Statistics

Research Article

Received 22 January 2010, Accepted 28 October 2010 Published online 11 January 2011 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/sim.4163

Multiple imputation based on restricted
mean model for censored data

Lyrica Xiaohong Liu, Susan Murray* ' and Alex Tsodikov

Most multiple imputation (MI) methods for censored survival data either ignore patient characteristics when
imputing a likely event time, or place quite restrictive modeling assumptions on the survival distributions used
for imputation. In this research, we propose a robust MI approach that directly imputes restricted lifetimes
over the study period based on a model of the mean restricted life as a linear function of covariates. This
method has the advantages of retaining patient characteristics when making imputation choices through the
restricted mean parameters and does not make assumptions on the shapes of hazards or survival functions.
Simulation results show that our method outperforms its closest competitor for modeling restricted mean
lifetimes in terms of bias and efficiency in both independent censoring and dependent censoring scenarios.
Survival estimates of restricted lifetime model parameters and marginal survival estimates regain much of the
precision lost due to censoring. The proposed method is also much less subject to dependent censoring bias
captured by covariates in the restricted mean model. This particular feature is observed in a full statistical
analysis conducted in the context of the International Breast Cancer Study Group Ludwig Trial V using the
proposed methodology. Copyright © 2011 John Wiley & Sons, Ltd.

Keywords: multiple imputation; restricted mean lifetime; survival; censoring

1. Introduction

In survival analysis, estimation of expected life over a fixed time window is often of interest, either
non-parametrically or as a function of covariates. In addition, it is common to desire estimates of
survival probabilities within particular subgroups. For example, in the International Breast Cancer Study
Group (IBCSG) Ludwig Trial V, investigators would like to estimate a long-duration treatment effect on
patient lifetimes over the 9-year study period, adjusting for tumor size, estrogen receptor (ER) status,
number of positive nodes and age. They also want to compare marginal survival curves for the two
treatment groups. The presence of right censoring makes standard analysis methods for fully observed
data inappropriate, although they would be much simpler to implement if available.

We propose that since restricted means are of interest and may be modeled already as part of a
thorough analysis of the IBCSG study, that we take advantage of the restricted mean model structure
to augment censored outcomes via multiple imputation (MI). The resulting final analyses (regression
parameters, estimated restricted means and non-parametric quantities) are based on more standard
analytical tools using multiply imputed data sets and are hypothesized to be more efficient since imputes
better utilize covariate information.

Several researchers have given attention to modeling censored restricted lifetimes as a function of
patient characteristics. Karrison [1] used a generalized Cox model approach [2] with piecewise constant
baseline hazards, and made appropriate transformations to the restricted mean scale that indirectly
linked covariates to the restricted means. Extensions of this approach, also centered around a Cox
model, were given by Chen and Tsiatis [3] and Zucker [4]. Andersen et al. [5] link covariate effects
with the mean restricted lifetimes by using pseudo observations (POs) in lieu of the original outcomes
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and applying generalized linear models (GLM) [6]. None of these authors suggested the restricted mean
as a tool for imputation of censored lifetimes.

Meanwhile, increasingly researchers have come to view censored data in the more traditional role
of missing data, where MI is a popular strategy for appropriately addressing missing information in
an analysis. For example, Faucett et al. [7] multiply impute survival outcomes via joint modeling of a
change-point model and a time-dependent Cox proportional hazards model. Taylor et al. [8] develop
non-parametric MI methods that reproduce Kaplan—Meier [9] estimates when no covariate information
is available. Hsu et al. [10] use Cox models to more selectively build risk sets of individuals with similar
hazards for MI, utilizing a non-parametric imputation procedure within this risk set. The advantages
of imputation are longstanding, because many different analyses may be conducted using the multiply
imputed data sets once they are obtained. An overview of several effective imputation strategies based
upon observed data is given in Rubin [11] and Little and Rubin [12]. Most existing MI methods either
assume parametric models acting on (and linking) the hazards of interest or are non-parametric in
nature.

Our goal in this research is to produce multiply imputed data sets that directly model the missing
outcomes of interest via a restricted mean structure. The resulting multiply imputed data sets incorporate
individual information to gain efficiency in restricted mean model parameter estimation as well as in
other analyses of interest, such as survival curve estimation and two-sample testing. The remainder
of the manuscript is structured as follows: in Section 2, we describe the mean structure for restricted
lifetimes given covariates. Section 3 introduces the restricted mean lifetime-based MI algorithm with
some technical details of implementation included in the Appendix. In Section 4, we summarize several
commonly used standard analyses applied to multiply imputed data sets. Section 5 presents finite sample
simulation results. We return to the IBCSG study in Section 6 and report various analyses of interest.
Discussion follows in Section 7.

2. Structure for restricted mean lifetimes used in multiple imputation

Suppose lifetime, T, has survival function, S7(¢), with mean life E(T)= fooo St (t)dt. With right-
censored data, the data tend to support only estimated lifetimes restricted to the study period, or
restricted means, E{min(t, T)} = fOT St(t) dt, where 7 is within the range of the observed data [13].

To examine the restricted mean as function of covariates, Z, regression models have been developed.
For instance, one approach is to assume a transformation model taking the form, g(7)=f§ T'Z +¢, where
B=Boy Biys ---» Brpy) is a (p+1)-dimensional vector, ¢ is the residual vector with mean zero and
g is some link function (e.g. [14-16]). Fully parametric models can be implemented if the residual
distribution is known. Andersen et al. [S5] use POs to model this mean structure, with the added
advantage that few assumptions are required on the distribution of ¢ for their model to hold.

In particular, for each individual, PO i (i=1,...,n) is defined as:

n/T§KM(t) dt—(n— 1)/T’§KM<—">(z) dt,
0 0

where §KM(I) is the Kaplan—-Meier (KM) estimate for survival and §KM(_i)(t) is the KM estimate
excluding patient i. These POs are comparable in expectation to the distribution of the original restricted
failure times, similar to the jackknife. Hence, this modeling approach addresses the censoring issue
through transformation to uncensored values with identical restricted mean regression parameters.
Andersen et al. recommend GLM analysis on log-transformed POs using an identity link.

We assume a similar mean structure with the idea of imputing for log min(z, 7') rather than using
log-transformed POs. That is:

E[log{min(t, T)}|Z]1=p" Z. (1)

The log transformation of min(z, 7)) continues to ensure that regression parameters apply to the
real line rather than merely to positive values. Also, transforming min(t, 7) before model fitting
seems to produce better estimates of the intercept than if a log link were applied, which is useful
in the context of imputation. We suspect that this is the case due to Jensen’s Inequality since
log E{min(t, T)|Z}> E[log{min(z, T)}|Z] and we impute on the scale of log{min(z, T')}. Standard linear
models can be used to fit (1) once multiply imputed data sets are created.
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3. Multiple imputation algorithm

With the mean structure in (1), we have a natural way to fill in missing event times during the study
window. We achieve this goal by developing restricted mean MI algorithm. The algorithm has two
parts: first, we obtain desired parameter estimates as in (1); second, we append appropriate residuals
to the estimated means to form an impute that better approximate variability of the original data.

The proposed algorithm is summarized in Steps 1-4, with further details of implementation
following:

Step 1: By fitting GLM model (1) treating censored data as failures, we obtain initial parameter

. 0 . . . . .
estimates 73( ). Next, we use a pseudo EM algorithm described in the Appendix to obtain a converged
and improved f. This algorithm takes into account the current estimate of f3, its variability and the
observed censoring time C; for each value requiring imputation.

. . . . =T
Step 2: We form imputes for censored patients by adding error terms to the estimated means §° Z,

where //; is obtained in Step 1. For patients with similar ETZ, observed residuals are sampled; the
detailed sampling procedure is described in Appendix B. Sampled error terms are required to yield an
impute larger than the original censored value.

Step 3: Repeat Step 2 until we have M imputes for each censored value.

Step 4: Combine analysis from M imputed data sets to get the final parameter estimates and the
associated variances.

Next, we describe the details of the algorithm. Suppose 71, ..., T,, come from a non-negative random
variable, T', with survival function, S7, and Cy, ..., C;, come from a random variable, C, that may or may
not depend on covariates in model (1), but are otherwise independent of 7. Let X; =min(7;, C;), i =
1,...,n be the observed times to event. Let Y =log{min(z, 7)} with 7 a fixed positive constant.

In Step 1, we fit (1) to obtain initial values FO) treating all observed data as failures. In practice,
we have not found the initial value to have much influence on final parameter estimates, although
several alternative choices for obtaining //;(0) were explored. Naturally the more censoring in the data,
the further away FO) is from the true f§ when censored values are treated as failures. The next part of
FO)’FI)vFZ), /B(k)

the algorithm is an iterative procedure to obtain , where the procedure is said to

s

~k)  Ak—=1) Lo ) .
converge when max (| i B j1 D<a for some small tolerance a, with B j) being the jth element of

k L . .
the vector /ﬁ\( ), Steps of the iterative procedure are located in Appendix A.

In Step 2, with the converged parameter /[}, Ei (Y;|C;, Z;) is calculated as ’[;T Z; for a censored patient
i, then residual errors are added to E(Y;|C;, Z;) to reproduce appropriate variability. Details of sampling
residuals are in Appendix B. Our assumption for constructing residuals is that patients with similar
E(Y;|Z;) will have a similar distribution of residuals and can be used to create an appropriate pool
for selection. Residuals that result in imputes of log{min(z, T)}<logC; are removed from further
consideration. In the case of models with discrete covariates only, this residual pool reduces to patients

with covariates identical to Z;, and the impute (ET Z;+ residual) will essentially select one of the failed
patients’ death times from the pool as the imputed value. For continuous covariates, we sample residuals
from patients whose E(Y|Z) fall within some small b-margin of the censored patient’s E(Y;|Z;), so
that the impute does not necessarily match any observed failure time from the original data set, but is

shifted higher or lower depending on ET Z;. In either case, when a patient from the residual pool is

selected with event times >t, we use logt for the imputed value since a reasonable shift from //;T Zi
is not available in this case.

Finally in Step 4, for each censored value, we sample M of those residuals and add them to E YilZ))
as described above, resulting in a total of M imputed data sets to be analyzed.

4. Analyze multiply imputed data sets

Since we fill in the missing outcomes for censored people, many research problems become complete
data problems and we can apply standard procedures to analyze M imputed data sets. In practice,
M =10 multiply imputed data sets are usually sufficient. Next, we summarize some most commonly
desired analyses.
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4.1. Estimating regression parameters based on multiply imputed data sets

Using a standard GLM modeling approach, each of the M imputed data set yields estimates /EZH=
ML ~MI AMI
(e ﬁ e B, [p]) m=1,. M under model (1). The final estimates based on the multiply

imputed data sets are [3 = Zle ﬂm /M. The associated variances are composed of within imputation
variances W and between imputation variances B, respectively [11, 12].
The variances become

Var(B) =W +(1+M~YB,

~MI SMI M1
where W=3"M_ var(p, )/M and B=Y""_ (B, —F )2/(M—1) .

Similarly, covariances between the jth and kth elements of IB\MI =(f3[0] Brags e B[ ) are calculated
asin [11, 12]:

AMI AMI M AMI  AMI oMo M AMI. AMI AMI
Cov(ﬁ[j],ﬁ[k])z Zl COV{ﬁm,[j]vﬁm,[k]}/M‘i‘(l‘i‘M 1) Zl[{ﬁm,[j]_ﬁ[j]}{ﬁm,[k]_ﬁ[k]}]/(M—l)

) . . ~MI
where [3 j=0,1,...,p, m=1,..., M is the jth element of estimate f5,, from mth data set.

m, []

The hypothesis test for TB\MI and significance level is determined by the ¢ distribution: (:B\MI —
ﬁ)Var(:B\MI)_]/ 2~t,, where v= {1+M+1)~! w/ B}Z(M —1) based on the Satterthwaite approximation
[11,12].

4.2. Survival curve estimates based on multiply imputed data sets

Using the M imputed data sets, we calculate the KM survival estimates §}<M(t), ...,SEM(I), and obtain

associated variances f/'\l ), . f/\M (t) based on Greenwood’s formula. For complete data sets, the KM
survival estimates reduce to 51mple sample proportions of those alive at times ¢. The combined survival
estimate S AMI(t) and VMI(t) are calculated to be

M
My =m~" Y KM
m=1

VM = m~! va<z>+<1+M )Z{S‘KM@) SMI)) /(M —1

m=1

4.3. Log-rank test based on multiply imputed data sets

For the mth imputed data set (m=1, ..., M), let T|" <--- <T;" denote the ordered failure times , Dj}
and Y} denote the number of failures and number at risk for group i at time 7", i=1,2, k=1, ..., L.
Furthermore, let D;* and Y;" denote the corresponding values in whole sample, EY =Dm Y/ Y{" be
expected failures in group 1 and Vi =D'Y} Y5, (Y;" — D)/ (Y,:”)Z(Y,?’ —1). The log- rank statistic for
the mth imputed data set is given by

-1/2

L
“(Ew) " fon
k=1 k=1
The combined log-rank statistic and corresponding variance then become:

M
m=1

M
VMo 1+a+MhH Y (oM - oMy —1)
m=1

since QM is asymptotic standard normal for large samples.

The hypothesis test for treatment difference and significance level is determined by the ¢ distribution:
oMV VML~ 1 = (1M + 1)~ /M (oM — OMD)2(M — 1) based on the Satterthwaite approxima-
tion [11, 12].
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5. Simulation study

In this section, we study finite sample properties of selected analyses based on restricted mean MI data
sets, including restricted mean regression parameter estimation and marginal survival curve estimation.

GLM parameter estimates for the restricted mean model are produced using: (a) model (1) with an
identity link, where log{min(z, 7)} is multiply imputed for censored observations using the restricted
mean MI approach, (b) model (1) with an identity link applied to log-transformed POs as in Andersen
et al. [5] and (c), the model in (a) applied to the uncensored (fully observed) data.

We first study the independent censoring case. In each of 1000 simulations, we perform the following
procedure with a sample of size » =100 and 1 fixed at 1.5:

Step I: For covariates, we generate bivariate normal (0, 1) pairs (Z1; =21i, Z2i=22i), i=1,...,n
with correlation 0.3. We then transform one of these into a Uniform(0, 1) distributed covariate by
applying the inverse transform method, that is, U; = P(Z1;<z1;). The second normal is transformed
into a Bernoulli(0.5) covariate, B; =1(Z; >0).

Step 2: We obtain the outcome of interest, min(z, 7;), i =1, ..., n. Each failure time 7; is simulated
from an exponential distribution with hazard rate, /;, that satisfies the mean structure (1) for a pre-
specified f=(fg, f1, f2), Bi, U; and 7. That is, for this simulation setup

+o0o
E(Yi|civBi,Ui)=/ y dFy,(y)

—00

logt™
/ yfr(e)dy+ P(Y;>logt) x logt

—00

logt™ y
/ yieYe 4 dy+e 4% xlogT.

—00

Therefore, A; is a numerical solution to

logt™
/ ) yiie'e 4 dy+e 4 xlogt= o+ By X Bi + o x U;
—0o0

in terms of f,, By, B, Bi, U; and 7. This step gives us an uncensored data set for analyses using
method (c).

Step 3: We generate independent censoring from an exponential distribution with rate chosen to yield
approximately 30 per cent censoring prior to 7. Censored data analyses are based on min(z, X;), where
X,‘ =min(T,-, Ci).

Step 4: Using the censored data set generated from Step 3, we apply the MI algorithm described in
Section 3 and obtain multiply imputed data sets. Then, we estimate model (1) regression parameters
as in Section 4.1, and survival percentages as in Section 4.2.

Step 5: Using the censored data set generated from Step 3, we apply the PO approach to estimate
model (1) regression parameters. We estimate survival percentages using the KM method. These analyses
will be compared with those in Step 4.

Step 6: Using the uncensored data set generated from Step 2, we estimate model (1) regression
parameters and survival percentages. These analyses represent the upper bound of available efficiency
that is attainable for this setting.

The simulation for the dependent censoring case uses n=1000 and t=2. C; is simulated using the
exponential distribution Exp(/ x U;), where / is chosen to give approximately 30 per cent censoring.
Otherwise, the procedure for simulation is similar to the independent case.

Table I displays the simulation results in the independent censoring case, where the true values of f3
are (—1,0.5,0.5). For each approach (a), (b) and (c), we present bias as f— f3, and the corresponding
average estimated standard errors (SEs). We also calculate the empirical standard deviation (ESD) of
the 1000 estimates and the proportion of simulations that cover the true values (empirical coverage
probability, CP). To assess gains in efficiency, we give average 95 per cent confidence interval (95
per cent CI) widths over the 1000 simulations. The asymptotic relative efficiency (ARE) is defined as
Var(fipg)/Var(f of interest), where Var(fpg), the variance of estimates using the PO approach, is used
as the reference variance.
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Table I. Independent censoring: Comparison of estimates based on model (1) using method (a) restricted
mean MI (MI) approach, method (b) pseudo observation (PO) approach and method (c) uncensored obser-
vations (Uncensored) (n=100).
Parameter Method Bias* SE' ESD? CPY (per cent) Width of CIl ARE!
Po=—1 Uncensored ~ —0.005 0.286 0.314 91.7 1.12 1.36
PO —0.193 0.333 0.383 89.1 1.31 1.00
MI 0.002 0.295 0.316 92.8 1.15 1.27
p1=0.5 Uncensored 0.005 0.220 0.233 93.8 0.86 1.35
PO 0.055 0.256 0.273 92.9 1.01 1.00
MI 0.011 0.227 0.240 93.5 0.89 1.27
p,=0.5 Uncensored 0.005 0.437 0.456 94.4 1.71 1.36
PO 0.059 0.510 0.537 93.8 2.00 1.00
MI —0.042 0.451 0.452 95.1 1.77 1.28

*Bias is the average of E— f over the simulations, i.e. the average estimated parameter is the shown bias plus the
true parameter in column 1.

TSE is the average estimated standard errors over the simulations.

1ESD is empirical standard deviation of the 1000 estimates.

SCP is the empirical coverage probability, i.e. the proportion of simulations that cover the true values.

IWidth of CI is the average 95 per cent confidence interval (95 per cent CI) widths over the 1000 simulations.
IARE is asymptotic relative efficiency, defined as Var(fpg)/Var(f), where Var(fipg), the variance of estimates
using the PO approach, is used as the reference variance.

The results show that the MI approach and uncensored data analysis yield approximately unbiased
estimates. Aside from the intercept term, the PO method also appears unbiased. Because of difficulty
in estimating the intercept term, the PO approach tends to have a lower coverage rate for the true
ETlog{min(z, T)}] (83 per cent for the PO approach as opposed to 93 per cent for the MI method and
94 per cent for the uncensored data case).

The 95 per cent CI widths for regression parameters are around 12 per cent narrower using the MI
method compared with the PO approach. Furthermore, they are very close to the 95 per cent CI widths
based on uncensored data. The MI parameter estimates are 27-28 per cent more efficient in terms of
the ARE than the PO approach. Hence, by assuming the mean structure as in (1) and including minimal
assumptions on the variance, we are able to recover much of the efficiency lost due to censoring. Addi-
tional simulations under different parameter settings show similar patterns of results (data not shown).

The results for dependent censoring case are presented in Table II, where the true values of f§ are
(—1,1,0.5). The sample size used (1000) is comparable to the sample size in the IBCSG example in
Section 6. Parameter estimates using the restricted mean MI approach are essentially unbiased, whereas
the PO method was subject to bias as large as one standard deviation.

As mentioned in Section 1, various analyses can be conducted based on multiply imputed data sets.
One example is to produce marginal survival estimates. Simulation results in the independent censoring
case are shown in Table III at survival quantiles 60 per cent through 40 per cent & S(t). Survival
estimates using the MI method approximate true quantiles well, and as expected, the level of efficiency
gain increases with increased censoring. Survival quantiles 100 per cent through 60 per cent, where
censoring was minimal, showed only negligible differences in efficiency (data not shown). Simulations
conducted in the dependent censoring case gave unbiased results for the MI estimated quantiles, whereas
the KM method overestimated survival by approximately 3 per cent after the 60th quantile. Although
gains in efficiency for survival estimates were seen using MI method in the dependent censoring case,
gains were not nearly as attractive as in the independent censoring case (data not shown).

All simulations were repeated using an additional bootstrap step to provide a further level of variability
in the selection of imputed values. That is, each of the M imputed data sets was produced from
a different bootstrap sample of the original observed data, which further varied the distribution of
parameter estimates in Section 3 Step 1 as well as the observed residual distribution in Section 3
Step 2. Although some authors (Taylor et al. [8], Rubin and Schenker [17], Heitjan and Little [18])
have found improved coverage using this approach, coverage probabilities in the simulations did not
appreciably change (data not shown). A conservative recommendation would be to perform the analysis
both with and without the bootstrap step, particularly for smaller sample sizes than the simulations
shown here (n<100).
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Table II. Dependent censoring: Comparison of estimates based on model (1) using method (a) restricted mean
MI (MI) approach, method (b) pseudo observation (PO) approach and method (c) uncensored observations
(Uncensored) (n=1000).
Parameter Method Bias* SE' ESD? CPY (per cent) Width of CIl ARE!
Po=—1 Uncensored 0.001 0.078 0.091 90.6 0.31 1.49
PO —0.163 0.095 0.119 57.3 0.37 1.00
MI 0.002 0.082 0.099 90.0 0.32 1.33
pi=1 Uncensored 0.001 0.066 0.071 93.5 0.26 1.49
PO 0.131 0.081 0.093 63.7 0.32 1.00
MI 0.004 0.069 0.074 93.5 0.27 1.38
p,=0.5 Uncensored  —0.004 0.117 0.121 92.9 0.46 1.49
PO —0.083 0.142 0.148 89.2 0.56 1.00
MI —0.008 0.122 0.132 91.7 0.48 1.36

*Bias is the average of ﬁ—ﬁ over the simulations, i.e. the average estimated parameter is the shown bias plus the
true parameter in column 1.

TSE is the average estimated standard errors over the simulations.

1ESD is empirical standard deviation of the 1000 estimates.

SCP is the empirical coverage probability, i.e. the proportion of simulations that cover the true values.

IWidth of CI is the average 95 per cent confidence interval (95 per cent CI) widths over the 1000 simulations.
IARE is asymptotic relative efficiency, defined as Var(fpg)/Var(f), where Var(fipg), the variance of estimates
using the PO approach, is used as the reference variance.

Table III. Independent censoring: Comparison of survival estimates using restricted mean MI (MI) approach,
KM with censored observations (Censored) and KM with uncensored observations (Uncensored) (n =100).
Quantile (per cent) Censoring per cent® Method Bias' SEf ARE!
60 21.3 Uncensored 0.006 0.049 1.18
Censored 0.006 0.053 1.00
MI —0.005 0.052 1.01
55 23.7 Uncensored 0.005 0.049 1.22
Censored 0.005 0.055 1.00
MI —0.008 0.054 1.03
50 26.0 Uncensored 0.007 0.050 1.27
Censored 0.007 0.056 1.00
MI —0.007 0.054 1.06
45 28.1 Uncensored 0.006 0.050 1.33
Censored 0.006 0.057 1.00
MI —0.009 0.054 1.09
40 30.1 Uncensored 0.006 0.049 1.40
Censored 0.004 0.058 1.00
MI —0.008 0.054 1.13

*Censoring per cent is the average censoring percentage up to corresponding quantile over the simulations.

Bias is the average of true survival percentages minus estimated survival percentages over the simulations.

ISE is the average estimated standard errors over the simulations.

YARE is asymptotic relative efficiency, defined as Var(§50M) / Var(SKM), where Var(ggévl ), the variance of estimates
using the PO approach, is used as reference variance.

6. IBCSG Ludwig Trial V example

We now apply standard analyses to restricted mean-based multiply imputed data sets from the IBCSG
Ludwig Trial V study. The data consist of 1229 patients, where 59 patients are still at risk at 108 months,
551 have died and 669 are censored prior to 108 months of followup. Observed covariates include long-
duration (LD) or short-duration (SD) treatment assignment, ER status (positive vs negative/unknown),
tumor size (greater or less than 2 cm), number of nodes (0-3, 4-9 or 10+) and age (in decades).

The primary interest of the study is to examine the treatment effect over the study period. Just as in
a traditional medical journal results section, we first describe marginal treatment effects via plots and
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1 0 b Log-rank test: p = 0.0001
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Figure 1. IBCSG survival by treatment and method of estimation.

point estimates using the KM method and our restricted mean MI method. Then, we test for treatment
differences using the traditional log-rank test and the MI augmented log-rank test. Multivariate analysis
results then assess adjusted treatment effects and other useful predictors.

As part of performing the MI procedure we estimate the restricted mean in terms of available data
as follows:

E[log{min(108, T)}] = fy+f; x I(LD treatment)+ f3, x I (ER positive)
+f3 x I(Tumor>=2cm)+ f4 x I (positive nodes 4-9)

~+ 5 x I (positive nodes 10+)+ fis x (Age in decades).

In other words, using the methods described in Section 3, for censored patients we multiply imputed
failure times incorporating information on treatment assignment, ER status, node group categories,
tumor size and age.

Marginal survival curves based on the KM method and the MI method are shown in Figure 1, with
confidence intervals at year marks shown in Table IV. The rightmost column of Table IV summarizes
the differences in point estimates of S(t) according to method. Estimates between the two methods
are similar during the first couple of years, but as censoring increases, so do differences between
survival estimates across time. Particularly in the short-duration therapy, the difference in S S8 years)
approaches 6 per cent. This pattern was similar both with and without a bootstrap step included in the
analysis. When investigating possible reasons for differences in tail survival estimates, we identified
dependent censoring captured by age (Hazard Ratio for censoring: 0.81 per decade age increase, 95
per cent CI: (0.70, 0.93), p-value=0.004). That is, older patients who entered the trial were both less
likely to be censored and had longer restricted lifetimes (to be discussed shortly in Table V as part of
the multivariate analyses). The MI procedure accounts for this setting, giving lower survival estimates
over time when compared with the KM method. The treatment differences are much larger once the
dependent censoring bias related to age is accounted for. This is reflected in the much higher significance
of the log-rank analysis on the restricted mean MI data sets (without bootstrap: p=7x 10~?; with
bootstrap: p=2x 10~?) compared with the traditional log-rank test (» =0.0001). The marginal survival
plots also indicate some non-proportionality early in the study duration, perhaps arguing the merits of
a multivariate model not dependent on proportional hazard shapes to hold.

The significant treatment difference is maintained once we adjust for other risk factors (full results
in Table V). The first three columns of Table V give the GLM model fit using the PO approach as in
[5]. The remammg columns glve the analysis based on our restricted mean MI procedure. We report

eﬁ where /3 ([30 ﬂl ﬁ2 ﬁ3 ﬁ4 ﬂs ﬁ6) associated with 95 per cent ClIs and p-values. The parameters

eﬁ are interpreted as multiplicative effects, so that parameter estimates higher than one give longer
estimated restricted lifetimes and estimates smaller than one give shorter estimated restricted lifetimes.
For example, using the MI approach, long-duration treatment tends to prolong restricted lifetime by

___________________________________________________________________________________________________________|]
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Table IV. IBCSG Ludwig Trial V results II: Survival estimates using Kaplan—-Meier (KM) approach and

the restricted mean multiple imputation (MI) approach.

Treatment T (year) Censoring per cent SEM) 1) (95 per cent CD* SMD ¢y (95 per cent CI)* At

SD treatment
1 0.0 0.97 (0.96, 0.99) 0.97 (0.96, 0.99) 0.000
2 0.2 0.90 (0.87, 0.93) 0.89 (0.87, 0.92) —0.001
3 0.5 0.80 (0.76, 0.84) 0.80 (0.76, 0.84) —0.001
4 0.7 0.71 (0.66, 0.75) 0.71 (0.66, 0.75) —0.001
5 2.7 0.63 (0.59, 0.68) 0.63 (0.59, 0.68) —0.001
6 14.8 0.57 (0.52, 0.61) 0.55 (0.51, 0.60) —0.010
7 28.8 0.50 (0.45, 0.55) 0.46 (041, 0.51) —0.036
8 38.5 0.47 (0.42, 0.53) 0.41 (0.31, 0.41) —0.063

LD treatment
1 0.0 0.99 (0.98, 0.99) 0.99 (0.98, 0.99) 0.000
2 0.1 0.90 (0.88, 0.92) 0.90 (0.88, 0.92) 0.000
3 0.3 0.83 (0.80, 0.86) 0.83 (0.81, 0.86) 0.000
4 0.8 0.77 (0.74, 0.80) 0.77 (0.74, 0.80) 0.000
5 2.8 0.73 (0.70, 0.76) 0.73 (0.70, 0.76) —0.001
6 14.2 0.68 (0.65, 0.71) 0.68 (0.65, 0.71) —0.003
7 31.7 0.63 (0.60, 0.67) 0.62 (0.60, 0.66) —0.008
8 45.6 0.58 (0.54, 0.62) 0.57 (0.54, 0.61) —0.008

*Statistical significance is defined when 95 per cent CI does not cover the true values with Type I error rate
5 per cent.

TA is defined as TS’\(KM)(I)—:S'\(M])(t), at different ¢.

Table V. IBCSG Ludwig Trial V results I: Estimated restricted mean model parameters using a pseudo
observation (PO) approach and the restricted mean multiple imputation (MI) approach.

PO method MI method
Parameter Mean Estimate®* 95 per cent crf p-Value Estimate® 95 per cent crf p-Value ARE?
Intercept — 59.3 47.7, 73.7 <0.0001 58.3 46.9, 72.3 <0.0001 1.01
Long-duration 0.66 1.12 1.04, 1.21 0.00300 1.14 1.06, 1.23 <0.0001 1.01

treatment (LD)
Positive nodes 0.27 0.80 0.73, 0.87 <0.0001 0.79 0.72, 0.85 <0.0001 1.01

(4-9)
Positive nodes 0.16 0.56 0.50, 0.62 <0.0001 0.55 0.50, 0.61 <0.0001 1.01
(10+)
Tumor (=2cm)  0.77 0.88 0.81, 0.96 0.00400 0.88 0.81, 0.96 0.00400 1.01
ER positive 0.54 1.23 1.14, 1.32 <0.0001 1.23 1.14, 1.32 <0.0001  1.01
Age (in decades) 5.00 1.04 0.99, 1.08 0.06000 1.04 1.00, 1.08 0.04000 1.01

*Parameter estimates from mean structure (1) are presented on the scale of ef so that estimates higher than
one give longer mean restricted lifetimes and estimates smaller than one give shorter mean restricted lifetimes,
i.e. multiplicative effects.

fStatistical significance is defined when 95 per cent CI does not cover the true values with Type I error rate 5 per cent.

fARE is asymptotic relative efficiency, defined as Var(ﬁpo)/Var(ﬁMI), where Var(ﬁpo), the variance of estimates
using the PO approach, is used as reference variance.

a factor of ef1=1.14 (95 per cent CI: 1.06, 1.23), compared with the restricted lifetime on the SD
arm, adjusted for other factors. Across covariate effects, we observe similar or slightly narrower 95
per cent CI widths and 1 per cent efficiency gains for the MI method versus the PO approach. These
minor efficiency gains in the variability of the parameter estimates were also seen when including a
bootstrap step. The multivariate analysis confirms the role of age as a factor causing some dependent
censoring since age is both related to the event time as well as the censoring time as noted above.
The significance of age straddles the p-value=0.05 depending on methodology used. According to
all methods used, older age is associated with longer restricted lifetimes. The MI method without a
bootstrap step indicates that for each decade increase in age, the estimated restricted lifetime increases

|
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~MI
by 4.1 per cent {efs =1.041, 95 per cent CI: (1.002, 1.082), p-value=0.040}. This seems to be
capturing the known risk of more aggressive breast cancer tumors diagnosed in younger patients.
Incorporating a bootstrap step into the MI procedure gave corresponding results for age as {1.036, 95
(6]

~ P!
per cent CI: (0.996, 1.076), p-value=0.076}, whereas the PO method gave {eﬂ6 =1.038, 95 per cent
CI: (0.998, 1.079), p-value=0.060}.

The MI procedure seems to be accounting for dependent censoring through slightly better esti-
mation of the intercept, which affects estimation of restricted lifetimes, and therefore the values
imputed in the MI algorithm. For instance, we may estimate restricted lifetimes for a typical
patient in the SD treatment arm, using average patient profile values for other risk factors, i.e.
(58.3)(0.79)%27(0.55)°-16(0.88)%-77(1.23)%-54(1.04)>-%0 = 61.6 months for the MI method (95 per cent
CI: 57.9, 65.5), and similarly 62.1 months for the PO method (95 per cent CI: 58.3, 66.0). That is, a
50-year-old patient with a 27 per cent chance of having 4-9 positive nodes, a 16 per cent of having
104 positive nodes, a 54 per cent chance of being ER positive and a 77 per cent chance of having
tumor greater than 2 cm is expected to live 61.6 months out of a possible 108 months on study based
on the MI method. The PO approach estimates a slightly longer restricted mean for this type of patient,
likely connected to dependent censoring biases associated with age. Since younger (sicker) patients are
being censored more often, the PO approach seems to be slightly overestimating the expected number
of months lived during the 108-month duration.

7. Discussion

Using the restricted mean formulation, the shapes of the survival curves in relation to one another are
not specified. Our method merely requires the mean structure to be correctly specified, i.e. the area
under the survival curve to t follows (1). It is also possible, of course, to recover restricted mean

-T
estimates from a Cox modeling framework using 3’(t|Z)=S‘0(t)°ﬁ Z, and in cases where hazards are
truly proportional these estimates should be fully efficient. In two-sample testing literature when hazards
are not proportional, Pepe and Fleming [19] indicated a substantial improvement in detecting treatment
effects using differences in restricted means as opposed to the log-rank test (score test for Cox model).
Previous authors advocating restricted mean models have not clearly laid out inference performance
issues in relation to hazard-based models beyond the intuition gleaned from the two-sample testing
setting.

Andersen et al. [5] use POs to create a modified data set and apply a similar mean structure as
(1) for analysis. In studying the PO method and how it might be modified to provide imputes larger
than the observed censoring times, we discovered a potential loss of statistical information available
from Z. We considered imputes for C; that add C; plus a conditional PO created from the patients
at risk at C;. Suppose SKMD(|T>C;) is the KM estimate with the person censored at C; left
out among those otherwise at risk at C;. Then a conditional PO defined as n fé, TS'\KM(HTZC,-) dr—
n—1) fél §KM(_i)(t|T>Ci)dt would reduce to fcri:S'\KM(ﬂT}C,-)dt. The non-parametric estimate
:S‘\KM(HT}C ;) does not fully utilize covariate information from Z. The PO calculation for this special
case may indicate why our restricted mean MI approach outperforms the traditional PO method in
simulation with respect to efficiency. Looking at this special case of PO creation may also suggest
why dependent censoring might influence the PO method in terms of bias. That is, a conditional PO
§KM(I|T>Ci) may still be biased if censoring depends on Z, and the traditional PO method seems
also subject to this same source of bias.

More recently, Andersen and Perme [20] suggested the use of POs based upon weighted KM
estimates [21], n™! Zgzlng§§M(t), where :S'}(M(t) is a KM estimate in subgroup g of patients with
categorical covariate Z=g and n, is the number of patients in subgroup g (g=1, ..., G). When only
a single categorical covariate is associated with the survival and censoring distributions, corresponding
calculations of conditional pseudovalues created from those at risk at C; reduce to f CT,' ./S‘\;{M(HT}C ;) de,
which is a maximum likelihood estimate of the restricted mean life for someone from group g surviving
past C;. Since all available covariate information is utilized in this scenario, we suspect that the PO
approach will be fully efficient and unbiased for estimation of parameters in (1). Simulations using
categorical covariates yield very similar results for parameter estimates based on weighted KM-based
POs and restricted mean MI method (data not shown).

___________________________________________________________________________________________________________|]
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The approach of creating POs with KM estimates averaged across categorical covariate strata may
be impractical in regression settings with many covariates. As covariate strata become more finely
partitioned, technical difficulties of estimating survival consistently in the tails of the distribution arise
since each stratum specific KM curve is only guaranteed consistency in the range of the observed
outcomes for that stratum. When only a single continuous covariate is related to survival and censoring
distributions, averaging KM estimates across categorical strata of the continuous covariate may still
be viable since simulations by Murray and Tsiatis demonstrated that most efficiency gain and bias
correction may be captured using roughly 3-5 strata.

With a single categorical covariate our restricted mean MI approach reduces to that of Hsu et al.
[10] since risk set groupings based on either similar restricted means, as in our work, or similar
hazards, as in Hsu et al’s work, will result in groups with the same categorical covariate to impute
from. As indicated in Hsu et al., this special case produces marginal survival estimates similar in
expectation to the weighted KM estimate described by Murray and Tsiatis as well as the survival
estimates proposed by Malani [22]. Similarly, rank-based tests based on MI analyses with cate-
gorical covariates would be expected to perform similarly to those proposed by Mackenzie and
Abrahamowicz [23].

To our knowledge, this is the first instance when the restricted mean lifetime has been used to
impute censored survival data based on risk factors, increasing efficiency. Efficiency gains when using
covariate information in marginal survival curve estimation have been seen in many other contexts by
authors including Finkelstein and Schoenfeld [24], Gray [25] and Robins and Rotnitzky [26]. The MI
method retains essential characteristics of the observed data and approximates the original distribution
well. Final parameter estimates have good operating characteristics and have improved finite sample
properties. Particularly appealing to clinicians is that the interpretation of the parameter estimates apply
directly to days, months or years of life saved for different risk profiles. In addition, our method
preserves the traditional benefits of MI such as transparency of variance calculation and availability of
standard statistical software to analyze the augmented data sets.

Appendix A: Pseudo EM algorithm in restricted mean MI procedure

We assume the mean structure as in (1), but keep the distribution of Y otherwise unspecified. The goal
is to predict each censored individual’s mean restricted lifetime based on the converged Fk)T Z; values.
We calculate FO)T Z; as the initial expected value of Y; based on covariate profile Z;. We use FO)
to estimate the initial expected value of Y; based on FO)T

~0)T
p

Z; for each censored individual i. To get
the next iterated estimate, /ﬁ(l), we sample from N{ Zi,Var(/ﬁ\(O)T Z;)} for each patient censored
at X; =C;. We retain sample values that are greater than log C;, and then use the sample average to
estimate E(Y;|C;, Z;), our E-step of the pseudo EM algorithm. After the ‘E’ step is completed for
each censored individual, this completed data set is used to calculate ﬁ(l) under (1), our M-step. We
repeat ‘E’ and ‘M’ steps until the convergence of Fk).

Appendix B: Residual sampling procedure in restricted mean MI algorithm

In order to generate an augmented data set, we append an appropriate residual to E (Y;|C;, Z;), for each
censored patient i. We achieve this goal by creating an imputing pool with patients whose categorical
covariates match Z;, and whose E(Y |Z) fall within some small b-margin of E(Yi|Zi) (to account
for similarity in continuous covariates). Once we form the imputing pool, we estimate the pool’s
survival curve using the KM method. Then we randomly select a probability, s;, from a Uniform(a,1)
distribution, where a is the minimum survival probability in this pool. Next, we select a failure time
where the estimated survival probability from the KM curve equals to s;. The corresponding residual
is taken from the patient with the observed failure time that was selected. This is then the error term
to be appended to E(Y;|C;, Z;). This approach is similar to the nearest neighborhood approach in [10]
modified for the restricted mean setting.
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