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Abstract 

Uncontrolled hypertension gives rise to arteriosclerotic target organ damage of the brain, 

heart, and kidneys. Ischemic brain injury due to hypertension is associated with clinical 

endpoints such as stroke and dementia. Subclinical measures of hypertension-related 

brain injury, such as leukoaraiosis (white matter hyperintensity on magnetic resonance 

imaging), are powerful predictors of stroke and dementia that aggregate in families and 

are likely to be the consequence of complex interactions between many genetic and 

environmental factors. Understanding the genetic architecture of leukoaraiosis may 

provide new insights into the etiology of the disease process and may help identify 

individuals that are at increased risk of developing stroke and dementia.  

 

In this dissertation, both a candidate gene association study and a genome-wide 

association study were used to investigate the genetic architecture of leukoaraiosis in the 

white and African American cohorts of the Genetic Epidemiology Network of 

Arteriopathy (GENOA) study. Since the genetic component of inter-individual variation 

in leukoaraiosis is likely to involve multiple loci that act alone or through interactions 

with other genetic or environmental factors, we also explored interactions between pairs 

of single nucleotide polymorphisms (SNPs) and between SNPs and traditional risk 

factors. Finally, given that stroke and dementia are both associated with hypertension-

related brain injury, we investigated the extent of pleiotropy between leukoaraiosis and 

seven measures of cognitive function using both biometrical and measured genetic 



xxiii

approaches. A greater understanding of the underlying genetic architecture of 

leukoaraiosis has the potential to provide insight into the etiological processes of stroke 

and dementia and to assist in earlier identification of individuals at increased risk for 

disease, the development of more efficacious treatments, and the tailoring of particular 

treatments to people most likely to respond positively. 

 



 1 

Chapter 1 

 
Introduction 

 

Introduction 

Hypertension affects approximately 1 in 3 American adults (76.4 million people), and 

accounts for $43.5 billion in yearly direct and indirect costs in the United States (Roger, 

2011). Uncontrolled hypertension gives rise to target organ damage of the brain, heart, 

and kidney (Turner, 2000). This damage is due to arteriosclerosis (i.e., atherosclerosis 

and arteriolosclerosis) of the arteries that deliver blood to these organ systems, which 

results in clinical endpoints such as stroke and dementia, heart attack and heart failure, 

and chronic kidney disease (Turner, 2000). 

 

Stroke causes considerable morbidity, mortality, and economic burden in the US, 

accounting for 1 in 18 deaths each year (Roger, 2011). Approximately 7 million 

Americans are currently living with the consequences of stroke, which include substantial 

cognitive and physical disabilities (Roger, 2011). An estimated 4% of direct health care 

costs in the US, well over $40 billion per year, is due to stroke (Donnan, 2008). Increased 

blood pressure is a powerful risk factor for stroke (Roger, 2011; Kannel, 1995), 

contributing to 70% of all strokes (Cubrilo-Turek, 2004) and accounting for a population 

attributable fraction of about 32%-38% of ischemic stroke (Hajat, 2004; Ohira, 2006; 

Goldstein, 2001; Roger, 2011). In adults over 55, having blood pressure greater than 
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140/90 mm Hg doubles the lifetime risk of stroke compared to having blood pressure less 

than 120/80 mm Hg (Seshadri, 2007b). Other risk factors for stroke include smoking, 

diabetes, and low physical activity (Roger, 2011). 

 

Subclinical measures of brain injury allow the study of the pathophysiological processes 

that lead to stroke while also giving clinicians a method to identify individuals at 

increased risk of stroke (O'Sullivan, 2008; Markus, 2008) and dementia. Magnetic 

resonance imaging (MRI) of the brain provides a powerful tool to investigate these 

subclinical measures of brain injury, including cerebral white matter hyperintensity 

(leukoaraiosis) and asymptomatic small vessel (lacunar) strokes. Leukoaraiosis is a 

manifestation of hypertension-related arteriosclerosis of the brain and has been repeatedly 

documented as a powerful predictor of stroke (Kuller, 2005; Fu, 2005; Salerno, 1992). It 

is also a predictor of dementia (Kuller, 2005; Pantoni, 1997; Inzitari, 2003), another 

important public health concern in the aging U.S. population. Though leukoaraiosis is 

associated with elevated blood pressure and lack of blood pressure control (van Dijk, 

2004; Liao, 1996), there is a substantial amount of inter-individual variation in 

leukoaraiosis volume among subjects with similar duration and severity of hypertension 

(Szolnoki, 2006; Schmidt, 2004). 

 

It is poorly understood why a particular individual with hypertension develops target 

organ damage of one type but not another. Investigation of genetic factors underlying the 

susceptibility to various types of target organ damage provides a means to better 

understand these inter-individual differences. In order to identify the genetic risk factors 
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underlying hypertension and its different types of target organ damage, the Genetic 

Epidemiology Network of Arteriopathy (GENOA) study was initiated in 1995 (Daniels, 

2004). This dissertation focuses on the genetic susceptibility to leukoaraiosis, a 

subclinical measure of hypertension-related brain injury, among participants in the 

GENOA study. Other GENOA investigators are focusing on measures of target organ 

damage such as coronary artery calcification, a measure of coronary artery 

atherosclerosis, and glomerular filtration rate, a measure of kidney disease. Ultimately, 

studies of the genetic correlations and pleiotropic genetic effects across target organ 

damage phenotypes will help elucidate the shared genetic component of risk for better 

prediction of at-risk subgroups in the population at large.   

 

Background and Public Health Significance  

Hypertension 

Hypertension is commonly defined as having a systolic blood pressure ! 140 mm Hg or a 

diastolic ! 90 mm Hg, taking antihypertensive medication, or having been told at least 

twice by a physician or other health professional that one has high blood pressure (Roger, 

2011). A substantial proportion of the American population are not aware of their 

hypertension (20.4%), are not under current treatment (29.1%), or do not have it 

adequately controlled (52.2%) (Roger, 2011). A similar proportion of men and women 

are affected by hypertension, and risk factors include increasing age, ethnicity, family 

history of hypertension, lower education and socioeconomic status, greater weight, 

tobacco use, dietary factors, and lower physical activity (Roger, 2011). However, in 
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general, these risk factors do not explain the majority of variation in the risk of 

developing hypertension. 

 

Hypertension has a higher prevalence in US blacks than among US whites, though it is an 

increasing public health concern among both groups. Between the periods of 1988-1994 

and 1999-2002, age-adjusted prevalence of hypertension increased from 24.3% to 28.1% 

among US whites and from 35.8% to 41.4% among US blacks (Hertz, 2005). Blacks also 

develop hypertension at earlier ages than whites, have higher average blood pressures, 

and are at increased risk for hypertension-related clinical endpoints related to 

hypertension (Roger, 2011).  

 

Uncontrolled hypertension is the most prevalent risk factor for diseases in a number of 

organ systems, including the brain, heart, and kidney (Turner, 2000). Hypertension-

related target organ damage occurs primarily due to chronic ischemia resulting from 

atherosclerosis (hyperplasia and remodeling of the intimal cells) of the larger elastic 

conduit arteries that deliver blood to the organ and arteriolosclerosis (thickening of the 

vessel media due to remodeling, hypertrophy, and/or hyperplasia of smooth muscle) of 

the smaller arteries within the organ itself. Figure 1.1 depicts the role of genetic and 

environmental factors in influencing arteriosclerosis (i.e., atherosclerosis and 

arteriolosclerosis) and its impact on target organ systems.  

 

Hypertension is associated with manifestations of coronary heart disease (CHD), such as 

angina pectoris, myocardial infarction, and sudden cardiac death (MacMahon, 1990). 
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Subclinical measures of arteriosclerosis of the heart, such as coronary artery calcification 

and left ventricular hypertrophy are also associated with hypertension and are predictive 

of clinical CHD endpoints (Turner, 2002; Bielak, 2004; Bielak, 2000; Arnett, 2004; 

Koren, 1991). In the kidney, arteriosclerotic damage due to hypertension strongly 

contributes to chronic kidney disease and end-stage renal disease (Klag, 1996; Tozawa, 

2003). Subclinical measures such as glomerular filtration rate and albumin/creatinine 

ratio are indicative of risk for these clinical endpoints (National Kidney Foundation, 

2002). 

     

The brain is also susceptible to both atherosclerotic and arteriolosclerotic processes 

related to hypertension, each accounting for one of the two recognized subtypes of 

ischemic cerebrovascular disease that increases risk of later-life stroke and dementia. The 

atherosclerotic process in the brain mirrors the atherosclerotic process that occurs in 

CHD. It tends to affect the larger vessels in the brain and is most strongly related to 

cardiovascular risk factors such as cholesterol. Ischemic brain injury resulting from 

cerebral arteriolosclerosis, in contrast, is more strongly related to hypertension and 

affects the smallest vessels in the brain, leading to small, often undetected areas of 

ischemic damage. Little is known about how various physiological and genetic pathways 

may lead to target organ damage of one type, but not another, in hypertensive individuals. 

 

Stroke 

Stroke is the second most common cause of death and disability-adjusted life-years in 

industrialized countries (Lopez, 2001; Murray, 1997)
 
and the third most common cause 
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of death in the US, accounting for approximately 1 in 18 deaths in 2007 (Roger, 2011). 

New or recurrent stroke occurs in 795,000 people annually, and about 610,000 of these 

are first attacks (Roger, 2011), though the stroke death rate has decreased substantially 

over the past several decades due in part to successful management of hypertension 

(Bonita, 1986; Bornstein, 2006). Approximately 7 million Americans in the US are 

currently living with the consequences of stroke (Roger, 2011), and an estimated 4% of 

direct health care costs in the United States are due to stroke (approximately $40.9 billion 

per year in 1997 dollars) (Donnan, 2008). Prevalent stroke was estimated to be 3.8% 

among white US adults and 4.0% among US black adults (Roger, 2011). The risk of first-

ever stroke is almost twice as high for blacks than whites, and is higher for men than 

women (age-adjusted incidence among people ages 45-84 is 6.6, 4.9, 3.6, and 2.3 per 

1,000 in black men, black women, white men, and white women, respectively) (Roger, 

2011). 

 

Ischemic stroke accounts for 87% of all stroke in the U.S., and hemorrhagic stroke 

accounts for the remainder (Roger, 2011). Ischemic stroke can be further classified into 

categories according to the mechanism of vessel occlusion including cardioembolism, 

large-artery embolism, or small vessel occlusion (lacunar) (Adams, 1993). Leukoaraiosis 

is associated with small-vessel (lacunar) stroke (Markus, 2008), one of the most heritable 

subtypes, which accounts for approximately 20% of ischemic strokes (O'Sullivan, 2008; 

Schulz, 2004). 
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Dementia  

Dementia consists of an array of conditions that result in measurable cognitive decline 

that impairs physical, social, and intellectual function (Kukull, 2002; Haan, 2004). 

Dementia is an important public health burden in the U.S. and abroad (Kukull, 2002; 

Haan, 2004), and the World Health Organization predicts that there will be approximately 

29 million people affected by all forms of dementia by the year 2020 (Essink-Bot, 2002). 

Alzheimer’s disease (AD) and other dementias affect over 5.2 million Americans, 

including between 200,000 and 500,000 people under the age of 65. Dementias place a 

heavy economic burden on the health care system, with each Medicare patient with 

dementia accounting for more than three times as much spending than the average 

beneficiary (Alzheimer’s Association, 2008). The aging population of the U.S. is 

expected to dramatically increase the prevalence of dementia, which is thought to affect 

3%-11% of people older than 65 and 25%-47% of people older than 85 (Boustani, 2003). 

Older African Americans are about twice as likely to develop AD and other dementias as 

older whites, which may in part be due to the higher prevalences of hypertension and 

diabetes and lower average socioeconomic status of this group (Alzheimer’s Association, 

2010). 

 

AD accounts for approximately 53%-80% of all cases of dementia in populations of 

European origin, and vascular dementia (VaD) is thought to account for a substantial 

portion of the remainder (approximately 15%) (Kukull, 2002; Lobo, 2000).
 
Exact 

percentages of VaD are often difficult to estimate because differentiating between VaD 
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and AD is difficult in many cases, and it is becoming increasingly apparent that vascular 

pathology can contribute to dementia in people with AD (Kukull, 2002; Breteler, 2000). 

Leukoaraiosis and multiple lacunar (small vessel) strokes, both caused by cerebral small 

vessel disease, are the primary markers of VaD (Geldmacher, 1997) and are thought to be 

contributors to cognitive impairment in individuals who have not yet progressed to 

dementia (Pantoni, 2007; De Groot, 2002; Schmidt, 2007). 

 

Leukoaraiosis 

Leukoaraiosis physiology and pathology 

The human brain is composed of gray matter (the cerebral cortex) that is responsible for 

consciousness, movement, and cognition and white matter that consists of nerve fibers 

that transmit impulses among cerebral areas and to the central nervous system (see Figure 

1.2) (Marieb, 1998). Leukoaraiosis is visible as bright spots in the white matter on T2-

weighted MRIs, as shown in Figure 1.3 (O'Sullivan, 2008; Markus, 2008). Leukoaraiosis 

ranges in severity from small, distinct areas of white matter hyperintensity (punctuate 

lesions) to large regions of white matter hyperintensity (early confluent or confluent 

lesions) (O'Sullivan, 2008). Leukoaraiosis is thought to be a marker of cerebral small 

vessel disease in the long, narrow penetrating arterioles that supply the white matter with 

blood (Markus, 2008). This type of small vessel disease is defined by areas of diffuse 

arteriolosclerosis with deposits of a proteinaceous substance that includes fibrin, amyloid, 

and collagen, which results in thickening of the vessel and chronic ischemia that leads to 

demyelination, axonal loss, and gliosis (O'Sullivan, 2008; Markus, 2008; Pantoni, 1997). 

It occurs in regions of the brain that have low perfusion pressure, such as the deep white 
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matter, and results in chronic ischemia and multiple diffuse infarctions due to small 

vessel occlusions (lacunar infarctions), both of which are visible as leukoaraiosis on 

MRIs (Markus, 2008). In regions of leukoaraiosis, there appears to be decreased blood 

flow (hypoperfusion) and impaired ability to regulate blood flow (autoregulation) 

(Markus, 2008).  

 

The primary risk factors for leukoaraiosis are older age and hypertension, supporting the 

notion that the mechanism of pathology results from arteriolosclerosis rather than an 

atherosclerotic process (O'Sullivan, 2008; Markus, 2008) since atherosclerosis is 

additionally associated with lipid infiltration and thus predicted by plasma lipid levels 

(e.g. low and high density lipoprotein cholesterol levels). Recently, it has been suggested 

that endothelial dysfunction – i.e. the inability of endothelial cells to perform tasks such 

as mediation of coagulation, platelet adhesion, and immune response - may be the 

intermediate process between hypertension and the alterations in blood flow observed in 

areas of leukoaraiosis (Markus, 2008; Hassan, 2003; Szolnoki, 2007a). Circulating 

endothelial markers may show a pro-coagulant pattern of endothelial function (e.g. higher 

circulating levels of thrombomodulin (TM) and lower circulating levels of tissue factor 

pathway inhibitor (TFPI)) that is specific to leukoaraiosis (Hassan, 2003) and may be 

related to progression of leukoaraiosis (Markus, 2005). Further support for endothelial 

dysfunction comes from the strong association between leukoaraiosis and elevated 

homocysteine level, which is hypothesized to mediate its effect through endothelial 

damage (Hassan, 2004b). 
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Leukoaraiosis epidemiology  

In studies that have conducted MRIs on older adults without stroke or dementia, a 

common finding is that a small amount of leukoaraiosis is detected in the majority of 

subjects. However, prevalence depends greatly on the population and rating scales 

utilized (de Leeuw, 2001). Schmidt (2007) estimated that leukoaraiosis was present in 

more than half of elderly patients in routine scans (Schmidt, 2007), and two studies of 

stroke- and dementia-free adults ages 50-75 reported that less than a third of participants 

had no leukoaraiosis at all (Markus, 2005; Mosley, 2005). In the Framingham Heart 

Study, about half of the subjects (mean age 62.6 years of age) had a leukoaraiosis volume 

that was less than 1% of their total cranial volume (DeStefano, 2006). After accounting 

for age, blacks tend to have a slightly larger amount of leukoaraiosis and related 

downstream consequences such as silent brain infarction, which may be due to the 

increased prevalence of hypertension in this group (Prabhakaran, 2008). Though older 

age and hypertension are the primary risk factors for leukoaraiosis, others include 

previous stroke, ischemic heart disease, and possibly diabetes (Fu, 2005; Pantoni, 1997). 

 

A strong predictive relationship has been found between leukoaraiosis and stroke. Risk of 

stroke increases as leukoaraiosis severity increases, independent of traditional stroke risk 

factors such as hypertension, diabetes, and history of myocardial infarction (Markus, 

2005).
 
Leukoaraiosis is also a strong predictor of recurrent stroke in patients with 

previous history of stroke, with patients having severe leukoaraiosis at four times the risk 

of those with no leukoaraiosis after adjustment for other risk factors (Kuller, 2004). 
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Leukoaraiosis is also associated with cognitive decline and dementia in multiple 

epidemiological studies. It is detected in approximately 60%-70% of persons with VaD 

and AD (O'Sullivan, 2008; Jeerakathil, 2004), though it is typically more severe in VaD 

(Lehericy, 2007). Several studies have shown that leukoaraiosis is predictive of incident 

VaD (Kuller, 2005; Prins, 2004). In a review of leukoaraiosis and cognition, Pantoni et 

al. (2007) conclude that despite different study characteristics, there is almost invariably 

evidence of an effect of leukoaraiosis on cognition. In particular, leukoaraiosis is more 

strongly associated with decreasing cognitive performance than memory and is also 

associated with a decline in motor performances such as gait disturbances (Pantoni, 2007; 

Schmidt, 2007). The rate of progression of leukoaraiosis over time is also related to 

cognitive decline (De Groot, 2002; Schmidt, 2007), and the severity of leukoaraiosis at 

baseline is a significant predictor of progression (Schmidt, 2007). It is also important to 

keep in mind, however, that other factors may affect the association between 

leukoaraiosis and cognitive decline such as lacunar infarcts and brain atrophy (Pantoni, 

2007; Schmidt, 2007). 

 

Leukoaraiosis and cognitive function  

Dementia is a heterogeneous group of disorders with variable etiology that involves 

impairment in cognitive domains such as memory, executive function, and language as 

well as specific physical impairments such as gait abnormalities that cause significant 

impairment in social or occupational function and represent a decline from a previous 

level of functioning (American Psychiatric Association, 2000). The Mini-Mental State 
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Examination (MMSE), developed in 1975 as a brief, standardized instrument to screen 

for impairment in a limited number of cognitive functions (Lezak, 1995) is now a 

commonly-used screening tool for classifying the extent of individual cognitive 

impairment and assessing change in cognitive function level over time (Crum, 1993; 

Tombaugh, 1992). Formal diagnosis of dementia and differentiating between different 

types of the major forms of dementia involves neuropsychological tests in combination 

with visual imaging of the brain (Pohjasvaara, 2000). 

 

The differential diagnosis of VaD incorporates the underlying vascular cause (evidence 

of excessive leukoaraiosis on brain MRI or evidence of ischemic stroke) as well as the 

cognitive and physical symptomology (Pohjasvaara, 2000). One of the criteria for 

differential diagnosis of VaD in the Diagnostic and Statistical Manual of Mental 

Disorders (DSM-IV) is “focal neurological signs and symptoms or laboratory evidence 

indicative of cerebrovascular disease (multiple infarctions involving cortex and 

underlying white matter) that are judged to be etiologically related to the disturbance)” 

(American Psychiatric Association, 2000). Therefore, leukoaraiosis is not only a risk 

factor for VaD, but also is part of the diagnostic criteria. The pathological manifestation 

of leukoaraiosis in VaD is highly variable but typically involves multifocal or diffuse 

leukoaraiosis in the basal gangli, thalamus, and white matter that affects various 

functionally important areas of the brain including the frontal and limbic cortical 

structures (Jellinger, 2008).  
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Several studies have demonstrated an association between hypertension in midlife and 

cognitive dysfunction in later life (Elias, 1993; Launer, 2000), and it has been 

hypothesized that this is due to the cumulative effects of sublinical damage due to 

cerebrovascular disease (Knopman, 2001; Swan, 1998). Knopman et al. (2001) showed 

that cognitive decline in midlife is also associated with hypertension, lending credence to 

the claim that later cognitive dysfunction and dementia are the clinical manifestations of 

a disease process in the brain that is cumulative throughout the lifespan. Leukoaraoisis, a 

measure of the extent of subclinical damage due to hypertension-associated small vessel 

disease in the brain, is likely to be involved in one of the major mechanistic pathways 

between hypertension in midlife and cognitive decline (Sierra, 2006). 

 

Strategies for Studying the Genetic Architecture of Complex Traits 

The genetic architecture of a trait is defined by the genes that affect the trait, the genetic 

variations within those genes, the frequency distribution of those variations, and the 

effects of those genetic variations on the trait mean levels, variability (e.g. plasticity) and 

covariability (e.g. pleiotropy) when they are considered alone or when interacting with 

other genes and measures of environment (both internal and external). Recent evidence 

from association studies demonstrates that many genetic variations with small effect sizes 

may act in conjunction to influence the development of complex traits (Scott, 2007; 

Zeggini, 2008), and it has long been known that quantitative traits are likely to be 

influenced by many genes acting with a wide range of effect sizes (Falconer, 1996; 

Wang, 2005). It has also been demonstrated that the effect of any particular genetic 

variation is likely to depend on its environmental context (gene-environment interaction) 
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or its genetic context (gene-gene interaction or epistasis) (Kardia, 2000; Kraft, 2007; 

Sing, 2004; Mackay, 2009; Mackay, 2010; Zhou, 2009). It is clear that the genetic 

architecture of complex traits such as leukoaraiosis will be best elucidated by examining 

both single nucleotide polymorphism (SNP) main effects as well as their context-

dependent effects. A brief summary of the multiple strategies used to study the genetic 

architecture of complex traits is presented below, with special emphasis on the methods 

used in this dissertation. 

 

Heritability 

Before undertaking research to identify specific genetic factors that contribute to a trait of 

interest, a typical first step is to examine how much of the observed variation in the trait 

is attributable to genetic factors and environmental factors using family studies (e.g. 

twins, sibships, nuclear families, etc.). Quantitative genetic theory of polygenic 

inheritance provides a means of decomposing the variation in a trait to estimate “narrow 

sense” heritability, which is defined as the proportion of variance in a trait due to 

variability in additive genetic factors (Falconer, 1996). Heritabilities are estimated 

biometrically with observed phenotypic information from related individuals, requiring 

no directly measured genetic information. Additive genetic effects are unobservable and 

can only be modeled using the variance-covariance matrix of the trait, expressed as a 

function of identity-by-descent relationships. The expected covariance of a trait between 

a pair of individuals is modeled as a function of the variance parameters and the expected 

correlation between the individuals (Sing, 1987; Kempthorne, 1954). 
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Heritability of a trait is a population-specific parameter that can change over age, 

environments, and genetic backgrounds (Visscher, 2008b). Population parameters that 

influence heritability estimates include allele frequencies and differences in demographic 

histories that affect population genetic and environmental variation. Study-specific 

factors that influence heritability measures include the size and structure of the pedigrees, 

measurement error, bias due to assortative mating and/or selection, and the amount of 

variation among individuals and families in environmental factors. Traits with higher 

heritability are prime candidates for linkage and association studies. Estimating 

heritability is particularly important to evaluate new phenotypes that emerge as 

technologies advance (such as MRI) since it can be used to test the fundamental null 

hypothesis that no gene variations are involved in explaining inter-individual variation in 

the population. Recently, much attention has been focused on the “missing heritability” 

since the relative impact of measured genes identified by the recent success in genome-

wide association studies (GWAS) have explained very modest amounts of trait variability 

(Manolio, 2009; Eichler, 2010).  

 

Linkage studies 

Linkage and association techniques are the two basic analysis methods that have been 

used for human gene mapping and localizing the specific genetic regions that affect 

disease-related traits. Parametric linkage analysis is a family-based method for scanning a 

set of genome-wide markers for co-segregation with a trait of interest by counting 

offspring with recombinant or non-recombinant allele combinations (Hoh, 2001). 

Maximum likelihood methods are used to identify genomic regions associated with a trait 



 16 

assessed by the log of the odds (LOD) scores – i.e. the odds of the likelihood of linkage 

versus the likelihood of no linkage (Morton, 1955). An advantage of linkage studies is 

that they require a much less dense set of genome-wide markers than other genetic study 

techniques such as association studies, because the goal of linkage studies is to identify 

broad genomic regions rather than specific genetic variants that have high likelihood of 

affecting a trait. Linkage studies have been relatively successful at mapping traits that are 

inherited in a Mendelian fashion and even in mapping rarer forms of complex diseases 

that have strong single gene effects in specific families, such as breast cancer, type I 

diabetes, and AD (Risch, 2000). However, most common chronic diseases aggregate but 

do not segregate in families and the success of linkage, even with advances in non-

parametric linkage, has been limited. This limited success in not surprising in light of the 

mounting evidence that many quantitative human traits and common diseases are highly 

genetically heterogeneous, context dependent, and probably also additionally reflect 

many genes with small effects that follow a polygenic rather than a Mendelian model of 

inheritance (Risch, 2000; Terwilliger, 2009; Weiss, 2000; Terwilliger, 1998; Van 

Heyningen, 2004). 

 

Association studies  

Association studies compare allele or genotype frequencies among individuals with 

different trait values instead of tracing allelic inheritance in families (Altshuler, 2008). 

The advantages of association studies over linkage studies are that they can be performed 

in unrelated individuals, may have more power to detect common alleles (minor allele 

frequency > 0.05) with modest effect, and localize the genetic effect to specific 
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polymorphisms rather than broad genomic regions (Hirschhorn, 2005). Initially, 

candidate gene studies were used to test a small set of selected genes and a small set of 

selected variations. Recently, GWAS have become the standard method to identify gene 

regions associated with complex human traits. The main disadvantages of association 

studies are that they may be susceptible to population stratification and they can only be 

used to detect common genetic variants.  

 

Candidate gene studies 

Until the past decade, genetic association studies for complex traits have been conducted 

using a relatively small number of SNPs (<500) from candidate genes, which are chosen 

based on gene function (“biological candidate genes” that are known or hypothesized to 

be involved in disease pathophysiology) or genomic location (“positional candidate 

genes” that are under “linkage peaks” identified in family studies) (Hirschhorn, 2005). 

Candidate gene studies have the advantage of being grounded in prior knowledge and 

have been used successfully to identify genetic variations that have replicable effects 

across studies and populations for complex traits such as leukoaraiosis (Gormley, 2007; 

Hassan, 2002). The disadvantage of candidate gene studies is that they typically examine 

only a small fraction of the variations in the gene and hence rely heavily on linkage 

disequilibrium (LD) with unknown causal mutations to identify the key genes and 

variants. In addition, influential genes that are outside the pathways known to affect the 

trait are absent from investigations. 
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Though there have been multiple successful replications of SNP associations in candidate 

gene studies, the majority of published candidate gene-disease associations have failed to 

replicate (Hirschhorn, 2002). One reason for this failure to replicate was the study 

designs and analytical strategies that were not in place to safeguard against false positives 

(e.g. small studies with no replication cohorts). Although replication of genetic 

associations within other study samples is currently the gold standard for reducing false 

positive reporting (NCI-NHGRI Working Group on Replication in Association Studies, 

2007), replication studies are sometimes not possible with candidate gene studies 

(compared to the more recent GWAS) because other samples typically lacked the 

genotype information for the same SNPs of interest or do not have the same state-of-the-

art measurements of traits, such as leukoaraiosis. When replication samples are 

unavailable, innovative combinations of statistical techniques may be necessary to reduce 

the rate of false positive associations. Combining several statistical methods such as 

cross-validation, internal replication, and use of the false discovery rate (FDR) provides a 

means for helping to distinguish between true and false positives, and a filtering approach 

based on these techniques has been successfully been used in practice (Smith, 2008; 

Smith, 2009; Kardia, 2008). 

 

Genome-wide association studies (GWAS) 

Technological advances and a vast reduction in genotyping cost have recently resulted in 

a significant expansion of the number of genetic markers that can be typed for a given 

subject, allowing progression beyond candidate gene studies. GWAS, which measure 

genetic variation at a high density within the genome (>100,000 SNPs), have several 
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advantages over candidate gene studies. Primarily, scanning hundreds of thousands of 

genetic markers across the genome provides an agnostic, unbiased approach to finding 

common genetic variations that play a role in human trait variation because no 

assumptions are made about the genomic location of causal variants (Hirschhorn, 2005). 

 

GWAS take advantage of the naturally occurring LD structure of the human genome to 

identify genomic regions likely to harbor disease-associated deoxyribonucleic acid 

(DNA) variations. Most genetic variants are strongly correlated with their physically 

neighboring SNPs, giving rise to sections known as LD blocks, in which highly 

correlated SNPs can be used as proxies for one another. Thus, causal variants can be 

detected either by direct genotyping or by being highly correlated to a directly genotyped 

SNP (Hirschhorn, 2005). The existence of LD in the human genome also facilitates the 

imputation of genotypes at millions of unmeasured SNP markers with the use of phased 

data from the International HapMap Project (International HapMap Consortium, 2005) 

through imputation software such as Markov Chain Haplotyper (MaCH) (Li, 2006). 

Imputation of unmeasured genotypes allows study samples that have been genotyped on 

different platforms to be used as replication datasets. 

 

One disadvantage of GWAS is that multiple testing issues accompany the examination of 

millions of genetic markers. Replication in independent samples provides the strongest 

evidence of true positive association, and rigorous standards have been proposed for 

conducting, replicating, and publishing GWAS (NCI-NHGRI Working Group on 

Replication in Association Studies, 2007). The need to replicate in independent samples 
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has resulted in huge collaborative agreements among studies with thousands of 

participants. The focus on these collaborative agreements has been on detecting single 

SNPs with small to moderate main effects on dichotomous disease outcomes (typically 

using case-control studies) or on quantitative traits (typically using population-based 

samples), but an interest in examining gene-environment and gene-gene interactions is 

now emerging. However, sample size requirements for detecting gene-gene and gene-

enviornment interactions tend to be very large. 

 

Studies of pleiotropy 

Pleiotropy is most simply defined as the effect of variation in a single gene on variation 

in multiple traits (Hodgkin, 1998). A more stringent definition of pleiotropy is “the 

phenomenon in which a single gene controls several distinct, seemingly unrelated, 

phenotypic effects” (Zou, 2008), implying that pleiotropic genes by nature perform 

multiple biological functions. Pleiotropic genetic variation has been studied extensively 

in model organisms using quantitative genetic methods, primarily linkage, in order to 

inform breeding programs, examine evolutionary mechanisms, and elucidate molecular 

pathways (Hodgkin, 1998; Mackay, 2009; Cheverud, 2004). Studies of quantitative trait 

loci in model organisms and preliminary studies of pleiotropic effects in humans using 

bivariate linkage and association techniques have set the stage for the development of 

systems-level genetics approaches to examining the pleiotropic mechanisms that affect 

human health and contribute to variation in common chronic diseases.  
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A classic example of pleiotropy in humans is the !4 allele of the apolipoprotein E 

(APOE) gene, which is associated with risk of atherosclerosis as well as dementia 

(Dickstein, 2010). GWAS studies have also revealed some surprising pleiotropic findings 

at the gene level in humans. Several genic regions have been implicated in cancers in 

addition to at least one other human disease, as have individual SNPs. For example, at 

least three SNPs associated with type 2 diabetes have also been found to be associated 

with both prostate and colon cancers (Winckler, 2007; Gudmundsson, 2007; Zeggini, 

2008; Thomas, 2008; Slattery, 2008). Methods for studying pleiotropy using measured 

genotype data in humans, such as those that derive metrics of pleiotropy from GWAS 

results, are beginning to emerge (Johnson, 2009; Karasik, 2010). 

 

The study of pleiotropy in model organisms and humans serves several functions. First, it 

serves to further the understanding and elucidation of the complex biological pathways 

that regulate the development of phenotypes, providing information about normal cellular 

function, normal development and function at the organismal level, connections between 

previously unrecognized related health and diseases processes, and increased predictive 

ability in breeding programs and health management (Hodgkin, 1998). Second, it 

provides insight into the mechanisms of evolution, as effects on multiple phenotypes due 

to a single genetic variant may pose severe evolutionary constraints (Cheverud, 2004). 

Understanding the mechanisms of pleiotropy will lead to increased ability to identify 

connections between genetic variation and disease in humans, increase success of animal 

breeding programs, and shed light on the mechanism of natural selection in the study of 

evolution. 
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Missing Heritability 

Successes of GWAS 

To date, GWAS studies have had notable success in identifying hundreds of replicated 

SNP associations with various human traits and diseases, and much has been learned 

about the complexity of the genetic architecture that underlies the variation in human 

traits (Hindorff, 2009; Donnelly, 2008). However, progress toward identifying the genes 

and SNPs that impact most traits has been more incremental and difficult than 

anticipated, and even the most elegantly designed studies and large consortia have been 

unable to identify sets of SNPs that explain more than a small portion of trait variation 

(Manolio, 2009). Even for the identified SNPs with the strongest associations with 

disease susceptibility, it is remains unclear the utility that these SNPs will have in 

predicting disease risk (Donnelly, 2008). 

 

GWAS variants leave much of the trait variability unexplained 

Many GWAS have been performed on traits that exhibit a high heritability, yet 

identifying genetic variants that contribute substantially to inter-individual variation 

either alone or in combination has proven difficult even with enormous study 

populations. A classically cited example of a highly heritable quantitative trait that has 

been intensely studied via GWAS is human height. GWAS studies have been relatively 

successful in identifying variants associated with height, as three large studies with a 

combined sample size of over 60,000 individuals identified over 50 loci reproducibly 

shown to affect height (Visscher, 2008a). Though heritability of height is approximately 
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80%, the identified variants explained less than 5% of the phenotypic variance of this 

trait (Manolio, 2009; Visscher, 2008a). Similarly, more than 30 loci have been associated 

with Crohn’s disease, but these account for less than 10% of the phenotypic variance 

(Barrett, 2008). This discrepancy between the large biometrically estimated contribution 

of additive genetic effects to trait variance and the small proportion of trait variance 

explained by the SNPs detected in GWAS studies has been termed “missing heritability”  

(Manolio, 2009; Eichler, 2010).  

 

Possible explanations for missing heritability  

Many explanations have been posed and discussed as the reasons why much of the 

heritability of human traits remains unexplained by GWAS findings. The leading 

arguments are that an additional proportion of the heritability may be explained by rare 

and structural variants such as copy number variants (CNVs) (Eichler, 2010; Frazer, 

2009), epigenetic and parent-of-origin effects (Eichler, 2010; Kong, 2009), low power to 

detect gene-gene interaction, and failure to properly account for shared environment in 

family studies leading to inflated heritability estimates (Manolio, 2009). While it is 

possible that heritabilities may be overestimated in some cases, animal studies tend to 

agree with heritability estimates in humans (Manolio, 2009), and methods that use 

observed identity-by-descent sharing of markers in siblings have also estimated 

consistently high heritabilities for traits such as height (Visscher, 2006).  
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Missing heritability may be due to low LD and stringent significance criteria 

Assuming that heritabilities have not been consistently overestimated, it is possible that 

the discrepancy between heritability estimates and the genetic variance explained by 

GWAS findings may be due to several factors. One possibility described by Yang et al. 

(2010) is that causal variants do not reach the threshold of statistical significance 

currently applied in GWAS studies, and a second possibility is that genotyped SNPs are 

not in complete LD with the causal variants and thus do not fully capture the strength of 

their association. Yang and colleagues elegantly examined these possible explanations for 

missing heritability by estimating the proportion of variance for height explained by 

measured genotypes. Their findings indicated that 45% of the variance of height could be 

explained by incorporating the effects of all measured SNPs simultaneously, showing that 

much of the missing heritability may be due to causal variants not meeting the stringent 

thresholds of statistical significance applied to GWAS findings. Next, they showed that 

low LD between the genotyped SNPs and the causal variants, particularly those with 

lower allele frequencies such as rare variants, could explain the remaining 35% of the 

missing heritability.  

 

Missing heritability may be due to rare variants  

GWAS represent a powerful tool for detecting common variants that contribute to 

disease, but there is emerging evidence that other types of genetic variants such as rare 

variants and CNVs also play a role in the genetic architecture of at least some human 

diseases and traits. Rare variants are defined as those with MAF less than about 1%, and 

these go undetected in current GWAS because they have been excluded from most 
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genotyping platforms. Several studies have already demonstrated that rare variants in 

candidate genes are associated with traits such as blood pressure (Ji, 2008), colorectal 

cancer (Fearnhead, 2005), triglyceride levels (Cohen, 2005; Wang, 2007), and body mass 

(Ahituv, 2007) in both European Americans and African Americans. It has been proposed 

that rare variants may have much larger effect sizes than common variants (Bodmer, 

2008), although this has yet to be shown. Rare variants are generally not tagged well 

through the LD structure that GWAS techniques rely upon (Bodmer, 2008), but there 

have been a few instances in which GWAS have detected associations between highly 

penetrant variants that have a MAF<3% and lipid profiles (Pollin, 2008; Sabatti, 2009). 

More complete imputation methods that increase the number of imputed SNPs from ~3 

million using the HapMap Project to ~17 million using the 1,000 Genomes Project  

(Kaiser, 2008) will perhaps increase our ability to study rare variants through GWAS 

techniques. However, the full impact of rare variants are only likely to emerge through 

new technologies such as deep resequencing of candidate genes, the entire exome, and 

the whole genome (Out, 2009; Choi, 2009). 

 

Missing heritability may be due to copy number variants (CNVs) 

Recent research has also revealed that the genetic structural variation in the human 

genome is much richer than single nucleotide polymorphism and large-scale 

chromosomal anomalies (Wain, 2009). Submicroscopic rearrangement, duplication, 

insertion, or deletion of segments ranging from less than a kilobase to as large as 

megabases, collectively termed CNVs have been found to be surprisingly common in 

humans and animals (Redon, 2006; Henrichsen, 2009). These variations likely alter the 



 26 

dosage of expressed genes, depending on the number of copies a person carries 

(Freeman, 2006). Associations between CNVs and several human diseases and traits have 

been documented, including AD (Rovelet-Lecrux, 2006), schizophrenia (Stefansson, 

2008), and autism (Sebat, 2007; International Schizophrenia Consortium, 2008). While 

some CNVs can be detected through “footprints” that they leave on the results of GWAS 

studies (patterns of null alleles, Hardy-Weinberg disequilibrium, or Mendelian 

inconsistencies) (McCarroll, 2006), other technologies such as array-based comparative 

genomic hybridization and fosmid compared end sequence comparison are needed to 

fully capture the variation of CNVs in humans (Freeman, 2006). To this end, the Copy 

Number Variation Project is currently utilizing a variety of technologies to examine 

CNVs in the HapMap samples (http://www.sanger.ac.uk/humgen/cnv). The Affymetrix® 

Genome-Wide Human SNP Array 6.0 genotyping platform used in the genome-wide 

studies in this dissertation also has 202,000 probes for CNV regions from the Toronto 

Database of Genomic Variants as well as 744,000 CNV probes evenly spaced across the 

genome (Affymetrix, 2007).  

  

The relationship between context-dependent effects and missing heritability 

The discussion on missing heritability refers to “narrow sense” heritability, the proportion 

of total phenotypic variance due to additive genetic variance. It has been argued that 

context-dependent effects do not contribute to the additive genetic variance and thus are 

irrelevant to the issue of missing heritability (Yang, 2010). However, Cheverud and 

Routman have demonstrated mathematically that context-dependent effects in the form of 

gene-gene interaction (epistasis) can make important contributions to the average effects 
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of alleles and thus to additive genetic (heritable) variance (Cheverud, 1995). In a 

commentary on missing heritability, Moore proposed that it is likely not single variants 

that account for a substantial portion of the missing heritability, but rather rare 

combinations of interacting common variants (Eichler, 2010). Methods for exploring 

epistasis and gene-environment interaction in GWAS are in the early stages of 

development and currently consist primarily of stratified analyses and tests of 

homogeneity across strata to detect important environmental and genetic contexts. To this 

end, more sophisticated statistical methodologies to detect epistasis using a systems-

biology approach have been proposed as a critical step in exploring the missing 

heritability, in addition to a “philosophical and analytical retooling for a complex genetic 

architecture” (Eichler, 2010). 

 

Genetics of Leukoaraiosis and Cognitive Phenotypes 

Genetic studies of leukoaraiosis 

The manner in which genes influence the development of leukoaraiosis and its 

relationship to blood pressure is complex (Turner, 2000; Schmidt, 2004). Turner and 

Boerwinkle outline three different mechanisms of gene action on leukoaraiosis including 

1) genes that influence blood pressure directly, which in turn affects leukoaraiosis, 2) 

genes that influence leukoaraiosis directly, independent of blood pressure (but that may 

be exaggerated by increased blood pressure), and 3) genes that contribute to leukoaraiosis 

both through pathways mediated by blood pressure and those independent of blood 

pressure, as shown in Figure 1.4 (Turner, 2000). The authors further suggest that 

involved pathways may include those responsible for vessel remodeling and growth.   
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Heritability of white matter hyperintensities on MRI was estimated to be 0.71 in study of 

male twins after adjustment for age and head size (Carmelli, 1998) and 0.55 in the 

Framingham Heart Study after adjustment for sex, age, age
2
, and total cranial volume 

(Atwood, 2004). Turner et al. (2009) estimated the heritability of the logarithm of 

leukoaraiosis in the GENOA study participants as 0.49 in whites and 0.45 in African 

Americans after adjustment for age, sex, and brain volume. In an earlier publication, 

Turner et al. (2004) showed that leukoaraiosis has a consistently high heritability even 

after adjustment for blood pressure. 

 

Turner et al. demonstrated evidence for linkage between microsattelite markers and the 

logarithm of leukoaraiosis adjusted for age and sex on chromosome 5 (LOD=1.91, p-

value=0.0015) (Turner, 2005) and the logarithm of leukoaraiosis adjusted for age, sex, 

and brain volume on chromosome 11 (LOD=2.21, p-value=0.0007) and chromosome 21 

(LOD=1.75, p-value=0.002) in GENOA whites (Turner, 2009). The strongest evidence 

for linkage in GENOA African Americans was on chromosome 22 (LOD=2.02, p-

value=0.001) and on chromosome 21 at a different location than in whites (LOD=1.99, p-

value=0.001) (Turner, 2009). A linkage study done by Framingham Heart Study 

investigators identified linkage peaks for leukoaraiosis in whites adjusted for age and the 

ratio of leukoaraiosis volume to brain volume on chromosome 4 (LOD=3.69) and 

chromosome 17 (LOD=1.78) (DeStefano, 2006). 
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Several candidate gene association studies have been conducted for leukoaraiosis 

quantity and/or progression (see Appendix 1.1 for examples). These studies have 

primarily concentrated on genes in pathways known to be involved in hypertension, 

vasculature, and endothelial damage. Polymorphisms in genes for angiotensin-converting 

enzyme (ACE) (Gormley, 2007; Schmidt, 2001)
 
and angiotensinogen (AGT)  (Gormley, 

2007; Hassan, 2002) appear to have the strongest evidence of association, and there is 

preliminary evidence for matrix metalloproteinase (MMP) -3 and -9 (Fornage, 2007), 

fibrinogen (van Oijen, 2008), interleuken-6 (IL-6) (Fornage, 2008), kinesin light chain 1 

(KNS1) (Szolnoki, 2007b), and paraoxonase (PON1) (Schmidt, 2000). There is also 

evidence for gene-gene interaction between ACE, methylene tetrahydrofolate reductase 

(MTHFR), and APOE that is associated with leukoaraiosis (Szolnoki, 2004). Although 

candidate gene studies have offered some encouraging initial findings, a recent 

systematic review and meta-analysis of 19 candidate gene polymorphisms in four of the 

most promising genes (APOE, MTHFR, ACE, and AGT) concluded that there is no 

overwhelmingly convincing evidence of association between any specific polymorphism 

and leukoaraiosis at this time, though the most evidence exists for the ACE 

insertion/deletion (Paternoster, 2009). 

 

To date, only two GWAS have been conducted using MRI measures of brain aging in 

stroke-and dementia-free subjects. Seshadri et al. (2007a) evaluated the association 

between SNPs on the Affymetrix® 100K GeneChip Human Mapping 100K Set 

(Affymetrix, 2007) in 705 related white participants, with white matter hyperintensity 

volume measured as a z-score within 10-year age- and sex-specific categories of the 
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logarithm of leukoaraiosis using linear generalized estimating equations, family-based 

association tests, and linkage analysis.  

 

The second study, a meta-analysis of GWAS in six cohorts (N=9,401 whites) conducted 

by the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) 

consortium explored the association between genome-wide SNPs and absence or 

presence of infarcts visible as white matter hyperintensities on MRI that are greater than 

3-4mm. This dichotomous measure differs from the quantitative leukoaraiosis trait 

explored in this dissertation because it excludes diffuse white matter hyperintensity that is 

included as part of the leukoaraiosis measurement in the GENOA analysis. However, just 

like diffuse leukoaraiosis, MRI infarct is a downstream consequence of the development 

of small vessel disease and a known risk factor for clinically relevant ischemic stroke. 

This study identified an intronic SNP in the MACRO domain containing 2 (MACROD2) 

gene in the downstream region of the fibronectin leucine-rich transmembrane protein 3 

(FLTR3) gene. This SNP, however, did not replicate in an independent sample of 1.822 

whites, but four SNPs within 200kb from the original SNP did show association with the 

phenotype in a sample of 644 black participants (Debette, 2010). 

 

Genetic studies of cognitive traits 

Age-related cognitive changes take place in several domains including episodic memory, 

working memory, inhibition and attention, executive function, and processing speed 

(Mattay, 2008), and there is substantial inter-individual variability in cognitive 

functioning and brain structure. Deary and colleagues (2004) attest that genetic variability 



 31 

accounts for a significant portion of the variation in cognitive decline. The heritability of 

general cognitive functioning seems to be relatively high, with estimates from twin 

studies ranging from 55% to 80% (McGue, 2002; Finkel, 1995). 

 

Genetic studies in humans and animals are beginning to shed light on the biological 

pathways that may play a role in cognitive decline. The most promising candidate genes 

include those that are associated with hypertension, leukoaraiosis, AD, normal cognitive 

functioning, cardiovascular function, oxidative stress, and inflammation (Deary, 2004), 

and it is likely that subsets of these genes may act in a variety of pathways to give rise to 

different types of dementia. A recent review by Mattay and colleagues (2008) briefly 

outlines the evidence for candidate genes of cognitive aging, and a representative subset 

of the candidate genes under consideration, in addition to those associated with 

hypertension and leukoaraiosis, is presented in Appendix 1.2. 

 

There have been very few genome-wide studies conducted on cognitive phenotypes, 

particularly in stroke-and dementia-free subjects. In the study described above conducted 

by Seshadri et al. (2007a) in 705 white subjects, several measures of cognition were 

analyzed for evidence of association with the Affymetrix® 100K GeneChip Human 

Mapping 100K Set. The authors used age- and sex-standardized measures of verbal 

memory (VM) and attention/executive function (AEF) as primary indicators of amnestic, 

Alzheimer-type, and vascular cognitive dementia. Using generalized estimating 

equations, they found evidence of association with VM on chromosome 5 (p-value 

1.1x10
-5

) and with AEF on chromosomes 1, 21, 11, 2, and 7 (all p-values less than 1x10
-
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5
). Family-based association tests found evidence of association with VM on 

chromosome 13 (p-value 3.8x10
-5

) and with AEF on chromosome 14 (p-value 3.8x10
-5

). 

Linkage analysis found evidence of association with AEF on chromosome 8 (LOD 

score=2.20).  

 

Overview of Dissertation Research 

The overall goal of this dissertation is to investigate the genetic and environmental 

factors that influence the individual-level variation in leukoaraiosis. Heritability estimates 

of leukoaraiosis range from 0.55-0.80 (Carmelli, 1998; Atwood, 2004; Turner, 2004), 

indicating that it is influenced by genetic factors; however, candidate gene and linkage 

approaches have had limited success in identifying specific polymorphisms with 

significant and replicated effects. As with many complex traits, the genetic contribution 

to leukoaraiosis is likely to involve many genetic loci with small or modest effects that 

may be acting alone or through interactions with environmental factors. To develop a 

more comprehensive understanding of the genetic architecture this trait, three different 

approaches have been used to examine the effects of genetic variants on leukaroaraiosis 

and cognitive function.  

 

In the first study (Chapter 2), we utilize a candidate gene approach to understand the 

contribution of single gene effects on mean levels of leukoaraiosis as well as gene-risk 

factor and gene-gene interactions. In the second study (Chapter 3), we investigate genetic 

variation across the entire genome to identify chromosomal regions associated with 

additive effects on leukoaraiosis. In the final study (Chapter 4), we investigate the genetic 
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correlations among leukoaraiosis and seven measures of cognitive function by using both 

measured (GWAS) and unmeasured (biometrical) genetic approaches. Each of these 

approaches assesses different aspects of the genetic architecture of leukoaraiosis, and 

they combine to offer a broad perspective on the different ways in which genetic factors 

may be influencing leukoaraiosis and cognitive function.  

 

Study population 

The GENOA study  

The study population for this dissertation research is comprised of whites and African 

Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA) study. 

The National Heart, Lung and Blood Institute established the Family Blood Pressure 

Program (FBPP) in 1996 from four existing research networks that were investigating the 

genetics of hypertension and its sequelae (FBPP Investigators, 2002), including GENOA. 

GENOA recruited hypertensive sibships from Rochester, Minnesota and Jackson, 

Mississippi for linkage and association studies to investigate the genetic underpinnings of 

hypertension and target organ damage related to hypertension (Daniels, 2004). 

 

In the initial phase of the GENOA study (Phase I: 1996-2001), all members of sibships 

containing ! 2 individuals with early-onset essential hypertension clinically diagnosed 

before age 60 were invited to participate, including both hypertensive and normotensive 

siblings (1,583 non-Hispanic whites and 1,841 African Americans). The diagnosis of 

essential hypertension was established based on blood pressure levels measured at the 

study visit (>140 mmHg average systolic blood pressure or >90 mmHg average diastolic 
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blood pressure) or a prior diagnosis of hypertension and current treatment with 

antihypertensive medications. Exclusion criteria were secondary hypertension, 

alcoholism or drug abuse, pregnancy, insulin-dependent diabetes mellitus, or active 

malignancy. In the second phase of the GENOA study (Phase II: 2000-2004), 1,241 white 

and 1,482 African American participants were successfully re-recruited to measure 

potential target organ damage due to hypertension. Phase I and II GENOA data consist of 

demographic information, medical history, clinical characteristics, lifestyle factors, and 

blood samples for genotyping and biomarker assays. Written informed consent was 

obtained from all subjects and approval was granted by participating institutional review 

boards. All reported phenotype and covariate data used for this dissertation was collected 

during the Phase II exam. 

 

The GMBI ancillary study of GENOA 

The Genetics of Microangiopathic Brain Injury (GMBI) study (2001-2006) is an ancillary 

study of GENOA undertaken to investigate susceptibility genes for ischemic brain injury. 

Phase II GENOA participants that had a sibling willing and eligible to participate in the 

GMBI study underwent a neurocognitive testing battery to assess several domains of 

cognitive function including learning, memory, attention, concentration, and language 

(967 whites and 1,010 African Americans). Ischemic brain damage to the subcortical and 

periventricular white matter (leukoaraiosis) was quantified by MRI in subjects who had 

no history of stroke or neurological disease and no implanted metal devices (916 whites 

and 830 African Americans).  
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Measurement of leukoaraiosis in the GMBI study 

The MRI methods used to quantify leukoaraiosis volume in GMBI participants are 

described in detail in subsequent chapters. Briefly, leukoaraiosis volumes were 

determined from axial fluid-attenuated inversion recovery (FLAIR) images, which are 

T2-weighted images with the signal of the cerebrospinal fluid nulled such that brain 

pathology appears as the brightest intracranial tissue. A fully automated algorithm was 

used to segment each slice of the edited multi-slice FLAIR sequence into voxels assigned 

to one of three categories: brain, cerebrospinal fluid, or leukoaraiosis.  

 

While this method represents the state of the art in technology for quantifying 

leukoaraiosis at the time that the MRIs were performed, the difficulties of distinguishing 

brain tissue affected by leukoaraiosis via imaging results in notable degree of imprecision 

in the measurement of leukoaraiosis volume (mean absolute error = 6.6% and mean test-

retest coefficient of variation = 1.4%) (Jack, 2001). In addition, there may be areas of 

brain tissue affected by chronic ischemia that are undetectable by MRI because the 

severity of ischemia in those areas has not progressed enough to be captured by 

leukoaraiosis measurement techniques. However, these areas of ischemia are not 

considered to be areas of leukoaraiosis, since leukoaraiosis by definition is “tissue that 

appears as bright white spots on MRI.” Thus, the volume of leukoaraiosis that a person 

has is defined inherently by the MRI technique that is performed, and this volume will 

vary with the sensitivity of the MRI technique. However, the relative amount of 

leukoaraiosis across individuals should remain reasonably constant when all individuals 

are assessed using the same standardized MRI procedure. 
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Conclusion 

The three research projects presented in this dissertation utilize an integrative approach 

that combines innovative statistical techniques with methods in genetic epidemiology to 

investigate the diverse mechanisms of genetic effects on leukoaraiosis and the shared 

genetic effects among leukoaraiosis and measures of cognitive function. Only a handful 

of genetic studies have investigated asymptomatic subclinical brain phenotypes due to 

target organ damage from hypertension rather than the clinical endpoints of stroke and 

dementia, which are heterogeneous disease endpoints that are also etiologically 

associated with pathways unrelated to hypertension. However, a greater understanding of 

the underlying genetic architecture of leukoaraiosis itself has the potential to provide 

insight into the etiological processes that leads to stroke and dementia and to assist in 

earlier identification of individuals at increased risk for disease, the development of more 

efficacious treatments, and the tailoring of particular treatments to people most likely to 

respond positively. 

 

The research strategies reflected in this dissertation represent the beginning arc of 

research in the post-Human Genome Project era. Just as candidate gene studies (Chapter 

2) gave way to genome-wide studies (Chapter 3), there is now a growing desire to begin 

to integrate what we know from across the many different traits that have been studied 

(Chapter 4). Furture studies that build upon current knowledge of the genetic architecture 

of leukoaraiosis must begin to utilize systems-level approaches to integrate information 

from next-generation sequencing, epigenomic assays, and transcriptional profiles with the 
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candidate gene and genome-wide analyses presented here in order to gain a more 

thorough understanding of how genetic factors affect leukoaraiosis development and 

progression.  
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Figure 1.1.  Arteriosclerosis and target organ damage 

 

 
 

 

Figure 1.2.  The location of white matter in the brain 

 

 
Photograph courtesy of CNSforum (www.CNSforum.com)
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Figure 1.3.  Leukoaraiosis on brain MRI 

 

 
Adapted from Debette (2010) 

 

Figure 1.4.  Genetic contributions to leukoaraiosis 

 

 
Adapted from Turner and Boerwinkle (2000) 
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Appendix 1.2.  Summary of evidence of candidate genes for cognitive aging 

 

Gene Region Pathway/Disease Finding 

KLOTHO 13q12 Oxidative Stress 

(antioxidative 

function) 

SNPs affect cognitive aging in 

mice 

Prion protein gene (PRNP) 20pter-

p12 

Oxidative Stress 

(antioxidative 

function) 

SNP association with long-term 

memory and cognitive 

impairment in humans 

Insulin-like growth factor 

(IGF) 

15q26.3 Apoptosis Linked to longevity in humans 

and cognitive function in rats 

Death-associated protein 

kinase 1 (DAPK1) 

9q34.1 Apoptosis Linked to late-onset AD in 

humans as well as cognitive 

function in rats 

Interleukin-1B (IL-1B) 2q14 Inflammation SNPs associated with verbal 

memory in elderly humans 

Tumor necrosis factor alpha 

(TNF-a) 

6p21.3 Inflammation SNPs associated with 

processing speed in elderly 

humans 

Interleukin-1B-converting 

enzyme 

11q22 Inflammation SNPs associated with executive 

function in elderly humans 

Catecholamine genes (e.g. 

catechol-O-methyl transferase 

(COMT)) 

22q11.21-

11.23 

Cognition/Memory SNPs associated with signal to 

noise ratio in information 

processing in humans 

Serotonin genes (e.g. seratonin 

transporter (SLC6A4)) 

17q11.1-

q12 

Cognition/Memory VNTRs associated with speed 

of cognitive decline in humans 

Trophic genes (e.g. BDNF) 11p13 Cognition/Memory SNPs associated with altered 

hippocampal function during 

memory tasks in humans 

KIBRA 5q35.1 Cognition/Memory SNPs associated with altered 

hippocampal function during 

memory tasks in humans 

Glutamate receptor, 

metabotropic (GRM3) 

7q21.1-

q21.2 

Cognition/Memory SNPs associated with 

differences in verbal and 

memory scores in humans 

Disrupted in Schizophrenia 

(DISC1) 

1q42.1 Cognition/Memory SNPs associated with 

differences in cognitive ability 

scores in humans 

Adapted from Mattay (2008) 
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Chapter 2 

 

Complexity in the Genetic Architecture of Leukoaraiosis in Hypertensive Sibships* 

 

Abstract 

Subcortical white matter hyperintensity on magnetic resonance imaging (MRI) of the 

brain, referred to as leukoaraiosis, is associated with increased risk of stroke and 

dementia. Hypertension may contribute to leukoaraiosis by accelerating the process of 

arteriosclerosis involving penetrating small arteries and arterioles in the brain. 

Leukoaraiosis volume is highly heritable but shows significant inter-individual variability 

that is not predicted well by any clinical covariates (except for age) or by single 

nucleotide polymorphisms (SNPs). As part of the Genetics of Microangiopathic Brain 

Injury (GMBI) Study, 777 individuals (74% hypertensive) underwent brain MRI and 

were genotyped for 1649 SNPs from genes known or hypothesized to be involved in 

arteriosclerosis and related pathways. We examined SNP main effects, epistatic (gene-

gene) interactions, and context-dependent (gene-environment) interactions between these 

SNPs and covariates (including conventional and novel risk factors for arteriosclerosis) 

for association with leukoaraiosis volume. Three methods were used to reduce the chance 

of false positive associations: 1) false discovery rate (FDR) adjustment for multiple 

testing, 2) an internal replication design, and 3) a ten-iteration four-fold cross-validation 

                                                
*
This work was previously published as Smith JA, Turner ST, Sun YV, Fornage M, Kelly RJ, Mosley T, 

Jack CR, Kullo IJ, Kardia SLR. (2009). Complexity in the Genetic Architecture of Leukoaraiosis in 

Hypertensive Sibships from the GENOA Study. BMC Medical Genomics 2(1): 16. 
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scheme. Four SNP main effects (in F3, KITLG, CAPN10, and MMP2), 12 SNP-covariate 

interactions (including interactions between KITLG and homocysteine, and between 

TGFB3 and both physical activity and C reactive protein), and 173 SNP-SNP interactions 

were significant, replicated, and cross-validated. While a model containing the top single 

SNPs with main effects predicted only 3.87% variation in leukoaraiosis in independent 

test samples, a multiple variable model that included the four most highly predictive 

SNP-SNP and SNP-covariate interactions predicted 11.83%. These results indicate that 

the genetic architecture of leukoaraiosis is complex, yet predictive, when the 

contributions of SNP main effects are considered in combination with effects of SNP 

interactions with other genes and covariates.   

 

Introduction 

Stroke and dementia are age-related neurological disorders that cause considerable 

morbidity and financial burden in the US. The lifetime risk for developing one or both of 

these disorders is greater than 1 in 3 (Seshadri, 2007). Risk factors for stroke and 

dementia overlap in part with those for cardiovascular disease (including age, sex, 

tobacco use, hypertension, diabetes mellitus, and low physical activity), but it has been 

established that both disorders have a significant genetic component that operates 

independently of these risk factors (Flossmann, 2004). Although several rare genetic 

variations have been identified that are associated with significantly elevated risk of 

stroke or dementia, the vast majority of genes that influence risk for these disorders 

remain unidentified. 
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 In an effort to increase the statistical power for detecting genetic variants that have small 

effects on the development of late-life endpoints, such as stroke and dementia, 

quantitative subclinical phenotypes are often used as an indicator for risk of future 

disease. Subclinical phenotypes may be closer in the biological hierarchy to the 

underlying genetic processes, including the influence of gene-environment interactions, 

and thus may have a larger genetic component than clinical disease endpoints.  

 

Ischemic damage to the subcortical white matter that manifests as white matter 

hyperintensity on magnetic resonance imaging (MRI) of the brain, referred to as 

leukoaraiosis, is associated with increased risk of stroke and dementia (Kuller, 2004; 

Salerno, 1992; Pantoni, 1997). One of the strongest predictors of leukoaraiosis is elevated 

blood pressure (van Dijk, 2004), in particular, inadequate blood pressure control in 

persons with hypertension (Liao, 1996). Hypertension is thought to contribute to the 

pathology of leukoaraiosis through accelerating the age-related process of arteriosclerosis 

resulting in ischemic damage to small penetrating arterioles in the subcortical white 

matter of the brain (Schwartz, 2007). This connection between hypertension and 

leukoaraiosis motivated the measurement of this subclinical phenotype in a subsample of 

the Genetic Epidemiology Network of Arteriopathy (GENOA) study of hypertensive 

sibships (FBPP Investigators, 2002). 

 

In the GENOA cohort, the heritability of the logarithm transformed measure of 

leukoaraiosis volume was 0.80, which decreased to 0.68 after adjustment for sex, age, 

systolic blood pressure, and brain volume (Turner, 2004). In other studies, the heritability 
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of white matter hyperintensities on MRI was estimated to be 0.73 in a study of male 

twins (Carmelli, 1998) and 0.55 in the Framingham Heart Study (Atwood, 2004). 

 

To begin to explore the genetic architecture of this trait, we identified single nucleotide 

polymorphisms (SNPs) in 268 genes that have been previously identified as playing a 

role in processes related to arteriosclerosis including blood pressure regulation, vascular 

wall biology, oxidative stress, inflammation, obesity, diabetes, and lipoprotein 

metabolism. The goal of the present study was to investigate the contributions, 

covariation, and interaction among the many hypothesized genetic and environmental 

factors that may influence inter-individual variation in leukoaraiosis. Using a systematic 

approach that simultaneously investigates the contributions of these factors (as main 

effects or as part of interactions) and their underlying covariation, this study is a first step 

toward understanding the complexity of the genetic architecture of leukoaraiosis in order 

to begin to build multivariable models that can predict levels of structural brain injury 

that may result from a person’s unique combination of risk factors.   

 

Methods 

Study population 

The 777 study participants consisted of non-Hispanic white adults (322 male and 455 

female) from 357 sibships that were initially enrolled in the Genetic Epidemiology 

Network of Arteriopathy (GENOA) study, a community-based study of hypertensive 

sibships that aims to identify genes influencing blood pressure (BP) (FBPP Investigators, 

2002; Daniels, 2004). The study was approved by the Institutional Review Board of 
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Mayo Clinic, Rochester MN, and written informed consent was obtained from each 

participant. In the initial phase of the GENOA study (9/1995 to 6/2001), sibships 

containing ! 2 individuals with essential hypertension diagnosed before age 60 years 

were selected for participation. Participants returned for a second phase of the study 

(12/2000 to 6/2004) that included a physical examination and measurement of 

conventional and novel risk factors.  

 

As an ancillary study of GENOA conducted between August 2001 and May 2006, the 

Genetics of Microangiopathic Brain Injury (GMBI) study was undertaken to determine 

susceptibility genes for ischemic brain injury. Leukoaraiosis was quantified by MRI in 

916 non-Hispanic white subjects who participated in the second phase of the GENOA 

study, had a sibling willing and eligible to participate in the GMBI study, and had no 

history of stroke or neurological disease and no implanted metal devices. The median 

time between the second GENOA examination and the GMBI brain MRI was 11.9 

months. Brain MRIs were suitable for analysis in 883 of the 916 participants; in the 33 

without analyzable data, the most common reasons were unsuspected prior brain 

infarctions, masses, metallic artifacts, and failure to complete the MRI. After removing 

individuals who did not have genotyping data available, the final analysis subset 

consisted of 777 GMBI participants. 

 

Clinical assessments and covariate definitions 

The diagnosis of hypertension was established based on BP levels measured at the study 

visit (>140 mmHg average systolic BP or >90 mmHg average diastolic BP) or a prior 
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diagnosis of hypertension and current treatment with antihypertensive medications. 

Height was measured by stadiometer, weight by electronic balance, and body mass index 

(BMI) was calculated as weight in kilograms divided by the square of height in meters. 

Resting systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured 

by a random zero sphygmomanometer, and pulse pressure was calculated as the 

difference between SBP and DBP. A person was considered having ever smoked if they 

had smoked more than 100 cigarettes in their lifetime, was considered to have coronary 

heart disease if they had ever experienced a myocardial infarction or surgery for a 

blocked artery in the heart or neck (carotid artery), and was considered obese if they had 

a BMI > 30 kg/m
2
. 

 

Blood was drawn by venipuncture after an overnight fast. Serum triglycerides (TG), 

creatinine, total cholesterol, and high-density lipoprotein (HDL) cholesterol were 

measured by standard enzymatic methods on a Hitachi 911 Chemistry Analyzer (Roche 

Diagnostics, Indianapolis IN), and low-density lipoprotein (LDL) cholesterol levels were 

calculated using the Friedewald formula (Friedewald, 1972). Five novel vascular risk 

factors including C-reactive protein, homocysteine, fibrinogen, Lp(a), and LDL particle 

size were also measured. C-reactive protein was measured by a highly sensitive 

immunoturbidimetric assay (Keevil, 1998), fibrinogen was measured by the Clauss 

(clotting time based) method (von Clauss, 1957), and plasma homocysteine was 

measured by high-pressure liquid chromatography. Lp(a) in serum was measured by an 

immunoturbidimetric assay using the SPQ
TM

 Test System (Diasorin, Stillwater MN) as 

previously described (Kullo, 2004a), and LDL particle size was measured by 
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polyacrylamide gel electrophoresis (Kullo, 2004b). Level of physical activity was 

calculated as a continuous variable based on the self-reported average number of hours 

per day that the subject engaged in heavy, moderate, and sedentary activities according 

the following formula: 2*Heavy + Moderate – 2*Sedentary.  

 

Leukoaraiosis volume (cm
3
) was obtained via MRI in a separate clinical visit. All MRI 

scans were performed on identically equipped Signa 1.5 T MRI scanners (GE Medical 

Systems, Waukesha, WI, USA) and images were centrally processed at the Mayo Clinic. 

Symmetric head positioning with respect to orthogonal axes was verified by a series of 

short scout scans. Total intracranial volume (head size) was measured from T1-weighted 

spin echo sagittal images, each set consisting of 32 contiguous 5 mm thick slices with no 

interslice gap, field of view = 24 cm, matrix = 256 x 192, obtained with the following 

sequence: scan time = 2.5 min, echo time = 14 ms, repetitions = 2, replication time = 500 

ms (Jack, 1989). Total brain and leukoaraiosis volumes were determined from axial fluid-

attenuated inversion recovery (FLAIR) images, each set consisting of 48 contiguous 3-

mm interleaved slices with no interslice gap, field of view = 22 cm, matrix = 256 x 160, 

obtained with the following sequence: scan time = 9 min, echo time = 144.8 ms, 

inversion time = 2,600 ms, repetition time = 26,002 ms, bandwidth = +/- 15.6 kHz, one 

signal average. A FLAIR image is a T2-weighted image with the signal of the 

cerebrospinal fluid nulled, such that brain pathology appears as the brightest intracranial 

tissue. Interactive imaging processing steps were performed by a research associate who 

had no knowledge of the subjects’ personal or medical histories or biological 

relationships. A fully automated algorithm was used to segment each slice of the edited 



 

  65 

multi-slice FLAIR sequence into voxels assigned to one of three categories: brain, 

cerebrospinal fluid, or leukoaraiosis. The mean absolute error of this method is 1.4% for 

brain volume and 6.6% for leukoaraiosis volume, and the mean test-retest coefficient of 

variation is 0.3% for brain volume and 1.4% for leukoaraiosis volume (Jack, 2001). 

White matter hyperintensities in the corona-radiata and periventricular zone, as well as 

central gray infarcts (ie, lacunes) were included in the global leukoaraiosis 

measurements. Brain scans with cortical infarctions were excluded from the analyses 

because of the distortion of the leukoaraiosis volume estimates that would be introduced 

in the automated segmentation algorithm. 

 

Genotyping 

One thousand nine hundred and fifty six SNPs from 268 genes known or hypothesized to 

be involved in blood pressure regulation, lipoprotein metabolism, inflammation, 

oxidative stress, vascular wall biology, obesity and diabetes were identified from the 

genetic association literature and positional candidate gene studies (Barkley, 2004). SNPs 

were chosen based on a number of different criteria including the published literature, 

non-synonymous SNPs with a minor allele frequency (MAF) > 0.02, and tag SNPs 

identified using public databases such as dbSNP (http://www.ncbi.nlm.nih.gov/SNP/) and 

the Seattle SNPs database (http://pga.mbt.washington.edu).  

 

DNA was isolated using the PureGene DNA Isolation Kit from Gentra Systems 

(Minneapolis MN). Genotyping, based on polymerase chain reaction (PCR) amplification 

techniques, was conducted at the University of Texas-Health Sciences Center at Houston 
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using the TaqMan assay and ABI Prism® Sequence Detection System (Applied 

Biosystems, Foster City CA). Primers and probes are available from the authors upon 

request. Quality control measures for genotyping assays included robotic liquid handling, 

separate pre- and post-PCR areas, standard protocols and quality control analyses 

including 5% duplicates, positive and negative controls, computerized sample tracking, 

and data validity checks. After removal of SNPs that were monomorphic in the study 

sample, 1649 SNPs remained for analysis (see Appendix 2.1).  

 

Statistical analysis 

All analyses were carried out using the R statistical language, version 2.8 (R Core 

Development Team, 2008). Covariate correlations were estimated using Pearson’s 

product moment correlation. Linkage disequilibrium (LD), as measured by r
2
 (Lynch, 

1998), was estimated using an expectation maximization (EM) algorithm. Hardy-

Weinberg Equilibrium was assessed using a chi-square test or Fisher’s exact test if a 

genotype class had less than 5 individuals (Weir, 1996). Variables that showed deviation 

from a normal distribution in diagnostic plots, including leukoaraiosis, were transformed 

by taking the natural logarithm. The outcome variable for all models was the residual 

value of the natural logarithm of leukoaraiosis volume (cm
3
) after adjustment for age, 

sex, and total brain volume. Age and sex were included as adjustment covariates because 

both have been historically used as adjustment variables for this trait. Age is a very strong 

independent predictor for leukoaraiosis, and sex had a marginal association with 

leukoaraiosis in this sample. To account for differences in brain size, brain volume was 

included as a covariate in all models. 
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In the first stage of the analysis, we tested for association between leukoaraiosis and each 

of the predictor variables (SNPs and quantitative covariates) using least-squares linear 

regression methods (Weir, 1996; Kleinbaum, 1998). Categorial covariates were modeled 

using logistic regression (Kleinbaum, 1998). We also tested for association between each 

SNP and covariate to identify potential confounders. To determine whether interactions 

among predictors explained additional variation in the outcome, we tested pairwise 

interactions among all possible pairs of predictors (i.e. SNP-SNP, SNP-covariate, and 

covariate-covariate interactions) for all covariates and the 444 SNPs that had a model p-

value<0.2 in the association testing described above. Associations involving interactions 

were assessed with a partial F test, which compares a full model that includes both the 

interaction terms and the main effects of the variables comprising the interaction terms to 

a reduced model that includes only the main effects. Models with a p-value <0.1 (for 

single variable models) or a partial F p-value <0.1 (for models with interaction terms) 

were evaluated in the next stage of analysis. 

 

To reduce false positives we used three different approaches: 1) adjustment for multiple 

testing using the False Discovery Rate (FDR) <0.30 (Storey, 2002), 2) internal replication 

with two subsets of the data (constructed so individuals were unrelated within subset), 

and 3) four-fold cross-validation (repeated 10 times) (Molinaro, 2005). To create internal 

replication subsets, we randomly selected one sibling from each sibship without 

replacement to create subset 1 and then randomly selected another sibling from each 

sibship to create subset 2. The GMBI cohort contained a small number of singletons (ie, 
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subjects who had no enrolled sibling) that were equally divided between the two samples. 

If a sibship contained more than two siblings, the remaining unselected siblings were not 

included in either subset. Associations that had a p-value <0.1 in both subsets were 

considered internally replicated if the effect of the genotype was homogeneous among 

subsets (the partial F p-value >0.05 from a test of the interaction between subset 

designation and the predictors(s) under consideration). 

 

Cross-validation significantly reduces false positive results by eliminating associations 

that lack predictive ability in independent test samples. For each association, we 

performed four-fold cross-validation by dividing the full sample into four equally sized 

groups. Three of the four groups were combined into a training dataset, and the modeling 

strategy outlined above was carried out to estimate model coefficients. These coefficients 

were then applied to the fourth group, the testing dataset, to predict the value of the 

outcome variable for each individual in this independent test sample. This process was 

repeated for each of the four testing sets. Predicted values for all individuals in the test set 

were then subtracted from their observed values, yielding the total residual variability 

(SSE), . The total variability in the outcome (SST) – the difference between 

each individual’s observed value and the mean value for the outcome – was then 

calculated, . In order to estimate the proportion of variation in the outcome 

predicted in the independent test samples, the cross-validated R
2
 (CV R

2
) was calculated 

as follows: . This cross-validation method provides a more accurate 
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measure of the predictive ability of the genetic models and will be negative when the 

model’s predictive ability is poor. Because random variations in the sampling of the four 

mutually exclusive test groups can potentially impact the estimates of CV R
2
, this 

procedure was repeated 10 times and the CV R
2
 values were averaged (Molinaro, 2005). 

 

Univariate associations were considered cross-validated if the average percent variation 

predicted in independent test samples was greater than 0.5% and interactions were 

considered cross-validated if the difference in average percent variation predicted in 

independent test samples between the full model containing the interaction term and the 

reduced model containing only main effect terms was greater than 0.5%. Using 

permutation testing on the models investigated in this paper, we found that the probability 

of observing a CV R
2
x100 greater than 0.5% by chance alone was less than 5%. That is, 

Pr(CV R
2
x100 > 0.5%) < 0.05 under the null hypothesis of no association. Due to small 

cell sizes (<4 subjects in a particular class), 0.3% of the SNP-covariate interaction models 

and 2.3% of the SNP-SNP interaction models were unable to complete the cross-

validation procedure. 

 

All single SNP or interaction models that passed the three different approaches for 

reducing false positives (FDR, internal replication, and cross-validation) were modeled 

using linear mixed effects (LME) (Raudenbush, 2002), which accounts for the sibship 

structure among GMBI study participants while retaining a valid type I error rate 

(Cupples, 2007; Raudenbush, 2002). Associations with a p-value <0.1 in the F test 

(described above) but a p-value >0.1 from the likelihood ratio test of the appropriate full 
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and reduced mixed effects models were considered to be associations due to family 

structure and were removed from the results. 

 

To visualize the genetic architecture of the outcome trait, leukoaraiosis volume, we 

applied a novel data visualization scheme, the KGraph, described in Kelly et al. (2007). 

The KGraph was developed for the visualization of genetic association results and the 

underlying relationships among predictors such as SNP-SNP frequency correlations (i.e. 

LD), SNP-covariate associations, and covariate-covariate correlations. It simultaneously 

displays both significant univariate associations and pairwise interactions with the 

outcome of interest, leukoaraiosis volume, as well as the underlying correlation structure 

among the predictor variables. 

 

In the final step, multivariable linear regression
 
models combining the most predictive 

SNPs, covariates, and their interactions were constructed. The top four single SNP, SNP-

covariate, and SNP-SNP interaction models were chosen for multiple variable modeling 

based on the following criteria: 1) passed all three filters to reduce false positive 

associations (FDR, internal replication, and cross-validation), 2) had the highest CV R
2
 

values of the particular modeling strategy, and 3) didn’t involve SNPs in strong LD with 

SNPs already included in the multiple variable model. Percent variation in leukoaraiosis 

volume explained by each model was assessed with the adjusted R
2
 value, and predictive 

ability of the models was assessed by four-fold, ten-iteration cross validation (CV R
2
 

value). 
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Results 

Descriptive statistics 

Descriptive statistics of the clinical covariates and outcomes are shown in Table 2.1. The 

mean age of the participants was 59.7 years and 58.6% of participants were female. 

Participants had a mean BMI of 30.5 kg/m
2
, waist-to-hip ratio of 0.91, SBP of 131.4 

mmHg, and DBP of 74.0 mmHg. The distribution of leukoaraiosis is shown in Figure 2.1. 

The mean volume of leukoaraiosis was 7.80 cm
3
 and the mean brain size was 1159 cm

3
.  

Allele and genotype frequencies, rs numbers from dbSNP, SNP positions and annotations 

(synonymous, non-synonymous, intron, etc), and test results for Hardy-Weinberg 

equilibrium are reported in Appendix 2.1. 

 

Associations 

Table 2.2 shows a summary of the results from testing for SNP main effects, SNP-

covariate interactions, and SNP-SNP interactions. Of the 1649 SNPs that were evaluated 

for their association with leukoaraiosis, 37 had FDR<0.3, 15 internally replicated, 23 

cross-validated, and only four met all three criteria. In tests for SNP-covariate interaction, 

1561 interactions had a FDR<0.3, 834 internally replicated, 1887 cross-validated, and 

only 12 met all three criteria. In tests for SNP-SNP interactions, one hundred and seventy 

three SNP-SNP interactions passed all three criteria, and the top 20 most predictive of 

these interactions are listed in Table 2.3 along with the single SNP main effects and 12 

SNP-covariate interactions that met all three criteria (see Appendix 2.2 for a complete list 

of SNP-SNP interactions that passed all three criteria).  
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Figure 2.2 shows a KGraph, a visual representation of the complex associations among 

genetic, demographic, and biochemical factors that underlie variation in leukoaraiosis 

volume. Using both color and spatial relationships, the KGraph presents both associations 

with leukoaraiosis and the correlation structure of the predictors that underlie those 

associations. A key to the eight regions of the KGraph is located in the lower left corner 

of Figure 2.2, and Appendix 2.3 gives additional detail about reading and interpreting a 

KGraph. Included on the KGraph are all of the covariates that were investigated in the 

study, SNPs that were involved in a single SNP or SNP-covariate association that passed 

all three filters, and SNPs that were involved in at least one of the 20 most highly 

predictive SNP-SNP interactions that passed all three filters. All associations involving 

these SNPs and covariates are presented on the KGraph, and those that passed all three 

filters are indicated by a horizontal black bar. 

 

Region 1 in Figure 2.2, shown in green, displays the association between the SNPs and 

covariates, one source of information about the underlying pathways. The majority of 

SNP-covariate associations were accounted for by three SNPs in the factor VIII (F8) 

gene that were associated with log serum creatinine, height, HDL cholesterol, waist-to-

hip ratio, and weight. Region 2, shown in grey, illustrates the correlations between the 

covariates. The majority of the risk factors are significantly associated with one another 

(p-value < 0.05). Region 3, in red, shows the observed LD, estimated in a sample of 357 

unrelated individuals from the study sample. As expected, significant LD (r
2
 > 0.5) 

occurs only between SNPs that are within the same gene. 
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The remaining regions are colored blue, indicating that they represent associations with 

the outcome of interest, leukoaraiosis. Region 4, which displays the univariate association 

between the covariates and leukoaraiosis, shows that only age had an association that met 

all three criteria. Region 5, which illustrates univariate associations between the SNPs 

and leukoaraiosis, shows that four SNPs have significant, replicated and cross-validated 

associations (F3_rs3917643, CAPN10_rs7571442, MMP2_rs9928731, 

KITLG_rs995029). Region 6 displays the covariate-covariate interactions that are 

significantly associated with leukoaraiosis, but no interactions of this type passed all 

three filters. Region 7 displays the interactions between the SNPs and covariates that 

were associated with leukoaraiosis. Overall, we detected 12 interactions that replicated 

and cross validated, though two pairs of SNP-covariate interactions appear to be marking 

the same association, due to strong LD between the involved SNPs. Region 8 displays the 

epistatic (SNP-SNP) interactions significantly associated with leukoaraiosis. We detected 

173 replicated and cross-validated, statistically significant pairwise interactions between 

SNPs. The most predictive interactions included those between SNPs in RHAG and GLS, 

F8 and MPO, SLC20A1 and IL22RA, KITLG and TLR4, NMUR1 and GPR55, ACCN4 

and TNFSF10, and CX3CR1 and F2. Interactions between two genes that appear more 

than once in the SNP-SNP results are almost entirely due to strong LD between involved 

SNPs. 

 

Predictive modeling 

To begin to assess the combined predictive ability of the top SNPs, covariates, and their 

interactions, we constructed multiple variable models as described in the Methods section 
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(Table 2.4). The four single SNPs that met all three criteria explained 5.99% of variation 

in leukoaraiosis (adjusted R
2
) and had a CV R

2
x100 value of 3.72%. A model that 

included the main effects and interaction terms from the top four SNP-covariate 

interactions explained 7.88% of the variation in leukoaraiosis (CV R
2
x100 = 4.53%), 

while a model including only the SNP and covariate main effect terms had a negative CV 

R
2
, indicating poor predictive performance. A model consisting of the top four SNP-SNP 

interactions explained 14.73% of variation in leukoaraiosis (CV R
2
x100 = 9.59%), while 

the model containing only the SNP main effects explained only 6.12% (CV R
2
x100 = 

2.27%), indicating that the SNP-SNP interaction terms explained an additional 7.61% of 

variation (difference in CV R
2
x100 = 7.32%). Finally, a model that contained both the 

top four SNP-covariate and the top four SNP-SNP interactions explained 19.18% of the 

variation in leukoaraiosis (CV R
2
x100 = 11.83%), while the reduced model containing 

only the SNP and covariate main effects terms explained 7.18% (CV R
2
x100 = 1.30%). 

Therefore, the combination of SNP-SNP and SNP-covariate interactions was the most 

predictive model, explaining an additional 12.00% variation in leukoaraiosis (difference 

in CV R
2
x100 = 10.80%).  

 

Discussion 

Although there have been several studies of the influence of polymorphisms in candidate 

genes on essential hypertension, stroke, and dementia, little research has been done on the 

impact of specific candidate gene polymorphisms on leukoaraiosis. Our motivating 

hypothesis for this work was that polymorphisms in physiological pathways known to 

affect these factors for arteriosclerosis may influence leukoaraiosis both directly and 
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through interactions with environmental, demographic, and behavioral risk factors and 

other genetic polymorphisms.  

 

Except for age and blood pressure, conventional risk factors do not significantly predict 

leukoaraiosis in our study. However, these covariates predict a large fraction (~30%) of 

variation in leukoaraiosis. After adjustment for age and sex, four SNPs passed all three 

filters to reduce false positives and significantly predicted this phenotype. These SNPs 

represent several distinct physiological pathways, including blood coagulation (F3) 

(Davie, 1991), endothelial and hematopoietic stem cell proliferation (KITLG) (Martin, 

1990), protease pathways contributing to obesity and diabetes (CAPN10) (Horikawa, 

2000), and the extracellular matrix (MMP2) (Liu, 2006). This result emphasizes that 

leukoaraiosis is a complex phenotype that is influenced by genetic variation in several 

underlying biological processes, in part accounting for inability to predict and 

individual's leukoaraiosis volume with information regarding conventional and novel risk 

factors for arteriosclerosis. 

 

In addition to having a significant main effect, the KIT tyrosine kinase receptor ligand 

(KITLG) shows context-dependent effects through interaction with homocysteine and 

with toll-like receptor 4 (TLR4), a mediator of immune response. Several other 

interactions also suggest a role for immune response and inflammation in the 

development of leukoaraiosis including gene-environment interactions between IL28RA 

(class II cytokine receptor) and small dense LDL size, IL22RA1 (class II cytokine 

receptor) and coronary heart disease, and both LTA4H (leukotriene hydroxylase) and 
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PCSK9 (which plays a role in LDL receptor degredation) and homocysteine. Gene-gene 

interactions that support a role for immunity and inflammation in the disease process 

include an interaction between IL22RA1 and SLC20A1 (a receptor for retroviruses) and 

several interactions between an immune factor and a platelet factor such as that between 

MPO (myeloperoxidase, responsible for microbicidal activity) and platelet factor 8 (F8) 

and between CX3CR1 (a cytokine for leukocytes) and platelet factor 2 (F2). An 

interaction between NMUR1 (a G-protein coupled activator that appears to be involved in 

regulation of food intake) and GPR55 (a G-protein coupled receptor) also points to 

genetic variation in signal transduction pathways playing a role in leukoaraiosis 

development. 

 

Recent work has suggested a number of new potential cellular mechanisms (e.g. 

endothelial dysfunction, mitochondrial energy metabolism, protein transport) that may 

play a role in the development of leukoaraiosis and have not been previously considered 

in candidate gene selection (Szolnoki, 2007a; Szolnoki, 2007b). Several unexpected 

context-dependent effects have also been shown to consistently impact the leukoaraiosis 

phenotype (Szolnoki, 2006) In addition, animal and plant studies have shown more gene-

gene (epistatic) interactions than previously expected (Cheverud, 2000). Given the 

biological complexity of the leukoaraiosis phenotype, it is not surprising that epistatic 

interactions and context-dependent effects play a large role and explain a larger 

proportion of variation in the phenotype than single covariate or SNP effects alone in this 

study. In accordance with this notion, multiple variable predictive modeling that was 

performed with the most highly ranked single SNP associations, SNP-covariate 
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interactions, and SNP-SNP interactions shows that the variation explained by the SNP-

covariate and SNP-SNP interactions (19.18%, CV R
2
x100 = 11.83%) was much higher 

than that explained by the main effects of these variables alone (7.18%, R
2
x100 = 

1.30%). 

 

Failure to find replicated SNP effects across studies has significantly limited the utility of 

genetic association results. Manly suggests that internal validation methods, such as 

cross-validation, can be implemented as one way to avoid false positives (Manly, 2005). 

Cross-validation is an established method for discriminating between true associations 

and false positives that is based on predictive performance in independent test cases 

(Stone, 1974), and it has been used in a number of fields that deal with high-dimensional 

“omics” data (Pohjanen, 2007; Agranoff, 2006; Wood, 2007; Mertens, 2006). Another 

popular method for reducing false positive associations is to control the false discovery 

rate, for example, using Storey’s q-value (Storey, 2002). There is a relatively low level of 

agreement between results filtered through different methods of reducing false positives 

(FDR q-value < 0.3, internal replication, and cross-validation), emphasizing the need for 

multiple false positive reduction methods. 

 

Our study has several limitations. The design of the study is based on the premise that 

susceptibility alleles for common diseases are not under strong selective pressures and are 

relatively abundant in the population (i.e., the “common disease, common variant” 

hypothesis). Since the entire allelic spectrum for genes associated with quantitative 

measures of leukoaraiosis has not been fully delineated, our study was limited to 
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candidate gene choices based on physiological and biological knowledge of 

leukoaraiosis. In addition, it is possible that multiple rare polymorphisms in the positional 

and biological candidate genes we studied also influenced the phenotype; however, this 

study was underpowered to detect this type of effect. Since this study was conducted in a 

cohort of primarily hypertensive non-Hispanic white adults, the inferences may not be 

generalizable to individuals who are younger, normotensive, or of other ethnicities. 

Despite these limitations, our approach illustrates the use of candidate genes to formulate 

a more realistic picture of the genetic architecture of complex traits such as leukoaraiosis. 

 

Conclusions 

The genetic architecture of complex traits such as leukoaraiosis, a marker of increased 

risk of stroke and dementia, is comprised of SNP and covariate main effects, gene-gene 

interactions, and gene-environment interactions from a variety of biological pathways. 

Our findings indicate that systematic investigation of the context-dependent effects of 

genetic variation is critical for a more thorough understanding of the multidimensional 

architecture of complex diseases. 
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Table 2.4.  Multivariable analysis to assess combined predictive ability of the best 

SNPs, risk factors, and interactions  

Model Adj R
2
x100 CV R

2
x100 

1. Top Single SNPs 5.99 3.72 

2. Top 4 SNP*Covariate Interactions   

Full Model 

Reduced Model 

Difference
*
 

7.88 

2.64 

 

4.53 

-0.06  

4.53 

3. Top 4 SNP*SNP Interactions   

Full Model 

Reduced Model 

Difference 

14.73 

6.12 

 

9.59 

2.27 

7.32 

4. Top 4 SNP*Covariate Interactions + Top 4 SNP*SNP Interactions   

Full Model 

Reduced Model 

Difference 

19.18 

7.18 

 

11.83 

1.30 

10.80 

5. Single SNPs + Top 4 SNP*Covariate Interactions + Top 4 SNP*SNP 

Interactions    

Full Model 

Reduced Model 

Difference 

21.32 

9.99 

 

11.60 

2.16 

9.34 
 

*
 In calculating the difference in CV R

2
 between full and reduced models, the CV R

2
 of the reduced model 

was considered to be zero if it had a negative value. 

For all associations, the outcome was leukoaraiosis volume transformed using the natural logarithm and 

adjusted for age, sex, and total brain volume. 

 

1. Model: F3_rs3917643 + KITLG_rs995029 + CAPN10_rs7571442 + MMP2_rs9928731 

2. Full model: KITLG_rs1492347*Log Homocysteine + ITGB3_rs3851806*Height + 

TGFB3_rs2284791*Log CCRP + TGFB3_rs2284791*Physical Activity; Reduced model: 

KITLG_rs1492347 + Log Homocysteine + ITGB3_rs3851806 + Height + TGFB3_rs2284791 + Log CCRP 

+ Physical Activity 

3. Full model: RHAG_rs11759060*GLS_rs1921913 + F8_rs7053448*MPO_rs34704261 + 

SLC20A1_rs10758*IL22RA1_rs12093987 + KITLG_rs995029*TLR4_rs1927911; Reduced model: 

RHAG_rs11759060 + GLS_rs1921913 + F8_rs7053448 + MPO_rs34704261 + SLC20A1_rs10758 + 

IL22RA1_rs12093987 + KITLG_rs995029 + TLR4_rs1927911 

4. Full model: KITLG_rs1492347*Log Homocysteine + ITGB3_rs3851806*Height + 

TGFB3_rs2284791*Log CCRP + TGFB3_rs2284791*Physical Activity + 

RHAG_rs11759060*GLS_rs1921913 + F8_rs7053448*MPO_rs34704261 + 

SLC20A1_rs10758*IL22RA1_rs12093987 + KITLG_rs995029*TLR4_rs1927911; Reduced model: 

KITLG_rs1492347 + Log Homocysteine + ITGB3_rs3851806 + Height + TGFB3_rs2284791 + Log CCRP 

+ Physical Activity + RHAG_rs11759060 + GLS_rs1921913 + F8_rs7053448 + MPO_rs34704261 + 

SLC20A1_rs10758 + IL22RA1_rs12093987 + KITLG_rs995029 + TLR4_rs1927911 

5. Full model: F3_rs3917643 + KITLG_rs995029 + CAPN10_rs7571442 + MMP2_rs9928731 + 

KITLG_rs1492347*Log Homocysteine + ITGB3_rs3851806*Height + TGFB3_rs2284791*Log CCRP + 

TGFB3_rs2284791*Physical Activity + RHAG_rs11759060*GLS_rs1921913 + 

F8_rs7053448*MPO_rs34704261 + SLC20A1_rs10758*IL22RA1_rs12093987 + 

KITLG_rs995029*TLR4_rs1927911; Reduced model: F3_rs3917643 + KITLG_rs995029 + 

CAPN10_rs7571442+ MMP2_rs9928731+ KITLG_rs1492347 + Log Homocysteine + ITGB3_rs3851806 

+ Height + TGFB3_rs2284791 + Log CCRP + Physical Activity + RHAG_rs11759060 + GLS_rs1921913 

+ F8_rs7053448 + MPO_rs34704261 + SLC20A1_rs10758 + IL22RA1_rs12093987 + TLR4_rs1927911 
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Figure 2.1.  The distribution of leukoaraiosis volume in GENOA-GMBI study 

participants 
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Appendix 2.3.  Reading a KGraph 

 

Using 8 regions, the KGraph shows the relationships between the SNPs, covariates, and 

outcome by displaying the results from tests of correlation, linkage disequilibrium, 

association and cross-validation/FDR/Replication. The key at the bottom of the graphic 

shows the test criterion for each region and the colors associated with the test result. The 

region number key in the lower left corner shows the location of each region, and 

indicates whether the results in the region were assessed using FDR/Replication/Cross-

validation (shaded regions). A black bar in the cell indicates that the association passed 

all three of these criteria. Region 1 displays the association between the SNPs and the 

covariates, region 2 displays the correlation between the covariates, and region 3 displays 

the linkage disequilibrium between the SNPs. Region 4 displays covariate association 

with leukoaraiosis, region 5 displays SNP association with leukoaraiosis, region 6 

displays covariate-covariate interactions predicting leukoaraiosis, region 7 displays SNP-

covariate interactions predicting leukoaraiosis, and region 8 displays SNP-SNP (epistatic) 

interactions predicting leukoaraiosis. Included on the KGraph are all of the covariates 

that were investigated in the study, SNPs that were involved in a single SNP or SNP-

covariate association that passed all three filters, and SNPs that were involved in at least 

one of the 20 most predictive SNP-SNP interactions that passed all three filters.
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Chapter 3 

 

Genome-wide Association Study of SNPs Associated with Leukoaraiosis  

in non-Hispanic Whites and African Americans  

 

Abstract 

White matter hyperintensity on magnetic resonance imaging (MRI) of the brain, referred 

to as leukoaraiosis, is associated with increased risk of stroke and dementia. Hypertension 

may contribute to leukoaraiosis by accelerating the process of arteriosclerosis in the 

brain. Leukoaraiosis volume is highly heritable but shows significant individual 

variability, and the likely numerous genetic variants underlying this trait are not known. 

As part of the Genetics of Microangiopathic Brain Injury (GMBI) ancillary study of the 

Genetic Epidemiology Network of Arteriopathy (GENOA), 759 non-Hispanic whites and 

553 African Americans (73.4% and 77.4% hypertensive, respectively) underwent brain 

MRI. A genome-wide association study (GWAS) of leukoaraiosis volume after 

adjustment for age, sex, population structure, and family structure of 666,271 single 

nucleotide polymorphisms (SNPs) in non-Hispanic whites and 760,699 SNPs in African 

Americans with a minor allele frequency (MAF) ! 0.01 revealed several interesting 

findings.  Five SNPs in non-Hispanic whites and nine SNPs in African Americans had a 

p-value less than 1.0x10
-5

, with SNPs in THSD7B and ANGPT4 showing the strongest 

association in whites and CHCHD9 and KCNMA1 showing the strongest association in 
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African Americans. Meta-analysis of GWAS results from African Americans in the 

Atherosclerosis Risk in Communities (ARIC) study was also conducted before and after 

removing participants with one or two copies of the APOE !4, a known risk factor for 

cardiovascular disease and dementia. Two SNPs in an intergenic region between 44kb 

and 70kb upstream from the ITGB1 gene showed the strongest association in the meta-

analysis (rs9299702, p-value 3.7x10
-8

 and rs7898823, p-value 3.2x10
-7

). 

 

Introduction 

Hypertension affects approximately 1 in 3 American adults, and the majority of 

individuals that are diagnosed do not have their blood pressure adequately controlled 

(Roger, 2011). Ischemic damage to the vasculature of the brain as a result of uncontrolled 

or poorly controlled hypertension leads to clinical endpoints including stroke and 

dementia, which are significant causes of physical and cognitive disability, mortality, and 

economic burden (Roger, 2011; Schmidt, 2004; Bornstein, 2006; Pantoni, 2007). Areas 

of ischemic damage due to hypertension-related small vessel disease can be visualized on 

brain magnetic resonance imaging (MRI), with affected areas appearing as bright spots 

known as white matter hyperintensities or leukoaraiosis (O'Sullivan, 2008; Markus, 

2008). The extent of leukoaraiosis is thought to be a marker of the severity of cerebral 

small vessel disease, ranging from small, distinct areas to large regions of diffuse white 

matter hyperintensity (O'Sullivan, 2008). 

 

Leukoaraiosis is a subclinical phenotype that is rarely used in routine clinical practice 

before the appearance of acute symptoms leading to diagnosis of stroke or neurocognitive 
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evidence of cognitive decline indicative of dementia. However, asymptomatic 

leukoaraiosis is a strong risk factor for ischemic stroke, recurrent stroke, and vascular 

dementia even after adjustment for other risk factors, including hypertension (Markus, 

2005; Kuller, 2004; Prins, 2004; Kuller, 2005). There is also evidence that leukoaraiosis 

has a detrimental effect on cognition and physical functioning prior to acute symptoms, 

particularly decreasing executive function and motor performance, leading to effects such 

as gait disturbances (Pantoni, 2007; Schmidt, 2007). These effects may be present long 

before clinical disease becomes apparent, and several studies have demonstrated an 

association between hypertension in midlife and cognitive dysfunction in midlife and 

later life (Elias, 1993; Launer, 2000; Knopman, 2001), likely due to the cumulative 

effects of subclinical damage due to cerebrovascular disease throughout the lifespan 

(Knopman, 2001; Swan, 1998).  

 

Leukoaraiosis is present in a much larger proportion of the middle age and elderly 

population than those who will eventually exhibit clinical endpoints. In routine scans, 

leukoaraiosis was present in more than half of elderly patients  (Schmidt, 2007), and two 

studies of stroke- and dementia-free adults ages 50-75 reported that less than a third of 

participants had no leukoaraiosis at all (Markus, 2005; Mosley, 2005). Given the public 

health importance of preventing stroke and dementia related to leukoaraiosis as well as 

the mounting evidence that the disease process begins long before the appearance of 

clinical endpoints, understanding the biological processes underlying leukoaraiosis and 

its sequelae are a key first step toward identifying and reducing disease progress in 

individuals at increased risk.  



 102 

 

Consistently high heritability estimates for leukoaraiosis (0.45 to 0.68) in multiple 

cohorts of white and African American individuals indicate that this trait has a large 

genetic component even after adjustment for blood pressure (Turner, 2004; Atwood, 

2004; Carmelli, 1998; Turner, 2009). However, candidate gene studies have revealed 

inconsistent findings with little unequivocal evidence of association between any specific 

polymorphism and leukoaraiosis (Paternoster, 2009). One potential reason for lack of 

consistent findings is the limited knowledge regarding the genetic and molecular 

mechanisms that lead to the development of elevated leukoaraiosis levels. The agnostic 

nature of genome-wide association studies (GWAS) may provide a powerful approach 

for identifying previously unrecognized pathophysiologic mechanisms that affect 

complex traits such as leukoaraiosis (Hirschhorn, 2005).  

 

To identify genetic markers associated with leukoaraiosis volume, we conducted a 

GWAS in 759 non-Hispanic white and 553 African-American participants from the 

Genetics of Microangiopathic Brain Injury (GMBI) ancillary study of the Genetic 

Epidemiology Network of Arteriopathy (GENOA). Since the GENOA participants were 

recruited from families with a high prevalence of early-onset essential hypertension, they 

provide an ideal sample for beginning to examine the genetics of the downstream 

consequences of hypertension. Although few studies examine leukoaraiosis volume, we 

were able to identify a second sample of 428 African Americans from the Atherosclerosis 

Risk in Communities (ARIC) study that also had leukoaraiosis measurements, and we 
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performed meta-analysis of the GWAS results from the GENOA and ARIC African 

Americans.  

 

There is mounting evidence that the disease processes of vascular dementia and 

Alzheimer’s disease (AD) are not entirely independent. A substantial portion of AD 

patients often show increased leukoaraiosis upon closer examination (Kukull, 2002; 

Breteler, 2000), and there is greater recognition that many of these patients should 

actually be categorized as having “mixed dementia” whereby cognitive decline and other 

symptoms of dementia are actually due to a combination of AD and vascular pathologies 

such as leukoaraiosis. The APOE !4 allele is a known risk factor for both AD and 

cardiovascular disease (Dickstein, 2010). Although there is conflicting evidence as to 

whether the APOE !4 allele also confers risk directly to the development of leukoaraiosis 

(Paternoster, 2009; Szolnoki, 2004), it is possible that the AD and vascular dementia 

disease processes may be operating synergistically across the lifespan and in particular at 

the earlier stages of the biological processes that lead to dementia. In order to reduce the 

genetic heterogeneity of the study sample with respect to susceptibility to AD, we also 

performed meta-analysis on the GWAS results from the GENOA and ARIC African 

Americans after excluding participants with either two copies or at least one copy of the 

!4 allele. 
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Methods 

Study population 

The Genetic Epidemiology Network of Arteriopathy (GENOA) study 

The National Heart, Lung and Blood Institute established the Family Blood Pressure 

Program (FBPP) in 1996 from four existing research networks that were investigating the 

genetics of hypertension and its sequelae (FBPP Investigators, 2002), including GENOA. 

GENOA recruited hypertensive sibships from Rochester, Minnesota and Jackson, 

Mississippi for linkage and association studies to investigate the genetic underpinnings of 

hypertension and target organ damage related to hypertension (Daniels, 2004).  

 

In the initial phase of the GENOA study (Phase I: 1996-2001), all members of sibships 

containing ! 2 individuals with essential hypertension clinically diagnosed before age 60 

were invited to participate, including both hypertensive and normotensive siblings 

(N=1,583 non-Hispanic whites and 1,853 African Americans). The diagnosis of essential 

hypertension was established based on blood pressure levels measured at the study visit 

(>140 mmHg average systolic BP or >90 mmHg average diastolic BP) or a prior 

diagnosis of hypertension and current treatment with antihypertensive medications. 

Exclusion criteria were secondary hypertension, alcoholism or drug abuse, pregnancy, 

insulin-dependent diabetes mellitus, or active malignancy. In the second phase of the 

GENOA study (Phase II: 2000-2004), 1,239 white and 1,482 African American 

participants were successfully re-recruited to measure potential target organ damage due 

to hypertension. Phase I and II GENOA data consist of demographic information, 

medical history, clinical characteristics, lifestyle factors, and blood samples for 
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genotyping and biomarker assays. Written informed consent was obtained from all 

subjects and approval was granted by participating institutional review boards. All 

reported phenotype and covariate data used for this dissertation was collected during the 

Phase II exam. 

 

The Genetics of Microangiopathic Brain Injury (GMBI) study (2001-2006) is an ancillary 

study of GENOA undertaken to investigate susceptibility genes for ischemic brain injury. 

Phase II GENOA participants that had a sibling willing and eligible to participate in the 

GMBI study underwent neurocognitive testing to assess several domains of cognitive 

function including learning, memory, attention, concentration, and language (N=967 

whites and 1,010 African Americans). Ischemic brain damage to the subcortical and 

periventricular white matter (leukoaraiosis) was quantified by MRI in subjects who had 

no history of stroke or neurological disease and no implanted metal devices (N=916 

whites and 830 African Americans). MRI data for 68 participants was not analyzable due 

to previously undetected brain infarction (N=36), artifacts related to subject or technical 

error (N=36), anatomic abnormalities (N=8), or failure to complete the MRI (N=7). The 

median time between the Phase II GENOA visit and brain MRI was 12.3 months in 

whites and 11.3 months in African Americans. After excluding participants without 

genome-wide genotype data, the sample for this analysis consisted of 759 whites from 

374 sibships and 553 African Americans from 339 sibships. 

 

The African American cohort of GENOA has a close relationship to the ARIC study. The 

African American sibships for the GENOA study were identified using hypertensive 
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subjects from the ARIC study as probands, inquiring whether another sibling in the 

proband’s family also had hypertension, and then inviting all siblings from eligible 

sibships to be part of the GENOA study. Thus, each African American sibship in 

GENOA contains one individual who is also a participant in the ARIC study. Participants 

that were dually enrolled in both GENOA and ARIC MRI studies (N=52) were excluded 

from the GENOA sample prior to meta-analysis with ARIC, leaving a total of 501 

GENOA African Americans included in the meta-analysis.  

 

GWAS analysis and meta-analysis with the ARIC cohort was performed for the full 

sample as well as two subsamples created by excluding participants with 1) two APOE !4 

alleles or 2) at least one APOE !4 allele. In the 501 GENOA African Americans, the 

allele frequency of the !4 allele is 21.4%. There are 25 individuals (5.0%) that had two 

copies of the !4 allele, leaving a total of 476 GENOA participants in the sample after 

exclusions. There are 189 individuals (37.7%) that had at least one copy of the !4 allele, 

leaving a total of 312 GENOA participants in the sample after exclusions.  

 

The Atherosclerosis Risk in Communities (ARIC) study 

The ARIC study is a prospective, population-based sample of 15,972 adults aged 45-64 

years recruited through probability sampling from Forsythe County, NC, Minneapolis, 

MN, Washington County, MD, and Jackson, MS (African Americans only) between 1987 

and 1989 to study atherosclerosis and its clinical sequelae (Mosley, 2005; ARIC 

Investigators, 1989). In 1993 and 1994, a total of 1,949 participants aged 55 years and 

older from Forsythe County and Jackson underwent cerebral MRI. Participants with 
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reported stroke or infarction, who were not white or African American, or who were 

taking medications with central nervous system effects were excluded from subsequent 

analysis. After excluding people without genome-wide genotype data, the sample for this 

analysis consisted of 428 African Americans. 

 

MRI protocol 

GENOA MRI protocol 

Leukoaraiosis volume (cm
3
) was obtained via MRI in a separate clinical visit. All MRI 

scans were performed on identically equipped Signa 1.5-T MRI scanners (GE Medical 

Systems, Waukesha, WI, USA) and images were centrally processed at the Mayo Clinic. 

Symmetric head positioning with respect to orthogonal axes was verified by a series of 

short scout scans. Total intracranial volume (head size) was measured from T1-weighted 

spin echo sagittal images, each set consisting of 32 contiguous 5 mm thick slices with no 

interslice gap, field of view = 24 cm, matrix = 256 x 192, obtained with the following 

sequence: scan time = 2.5 min, echo time = 14 ms, repetitions = 2, replication time = 500 

ms (Jack, 1989). Total brain and leukoaraiosis volumes were determined from axial fluid-

attenuated inversion recovery (FLAIR) images, each set consisting of 48 contiguous 3-

mm interleaved slices with no interslice gap, field of view = 22 cm, matrix = 256 x 160, 

obtained with the following sequence: scan time = 9 min, echo time = 144.8 ms, 

inversion time = 2,600 ms, repetition time = 26,002 ms, bandwidth = +/- 15.6 kHz, one 

signal average. A FLAIR image is a T2-weighted image with the signal of the 

cerebrospinal fluid nulled, such that brain pathology appears as the brightest intracranial 

tissue. Interactive imaging processing steps were performed by a research associate who 
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had no knowledge of the subjects’ personal or medical histories or biological 

relationships. A fully automated algorithm was used to segment each slice of the edited 

multi-slice FLAIR sequence into voxels assigned to one of three categories: brain, 

cerebrospinal fluid, or leukoaraiosis. The mean absolute error of this method is 1.4% for 

brain volume and 6.6% for leukoaraiosis volume, and the mean test-retest coefficient of 

variation is 0.3% for brain volume and 1.4% for leukoaraiosis volume (Jack, 2001). 

White matter hyperintensities in the corona-radiata and periventricular zone, as well as 

central gray infarcts (i.e., lacunes) were included in the global leukoaraiosis 

measurements. Brain scans with cortical infarctions were excluded from the analyses 

because of the distortion of the leukoaraiosis volume estimates that would be introduced 

in the automated segmentation algorithm. 

 

ARIC MRI protocol 

The MRI scanning protocol and image analysis for the ARIC study is described in detail 

elsewhere (Mosley, 2005; Bryan, 1994). Briefly, 1.5-T MRI scanners (GE or Picker) 

were used to generate spin-echo, spin-density/T2-weighted, and T1-weighted images 

with 5-mm section thickness, 0-mm section gap, and 24-cm field of view. MRIs were 

read by two trained board-certified radiologists or experienced neuroimaging technicians 

without knowledge of participant characteristics.  
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Genotyping 

GENOA genotyping 

Subjects were genotyped on the Affymetrix® Genome-Wide Human SNP Array 6.0 

array using the protocol outlined by Affymetrix (Affymetrix, 2007a) at the Mayo Clinic 

in Rochester, Minnesota. Briefly, 500ng genomic DNA at 50ng/ul in low EDTA-Tris 

buffer was digested in two separate reaction mixtures using the appropriate restriction 

enzyme (StyI and NspI, 250ng of DNA for each mixture). This was followed by ligation 

of an adaptor sequence containing a universal primer sequence. Samples were then 

subjected to polymerase chain reaction (PCR) (four PCR reactions per sample for the 

NspI mixture and three for StyI) with conditions designed to amplify 200-2,000 base 

pairs. The seven PCR products were then combined with Agencourt Ampure beads, 

passed over an E & K Scientific filter plate, and eluted with elution buffer. Agarose gel 

analysis of the PCR products and quantification of the amount of PCR product was 

performed. PCR product concentration was confirmed to be at least 5ug DNA in 1ul EB 

buffer. Product was then fragmented with DNase I and an agarose gel analysis of the 

fragmented DNA was used to confirm this step. Following fragmentation, DNA was 

labeled with Terminal Deoxynucleotidyl Transferase (TdT), hybridized to the appropriate 

GeneChip, and incubated overnight. The chip was stained and washed on the Affymetrix 

450 Fluidics station and then scanned on the Affymetrix 3000 GeneChip scanner.  

 

Preliminary SNP genotype calls were generated using the Dynamic Model (DM) 

algorithm (Cutler, 2001). The final SNP genotype calls were generated by Birdseed, an 

algorithm designed especially for the Affymetrix® Genome-Wide Human SNP Array 
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6.0, and based on the robust linear model with Mahalanobis distance classifier algorithm 

(RLMM) (Rabbee, 2006). In order to call genotypes while best accounting for 

experimental variability and population-specific allele frequencies, Birdseed utilizes 

information about variation across samples to modify pre-computed genotype calling 

models from Affymetrix for each SNP probe set. Birdseed has been shown to reduce the 

bias against heterozygous calls and boost call rates to over 99% while simultaneously 

increasing concordance rates (Affymetrix, 2007b).  

 

Genome-wide genotyping of all available blood samples from Phase I and Phase II 

participants resulted in genotyping data for 1,386 whites and 1,263 African Americans, 

after removing samples with a genotype call rate < 95%. Of the approximately 900,000 

Affymetrix 6.0 SNPs genotyped, 668,293 SNPs in whites and 762,766 SNPs in African 

Americans were available for analysis after removing SNPs that were monomorphic or 

had a call rate < 95% in the full sample. In order to prevent false positive associations due 

to a small number of people in a single genotype category, SNPs with a minor allele 

frequency (MAF) less than 0.01 were removed, leaving a total of 666,271 SNPs in whites 

and 760,699 SNPs in African Americans for association testing. For each subsample 

submitted for meta-analysis with the ARIC study, SNPs with a MAF less than 0.01 in the 

subsample were removed. 

 

The distribution of the MAFs for the 668,293 Affymetrix 6.0 SNPs in GENOA whites 

and the 762,766 Affymextrix 6.0 SNPs in the GENOA African Americans are shown in 

Appendix 3.1. In whites, the mean MAF was 0.235 (median = 0.225). SNPs that had a 
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MAF < 0.01 were excluded from the analysis (n=2022 (0.3%)).  There were 152,155 

(22.7%) SNPs with 0.01 ! MAF < 0.10, 212,955 (31.9%) SNPs with 0.10 ! MAF < 0.25, 

and 301,161 (45.1%) SNPs with 0.25 ! MAF ! 0.50.  

 

In African Americans, the mean MAF was 0.219 (median = 0.197). SNPs that had a 

MAF < 0.01 were excluded from the analysis (n=2067 (0.3%)). There were 193,251 

(25.3%) SNPs with 0.01 ! MAF < 0.10, 267,866 (35.1%) SNPs with 0.10 ! MAF < 0.25, 

and 299,582 (39.3%) SNPs with 0.25 ! MAF ! 0.50. After exclusion of SNPs with MAF 

< 0.01, 666,271 SNPs in the white sample and 760,699 SNPs in the African American 

sample remained for analysis. 

 

ARIC genotyping 

ARIC subjects were genotyped on the Affymetrix® Genome-Wide Human SNP Array 

6.0 array using the protocol outlined by Affymetrix (Affymetrix, 2007a) at the Broad 

Institute. Samples or SNPs that had a call rate <95% in the full ARIC sample were 

removed, as were SNPs with a MAF less than 0.01. 

 

Statistical analysis 

Descriptive statistics  

Data management and statistical analyses were conducted primarily in R version 2.8.0, an 

open-source statistical environment for storing data, running analyses, and generating 

publication-quality graphics (R Core Development Team, 2008). HelixTree, a 

commercially available software package (http://goldenhelix.com), was used to generate 
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descriptive statistics of SNP allele and genotype frequencies, to obtain principal 

components for analysis of population substructure, and to generate linkage 

disequilibrium (LD) plots of selected areas of the genome. Distributional plots indicated 

that the measures of leukoaraiosis volume are severely right-skewed, so this variable was 

transformed by taking the natural log of (leukoaraiosis + 1). T-tests were conducted for 

the outcome measure and demographic/anthropometric covariates to test whether there 

were significant differences between participants that had available genotype measures 

and those that did not in the white and African American samples separately. T-tests were 

also conducted for the outcome measure and demographic/anthropometric covariates to 

compare the white and African American study participants that had available genotype 

measures. 

 

Population substructure 

Population substructure is known to be a potential source of confounding in genetic 

association studies, particularly in study populations that have experienced admixture 

(the joining of two genetically distinct “parent” populations) in recent history (Freedman, 

2004). Admixture in a study population will cause confounding of the association 

between a SNP and the trait of interest if the three following conditions are met: 1) the 

admixture proportions vary among study participants, 2) the mean value of the trait varies 

with admixture proportions, and 3) the allele frequencies of the SNP vary with admixture 

proportions (Hoggart, 2003). African Americans are an admixed population because they 

have substantial allelic contributions from European and African ancestors. The African 

Americans in the GENOA study are from Jackson, MS, which is part of the Mississippi 
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delta area. Anthropological evidence indicates that this population is admixed from West 

African and Northern European populations (Jackson, 2006).  

 

To prevent confounding from population admixture, Helix Tree was used to conduct 

principal components analysis using the genome-wide genotypes of the African-

American sample (N=553). An additive model was assumed for the SNPs, which are 

standardized with a mean of 0 and variance of 1. SNPs that were missing for an 

individual were assumed to be zero and were not included in the estimate of the mean for 

that SNP. Although only one of the principal components was significantly associated 

with leukoaraiosis (PC9, p-value = 0.04), all the first ten principal components of the 

genome-wide genotypes of the Jackson sample were included as adjustment variables in 

all models to prevent confounding from population substructure. 

 

Association testing in GENOA 

The outcome variable for analysis was the residual value of the natural logarithm of 

leukoaraiosis plus one, adjusted for age at MRI, gender, total intracranial volume (TIV), 

and the first ten components of Affymetrix 6.0 genome-wide genotype data (for African-

Americans only), as shown below. 

 

The outcome variable for whites was the residual value (!j) from the following model, 

where j designates an individual: 

ln(leukoaraiosis+1)j = "0 + "1(Age at MRIj) + "2(Genderj) + "3(TIVj) + !j 
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The outcome variable for African-Americans was the residual value (!j) from the 

following model: 

ln(leukoaraiosis+1)j = "0 + "1(Age at MRIj) + "2(Genderj) + "3(TIVj) + "4(PC1j) + 

"5(PC2j) … + "13(PC10j) + !j 

 

Age and gender were included as adjustment covariates because both have been 

historically used as adjustment variables for this trait. Age is a very strong independent 

predictor for leukoaraiosis, and gender has been shown to have a marginal association 

with leukoaraiosis in some samples, including GENOA whites. To account for 

differences in brain size, intracranial volume was also included as an adjustment variable.  

 

Since the GENOA cohort is composed of siblings, linear mixed effects modeling was 

used to test all associations between a single SNP and the outcome. Genotypes were 

coded additively as SNP = 0, 1, 2 for people that are homozygous for one allele of a 

particular SNP, heterozygous, and homozygous for the other allele, respectively (Weir, 

1996).  Linear mixed effects modeling retains an appropriate type I error rate in the 

presence of family structure (Raudenbush, 2002). A likelihood ratio test comparing a full 

model (which includes the SNP being tested for association) to a reduced model (in this 

case, a null model) was used to determine whether the SNP is significantly associated 

with the outcome when appropriately accounting for family structure. When testing 

whether a single SNP is associated with an outcome of interest, the null hypothesis is that 

the additive SNP effect is zero. The linear mixed effects model used for SNP association 

testing in the GENOA cohort is shown below. Since the ARIC cohort is composed of 
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unrelated individuals, linear least squares regression modeling with SNPs coded 

additively was used for SNP association testing in this cohort. 

 

Full model: ln(leukoaraiosis+1) residualij = !oi + !1(SNPij) + !ij, 

Reduced model: ln(leukoaraiosis+1) residualij = !oi + !ij, 

  Ho: !1 = 0,  Ha: !1 " 0 

LR = 2 (-log likelihood full model – (-log likelihood reduced model))    ~ #
2

(df=1) 

 

In this model, !oi is a random intercept that allows the intercept for the i
th

 family to vary 

from the fixed, population average intercept. !oi is normally distributed with mean !o and 

variance !b
2
. !ij is the residual variation within the j

th
 individual from the i

th
 family. !ij is 

assumed to be independent from !oi and is normally distributed with mean 0 and variance 

!
2
.  

 

Meta-analysis  

In cases in which raw data can not be shared due to lack of informed consent or other 

ethical or logistical concerns, meta-analysis of GWAS results can be used to increase the 

statistical power to detect SNP associations by combining results across studies (Zeggini, 

2009; Nakaoka, 2009). The MetABEL/GenABEL R package (Aulchenko, 2007) was 

used to conduct a fixed-effects meta-analysis of the results from the GENOA and ARIC 

cohorts using inverse-variance weighting, after performing genomic control within each 

cohort individually (meta-analysis conducted by Myriam Fornage and colleagues at the 

University of Texas Health Science Center at Houston). As a collaborative group, we 
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made the decision to perform meta-analysis only on directly measured SNPs, not imputed 

SNPs, because both of our samples were measured on the Affymetrix 6.0 platform and 

were therefore directly comparable. 

 

As a first step, the genomic inflation factor was calculated for each cohort. The genomic 

inflation factor, !, is defined as the ratio of the median of the observed distribution of test 

statistics for the genome-wide associations to the expected median under a null 

hypothesis (Devlin, 1999). Therefore, ! quantifies the extent of inflation of the 

association test statistics across the genome and therefore the excess false positive rate 

(de Bakker, 2008). Since this meta-analysis involved GWAS using a quantitative trait, 

standard errors were corrected within cohort using the following formula: 

 

 

For each SNP, meta-analysis !s and standard errors were calculated using the following 

formulas: 

 

 

 

This method weights the meta-analysis ! by the inverse of the squared standard errors 

from each cohort. In this way, the meta-analysis ! is most strongly influenced by the ! 

estimate from the cohort that has the least uncertainty in its estimation, based both on 
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sample size and the underlying distributions of the trait under analysis and the genotype 

frequencies. Fixed effects meta-analysis assumes that the effect of each SNP on the trait 

of interest is the same in each study (i.e. that there is no heterogeneity in the effect the 

SNP has on the trait in different study samples) (Zeggini, 2009). The major sources of 

heterogeneity of SNP effects are interactions with other SNPs and environmental 

covariates. Since the GENOA and ARIC sample are both composed of African 

Americans from Jackson, MS, and have comparable distributions of most demographic 

variables, the underlying distributions of allele frequencies and environmental factors 

should be similar. An exception to this is that the GENOA sample is composed of 

primarily hypertensive individuals while the ARIC sample is population-based. Despite 

this caveat, we feel that the assumption of fixed effects is reasonable. 

 

Results 

GENOA descriptive statistics 

The sibship structure of the 759 white and 553 African American GENOA participants 

are presented in Tables 3.1 and 3.2. The majority of the study samples (>60%) are 

composed of either singletons or sib-pairs, and a very small percentage of each sample is 

composed of sibships with more than five people (5.4% in whites, 1.1% in African 

Americans). Descriptive statistics for GENOA are presented in Table 3.3. GENOA 

whites are 58.8% female, 73.4% hypertensive, have a mean age of 60.5 years at the time 

of MRI, and have a mean leukoaraiosis volume of 7.89cm
3
. GENOA African Americans 

are 68.9% female, 77.4% hypertensive, have a mean age of 63.5 years at the time of MRI, 

and have a mean leukoaraiosis volume of 10.55cm
3
. There are very few significant 
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differences in either sample between participants that have Affymetrix 6.0 genotype data 

available and those who do not, except that whites with genotype data have a 

significantly higher volume of leukoaraiosis and are slightly older than whites without 

genotype data (see Appendix 3.2). However, there are many significant differences 

between white and African American samples, most notably that the African American 

sample has a larger percentage of females as well as higher mean leukoaraiosis volume, 

age at MRI, and blood pressures. 

 

Outcome variable and adjustment covariates 

The outcome variable, leukoaraiosis, was strongly right skewed in both populations (see 

Appendix 3.3), but had a relatively normal distribution after taking the natural log of 

leukoaraiosis+1 and adjusting for age at MRI, gender, TIV, and the first ten principal 

components of the genome-wide genotypes (in African Americans only, described 

below). Table 3.4 shows the results of multivariable linear mixed models that include the 

adjustment variables. Age at MRI and TIV had significant associations with 

ln(leukoaraiosis+1), but gender was only moderately significant or not significant in the 

multivariable model due to the strong correlation between gender and TIV (correlation = 

-0.626 in whites, -0.577 in African Americans). In order to adjust for population structure 

in the African American sample, the first ten principal components of the Affymetrix 6.0 

genotypes were calculated and are discussed in Appendix 3.4. 
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Association testing in GENOA 

The genomic inflation factor was 1.013 for the GWAS in GENOA whites and 0.999 for 

GENOA African Americans, indicating that neither group showed systematic inflation of 

the test statistic across the genome. Quantile-quantile plots of the observed and expected 

p-values for the association tests between each SNP and the residual value of adjusted 

ln(leukoaraiosis+1) are presented in Figures 3.1 and 3.2, indicating that the p-values of 

the results are in accordance with a distribution of p-values that would be expected by 

chance alone, though there appears to be a slight excess of p-values more significant than 

expected by chance in the range of 1x10
-4

 and 1x10
-5 

for African Americans. 

 

None of the SNPs in either group reached the genome-wide significance level of 5x10
-8

, 

the standard significance threshold set for GWAS by the statistical genetics community 

based on Bonferroni correction of a p-value<0.05 for one million SNPs (Petretto, 2007); 

however, several associations were suggestive of significance. Manhattan plots 

illustrating the distribution of SNP p-values across the genome are shown in Figures 3.3 

and 3.4. Tables 3.5 and 3.6 characterize the top 20 SNPs associated with the outcome in 

whites and African Americans.  

 

In whites, there were 80 SNPs with association p-values <1x10
-4

 and five with p-values 

<1x10
-5

. The strongest associations in whites were rs11686818 on chromosome 2 in an 

intergenic region 1052bp from THSD7B (p-value 2.98x10
-6

), rs3787569 on chromosome 

20 in an intron of ANGPT4 (p-value 6.57x10
-6

), and rs6537339 on chromosome 4 in an 

intergenic region 142kb from OTUD4 (p-value 7.33x10
-6

). The top 20 strongest 
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association results in whites also included a SNP that results in a missense mutation in 

NOC3L and intronic SNPs in EEFSEC and CTNNA3.  

 

In African Americans, there were 83 SNPs with association p-values <1x10
-4

 and nine 

with p-values <1x10
-5

. The strongest associations were rs4979887 on chromosome 10 in 

an intron of KCNMA1 (p-value 3.0x10
-6

), rs12554999 on chromosome 9 in an intergenic 

region 35kb from CHCHD9 (p-value 3.4x10
-6

), and rs4575062 on chromosome 1 in an 

intergenic region 170kb from PBX1 (p-value 3.45x10
-6

). In the top 20 results in African 

Americans, SNPs showing association with leukoaraiosis were also found in the intronic 

regions of PRR11, ADAMTS19, N6AMT1 as well as two open reading frames that have 

not been definitively identified as functional genes. One associated SNP was identified in 

the 3’ region of TRIM45, 184bp from the end of the gene. No genes in the top 20 results 

were found in both whites and African Americans. 

 

Meta-analysis  

Descriptive statistics of the full sample included in the meta-analysis (501 GENOA 

African Americans and 428 ARIC African Americans, total N=929) are presented in 

Table 3.7.  The GENOA participants included in this sample are 70.3% female and 

77.0% hypertensive, have a mean age at MRI of 62.7 years, and have a mean 

ln(leukoaraiosis+1) value of 2.17. The ARIC participants are 62.9% female and 57.5% 

hypertensive, have a mean age at MRI of 71.8 years, and have a mean 

ln(leukoaraiosis+1) value of 2.41. The ARIC participants are almost a decade older than 

the GENOA participants, potentially accounting for their higher mean value of 
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leukoaraiosis. The other large difference between the cohorts is the larger percentage of 

hypertensive individuals in the GENOA sample due to the difference in sample 

recruitment strategies.  

 

Tables 3.8-3.10 show the results of the meta-analyses conducted using the GENOA and 

ARIC African Americans, and Figures 3.5-3.7 show the Manhattan plots of the meta-

analysis results. There were five results with a p-value <1x10
-5

 from the meta-analysis in 

the full sample. The strongest association was on rs1945938 on chromosome 11, in an 

intergenic region near SNX19 (p-value 5.2x10
-7

). Meta-analysis conducted after 

excluding participants with two copies of the APOE !4 allele consisted of 476 GENOA 

participants and 407 ARIC participants (total N=883). The strongest associations from 

this sample included the same SNP from SNX19 (p-value 8.2x10
-6

) as well as SNPs in 

introns of MOSC2 (rs10863562, p-value 4.9x10
-6

) and PRR11 (rs2687065, p-value 

6.3x10
-6

). Meta-analysis conducted after excluding participants with at least one copy of 

the APOE !4 allele consisted of 312 GENOA participants and 290 ARIC participants 

(total N=602). The strongest results from this analysis were two SNPs in an intergenic 

region between 44kb and 70kb upstream from the ITGB1 gene (rs9299702, p-value 

3.7x10
-8

 and rs7898823, p-value 3.2x10
-7

). Figure 3.8 shows the recombination rates in 

the Yoruban HapMap sample in this chromosomal region, along with the –log p-values 

from the meta-analysis. Top findings also included SNPs from intronic regions of 

ARHGAP20, CTNNA3, MAP3K12, PARK2, ASTN2, and NRXN1.  
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Discussion 

Leukoaraiosis has a detrimental effect on cognition and physical functioning prior to the 

development of acute symptoms and can lead to serious clinical endpoints such as stroke 

and dementia. Since the development of leukoaraiosis begins long before the appearance 

of clinical endpoints, a greater understanding of the biological processes underlying 

leukoaraiosis may assist in identifying individuals at increased risk for disease and 

reducing disease progression. In this study, we performed a GWAS to identify SNPs 

associated with leukoarariosis in stroke- and dementia-free whites and African 

Americans. While this study was limited by sample size, the biological relevance of some 

of the top findings in this study suggests that these results may contain promising leads 

for the next phase of analysis in examining the genetic architecture of leukoaraiosis. 

 

Biological relevance of GWAS results 

While none of the top 20 findings overlapped between GENOA whites and African 

Americans at the gene level, one striking finding was that a member of the ADAMTS 

family (a disintegrin-like and metalloproteinase with trombospondin motif) was 

identified as a top result in the GWAS for each group. Members of the ADAMTS family 

are secreted extracellular matrix (ECM) metalloproteinases that exhibit adhesion and 

protease activity (MIM 605174). They interact with the ECM through thrombospondin 

domains, which show homology to the known potent anti-angiogenic motifs of 

thrombospondin-1 (THBS1) (MIM 188060). THBS1 inhibits angiogenesis of blood 

vessels and promotes central nervous synaptogenesis (Christopherson, 2005; Volpert, 

2002). An anti-angiogenic effect has been demonstrated for several members of the 
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ADAMTS family, including the ADAMTS8 gene identified in the GENOA whites. In fact, 

functional studies have shown that ADAMTS8 has a stronger anti-angiogenic effect than 

THBS1, and that its effects on cell proliferation are specific to endothelial cells and do not 

have an effect on smooth muscle or fibroblast cells (Vazquez, 1999). Very little 

information is known about the specific function of the ADAMTS19 gene (MIM 607513) 

identified in the GENOA African Americans.  

 

The structure and function of the ADAMTS genes are similar to the genes in the ADAM 

family, which also affect vascular function and have been implicated in the development 

of dementia (MIM 602192). In vitro studies in human cell lines have found that at least 

one member of the ADAM family (ADAM10) mediates the effect of cholesterol on the 

amyloid precursor protein, the main constituent of the amyloid plaques present in AD 

(Kojro, 2001). In mice that carried an expressed version of the human amyloid beta a4 

precursor protein (APP), overexpression of ADAM10 reduced the formation of amyloid 

beta peptides and reduced plaque formation (Postina, 2004). 

 

Several other top findings are consistent with the involvement of genes containing 

thrombospondin motifs, including the top finding in whites, THSD7B (thrombospondin-1, 

domain containing 7B), whose precise function is currently unknown. However, this gene 

showed suggestive evidence of association with neurocognitive function in a genome-

wide study of 750 subjects conducted by Need and colleagues (2009), as did a member of 

the ADAM family. There is also a relationship between THBS1 itself and the top finding 

in the meta-analysis of GENOA and ARIC participants that excluded those with at least 
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one copy of the APOE !4 allele, integrin beta-1 (ITGB1). THBS1 has been identified as a 

ligand of ITGB1 (MIM 135630), and the interaction of these two proteins has been shown 

to affect cell proliferation and the development of new vasculature in animal models 

(Staniszewska, 2007). ITGB1 is also a subunit of receptors for other ligands that are 

known to affect vasculature remodeling, including VCAM1 (Garmy-Susini, 2005), and is 

a mediator of inflammatory response (Suzuki, 2007; Conrad, 2007). In animal models, 

ITGB1 has also been shown to be involved in neuronal adhesion and migration (Dulabon, 

2000). 

 

The second strongest finding in whites is a SNP in an intron of angiopoietin 4 (ANGPT4) 

(MIM 603705). Angiopoietin growth factors are ligands that regulate the proliferation 

and maturation of vascular endothelial cells (Thomas, 2009). ANGPT4 activates TIE2, an 

endothelial cell-specific tyrosine kinase receptor, which promotes vessel growth. Using 

family-based association testing and fine-mapping linkage methods in 30 families with 

mixed AD/vascular disease, ANGPT4 was identified as the strongest finding associated 

with disease status (Sillen, 2010). The relationship between ANGPT4 and AD has also 

been demonstrated by transcriptomic analysis of the brain, with a 65% difference in 

expression of ANGPT4 in the brains of AD cases and controls (Chapuis, 2009). 

 

Another interesting finding is that one of the top results in whites was in an intron of the 

catenin (cadherin-associated protein), alpha 3 (CTNNA3) gene, which plays a role in 

cadherin-mediated cell adhesion (MIM 607667). Cadherins have been implicated in 

playing a key role in the formation and maintenance of neurons, stabilization of cell-cell 
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contacts at synapses, assembly of synaptic molecules, and synaptic placticity (Suzuki, 

2008). Interestingly, no SNPs from the CTNNA3 gene were identified as top results in 

GENOA African Americans, however this gene did appear as a top result in the meta-

analysis of African Americans excluding individuals with either one or two copies of the 

APOE !4 allele. CTNNA3 binds to catenin, beta 1 (CTNNB1) (MIM 116806), which 

interacts with PSEN1, a well-known susceptibility gene for early-onset familial AD 

(Ertekin-Taner, 2003). The association between SNPs in CTNNA3 and late onset AD in 

females regardless of APOE !4 allele status was demonstrated in a large case-control 

study (Miyashita, 2007). In addition, CTNNB1, the binding partner of CTNNA3, was 

identified as a top hit (p-value<10
-7

) in the Framingham study of white matter 

hyperintensity conducted by Seshadri and colleagues (2007) as well as the genome-wide 

study with cognitive function phenotypes conducted by Need et al. (2009). A SNP in 

another member of cadherin family, protocadherin (PCDH7), was also a top finding in 

this study for GENOA whites. 

 

One SNP in the glutamate receptor, ionotropic n-methyl-d-aspartate 3a (GRIN3A) gene 

was a top finding in GENOA African Americans. In vitro studies have shown that 

GRIN3A is a subunit of an NMDA glutamate receptor that appears to play a key role in 

mediating myelin-damaging calcium accumulation in response to ischemia (Micu, 2006). 

Several other top findings also relate to calcium metabolism in the brain. Neurexin 1 

(NRXN1), for example, is required for proper functioning of synaptic calcium channels 

(MIM 600565). This gene was also the top finding in the Need genome-wide study on 

cognitive phenotypes (Need, 2009). KCNMA1 (MIM 600150), a top finding in GENOA 
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African Americans, is a calcium-activated potassium channel that is responsive to oxygen 

deprivation (Williams, 2004). Another finding in the meta-analysis of GENOA and ARIC 

African Americans, endonuclease VIII-like 3, (NEIL3) (MIM 608934), plays a role in 

repairing DNA damage caused by reactive oxygen species (Bandaru, 2002). 

 

Power and statistical considerations in GWAS 

GWAS have been successful in identifying and validating novel common genetic variants 

associated with a variety of human diseases and quantitative traits including prostate and 

breast cancer, type 2 diabetes, coronary heart disease, asthma, lipids, and height 

(McCarthy, 2008; Manolio, 2010). However, most of the variants identified for these 

traits have very modest effect sizes, explaining less than 1% of the variance of 

quantitative traits (de Bakker, 2008). Even when multiple validated loci have been 

identified for a particular trait, the predictive value of these SNPs is often marginal at best 

(Lango, 2008). Though the success of GWAS to date has been less than optimal in 

identifying SNPs with strong predictive value, much has been learned about the genetic 

basis of these diseases due to the identification of previously unknown biological 

pathways, leading to new avenues for prevention, diagnosis, and treatment (Wellcome 

Trust Case Control Consortium, 2007). 

 

In the past several years, much has been learned about the best practices and standards for 

conducting GWAS. Due to the relatively small effect sizes that most SNP variants confer 

on the outcomes of interest, quite large sample sizes are needed to obtain adequate power 

to detect these variants and make reliable inferences (Roberts, 2010). Since the vast 
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majority of studies are underpowered to detect these variants, collaboration across studies 

typically in the form of meta-analysis is routinely used to increase the effective sample 

size and power (de Bakker, 2008; McCarthy, 2008) While this is a relatively 

straightforward endeavor for traits commonly measured, it becomes difficult with traits 

that are specialized and complicated to assess, such as leukoaraiosis. Several factors 

prevent the rapid collaborative relationships necessary to obtain large sample sizes for 

meta-analysis of leukoaraiosis. There have been very few studies that have assessed this 

phenotype and also have genome-wide genotype data, particularly in non-European 

samples. Studies that have measured leukoaraiosis consist almost entirely of small sample 

sizes due to the expense and time required to measure this phenotype. In addition, 

different MRI technologies and scoring algorithms for leukoaraiosis quantity often 

hamper the comparison or compilation of results across studies. For example, the 

distribution of leukoaraiosis volume in the Framingham Heart Study was so different 

from that in GENOA due to differences in measurement technique, it was not suitable for 

use as a replication sample or in a meta-analysis for this study. Study-specific decisions 

regarding what constitutes leukoaraiosis (for example, the inclusion or exclusion of silent 

infarcts or areas of diffuse white matter hyperintensity), whether leukoaraiosis is 

quantified as a continuous volumetric measurement or as a categorically graded variable 

with various levels (typically between five and nine), and whether or not specific brain 

regions are included in the measurement makes phenotype alignment across studies 

difficult. However, collaborative relationships such as that established between GENOA 

and ARIC make meta-analysis possible even in non-European samples, though the total 

sample size remains less than optimal.  
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Though sample size is a limitation in this analysis, standards for conducting GWAS have 

been clearly specified in the literature and have been applied to this analysis in an effort 

to obtain as much power as possible to detect associations. Adjusting the trait for age, 

gender, and other covariates known to be associated with leukoaraiosis is standard 

protocol, as is adjustment with genotype principal components in populations with a 

significant amount of admixture. Quality control standards for genotype data have also 

been established and are imperative to protecting the integrity of the results from bias and 

error (de Bakker, 2008; McCarthy, 2008; Wellcome Trust Case Control Consortium, 

2007). GENOA collaborators at the Mayo Clinic that were responsible for genotyping 

performed initial quality control measures such as examining the data for plate effects, 

discarding samples that exhibited sex mismatch, examining the data for duplicate 

samples, and discarding SNPs that showed excess heterozygosity or had a substantial 

substantial degree of missingness. For this analysis, samples and SNPs that had a call rate 

less than 95% have been excluded, as well as SNPs with a MAF less than 1%.  

 

Epidemiological considerations in GWAS 

It is widely acknowledged that allelic effects often differ according to their genetic and 

environmental context (Flint, 2009; Cheverud, 2000; Thornton-Wells, 2004).  In animal 

studies, it is relatively straightforward to study single SNP effects by comparing 

phenotypes between strains that have an identical genetic background except for genetic 

loci of interest. In humans, the quantification of a single SNP effect is much more 

difficult, as both the genetic and environmental backgrounds of individuals vary greatly 
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(Flint, 2009). Efforts to reduce the genetic heterogeneity in GWAS studies include 

studying isolated population groups that exhibit a much higher degree of genetic 

homogeneity than non-isolated populations due to lack of outbreeding for many 

generations, selecting populations that are known to have similar ancestral backgrounds, 

and analyzing populations with known differences in genetic background separately. The 

GENOA and ARIC African Americans were drawn from the Mississippi delta area, and 

the majority of African Americans in this geographic area share ancestors from a limited 

area of West Africa and Northern Europe (Jackson, 2006). The whites from Rochester, 

MN, have ancestral background that is largely from Northern and Western Europe. Since 

the African Americans and whites in this study have known differences in ancestral 

populations and consequently genetic backgrounds, we chose to analyze them separately. 

 

A further implication of the differing ancestral background of the African Americans and 

whites is the difference in the genomic structure of these two population groups. 

European populations are considerably less diverse genetically than African populations 

(Rosenberg, 2010) and have a much higher degree of LD and thus larger haplotype 

blocks in their genome structure (Gabriel, 2002). LD, the correlation structure between 

SNPs, is a key factor that underlies the ability of GWAS to represent relationships 

between underlying variation in putatively causal polymorphisms in genomic regions and 

traits of interest (Kruglyak, 1999). Due to the differences in haplotype block and 

correlation structure in the genome of African Americans and Europeans, meta-analysis 

of GWAS results at a SNP level is a less than optimal strategy for identifying genomic 

regions of interest, because different SNPs are likely to be in strong LD with the different 
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true causal variants in each population group. To illustrate this, LD plots generated from 

60 singletons from the HapMap European (CEU) and African Yoruban (YRI) panels are 

shown in Appendix 3.5 for selected top findings in GENOA African Americans and 

whites. As a result, we chose not to perform meta-analysis for the white and African 

American GENOA samples. 

 

Statistical limitations 

Perhaps the most serious limitation of this GWAS is that it is underpowered to detect 

associated variants with small effect sizes, particularly for SNPs with low MAF. Power is 

limited due to the small sample size, and it is also slightly decreased compared to a 

sample of unrelated individuals of the same size because we have sibling data. In a 

sample of unrelated individuals of the same size as the GENOA whites, we estimate that 

we would have 80% power to detect effect sizes of 0.75 standard deviations (sd) for 

SNPs with MAF=0.01, 0.25sd for MAF=0.1, 0.2sd for MAF=0.25, and 0.15sd for MAF 

close to 0.5. For the same range of MAF in a sample of unrelated individuals the same 

size as GENOA African Americans, we would have 80% power to detect SNPs with 

effect sizes of 0.85sd, 0.28sd, 0.22sd, and 0.17sd, respectively.  

 

While we may have lost a small amount of power due to the family structure of our data, 

Visscher and colleagues (2008) have shown that for GWAS of quantitative traits, there is 

only a slight reduction in power due to the inclusion of family data. The exact reduction 

in power depends on several factors including the correlation of the trait among relatives, 

the size of the families included, and the effect sizes of the SNPs. Visscher et al. estimate 
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that the range of power lost for sib-pairs within a reasonable range of parameters is 

between 1% and 7%, but may increase to as much as 20% for large sibships. Our data 

consisted primarily of sibships of three individuals or less, including a large number of 

singletons, so most likely does not suffer from more loss of power than would be 

expected for sib-pairs. Though inclusion of sibships likely did not result in a serious 

reduction of power, newly developed methods could have been used to incorporate 

family information more efficiently. For example, a family-based test of association for 

quantitative traits described by Chen and Abecasis that efficiently uses ancestry 

information to estimate variance components in a maximum likelihood framework may 

have been a better choice for our statistical test of association (Chen, 2007). 

 

Limitations in interpreting and generalizing GWAS results 

Leukoaraiosis is a downstream consequence of hypertension. Ideally, a GWAS study 

conducted on target damage due to hypertension would control for hypertension in the 

analysis in order to avoid detecting SNPs that simply increase risk for the development of 

hypertension itself. Although blood pressure at the time of the GENOA examination 

could have been used as an adjustment variable, this measurement is not an accurate 

proxy for hypertension because a large portion of participants with hypertension were 

taking anti-hypertensive medication that reduces blood pressure to varying degrees. 

There are several major drug classes for treating hypertension including diuretics, beta-

blockers, and calcium channel blockers. Study participants with history of hypertension 

may be on a single drug treatment, combination therapy, or no treatment at all. 

Furthermore, response to hypertensive medications exhibits significant inter-individual 
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variation (Garcia, 2003), so including a dichotomous variable indicating whether or not a 

participant is treated would not adequately control for confounding introduced by 

treatment. In addition, a measurement of current hypertension would not have captured 

the effect of hypertension on the brain over the life span. Since participants vary widely 

in the amount of time they had hypertension before seeking treatment as well as the 

severity of hypertension prior to treatment, the physiological effects of hypertension 

cannot be captured in a simple blood pressure measurement or even a detailed assessment 

of patient medical history, which would be imprecise at best. Consequently, the findings 

of this study will likely contain SNPs that have an effect on hypertension susceptibility as 

well as susceptibility to the phenotype of interest, leukoaraiosis. SNPs identified in this 

study that are in genes that play a role in biological pathways related to the development 

of hypertension such as general vascular function and angiogenesis may only affect 

leukoaraiosis through their effects on hypertension.  

 

In addition, some of the SNPs identified in this GWAS may affect atherosclerosis in 

general, not only specifically arteriolosclerosis in the brain. Pathways that are known to 

affect the atherosclerotic process include those related to endothelial function, response to 

reactive oxygen species, cholesterol metabolism, and inflammation. Though it has been 

shown that most of the common atherosclerotic risk factors have weak to no association 

with leukoaraiosis, the development of atherosclerosis in the large arteries of the heart 

and brain does reduce the elasticity of the vasculature, which requires the heart to 

increase blood pressure by pumping more forcefully. Therefore, it is possible that some 

SNPs that affect atherosclerosis as a whole may be included in these findings either 
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because of their effect on blood pressure or because of their involvement in aspects of 

endothelial dysfunction that play a role in atherosclerosis of both the large and small 

blood vessels. Adjusting the outcome variable for a measure of overall atherosclerosis, 

such as the quantity of coronary calcium detected by electrocardiogram, may help to limit 

findings to SNP effects that are specific to small vessel atherosclerosis. Genes identified 

in this GWAS that have the strongest evidence for affecting leukoaraiosis specifically 

based on known biological relationships include those that are expressed primarily in the 

brain, are involved in pathways such as reaction to hypoxia and ischemia, or have been 

identified as risk factors for measures affected by leukoaraiosis quantity such as cognitive 

decline or general cognitive function.  

 

Since hypertension is known to have a variety of etiological causes, we chose to enroll 

families predisposed to developing early-onset essential hypertension in order to reduce 

the heterogeneity in the etiological causes of hypertension in the GENOA sample. While 

this recruitment strategy allowed us to maximize our ability to detect genetic variants 

impacting hypertension and its downstream consequences, it limits the generalization of 

findings from GENOA to people in families with increased risk of hypertension. Findings 

from the meta-analysis with ARIC, a population-based sample, may be more 

generalizable to the broader hypertensive and normotensive population. 

 

Conclusions and future directions 

One strength of this study is that this GWAS was conducted on a trait that is an 

intermediate phenotype between hypertension and the clinical endpoints of ischemic 
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stroke and vascular dementia. The molecular pathways that begin with genotypic 

variations which lead to functional changes in proteins and end in clinical endpoints are 

complex and, in many cases, not well characterized. Investigation of asymptomatic 

subclinical phenotypes such as leukoaraiosis that precede clinical detectable outcomes 

presents an opportunity to begin to unravel the etiological complexity of the molecular 

pathways that affect these outcomes. Most of the GWAS studies in neuroepidemiology of 

late-onset diseases have been conducted on clinical endpoints that have multiple 

etiologies (such as ischemic stroke), limiting the amount of information that can be 

gleaned regarding the underlying physiological pathways. Studying the genetic 

determinants of subclinical traits such as leukoaraiosis that are predictive of clinical 

outcomes independent of other risk factors (such as smoking and diabetes) is an 

important avenue of research for identifying etiological factors that may be missed in 

other types of studies and providing novel insights into the development of clinical 

endpoints. 

 

A further strength of this GWAS is that it was conducted in two distinct ethnic groups. 

The vast majority of GWAS to date have been conducted only in European samples, due 

in part to the complication of confounding by population substructure and admixture in 

other ethnic groups. This practice limits the applicability of study findings to European 

populations only and doesn’t allow for comparison of findings in genetically distinct 

groups. Since allele frequencies and environmental factors have been shown to vary 

considerably across ethnic groups, future studies of the genetic contribution to complex 
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traits must include an analysis of how these factors contribute differently across ethnic 

groups (Altshuler, 2008). 

 

A further strength of this study is that we performed meta-analysis on the GWAS results 

from the GENOA and ARIC African Americans after excluding participants with either 

two copies or at least one copy of the APOE !4 allele in order to reduce the genetic 

heterogeneity of the study sample with respect to susceptibility to AD. Though we did 

not formally statistically evaluate the effects of genetic context on the GWAS results, we 

did observe that the most significant p-values in the meta-analysis were from the analysis 

that excluded participants with at least one !4 allele. Differences in both the genes 

identified and the greater statistical significance in the !4-excluded analysis suggest that 

more formalized evaluation of the effects of genetic context may be warranted. 

 

Future directions include collaborating with other groups that have measured 

leukoaraiosis in whites in order to assess replication of these findings across studies, 

looking for replication of SNPs and gene regions in GENOA that have been associated 

with leukoaraiosis-related phenotypes such as silent infarcts and ischemic stroke in 

published GWAS, and using pathway analysis techniques to integrate SNP data with 

transcriptomic and epigenetic data to explore the underlying biological processes that 

affect leukoaraiosis through pathway analysis.  
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Table 3.1.  Sibship structure in GENOA whites 

 

Number of 

Siblings in 

Sibship 

Number of 

Sibships 

Total Number 

of Individuals 

Percentage of 

Total Number 

of Individuals 

8 2 16 2.1% 

7 1 7 0.9% 

6 3 18 2.4% 

5 7 35 4.6% 

4 15 60 7.9% 

3 47 141 18.6% 

2 183 366 48.2% 

1 116 116 15.3% 

Totals 374 Sibships 759 individuals 100.0% 

 

 

Table 3.2.  Sibship structure in GENOA African Americans 

 

Number of 

Siblings in 

Sibship 

Number of 

Sibships 

Total Number 

of Individuals 

Percentage of 

Total Number 

of Individuals 

6 1 6 1.1% 

5 5 25 4.5% 

4 5 20 3.6% 

3 41 123 22.2% 

2 92 184 33.3% 

1 195 195 35.3% 

Totals 339 Sibships 553 individuals 100.0% 
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 Table 3.3.  Comparison of the characteristics of GENOA whites and African 

Americans 
 

T-tests compare GENOA whites and African Americans. 

All variables except for brain measures were measured at the Phase II GENOA examination. 

 

 

Table 3.4.  Multivariable linear mixed model regression with adjustment covariates 

as fixed effects, family as the random effect, and ln(leukoaraiosis+1) as the outcome  

 
 Whites African Americans 

Covariate N !  p-value N !  p-value 

(Intercept) 759 -0.6674 0.0019 553 -1.0601 0.0011 

Age at MRI 759 0.0289 1.01E-51 553 0.0285 2.85E-22 

Gender 759 -0.0700 0.0653 553 0.0962 0.1026 

TIV 759 0.0007 4.02E-07 553 0.0010 8.98E-07 

 

 

 GENOA whites 

GENOA African 

Americans 

T-test      

p-value 

 N Mean (SD) N Mean (SD)  

Leukoaraiosis Volume, cm
3
 759 7.89 (6.66) 553 10.55 (11.77) 2.14E-06 

Total Intracranial Volume, cm
3
 759 1466 (147) 553 1374 (135) <2.2E-16 

Total Brain Volume, cm
3
 759 1158 (123) 553 1067 (114) <2.2E-16 

Brain Atrophy (TIV – Brain), cm
3
 759 307.4 (74.6) 553 307.5 (75.2) 0.9910 

Ventricular Volume, cm
3
 759 25.5 (17.0) 553 22.3 (13.6) 0.0002 

Time from Exam to MRI, years 759 1.20 (0.77) 553 1.16 (0.80) 0.4177 

Age at MRI, years 759 60.5 (9.89) 553 63.5 (8.90) 2.46E-08 

      

Age at Phase II Exam, years 759 59.3 (10.1) 553 62.3 (8.74) 1.68E-08 

Body Mass Index, kg/m
2
 759 30.4 (5.8) 552 31.2 (5.8) 0.0152 

Height, cm 759 168 (9.2) 552 169 (9.0) 0.0390 

Weight, kg 552 85.9 (18.2) 552 88.9 (16.6) 0.0023 

Waist-to-hip ratio 759 0.91 (0.11) 552 0.89 (0.06) 0.0034 

Systolic Blood Pressure, mm Hg 758 131.3 (16.5) 553 136.9 (20.3) 1.25E-07 

Diastolic Blood Pressure, mm Hg 758 74.1 (9.1) 553 79.7 (10.5) <2.2E-16 

Pulse pressure, mm Hg 758 57.3 (15.3) 553 57.2 (16.4) 0.9545 

Total cholesterol, mg/dL 759 197.8 (33.7) 547 201.9 (42.5) 0.0583 

HDL cholesterol, mg/dL 759 52.1 (14.7) 547 57.7 (19.2) 1.20E-08 

LDL cholesterol, mg/dL 759 120.6 (31.8) 547 123.1 (39.9) <2.2E-16 

Physical activity 759 -9.93 (7.52) 553 -13.3 (4.74) <2.2E-16 

Female, n (%) 759 446 (58.8%) 553 381 (68.9%) 0.0002 

Ever smoker, n (%) 759 366 (48.2%) 553 334 (60.4%) 0.0023 

Coronary heart disease, n (%) 759 57 (7.5%) 553 24 (4.3%) 0.0251 

Hypertension, n (%) 759 557 (73.4%) 553 428 (77.4%) 0.1111 
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Figure 3.1.  Quantile-quantile plot of observed and expected p-values from single 

SNP associations with residual values of ln(leukoaraiosis+1) in GENOA whites 
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Figure 3.2.  Quantile-quantile plot of observed and expected p-values from single 

SNP associations with residual values of ln(leukoaraiosis+1) in GENOA African 

Americans 
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Figure 3.3.  Distribution of –log p-values from single SNP associations with residual 

values of ln(leukoaraiosis+1) in GENOA whites 

 

 

 

 

 

 

Figure 3.4.  Distribution of –log p-values from single SNP associations with residual 

values of ln(leukoaraiosis+1) in GENOA African Americans 
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Table 3.5.  Top 20 SNP association results in GENOA whites 

 

SNP Chr Position Beta MAF 

Nearest  

Gene (bp) Type 

LR  

p-value 

rs11686818 2 138152809 0.172 0.094 THSD7B (1052) intergenic 2.98E-06 

rs3787569 20 838278 0.124 0.204 ANGPT4 (0) intronic 6.57E-06 

rs6537339 4 146462918 0.096 0.491 OTUD4 (142636) intergenic 7.33E-06 

rs4312821 4 28917503 -0.128 0.197 PCDH7 (1413631) intergenic 9.11E-06 

rs1459651 6 63941094 0.103 0.327 LGSN (102721) intergenic 9.33E-06 

rs9343759 6 63923583 -0.104 0.322 LGSN (120232) intergenic 1.00E-05 

rs17266916 18 72194302 -0.162 0.101 ZNF516 (6304) intergenic 1.19E-05 

rs1459652 6 63941114 0.100 0.332 LGSN (102701) intergenic 1.21E-05 

rs12195233 6 63929207 -0.104 0.314 LGSN (114608) intergenic 1.23E-05 

rs6801556 3 129576124 -0.295 0.024 EEFSEC (0) intronic 1.93E-05 

rs470778 6 10568858 0.150 0.114 C6orf218 (26098) unknown 2.25E-05 

rs9503670 6 3611366 -0.208 0.051 C6orf145 (56468) unknown 2.29E-05 

rs12572897 10 96104825 -0.131 0.141 NOC3L (0) missense 2.49E-05 

rs11222084 11 129778440 0.095 0.379 ADAMTS8 (1587) intergenic 2.55E-05 

rs16898906 8 102098172 0.198 0.056 YWHAZ (63373) intergenic 2.91E-05 

rs4857784 3 177801480 0.102 0.284 TBL1XR1 (419755) intergenic 2.91E-05 

rs720329 4 164191184 0.195 0.054 NAF1 (76125) intergenic 3.05E-05 

rs10190878 2 25796878 -0.098 0.325 ASXL2 (18878) intergenic 3.15E-05 

rs1335951 13 89668716 0.108 0.240 GPC5 (1180219) intergenic 3.31E-05 

rs10762151 10 68643621 -0.133 0.135 CTNNA3 (0) intronic 3.37E-05 
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Table 3.6.  Top 20 SNP association results in GENOA African Americans 

 

SNP Chr Position Beta MAF 

Nearest  

Gene (bp) Type 

LR       

p-value 

rs4979887 10 78921964 0.232 0.123 KCNMA1 (0) intronic 3.00E-06 

rs12554999 9 81232311 -0.179 0.200 CHCHD9 (35541) intergenic 3.40E-06 

rs4575062 1 163257670 -0.373 0.038 PBX1 (170001) intergenic 3.45E-06 

rs16921267 8 57977541 -0.294 0.063 IMPAD1 (55500) intergenic 5.99E-06 

rs11138235 9 81259492 -0.174 0.200 CHCHD9 (62722) intergenic 6.19E-06 

rs2687065 17 54610592 0.349 0.047 PRR11 (0) intronic 8.08E-06 

rs9911667 17 52134263 0.212 0.132 C17orf67 (90009) unknown 8.53E-06 

rs16948448 16 48980696 -0.364 0.038 BRD7 (20366) intergenic 8.78E-06 

rs10760850 9 103992278 -0.242 0.093 GRIN3A (451595) intergenic 9.54E-06 

rs13158524 5 128915938 0.140 0.365 ADAMTS19 (0) intronic 1.20E-05 

rs10121972 9 103991720 0.207 0.128 GRIN3A (451037) intergenic 1.29E-05 

rs1325510 1 117455026 -0.449 0.023 TRIM45 (184) near-gene-3 1.52E-05 

rs4351766 10 62505612 0.132 0.454 RHOBTB1 (74408) intergenic 1.56E-05 

rs1335989 10 33104406 -0.154 0.259 C10orf68 (0) intronic 1.57E-05 

rs7977839 12 83607592 0.272 0.069 SLC6A15 (169807) intergenic 1.58E-05 

rs7114911 11 42546233 0.172 0.194 API5 (743847) intergenic 1.64E-05 

rs7089366 10 32998579 -0.153 0.255 C10orf68 (0) intronic 1.74E-05 

rs10952598 7 144330199 0.235 0.092 TPK1 (166120) intergenic 1.77E-05 

rs4959299 6 4437078 -0.161 0.238 CDYL (214313) intergenic 1.81E-05 

rs2254160 21 29174433 0.175 0.175 N6AMT1 (0) intronic 1.82E-05 
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Appendix 3.1.  Distribution of minor allele frequencies for Affymetrix 6.0 SNPs 

 

Distribution of minor allele frequencies for the 668,293 Affymetrix 6.0 SNPs in 

GENOA whites  
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Distribution of minor allele frequencies for the 762,766 Affymetrix 6.0 SNPs in 

GENOA African Americans  
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Appendix 3.2.  Characteristics of GENOA participants with and without Affymetrix 

6.0 genotype data 

 

 

GENOA whites 

 
T-tests compare participants with and without genotype data. 

All variables except for brain measures were measured at the Phase II GENOA examination. 

 

 

Participants with 

Genotype Data 

Participants without 

Genotype Data 

T-test 

p-value 

 N Mean (SD) N Mean (SD)  

Leukoaraiosis Volume, cm
3
 759 7.89 (6.66) 122 6.39 (3.68) 0.0003 

Total Intracranial Volume, cm
3
 759 1466 (147) 122 1472 (147) 0.6393 

Total Brain Volume, cm
3
 759 1158 (123) 122 1166 (116) 0.5106 

Brain Atrophy (TIV – Brain), cm
3
 759 307.4 (74.6) 122 306.6 (69.1) 0.9053 

Ventricular Volume, cm
3
 759 25.5 (17.0) 122 24.7 (12.8) 0.5569 

Time from Exam to MRI, years 759 1.20 (0.77) 122 1.32 (0.75) 0.0839 

Age at MRI, years 759 60.5 (9.89) 122 58.5 (9.31) 0.0255 

      

Age at Phase II Exam, years 759 59.3 (10.1) 122 57.2 (9.63) 0.0216 

Body Mass Index, kg/m
2
 759 30.4 (5.8) 122 30.9 (6.3) 0.3977 

Height, cm 759 168 (9.2) 122 168 (8.6) 0.9030 

Weight, kg 552 85.9 (18.2) 122 87.6 (20.2) 0.3877 

Waist-to-hip ratio 759 0.91 (0.11) 122 0.89 (0.10) 0.1185 

Systolic Blood Pressure, mm Hg 758 131.3 (16.5) 122 130.3 (17.2) 0.5230 

Diastolic Blood P, mm Hg 758 74.1 (9.1) 122 74.6 (8.8) 0.5262 

Pulse pressure, mm Hg 758 57.3 (15.3) 122 55.7 (13.6) 0.2347 

Total cholesterol, mg/dL 759 197.8 (33.7) 122 199.6 (37.2) 0.6149 

HDL cholesterol, mg/dL 759 52.1 (14.7) 122 52.9 (14.9) 0.5602 

LDL cholesterol, mg/dL 759 120.6 (31.8) 122 121.3 (35.0) 0.8277 

Physical activity 759 -9.93 (7.52) 122 -10.0 (8.04) 0.9229 

Female, n (%) 759 446 (58.8%) 122 80 (65.6%) 0.1854 

Ever smoker, n (%) 759 366 (48.2%) 122 58 (47.5%) 0.9665 

Coronary heart disease, n (%) 759 57 (7.5%) 122 3 (2.5%) 0.0626 

Hypertension, n (%) 759 557 (73.4%) 122 87 (71.3%) 0.7117 
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 GENOA African Americans 

 
T-tests compare participants with and without genotype data. 

All variables except for brain measures were measured at the Phase II GENOA examination. 

 

 

 

 

Participants with 

Genotype Data 

Participants without 

Genotype Data 

T-test 

p-value 

 N Mean (SD) N Mean (SD)  

Leukoaraiosis Volume, cm
3
 553 10.55 (11.77) 242 10.43 (10.84) 0.8888 

Total Intracranial Volume, cm
3
 553 1374 (135) 242 1375 (132) 0.9775 

Total Brain Volume, cm
3
 553 1067 (114) 242 1063 (111) 0.6920 

Brain Atrophy (TIV – Brain), cm
3
 553 307.5 (75.2) 242 311.2 (71.8) 0.5081 

Ventricular Volume, cm
3
 553 22.3 (13.6) 242 22.8 (12.9) 0.6381 

Time from Exam to MRI, years 553 1.16 (0.80) 242 1.22 (0.84) 0.3520 

Age at MRI, years 553 63.5 (8.90) 242 64.7 (8.92) 0.0655 

      

Age at Phase II Exam, years 553 62.3 (8.74) 242 63.5 (8.72) 0.0729 

Body Mass Index, kg/m
2
 552 31.2 (5.8) 242 30.5 (5.8) 0.1106 

Height, cm 552 169 (9.0) 242 169 (8.3) 0.8676 

Weight, kg 552 88.9 (16.6) 242 87.0 (17.8) 0.1601 

Waist-to-hip ratio 552 0.89 (0.06) 241 0.88 (0.07) 0.0105 

Systolic Blood Pressure, mm Hg 553 136.9 (20.3) 242 137.9 (19.3) 0.5343 

Diastolic Blood P, mm Hg 553 79.7 (10.5) 242 79.2 (10.9) 0.5172 

Pulse pressure, mm Hg 553 57.2 (16.4) 242 58.7 (17.1) 0.2567 

Total cholesterol, mg/dL 547 201.9 (42.5) 241 203.3 (47.1) 0.6929 

HDL cholesterol, mg/dL 547 57.7 (19.2) 241 60.2 (19.8) 0.0985 

LDL cholesterol, mg/dL 547 123.1 (39.9) 241 122.2 (44.3) 0.7858 

Physical activity 553 -13.3 (4.74) 242 -13.5 (4.37) 0.4541 

Female, n (%) 553 381 (68.9%) 242 167 (69.0%) 0.9585 

Ever smoker, n (%) 553 334 (60.4%) 242 152 (62.8%) 0.5735 

Coronary heart disease, n (%) 553 24 (4.3%) 242 13 (5.4%) 0.6508 

Hypertension, n (%) 553 428 (77.4%) 242 179 (74.0%) 0.3389 
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Appendix 3.3.  Distribution of leukoaraiosis volume before and after natural log 

transformation and adjustment for covariates 

 

Distribution of leukoaraiosis volume in GENOA whites 
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Distribution of leukoaraiosis volume in GENOA African Americans 
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Distribution of ln(leukoaraiosis+1) in GENOA whites 
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Distribution of ln(leukoaraiosis+1) in GENOA African Americans 
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Distribution of the residual values of ln(leukoaraiosis+1) after adjustment for age at 

MRI, gender, and total intracranial volume in GENOA whites 
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Distribution of the residual values of ln(leukoaraiosis+1) after adjustment for age at 

MRI, gender, total intracranial volume, and the first 10 principal components of 

Affymetrix genotypes in GENOA African Americans 
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Appendix 3.4.  Principal components from Affymetrix 6.0 genotype data in GENOA 

African Americans 

 

In order to adjust for population structure in the African American sample, the first ten 

principal components of the Affymetrix 6.0 genotypes were calculated, and are presented 

in a scatterplot matrix below. Because it appeared that the some of the principal 

components may be capturing single sibships, a careful examination of the principal 

components of the full sample of African Americans (N=1,263 GENOA participants 

genotyped at the Mayo Clinic and an additional 183 GENOA participants genotyped at 

the University of Texas as part of the ARIC study) was conducted. Plots of the first and 

second principal components of the GENOA study sample (N=553) and the full GENOA 

sample (N=1,446) are presented below. Upon close examination, it is clear that the 

outliers in the second principal component were not due to a single family, since there are 

more points in the furthest outlying group than are in a single sibship. This pattern was 

observed for the majority of the other principal components as well. No outliers were 

removed, and all ten principal components were used to adjust for population structure, 

although only principal component nine was associated with ln(leukoaraiosis+1) adjusted 

for age, gender, and TIV.  
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Scatterplot of the top ten principal components from Affymetrix 6.0 genotype data 

in GENOA African Americans with MRI data (N=553) 
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 Scatterplot of PC1 and PC2 from Affymetrix 6.0 genotype data in GENOA African 

Americans with MRI data (N=553) 

 
 

Scatterplot of PC1 and PC2 from Affymetrix 6.0 genotype data in the full sample of 

GENOA African Americans, including those without MRI data (N=1446)  
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Association of residual values of ln(leukoaraiosis) after adjustment for age, gender, 

and TIV with the top ten principal components from Affymetrix 6.0 genotype data 

in GENOA African Americans with MRI data (N=553) 

 

Principal Component N ! ! SE p-value 

PC1 553 -0.9781 0.8475 0.2497 

PC2 553 -0.7120 1.0326 0.4913 

PC3 553 -0.0546 0.9188 0.9527 

PC4 553 0.2527 0.9231 0.7845 

PC5 553 0.4664 0.9210 0.6131 

PC6 553 0.5488 0.9958 0.5821 

PC7 553 -0.5822 0.8239 0.4806 

PC8 553 0.3304 0.7946 0.6780 

PC9 553 1.7521 0.8680 0.0448* 

PC10 553 0.7066 0.8689 0.4170 

 
* Significance indicated at p<=0.05 for t-tests comparing GENOA whites and African Americans 
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Chapter 4 

 

Pleiotropy among Leukoaraiosis and Measures of Cognitive Function 

 

Abstract 

Ischemic brain injury due to inadequately controlled hypertension is associated with 

stroke and dementia, clinical endpoints that aggregate in families and are likely to be the 

consequence of complex interactions between many genetic and environmental factors. 

Leukoaraiosis, a subclinical measure of hypertension-related brain injury, is a powerful 

predictor of stroke and dementia as well as cognitive decline prior to clinical endpoints. 

We investigated the extent of pleiotropy, the condition in which variation in a single gene 

affects multiple traits, between leukoaraiosis and seven measures of cognitive function 

using both unmeasured genetic (biometrical) and measured genetic (GWAS) approaches 

in whites and African Americans of the Genetic Epidemiology Network of Arteriopathy 

(GENOA) study. Heritability analysis showed strong evidence of genetic contribution to 

both leukoaraiosis and the investigated cognitive traits, ranging from 0.3 to 0.78 in whites 

and from 0.14 to 0.81 in African Americans. Similar patterns of genetic correlations 

(evidence of pleiotropy) were observed for pairs of cognitive traits in whites (significant 

correlations ranged from 0.26 to 0.92) and African Americans (0.36 to 0.92), though 

genetic correlations reached the level of significance more frequently in whites (67% of 

cognitive pairs in whites and 19% in African Americans). Only one cognitive trait, a 
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measure of total learning, showed evidence of pleiotropy with leukoaraiosis. The 

percentage of nominally significant SNP associations from GWAS that were shared 

between pairs of traits showed a stronger relationship with genetic correlation than 

environmental correlation, indicating that percentage of shared SNP associations may be 

a useful metric for assessing pleiotropy from GWAS results. A greater understanding of 

the genetic architecture and the underlying pleiotropic mechanisms contributing to 

leukoaraiosis and cognitive function has the potential to allow for earlier identification of 

individuals at increased risk for disease, the development of more efficacious treatments, 

and the tailoring of particular treatments to people most likely to respond positively. 

 

Introduction 

Public health importance of studying leukoaraiosis and measures of cognitive function 

Hypertension affects approximately 1 in 3 American adults (76.4 million people), and 

accounts for $43.5 billion in yearly direct and indirect costs in the United States (Roger, 

2011). Hypertension is a leading risk factor for ischemic stroke (Roger, 2011; Kannel, 

1995) and for cognitive decline leading to vascular dementia (Elias, 1993; Launer, 2000). 

Inadequately controlled hypertension gives rise to ischemic damage of the brain that is 

thought to be the manifestation of underlying cerebrovascular disease (Turner, 2000). 

Areas of ischemic damage, known as leukoaraiosis, appear as hyperintense spots on MRI 

of the white matter of the brain, and the extent of subclinical damage can be quanitifed as 

the volume of leukoaraiosis. Development of leukoaraiosis is thought to be one of the 

major mechanistic pathways between hypertension and clinical endpoints such as 
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ischemic stroke and vascular dementia, and is a known risk factor for both of these 

endpoints (O'Sullivan, 2008; Markus, 2005; Kuller, 2005; Fu, 2005).  

 

Ischemic stroke accounts for 87% of all strokes, a leading cause of morbidity, mortality, 

and economic burden in the US (Roger, 2011). Over 7 million Americans currently living 

with the cognitive and physical consequences of stroke (Roger, 2011), and it has been 

estimated that stroke account for approximately 4% of all direct health care costs in the 

US (Donnan, 2008). Dementia is also a leading cause of morbidity and economic burden 

in the US (Kukull, 2002; Haan, 2004), affecting 3%-11% of people older than 65 and 

25%-47% of people older than 85 (Boustani, 2003). Dementia is a heterogeneous group 

of disorders with variable etiology that involves impairment in cognitive domains such as 

memory, executive function, and language as well as specific physical impairments such 

as gait abnormalities that cause significant impairment in social or occupational function 

and represent a decline from a previous level of functioning (American Psychiatric 

Association, 2000). The differential diagnosis of vascular dementia (VaD), incorporates 

the underlying vascular cause as well as the cognitive and physical symptomology 

(Pohjasvaara, 2000), specifically “focal neurological signs and symptoms or laboratory 

evidence indicative of cerebrovascular disease (multiple infarctions involving cortex and 

underlying white matter) that are judged to be etiologically related to the disturbance) 

(American Psychiatric Association, 2000). Therefore, leukoaraiosis is not only a risk 

factor for VaD, but also is part of the diagnostic criteria.  
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Role of genetics in leukoaraiosis and cognitive function 

Though the main risk factors for leukoaraiosis are elevated blood pressure and lack of 

blood pressure control (van Dijk, 2004; Liao, 1996), there is a significant amount of 

inter-individual variation in leukoaraiosis volume among subjects with similar duration 

and severity of hypertension (Szolnoki, 2006; Schmidt, 2004). In addition inter-

individual variability in cognitive functioning and brain structure is highly variable and it 

is likely that genetic variability accounts for a significant portion of the variation (Deary, 

2004). Heritability studies, candidate gene studies, and genome-wide association studies 

are beginning to shed light on the biological processes involved in the progression from 

hypertension to the development of leukoaraiosis and cognitive decline that are 

asymptomatic indicators of increased risk of stroke and dementia.  

 

A comprehensive review of the linkage, candidate gene, and genome-wide association 

studies for leukoaraiosis and cognitive traits are presented in Chapter 1 of this 

dissertation. Briefly, candidate gene studies for leukoaraiosis have primarily concentrated 

on genes in pathways known to be involved in hypertension, vasculature, and endothelial 

damage, and although initial findings have been encouraging, no specific polymorphism 

has been unequivocally shown to be associated with this trait (Paternoster, 2009). For 

cognitive decline, the most promising candidate genes include those that are associated 

with hypertension, leukoaraiosis, Alzheimer’s Disease (AD), normal cognitive 

functioning, cardiovascular function, oxidative stress, and inflammation (Deary, 2004), 

though there haven’t been enough candidate gene studies conducted on these traits in 

humans to isolate any specific polymorphisms that affect cognitive decline at this time. 
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Genome-wide association studies (GWAS) for these traits have also been limited. 

Seshadri et al. (2007) identified several regions associated with leukoaraiosis in a sample 

of 705 related white participants, and a large meta-analysis of 9,401 white participants 

identified a an intronic SNP in the MACRO domain containing 2 (MACROD2) gene in 

the downstream region of the fibronectin leucine-rich transmembrane protein 3 (FLTR3) 

gene (Debette, 2010). Though the SNP did not replicate in an independent white sample 

of 1,822 participants, four SNPs within 200kb from the original SNP did show 

association with the trait in a sample of 644 black participants. 

 

Pleiotropy 

Pleiotropy is most simply defined as the condition in which variation in a single gene 

affects multiple traits (Hodgkin, 1998). Defined in this manner, pleiotropic genes range 

from those that encode proteins involved in a single biological pathway that influences 

multiple disease processes and/or organ systems to those that play entirely different roles 

in multiple biological pathways. In some instances, pleiotropy is “the phenomenon in 

which a single gene controls several distinct, seemingly unrelated, phenotypic effects” 

(Zou, 2008). In humans, an example is recessive mutation in the structural locus of the 

tyrosine kinase (TYR) gene, which obstructs the biosynthesis of melanin. This leads to 

hypopigmentation of the skin (albinism) as well as ocular disturbances such as severely 

reduced visual acuity. Though the traits affected are seemingly unrelated, both are the 

result of disruption of the underlying biological pathway involving conversion of tyrosine 

to melanin (Carden, 1998). 
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Another well-known example of pleiotropy in humans is the !4 allele of the apolioprotein 

E (APOE) gene (Dickstein, 2010). APOE is a plasma cholesterol transport molecule that 

resides primarily on very low density lipoproteins, and the !4 allele has been shown to be 

a risk factor for coronary heart disease and stroke through mechanisms related directly to 

lipid transport. However, the !4 alelle is also a risk factor for AD and cognitive decline, 

with those carrying the allele having a younger age of onset as well as an accelerated 

pace of cognitive decline. Though the precise mechanism by which !4 leads to cognitive 

decline is not known, the main hypotheses are through pathways not directly related or 

only tangentially related to lipid transport. APOE appears to affect brain traits through its 

role as a chaperone for the amyloid beta protein and/or mediation of the phosphorylation 

of the tau protein.  

 

GWAS studies have also revealed some surprising pleiotropic findings in humans. 

Several genic regions have been implicated in cancers in addition to at least one other 

seemingly unrelated human disease, as have individual single nucleotide polymorphisms 

(SNPs). For example, at least three SNPs associated with type 2 diabetes have also been 

found to be associated with both prostate and colon cancers (Winckler, 2007; 

Gudmundsson, 2007; Zeggini, 2008; Thomas, 2008; Slattery, 2008). 

 

Pleiotropic genetic variation has been studied extensively in model organisms using 

quantitiative genetic methods, primarily linkage, in order to inform breeding programs, 

examine evolutionary mechanisms, and elucidate molecular pathways. Studies of genetic 

variation of quantitative traits in model organisms have revealed unexpectedly complex 
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genetic architectures with a large degree of pleiotropy (Mackay, 2010; Zhou, 2009). 

Mackay and colleagues (2005) studied the genetics of Drosophila mating behavior and 

found that nearly 20% of the genome was associated with this trait, including genes that 

have also been implicated in a variety of seemingly unrelated or tangentially-related 

biological pathways such as neurogenesis, learning and memory, olfaction, metabolism, 

and development as well as other behavioral traits such as circadian rhythm and geotaxis. 

Zou and colleagues (2008) found that more than half of the genes involved in early 

embryogenesis of C. elegans show a marginal degree of pleiotropy and that 

approximately 3% of genes were highly pleiotropic, noting that signaling proteins exhibit 

a very high degree of pleiotropy. A further finding in studies of pleiotropy in model 

organisms is that pleiotropic effects are often sex- and environment-specific (Mackay, 

2010; Zhou, 2009; Mackay, 2009). 

 

The study of pleiotropy in model organisms and humans serves several functions. In 

model organisms, it serves to further the understanding and elucidation of the complex 

biological pathways that regulate the development of traits, providing information about 

normal cellular function, normal development and function at the organismal level, 

connections between previously unrecognized biological processes, and increased 

predictive ability in breeding programs (Hodgkin, 1998). It also it provides insight into 

the mechanisms of evolution, as effects on multiple traits due to a single genetic variant 

may pose severe evolutionary constraints (Cheverud, 2004). The findings from pleiotropy 

studies in model organisms, particularly the high degree of connectivity among 

transcriptional modules, have strong implications for understanding the pleiotropic 
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genetic mechanisms that are also operating in humans. A greater understanding of the 

underlying pleiotropic mechanisms contributing to human health and disease has the 

potential to allow for earlier identification of individuals at increased risk for disease, the 

development of more efficacious treatments, and the tailoring of particular treatments to 

people most likely to respond positively. 

 

Bivariate variance component analysis to assess pleiotropy 

Preliminary studies of pleiotropy in humans have generally consisted of bivariate genetic 

analysis using variance decomposition techniques and linkage analysis in biologically 

related groups of traits. Variance decomposition techniques are used to parse the total 

phenotypic correlation in a pair of traits into the correlation due to genetic influences 

(genetic correlation) and the correlation due to environmental influences (environmental 

correlation) using family relationships.  

 

Bivariate variance decomposition techniques have been used to study pleiotropy in 

humans for a variety of purposes. Comuzzie and colleagues (1994) estimated the genetic 

and environmental correlations among eight measures of skinfolds in order to inform 

epidemiologic studies that study these measures as risk factors for heart disease and 

diabetes. The authors argue that studying pleiotropy in risk factors is important because 

shared genetic or environmental effects may confound analyses using these traits if these 

effects are unrecognized. Using variance decomposition and linkage analysis, Voruganti 

et al. (2009) investigated the genetic and environmental correlations between uric acid 

and several cardiovascular risk factors with the purpose similar to Comuzzie et al. of 
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informing epidemiologic studies. The studies were both conducted in Mexican 

Americans, a population that is at increased risk for obesity and diabetes, both significant 

risk factors for cardiovascular disease (Comuzzie, 1994; Voruganti, 2009).  

 

Cassidy-Bushrow et al. (2007) examined pleiotropy using bivariate genetic analysis for a 

different purpose. They examined the genetic contribution to coronary artery calcification 

(CAC) by quantifying the genetic effects that are shared between a measure of CAC at a 

single point in time (baseline) and CAC progression over time to determine the extent to 

which a common set of genes were involved in the different phases of the atherosclerotic 

process. A further use of bivariate genetic analysis is to identify measureable 

endophenotypes that can be used to study the genetic underpinnings of complex diseases 

with multiple etiologies. For example, Charlesworth et al. (2010) examined the genetic 

correlations between several quantitative characteristics of the eye and primary open-

angle glaucoma in order to determine the most appropriate endophenotypes to focus on in 

genetic association studies. 

 

GWAS studies as a tool for identifying pleiotropic genes 

While there has been a large amount of work that examines the genetic contribution to 

traits and genetic correlations among traits using variance components analysis as well as 

great advances and interest in genetic association studies to identify loci that contribute to 

trait variation, there has historically been little integration or agreement between these 

two approaches. As it becomes more computationally and economically feasible to 

measure and impute millions of genetic markers on groups of individuals, there is 
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considerable interest in developing techniques for studying pleiotropy with measured 

genetic variations such as SNPs. Comparing the similarities and differences in the 

properties of these two techniques is important in order to determine the utility that 

GWAS results may have in identifying pleiotropic genes. 

 

Taking a SNP-based approach to exploring pleiotropy is important for several reasons. 

First, traditional bivariate variance component approaches can only be used with family 

structured data, while the GWAS approach is typically performed on unrelated 

individuals. Given the drastically increasing utilization of the GWAS approach by the 

statistical genetics community as well as the growing abundance of samples with GWAS 

data and multiple traits, learning how to use GWAS data to examine pleiotropy will be 

greatly beneficial to examining the genetic architecture of complex traits. Second, 

variance component approaches do not give insight into which genes, specifically, have 

pleiotropic effects on the outcome of interest. These approaches can only give an estimate 

of the extent of pleiotropy, while SNP-based approaches can be used to identify the 

underlying genetic variations that are pleiotropic because they make use of directly 

genotyped information instead of only family relationships. Developing methods to 

identify genes with pleiotropic effects will greatly enhance our ability to map the genetic 

architecture of complex traits by shedding light on the inter-relationships of the 

underlying biological pathways that contribute to the development of the traits. It will 

also help us to identify the specific genes that have a broad impact on a particular system. 
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To date, there has been little research into the use of GWAS data to explore pleiotropy in 

humans. In a recently published paper, Karasik et al. (2010) began to explore the 

relationship between variance components analysis and GWAS results on pairs of bone-

related traits. In this study, the authors compared the genetic, environmental, and overall 

phenotypic correlation among pairs of traits with the percentage of marginally significant 

(p-value < 0.01) GWAS results that overlap between the traits (“shared associated 

SNPs”). They also used a simulation method to determine whether the percentage of 

shared associated SNPs in pairs of traits were more significant than what is expected by 

chance alone. Using this approach, the authors concluded that the percentage of shared 

associated SNPs is strongly associated with the genetic correlation between traits and not 

environmental correlation, and thus may be an acceptable metric for measuring 

pleiotropy. 

 

In this chapter, we focus on estimating the heritabilities and genetic correlations between 

leukoaraiosis and seven measures of neurocognitive function in a sample of 759 whites 

and 720 African Americans to examine patterns of pleiotropy using a bivariate variance 

components analysis approach and a GWAS approach. Evidence of pleiotropy detected 

by the two approaches will be compared in order to examine the utility of using GWAS 

results as a metric for assessing pleiotropy in biologically related traits. Findings of this 

work will help inform method development for studying pleiotropy in humans as well as 

further the understanding of the genetic relationships among leukoaraiosis and measures 

of cognitive function. A deeper understanding the genetics of subclinical leukoaraiosis 

development and its impact on cognitive decline in individuals free of overt 
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neurocognitive disorders may help to inform pharmacogenomic drug development and 

preventive strategies for identifying individuals at increased risk of stroke and dementia. 

Research into the genetic architecture of leukoaraiosis and cognitive decline in samples 

that are presymptomatic is particularly important because preventive interventions for 

dementia would need to start early, preferably before any brain damage occurs 

(DeKosky, 2003). 

 

Methods 

Sample 

The National Heart, Lung and Blood Institute established the Family Blood Pressure 

Program (FBPP) in 1996 from four existing research networks that were investigating the 

genetics of hypertension and its sequelae (FBPP Investigators, 2002), including The 

Genetic Epidemiology Network of Arteriopathy (GENOA). GENOA recruited 

hypertensive sibships from Rochester, Minnesota and Jackson, Mississippi for linkage 

and association studies to investigate the genetic underpinnings of hypertension and 

target organ damage related to hypertension (Daniels, 2004). 

 

In the initial phase of the GENOA study (Phase I: 1996-2001), all members of sibships 

containing ! 2 individuals with essential hypertension clinically diagnosed before age 60 

were invited to participate, including both hypertensive and normotensive siblings (1,583 

non-Hispanic whites and 1,841 African Americans). The diagnosis of essential 

hypertension was established based on blood pressure levels measured at the study visit 

(>140 mmHg average systolic BP or >90 mmHg average diastolic BP) or a prior 
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diagnosis of hypertension and current treatment with antihypertensive medications. 

Exclusion criteria were secondary hypertension, alcoholism or drug abuse, pregnancy, 

insulin-dependent diabetes mellitus, or active malignancy. In the second phase of the 

GENOA study (Phase II: 2000-2004), 1,241 white and 1,482 African American 

participants were successfully re-recruited to measure potential target organ damage due 

to hypertension. Phase I and II GENOA data consist of demographic information, 

medical history, clinical characteristics, lifestyle factors, and blood samples for 

genotyping and biomarker assays. Written informed consent was obtained from all 

subjects and approval was granted by participating institutional review boards. All 

reported phenotype and covariate data used for this dissertation was collected during the 

Phase II exam. 

 

The Genetics of Microangiopathic Brain Injury (GMBI) study (2001-2006) is an ancillary 

study of GENOA undertaken to investigate susceptibility genes for ischemic brain injury. 

Phase II GENOA participants that had a sibling willing and eligible to participate in the 

GMBI study underwent a neurocognitive testing battery to assess several domains of 

cognitive function including learning, memory, attention, concentration, and language 

(967 whites and 1,010 African Americans). Ischemic brain damage to the subcortical and 

periventricular white matter (leukoaraiosis) was quantified by magnetic resonance 

imaging (MRI) in subjects who had no history of stroke or neurological disease and no 

implanted metal devices (916 whites and 830 African Americans).  
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Participants were excluded from this analysis if they were less than 45 years of age (56 

whites, 23 African Americans), had missing data for age (2 African Americans), or had a 

history of stroke (22 whites, 51 African Americans). Since the GWAS analyses in this 

study were conducted in part to serve as a replication sample for the Cohorts in Heart and 

Aging Research in Genomic Epidemiology (CHARGE) Consortium, participants that 

were also part of a CHARGE cohort were excluded from the analysis. African American 

participants who also participated in the cognitive assessment performed as part of the 

Atherosclerosis Risk in Communities (ARIC) study, one of the cohorts in the CHARGE 

Consortium, were excluded from the GENOA GWAS (N=118). Excluding participants 

that did not have genome-wide genotype data left a final sample of 762 whites in 378 

sibships and 720 African Americans in 413 sibships. Of the white participants, 58.1% 

were female, and the average age was 61.27 years. Of the African American participants, 

72.6% were female, and the average age was 63.29 years. 

 

Outcome measures 

Leukoaraiosis 

Leukoaraiosis volume (cm
3
) was obtained via MRI in a separate clinical visit. All MRI 

scans were performed on identically equipped Signa 1.5 T MRI scanners (GE Medical 

Systems, Waukesha, WI, USA) and images were centrally processed at the Mayo Clinic. 

Symmetric head positioning with respect to orthogonal axes was verified by a series of 

short scout scans. Total intracranial volume (head size) was measured from T1-weighted 

spin echo sagittal images, each set consisting of 32 contiguous 5 mm thick slices with no 

interslice gap, field of view = 24 cm, matrix = 256 x 192, obtained with the following 
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sequence: scan time = 2.5 min, echo time = 14 ms, repetitions = 2, replication time = 500 

ms (Jack, 1989). Total brain and leukoaraiosis volumes were determined from axial fluid-

attenuated inversion recovery (FLAIR) images, each set consisting of 48 contiguous 3-

mm interleaved slices with no interslice gap, field of view = 22 cm, matrix = 256 x 160, 

obtained with the following sequence: scan time = 9 min, echo time = 144.8 ms, 

inversion time = 2,600 ms, repetition time = 26,002 ms, bandwidth = +/- 15.6 kHz, one 

signal average. A FLAIR image is a T2-weighted image with the signal of the 

cerebrospinal fluid nulled, such that brain pathology appears as the brightest intracranial 

tissue. Interactive imaging processing steps were performed by a research associate who 

had no knowledge of the subjects’ personal or medical histories or biological 

relationships. A fully automated algorithm was used to segment each slice of the edited 

multi-slice FLAIR sequence into voxels assigned to one of three categories: brain, 

cerebrospinal fluid, or leukoaraiosis. The mean absolute error of this method is 1.4% for 

brain volume and 6.6% for leukoaraiosis volume, and the mean test-retest coefficient of 

variation is 0.3% for brain volume and 1.4% for leukoaraiosis volume (Jack, 2001). 

White matter hyperintensities in the corona-radiata and periventricular zone, as well as 

central gray infarcts (ie, lacunes) were included in the global leukoaraiosis 

measurements. Brain scans with cortical infarctions were excluded from the analyses 

because of the distortion of the leukoaraiosis volume estimates that would be introduced 

in the automated segmentation algorithm. 
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Neuropsychological testing battery 

Neuropsychological tests were conducted in a private room that was free of noise and 

other distractions by trained interviewers (Alves de Moraes, 2002). In order to assure 

accuracy and comparability in test administrator performance, a portion (approximately 

5%) of all interviews were tape recorded and evaluated for accuracy to provide feedback 

to test administrators. The neuropsychological outcome measures used for this analysis 

are presented in Table 4.1 along with the cognitive functions assessed.  

 

Rey’s Auditory Verbal Learning Test (RAVLT) 

Rey’s Auditory Verbal Learning Test (RAVLT) is a brief test that assesses learning and 

memory through multiple learning trials and a 30-minute delayed recall (Rey, 1964; 

Spreen, 1998). Specifically, the measure assesses immediate memory span, new learning, 

vulnerability to interference in learning, and recognition memory. RAVLT testing norms 

for individuals aged 55 and older were developed through Mayo’s Older Americans 

Normative Studies (MOANS), and the testing procedure followed in GMBI was identical 

to that used in MOANS (Ivnik, 1992). 

 

The examiner begins by reading a list of 15 common words aloud, and participants are 

asked to recall as many of the words as possible in any order. The same procedure is 

repeated four more times using the same list of 15 words. The total number of words that 

the participant remembers correctly over the five trials is recorded and forms the basis of 

the RAVLT total learning outcome measure for this analysis, which assesses immediate 

memory. Delayed recall is assessed by asking the participant to again name as many 
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words as he/she remembers after a 30-minute delay, forming the basis of the RAVLT 

delayed learning outcome measure for this analysis. During the 30-minute interim, an 

interference task is performed in which the interviewer reads another set of words aloud, 

and the participant is asked to recall them. Thus, the delayed learning outcome assesses 

both delayed memory as well as vulnerability to interference. 

 

Wechsler Adult Intelligence Scale Revised (WAIS-R) Digit Symbol Substitution Task 

(DSST) 

The Digit Symbol Substitution task (DSS) from the Wechsler Adult Intelligence Scale 

Revised (WAIS-R) (Wechsler, 1981b; Wechsler, 1981a) is a timed translation test 

designed to measure complex visual attention, sustained and focused concentration, 

response speed, and visuomotor coordination (Lezak, 1995). In this test, participants are 

given a key in which each number corresponds to a special symbol. The task consists of 

filling in empty boxes below a series of random numbers with the symbol corresponding 

to the appropriate number (translating the numbers to symbols). After a practice session 

to ensure that the participant understands the task, participants were given a 90 second 

time limit to complete as many items as possible. The DSST outcome measure for this 

analysis was the number of correct symbols completed in 90 seconds.  

 

Controlled Oral Word Association Test (COWA) of the Multilingual Aphasia 

Examination 

The Multilingual Aphasia Examination was developed to diagnose the presence of 

aphasic disorders (any type of acquired language impairment), and the Controlled Oral 
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Word Association Test (COWA) is a subset of this examination designed to measure 

verbal fluency (Lezak, 1995; Benton, 1994). Two measures of verbal fluency were used 

as outcomes for the present study, one of letter fluency (Word Fluency Test (WFT)) and 

one of category fluency (Animal Naming). 

 

The Word Fluency Test of the COWA assesses letter fluency (phonetic association) by 

asking subjects to generate words orally that begin with a specific letter of the alphabet 

(“F”, “A”, and “S”) for a period of 60 seconds. These letters were chosen because they 

have been demonstrated to allow more vocabulary choices overall than other letters. 

Scoring of this test consisted of adding the total number of admissible words generated 

for each of the three letters. Inadmissable words include proper nouns as well as 

variations, plurals, and repetitions of previously stated words. 

 

The Animal Naming portion of the COWA assesses category fluency (semantic 

association) by asking subjects to name as many animals as possible in a period of 60 

seconds (Lezak, 1995). Scoring of this test is the sum of all admissible animals. 

Inadmissable animals include extinct, imaginary, or magical animals, proper names, and 

variations of previously stated animals. 

 

Stroop Color Word (CW) Test 

The Stroop Color Word (CW) Test is primarily a measure of concentration effectiveness, 

specifically the ability to shift perceptual sets to correspond with changing demands and 

the ability to inhibit a customary response to stimulus in favor of a more novel one 
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(Spreen, 1998; Lezak, 1995; Stroop, 1935). Administration and scoring of the test to 

GMBI participants followed procedures outlined in the standardized version of the CW 

test developed by Golden, 1978 (Golden, 1978).  

 

This test consists of three pages: the word page, the color page, and the color-word page. 

The word page consists of the words “RED”, “GREEN”, and “BLUE” arranged 

randomly and printed in black ink. The color page consists of sets of “XXXX” printed in 

red, green, or blue ink. The color-word page consists of the words from the word page 

printed in the colors on the color page, but no word matches the color in which it is 

printed (for example, the word “RED” is printed in either green or blue ink). For this 

study, the participant was first asked to read the word page as fast as he/she could for 45 

seconds, and the total number of correct words was recorded. If the participant stated an 

incorrect word, the interviewer said, “No,” and the participant was instructed to read the 

same word again to correct their error. The same procedure was followed for naming the 

colors on the color page. The participant was then asked to state the colors of the words 

on the color-word page as fast as he/she could in 45 seconds, and the total number of 

correctly stated colors were recorded.  

 

Two measures from this test are used as outcomes in the present study. The color-word 

(CW) score is the total number of correctly stated colors out of 100 from the color-word 

page. The Stroop difference score is the difference in scores between the color page and 

the color-word page.   
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Genotyping and SNP imputation   

A total of 1387 white participants and 1263 African American participants from GENOA 

were genotyped on the Affymetrix® Genome-Wide Human SNP Array 6.0 array using 

the protocol outlined by Affymetrix (Affymetrix, 2007) at the Mayo Clinic in Rochester, 

Minnesota. Some of the stored blood samples for African Americans contained DNA of 

poor quality, and we were unable to genotype these samples using the Affymetrix 6.0 

platform. However, we were able to obtain high quality genotyping using the Illumina® 

Human1M-Duo BeadChip (Illumina, 2010) for an additional 269 African Americans. 

Since the African American sibships for the GENOA study were identified using 

hypertensive subjects from the ARIC study as probands, we also obtained genotypes for 

92 additional GENOA/ARIC participants that could not be genotyped on either platform 

using the GENOA blood sample. Genotyping for the ARIC study was done at the Broad 

Institute on the Affymetrix 6.0 platform.  

 

For all genotyping platforms used, samples and SNPs with a call rate <95% were 

removed. Samples demonstrating sex mismatch, duplicate samples, and samples with low 

identity-by-state with all other samples were also removed. Pedigree information was 

used as a quality check to identify mislabeled samples. The sample used in this analysis 

consisted of 568 African Americans genotyped on the Affymetrix platform as part of the 

GENOA study, 118 genotyped on the Illumina platform, and 34 genotyped on the 

Affymetrix platform as part of the ARIC study.  
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SNP imputation increases the density of available genotypes, fills in missing genotypes, 

provides the ability to perform analysis on the full sample of African Americans 

regardless of genotyping platform, and allows collaboration with other groups who have 

genotyped their samples on different platforms. Imputation was performed separately for 

whites and the three sub-samples of African Americans using the single-step approach 

implemented in Markov Chain Haplotyper (MaCH) 1.0.16 (Li, 2006). The reference 

panel for imputation in whites was composed of the HapMap phased haplotypes (release 

22) from 60 unrelated CEU samples (Utah residents with Northern and Western 

European ancestry) (The International HapMap Consortium, 2003). The reference panel 

for African Americans was composed of the HapMap phased haplotypes (release 22) 

from 60 unrelated CEU and 60 unrelated YRI samples (Yoruba from Ibadan, Nigeria). 

We have examined how three variables affect imputation results for GENOA African 

Americans: 1) using siblings versus only unrelated individuals, 2) the one-step versus the 

two-step procedure, and 3) using the CEU+YRI panel versus using the complete HapMap 

panel, and have concluded that these variables make very little difference in the 

imputation of genotypes in this sample (manuscript in preparation).     

 

Prediction accuracy of the imputed depends upon LD between measured and unmeasured 

SNPs, so there is variability in the accuracy of the imputed genotypes for a single SNP in 

a single individual (de Bakker, 2008). For each SNP in each individual, posterior 

probabilities of each genotype are calculated and the effective allelic dosage (the 

expected number of copies of a specific allele, ranging from 0 to 2) is reported. We used 

allelic dosages for imputed SNPs in our analysis rather than the ‘best guess’ genotype (0, 
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1, or 2) in order to incorporate the uncertainty of genotype designation. The final SNP 

dataset used for association analysis uses directly genotyped Affymetrix genotypes for 

whites when available; otherwise dosages are used for imputed SNPs. Since only a small 

number of directly genotyped SNPs overlap on the Affymetrix and Illumina platforms 

used to genotype African Americans, imputed dosages were used for all association 

analyses in the African American sample.  

 

A total of 2,543,889 SNPs in whites and 2,203,609 SNPs in African Americans were 

available for analysis in whites and African Americans, respectively. In order to prevent 

false positive associations due to a small number of people in a single genotype category, 

SNPs with a minor allele frequency less than 0.01 were removed. As an additional quality 

measure, imputed SNPs with an average posterior probability of less than 0.8 were also 

removed. Following these quality control measures, the total number of SNPs available 

for analysis was 2,401,820 in whites and 2,150,041 in African Americans. 

 

Statistical analysis 

Descriptive statistics 

Data management and statistical analyses were conducted primarily in R version 2.8.0 (R 

Core Development Team, 2008). Allele frequencies and genotype frequencies were 

calculated for all SNPs using HelixTree (http://goldenhelix.com). Distributional plots 

indicated that the measures of leukoaraiosis volume are severely right-skewed, so this 

variable was transformed by taking the natural log of (leukoaraiosis + 1). The cognitive 

traits appear to have relatively normal distributions; thus, no variable transformations 
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were applied to these variables. T-tests were conducted for the outcome measures to test 

whether there were significant differences in the white and African American study 

participants.  

 

Creation of residual phenotypes for GWAS 

In the African American sample, Helix Tree and R were used to conduct principal 

components analysis in a random sample of unrelated individuals. Principal components 

were constructed using the genotypes of the SNPs that overlapped in the Affymetrix and 

Illumina platforms and were also in HapMap (207,565 SNPs). An additive model was 

assumed for the SNPs, which were standardized with a mean of 0 and variance of 1. A 

complete description of the procedure used to obtain principal components and results 

from association testing between the top ten principal components and outcome measures 

adjusted for covariates are presented in Appendix 4.1. Since different principal 

components were associated with different outcome measures, all of the first ten principal 

components were included as adjustment variables in the creation of all residual 

phenotypes for GWAS in the African American sample.  

 

Age and gender were included as adjustment covariates because both have been 

historically used as adjustment variables for this trait. Age is a very strong independent 

predictor for leukoaraiosis, and gender has been shown to have a marginal association 

with leukoaraiosis in some samples, including GENOA whites. To account for 

differences in brain size, intracranial volume was also included as an adjustment variable.  
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Performance on cognitive testing is known to vary by age and gender, and relative 

performance on these tests is determining using age- and gender-specific population-

based norms. Education also affects performance on some cognitive tests, as people with 

higher educational attainment tend to perform better (Staff, 2004; Valenzuela, 2006). To 

explore the relationships between adjustment variables and each outcome of interest in 

GENOA whites and African Americans, we conducted multivariable linear mixed models 

with adjustment covariates as predictor variables for each unadjusted outcome measure. 

 

For each cognitive trait, the outcome variable for this analysis was the residual value of 

the trait adjusted for age at cognitive testing, gender, and education. In African-

Americans, the first ten principal components were also added to the model to reduce the 

effects of population substructure. The adjustment model for the natural logarithm of 

leukoaraiosis plus one included all of the same covariates as well as total intracranial 

volume (TIV). Education was categorized (less than high school, completed high school 

(GED), some college, and completed college (4+ years) and coded as a continuous 

variable 0 to 3 scale, respectively.  

 

Biometrical genetic modeling 

The expected covariance of a trait between a pair of individuals is modeled as a function 

of the variance parameters and the expected correlation between the individuals for 

genetic effects (Sing, 1987). The additive genetic effects are unobservable and can only 

be modeled using the variance-covariance matrix of the trait, expressed as a function of 

identity-by-descent relationships as expressed below. Here, shared residual (non-genetic) 
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effects are assumed to be zero because the siblings are all adults and have reported living 

in separate households. Specifically,  where: !x,y = 

kinship coefficient for two individuals, x and y. The kinship coefficient is the probability 

that a randomly selected allele from each person at the same locus is identical-by-descent. 

The kinship coefficient is ! for an individual (if x=y) and " for full siblings; I x,y = 1 if x 

and y are the same individual, 0 otherwise (identity matrix); V(G) = deviation attributable 

to additive genetic factors; V(R) = deviation attributable to random residual effects 

(individual factors) including measurement error. A more detailed description of 

biometrical genetics is presented in Appendix 4.2. 

 

In this study, SOLAR (Sequential Oligogenic Linkage Analysis Routines) (Almasy, 

1998) was used to implement a variance component regression based on maximum 

likelihood estimation to partition phenotypic variance according to the following model: 

 

Where: 

i = 1, 2, … n  (individuals) 

j = 1, 2, … m (covariates) 

yi = outcome measure for the i
th

 individual 

µ = population mean of y 

xij = i
th

 value for the j
th

 covariate  

!j = regression coefficient associated with j
th

 covariate 

gi = additive genetic effect where gi ~ N(0, #
2

g) 

"i = random residual effect where "i  ~ N(0, #
2

e) 
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The model is constrained so that !
2

g + !
2

e = 1. In this way, the heritability estimate (!
2

g) 

is the heritability of the residual variance of the trait that is not accounted for by 

adjustment variables (the heritability of the trait after adjustment for measured 

covariates). Thus, the contribution of genetic effects to the total phenotypic variance 

when accounting for measured covariates is given by [(1-proportion of variance 

explained by covariates)*h
2
]*100. 

 

The heritability of the trait can be tested for significance by comparing the log-likelihood 

of the full model above to the log-likelihood of a model with !
2

g constrained to 0 ( i.e. 

Ho: !
2

g = 0 versus Ha: !
2

g " 0). The null distribution of the likelihood ratio test statistic is 

a 50:50 mixture of a #
2

1 and a point mass at zero. Narrow sense heritabilities were 

estimated for the outcome variables (all cognitive traits and ln(leukoaraiosis+1)) both 

with and without adjustment covariates included in the biometric models. 

 

Phenotypic, genetic, and environmental correlations 

To examine the relationships among pairs of the cognitive testing and leukoaraiosis 

measures, two methods were used to obtain estimates of the correlation coefficient, 

Pearson’s correlation coefficient and the estimate of phenotypic correlation using the 

SOLAR software package. In addition to estimating total phenotypic correlation among 

pairs of traits, the SOLAR software package simultaneously estimates the genetic and 

environmental correlations of the traits. 
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The SOLAR software package uses maximum likelihood methods to simultaneously 

estimate heritabilities of trait pairs (as described above) and the phenotypic, genetic, and 

environmental correlations between pairs of traits according to the formula below. The 

advantage of using SOLAR to estimate phenotypic correlation is that it uses the family 

relationships among the participants to perform estimations; thus, it properly accounts for 

the sibship structure in the GENOA data. The disadvantage is that due to the method of 

estimation, only a point estimate of the phenotypic correlation is given. Since the 

standard error for this parameter is not estimable, the significance of the phenotypic 

correlation cannot be tested. The phenotypic, genetic, and environmental correlations 

among all pairs of traits in both ethnic groups were estimated in SOLAR, both with and 

without adjustment covariates in the biometric models. 

 

Where: 

!p = phenotypic correlation between the traits 

!g = genetic correlation between the traits 

!e = environmental correlation between the traits 

h1
2
 = heritability of trait 1 

h2
2
 = heritability of trait 2 

 

The genetic and environmental correlations between the traits estimated in SOLAR, !g 

and !e, can be tested for significance by comparing the log-likelihood of the model in 

which the parameter of interest is estimated to that of the model in which the parameter is 

fixed to 0. The test for pleiotropy, or evidence of shared genetic influences is as follows: 
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Ho: !g = 0 vs. Ha: !g  ! 0. The null distribution of the likelihood ratio test statistic statistic 

is a "
2

1. Rejection of the null hypothesis provides evidence of pleiotropy. 

 

The genetic correlation can also be tested for evidence of complete pleiotropy (all genetic 

influences are shared between the pair of traits) according to the following test: Ho: !g = 1 

vs. Ha: !g  ! 1. The null distribution of the likelihood ratio test statistic is a "
2

1. This 

statistic is used to test the null hypothesis of !g = 1 (all genetic influences are shared 

between the traits). Rejection of the null hypothesis provides evidence that there are 

differences in the genetic influences on the traits. 

 

Finally, the presence of shared environmental influences can be determined by the 

following test: Ho: !e = 0 vs. Ha: !e  ! 0. The null distribution of the likelihood ratio test 

statistic is a "
2

1. This statistic is used to test the null hypothesis of !e = 0 (no 

environmental influences beyond the adjustment variables are shared between the traits). 

Rejection of the null hypothesis provides evidence that there are shared environmental 

influences on the traits. 

 

Genome-wide association 

Genome-wide association was performed on the residual values of the seven cognitive 

variables and the natural log of leukoaraiosis+1, described above, separately in each 

ethnic group. Linear mixed effects modeling was used to test all associations between a 

single SNP and the outcome, as described in Chapter 3 (Raudenbush, 2002). Measured 

genotypes were coded additively as SNP = 0, 1, 2 for people that are homozygous for one 
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allele of a particular SNP, heterozygous, and homozygous for the other allele, 

respectively (Weir, 1996). Effective allelic dosages (between 0 and 2) were used for 

imputed genotypes.  

 

Examining pleiotropy with GWAS 

Assessing enrichment of GWAS results at a nominal significance level  

The method developed by Karasik et al. (2010) for examining pleiotropy using 

percentage of shared SNP associations as a metric begins with determining the number of 

nominally significant GWAS results at ! = 0.01. The number of results expected by 

chance alone at this significance level for a particular trait, however, is dependent on the 

genome-wide inflation factor for the GWAS of that trait. Genome-wide inflation factors 

were calculated for each trait by dividing the median of the Wald statistic ["/SE(")] of all 

SNPs included in the GWAS by the median of the absolute value of the T statistic with 

the appropriate degrees of freedom under a null distribution. Using a Binomial 

distribution, we next determined the p-value for obtaining a number greater than or equal 

to the number of nominally significant SNPs using the genome-wide inflation factor as 

the probability of success. For example, if a particular GWAS with 2,400,000 SNPs had 

25,000 nominally significant SNP associations and a genome-wide inflation factor of 

1.011, we calculated a p-value for obtaining 25,000 or greater nominally associated SNPs 

under a Bin(2,400,000, 0.01011) distribution. 

 

Relationship between genetic/environmental correlations and GWAS results 

To examine evidence for pleiotropy using results from the GWAS analysis, the number 
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of shared marginally significant associations (p-value < 0.01) was used to calculate the 

percentage of shared SNP associations for each pair of traits according to the method 

used by Karasik et al. (2010): [(number of shared associated SNPs) / (total number of 

non-union associated SNPs)]*100. For example, if there are X SNPs associated with trait 

1, Y SNPs associated with trait 2, and Z SNPs associated with both traits 1 and 2, the 

percentage of shared SNP associations would be [Z/(X+Y-Z)]*100. This percentage 

represents a quantitative measure of the genetic similarity between trait pairs. The 

percentage of shared SNP associations was plotted against the genetic and environmental 

correlations estimated in SOLAR to examine the relationship between these two methods 

of assessing genetic similarity. 

 

Permutation tests 

For a subset of traits in whites, permutation testing was used to empirically generate a 

null distribution for determining whether the number and percentage of shared associated 

SNPs for a given trait pair was greater than expected by chance alone using two 

approaches. In the first approach, each trait was permuted individually, disturbing the 

correlation structure among the traits (“unpaired” approach). The permutation was 

performed three times to obtain three permutations of each trait. In the second approach, 

all traits were permuted as a vector, preserving the correlation structure among traits 

(“paired” approach). This permutation procedure was also performed three times to 

obtain three permutations of each trait vector. For both approaches, GWAS was 

performed for each trait (three GWAS total for each permuted trait under each approach).  
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For each GWAS, SNPs were split into 48 groups of 50,000 SNPs each according to their 

chromosomal location (the first group consisted of the first 50,000 SNPs genotyped on 

chromosome 1, the next group consisted of the next 50,000 SNPs genotyped on 

chromosome 1, etc). For each of the 48 groups of SNPs, the number and percentage of 

shared associated SNPs at !=0.01 was calculated as described above. The expected 

number of shared associated SNPs that would have been present in a full GWAS using 

2,401,820 SNPs was extrapolated by multiplying the number of shared associated SNPs 

in each group by 2,401,820/50,000. Next, for each pair of traits under each approach, the 

results from the three GWAS were combined to obtain a null distribution of the number 

and percentage of shared SNP associations expected by chance alone, each with 144 

datapoints. Finally, the observed number and percentage of shared SNP associations were 

compared to the distributions from the permutation tests to determine an empirical one-

sided p-value. The null hypothesis for these permutation tests is that the observed number 

or percentage of shared SNP associations is not greater than chance alone either given the 

correlation structure of the traits (“paired approach”) or under an assumption of 

independence between the traits (“unpaired approach”). 

 

Results 

Descriptive statistics  

Descriptive statistics of the outcome measures and adjustment variables for the 762 white 

and 720 African American participants, as well as T-tests comparing the samples, are 

presented in Tables 4.2-4.4. GENOA whites are 58.1% female, have a mean age at the 

time of cognitive testing of 61.3 years, and have a mean leukoaraiosis volume of 
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8.11cm
3
. GENOA African Americans have a much larger percentage of females (72.6%), 

have a higher mean age of cognitive testing (63.3 years), and have a higher mean volume 

of leukoaraiosis with greater variability (9.56cm
3
). Approximately half of both whites 

and African Americans attended at least some college; however, only 5.2% of white 

participants did not graduate from high school or obtain a GED while this was true for 

28.3% of African American participants. The mean values for all outcome measures were 

significantly different in whites and African Americans except for the Stroop difference. 

Leukoaraiosis was strongly right skewed in both populations, but had a relatively normal 

distribution after taking the natural log of leukoaraiosis+1. Distributional plots of the 

cognitive outcomes show that they also have relatively normal distributions (Appendix 

4.3). 

 

Associations between adjustment covariates and outcome measures 

In order to explore the relationship between adjustment variables and each outcome of 

interest, we conducted multivariable linear mixed models with adjustment covariates as 

predictor variables for each unadjusted outcome measure (Tables 4.5-4.6) In both whites 

and African Americans, age, gender, and education were significant predictors for all 

cognitive measures except that education was not a significant predictor of Stroop 

difference in whites and gender was not a significant predictor of Stroop color word in 

African Americans after accounting for the other adjustment variables. As expected, 

increasing age was associated with lower cognitive scores, while increasing education 

was associated with higher cognitive scores. Female gender also showed a trend of being 

associated with higher cognitive scores. In both groups, increasing age and total 
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intracranial volume were associated with increasing leukoaraiosis volume, while gender 

and education were not associated with this measure.  

 

The amount of variance explained by the adjustment covariates, as measured by R
2
, 

showed a consistent pattern between the two groups. R
2 
was lowest for Stroop difference 

(0.018 in whites and 0.074 in African Americans) and highest for DSST (0.411 in whites 

and 0.529 in African Americans). The amount of variance explained by adjustment 

variables in the remainder of the cognitive measures ranged from 0.122 to 0.309 in whites 

and from 0.207 to 0.294 in African Americans. Variance of ln(leukoaraiosis+1) explained 

by adjustment variables was higher in whites (0.309) than in African Americans (0.213). 

 

Genetic variance (heritabilities) 

In order to examine the contribution of genetic factors to the observed variation in the 

traits, we used a biometrical approach to estimate the proportion of variance in the traits 

explained by genetic factors (heritabilities) both with and without inclusion of adjustment 

variables in the models (Tables 4.7-4.8). Heritabilities of all traits were highly significant 

in both whites and African Americans (p-value<0.001) with the exception of Stroop 

difference in African Americans that showed only a marginally significant heritability, 

illustrating that all of the traits under study are influenced by genetic factors. Similar 

patterns of heritability were observed between the two groups, though African Americans 

tended to have lower heritabilities than whites for most traits. 

 



 210 

Heritabilities in unadjusted traits were lowest for Stroop difference (0.302 in whites, 

0.135 in African Americans) and highest for DSST (0.774 in whites, 0.81 in African 

Americans), with the majority of heritabilities in the range of 0.45 to 0.6. Leukoaraiosis 

had a higher heritability in whites (0.656) than in African Americans (0.485). After 

including adjustment covariates in the biometric models, heritabilities for the traits were 

generally lower but remained highly significant. Again, Stroop difference had the lowest 

heritability in both groups (0.275 in whites, 0.154 in African Americans) and DSST had 

the highest (0.843 in whites, 0.556 in African Americans), with the remaining traits 

ranging between 0.33 and 0.54. Leukoaraiosis still showed higher heritability in whites 

(0.529) than in African Americans (0.432).  

 

The proportion of the observed trait variance accounted for by adjustment covariates 

estimated with biometric modeling mirrored the relationships we observed in multivariate 

linear mixed modeling, described above. The lowest proportion of variance explained 

was for Stroop difference (0.023 in whites, 0.075 in African Americans) and the highest 

was for DSST (0.403 in whites, 0.525 in African Americans). For the remainder of the 

traits, the proportion of variance explained by adjustment covariates ranged from 0.139 

(COWA FAS) to 0.311 (leukoaraiosis) in whites and from 0.203 (RAVLT delayed recall) 

to 0.3 (COWA FAS) in African Americans.  

 

In order to determine the proportion of variation in the traits explained by genetic factors, 

we multiplied the proportion of variation not explained by the covariates by the 

heritability. Expressed as a percentage of total variation, genetic factors explain the 
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lowest amount of variation in Stroop difference in both groups (26.87% in whites, 

14.25% in African Americans). The largest amount of variation explained by genetic 

factors in whites was for DSST (50.33%) followed by RAVLT delayed recall (40.92%) 

and leukoaraiosis (36.45%). In African Americans, genetic factors explained the largest 

percentage of variation in COWA FAS (37.52%) followed by leukoaraiosis (33.83%) and 

Stroop color word (33.79%). For the majority of traits, the amount of variation explained 

by genetic factors was lower in African Americans than in whites, but most traits in both 

groups had at least 25% of variation explained by genetic factors, showing that genetics 

has an important influence on all of these traits.   

 

Phenotypic correlations between pairs of traits 

Pearson’s correlation coefficient 

To examine the relationships among pairs of the cognitive testing and leukoaraiosis 

measures, both Pearson’s correlation coefficient and biometric modeling in SOLAR were 

used to obtain estimates of trait correlations. Tables 4.9-4.10 show correlations estimated 

using Pearson’s correlation coefficient. In both samples, the majority of unadjusted 

cognitive trait pairs exhibited positive and highly significant (p-value<0.001) 

correlations. Correlation was lowest for Stroop difference and RAVLT delayed recall 

(0.053 in whites and 0.148 in African Americans) and highest for RAVLT delayed recall 

and RAVLT total learning (0.816 in whites and 0.789 in African Americans). The 

exception was that Stroop difference and Stroop color word showed a negative 

correlation in both groups (-0.13 in whites and -0.186 in African Americans). Possible 

reasons for this observed difference are presented in the Discussion. Unadjusted 
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leukoaraiosis showed a strong negative correlation with the majority of the cognitive 

traits in both groups, ranging from -0.072 to -0.298 in whites and from -0.094 to -0.259 in 

African Americans. This pattern is expected, since lower values of leukoaraiosis and 

higher cognitive function are both strongly associated with lower age. 

 

The overall pattern of correlations among adjusted cognitive trait pairs were similar to 

that of unadjusted cognitive trait pairs. In both groups, the strongest correlation was 

between the two measures from the RAVLT (0.755 in whites, 0.733 in African 

Americans), and the only non-significant correlation observed was between Stroop 

difference and RAVLT delayed recall. For cognitive traits, the remaining correlations 

ranged from 0.09 (Stroop difference and RAVLT total learning) to 0.363 (COWA FAS 

and COWA animals) in whites and from 0.127 (Stroop difference and COWA animals) to 

0.399 (COWA FAS and COWA animals) in African Americans. The majority of the 

correlations among cognitive traits were moderate (in the range of 0.1 to 0.3), were 

highly significant, and were similar across groups. Leukoaraiosis showed negative and 

non-significant correlations with the majority of the cognitive traits in both groups, with 

correlations ranging from -0.001 to -0.088. Only one marginally significant correlation 

between leukoaraiosis and a cognitive trait (RAVLT total learning, correlation=-0.088) 

was observed in whites, and no significant correlations between these traits were 

observed in African Americans. 
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Correlation coefficient estimated biometrically in SOLAR 

The patterns observed in the correlations estimated biometrically in SOLAR closely 

match those estimated with the Pearson’s correlation coefficient (Tables 4.11-4.12). 

Again, the strongest correlation in the adjusted traits was between the two RAVLT 

measures (0.755 in whites, 0.729 in African Americans), and the weakest correlations 

were between leukoaraiosis and all cognitive traits (ranging from -0.001 to -0.083). In 

general, multiple measures from the same test exhibited stronger correlations than 

measures across tests, which is intuitive since measures from the same test are assessing 

different but closely related cognitive functions. Patterns of correlation in whites and 

African Americans were very similar, though whites generally tended to exhibit 

somewhat stronger correlations. 

 

Genetic and environmental correlations estimated biometrically in SOLAR 

In order to begin to understand the extent to which pleiotropic genetic effects may be 

contributing to each pair of traits, we used a biometrical approach to estimate genetic and 

environmental correlations (Tables 4.13-4.14). Overall, there were far more significant 

genetic correlations (pleiotropic effects) between trait pairs than environmental 

correlations, indicating that shared genetic effects were more common in these pairs of 

traits than shared environmental effects. For all estimates of genetic and environmental 

correlations, adjustment covariates were included in the biometric models. 

 

The majority of significant genetic correlations observed were in whites. In whites, 

significant genetic correlations ranged from 0.263 (RAVLT total learning and DSST) to 
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0.918 (RAVLT total learning and RAVLT delayed recall). Other highly significant 

genetic correlations (p-value<0.001) were between DSST and Stroop color word (0.7) 

and between RAVLT total learning and COWA animals (0.55). Many of the pairs 

involving RAVLT, COWA, and DSST also showed significant genetic correlations, 

ranging from 0.263 to 0.476. Leukoaraiosis and RAVLT had a marginally significant 

negative genetic correlation (-0.28), indicating that genes shared between these two traits 

have opposite effects on the traits (for example, a certain genetic variation may increase 

leukoaraiosis volume while decreasing learning scores). No other evidence of pleiotropic 

effects was found between leukoaraiosis and cognitive measures.  

 

In contrast to the relative abundance of genetic correlations between these measures, 

there were very few significant environmental correlations in whites. The most 

significant environmental correlation was between the trait pair that also had the highest 

genetic correlation, RAVLT total learning and RAVLT delayed recall (0.586), although 

the environmental correlation was substantially less than the genetic correlation. This 

indicates that for this trait pair, shared genetic effects have a stronger influence than 

shared environmental effects, though both contribute to the observed strong phenotypic 

correlation. The only other highly significant environmental correlation was between 

Stroop color word and Stroop difference (-0.427). This correlation is negative since low 

cognitive performance is indicated by a low score on Stroop color word but by a high 

score on Stroop difference. Only two other trait pairs exhibited even marginally 

significant environmental correlations in whites. Leukoaraiosis had a negative 
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environmental correlation with Stroop difference (-0.274) and the two measures from the 

COWA had a positive environmental correlation (0.293).   

 

The overall patterns of genetic and environmental correlations in African Americans 

were strikingly similar to the patterns observed in whites. However, many of the genetic 

correlations in African Americans did not reach statistical significance due to larger 

standard errors in their estimates, and there was slightly more evidence of shared 

environmental effects. Two of the four highly significant genetic correlations observed in 

whites were also observed in African Americans. RAVLT total learning and RAVLT 

delayed recall were the most strongly genetically correlated (0.915) followed by DSST 

and Stroop color word (0.698). The only other significant genetic correlations were 

between the two measures of COWA (0.533) and between COWA FAS and Stroop color 

word (0.363). There were no significant genetic correlations between leukoaraiosis and 

any of the cognitive traits. 

 

As with whites, the most highly significant environmental correlation was between the 

two measures of RAVLT (0.596) and between Stroop color word and Stroop difference (-

0.541). The direction and magnitudes of the correlations for these traits were also the 

same in African Americans as they were in whites. The other strongly significant 

environmental correlations observed in African Americans were between DSST and 

RAVLT total learning (0.401) and DSST and COWA FAS (0.442). Four additional pairs 

of traits also exhibited marginally significant environmental correlations, including the 
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two COWA measures (0.313) that also showed a marginally significant environmental 

correlation in whites.  

 

Genome-wide association 

The quantile-quantile plots, Manhattan plots, and genome-wide inflation factors for the 

GWAS of the residual values for leukoaraiosis and cognitive traits are presented in 

Appendix 4.4. Overall, the quantile-quantile plots are suggestive of the p-value 

distribution that would be expected by chance alone.  

 

Examining pleiotropy with GWAS 

Percentage of shared SNP associations 

To examine evidence of pleiotropy using results from the GWAS analysis, the percentage 

of SNPs that had nominal evidence of association (p-value ! 0.01) was calculated as a 

quantitative measure of the genetic similarity between trait pairs. The percentage of 

shared SNP associations was plotted against the absolute value of the genetic and 

environmental correlations estimated in SOLAR to examine the relationship between 

these two methods of assessing genetic similarity (Appendix 4.5). RAVLT delayed recall 

and RAVLT total learning had a clear outlying value for both the percentage of shared 

SNP associations as well as the genetic correlation (both were much larger values than 

observed in the other trait pairs), so this pair was removed from the analysis. To examine 

the extent to which genetic correlation explained the variability of the percentage of 

shared SNP associations beyond that explained by the environmental correlation in the 

remaining 15 trait pairs, the difference in R
2
 between a linear model containing genetic 
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correlation and environmental correlation as predictors of the percentage of shared SNP 

associations was compared to a model containing only environmental correlation as a 

predictor. In whites, R
2
 for the model with both genetic and environmental correlation 

was 0.688, while R
2
 for the model with only environmental correlation was 0.081. Thus, 

genetic correlation explained an additional 60.7% of variability in the percentage of 

shared SNP associations. In African Americans, the R
2
 values were 0.567 and 0.109 

respectively, resulting in an additional 45.8% of variability in the percentage of shared 

SNP associations beyond environmental correlation. 

 

The numbers and percentages of SNPs associated with each trait and shared SNP 

associations for each trait pair are presented in Tables 4.15-4.16. For single traits, the 

number of results with nominal evidence of significance (p-value ! 0.01) ranged from 

0.98% (Stroop color word) to 1.09% (leukoaraiosis and RAVLT delayed recall) in whites 

and from 0.87% (Stroop difference) to 1.1% (RAVLT delayed recall) in African 

Americans. Of the eight traits analyzed in whites, four had more nominally associated 

SNPs at this significance level than expected by chance alone given the GWAS inflation 

factors for the traits, and only Stroop color word had fewer nominally associated SNPs 

than expected by chance alone. In African Americans, four traits had more nominally 

associated SNPs than expected by chance alone given the GWAS inflation factors, and 

three had fewer than expected by chance alone. This suggests that some of the traits show 

a small enrichment of significant genetic effects at this nominal significance level, 

including leukoaraiosis, RAVLT total learning, and COWA FAS in both whites and 

African Americans. 
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The percentage of shared SNP associations (p-value ! 0.01) in whites ranged from 0.4% 

(COWA animals and leukoaraiosis) to 16.06% (RAVLT delayed recall and RAVLT total 

learning). All of the remaining percentages of shared SNP associations were between 

0.48% and 3.01%. In African Americans, the percentage of shared SNP association 

ranged from 0.33% (leukoaraiosis and Stroop difference) to 15.14% (RAVLT delayed 

recall and RAVLT total learning). The remaining percentages in African Americans were 

between 0.38% and 3.1%. The overall distribution of percent shared SNP associations 

was strikingly similar across the two groups. 

 

Permutation testing 

As an exploratory analysis to begin to characterize the utility of the percentage or number 

of shared SNP associations at a nominal significance level ("=0.01) as a metric for 

assessing pleiotropy, we performed permutation testing of these measures for four traits 

in whites (a total of six trait pairs) that exhibited a range of phenotypic and genetic 

correlations as measured by the biometrical approach in SOLAR. Appendix 4.6 is a 

summary review of the phenotypic, genetic, and environmental correlations of these trait 

pairs in whites.  

 

The paired and unpaired approaches were used to generate the distribution of the number 

and percentage of shared SNP associations with the trait correlation structure preserved 

(“paired approach”) or under the assumption of independence between the traits 

(“unpaired approach”). A significant empirical p-value for a pair of traits in the unpaired 
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approach would indicate that the correlation structure of the traits results in a greater 

number or percentage of shared SNP associations than by chance alone, suggesting that 

some aspect of the correlation structure of the traits (i.e. the total phenotypic or genetic 

correlation) results in a larger amount of shared SNP associations. A significant empirical 

p-value for the paired approach would indicate that the trait correlations alone are not 

leading to higher numbers and percentages of shared SNP associations, and would 

suggest that the genetic correlation (pleiotropy) is leading to larger amounts of shared 

association. We were especially interested in the permutation testing results from pairs of 

traits that exhibited a relatively high genetic correlation (for example, RAVLT total 

learning and COWA animals, !g=0.55) but a smaller phenotypic correlation (!p=0.311). 

 

Permutation testing results for the paired and unpaired approaches are presented in Tables 

4.17a-b (percentage of shared SNP associations) and 4.18a-b (number of shared SNP 

associations), and examples of histograms of the distributions of percentages and 

numbers of shared associated SNPs are presented in Appendix 4.7. None of the 

permutation tests from the paired approach showed a significant empirical p-value. 

Nominally significant empirical p-values (0.1<p<0.05) were observed in two pairs of 

traits from the unpaired approach in both the percentage and number of shared SNP 

associations. These two pairs of traits (RAVLT total learning and DSST, and RAVLT 

total learning and COWA animals) had the highest phenotypic correlations of the trait 

pairs tested (0.269 and 0.311, respectively), which indicates that it is likely that the 

phenotypic correlations were the most important factor leading to their relatively high 

percentage and number of shared SNP associations.  
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Discussion 

It is well known that leukoaraiosis contributes to cognitive impairment and cognitive 

decline in individuals who have not yet progressed to dementia (Pantoni, 2007; De Groot, 

2002; Schmidt, 2007), and leukoaraiosis progression is correlated with progression in 

cognitive decline (Kuller, 1998; Swan, 1998; Pantoni, 1997). Several studies have 

demonstrated an association between hypertension in midlife and cognitive dysfunction 

in later life (Elias, 1993; Launer, 2000), and it has been hypothesized that this is due to 

the cumulative effects of subclinical damage due to cerebrovascular disease (Swan, 1998; 

Knopman, 2001) with leukoaraiosis as one of the main mechanistic pathways implicated 

(Sierra, 2006). Several studies have demonstrated that cognitive decline and general 

cognition in midlife are also associated with hypertension, lending credence to the claim 

that later cognitive dysfunction and dementia are the clinical manifestations of a disease 

process in the brain that is cumulative throughout the lifespan (Knopman, 2001; Knecht, 

2009; Knecht, 2008). 

 

Hypertension and leukoaraiosis have been shown to have stronger effects on some 

cognitive and physical functions than others. In a sample of 1,702 participants from the 

Framingham Heart Study, Elias et al. (1998) showed that the cognitive areas most 

affected by hypertension are psychomotor speed, visual memory, learning, memory, and 

executive function. The association between hypertension and both immediate memory 

and attention were also demonstrated by Sleegers et al. (2007) in an extended pedigree of 

780 individuals. Findings from the ARIC study showed that presence of hypertension at 
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baseline was associated with cognitive decline over a 6-year period in participants aged 

47 to 70 at baseline (mean age = 56.8 years) (Knopman, 2001). In this study, cognitive 

decline was measured by delayed word recall, processing speed, and word fluency. They 

found that decline in both processing speed and word fluency scores were significantly 

more pronounced in hypertensive subjects, with processing speed showing the strongest 

association. In a follow-up paper, Alves de Moraes and colleagues (2002) reported that 

decline in processing speed was also significantly different between normotensive and 

untreated hypertensive subjects in the ARIC cohort, particularly in those with older ages. 

An association between decline in processing speed scores and hypertension was also 

demonstrated in the Cardiovascular Health Study (Haan, 1999). It has been hypothesized 

that processing speed was most strongly associated with hypertension because it was a 

timed test and thus may be more affected by subcortical lesions (Knopman, 2001). 

Leukoaraiosis itself appears to be more strongly associated with decreasing cognitive 

performance than memory and is also associated with a decline in motor performances 

such as gait disturbances (Pantoni, 2007; Schmidt, 2007).  

 

Heritability of leukoaraiosis 

Heritability of white matter hyperintensities on MRI was estimated to be 0.71 in study of 

male twins after adjustment for age and head size (Carmelli, 1998) and 0.55 in the 

Framingham Heart Study after adjustment for sex, age, age
2
, and total cranial volume 

(Atwood, 2004). Turner et al. (2009) estimated the heritability of the logarithm of 

leukoaraiosis in GENOA participants as 0.49 in whites and 0.45 in African Americans 

after adjustment for age, sex, and brain volume. In an earlier publication, Turner et al. 
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(2004) showed that leukoaraiosis has a consistently high heritability even after 

adjustment for blood pressure. These high heritabilities imply that much of the inter-

individual differences in variation are due to differences in genetics. 

 

Heritability of cognitive function 

Heritability of cognitive functioning has been conducted primarily in twin studies using 

factor analysis to identify a common factor to act as a proxy for overall cognitive 

function, and the findings point to a high heritability for this measure. McGue et al. 

(2002) estimated the heritability of general cognitive function as measured by five 

cognitive tasks comprised of fluency, digit span, and recall to be 0.70. Finkel et al. (1995) 

peformed quantitative genetic analysis on four measures of cognitive function (verbal, 

spatial, perceptual speed, and memory) and showed that heritability for a general 

cognitive factor was between 0.54 and 0.81 in two samples across several age groups of 

adults (from young to elderly). 

 

Different areas of cognitive function have been shown to have different heritability 

estimates, as well as differences in the trajectories of changing heritability over the age 

span. Neale, Carmelli, and colleagues (1997) used multivariate analysis to detect a 

common pathway model which revealed a latent “executive control factor” that 

adequately summarized the results of four cognitive tests that were related only to 

executive control requiring perceptual-motor functions (sustained attention, visual 

perception, language, and short-term memory). Heritability of this executive control 

factor was estimated to be 0.70, and they found that processing speed had strongest 
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genetic influence while verbal fluency seemed to have the most difference in terms of 

genetic and environmental control compared to the other three tests (Carmelli, 2002). 

Other estimates of executive function range from 0.34 to 0.68 (Sleegers, 2007; Swan, 

2002). Measures of memory generally seem to have a lower heritability than executive 

function. Memory as assessed by immediate and delayed recall of a word list has been 

estimated to be between 0.16 (Sleegers, 2007) and 0.4 (McGue, 2001; Plomin, 1994), 

with immediate recall showing a slightly higher heritability (0.24) than delayed recall 

(0.16) (Sleegers, 2007).  

 

Bivariate variance component analysis in leukoaraiosis and cognitive traits 

Carmelli (2002) used maximum likelihood nested modeling techniques to estimate the 

proportion of variance in leukoaraiosis and four measures of cognitive function due to 

genetic, shared environmental, and non-shared environmental effects in 142 pairs of 

elderly twins (Carmelli, 2002). They then used bivariate genetic analysis to quantify the 

genetic and environmental overlap between leukoaraiosis and cognitive function. 

Bivariate analysis between leukoaraiosis and executive control function, a single measure 

of executive function constructed by factor analysis of the four cognitive traits, showed 

that the total phenotypic correlation was -0.20, and that 70% of the total phenotypic 

correlation was accounted for by shared genes while 30% was accounted for by shared 

environments. While this is substantial, the contribution of overlapping genes (genes 

shared between the executive control factor and leukoaraiosis) to the genetic variance in 

executive function was only 8%. Other studies of the shared genetic components of 

cognitive traits tend to focus on change in cognition over time. Variance components 
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analysis of the relationship between cognitive change and perception speed in a study of 

292 twins aged 40-84 revealed that 90% of the age-related variance and 70% of the 

genetic variance in cognitive function was shared with perception speed, demonstrating 

that there is a genetic component to processing speed which also influences general 

cognitive functioning (Finkel, 2000).  

 

Pleiotropic mechanisms 

Examining the way that pleiotropic mechanisms operate to affect complex human traits is 

an important area of research because it provides a means to obtain a more sophisticated 

understanding of the relationships within the biological pathways that underlie trait 

variation. The recent research indicating the existence of highly correlated and inter-

connected transcriptional modules calls for a deeper exploration of the way that variation 

in gene expression patterns may affect multiple traits. This research also suggests that 

genetic variations that impact gene expression may affect a variety of traits that seem 

unrelated without knowledge of the underlying biology. A greater understanding of the 

underlying pleiotropic mechanisms contributing to human health and disease has the 

potential to allow for earlier identification of individuals at increased risk for disease, the 

development of more efficacious treatments, and the tailoring of particular treatments to 

people most likely to respond positively. 

 

Characterization of pleiotropic mechanisms 

Studies of pleiotropy in humans and animals have to grapple with the different ways that 

a single genetic variation can impact multiple traits. Hodgkin (1998) began to 
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characterize the different types of pleiotropy that operate in model organisms from the 

viewpoint of a geneticist, defining seven different types according to the molecular 

mechanism involved. This classification system may be informative as a starting point for 

classifying pleiotropy in humans, but it is most relevant to the study of evolutionary 

mechanisms in model organisms. However, the geneticist’s view of pleiotropy has yet to 

be mapped onto the traditional modeling tools that epidemiologists use to describe causal 

relationships, such as directed acyclic graphs (DAGs).  

 

In this study, biometrical modeling showed substantial evidence of pleiotropy underlying 

variation in leukoaraiosis and cognitive traits, particularly among pairs of cognitive traits. 

There are several underlying biological mechanisms that may have been contributing to 

the high degree of pleiotropy observed. While the evidence for shared genetic effects 

between leukoaraiosis and the cognitive traits did not reach the level of statistical 

significance in most instances, it may be possible these effects exist but were not 

significant in this sample due to both a small sample size and limited variation in 

leukoaraiosis due to the relatively young age of the sample. The evidence for pleiotropy 

among cognitive traits, however, warrants discussion for the potential pleiotropic 

mechanisms that may be functioning in this group of traits. 

 

Perhaps the most straightforward explanation for shared genetic effects between 

leukoaraiosis and cognitive measures is that there is a direct casual relationship between 

variations in genes that affect hypertension and phenotypes of the downstream sequelae 

of hypertension (i.e., leukoaraiosis and ultimately cognition). In this case, illustrated as a 
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DAG with a single gene in Figure 4.1 (“pleiotropic mechanism A”), shared genetic 

effects are due only to the effects of the gene on hypertension itself. Genes involved in 

vasculature function, salt regulation, and cholesterol transport are examples of genes that 

may contribute to pleiotropy in this manner. Another possibility is that a genetic variation 

affects the development of leukoaraiosis independent of hypertension, and that increased 

leukoaraiosis has a direct causal effect on changes in cognition (Figure 4.1, “pleiotropic 

mechanism B”). Genes that play a role in regulating the extent of inflammation or 

response to oxidative stress after a period of ischemia may show evidence of shared 

genetic effects under this pleiotropic mechanism. A third mechanism that may be 

responsible for shared genetic effects between leukoaraiosis and cognitive measures is a 

genetic variation that affects both traits through different biological pathways (Figure 4.1, 

“pleiotropic mechanism C”). For example, genetic variation that leads to Alzheimer 

pathology, such as the APOE !4 allele, may demonstrate pleiotropy through this 

mechanism. Alzheimer pathology is known to have a direct effect on cognition 

independent of leukoaraiosis, and there may also be a synergistic effect between 

Alzheimer pathology and development of leukoaraiosis, which would lead to detection of 

shared genetic effects between leukoaraiosis and cognitive traits.  

 

While there was a moderate degree of shared genetic effects observed among 

leukoaraiosis and cognitive traits, a much larger degree of shared genetic effects was 

observed among pairs of cognitive traits. Pleiotropic mechanisms A or B may partially 

account for these shared genetic effects, as well as a fourth mechanism illustrated in 

Figure 4.1 (“pleiotropic mechanism D”) in which genetic variation affects aspects of 
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cognition independent from the leukoaraiosis pathway. Genes that function in this 

manner may include those that regulate neurocognitive development, contribute to 

cognitive aging, and affect general information processing capabilities through a variety 

of biological pathways including those related to axon and synapse formation and 

function.  

 

Distinguishing between pleiotropic mechanisms 

Multiple variable adjustment modeling could be used to distinguish between the different 

mechanisms of pleiotropy that may be operating in this study. For example, to distinguish 

between pleiotropic mechanisms A and B, leukoaraiosis could be adjusted for 

hypertension status or a quantitative of blood pressure measurement. If the SNP of 

interest were still associated with leukoaraiosis after adjustment, it would indicate that 

pleiotropic mechanism B is more likely to be acting than mechanism A. Likewise, to 

distinguish between mechanisms B and C, cognitive measures could be adjusted for 

leukoaraiosis volume. If the SNP of interest were still associated with the cognitive trait 

after adjustment for leukoaraiosis, this would provide evidence for mechanism C.  

 

It is also important to verify whether relationships are due to potentially causal 

mechanisms or simply to confounding as a result of correlations among traits. For 

example, if a SNP of interest and leukoaraiosis both had independent causal effects on a 

cognitive trait (mechanism D), the SNP may show association with leukoaraiosis due to 

confounding. In this case, it would be necessary to adjust leukoaraiosis for the cognitive 

trait and test whether there was still an association between the SNP and leukoaraiosis 
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after adjustment. If there is still an association, it indicates that mechanism C is operating, 

but absence of an association would indicate that mechanism D is operating. 

 

Lessons from animal studies of pleiotropy 

The most extensive examinations of pleiotropy to date have been done in animal models.  

These studies provide insight into the range of pleiotropic influences across different 

types of traits, the complexity and extent of epistatic pleiotropy, and new ways of relating 

biometrical measures of pleiotropy to molecular mechanisms through systems biology 

approaches to transcriptomic analysis. For example, Kenney-Hunt and colleagues (2006) 

examined the genetic architecture and pleiotropic patterning of body size traits in mice, 

and found differing degrees of pleiotropy among categories of traits. Overall, 97 

quantitative trait loci (QTLs) were identified for four bone length traits, four organ 

weight traits, and necropsy weight. Thirty-five of these QTLs demonstrated pleiotropy, 

with the majority of the pleiotropy (~85%) observed among traits of a single category 

(for example, among bone length traits), but a substantial amount (~15%) was also 

observed across trait categories. A greater degree of pleiotropy existed among bone 

length traits than organ weight traits, demonstrating that pleiotropic loci may have more 

ubiquitous effects in more strongly correlated, developmentally related traits. This 

observation is supported by other murine studies (Leamy, 2002; Wolf, 2006). Patterns of 

pleiotropy observed in the mouse model explains why higher levels of genetic correlation 

are found among functionally and developmentally related traits in mice and other 

organisms (Wolf, 2006). These patterns of genetic correlation have implications for trait 
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evolution, and have been proposed to reflect a history of selection for genetic integration 

of functionally related traits (Cheverud, 2004). 

 

Extensions to the classic quantitative genetic theory of pleiotropy have recently been 

developed for assessing epistatic pleiotropy in mouse models (Wolf, 2005). In these 

initial studies, epistatic pleiotropy accounted for only a moderate amount of the genetic 

covariance between traits such as limb bone length and organ weight but was a 

widespread phenomena. Consistent with the theory of selection for genetic integration of 

functional trait groups, limb bone lengths display a higher degree of epistatic pleiotropy 

than organ weights. A review of complex behavioral traits in Drosophila also indicates 

that large numbers of pleiotropic genes interact in an epistatic fashion to regulate 

behavioral traits (Mackay, 2009). 

 

Systems biology approaches are in early development for studying pleiotropic 

mechanisms influencing quantitative traits in model organisms (Mackay, 2009). This 

approach has led to the identification of biologically relevant modules of highly 

correlated transcripts, including modules that are associated with tissue-specific gene 

expression, transcription factor binding sites, and a variety of gene ontology categories 

(Magwire, 2010; Jumbo-Lucioni, 2010; Ayroles, 2009). This finding of the modular 

organization of genes and proteins extends to a variety of model organism systems 

including C. elegans (Zou, 2008; Gunsalus, 2005) and yeast (Ihmels, 2002; Han, 2004). 

Another consistent finding is that there is a significant amount of overlap of common 

transcripts between modules associated with different traits (Jumbo-Lucioni, 2010; 
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Ayroles, 2009). Zou et al. (2008) propose that due to the presence of pleiotropic genes, 

gene modules must overlap instead of being separate from one another, and that 

pleiotropic genes may act as the “connectors” between modules.  

 

Limitations  

While this study offers preliminary evidence of pleiotropy among measures of cognitive 

function and leukoaraiosis in both whites and African Americans, it has several 

limitations. The relatively small sample size and the limited variability of the 

leukoaraiosis phenotype are perhaps the largest limitations. While the sample size was 

adequate to detect large heritabilities, the large standard errors for many of the genetic 

correlations indicated that the sample size may not have been adequate to reliably 

estimate genetic correlations. The lack of power was compounded for estimates of 

genetic correlation between leukoaraiosis and each cognitive trait due to the limited 

variability (and thus co-variability) of leukoaraiosis in this relatively young sample. The 

inadequate sample size also resulted in lack of power to identify significant SNP 

associations in GWAS despite the relatively large heritabilities of the examined traits. 

This lack of power in GWAS made examining the utility of using percentage of shared 

SNP associations as a metric for evaluating pleiotropy inconclusive. However, our 

finding that percentage of shared SNP associations had a much stronger relationship to 

absolute genetic correlation than absolute environmental correlation was consistent with 

the other published study that used percentage of shared SNP associations as a metric of 

pleiotropy in human traits (Karasik, 2010). 
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A further limitation was our ability to perform a comprehensive assessment of the 

number and percentage of shared SNP associations expected by chance along using 

permutation testing. The computational burden of performing enough permutation 

GWAS to generate accurate estimates and distributions of the number and percentage of 

shared SNP associations expected (say, 1,000 permutations) prevented us from using this 

approach on all of the trait pairs and limited the conclusions that can be drawn from the 

testing that we did perform. A more computationally feasible approach for estimating the 

percentage of shared SNP associations expected by chance alone for a pair of traits 

involves using simulating SNPs (Karasik, 2010), and this method may be an alternative 

for evaluating percentage of shared SNP associations as a metric in the future with 

GENOA data. While our permutation testing was only exploratory to begin to get a sense 

of the relationship between percentage of shared SNP associations and biometrical 

evidence of pleiotropy, we believe that it is important to examine these relationships in 

order to better understand the extent to which SNPs identified through GWAS are 

contributing to genetic correlation.  

 

Most studies of the genetic and environmental factors associated with leukoaraiosis have 

had samples composed of individuals who have already experienced clinical endpoints 

such as stroke or severe cognitive decline. The relatively young age range of our sample 

provided the unique opportunity to examine the relationships between leukoaraiosis and 

cognitive phenotypes in asymptomatic individuals, at a time when preventive treatment 

would be most effective. However, the young age of our sample also imposed constraints, 

including the limited variability in the leukoaraiosis phenotype. In addition, it has been 
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shown that heritabilities of cognitive traits tend to vary with age (Alves de Moraes, 2002; 

Knopman, 2001; Mattay, 2008). Since this study was cross-sectional, we did not have the 

ability to examine how heritabilities and genetic correlations change over time. 

Differential heritabilities across age groups also implies that there may be SNPs that 

show age-related changes in penetrance with respect to cognitive traits. Thus, a further 

limitation of this study was that we were only able to detect associations with SNPs that 

exert their influence in the age range of our sample.   

 

Future directions 

One of the most important first steps for research into pleiotropic mechanisms in humans 

is to further evaluate the relationship between measured SNPs and genetic correlations 

between pairs of traits. One approach that has potential to be useful in this area is to adapt 

the method used by Yang et al. (2010) used to estimate the variation in height explained 

by simultaneous modeling of all measured SNPs. This method could be modified to 

estimate the amount of co-variation between a pair of traits that is explained by measured 

SNPs. Though this method would not identify which specific SNPs are accounting for co-

variation, it would provide information about whether genetic correlations are driven by 

SNPs that are measured on genotyping arrays.  

 

Future directions for examining pleiotropy using GWAS results will include performing 

bioinformatic research on the SNPs that are identified as having an association with trait 

pairs, which may not be warranted until we have additional evidence that percentage of 

shared SNP associations is a useful measure of pleiotropy. One possible approach for 
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evaluating the contribution of shared associated SNPs to biometrically estimated genetic 

correlations is to perform principal components analysis on the shared associated SNPs 

for a pair of traits and add the first several principal components to the bivariate model in 

SOLAR. If the genetic correlation for the trait pair is significantly reduced, it indicates 

that the shared associated SNPs are accounting for a portion of the biometrically 

estimated genetic correlation. This approach does not identify specific SNPs that 

contribute to high genetic correlations, but it does allow us to begin to quantify the extent 

to which shared associated SNPs identified through GWAS contribute to genetic 

correlations. 

 

Ultimately, given the extraordinarily rich genomic data and the difficulty of creating 

DAGs or other simple models for the metabolic processes that affect complex traits such 

as leukoaraiosis and cognitive measures, bioinformatic methods and systems biology 

approaches are needed to integrate the vast amount of information. Systems biology 

approaches have already begun to be used in studies of pleiotropy in model organisms 

(Mackay, 2009; Magwire, 2010; Jumbo-Lucioni, 2010; Ayroles, 2009) and of genetic 

architecture of single traits in humans (Zhong, 2010; Hsu, 2010). Whatever the methods 

used to explore pleiotropy, however, it is clear large consortia will be needed for the 

discovery and replication of the pleiotropic SNPs identified. Though this study provides 

only preliminary evidence of the existence of pleiotropy among leukoaraiosis and 

cognitive traits, it demonstrates that further research into the pleiotropy of these traits is 

warranted. 
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Table 4.1.  Outcome measures and cognitive functions assessed with neurocognitive 

tests  

 
Neurocognitive Test Outcome Measure Cognitive Functions 

Rey’s Auditory Verbal Learning 

Test (RAVLT) 

RAVLT delayed recall Learning 

Delayed memory 

Vulnerability to interference 

Rey’s Auditory Verbal Learning 

Test (RAVLT) 

RAVLT total learning Learning 

Immediate memory 

Digit Symbol Substitution Test 

(DSST) 

DSST Response speed  

Visual attention 

Concentration 

Controlled Oral Word Association 

Test (COWA) 

COWA FAS Language 

Verbal fluency (phonetic association) 

Controlled Oral Word Association 

Test (COWA) 

COWA animals Language 

Category fluency (semantic association) 

Stroop Color Word Test Stroop color word Concentration effectiveness Ability to 

shift perceptual sets in response to novel 

stimuli 

Stroop Color Word Test Stroop difference Ability to shift perceptual sets in 

response to novel stimuli 
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Table 4.2.  Descriptive statistics of outcome measures and adjustment variables in 

whites 

 

Trait  N  Mean 

Standard 

Deviation  Minimum  Maximum  

Age, years 762  61.27  8.84  45  84  

Leukoaraiosis Volume, cm
3
 714 8.11 6.83 1.16 62 

Ln(Leukoaraiosis+1) 714 2.06 0.50 0.77 4.14 

RAVLT delayed recall  758  9.08  3.27  0  15  

RAVLT total learning  759  47.71  9.82  21  71  

DSST  758  50.18  12.43  13  86  

COWA FAS 760  32.39  13.63  5  85  

COWA animals 762  19.25  4.86  3  33  

Stroop color word 740  34.54  9.30  7  64  

Stroop difference 740  32.81  9.26  5  73  

 
Trait Category N Percentage 

Education 0 (Less than HS) 40 5.2% 

 1 (HS/GED) 329 43.2% 

 2 (Some College) 246 32.3% 

 3 (Grad/Professional) 147 19.3% 

Gender Male 319 41.9% 

 Female 443 58.1% 

 

 

Table 4.3.  Descriptive statistics of outcome measures and adjustment variables in 

African Americans 

 

Trait  N  Mean 

Standard 

Deviation  Minimum  Maximum  

Age, years 720 63.29 8.22 45 91 
Leukoaraiosis volume, cm

3
 574 9.56 9.89 2.04 126 

Ln(Leukoaraiosis+1) 574 2.16 0.55 1.11 4.85 

RAVLT delayed recall  708 6.80 3.36 0 15 
RAVLT total learning  712 40.07 9.37 14 66 
DSST  697 32.93 13.62 3 75 
COWA FAS 687 28.63 11.71 2 73 
COWA animals 716 14.92 4.47 4 33 
Stroop color word 648 22.28 10.10 1 55 
Stroop difference 648 33.25 11.83 2 77 
 
Trait Category N Percentage 

Education 0 (Less than HS) 204  28.3%  
 1 (HS/GED) 205  28.5% 
 2 (Some College) 127  17.6% 
 3 (Grad/Professional) 184  25.6% 
Gender Male 197 27.4% 

 Female 523 72.6% 
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Table 4.4.  Comparison of the outcome measures in whites and African Americans 

 

 Whites African Americans 

T-test comparing 

white and AA 

samples 

Trait  N  Mean (±SD) N  Mean (±SD) P-value 

Leukoaraiosis volume, cm
3
 714 8.11 (6.83) 574 9.56 (9.89) 0.0028 

Ln (leukoaraiosis+1) 714 2.06 (0.05) 574 2.16 (0.55) 0.0002 

RAVLT delayed recall  758  9.08 (3.27) 708 6.80 (3.36) <2.2E-16 
RAVLT total learning  759  47.71 (9.82)  712 40.07 (9.37) <2.2E-16 
DSST  758  50.18 (12.43)  697 32.93 (13.62) <2.2E-16 
COWA FAS 760  32.39  (13.63) 687 28.63 (11.71) 1.96E-08 

COWA animals 762  19.25  (4.86) 716 14.92 (4.47) <2.2E-16 

Stroop color word 740  34.54 (9.30)  648 22.28 (10.10) <2.2E-16 

Stroop difference 740  32.81 (9.26)  648 33.25 (11.83) 0.4450 
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Table 4.5.  Multivariable linear mixed model regression with adjustment covariates 

as fixed effects and family as the random effect in whites 

 

Outcome 

Age 

!(SD) 

Gender 

!(SD) 

Education 

!(SD) 

Total 

Intracranial 

Volume 

!(SD) R
2
 

Ln (leukoaraiosis+1) 

0.03
***

 

(0.002) 

-0.07 

(0.04) 

0.003 

(0.02) 

0.0007
***

 

(0.0001) 

0.309 

RAVLT delayed recall  

-0.10
***

 

(0.01) 

-1.96
***

 

(0.20) 

0.66
***

 

(0.12) NA 

0.226 

RAVLT total learning  

-0.36
***

 

(0.03) 

-6.50
***

 

(0.56) 

2.25
***

 

(0.34) NA 

0.307 

DSST  

-0.56
***

 

(0.04) 

-9.47
***

 

(0.65) 

2.70
***

 

(0.39) NA 

0.411 

COWA FAS 

-0.05 

(0.05) 

-5.35
***

 

(0.88) 

4.38
***

 

(0.53) NA 

0.122 

COWA animals 

-0.12
***

 

(0.02) 

-0.66
*
 

(0.31) 

1.42
***

 

(0.19) NA 

0.144 

Stroop color word 

-0.42
***

 

(0.03) 

-3.21
***

 

(0.56) 

1.69
***

 

(0.34) NA 

0.258 

Stroop difference 

-0.08
*
 

(0.04) 

-1.82
**

 

(0.63) 

0.21   

(0.38) NA 

0.018 

 
*
 p-value 0.01 – 0.05, 

**
 p-value 0.001 – 0.01, 

***
 p-value < 0.001 

NA indicates that the outcome was not adjusted for the covariate 

 

Table 4.6.  Multivariable linear mixed model regression with adjustment covariates 

as fixed effects and family as the random effect in African Americans 

 

Outcome 

Age 

!(SD) 

Gender 

!(SD) 

Education 

!(SD) 

Total 

Intracranial 

Volume 

!(SD) R
2
 

Ln(leukoaraiosis+1) 

0.03
***

 

(0.003) 

0.10 

(0.05) 

-0.02  

(0.02) 

0.001
***

 

(0.0002) 

0.213 

 

RAVLT delayed recall  

-0.11
***

 

(0.01) 

-1.80
***

 

(0.25) 

0.61
***

 

(0.10) NA 

0.207 

RAVLT total learning  

-0.35
***

 

(0.04) 

-4.92
***

 

(0.67) 

2.35
***

 

(0.27) NA 

0.281 

DSST  

-0.74
***

 

(0.05) 

-4.69
***

 

(0.81) 

5.51
***

 

(0.32) NA 

0.529 

COWA FAS 

-0.30
***

 

(0.05) 

-2.10
*
 

(0.86) 

4.58
***

 

(0.34) NA 

0.294 

COWA animals 

-0.18
***

 

(0.02) 

0.80
*
 

(0.32) 

1.17
***

 

(0.13) NA 

0.260 

Stroop color word 

-0.48
***

 

(0.04) 

0.62 

(0.80) 

1.89
***

 

(0.32) NA 

0.239 

Stroop difference 

-0.16
**

 

(0.06) 

-4.30
***

 

(1.04) 

1.79
***

 

(0.41) NA 

0.074 

 
*
 p-value 0.01 – 0.05, 

**
 p-value 0.001 – 0.01, 

***
 p-value < 0.001 

NA indicates that the outcome was not adjusted for the covariate 
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Table 4.7.  Trait heritabilities in whites 

 

Trait 
h

2
 (SE) 

Unadjusted 

h
2
 (SE) 

Adjusted 

Proportion of 

Variance 

Explained by 

Adjustment 

Covariates 

Percent 

Variation Due to 

Genetic Factors 

After 

Adjustment
a 

Ln(leukoaraiosis+1)  0.656 (0.09)
*** 

0.529 (0.09)
*** 

0.311 36.45 

RAVLT delayed recall  0.602 (0.10)
*** 

0.526 (0.10)
*** 

0.222 40.92 

RAVLT total learning  0.627 (0.09)
*** 

0.516 (0.10)
*** 

0.308 35.71 

DSST  0.774 (0.09)
*** 

0.843 (0.09)
*** 

0.403 50.33 

COWA FAS 0.441 (0.10)
*** 

0.366 (0.10)
*** 

0.139 31.51 

COWA animals 0.503 (0.10)
*** 

0.349 (0.10)
*** 

0.152 29.60 

Stroop color word 0.586 (0.09)
*** 

0.429 (0.09)
*** 

0.276 31.06 

Stroop difference 0.302 (0.09)
*** 

0.275 (0.09)
*** 

0.023 26.87 

 
a
 [(1 – Proportion of variance explained by adjustment covariates)*h

2
]*100 

 

For all adjusted traits, biometric models included age, sex, and education. The biometric model for 

ln(leukoaraiosis+1) also included TIV. 

 

Null hypothesis of tests: h
2
 = 0 

***
 p-value < 0.001 

 

 

Table 4.8.  Trait heritabilities in African Americans 

 

Trait 
h

2
 (SE) 

Unadjusted 

h
2
 (SE) 

Adjusted 

Proportion of 

Variance 

Explained by 

Adjustment 

Covariates 

Percent 

Variation Due to 

Genetic Factors 

After 

Adjustment
a 

Ln(leukoaraiosis+1) 0.485 (0.14)
*** 

0.432 (0.13)
*** 

0.217 33.83 

RAVLT delayed recall  0.494 (0.11)
*** 

0.390 (0.11)
*** 

0.203 31.08 

RAVLT total learning  0.560 (0.11)
*** 

0.440 (0.11)
*** 

0.279 31.72 

DSST  0.810 (0.10)
*** 

0.556 (0.10)
*** 

0.525 26.41 

COWA FAS 0.710 (0.11)
*** 

0.536 (0.11)
*** 

0.300 37.52 

COWA animals 0.551 (0.10)
*** 

0.329 (0.10)
*** 

0.260 24.35 

Stroop color word 0.532 (0.10)
*** 

0.440 (0.10)
*** 

0.232 33.79 

Stroop difference 0.135 (0.11)
*** 

0.154 (0.10)
* 

0.075 14.25 

 
a
 [(1 – Proportion of variance explained by adjustment covariates)*h

2
]*100 

 

For all adjusted traits, biometric models included age, sex, and education. The biometric model for 

ln(leukoaraiosis+1) also included TIV. 

 

Null hypothesis of tests: h
2
 = 0 

*
 0.01 < p-value < 0.05 

**
 0.001 < p-value < 0.01 

***
 p-value < 0.001 
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Appendix 4.1.  Calculation of principal components in African Americans 

 

Since GENOA is composed of sibships, we calculated principal components (PCs) used 

to control for population stratification in African Americans in an unrelated sample of 

individuals. First, we removed SNPs that had poor imputation quality as measured by the 

estimated r
2
 between imputed and true genotypes (r

2
<0.8) from MaCH output. Next, we 

obtained the maximum number of unrelated individuals in our total sample of 1624 

individuals by selecting one sibling randomly from each sibship (N=644). In this sample, 

we calculated the first ten PCs on the set of 207,565 SNPs that were common to both 

genotyping platforms (Illumina 1M-Duo and Affymetrix 6.0) and were also in HapMap 

in order to ensure no missing values for SNPs. We then used the loading matrix for these 

PCs to calculate the PC values in the full sample. Next, outliers of more than 6 standard 

deviations on any of the ten PCs were removed to ensure that the PCs were not capturing 

variation due to poor quality genotyping or single individuals with a dramatically 

different admixture profile than the remainder of the sample. A total of 35 individuals 

were removed from the full sample.  

 

Next, we again selected an unrelated sample of individuals by randomly selecting one 

individual from each sibship (N=638) and recalculated the first ten PCs in this sample. 

Finally, we used the loading matrix to calculate the first ten PCs in the final sample. A 

plot of these ten PCs in the full sample is shown below.  
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Scatterplot of the top ten principal components from genotype data in GENOA 

African Americans (N=1589) 
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Association between the top ten principal components from genotype data in 

GENOA African Americans and adjusted outcome measures 

 

Trait PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

Ln(leukoaraiosis+1)    ***       

RAVLT delayed recall   **     *  *  

RAVLT total learning   **       *  

DSST            

COWA FAS   **      **  

COWA animals         **  

Stroop color word      *     

Stroop difference ** *         

  

All traits were adjusted for age, sex, and education. Ln(leukoaraiosis+1) was additionally adjusted for TIV. 

 
*
 0.01 < p-value < 0.05 

** 
0.001 < p-value < 0.01 

***
p-value < 0.001 
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Appendix 4.2.  Biometrical models for estimation of heritability and genetic 

correlation 

Inter-individual variation in many traits is the result of both genetic and environmental 

factors. Before undertaking research to identify specific genetic factors that contribute to 

a trait of interest, a typical first step is to examine how much of the observed variation in 

the trait is attributable to genetic factors and environmental factors. Quantitative genetic 

theory of polygenic inheritance provides a means of decomposing the variation in a trait 

to estimate heritability, which is defined as the proportion of variance in a trait due to 

variability in genetic factors. Heritability of a trait is a population-specific parameter that 

can change over time, and heritability estimates are influenced by several population and 

study features (Visscher, 2008). Population parameters that influence heritability 

estimates include allele frequencies and variation in environmental factors. Study-specific 

factors that influence heritability measures include the size and structure of the pedigrees, 

measurement error, and bias due to assortative mating and/or selection. Heritability 

estimates are useful for prioritizing traits with higher heritability for linkage and 

association studies, can provide context for interpreting the relative impact of genes on 

specific traits, and are a key parameter for assessing the usefulness of predicting genetic 

risk for disease. Estimating heritability is particularly important for providing knowledge 

about traits that are only measureable as a result of new technology, such as leukoaraiosis 

(Visscher, 2008). 

 

The total phenotypic variance of a trait, !
2

P, can be expressed as the sum of the 

underlying genotypic variance, !
2

G, and the underlying environmental variance, !
2

E, 

which includes both unmeasured environmental factors as well as any stochastic error 

and measurement error variances (Visscher, 2008). When estimating heritability, the 

underlying assumption is that there is no interaction between genetics and the 

environment. “Broad sense” heritability is defined as the ratio of the genetic and 

phenotypic variances: !
2

G/!
2

P. The genetic variance can be further partitioned into 

additive genetic effects, dominant genetic effects, and epistatic genetic effects due to 

interactions among genes: !
2

G = !
2

A + !
2

D + !
2

I. “Narrow sense” heritability is the ratio 

of the additive genetic effects to the total phenotypic variance: !
2

A/!
2

P, with the 

remainder of the genetic variance absorbed into the environmental variance component, 

!
2

E. Narrow sense heritability is typically reported in the literature for several reasons: 1) 

animal and plant breeding studies have shown that the response to natural selection in 

fitness of organisms equals the additive genetic variance of fitness (Fisher’s fundamental 

theorem of natural selection); thus narrow sense heritability is all that is needed to 

determining response to selection in breeding programs, and 2) with the exception of 

siblings, relatives typically share at most only one copy of alleles that are identical by 

descent, so non-additive effects that require sharing two copies generally do not 

contribute to their phenotypic resemblance (Visscher, 2008). 

 

Genetic variance (heritability) 

As described in the heritability section above, quantitative genetic modeling assumes that 

the total phenotypic variance of a trait is comprised of the sum of genetic variance and 

environmental variance.  
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!
2

P = !
2

G + !
2

E 

Where: 

!
2

P = total phenotypic variance 

!
2

G = total genetic variance 

!
2

E = total environmental variance (includes stochastic error and measurement error) 

Assumption: no covariation between genetics and the environment 

 

Broad sense heritability, H
2
, is the proportion of variance due to all genetic factors. 

H
2
 = !

2
G/!

2
P 

 

The genetic variance can be further partitioned into additive genetic effects, dominant 

genetic effects, and epistatic genetic effects due to interactions among genes: 

 

!
2

G = !
2

A + !
2

D + !
2

I.  

Where: 

!
2

G = total genetic variance 

!
2

A = additive genetic variance 

!
2

D = genetic variance due to dominance 

!
2

I = genetic variance due to epistatis (gene-gene interaction) 

 

“Narrow sense” heritability, h
2
, is the ratio of the additive genetic effects to the total 

phenotypic variance:  

h
2
 = !

2
A/!

2
P 

When estimating h
2
, the remainder of the genetic variance is absorbed into the 

environmental variance component, !
2

E. 

 

The heritability of a trait in a sample can be calculated using analysis of variance 

(ANOVA) method and observed phenotypic information from related individuals. Using 

this method, the total phenotypic variance is partitioned into variance between families 

(!
2

B) and variance within families(!
2

W). The proportion of total phenotypic variance due 

to within-family variance is the intra-class correlation coefficient: r = !
2

B/(!
2

B+!
2

W) 

(Mather, 1964). The intra-class correlation coefficient multiplied by the reciprocal of the 

expected amount of genetic information shared by the family members provides an 

estimate of heritability (Falconer, 1996). Since full siblings have approximately ! of 

their genetic information identical by descent, an estimate of heritability for this kinship 

type is h
2
=2r.  

 

While the ANOVA method gives the sample statistic of heritability, a more robust 

procedure uses variance components to estimate heritability as a population parameter of 

the population from which the sample was drawn. The expected covariance of a trait 

between a pair of individuals is modeled as a function of the variance parameters and the 

expected correlation between the individuals for genetic effects (Sing, 1987). The 

additive genetic effects are unobservable and can only be modeled using the variance-

covariance matrix of the trait, expressed as a function of identity-by-descent relationships 
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as expressed below. Here, shared residual (non-genetic) effects are assumed to be zero 

because the siblings are all adults and have reported living in separate households. 

 
 

Where: 

!x,y = kinship coefficient for two individuals, x and y. The kinship coefficient is the 

probability that a randomly selected allele from each person at the same locus is 

identical-by-descent. The kinship coefficient is ! for an individual (if x=y) and " for full 

siblings. 

I x,y = 1 if x and y are the same individual, 0 otherwise (identity matrix) 

V(G) = deviation attributable to additive genetic factors 

V(R) = deviation attributable to random residual effects (individual factors) including 

measurement error 

 

In this study, SOLAR (Sequential Oligogenic Linkage Analysis Routines) (Almasy, 

1998) was used to implement a variance component regression based on maximum 

likelihood estimation to partition phenotypic variance according to the following model: 

 

 

Where: 

i = 1, 2, … n  (individuals) 

j = 1, 2, … m (covariates) 

yi = outcome measure for the i
th

 individual 

µ = population mean of y 

xij = i
th

 value for the j
th

 covariate  

!j = regression coefficient associated with j
th

 covariate 

gi = additive genetic effect where gi ~ N(0, #
2

g) 

"i = random residual effect where "i  ~ N(0, #
2

e) 

 

The model is constrained so that #
2

g + #
2

e = 1. In this way, the heritability estimate (#
2

g) 

is the heritability of the residual variance of the trait that is not accounted for by 

adjustment variables (the heritability of the trait after adjustment for measured 

covariates). Thus, the contribution of genetic effects to the total phenotypic variance 

when accounting for measured covariates is given by [(1-proportion of variance 

explained by covariates)*h
2
]*100. 

 

The heritability of the trait can be tested for significance by comparing the log-likelihood 

of the full model above to the log-likelihood of a model with #
2

g constrained to 0.  

 

  Ho: #
2

g = 0,  Ha: #
2

g $ 0 

 

The null distribution of the likelihood ratio test statistic is a 50:50 mixture of a %
2

1 and a 

point mass at zero. This statistic is used to test the null hypothesis of #
2

g = 0 (no 

variability is due to genetics). 
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Narrow sense heritabilities were estimated for the outcome variables (all cognitive traits 

and ln(leukoaraiosis+1)) both with and without adjustment covariates included in the 

biometric models. 

 

Phenotypic, genetic, and environmental correlations 

To examine the relationships among pairs of the cognitive testing and leukoaraiosis 

measures, two methods were used in Chapter 4 to obtain estimates of the correlation 

coefficient, Pearson’s correlation coefficient and the estimate of phenotypic correlation 

using the SOLAR software package. In addition to estimating total phenotypic correlation 

among pairs of traits, the SOLAR software package simultaneously estimates the genetic 

and environmental correlations of the traits. 

 

The correlation coefficient is defined as the covariance of two traits, X and Y, divided by 

the product of their variances. 

 

! 

" =
cov(X,Y )

# x# y

 

 

Pearson’s correlation 

As a first pass at examining correlation, Pearson’s correlation coefficient was estimated 

for each pair of traits, and the significance of the correlations were determined. This 

method of estimating correlation assumes independence among all observations, so does 

not take the sibship structure of the GENOA data into account; however, it provides a 

rough estimate as to the general relationships among the outcomes. In addition, this 

method gives a standard error for the point estimate of the correlation coefficient, 

providing the means to test for the significance of the correlation. 

 

For a series of n measurements of X and Y written as xi and yi where i = 1, 2, ... , n, 

Pearson’s correlation coefficient between trait X and trait Y is estimated as: 

 

 
Where: 

 and are the sample means of X and Y 

sx and sy are the sample standard deviations of X and Y 

rxy is an estimate of the true correlation, !  

 

  Ho: ! = 0,  Ha: ! ! 0 

 

Test statistic: 

! 

t =
r

1" r
2

n " 2
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If the traits are approximately normally distributed, the null distribution of the test 

statistic follows a Student’s t-distribution with N-2 degrees of freedom, and can be used 

to test the null hypothesis of ! = 0 (no correlation between the traits). 

 

Phenotypic, genetic, and environmental correlation coefficients estimated in SOLAR  

The SOLAR software package uses maximum likelihood methods to simultaneously 

estimate heritabilities of trait pairs (as described above) and the phenotypic, genetic, and 

environmental correlations between pairs of traits according to the formula below 

(Almasy, 1998). The advantage of using SOLAR to estimate phenotypic correlation is 

that it uses the family relationships among the participants to perform estimations; thus, it 

properly accounts for the sibship structure in the GENOA data. The disadvantage is that 

due to the method of estimation, only a point estimate of the phenotypic correlation is 

given. Since the standard error for this parameter is not estimable, the significance of the 

phenotypic correlation cannot be tested. The phenotypic, genetic, and environmental 

correlations among all pairs of traits in both ethnic groups were estimated in SOLAR, 

both with and without adjustment covariates in the biometric models. 

 

 

 

Where: 

!p = phenotypic correlation between the traits 

!g = genetic correlation between the traits 

!e = environmental correlation between the traits 

h1
2
 = heritability of trait 1 

h2
2
 = heritability of trait 2 

 

The genetic and environmental correlations between the traits estimated in SOLAR, !g 

and !e, can be tested for significance by comparing the log-likelihood of the model in 

which the parameter of interest is estimated to that of the model in which the parameter is 

fixed to 0. The test for pleiotropy, or evidence of shared genetic influences, is as follows: 

 

  Ho: !g = 0,  Ha: !g  ! 0 

 

The null distribution of the likelihood ratio test statistic is a "
2

1. This statistic is used to 

test the null hypothesis of !g = 0 (no genetic influences are shared between the traits). 

Rejection of the null hypothesis provides evidence of pleiotropy. 

 

The genetic correlation can also be tested for evidence of complete pleiotropy (all genetic 

influences are shared between the pair of traits) according to the following test: 

  

  Ho: !g = 1,  Ha: !g  ! 1 

 

The null distribution of the likelihood ratio test statistic is a "
2

1. This statistic is used to 

test the null hypothesis of !g = 1 (all genetic influences are shared between the traits). 
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Rejection of the null hypothesis provides evidence that there are differences in the 

genetic influences on the traits. 

 

Finally, the presence of shared environmental influences can be determined by the 

following test: 

 

Ho: !e = 0,  Ha: !e  ! 0 

 

The null distribution of the likelihood ratio test statistic is a "
2

1. This statistic is used to 

test the null hypothesis of !e = 0 (no environmental influences beyond the adjustment 

variables are shared between the traits). Rejection of the null hypothesis provides 

evidence that there are shared environmental influences on the traits. 
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Appendix 4.3.  Distributional plots of outcomes 

 

Distribution of leukoaraiosis volume (cm
3
) in whites 

 

 
 

Distribution of the natural log of leukoaraiosis+1 in whites 
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Distribution of RAVLT delayed recall in whites 
 

 
 

Distribution of RAVLT total learning in whites 
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Distribution of DSST in whites 

 

 

 

Distribution of COWA FAS in whites 
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Distribution of COWA animals in whites 

 
 

 

Distribution of Stroop color word in whites 
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Distribution of Stroop difference in whites 

 

 

 

Distribution of leukoaraiosis volume (cm
3
) in African Americans 
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Distribution of the natural log of leukoaraiosis+1 in African Americans 

 

 

Distribution of RAVLT delayed recall in African Americans  
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Distribution of RAVLT total learning in African Americans 

 

 

Distribution of DSST in African Americans 
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Distribution of COWA FAS in African Americans 

 

 

 

Distribution of COWA animals in African Americans 
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Distribution of Stroop color word in African Americans 

 

 

 

Distribution of Stroop difference in African Americans 
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Appendix 4.4.  Quantile-quantile plots, Manhattan plots, and genome-wide inflation 

factors for GWAS 

 

QQ plot for GWAS of Ln (leukoaraiosis+1) in whites 

 

Manhattan plot for GWAS of Ln (Leukoaraiosis+1) in whites 
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QQ plot for GWAS of RAVLT delayed recall in whites 

 

 
 

Manhattan plot for GWAS of RAVLT delayed recall in whites 
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QQ plot for GWAS of RAVLT total learning in whites 

 

 
 

Manhattan plot for GWAS of RAVLT total learning in whites 
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QQ plot for GWAS of DSST in whites 

 

 
 

Manhattan plot for GWAS of DSST in whites 
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QQ plot for GWAS of COWA FAS in whites 

 

 
 

Manhattan plot for GWAS of COWA FAS in whites 
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QQ plot for GWAS of COWA animals in whites 

 

 
 

Manhattan plot for GWAS of COWA animals in whites 
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QQ plot for GWAS of Stroop color word in whites 

 

 
 

Manhattan plot for GWAS of Stroop color word in whites 
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QQ plot for GWAS of Stroop difference in whites 

 

 
 

Manhattan plot for GWAS of Stroop difference in whites 
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QQ plot for GWAS of Ln (leukoaraiosis+1) in African Americans 

 

 

Manhattan plot for GWAS of Ln (leukoaraiosis+1) in African Americans 
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QQ plot for GWAS of RAVLT delayed recall in African Americans 

 

 
 

Manhattan plot for GWAS of RAVLT delayed recall in African Americans 
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QQ plot for GWAS of RAVLT total learning in African Americans 

 

 
 

Manhattan plot for GWAS of RAVLT total learning in African Americans 
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QQ plot for GWAS of DSST in African Americans 

 

 
 

Manhattan plot for GWAS of DSST in African Americans 
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QQ plot for GWAS of COWA FAS in African Americans 

 

 
 

Manhattan plot for GWAS of COWA FAS in African Americans 
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QQ plot for GWAS of COWA animals in African Americans 

 

 
 

Manhattan plot for GWAS of COWA animals in African Americans 
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Q-Q plot for GWAS of Stroop color word in African Americans 

 

 
 

Manhattan plot for GWAS of Stroop color word in African Americans 
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Q-Q plot for GWAS of Stroop difference in African Americans 

 

 
 

Manhattan plot for GWAS of Stroop difference in African Americans 
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Genome-wide inflation factors for GWAS in whites and African Americans 

 

Trait Whites African Americans 

Ln(leukoaraiosis+1) 1.008 1.011 

RAVLT delayed recall  1.012 1.017 

RAVLT total learning  1.011 1.019 

DSST  1.017 1.003 

COWA FAS 1.022 1.014 

COWA animals 1.012 0.999 

Stroop color word 1.006 1.007 

Stroop difference 1.009 0.990 
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Appendix 4.5.  Percentage of shared SNPs and genetic/environmental correlations 

 

Percentage of shared SNPs and genetic correlation of trait pairs in whites 

 

 
 

Percentage of shared SNPs and environmental correlation of trait pairs in whites 
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Percentage of shared SNPs and genetic correlation of trait pairs in African 

Americans 

 

 
 

Percentage of shared SNPs and environmental correlation of trait pairs in African 

Americans 
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Appendix 4.6.  Summary of evidence for pleiotropy among four traits selected for 

permutation GWAS  

 

Phenotypic correlations 
  Ln (leuko+1) RAVLT total 

learning 

DSST COWA animals 

Ln(leukoaraiosis+1) 0.529
***

 (0.09) -0.295 -0.294 -0.174 

RAVLT total learning -0.063 0.516
***

 (0.10) 0.523 0.429 

DSST -0.064 0.269 0.843
***

 (0.09) 0.334 

COWA animals -0.039 0.311 0.175 0.349
***

 (0.10) 

Above diagonal: phenotypic correlations, !p, for unadjusted traits 

Below diagonal: phenotypic correlations, !p, for adjusted traits 

Diagonal: heritabilities from univariate polygenic analysis, h
2
 (SE), for adjusted traits 

For all adjusted traits, biometric models included age, sex, and education. The biometric model for 

ln(leukoaraiosis+1) also included TIV. 

Null hypothesis of tests: h
2
= 0 (diagonal) 

***
 p-value < 0.001 

 

Genetic and environmental correlations 
  Ln (leuko+1) RAVLT total 

learning 

DSST COWA 

animals 

Ln(leukoaraiosis+1) 0.529
***

 (0.09) 0.178 (0.14) -0.008 (0.22) -0.136 (0.12) 

RAVLT total learning -0.280
*
 (0.14) 0.516

***
 (0.10) 0.354 (0.21) 0.142 (0.12) 

DSST -0.092 (0.12) 0.263
*
 (0.11) 0.843

***
 (0.09) 0.015 (0.20) 

COWA animals 0.084 (0.17) 0.550
**

 (0.15) 0.310
*
 (0.13) 0.349

***
 (0.10) 

Above diagonal: environmental correlations, !e (SE) 

Below diagonal: genetic correlations, !g (SE) 

Diagonal: heritabilities from univariate polygenic analysis, h
2
 (SE), for adjusted traits 

For all adjusted traits, biometric models included age, sex, and education. The biometric model for 

ln(leukoaraiosis+1) also included TIV. 

Null hypothesis of tests: !e = 0 (below diagonal) 

Null hypothesis of tests: !g = 0 (above diagonal) 

Null hypothesis of tests: h
2
= 0 (diagonal) 

*
 0.01 < p-value < 0.05 

**
 0.001 < p-value < 0.01 

***
 p-value < 0.001 

 

Percentage of shared SNP associations at "=0.01 
  Ln (leuko+1) RAVLT total 

learning 

DSST COWA 

animals 

Ln(leukoaraiosis+1) 26189 (1.09%)       

RAVLT total learning 300 (0.59%) 24673 (1.03%)     

DSST 259 (0.50%) 858 (1.74%) 25449 (1.06%)   

COWA animals 201 (0.40%) 931 (1.93%) 496 (1.00%) 24422 (1.02%) 

Below diagonal: observed number (percentage) of shared significant SNP associations at "=0.01 

Diagonal: observed number (percentage) of significant associations for individual traits at "=0.01. The 

total number of SNPs tested for association was 2,401,820. 
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Appendix 4.7.  Examples of histograms of permutation test results 

 

Histogram of number of shared associated SNPs for ln(leukoaraiosis+1) and 

RAVLT total learning from paired permutation tests 

 
 

Histogram of number of shared associated SNPs for ln(leukoaraiosis+1) and 

RAVLT total learning from unpaired permutation tests 
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Histogram of percentage of shared associated SNPs for ln(leukoaraiosis+1) and 

RAVLT total learning from paired permutation tests 

 
 

Histogram of percentage of shared associated SNPs for ln(leukoaraiosis+1) and 

RAVLT total learning from unpaired permutation tests 
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Histogram of number of shared associated SNPs for RAVLT total learning and 

COWA animals from paired permutation tests 

 
 

Histogram of number of shared associated SNPs for RAVLT total learning and 

COWA animals from unpaired permutation tests 
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Histogram of percentage of shared associated SNPs RAVLT total learning and 

COWA animals from paired permutation tests 

 
 

Histogram of percentage of shared associated SNPs for RAVLT total learning and 

COWA animals from unpaired permutation tests 
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Chapter 5 

 

Conclusions and Future Directions 

 

In this dissertation, we focused on elucidating multiple attributes of the genetic 

architecture of leukoaraiosis through three different types of studies. In the first study 

(Chapter 2), we utilized a candidate gene approach to understand the contribution of 

single gene effects on mean levels of leukoaraiosis as well as gene-risk factor and gene-

gene interactions. In the second study (Chapter 3), we investigated genetic variation 

across the entire genome to identify chromosomal regions associated with additive effects 

on leukoaraiosis. In the final study (Chapter 4), we investigated the genetic correlations 

among leukoaraiosis and seven measures of cognitive function by using both measured 

(GWAS) and unmeasured (biometrical) genetic approaches. In Chapter 5, we first present 

a summary of the findings of this dissertation including an integration of findings across 

all three research studies and a discussion regarding the similarities and differences 

between whites and African Americans for GWAS results, heritabilities, and 

biometrically estimated genetic and environmental correlations. Next, we give an 

overview of the current state of knowledge of the genetic architecture of complex traits in 

humans and animals, noting how this dissertation research relates to and intersects with 

this growing body of knowledge. Finally, we offer promising avenues for furure research 

on the genetic architecture of leukoaraiosis and other complex traits. 
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Summary of Findings 

Leukoaraiosis is a highly heritable trait that is not well predicted by any clinical measures 

or covariates except for hypertension and age. Although leukoaraiosis has a high 

heritability, strong evidence for genetic variation associated with leukoaraiosis is limited, 

and to date the only consistently replicated association is with the angiotensinogen-

converting enzyme (ACE) insertion/deletion polymorphism. Meta-analysis of nine studies 

with a combined total of 2316 subjects found that the ACE deletion-deletion genotype 

had an association with leukoaraiosis with an OR of 1.95, 95% CI=1.09-3.48 

(Paternoster, 2009). Although there has been much interest in the potential association 

between the apolipoprotein E (APOE) !4 allele and increased leukoaraiosis due to the 

relationship between !4 and both Alzheimer’s disease (AD) and heart disease, most 

studies have found no association between !4 and leukoaraiosis (Paternoster, 2009). In 

this section, we compare and discuss the results from the association studies of 

leukoaraiosis in GENOA whites and African Americans presented in Chapters 2, 3, and 4 

and review the evidence for association between genetic variation in ACE and APOE in 

the GENOA cohorts. 

 

Differences in samples and methods used in Chapters 2, 3, and 4 analyses 

In order to compare the results across chapters in this dissertation, it is first necessary to 

delineate the differences in the samples and analysis methods used in each of the 

chapters. The majority of the differences in samples and methods are due to decisions 

made collaboratively with researchers analyzing leukoaraiosis and cognitive measures in 

other cohorts that we were interested in using for meta-analysis or for replication with 
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GENOA. For all of the analyses of leukoaraiosis, individuals were excluded if they had 

unusable MRIs or evidence of previously undetected stroke. The GWAS conducted in 

Chapter 4 also excluded individuals that were less than 45 years of age and individuals 

that had measures of leukoaraiosis but did not participate in cognitive testing, since the 

main focus of the Chapter 4 GWAS analysis was older-age decline in cognitive function. 

In addition, the sample varied across chapters depending on the genotype data available 

for analysis (candidate gene genotypes for Chapter 2, Affymetrix 6.0 genotypes for 

Chapter 3, and Affymetrix or Illumina genotypes for Chapter 4).  

 

GENOA whites were included in the analyses conducted in Chapters 2, 3, and 4, while 

African Americans were included only in Chapters 3 and 4. We chose to perform the 

candidate gene study (Chapter 2) in GENOA whites and not African Americans because 

we had no means to control for population admixture in the African American sample at 

the time this research was conducted, since neither ancestry informative markers nor 

genome-wide genotypes had been collected for African Americans. A slightly different 

method was used to obtain principal components of genotypes to control for population 

admixture in African Americans in the Chapters 3 and 4 analyses. In Chapter 3, we used 

genotype data from the Affymetrix 6.0 platform only and obtained principal components 

from genome-wide genotypes using all of the SNPs on the Affymetrix platform and all of 

the individuals in our sample. In Chapter 4, we had genotype data from both the 

Affymetrix and Illumina platforms for African Americans. Therefore, we obtained 

principal components from genotme-wide SNP genotypes that were present on both of 

these platforms (approximately 200,000 SNPs), and we used a sample of unrelated 
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individuals in order to prevent artefacts from the sibship structure of our sample from 

affecting the principal components. We did not need to control for population admixture 

in whites because previous analyses with the Structure program (Pritchard, 2000) showed 

that there was very little African or Asian ancestral genotypes present in the whites. 

 

The adjustment model for leukoaraiosis also varied slightly by chapter. In Chapter 2, we 

transformed leukoaraiosis using the natural logarithm plus 0.0001, while in the other 

chapters we used the natural logarithm plus 1. Adding a constant to the value of 

leukoaraiosis (either 0.0001 or 1) was done to prevent taking the natural logarithm of 

zero, and since the majority of leukoaraiosis values were substantially greater than zero, 

the effect of using two different constants is likely minimal. For all analyses, age and 

gender were used as adjustment covariates for leukoaraiosis, but education was also 

included as an adjustment covariate in Chapter 4 to retain consistency with adjustment of 

the other outcomes (cognitive measures), many of which have a strong association with 

education. Finally, a measure of head or brain size was also used as an adjustment 

covariate for leukoaraiosis in every analysis. Brain size was used in Chapter 2, while total 

intracranial volume was used in Chapter 3. Adjusting volume of leukoaraiosis by brain 

volume makes intuitive sense, since a larger volume of brain tissue would be affected in 

individuals with larger brains given the same percentage of affected tissue. However, the 

brain shrinks both with age and with increasing pathology of AD, so some researchers 

prefer to use a measure such as total intracranial volume which does not vary with age or 

disease process.  
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Association between ACE I/D and APOE !4 polymorphisms in GENOA 

Since the ACE I/D polymorphism has the only consistently replicated association with 

leukoaraiosis reported in the literature to date, we examined its association with the 

samples of GENOA whites and African Americans used in the Chapter 3 GWAS. In both 

whites and African Americans, the association between this polymorphism and the 

residual value of leukoaraiosis after adjustment for age, sex, total intracranial volume, 

and the top 10 principal components (in African Americans only) was not significant (p-

value = 0.903 in whites and 0.935 in African Americans).  

 

In Chapter 3, we chose to perform the meta-analysis of African Americans from GENOA 

and ARIC after removing individuals with at least one copy or with two copies of the 

APOE !4 allele in order to reduce the genetic heterogeneity of the sample with respect to 

AD susceptibility, since !4 has a strong association with the development of AD. Since 

the relationship between  !4 and leukoaraiosis is unclear, we conducted this analysis by 

treating !4 both as a dominant allele (removing individuals with !4/- genotypes) and as a 

recessive allele (removing only individuals with !4/!4 genotypes). In the full GENOA 

samples with candidate gene data, the allele frequency of !4 was 0.145 in whites and 

0.226 in African Americans, and the genotype frequencies were as follows: 0.019 !4/!4, 

0.253 !4/-, and 0.728 -/- in whites, and 0.045 !4/!4, 0.361 !4/-, and 0.594 -/- in African 

Americans. The APOE !4 allele showed no association with residual values of 

leukoaraiosis in the white and African American samples used in the Chapter 3 GWAS 

(p-value = 0.365 in whites and 0.380 in African Americans).  
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The removal of individuals with an !4 genotype assumes that there is interaction between 

!4 and other polymorphisms that affects variation in leukoaraiosis. Since conducting a 

test of interaction between !4 and all other polymorphisms is not practical, a strategy for 

determining whether individuals with !4 alleles should be removed from a GWAS 

analysis could be based on the premise that the most common types of interaction effects 

tend to also show at least marginally significant main effect associations (Kooperberg, 

2008). Based on this, an appropriate strategy would be to first test for association 

between leukoaraiosis and !4, select the genetic model that best fits the association 

results (treating !4 as a dominant or recessive allele), and remove people from the sample 

accordingly if there is evidence of a main effect. For meta-analyses across studies in 

which the raw data are not shared among investigators, the association between 

leukoaraiosis and !4 would need to be performed separately within each cohort, and an 

appropriate strategy for removing individuals should be discussed by collaborators based 

on the results of the association studies.  

 

GWAS results for candidate gene variants  

The candidate gene study in Chapter 2 focused on examining SNP main effects and 

context-dependent effects (both SNP-covariate interactions and SNP-SNP interactions) 

associated with leukoaraiosis in GENOA whites. Since this study was performed before 

genome-wide genotyping was common, we were unable to secure a replication sample 

that had both measures of leukoaraiosis as well as genotypes for the candidate gene SNPs 

that we examined. In the absence of a replication sample, we used a filtering approach to 

reduce false positive associations. Of the 1649 SNPs from 268 genes known or 
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hypothesized to be involved in arteriosclerosis and related pathways, we found four SNPs 

that were able to predict greater than half of a percent of variation in leukoaraiosis in 

testing samples using cross-validation, had consistent effects in two internal replication 

samples, and had a false positive rate < 0.3. These SNP main effects were found in factor 

III (F3) which encodes a blood clotting factor, KIT tyrosine kinase ligand (KITLG) which 

is involved in hematopoietic stem cell proliferation, calpain 10 (CAPN10) which has been 

implicated in pathways associated with obesity and diabetes, and matrix 

metalloproteinase 2 (MMP2) which encodes an extracellular matrix protein.  

 

In Chapters 3 and 4, we were able to assay the entire genome for association with 

leukoaraiosis in both whites and African Americans, and the criteria for significance 

became much steeper due to the multiple testing issues involved in performing so many 

association tests. The p-values for the four significant associations in the Chapter 2 

candidate gene study ranged from 0.0001 to 0.0032, which are not low enough to even be 

considered worthy of further investigation in a GWAS due to the large number of false 

positive associations that will be in this range of p-values when conducting millions of 

association tests. An investigation of the GWAS results for leukoaraiosis from whites and 

African Americans in the Chapter 4 GWAS analysis showed that the four SNPs from the 

candidate gene study and the SNPs in nearby chromosomal regions generally did not 

obtain a noteworthy level of significance in these studies.  

 

The SNPs in the F3 and CAPN10 genes that showed association in Chapter 2, rs3917643 

and rs7571442, were not in the set of imputed SNPs used in the GWAS in Chapter 4. No 
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SNPs within 50kb of either SNP had a p-value < 0.001 in the set of imputed results for 

either whites or African Americans, though one SNP with p-value = 0.002 was observed 

40kb from rs7571442 in whites. The SNP in KITLG that showed association in Chapter 2, 

rs995029, also showed association in the Chapter 4 GWAS (p-value = 8.7x10-4) in 

whites, and four SNPs within 50kb of the original SNP had a p-value < 0.001 in this 

sample. However, this SNP showed no association in the GWAS conducted in African 

Americans (p-value=0.88), and no SNPs within 50kb of the original SNP showed 

association. The MMP2 SNP that showed association in Chapter 2, rs0028731, did not 

show association in the Chapter 4 GWAS in either whites (p-value = 0.2) or African 

Americans (p-value = 0.8), although 12 SNPs within 50kb of the original SNP had p-

values < 0.002 in African Americans.  

 

Comparison of Chapter 3 and Chapter 4 GWAS results 

Appendix 5.1 presents a graphical summary of the chromosomal regions showing the 

strongest association with leukoaraiosis for whites and for African Americans, by 

indicating regions of 10Mb that contain at least one SNP with moderate evidence of 

significance (p-value < 1x10
-4

) in either the Chapter 3 or Chapter 4 GWAS. For whites, 

there was a large degree of similarity in the findings in the two GWAS conducted for 

leukoaraiosis (most of the regions containing a moderately associated SNP in the Chapter 

3 GWAS also had a moderately associated SNP in the Chapter 4 GWAS). Of the 49 

regions showing moderate significance in the Chapter 3 GWAS, 34 (69.4%) also showed 

moderate significance in the Chapter 4 GWAS. This relatively high degree of similarity is 

expected, since the sample did not change very substantially between Chapter 3 and 
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Chapter 4 and the additional adjustment variable in Chapter 4, education, was not 

associated with leukoaraiosis.  

 

For African Americans, there is a much larger discrepancy between the regions with 

moderately associated SNPs in GWAS from Chapters 3 and 4. Of the 61 regions showing 

moderate evidence of association in the Chapter 3 GWAS, only 22 (36.1%) also had 

moderate evidence of association in the Chapter 4 GWAS. This discrepancy between 

results of the two GWAS is likely due to two factors. First, the sample size of African 

Americans increased substantially from N=553 in Chapter 3 to N=720 in Chapter 4 due 

to the addition of the ARIC participants genotyped on the Affymetrix platform as well as 

individuals genotyped on the Illumina platform. This may have affected the results if the 

participants differed in levels of leukoaraiosis or the adjustment covariates compared to 

the participants gneotyped by GENOA on the Affymetrix platform. What likely had the 

largest effect on the GWAS results, however, was the difference in the methods for 

calculating the principal components of genotype data in Chapters 3 and 4.  

 

Comparison of GWAS results in whites and African Americans 

The final table in Appendix 5.1 shows chromosomal regions that had moderate evidence 

of association (at least one SNP with p-value < 1x10
-4

) in either the Chapter 3 or Chapter 

4 GWAS for both whites and African Americans. Thirty-four 10Mb regions across the 

genome showed moderate evidence of association with leukoaraiosis in both whites and 

African Americans. To determine whether the SNPs in 10Mb regions showing 

association in whites and African Americans were close enough on the genome to be 
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marking variation in the same chromosomal location, instances in which there were SNPs 

within 1Mb of each other (one in whites and one in African Americans) were noted. Of 

the 34 10Mb regions that showed moderate evidence of association in both groups, 14 

(41.2%) had SNPs within 1Mb of each other in whites and African Americans. This 

indicates that these regions are worthy of further follow-up and fine mapping to 

determine whether a specific gene or genetic variant may be responsible for the signal 

detected in this region in both ethnic groups. Of note, none of the regions that showed 

evidence of association in both whites and African Americans contained any of the four 

candidate genes with genetic variation associated with leukoaraiosis in Chapter 2, the 

APOE gene, or the ACE gene.  

 

Overall conclusions from GWAS and potential clinical relevance of findings 

Fourteen chromosomal regions show evidence of association with leukoaraiosis in both 

GENOA whites and African Americans. Further exploration through fine mapping 

strategies and careful evaluation of the linkage disequilibrium structures in whites and 

African Americans in these regions will be necessary to determine whether there is a true 

genetic signal or whether these signals are simply artefacts of the analysis that do not 

represent true genetic singal. For example, the region on chromosome 6 from 30Mb to 

40Mb from the start of the chromosome showed association with leukoaraiosis in both 

whites and African Americans. This region harbors the Major Histocompatability (MHC) 

locus, which is known to vary substantially across populations and tends to lead to false 

positive associations when population stratification or admixture is accounted for 

completely.  
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Though follow-up analysis is warranted for several genomic regions identified in this 

dissertation as potential candidates for association with leukoaraiosis, the lack of strong 

signal and inconsistency among analyses in this dissertation and in the literature indicate 

that we currently have a very limited understanding of the genes and genetic variants 

within those genes that affect leukoaraiosis across a range of age and population groups. 

It is clear that until further studies confirm a relationship between specific genetic 

variants and leukoaraiosis, the application of findings from association studies to clinical 

practice can not take place. Even if further studies identify that genetic variants do, in 

fact, have a true association with leukoaraiosis, the clinical utility of these findings is 

likely to be limited given the recent research regarding the predictive ability of genetic 

variants associated with other complex disease traits.  

 

A recent study by Ripatti et al. (2010) examined the predictive ability of a set of 13 SNPs 

that have shown replicated association with coronary heart disease (CHD). In this study, 

the authors constructed a genetic risk score (GRS) by summing the number of risk alleles 

(0, 1, or 2) at each of the 13 loci and used Cox proportional hazards modeling to examine 

the association between the GRS and time to coronary heart disease, cardiovascular 

disease, and myocardial infarction during a 10-year follow-up of 30,725 participants. The 

predictive ability of the GRS for CHD traits was on par with the predictive ability of 

traditional risk factors such as LDL cholesterol and systolic blood pressure, with hazard 

ratios in the range of 1.5 to 2.0 when comparing the top and bottom quintiles. Though the 

GRS was able to identify the 20% of individuals with 70% increased risk of a first CHD 
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event and was still associated with CHD events after adjustment for traditional risk 

factors and family history of CHD, including GRS in the models did not confer additional 

predictive ability beyond traditional risk factors when comparing area under the curve 

(0.872 vs. 0.871, p-value=0.35).  

 

The results from Ripatti et al. (2010) mirror the behavior of GRS in the majority of the 

other complex disease traits reported in the literature. Combining replicated SNP 

associations, each explaining a very small proportion of variation in disease risk, into a 

GRS typically demonstrates predictive ability but does not improve risk prediction 

beyond measurable risk factors. One of the primary goals of constructing GRS is to 

identify individuals who may benefit from earlier or more intenstive intervention, but 

GRS will be of little clinical utility in this context if the predictive ability over traditional 

risk factors is not substantial (Sandhu, 2010). However, Sandhu et al. (2010) point out 

that for common traits with high heritability, such as leukoaraiosis, discovery of all or 

many of the loci that increase susceptibility may prove to have clinically useful 

implications, and that the identification of these variants may be possible with increased 

sample sizes and improving technologies and research strategies for GWAS.  

 

Differences in heritabilities and genetic correlations in whites and African Americans 

In Chapter 4, the heritabilities of leukoaraiosis and cognitive measures after adjustment 

for age, sex, education, and total intracranial volume (in leukoaraiosis only) showed a 

consistent pattern in whites and African Americans. DSST had the highest heritability 

(0.883 in whites, 0.556 in African Americans), Stroop difference had the lowest 
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heritability (0.275 in whites, 0.154 in African Americans), and leukoaraiosis and the 

other cognitive measures had mid-range heritabilities (0.35-0.53 in whites, 0.33-0.54 in 

African Americans). However, heritabilities showed a clear trend of being lower in 

African Americans, with COWA FAS being the only notable exception (heritability = 

0.366 in whites, 0.536 in African Americans). A similar trend was observed for overall 

phenotypic correlations and genetic correlations, with African Americans showing a 

similar but weaker correlational structure. 

 

There are several reasons that could account for the lower observed heritabilities in 

African Americans. Since heritability is the fraction of the total variability of the trait 

accounted for by additive genetic factors, lower heritabilities could result from greater 

trait variation (a larger denominator) or from a smaller contribution from additive genetic 

effects (a smaller numerator). Differences in either the numerator or the demoninator 

could be due to true population differences between whites and African Americans, or 

they could simply be artefacts of the GENOA samples, such as differences in age or 

family structure. 

 

To explore the possibility that African Americans have a greater amount of variation in 

leukoaraiosis than whites, we used Levene’s test for equality of variances (Levene, 1960) 

to test for homogeneity of the variances of leukoaraiosis before and after adjusment for 

covariates in whites and African Americans. This test was selected because it does not 

rely heavily on the assumption of normality. The mean, trimmed mean, or median can 

serve as the parameter of interest for Levene’s test, but the median performs best when 
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the trait distribution is skewed (Brown, 1974). Using each of these parameters produced 

similar results, so only Levene’s test using the median as the parameter of interest is 

reported here. This test detected significant heterogeneity in the variances of raw 

leukoaraiosis (p-value = 1.04x10
-7

), ln(leukoaraiosis+1) (p-value = 3.54x10
-6

), and 

ln(leukoaraiosis+1) after adjustment for age, sex, education, and total intracranial volume 

(p-value = 1.28x10
-10

) between whites and African Americans. The evidence for 

heterogeneity in variation of leukoaraiosis between whites and African Americans 

actually increases after adjusting for covariates including age, and the ratio of the 

variances also increases (ratio of variances of ln(leukoaraiosis) = 0.565 before 

adjustment, 0.654 after adjustment). Therefore, the African American sample does have a 

larger degree of variation in this trait than whites, which is not due to age differences 

between the white and African American samples (mean age = 61.3 years in whites, 63.3 

years in African Americans). This suggests that age differences alone are unlikely to 

account for the lower heritability estimates observed in African Americans.  

 

To examine whether differences in the family structure of GENOA samples of whites and 

African Americans accounted for the lower heritabilities observed in African Americans, 

we created new samples that had the same distribution of sibship sizes. In the original 

samples used to calculate heritabilities in Chapter 4, the African American sample had a 

larger number of singletons (124 singletons in the white sample, 220 in the African 

American sample), and the white sample had three sibships larger than six individuals 

while the African American sample had none. For sibships of each size, the maximum 

possible number of sibships were selected from each group to create “reduced” samples 
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of whites and African Americans. Appendix 5.2 shows the pedigree structures of the 

original and reduced samples and the heritabilities of leukoaraiosis and the seven 

cognitive traits estimated using each of the samples. Heritabilities calculated using the 

reduced samples were very similar to those calculated using the original samples. For 

instance, the heritability of ln(leukoaraiosis) adjusted for age, sex, education, and total 

intracranial volume was 0.529 in the original sample of whites, 0.518 in the reduced 

sample of whites, 0.432 in the original sample of African Americans, and 0.417 in the 

reduced sample of African Americans. The negligible change in heritability estimates in 

the reduced samples indicates that differences in family structure of the white and 

African American GENOA samples is not responsible for the observed lower heritabilies 

of the traits observed in African Americans. 

 

Since neither age nor family structure are responsible for lower heritability estimate of 

leukoaraiosis in GENOA African Americans, it is likely that the lower heritability 

reflects a true difference in the population parameters of the groups studied and is not an 

artefact of the analysis. GENOA African Americans exhibit a greater amount of 

variability in leukoaraiosis than GENOA whites, and additive genetic effects explain a 

smaller proportion of the variability in African Americans. The lower heritability of 

leukoaraiosis may be due to a more prominent role of non-genetic (environmental) 

factors affecting leukoaraiosis variation in African Americans. This may occur if the 

African Americans had greater variability in these important non-genetic factors than 

whites (for example, if factors related to socioeconomic status affects variation in 

leukoaraiosis and African Americans have a larger range of socioeconomic status than 
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whites). The lower heritability in African Americans may also be due to context-

dependent effects having a greater effect on leukoaraiosis in African Americans. If gene-

gene or gene-environment interactions play a larger role in the genetic architecture of 

leukoaraiosis in African Americans, heritabilities may be lower because variation due to 

additive genetic effects that do not account for variation due to interactions.  

 

Lower heritabilities of leukoaraiosis and the seven cognitive traits examined in Chapter 4 

as well as differences in the genetic and environmental correlations between GENOA 

whites and African Americans suggest that non-genetic factors have a greater effect in 

African Americans than in whites for all of the brain traits studied. Though similar 

patterns were observed in whites and African Americans, genetic correlations (evidence 

of shared genetic effects) among cognitive traits tended to be higher and more significant 

in whites. While very little evidence of environmental correlation (shared environmental 

effects) between cognitive traits was observed in whites, eight of the 21 pairs of cognitive 

traits (38%) had evidence of significant environmental correlation in African Americans. 

Therefore, it is likely that non-genetic factors are indeed playing a larger role in affecting 

variation in brain traits in African American GENOA sample. 

 

Knowledge about the Genetic Architecture of Common Chronic Conditions 

Genetic architecture 

The genetic architecture that underlies the variability of a trait includes the number of 

genes that affect the trait, the number of alleles within each involved gene as well as their 

allele frequencies and effect sizes on trait mean levels, the type of locus (regulatory, 

exonic, intronic, intergenic), the relative contribution of each allele to both the genetic 
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and overall phenotypic variances, and the variability (e.g. plasticity) and covariability 

(e.g. pleiotropy) when these genes are considered alone or when interacting with other 

genes and measures of the environment (both internal and external). A large amount of 

information about the genetic variations that impact complex human traits comes from 

association studies, particularly GWAS. GWAS and the resources for conducting them, 

such as the International HapMap Project (The International HapMap Consortium, 2003), 

are designed to identify trait-associated genetic variation that is relatively common in the 

population (with minor allele frequency (MAF) > 0.1), and are underpowered to detect 

variants that are rare (Manolio, 2008). The existence of common variants that are 

associated with risk of common disease is exemplified by the APOE !4 allele, which is 

present at relatively high frequency (approximately 10%-25%) in many ethnic groups and 

clearly confers risk of cardiovascular disease and dementia (Chu, 2009; Dickstein, 2010; 

Reich, 2001). GWAS studies have been conducted for a wide variety of human traits, 

ranging from common chronic diseases to behavioral phenotypes to anthropometrics, and 

have provided researchers with useful and often surprising insights into the genetic 

architecture of human traits. 

 

Allele frequencies and effect sizes of common variants identified in GWAS 

With very few exceptions, the common variants found to affect human traits have very 

small effect sizes. An exploration and summarization of 531 associations between single 

nucleotide polymorphisms (SNPs) and traits from 151 published GWAS studies found 

that reported odds ratios for dichotomous traits ranged from 1.04 to 29.4, but that the 

median odds ratio was 1.33 (Hindorff, 2009), indicating that for the majority of traits, 
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common SNPs exhibit very modest effects. The risk allele frequencies of the SNPs found 

to be associated with traits in this survey of GWAS studies were variable, having a 

median of 36% and an interquartile range from 21%-53%. Very little data has been 

compiled regarding the effect sizes and allele frequencies from GWAS of quantitative 

traits. In our GWAS of leukoaraiosis, the effect sizes of the most significant SNPs were 

in the range of 0.23 to 0.86 standard deviations and their MAFs ranged from 2.3% to 

49% (the median MAF was 20.4% in whites and 13.2% in African Americans). Given the 

way in which the first generation genotyping chips (e.g., Affymetrix® Genome-Wide 

Human SNP Array 6.0 and the Illumina® Human1M-Duo BeadChip) emphasized 

common alleles with excellent linkage disequilibrium (LD) coverage, it is likely that 

these statistics do not necessarily represent the attributes of the causative mutations but 

rather represent only the state of our knowledge to date. 

 

Types of SNPs that have shown effects in GWAS 

A somewhat surprising finding of GWAS has been the genomic locations of identified 

SNPs. Although protein-coding regions make up only about 1.5% of the genome (Lander, 

2001), it was predicted that the majority of SNPs associated with traits and diseases 

would be found in these regions and that nonsynonymous SNPs would be particularly 

influential as causal variants. While it is true that nonsynonymous sites are significantly 

overrepresented in GWAS findings when compared to randomly selected SNPs on 

genotyping arrays, these account for only a small proportion of the significant and 

replicated associated variants(~9%) (Hindorff, 2009). SNPs in promoter regions, which 

affect gene transcription and thus the amount of gene expression, were also significantly 
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overrepresented but account for only 2% of associated SNPs. Synonymous SNPs, found 

in gene coding regions but with no effect on the amino acid sequence of proteins, 

accounted for an additional 2% of associated SNPs but were not overrepresented. The 

remainder of associated SNPs in genic regions were intronic, accounting for 45% of 

associated SNPs. Almost half of the SNPs identified as associated with human traits and 

diseases were from intergenic regions (43%), which is surprising because until recently it 

was assumed these intergenic regions had very little effect on gene expression and were 

largely non-functional. In GWAS and meta-analysis of leukoaraiosis in whites and 

African Americans presented in Chapter 3, 45 SNPs had p-values < 1x10
-5

. Of these 

SNPs, 13 SNPs (71.1%) were intergenic (outside the boundaries of the coding region of a 

gene) and the remainder (28.9%) were intronic.. 

 

Gene deserts harbor common variants that may affect regulation of gene expression at 

the level of transcription 

Gene deserts, which are long stretches of DNA that contain no protein-coding genes, 

make up approximately 25% of the genome (Venter, 2001). The surprising discovery 

from GWAS that gene deserts often contain SNPs that have a replicated impact on human 

traits such as colorectal cancer (Tenesa, 2009) and Crohn’s disease (Mathew, 2008) 

spurred interest in examining what mechanistic effect these SNPs may be having on gene 

expression. One of the main hypotheses is that gene deserts contain regulatory regions 

that play a role in determining expression of the genes in distant but flanking regions 

(Taylor, 2005). The theory posits that flanking genes are physically positioned next to 

these regulatory regions through the packaging of DNA in the nucleus, and that the 
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regions exert their effects through blocking or enhancing the transcriptional machinery. 

Evidence for this hypothesis includes the finding that some gene deserts contain 

evolutionarily conserved sequences. One of the earliest findings in this area of research 

was the presence of five enhancer sequences between 225kb and 780kb in a gene desert 

upstream of the DACH1 gene, expressed in organ development, that are evolutionarily 

conserved in human, mouse, frog, and fish (Nobrega, 2003). The Encyclopedia of DNA 

Elements (ENCODE) project also showed that some genes have alternative promoter 

sequences up to several hundred kilobases away from their known transcription start 

sites, which may also constitute some of the associated SNPs in intergenic regions 

(ENCODE Project Consortium, 2007).  

 

Gene deserts may harbor miRNAs, which affect trait variation at the level of 

translation 

Until recently, it was assumed that the only regions of the genome that were transcribed, 

at least to a large degree, were protein-coding regions. Surprisingly, the ENCODE project 

revealed that up to 90% of the human genome is transcribed, including many non-coding 

regions that were thought to be silent (ENCODE Project Consortium, 2007). This led to 

the discovery of the importance of microRNAs (miRNAs) in regulating gene expression. 

Over 700 miRNAs, evolutionarily conserved noncoding RNAs of about 25 nucleotides, 

have been discovered in the human genome (Anglicheau, 2010). MiRNAs are now 

recognized to play a role in post-transcriptional gene expression by mechanisms such as 

repressing translation or degrading coding mRNA (Shyu, 2008). It is believed that each 

miRNA regulates hundreds of targets and that they also interact competitively and 
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synergistically with each other (Anglicheau, 2010). There is already preliminary evidence 

that miRNAs play a role in human diseases such as cardiovascular disease (Diez, 2009) 

and cancer (Croce, 2008). 

 

Pleiotropy has been detected in studies of GWAS findings 

Another interesting result of the current GWAS era is that it is providing insight into the 

frequency and mechanisms underlying pleiotropy. An assessment of 118 GWAS articles 

containing 56,411 significant associations conducted by Johnson et al. (2009) revealed 

that several SNPs and a large number of genes were associated with multiple traits. One 

SNP in the APOC1 gene, for example, was associated with 11 traits ranging from 

Alzheimer’s disease (AD) to coronary heart disease. Johnson and colleagues also found 

that 1% of genic regions, based on 100kb bins, exhibited associations with at least 13 

traits, many of which appear to be unrelated based on current biological knowledge. For 

example, one bin on chromosome 2 was associated with 87 traits ranging from abdominal 

aortic calcification to bipolar disorder. Another interesting finding from this study of 

GWAS results was that the protein-coding genes shown to be associated with human 

diseases and traits were significantly overrepresented in Gene Ontology categories such 

as cell adhesion, signal transduction, ion transport, and protein phosphorylation. These 

proteins are key regulators of multiple downstream molecular and physiological 

pathways, making them key candidates for pleiotropic gene effects. Studies of pleiotropy 

using GWAS findings are just beginning, and their methodologies have yet to be fully 

developed. In this dissertation, we began to examine the utility of using the percentage of 

shared SNP associations at a nominal significance level (!=0.01) as a metric for 
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assessing pleiotropy among leukoaraiosis and cognitive traits. While we were unable to 

draw strong conclusions due to our relatively small sample sizes, we did find preliminary 

evidence that percentage of shared SNP associations from GWAS may have value as a 

metric of pleiotropy because it has a much stronger relationship with biometrically 

estimated genetic correlation than environmental correlation. This indicates that further 

investigation of this method for assessing pleiotropy is an endeavor that is worth 

pursuing.  

 

Knowledge of Genetic Architecture from Studies of Model Organisms 

Genetic studies in model organisms 

In many ways, our understanding of the complex genetic architecture of common traits in 

humans is still years behind what has been demonstrated in model organisms. Model 

organisms represent a much more accessible avenue for studying genetic variation, since 

the researcher is able to experimentally homogenize the genetic and environmental 

backgrounds of the organisms in order to assess the effects of single genetic variations in 

isolation. Studies conducted in animal models, particularly of quantitative trait loci, have 

revealed several consistent findings regarding the genetic architecture of complex 

phenotypes, and many of the observations parallel or extend the conclusions drawn from 

human studies. The lessons learned from studying behavioral, anthropomorphic, and 

other quantitative traits in model organisms may provide insight into understanding how 

genetic variation affects human behavior at multiple levels: DNA sequence, transcription, 

protein abundance, metabolism, and in differing environmental contexts (Mackay, 2009). 
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Allele frequencies, effect sizes, and the polygenic model 

In a recent review of the genetic architecture of quantitative traits in flies, mice, and 

humans, Flint and Mackay note the consistent observation that there tend to be large 

numbers of loci, each with small effects, that impact single traits (Flint, 2009). Allelic 

effects in animal models appear to follow an exponential distribution in which there are 

only a few loci with large to moderate effects, and increasing numbers of loci with 

smaller effects, and it appears that this is true for almost all traits studied. Flint and 

Mackay attest that this seems to be the pattern observed in humans also, as large effects 

in GWAS studies appear to be the exception rather than the rule and a number of genes 

with small effects have been observed for quantitative traits such as height (Flint, 2009; 

Gudbjartsson, 2008). In addition, many of the quantitative trait loci (QTLs) detected in 

animal studies tend to follow an additive polygenic model (Kenney-Hunt, 2006), and 

there is evidence that this also true for some human traits such as height (Visscher, 2008). 

 

Different alleles at the same locus may have differential effects 

An interesting finding from model organisms is that there may be another layer of 

underlying complexity to the mechanisms in which allelic variants affect quantitative 

traits. Drosophila geneticists have begun to use association mapping in order to determine 

the molecular basis of allelic variation, and are now studying quantitative trait 

nucleotides (QTNs) at QTLs. It has been consistently shown that differing alleles at the 

same locus do not have consistent effects on particular traits (Mackay, 2009). For 

example, two independent P-element insertions into the exactly the same genetic location 

but at opposite orientations in Drosophila have very different phenotypic effects: one 
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increases trehalose sensitivity and decreases starvation resistance while the other has no 

effect on trehalose sensitivity but increases starvation resistance (Rollmann, 2006). An 

example of the relevance of these findings to human genetics is that we may find that it is 

not only the number of copies of an allele that matters at a CNV locus, but also the 

precise orientation and constitution of the genetic variants within the CNV. 

 

Gene-environment and gene-gene interaction are common 

Animal studies have also shown that context-dependence (gene-environment interaction 

and epistasis) plays a key role in almost all phenotypes studied (Flint, 2009). Interactions 

between QTLs and sex are a very common finding in model animal studies, with a large 

fraction of detected QTLs (approximately 19% to 50% depending on the trait studied) 

exhibiting sex-specific effects (Kenney-Hunt, 2006; Cheverud, 2001). For example, a 

recent study on Drosophila life span found that 41 of 58 detected QTLs (70.7%) showed 

differential trends in males and females, and furthermore that 16 of 21 statistically 

significant epistatic interactions (76.2%) also exhibited differential sex effects (Magwire, 

2010). In a study of adiposity in mice, Cheverud et al. (2001) observed that the effect 

sizes for individual QTLs and epistatic effects were of similar magnitude (about one-third 

of a standard deviation unit, explaining an average of 5% of the phenotypic variance). In 

this study, accounting for epistatic effects between adiposity QTLs doubles the 

proportion of total variance of adiposity explained in females (from 14% to 28%) and 

increases it from 27% to 35% in males.   
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Flint and Mackay believe that similar patterns of context-dependence are likely to also 

exist in humans, but that the probitively large sample sizes needed to detect these 

findings in humans is the reason why findings have not been consistently replicated 

similar to main effects of SNPs (Flint, 2009). However, candidate gene studies on human 

traits that have examined context-dependence through statistical tests of interaction or 

biometrical modeling have demonstrated the presence of both sex specific and epistatic 

effects. For example, Reilly et al. (1994) showed that alleles at the APOE locus exhibited 

gender-specific influences on the correlations and covariances of nine plasma lipid 

protein traits (APOE alleles had a significant influence on 27.8% of correlations and 

covariances in females, but only 8.3% in males). In addition to gender-specific effects, 

APOE alleles have also been shown to have epistatic effects in studies of human traits 

such as leukoaraiosis through interaction with polymorphisms in the ACE and MTHFR 

genes (Szolnoki, 2004). In the candidate gene study we conducted as part of this 

dissertation, epistatic effects had the largest cross-validated influence on trait variation. 

Four pairs of SNP-SNP interactions explained 9.59% of the trait variation in independent 

test samples, while the four most highly associated SNPs explained only 3.72%.  

 

Pleiotropy is common, and also displays gene-gene and gene-environment interaction 

The large degree of epistasis and context-dependent effects extends beyond single allelic 

variants and also is found for pleiotropic effects (Mackay, 2009). As discussed in 

previous chapters, the degree of pleiotropy detected in QTL studies of Drosophila and 

mice studies is extensive for both anthropometric and behavioral phenotypes (Mackay, 

2005). For example, a review of complex behavior in Drosophila indicates that large 
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numbers of pleiotropic genes interact in an epistatic fashion to regulate behavioral traits, 

and that these pleiotropic genes commonly have sex- and environment-specific effects 

(Mackay, 2009). There is evidence that the complexity of the genetic architecture of 

human traits also exhibits a high degree of pleiotropy and interactions. For example, most 

human behaviors are quantitative traits that are affected by complex networks of 

interacting genes that are context-dependent (Falconer, 1998), and similar rules for 

pleiotropic action are likely to shape these traits (Mackay, 2009). In our study of 

pleiotropy in leukarasaiosis and cognitive traits, we found a large degree of pleiotropy 

among the pairs of cognitive traits but very little pleiotropy between leukoaraiosis and 

individual cognitive traits. Fourteen of 21 cognitive trait pairs in whites (67%) and 4 of 

21 cognitive trait pairs in African Americans (19%) had significant genetic correlations 

(ranging from 0.26 to 0.92), indicating that these share a large proportion of genetic 

effects. We also observed a strong relationship between biometrically estimated genetic 

correlations and the percentage of shared SNP associations at a nominal ! level from 

GWAS (which ranged from 0.6% to 16.1% in trait pairs exhibiting significant genetic 

correlation), providing preliminary evidence that metrics can be developed to evaluate 

pleiotropy using GWAS findings.  

 

Future Directions 

Given the importance of understanding the genetic architecture of human traits, we have 

provided state-of-the-art reflection of the current approaches available to investigate 

genetic causes of variation in risk of common chronic conditions. As the technologies for 

measuring different types of genome-wide phenomena continually increase, there is a 
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concomitant increase in the complexity of next-generation of studies to explore this topic. 

In final last section of the dissertation, we review some of the most exciting arenas that 

are likely to inform the next set of research questions to elucidate the genetic architecture 

of leukoaraiosis. First, we discuss the potential role of epigenetic effects in trait variation. 

Next, we present potential new statistical methods for studying the heritability of disease 

traits and examining pleiotropy among traits. Finally, we discuss the necessity of moving 

toward a systems-level approach for integrating GWAS, epigenetic, and transcriptomic 

data in order to obtain a more complete picture of the genetic architecture of disease 

traits. 

  

Epigenetic effects play a role in trait variation  

Recently, the ENCODE project definitively demonstrated that transcriptional regulation 

of the DNA sequence involves a set of processes acting in concert, including 

modifications to histones and to the DNA itself (ENCODE Project Consortium, 2007). 

This brought the attention of researchers to another potential contributor to variation in 

human traits, termed epigenetic mechanisms, which collectively include histone 

modfication, DNA methylation, and miRNA. These are a set of heritable and non-

heritable phenomena that play a key role in a variety of cellular processes and have been 

hypothesized as a link between environmental factors and chronic disease susceptibility 

(Waterland, 2009). Covalent modification of cytosine residues in DNA by methylation 

plays an active role in gene silencing (Egger, 2004), and there is evidence that changes in 

methylation at key sites affect transcription in a variety of human disease processes 

including cancer (Esteller, 2008), athersclerosis (Turunen, 2009), and functional 
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abnormalities in the brain (Wilson, 2008; Pogribny, 2009). Epigenomic technologies, 

developed to study epigenetic mechanisms on a genome-wide scale, include commercial 

array-based techniques and techniques based on restriction endonucleases, and second-

generation technologies for massively parallel large-scale analysis are currently being 

developed along with analysis strategies for this exciting new type of data (Feinberg, 

2010). Whole-genome methylation profiles (27,578 markers in 14,495 genes) have been 

obtained for GENOA participants using the Illumina® Infinium HumanMethylation27 

BeadChip, and GENOA investigators have already begun to test for association between 

methylation profiles and target organ damage phenotypes. As a next step, we plan to 

explore pleiotropic effects by identifying methylation markers that are associated with 

multiple traits and by multivariately modeling the combined effects of SNPs and 

methylation markers on the genetic correlation of trait pairs. 

 

New methods for estimating heritability and pleiotropy with genome-wide SNPs 

In contrast to the classic biometrical approach in which the covariance between relatives 

is partitioned into genetic and environmental sharing based on knowledge of familial 

relationships, the methods used by Yang et al. (2010) begin to lay the groundwork for 

estimating heritability using genotyped markers in unrelated individuals. While Yang et 

al. do not estimate heritability per se, they estimate the variance of a trait explained by 

considering all measured SNPs simultaneously and then perform simulations to show that 

additional genetic variance may be captured by estimating the degree to which causal 

alleles are not in LD with measured SNPs. As the density of our genotypes improves 

vastly with the use of resources developed through the 1,000 Genomes Project to impute 
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~17 million SNPs, it is possible that we may be able to reliably estimate heritability based 

on SNP genotypes, even in unrelated individuals, using the methods of Yang et al. 

 

Yang method can be extended to estimate genetic correlations among traits (pleiotropy) 

The methods of Yang and colleagues could also be extended to estimate the genetic 

correlations among pairs of traits in order to assess pleiotropy. In the biometrical 

approach, the covariance matrix between related individuals is used to estimate the 

phenotypic, genetic, and environmental correlations for a pair of traits. Using a method 

analogous to determining the proportion of biometric heritability accounted for by 

simultaneously considering the effects of all measured SNPs, we can begin to examine 

the proportion of genetic covariance due to measured genes and the remaining covariance 

due to non-measured additive effects. If incomplete LD is taken into consideration and 

accounted for, this method can utilize measured genetic markers to estimate genetic 

correlation and will provide a means for examining pleiotropy in unrelated samples. 

 

Systems-level genetics 

Many loci with complex relationships are likely to contribute to the heritability of human 

traits  

As Yang and colleagues demonstrated, the many loci contributing to additive genetic 

variance in traits are distributed across the genome (Yang, 2010). At least for height, 

there appear to be many loci with effects that are smaller than the threshold currently 

detectable by GWAS methods, and new methods for identifying these currently 

unidentifiable contributing loci are sure to emerge in the near future. If animal models 
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provide any indication of the vast number of loci that may be contributing to complex 

traits, the finding that over 20% of the genome was associated with Drosophila mating 

behavior (Mackay, 2005) suggests that the high heritabilities observed in human traits 

may be due to thousands or even hundreds of thousands of loci contributing small effects 

to trait variation. The further finding that many of the genes implicated in Drosophila 

mating behavior were also implicated in a variety of seemingly unrelated or tangentially-

related biological pathways (Mackay, 2005) suggests that the GWAS paradigm of a 

single genetic variant associated with a single trait is not prepared to even begin to 

capture the complexity of the genetic architecture that underlies traits of interest. Clearly, 

more advanced methods of capturing genetic variation, such as those proposed by Yang 

et al. and more sophisticated ways of viewing the interconnectedness of traits and their 

underlying contributing factors are needed. 

 

Integrating information from contributing loci will require a systems-level approach 

Studies of quantitative trait loci and preliminary studies of pleiotropic effects in model 

organisms and humans have set the stage for the development of systems-level genetics 

approaches to examining the complex genetic architecture that impacts human health and 

trait variation. Systems-level genetic approaches aim to integrate information from a 

variety of sources, including genetic, transcriptomic, proteomic, and epigenetic data in 

order to highlight biological pathways that play a key role in trait variability and identify 

novel pathophysiological mechanisms contributing to disease (McKnight, 2010). In 

addition to providing detailed genetic maps of variants associated with specific traits, 

systems genetics approaches will also provide an opportunity to examine pleiotropy, to 
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extrapolate genetic networks from networks of correlated transcripts, and to provide 

functional annotation for genes with unknown function, computationally predicted genes, 

or genes located in gene deserts (Ayroles, 2009). 

 

Systems-level genetics approaches have been used to study genetic architecture and 

pleiotropy in model organisms 

Systems-level genetics has already infiltrated the field of genetics research in model 

organisms, and much has been learned about the genetic architecture of quantitative traits 

from these studies. For example, Mackay and colleagues (2009) have begun to develop a 

systems biology approach for studying the complex genetic architecture of quantitative 

traits in Drosophila that integrates information about DNA sequence, gene expression, 

biological pathways, and multiple phenotypes. Using this approach, whole genome 

transcript profiles were obtained for genetically divergent and control lines of Drosophila, 

and groups of co-regulated genes were identified that are affected by specific genetic 

variants. Through this line of research in multiple model organisms, it has become 

apparent that there is a modular organization of gene expression patterns that are 

associated with tissue-specific expression, transcription factor binding sites, and a variety 

of Gene Ontology categories, emphasizing the importance of studying the mechanisms 

contributing to pleiotropic effects (Magwire, 2010; Ayroles, 2009; Jumbo-Lucioni, 2010; 

Zou, 2008; Gunsalus, 2005; Ihmels, 2002; Han, 2004). Systems genetic work in model 

organisms has the potential to strongly guide and supplement our knowledge of the 

biological pathways underlying disease pathology in humans. For example, the work of 

Jumbo-Lucioni (2010) on the systems genetics of body weight and energy metabolism 
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phenotypes in Drosophila may help predict correlated changes in related traits with 

medical interventions in humans (Jumbo-Lucioni, 2010). Model organisms may also be 

used to help confirm findings in humans when biological pathways are found to be 

associated with similar traits. For example, systems genetics approaches have identified a 

gene expression module related to inflammation and immune response that is associated 

with obesity in both mouse and humans (Chen, 2008; Emilsson, 2008). 

 

Applications of systems biology to human trait research 

Pathways analysis using functional annotation for an integrated set of GWAS and gene 

expression data provides a starting point for initiating systems-level genetics approaches 

to studying complex traits in humans. For example, Zhong et al. (2010) used a novel 

approach of integrating publicly available GWAS and gene expression data to 

functionally characterize the pathways enriched for type 2 diabetes. Using this approach, 

they identified both known pathways (e.g., calcium signaling, PPAR signaling, and TGF-

beta signaling) and novel pathways (e.g., tight junction, complement and coagulation, and 

antigen processing) associated with this trait that replicated in independent cohorts. 

Systems-level genetics approaches have also been used to prioritize candidate genes 

identified through GWAS for further functional validation based on their biological 

characterization. Hsu et al. (2010) used GWAS data combined with gene expression 

signature profiling from cellular and animal studies to prioritize candidate genes 

associated with skeletal metabolism. This method appears to have utility, as two of the 

three prioritized candidate genes replicated in subsequent studies, while none of the 16 

non-prioritized candidate genes replicated. Indeed, it appears that the agnostic nature of 
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the genome-wide approach has provided clues to the discovery of unexpected 

mechanisms of the regulation of gene expression and pleiotropy, but that these findings 

will need to be explored with a careful consideration of the biology underlying their 

function in order to provide utility for understanding human trait variation. 

 

Conclusion 

The results from this dissertation assist in characterizing genetic polymorphisms and their 

interactions with each other and with environmental factors that are associated with inter-

individual variation in leukoaraiosis, and begin to examine the extent of pleiotropy 

among leukoaraiosis and measures of cognitive function. Although it is clear that there is 

not enough information to make strong conclusions about SNPs that definitively affect 

leukoaraiosis at this time, these studies pave the way for future research that may be able 

to more thoroughly assess the multiple genetic and environmental factors that impact 

leukoaraiosis and cognitive function. There is another great wave of research 

opportunities ahead arising from next-generation sequencing, epigenomic assays, and 

transcriptional profiles that can build upon new methods for estimating heritability and 

integrating information through systems-genetics to elucidate the many genetic and 

environmental factors that influence variation in human traits including leukoaraiosis. As 

these methods are developed and implemented, a more thorough understanding of the 

underlying biology that affects health and disease of the brain may ultimately provide 

greater accuracy in predicting disease risk and more effective design of prevention and 

treatment strategies for stroke and dementia. 
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Appendix 5.1.  Summary of findings from candidate gene and GWAS studies in this 

dissertation 

 

The three figures below show a graphical summary of the association results with 

leukoaraiosis from the candidate gene study conducted in GENOA whites (Chapter 2) 

and the GWAS studies conducted in GENOA whites and African Americans in Chapter 3 

and Chapter 4. Differences between the samples and methods for the GWAS studies 

conducted for leukoaraiosis in Chapters 3 and 4 are described in the text of Chapter 5 

above.  

 

On each figure, the regions that harbor the four SNPs that passed all of the filters in the 

candidate gene study (Chapter 2) are indicated by the letters “a, b, c,” and “d”. The region 

that harbors the apolioprotein E (APOE) gene is indicated by the letter “e”. The region 

that harbors the angiotensinogen-converting enzyme (ACE) insertion/deletion 

polymorphism, the genetic variant with the strongest evidence of association with 

leukoaraiosis in the literature, is indicated by the letter “f”.  

 

The vertical axis of each figure depicts chromosomes 1-22, and the horizontal axis 

depicts 10Mb segments (bins) of the chromosomes, numbered 0-24. For example, the cell 

in the upper left-hand corner designates base pairs 1 through 9,999,999 from the start of 

chromosome 1, the cell immediately adjacent to the right designates base pairs 

10,000,000 through 19,999,999 from the start of chromosome 1. Since the chromosomes 

differ in length, the number of 10Mb bins varies by chromosome, ranging from 25 bins 

for chromosome 1 to 5 bins for chromosome 22. The remainder of the bins are colored in 

gray. Chromosomal locations are annotated according the National Center for 

Biotechnology Information (NCBI) Genome Build 36.3 of the human genome reference 

sequence.  
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Appendix 5.2.  Heritability of ln(leukoaraiosis) and cognitive traits in samples of 

equal family size in whites and African Americans 

 

In order to determine whether the differences in sibship structures of the white and 

African American GENOA samples were responsible for the lower heritability estimates 

in African Americans, “reduced” samples of whites and African Americans were created 

so that each group had the same distribution of sibship sizes. For sibships of each size, 

the maximum possible number of sibships were selected from each group to create the 

reduced samples. The tables below show the sibship sizes of the original and reduced 

samples, as well as heritability estimates of adjusted traits calculated from each sample.  

 

Pedigree structures of original and reduced samples of whites and African 

Americans 
Number of 

Siblings in 

Sibship 

Number of Sibships 

in Original Sample 

of Whites (N=762) 

Number of Sibships 

in Original Sample of 

African Americans (N=720) 

Number of Sibships 

in Reduced Samples 

(N=619) 

8 1 0 0 

7 2 0 0 

6 2 2 2 

5 7 8 7 

4 19 19 19 

3 47 44 44 

2 176 120 120 

1 124 220 124 

Totals 378 Sibships 413 Sibships 316 Sibships 

 

 

Comparison of trait heritabilities in original and reduced samples of whites and 

African Americans 

Trait 

h
2
 (SE) 

Adjusted 

in Original 

Sample of 

Whites 

h
2
 (SE) 

Adjusted in 

Reduced 

Sample of 

Whites 

h
2
 (SE) 

Adjusted 

in Original 

Sample of 

African 

Americans 

h
2
 (SE) 

Adjusted in 

Reduced Sample 

of African 

Americans
 

Ln(leukoaraiosis+1)  0.529 (0.09)
*** 

0.518 (0.10)
*** 

0.432 (0.13)
***

 0.417 (0.14)
***

 

RAVLT delayed recall  0.526 (0.10)
*** 

0.574 (0.11)
*** 

0.390 (0.11)
***

 0.379 (0.11)
***

 

RAVLT total learning  0.516 (0.10)
*** 

0.553 (0.11)
*** 

0.440 (0.11)
***

 0.452 (0.12)
***

 

DSST  0.843 (0.09)
*** 

0.804 (0.10)
*** 

0.556 (0.10)
***

 0.561 (0.10)
***

 

COWA FAS 0.366 (0.10)
*** 

0.394 (0.12)
*** 

0.536 (0.11)
***

 0.572 (0.11)
***

 

COWA animals 0.349 (0.10)
*** 

0.379 (0.11)
*** 

0.329 (0.10)
***

 0.329 (0.11)
***

 

Stroop color word 0.429 (0.09)
*** 

0.471 (0.11)
*** 

0.440 (0.10)
***

 0.433 (0.10)
***

 

Stroop difference 0.275 (0.09)
*** 

0.139 (0.10)
 

0.154 (0.10)
*
 0.138 (0.10) 

 

For all adjusted traits, biometric models included age, sex, and education. The biometric model for 

ln(leukoaraiosis+1) also included TIV. 

 

Null hypothesis of tests: h
2
 = 0 

*
 0.01 < p-value < 0.05 

**
 0.001 < p-value < 0.01 

***
 p-value < 0.001 
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