2, entry 9
Table 2, entry 10
Table 2, entry 11
Table 2, entry 12
Table 2, entry 13
Table 2, entry 14