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SUMMARY

Some issues of He—Chen—Zhang lattice Boltzmann equation (LBE) method (referred as HCZ model)
(J. Comput. Physics 1999; 152:642-663) for immiscible multiphase flows with large density ratio are
assessed in this paper. An extended HCZ model with a filter technique and mass correction procedure is
proposed based on HCZ’s LBE multiphase model. The original HCZ model is capable of maintaining a
thin interface but is prone to generating unphysical oscillations in surface tension and index function at
moderate values of density ratio. With a filtering technique, the monotonic variation of the index function
across the interface is maintained with larger density ratio. Kim’s surface tension formulation for diffuse—
interface method (J. Comput. Physics 2005; 204:784—-804) is then used to remove unphysical oscillation
in the surface tension. Furthermore, as the density ratio increases, the effect of velocity divergence term
neglected in the original HCZ model causes significant unphysical mass sources near the interface. By
keeping the velocity divergence term, the unphysical mass sources near the interface can be removed
with large density ratio. The long-time accumulation of the modeling and/or numerical errors in the HCZ
model also results in the error of mass conservation of each dispersed phase. A mass correction procedure
is devised to improve the performance of the method in this regard. For flows over a stationary and a
rising bubble, and capillary waves with density ratio up to 100, the present approach yields solutions
with interface thickness of about five to six lattices and no long-time diffusion, significantly advancing
the performance of the LBE method for multiphase flow simulations. Copyright © 2010 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Multiphase flows often possess large property jumps across interfaces, resulting in multiple time
and length scales [1, 2]. In addition, the interface shapes and locations are not known a priori,
form moving boundaries, and need to be treated as part of the solution. Substantial efforts have
been made in the research community in developing techniques for such fluid flow problems. Both
continuum (Navier—Stokes) [3—7] and kinetic (such as lattice Boltzmann) [8—10] models have been
employed. Overall, the continuum approach has received substantially more attention, including
sharp and smooth interface methods [1, 11, 12], Eulerian, Lagrangian, and hybrid approaches [1, 6].
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The lattice Boltzmann equation (LBE) approach has also been successfully developed to treat
numerous fluid flow problems, e.g. porous media flows [13], free surface flows [14], reacting flows
[15], and numerous high Reynolds number flows [8]. Because some advantages of the LBE method,
such as that the characteristic length scale of the LBE methods is closer to the characteristic
length scale of the interfaces of multiphase flows; implementation of the LBE method is relatively
simple, the LBE method becomes a prospective candidate for incompressible multiphase flow
simulations.

In the context of the LBE method for isothermal immiscible multiphase flow, various interfacial
characteristics can be incorporated into the LBE model utilizing a kinetic framework. Employing the
diffuse—interface approach [14], the LBE multiphase method does not track the interface explicitly
and can handle complex phase topology, including breakup and merger. The phase interface is
modeled as a thin zone spanning several lattices over which the fluid/flow properties vary smoothly.
The surface tension is modeled as a volumetric force that acts on the fluids over only a thin zone
across the interface. The volumetric force is represented in the spatial density gradient (or index
function) manner. For immiscible multiphase flows without phase change, this interface modeling
in the LBE requires that the interface thickness does not smear off, and dispersed phase mass is
conserved, with long-time evolution. The numerical methods used in this modeling should also be
numerically stable for large flow/fluid property jumps across the interface.

Some of the popular LBE multiphase models include Shan—Chen (hereinafter referred as SC)
inter-particle potential model [10, 16], free energy model by Swift er al. [17], He—Shan—Doolen
model (hereinafter referred to HSD model) from kinetic theory of dense fluid [18], and an extension
by He—Chen—Zhang (the HCZ model) [9]. In the SC model, the interface is modeled through non-
local fluid particle interaction. It is incorporated into the LBE through an additional forcing term
added to the macroscopic velocity [10, 16]. The SC model has been successfully applied in some
multiphase flow simulations, including stationary droplet [10], oscillation of a capillary wave [16],
and drag and virtual mass forces in bubbly suspensions [19]. However, in this model, temperature is
not consistent with the thermodynamics definition, the surface tension coefficient cannot be freely
chosen according to the fluid property, and the viscosities of all phases must be the same. The
free energy model of Swift et al. [17] does not suffer from such limitations as in the SC model. It
has been successfully used to simulate some multiphase flows, such as stationary bubble/droplet,
capillary wave, and phase separation in a narrow capillary [17], two-dimensional bubble in
Poiseuille flow [20]. However, the Galilean invariance cannot be maintained in this model [21].
In the HSD model the kinetic theory of dense gases is applied to model phase segregation and
surface tension. It overcomes the limitations of the SC model while maintaining the Galilean
invariance. The major drawback of the HSD model is its numerical instability for flows with
large gradients arising from interfacial forcing terms. This drawback of the HSD model, shared
by all LBE multiphase models, has not been adequately addressed in the literature. In the HCZ
model, introducing a second LBE alleviates the numerical instability. In this second LBE the large
gradient term is multiplied by a term that is proportional to the Mach number. The first LBE is
used to track interfaces and its function is similar to that of a fixed grid (Eulerian) method, such
as the level set method and the volume-of-fluid method. With the improved numerical stability,
the Rayleigh—Taylor instability (RTI) with density ratio up to about 20 [9] and the two-phase
Rayleigh—-Benard convection with a deformable interface [22] have been successfully simulated
using the HCZ model. The computational results also show that the HCZ model is comparable in
accuracy with the macroscopic CFD method [21]. The detailed assessments for these three major
LBE multiphase models can be found in Nourgaliev et al. work [21].

Recently these LBE multiphase models have been extended to flows with large density ratios.
Inamuro et al. [23] used a free energy model with a projection method for pressure correction
to simulate multiphase flows with large density ratio. Zheng et al. [24] also used a free energy
model, and two LBEs for flows with large density ratio, like those in the HCZ model, to capture
interface and represent momentum evolution. Lee and Lin model [14] for multiphase flows with
large density ratio differs only slightly from the HCZ model. Instead of using index function, Lee
and Lin directly used density as the macroscopic variable calculated from the interface-capturing
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LBE. They also used a potential form for surface tension formulation and hybrid discretizations
for the forcing terms.

While these models can handle larger density ratios between phases, their capability of main-
taining non-diffuse interface thickness for long-time evolution, as in the HCZ model (See Figure 5
in [9]), has not been adequately examined. If the interface diffuses in time, the interfacial forcing
terms associated with spatial density (or index function) gradients, and hence the interfacial physics
being modeled, will change accordingly. The non-diffuse interface thickness is thus very important
for interfacial dynamics simulation using the LBE method.

Another critical factor for immiscible multiphase flows is mass conservation. In the LBE multi-
phase models, due to numerical modeling and/or numerical errors, a dispersed phase volume may
change with time although its density remains the same, leading to incorrect mass and momentum
distributions. This problem is worsened as the density ratio increases because the numerical error
due to the forcing term calculations becomes larger. To date, this issue has not been investigated
in the literature.

In this paper the HCZ model is adopted as the test model because of its capability of maintaining
non-diffuse interface thickness for long-time evolution. Some new issues of the HCZ model are
assessed for density ratio up to 100, such as compressibility effect and mass conservation. Several
new treatments, which are used to overcome the new difficulties of the HCZ model for large density
ratios, are also assessed in this paper. A nonlinear filter technique [25] and a new surface tension
formulation from diffuse—interface method [26] are used to remove the unphysical oscillations
caused by the surface tension treatment. The interfacial compressibility effect, which was neglected
in the original HCZ model, can lead to unphysical mass sources/sinks near-interface regions when
the density ratio is large. This aspect is considered in our approach. Furthermore, a correction step
is introduced to keep the mass of the dispersed phase conserved.

In the following, the numerical methods associated with the HCZ model, including the interfacial
compressibility effect, the surface tension formulation, the filter technique for index function, and
the mass correction for the dispersed phase are presented in Section 2. The performance of the
improved LBE technique is assessed in Section 3 by simulating flows around a stationary and a
rising bubble, and capillary waves. We end the paper with a summary and conclusion.

2. THE LBE METHOD AND THE PROPOSED IMPROVEMENT

2.1. The HCZ model with interfacial compressibility effect

In the HCZ multiphase model [9] two LBEs are used to describe the evolutions of index function
and pressure. The index function is used to track interfaces between different phases. These two
LBEs were derived from two discretized Boltzmann equations:

0fx _ Ja— fq (ex—u)- V() eq

W‘f‘ea'vfa—_ z + ORT o (D
08 | o yg,m 8280 Ty (u) (Fs 4+ G) — (T (u) — T (0)V 2
5 Ter ga——f-i-(ea—ll)'[ (W (Fs+G) — (T (w) —T5(0) Viy (p)] (2)

where F; and G are surface force and gravity, respectively. The hydrodynamic properties can be
obtained from the distribution functions f and g

(ﬁ:Zfou ph=Zgo<, pRTu:Zeocgot 3)

where ¢ is index function, py, is hydrodynamic pressure, u is macroscopic velocity, T is temperature,
and R is gas constant. In Equation (1), f, denotes f(x, ey, t), which is the distribution function in
the direction of the «th discrete velocity e,, T is dimensionless relaxation time, and x represents
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physical space coordinate, fy ! is the corresponding equilibrium distribution function in the discrete
velocity space

fl=¢T @) 4)

where ¢ is the index function and

Tu)=

o[ 60’
nrTYP2 P | T TaRT

In Equation (2), the distribution function g is defined from the distribution function f by

8« =RITf,+T(0)¥(p) &)
The corresponding equilibrium distribution function g5 is
g =RIfz +T () (p) (©)

The functions y in Equations (1), (2), and (5) represent exclusively the volumetric effect, and are
defined by

Y (p)=pn—pRT (7)
Y(¢9) = pn— PRT ®)

where py, is thermodynamic pressure calculated from equation of state. He et al. [9] used Carnahan—
Starling equation of state in their model [27, 28]

bd [(bd\> [bo\’
1+ () (%)

()

where a and b are two constants. From the van der Waals theory, if fluid temperature is lower than
its critical point, phase segregation appears due to the molecular attraction. In the p—V-T state
diagram, the curve plotted from Equation (9) has a mechanical unstable portion, which represents
the different separated phases [9]. Therefore, Equation (9) plays a key role in phase segregation
in the HCZ model.

Generally the gradient of y/(p) in Equation (2) can be very large across interfaces because of
the sharp change of phase densities. By introducing another distribution function g, the effect of
the gradient of Y/(p) is alleviated to some extent by multiplying I'(u) —I'(0), which is proportional
to the Mach number under the limit of incompressibility.

In the HCZ model, the following incompressibility assumption is used when deriving Equation
(2) (See He et al. paper for details [9])

Pth=QRT —a¢? )

Db _ W gy . Vo—uvi=¥  _w.
E_ar% V= o +u-Vy+&E-Vy—u-Vy= dt+(é u)-Vy (10)
in which
ab_dudp b (3p o N
E_dpdr_dp<at+uv'o>_0

was used by assuming V-u=0. Although V-u=0 is correct theoretically for individual phases,
this condition is not exactly satisfied across interfaces during computations [29]. The effect of V-u
which represents the compressibility effect across interfaces therefore should remain in the LBE
model. Following He et al. [9] that

dy _ dy dp
dr  dp dt
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we have

dy dydp dy [(dp dys (0p
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By taking dp/dt+V - (pu) =0, Equation (11) becomes

dy  dy
E_—a(pV-u) (12)

Substituting Equation (12) into Equation (10), the derivative D/ Dt becomes

DV _ Wyt -
Br =g, PV WHE0-VY (13)

With this additional term, the LBE for the distribution function g can be written as

_ e
%wLea-Vga:—ga Tg“ +(ea—u)'[Fx(u)(FerG)—(Fa(u)—l"a(O))Vlﬁ]—Fa(O)p%V'u (14

In Equation (14), the surface tension in the HCZ model is given as
s=KkpVV2p (15)

The above formulation is equivalent to the following macroscopic equations

0
a—?+V-(¢u)=—AV-[%VP(P)—VP(Q'))} (16)
a—p+V-( )=0 {17

Ot Po=
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The main difference in the formulation between the present work and that of HCZ is in the
retention of the RHS term in Equation (12) and the last RHS term in Equation (14). Although the
continuity equation from the HCZ model ((1/pRT)0p/0t+V-u=0) is theoretically equivalent
to our present continuity equation (Equation (17)), they have different performances in terms
of numerical errors, especially for multiphase flows with interfaces [29]. For completeness, the
derivation of the continuity equation dp/dt+ V- (pu) =0 is given in the Appendix. The derivation
of the momentum equation is exactly the same as that of the HCZ model [9, 30]. It is not given
in this paper for brevity.

To obtain second-order accuracy and maintain the explicit computational scheme, He et al. [9]
further introduced two new variables, which are

: (ex—u)-Vii(¢)
foz—fa'f‘T

2x=8x— 3 (x—w)[ Ty (@) (Fs+G) — (T, (w) — T (0)) Vi) (p)16; (20

I, (u)o; (19)

Including the last term in Equation (14), the new variable g, can be rewritten as
_ 1 1 dyr
82=8x— 7 (€x —W)[To () (Fs +G) — (To (1) — I (0) V1o, — Er“(O)EV'u 2y

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 66:622-647
DOIL: 10.1002/fid



A FILTER-BASED, MASS-CONSERVING LATTICE BOLTZMANN METHOD 627

The LBESs in terms of these two new variables are

e D= f0 ) 211 (ey—u)-VY($)
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The macroscopic variables can be calculated from the moments of the new distribution functions
¢=Y" fa (24)
Ph=38x— 5 V(p); (25)
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Density and viscosity can be computed through a linear interpolation from ¢
P—h
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For D2Q9 lattice Boltzmann model, the function I'(#) in Equation (4) is

) N2 2
3ey u+9(e“ u)” 3u j| (29)
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where ¢=0x/0t, ox and dt are lattice units in length and time, respectively; w, is weighted
coefficient given by

w():%, w1=w3=w5=w7=$, w2=w4=w6=w3=3—16, (30)
and the discrete velocities (e,) are as follows:

eo=0

ey = c[cos((ax—1)n/4),sin((x—1)n/4)] for a=1,3,5,7 31

ey = x/ic[cos((a— 1)r/4),sin((a—1)n/4)] for «=2,4,6,8

The kinematic viscosity is independent of the surface force and is related to the non-dimensional
relaxation time as

v=(t—0.5)RTJ, (32)

Zhang et al. [30] have used the following integral relationship to analytically relate surface
tension ¢ with the coefficient «:

/OO <a¢)2
o=xl(a)=« — ) dz (33)
—oo \ 02

where z is a direction normal to the interface.
In Equation (23), the term [I"(u) —I'(0)]Vy can be written as

[T () = T (0) ]V = w, [3‘1—2” + O(uﬂ vy (34)
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As the high-order term O (u?) is proportional to the square of the Mach number, they can be
neglected under the low-Mach number condition.

The last term in Equation (23) needs further modification because dys/dp is not easily obtained
from computations. From the definition = py —pRT, we have

—~ =" _RT. (35)

Away from the interfaces, hydrodynamic pressure and thermodynamic pressure are equiva-
lent, yielding dpn/dp—RT=0. The RHS of Equation (35) vanishes, so does the last term in
Equation (23). Around the interfaces, the pressure gradient may be mainly balanced by the inertial
force and surface tension. As the density gradient around the interfaces is of order O(1), and
the pressure gradient may be much smaller than the density gradient if surface tension is small
enough and low-Mach number limit is still valid (dpp~ O(Ma?)). With these assumptions, we
can have

d
P «RT (36)
dp
around the interfaces. The last term in Equation (23) can be rewritten as
dy/
——pV-u~pRTV -u 37
dp

Note that Equation (37) is valid not only around the interface, but also away from the interface
where V -u~0 is maintained. To keep the above assumptions valid, any factors making large local
surface tension, like very large interface curvature, should be avoided. This is one limitation of
the present model. However, this limitation is not restrictive only to our model; it is a common
numerical limitation for many numerical methods for incompressible two-phase flows. Special
treatments should be adopted to artificially remove the large local interface curvature effect due
to large interface deformation [31].

2.2. Surface force formulation

The surface tension in the HCZ model is calculated from Equation (18) . With this formulation,
RTT is successfully simulated [9]. However, the surface tension from this formulation changes its
direction across interfaces, which is illustrated via a stationary bubble (density ratio 3, viscosity
ratio 1) in Figure 1. The surface tension of this bubble calculated from Equation (18) is plotted
along the vertical central cross-section. The surface tension changes its direction across the bubble
interface, generating a wiggle over the interface region. This surface tension wiggle can lead to
significant velocity and pressure changes over the interface, and always causes numerical instability
at large density ratio, although its effect on numerical stability is limited when the density ratio is
small.

Although the surface tension in the HCZ model results from intermolecular attraction [9], it
is modeled as a body force (see Equation (23)). Thus other continuum surface force formulation
can be used to reduce such unphysical oscillations caused by the surface tension. As the LBE
multiphase models can be considered as one of diffuse—interface methods [32], Kim’s formulation
for the diffuse—interface model [26] is used in this work to replace the surface tension formulation
in the HCZ model,

V¢
=V —— v
R b DAL 38)
where x is the coefficient calculated from Equation (33). The same discretization form of Kim’s
formulation [26] is adopted for Equation (38). With this new surface tension formulation, the
surface tension for the same stationary bubble is shown in Figure 2. No unphysical wiggles in the
surface tension profile exist.
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Figure 1. Surface tension profile for a stationary bubble computed from He et al. method.
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Figure 2. Surface tension calculated by Kim’s formulation.

2.3. A filter technique for index function

The surface tension calculated from Kim’s formulation does not have unphysical wiggle only
if monotonic variation of the index function is maintained (see Equation (38)). To ensure the
monotonic variation of the index function across the interface, a filter technique used for solving
convection—diffusion equation by finite difference [25] is applied to the HCZ model to remove
local extremes. The idea of this filter technique is explained as follows.

If the index function has a local extreme with respect to its neighbors, its value would increase
(decrease) to the minimum (maximum) value of its neighbors. The filtering algorithm proceeds by
first scanning the index function on a node and its neighbors. If it is a local extreme with respect
to its neighbors, a correction is made on this node and additional corrections on its neighbors to
maintain index function conservation.

Let ¢(;, ;) represents the index function on a tested node, ¢;, j) represents the index function
on its eight neighbors, ¢ ;. jymin Tepresent the index function on a neighbor node with minimum
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value, and ¢; j)max represent the index function on a neighbor node with maximum value. Then
the filter technique can be described as
if (¢ yy<all qb(i’j) on its neighbor points)
diStancez abs((,b(]’]) - ¢(z,j)mm)
¢,y =P, jymin
all ¢; jy 7, jymin On neighbor points =¢; ;) — distance/7.0
else if (¢(,yj)> all qb(i’j) on its neighbor points)
distance: abs(¢(l’1) - d)(l“])mdx)
1.0y = P, jymax
all ¢; j)# P, jymax ON neighbor points =¢; ;)+ distance/7.0
endif

By adjusting the index functions on its neighboring points, this filter algorithm ensures the
conservation of the index function. By using this filter local minima/maxima as well as the asso-
ciated oscillations are removed and monotonic variation of the index function can be maintained.
As the filter is only implemented on the nearest and the next nearest neighbor points, the diffusion
effect of the filter is limited to only within one lattice. Another advantage of this filter is that it is
easy to implement and has much less computational overhead.

2.4. Mass correction

For all the LBE multiphase models described in Section 1, the macroscopic volumes of the different
phases are calculated from distribution functions. As computational errors, such as large gradient
calculations across interfaces, can accumulate and propagate over the whole computational domain,
the macroscopic mass may not conserve after long-time computing. This issue of the HCZ model
has never been addressed in the literature.

In the HCZ model the density profile is determined by the index function whose evolution is
governed by Equation (22). The dispersed phase volume can be obtained from the index function
distribution. On the macroscopic level, the index function evolution equation Equation (22) is
equivalent to Equation (16). On the RHS of Equation (16) [25], p(¢) is the thermodynamics
pressure in terms of the index function ¢, whereas p(p) is the hydrodynamic pressure in terms
of the density p. Owing to the presence of interfaces, the RHS of Equation (16) may not be
negligibly small in the region near the interface, especially for high density-ratio flows. This term
can result in non-conservation of volume/mass that can accumulate over time and destabilize the
computation.

In order to ensure the mass conservation, a correction step may be required for high density
ratio. In this paper the volume of the dispersed phase, V, is corrected using the method described
in [33]

%Z(V—Vo)lwbl (39)
ot
where V is the dispersed phase volume before the correction, Vj is the initial volume of the
dispersed phase, and 7 is an artificial time. Equation (39) is computed till the steady state V =V
is reached. This correction step is based on the consideration that the density of the fluid in each
phase remains the same. If the density changes due to, e.g. pressure variation, then a generalization
of the above procedure needs to be devised. Equation (39) can also be recast in another form as

% - vg=0 (40)
ot
where u=(Vo—V)V¢/|Vo|. This is an advection equation. Thus high-order schemes can be
used for this equation to avoid spatial oscillations across discontinuities. In this paper, a finite
volume method is used to solve Equation (40) with the second-order essentially non-oscillatory
(ENO) scheme for the advection term. In discretizing Equation (40) in space, the lattice node is
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located at the center of a computational cell. The second-order ENO scheme for the advection
term discretization is illustrated at the east surface of a computational cell:

op|  Pp—dp @ _dp—dw .

xl, - Ax 0 axl, Ax if u>0

o ¢P ¢E 5¢ ¢E Peg .

a Ax a Ax if u<0 (41 )
99 ¢

ezmin< bs<gf e2>)

where P is the lattice node and also the center of the finite volume; E is the east lattice node next to
P; W is the west lattice node next to P. The time derivative is discretized using first-order Euler’s
scheme.

a.x l’a

3. NUMERICAL ASSESSMENT OF THE PROPOSED TECHNIQUES

3.1. Single mode RTI with density ratio 9

The original HCZ model has been successfully employed to simulate the RTI without surface
tension [9]; the comparison with theoretical analysis [34] is very good. At low density ratio, say 3,
the jump properties across the interface do not show noticeable numerical instability. In this study,
the same RTI problem at a higher density ratio of 9 is used to assess the performance of the
extended HCZ model by comparing with the original HCZ model.

The computation is performed in a 2D rectangular domain of width W with no-slip condition on
the top and bottom walls and periodic boundary condition on the sides. The kinematic viscosities
of both fluids are set to be the same. The dimensionless parameters, Reynolds number and Atwood
number, used to describe the problem, are defined as Re=/WgW /v and At = (p,,— p))/(pn+ P>
where g is gravity, ppand p; are the densities of heavy and light fluids, respectively. The time
scale in this problem is 7= /W /g. For an otherwise flat interface, an initial perturbation of 10%
amplitude (normalized by the wavelength) in the interface is specified at t=0 to promote the
growth of the instability. The more detailed computational setup can be found in [9].

The theoretical growth rate based on linear analysis [34] and numerical growth rate presently
obtained are shown in Figure 3. The good agreement between the numerical and theoretical growth
rate indicates that the extended HCZ model is capable of capturing accurately the physics of this
complex flow [9, 35].

Figure 4 shows the evolution of the interface from 10% initial perturbation computed on a
256 x 1024 grid with Re=2048 and At=0.8 (density ratio 9). In the early stage (/7T <1.0), the
interface evolution of both the HCZ and the extended HCZ are almost identical. However, at
the later stage (/T ~1.5), the HCZ model produces significant oscillations in the near-interface
region. After t/T =1.5, the numerical instability in the HCZ model causes the simulation to blow
up. Comparing with the HCZ model, the extended HCZ model at ¢/ T =1.5 performs much better
in the interfacial region during the entire period of simulation. The unphysical overshot near the
interface of the original HCZ solution can be clearly seen from the density profile along the central
vertical section of the computational domain, as shown in Figure 5, and this overshot grows with
time. However, the amplitude of the unphysical overshot of the extended HCZ model is restrained,
and does not grow with time. Clearly, the use of the filter in the extended HCZ model has improved
the numerical stability. Whether the numerical diffusion introduced by the filter suppresses the
physical fluctuations which can trigger turbulence in the later stage is not very clear. Further study
is necessary on the characteristics of the filter which can not only suppress unphysical overshot in
the density profile, but also capture the physical oscillations.
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Figure 3. The growth rate o (measured in units of (g2/v)!/3) of a disturbance vs. its wave numbers
k=2n/W (measured in units of (g/v*)'/3).

To further systematically examine the performance of the present extended HCZ multiphase
model, besides the single mode RTI, computations for stationary bubbles, capillary waves, and
rising bubbles are carried out in the following sections for larger density ratios up to 100.

3.2. Stationary bubble

3.2.1. A stationary bubble with diameter d =40 lattices. The computational parameters for this
stationary bubble are listed below:

d
La="7% 100, Ph_100, Er—10
1, P M

The computation of this case was performed on a computational domain of 201 x 201 lattices.
A circular bubble of diameter 40 is placed at the center of the domain with the periodic boundary
condition for all boundaries. The surface tension is set to 0.27777 in this case. The dimensionless
time is defined as ¢, = ud /o, which is equal to 480 lattice time steps for this case.

Ideally, the velocity should be zero everywhere and the pressure drop across the interface
balances the surface tension force dictated by the Young—Laplace equation:

Ap =% for 2D bubbles (42)

The theoretical pressure jump in this case is Ap =a¢/R=0.1388. However, due to numerical errors
causing imbalance of interfacial stresses, a stationary bubble simulated by continuum surface force
methods always has a spurious velocity field. As one of the continuous interface methods, the
LBE method is no exception.

Figure 6 shows the pressure profiles of the stationary bubbles with different density ratios, 2, 10,
and 100 by using the original HCZ model after only one lattice time. Unphysical wiggle appears at
the bubble interface, and its amplitude increases with the density ratio. Figure 7 shows the pressure
variation across the bubble computed by the extended HCZ model. The significant unphysical
oscillation associated with the original HCZ model is now essentially removed by using the new
surface tension formulation with the filter technique.

The density profiles at dimensionless time =0, and =100 (48000 lattice time steps) are
shown in Figure 8(a). Very little variation in the density profile is observed. The interface thickness
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Figure 4. Evolution of the fluid interface from a single mode perturbation for At=0.8 and Re=2048.
The time is measured in units of \/Wg, where W is the domain width and g is gravity: (a) results from
the HCZ model and (b) results from the extended HCZ model.

is maintained within 5-6 lattices, and does not diffuse out with time during the simulation.
Furthermore the computed density profiles remain to be monotonic across the interfaces (see Figure
8(b)), which is a significant improvement over the original HCZ model.

3.2.2. Effect of grid resolution on the accuracy of computed pressure jump. There are several
ways to characterize computational accuracy of the interfacial problems. In several studies, the
dimensionless maximum absolute value of the spurious velocity is often used as an indication
of the error in the solution for stationary bubble case [31]. For LBE method, because the lattice
speed and lattice spacing are all of unity whereas the resolution of the computation is dictated
by the number of lattice across the bubble, it is not possible to maintain the same dimensionless
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Figure 5. Density profile across the central vertical section of the computational domain at four

different time steps. The horizontal axis is the computational grid. The left panel shows the

density profiles of the HCZ model and the right panel shows the density profiles of the extended
HCZ model Re=2048 and At=0.8.

parameters while varying the resolution [36]. Thus an alternative measure for the accuracy of the
numerical solution based on the pressure variation is used. Following [37], an average pressure

drop is defined as follows:

1 N
Apnum=— Z (pi,j — Dref) (43)
Na ;=1
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Figure 6. Pressure profiles of stationary bubbles with different density ratios computed by using HCZ
model after one lattice time step. The theoretical pressure jumps are 0.1388.

0.01388

Pressure

Figure 7. Computational pressure of a stationary bubble computation at =100 for theoretical pressure
jump 0.1388. La =100, density ratio 100, viscosity ratio 10.

where Ny is the number of lattice nodes lying within the bubble and pr.r is the liquid static pressure
far away from the bubble. Because of possible numerical oscillation, the region of the bubble is
defined as the region where p>1.01p,. For a sharp interface, the theoretical value for APexact 18
given by Equation (42). Hence (1 —Appum/Apexact) Will measure the relative error of the LBE
solution in capturing the pressure jump across the interface.

Two stationary bubble cases with different grid resolutions inside the bubbles but with the
same Laplace number (La =100) are computed. Density ratio and viscosity ratio are 100 and 10,
respectively. One bubble has 40 lattices in diameter and the other has 80 lattices. The evolutions
of the maximum spurious velocity with dimensionless time are shown in Figure 9. The maximum
spurious velocities in both cases approach to constants, indicating that the computational steady
states are reached. Table I lists the relative error of the pressure drop, (1 —Appum/ApPexact), for
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Figure 8. (a) Density profiles of the stationary bubble with diameter 40, La =100, density ratio 100, and
viscosity ratio 10 and (b) the zoomed-in density profile at the bubble interface.
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Figure 9. Maximum spurious velocities for these two grid resolutions, La =100, density
ratio 100, viscosity ratio 10.

Table 1. Effect of grid resolution on computed pressure drop for Laplace number 100.

Grid resolution 1 —Apnum/ A pexact
40 lattice in bubble diameter 0.08
80 lattice in bubble diameter 0.04

The data were taken after 100 dimensionless time steps and the density and viscosity ratios were set to
100 and 10, respectively.

these two cases with different grid resolutions. The value for the fine grid case is about half of
that for the coarse grid case, indicating that the computation carried out on the fine grid has better
accuracy.

The relative errors of the pressure drop of different density ratios are listed in Table II. The
Laplace numbers are 100, and viscosity ratios are 10. The relative errors of the pressure drop in
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Table II. Effect of density ratio on computed pressure drop for
Laplace number 100.

Density ratio 1 —Apnum/Apexact
3 0.05
10 0.05
50 0.06
100 0.08

The data were taken after 100 dimensionless time steps and viscosity
ratios was set to 10.

Table III. Effect of Laplace number on the ratio of numerical pressure
drop to theoretical pressure drop: bubble diameter is 40 lattices.

Laplace number 1—Apnum /A pexact
100 0.08
1000 0.08

The data were taken at non-dimensional time = 100. Density ratio is 100
and dynamics viscosity ratio is 10.

Table IV. Effect of density ratio on pressure drop: bubble diameter
is 40 lattice units.

Density ratio=p;/p 1 —Apnum/ A pexact
1 0.06
10 0.07
100 0.08

Viscosity ratio was set to 10 for Laplace number=100 and the data
were taken at non-dimensional time=100.

Table V. Effect of viscosity ratio on pressure drop: bubble diameter
is 40 lattice units.

Viscosity ratio= /iy 1 —Apnum/Apexact
10 0.08
100 0.07

Laplace number=100 and density ratio is 100. The data were taken at
non-dimensional time=100.

Table II indicates that the error becomes larger as density ratio increases, although the increase is
not significant, which has also been observed by the simulations of the Navier—Stokes solver [31].

The effect of different Laplace numbers on the computational error is also examined. It is found
that for La=100 and La=1000 there is no appreciable difference in (1 —Appum/Apexact) as
shown in Table III. Tables IV and V show the effect of density and viscosity ratios on the solution
accuracy. It is observed that they do not cause significant changes in (1 —Apnum/APexact). The
present finding is similar to that reported in [31] for a stationary bubble by using Navier—Stokes
solvers.

3.3. Capillary wave

The second test case is a capillary wave, a small-amplitude motion of two superposed viscous
fluids with the same viscosity [38]. In this test, gravity is not considered. Initially, the interface
between two stationary fluids is set up as a wave with a small amplitude Hy, as shown in Figure 10.
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Figure 10. Initial interface profile for a capillary wave simulation,
wo=1.13x1073, £=0.116, density ratio 100.

It damps off with time due to the interaction between viscous force and surface tension. The no-slip
boundary condition is used on the top and bottom boundaries and the periodic boundary condition
is used on the lateral boundaries. In this problem, the length scale is taken as k=1, in which k is
the wave number defined as k=2n/N X and NX is the domain width. The time scale is taken as
o, ! in which wy is the frequency defined as wo=ck>/(p; + p,).

Based on these time and length scales, the dimensionless time and viscosity which characterize
the wave motion are

kZ
=, F=-— (44)
o

where v is the kinematic viscosity of the fluid. With these dimensionless time and viscosity, the
theoretic solution for the dimensionless amplitude a = H/H, given by [38] is

_ _2 4 2 _2_— / /
aty= —ZAE a4y — exp[(z’ ng)t}rf C<Z"\/ ;_) @)
0

C8(1—4p)E2+1 21 Zi (22 —Ewo) o

where z; are the four complex roots of the following equation
2 4By +2(1 - 6p)Ewoz? +4(1—3P) (Ewn) >z 4 (1 —4B) Fan)* + g =0 (46)

and Z; :njzl,j;éi (zj—2zi). The parameter f is given by f=p;p,/(p; +p»)*.

The test parameters taken here are wp=1.13x 1073, §=0.116, and p;,/p, is 100. The initial
velocity is zero for the whole domain and the distribution functions are assigned to the corre-
sponding equilibrium values. The time evolution of the wave amplitude is shown in Figure 11. The
time evolution of the dimensionless amplitude agrees well with that given by the exact solution.
The slight difference between them in the early stage may be caused by the numerical initial
condition used in implementing the extended HCZ LBE model.

3.4. Two-dimensional rising bubble

Two-dimensional single bubbles rising in an initially quiescent fluid due to the buoyancy force are
simulated to assess the efficacy of the extended HCZ LBE model in capturing the dynamics of the
two-phase flow. In this problem the effects of gravity and the surface tension determine the final

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 66:622-647
DOIL: 10.1002/fid



A FILTER-BASED, MASS-CONSERVING LATTICE BOLTZMANN METHOD 639

-
T

0.8

0.6

———o—— Simulation

0.4

0.2

Amplitude

-0.2

-0.4

-0.6

0.8 I I I I | I I I I | I I |

o
(é)]
—_
o

Time

Figure 11. Time evolution of the amplitude of a capillary wave with density ratio 100.

steady bubble shape. Clift er al. [39] gave a bubble shape diagram in terms of Edtvos number,
Morton number, and Reynolds number, defined as

Usetd
Reynolds number (Re) = phTref 47)
h
4
Morton number (M) = Sl (48)
pno?
d2
E6tvos number(Eo) = Pn&d” (49)
o

The dimensionless time step is given by t=1/,/g/R. The simulations carried out here are 2D
planar bubbles. The computational domain is a rectangle consisting of 151 x 801 lattices. A circular
bubble is initially placed at i =76, j =201 lattice node with a radius R =20 lattices. The initial
velocity is set to zero for the whole domain. The no-slip boundary condition is imposed on the
top and bottom and the periodic boundary condition is used for the lateral boundaries. The density
ratio and viscosity ratio are 100 and 10, respectively, here.

Three groups of dimensionless parameters are chosen

(1) Eo=0.971, M=1.26e—3, Re=5.19
(2) Eo=9.71, M=0.4, Re=6.92
(3) Eo=97.1, M =100, Re=9.78

For the first case, the bubble shape should almost be a circle in a 2D simulation. However,
without the mass correction, the bubble volume increases with time (Figure 12(a)). At later stages,
the bubble shape even changes from a circle to an ellipse due to larger rising velocity. The bubble
thus cannot reach its steady state. When the correction step is applied, the bubble volume remains
constant and its shape remains almost a circle during the rising process as shown in Figure 12(b).

In this rising bubble simulation, the interfacial compressibility effect is included in the extended
HCZ LBE multiphase model. As shown in Equation (23) and discussed in Section 2.1, the inter-
facial compressibility effect cannot be neglected when density ratio is large. If the last term in
Equation (23) is not included, some unphysical mass sources/sinks will be generated along the inter-
face and mass conservation will not be maintained. Figure 13(a) shows the streamlines inside and
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Figure 12. Rising bubble with E0=0.971, Mo=1.26¢ —3, density ratio= 100, viscosity ratio=10. The
time steps in this figure are t =0, 4, 8, 12, 16, and 20: (a) bubble shapes without mass correction and (b)
bubble shapes with mass correction.

(a) (b)

Figure 13. Streamlines around the bubble at =20 in Figure 12(b): (a) without accounting for the
compressibility effect and (b) with accounting for the compressibility effect.

outside this rising bubble without the last term in Equation (23). Figure 13(b) shows the streamlines
of the flow inside and outside the rising bubble with the inclusion of the last term in Equation (23).
It can be clearly observed that there are mass sources/sinks next to the interface inside the bubble if
the interfacial compressibility effect is not included; and these mass sources/sinks can be entirely
removed when the interfacial compressibility effect is included. Figure 14 shows the volume and
velocity history for this case with mass correction. The volume of this bubble does not change
with time and the bubble velocity increases at early time steps and then reaches its steady state
value.

Figure 15 shows the absolute surface tension, pressure gradient, and density gradient along the
central vertical line of the second case with E0=9.71, M =0.4, Re=6.92, density ratio 100, and
viscosity ratio 10 at dimensionless time ¢t =12. The surface tension in this figure is comparable
to the pressure gradient, indicating that the surface tension is one of the main balancing sources
for the pressure gradient around the bubble interface. This figure also shows that the pressure
gradient is much smaller than the density gradient around the bubble interface, which is required
by Equation (36) in the present model. Similar observations for other cases are also obtained but
are not presented for brevity.

Figure 16 shows the computed bubble shapes for all these three cases. Typical bubble shapes are
captured using the extended HCZ LBE model. Figure 17 shows the corresponding time evolutions
of these bubbles. Owing to larger shape deformation, the dimpled-ellipsoidal bubble rises faster
than the other two bubbles.
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Figure 14. Time evolution of the volume (a) and velocity (b) of the rising bubble with mass
correction, as shown in Figure 12(b).
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Figure 15. Absolute surface tension, pressure gradient, and density gradient along the central
vertical line across the rising bubble with density ratio 100, viscosity ratio 10, Eo=9.71, M =0.4,
Re=6.92. Dimensionless time is t=12.

Figure 18 shows the velocity histories of these three bubbles. Because of the larger shape
deformation compared to cylindrical and ellipsoidal bubbles, the velocity of the dimpled-ellipsoidal
bubble exhibits larger oscillations at the early rising stages. At later rising stages, all three bubble
velocities do not change significantly, indicating that their steady states are reached.

Figure 19 shows the density profiles of these three bubbles on the central vertical cross-section
at T=0, 15 and 30, respectively. From these density profiles, it can be observed that the inter-
faces do not diffuse out, and the interface thickness is maintained within five to six grids. Thus
the capability of the HCZ model for non-diffused interface thickness is still maintained when
the density ratio is up to O(100). This feature of this model is very desirable for interfacial
dynamics.

Figure 20 shows the evolution of another rising bubble during a period of six dimensionless
time steps with Eo=97.1, M =0.971, Re=31.2, density ratio 100, and viscosity ratio 10. In the
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(a) (b) (©)

Figure 16. Computed bubble shapes, density ratio 100, viscosity ratio 10: (a) cylindrical,
E0=0.971, M =1.26e—3, Re=5.19; (b) ellipsoidal, E0=9.71, M =0.4, Re=6.92; and
(c) dimpled-ellipsoidal, Eo=97.1, M =100, Re=9.78.
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Figure 17. Time evolutions of rising, density ratio 100, viscosity ratio 10: (a) cylindrical,
E0=0.971, M=1.26¢—3, Re=5.19; (b) ellipsoidal, E0=9.71, M =0.4, Re=6.92; and
(c) dimpled-ellipsoidal, Eo=97.1, M =100, Re =9.78.
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Figure 18. Time evolutions of bubble velocities for density ratio 100, viscosity ratio 10:
(a) cylindrical, Eo=0.971, M =1.26e¢—3, Re=5.19; (b) ellipsoidal, E0=9.71, M =0.4,
Re=6.92; and (c) dimpled-ellipsoidal, Eo=97.1, M =100, Re=9.78.
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Figure 19. Density profiles of rising bubbles, density ratio 100, viscosity ratio 10: (a) cylin-

drical, E0=0.971, M =1.26e—3, Re=5.19; (b) ellipsoidal, E0=9.71, M =0.4, Re=6.92; and (c)
dimpled-ellipsoidal, Eo=97.1, M =100, Re=9.78.

present planar 2D planar simulation, the bubble undergoes complex deformation dynamics and
breaks into two larger bubbles with four satellites at the dimensionless time ¢ =6.

4. SUMMARY AND DISCUSSIONS

In this paper, some issues of the HCZ’s LBE model for immiscible multiphase flows are
assessed. An extended HCZ model based on a filter technique is developed. A surface tension
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Figure 20. Time evolutions of a rising bubbles, density ratio 100, viscosity ratio 10
with Eo=97.1, M =0.971, and Re=31.2.

formulation from diffuse—interface methods is adopted to replace that in the HCZ model and to
reduce unphysical oscillations in the surface tension across interfaces. The compressibility effect
and mass correction are added to the HCZ model to preserve the phase volume and remove
unphysical mass sources/sinks. A filtering technique is used to maintain monotonic variation of
the index function across interfaces that results in significant reduction of unphysical wiggles
in the surface tension profile. The performance of the extended HCZ LBE model is assessed
using computations of single mode RTI, stationary bubbles, capillary wave, and rising 2D planar
bubbles. The computational results demonstrate that the extended HCZ model can be used to
simulate flows with large density ratio up to O(100) while maintaining the interface thickness to
within five to six grids through a very long period of time.

The mass conservation issue from the long-time accumulation of the modeling and/or numerical
errors in the HCZ model is investigated in this paper. The corresponding mass correction procedure
is applied to maintain the mass conservation on the macroscopic level, i.e. correcting the index
function via Equation (40). Although this correction yields correct physics, it consumes the most
computational time in one lattice time step. This step causes significant reduction in the efficiency
of the LBE method. To maintain the efficiency of the LBE method, further efforts should be made to
directly correct the mesoscopic distribution functions, rather than the macroscopic index function.
However, correcting distribution functions could be much more difficult because, on one lattice
node, more distribution functions (for example, nine distribution functions in D2Q9 model) need
to be corrected on the mesoscopic level rather than one index function on the macroscopic level.

Further efforts are needed to treat multiphase flows with much higher density ratio of 1000
because as the density ratio becomes higher, the gradient of /(p) in Equation (23) can still generate
numerical instability in pressure and velocity.

APPENDIX A: CONTINUITY EQUATION OF THE EXTENDED HCZ MODEL
The second LBE in the extended HCZ model is

_ o4
8yt ez AL, 1+ A — gy (x, 1) = — 2 f“ +(e5—1)- [T @) (Fs+G) — (T () — T (0) Vs (p)]

—F“(O)%pv-u (A1)
dp

and the corresponding equilibrium distribution function is

3e,-u  9(ey-u): 3u?
eq o o _
=, |:p+ pRT( SLNAC L (A2)
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Note that the density in (A2) is not a constant for multiphase flows. Equation (A2) can be recast as

3e,-u  9ey-u)? 3u?
eq o o
8q =Wy [p—pRT—i—pRT (1+ 2 + 2 22 (A3)
eq U+ pRT 1_’_361'” 9(ey,-u)? 3u? (Ad)
=) —_——
§a ” P c2 2c4 2c2

The macroscopic equations can be obtained from Chapmann—Enskog expansion. If Equation (A1)
is expanded by Taylor expansion, we can have:

(At)?
2

0 2 ga_ggq
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0
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dp
The Chapmann—Enskog expansions are
0,0 a0
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0 0
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Note that (I'(w)—1'(0))Vy(p)=e(T'(w)—T'(0))Vi(p), and (I'(w)—TI(0))~ O(u) which is
proportional to ¢ [9], we can then have

(T@)=TO) Vi (p)~&” [9]. (AT)

Since V-u=¢V, -u~e&? [40], it leads to

d
1,0 v u~e, (A8)
dp
Substituting these expansions into Equation (AS5), we have
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Summing equations in (A9) over the phase space and using the following constraints:

Yel=0, Yg2=0 YTIl=0, YI’=0
o o o o

dy 0
P [(H(u)—raw» }Ar—ram)p% ﬁm (A9)
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we can have

2:0=0
ap oy  O0pRT
1
:—+V1-(pRTu) =0= — Vi-(pRTu)=0
€ i, TV R 5t TV (0RTw) (A10)
ap dyy oYy O0pRT dys
2
—=—u-Viy——pV, - u=—+ =—u-Viyy——pV;-
¢ alz " lw dpp i al‘z atz “ llp dpp 1

Combining all the equations in (A10), the continuity equation becomes:

%+5(pRT)

dyy
V- (pRTu)=——pV- All
” 5 TV (pRTw) PV (A1)

Since the function of y is a function of density (Equation (11) in [9]), we have

d dydp dy [0 d
_lﬁ:_!,b_pz_l// —p—i-u-Vp =——¢pV-u (A12)
dt  dpdr dp \ ot dp
Then the continuity equation is recovered as
d(pRT)
—a +V-(pRTu)=0 (A13)
As RT is a constant in the present model, Equation (A13) becomes
dp
—4V. =0
o (pu)

This is the continuity equation of the extended HCZ model.
The derivation of the momentum equation from the present model is exactly the same as that
from the HCZ model. It is not given in this paper for brevity.
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