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ABSTRACT

Yield Enhancement through Pre- and Post-Silicon Adaptation

by

Cheng Zhuo

Achieving a consistently high yield is always a key design objective. However, circuits designed

in aggressively scaled technologies face more stringent design constraints and increased process vari-

ability. Traditional guard-band design methodologies that assume worst-case environmental factors

and minimum feature size may reach overly conservative decisions and inevitably deteriorate the

yield. Hence, design for yield (DFY) in nano-meter regime has become highly imperative for chip

designers.

This thesis focuses on several topics in yield enhancement and attempts to answer two basic

questions (1) how to achieve a high yield and (2) how to achieve a consistently high yield. The

first question is associated with several yield optimization issues. One key issue that complicates

parametric yield optimization is the negative correlation among design constraints. In the first part

of the thesis, we discuss the power-performance correlation and present a novel yield optimization

framework by selecting body bias at design time. The framework considers both inter- and intra-die

variation and then explores the possible body bias selection for gates by using a feature extraction

technique. The gates with similar features are then grouped together and fed to the optimization

framework to maximize the joint power-performance yield. The second and third parts of the the-

sis discuss the impact of oxide breakdown reliability on yield. For recent technology nodes, chip

reliability has become a pressing concern in DFY. This thesis places the focus on oxide breakdown

reliability, which is one of the key factors that set constraints on the operating supply voltage of the

chip. Any pessimism in oxide breakdown reliability analysis may eventually degrade the yield. We

xiii



therefore propose a process and temperature variation-aware method for full chip oxide breakdown

reliability analysis. Based on that, we further develop a reliability and performance management

scheme by analyzing limited post-fabrication measurements. This post-silicon method helps design-

ers tightly bound the chip reliability and hence enables the use of available margin to boost the

system performance while meeting the design lifetime. Since pre- and post-silicon optimization usu-

ally targets at the same design objective, it is therefore necessary to perform certain coordination

to avoid repeated optimization. In the fourth part of the thesis, we explore the interaction between

gate sizing (pre-silicon) and adaptive body biasing (post-silicon) to improve the yield optimization

efficiency while maintaining the tunability for a particular target.

It has been observed that even for the same design with exactly the same design optimization,

the yield may happen to be inconsistent from lot to lot. A major reason behind this inconsistency

is the inability to capture the process variation change during the fabrication. In the last part of

the thesis, we address the second question to achieve a consistently high yield by using a dynamic

variation extraction model. Unlike the traditional design-time variation model that is static and

constructed by measuring hundreds of testing wafers, the proposed post-silicon model is extracted

from the measurements of product wafers. The model then dynamically adapts itself to the process

change by reusing information from past wafers to validate and improve the model. Such a model

is more accurate (or less pessimistic) than a design-time model and also helps reduce the yield

inconsistency.
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CHAPTER I

Introduction

Accompanied by tremendous advancements in the semiconductor industry over the last few

decades, process variation has emerged as a major design issue in nano-scale CMOS technologies

[1, 2, 3, 4, 5]. The variation causes certain deviation in device characteristics from its intended value,

which is non-trivial in modern design, and eventually leads to chip performance degradation or even

functional failure [5, 6]. The worsening variation is due in part to the exponential growth of device

integration, as predicted by the Moore’s law, with billions of devices per die in 45nm and beyond.

Moreover, the ever shrinking feature size and ultra-low supply voltage, as shown in Figure 1.1, also

exacerbate the variation and accordingly deteriorate the ability of designers to reliably control the

chip behavior [6]. As a result, it has become imperative for designers to develop techniques to well

model and control the process variation in the nano-scale process technology.

1.1 Process Variation

Process variation arises from a range of factors throughout the manufacturing processes, like

chemical mechanical polishing (CMP), optical proximity effects (OPC), etc. [5, 7]. In order to

better understand and evaluate the impact of process variation, we can classify the process variation

based on the spatial scale over which it manifests. In tradition, a typical classification of variation

components is inter- and intra-die variation [7, 8].

• Inter-Die Variation: Due to long range shifts, which occur during the exposure to the mask

pattern or when loading the equipment from one wafer to another, all the devices on the

same die observe some common amount of fluctuation in the physical parameters [5, 7]. This

die-to-die variation is typically referred to as global or inter-die variation. For example, the

inter-die variation causes all the devices on the same die observe the same amount of increment
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Figure 1.1: Trends for feature size and supply voltage (from ITRS 2007 [6]).

or decrement from the nominal value.

• Intra-Die Variation: This variation component affects each device on the same die differ-

ently. In other words, different devices may observe different changes on the physical pa-

rameters. Specifically, intra-die variation can be further classified into spatially correlated

variation and independent variation [7]. Spatially correlated variation tends to affect all the

devices that are placed close to each other in a similar manner. Thus, those closely-placed

devices are more likely to have similar characteristics than those placed far apart [7, 8, 9]. For

accurate analysis, it is necessary to capture the dependence of certain spatial correlation [2].

Unlike the spatially correlated variation, the independent variation is the residual variation

component resulting from certain local device scaling effects such as different surface orienta-

tions or stress conditions. Typically it is considered statistically independent from all other

variation components.

Given the decomposition of global inter-chip, intra-chip spatially correlated and random variation

components, the chip level variation model for any device can be modeled as:

(1.1) x = z0 + zg + zcorr + zε

where z0 is the nominal design value for the technology. zg denotes the global-scale inter-chip

variation component. Clearly, all the devices on the same chip observe the same amount of zg in the
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Figure 1.2: Wafer-level contours with systematic patterns removed for (a): RO measurements
(scaled) for a wafer in 65nm process; (b): ELM measurements (scaled) for a wafer
in 130nm process.

parameter of interest, whereas zg varies for different chips. The fluctuation of zg among different

chips can then be modeled by a Gaussian process N(0, σ2
g) [8].

zcorr is the intra-chip spatially correlated component that tends to affect closely-placed devices

in a similar manner. A typical modeling of the vector zcorr = [zcorr,1, zcorr,2...zcorr,m] for m devices

is a multi-variate Gaussian process, i.e., zcorr ∼ Nm(0,Σcorr), where the subscript of N denotes the

dimensionality of the random vector, and Σcorr is a m×m covariance matrix for m devices.

Finally, zε is the random residual variation resulting from certain local device scale effects and is

modeled as a Gaussian process N(0, σ2
ε ) [8]. In general, σg, Σcorr and σε denote the uncertainness of

the variation components at different spatial-scales, and can be either achieved from prior knowledge

or robustly extracted from measurements as in [8, 10].

Some recent works investigate the origins of process and propose that a great portion of within-

die spatially correlated variation is actually caused by deterministic across-wafer and across-reticle

spatial patterns [11, 12]. By not recognizing systematic patterns at the reticle or wafer level, pes-

simism is unnecessarily increased, attributing more variation than is actually present [12, 14]. On

the other hand, only extracting deterministic global trend but ignoring the non-deterministic spa-

tially correlated variations not only obscures wafer-level trend but also leaves too much unevenly

distributed across-reticle variation to the residual. Figure 1.2 demonstrates the wafer-level contours

with systematic patterns removed using a similar methodology in [11, 12]. Either for RO frequency

in Figure 1.1 from process 1 or ELM in Figure 1.2(b) from process 2, it can be observed the non-

uniformity across the wafer and certain spatially correlated patterns within the reticle. Residual

variation is supposed to be independent and evenly distributed, which is unable to explain Figure

1.2. Thus, it is necessary to include spatially correlated variations in the model.
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Without loss of generality, for a wafer-level variation model, we can denote z as the measurable

process parameter of interest, which can be either a physical parameter or a parametric quantity.

We model z as a location dependent random variable including seven distinct parts:

(1.2) z(x, y) = z0 + ziw + zw(x, y) + zr(x0, y0) + zir + zar + zε

z0 is the nominal design specification and turns out to be a constant for any device. ziw is the inter-

wafer variation that captures the long-term drifts in tools and process difference from wafer to wafer.

zw(x, y) is the deterministic across-wafer spatial pattern and (x, y) is the location within a wafer.

Such pattern may be caused by post-exposure bake (PEB) temperature non-uniformity, or resist

thickness variation. zr(x0, y0) is the reticle-level spatial pattern where (x0, y0) is the location within

a reticle. This component is primarily due to design-process interactions in the lithography steps,

like lens abbreviation. Both zw(x, y) and zr(x0, y0) are deterministic global patterns. zir is inter-

reticle variation component, which may be caused by the light source change. zar is across-reticle

spatially correlated random variation. For all the devices within one reticle, zar can be understood

as a zero mean multi-variate Gaussian random vector. zar may be caused by the proximity effect

or coma and result in uneven within-reticle contour as in Figure 1.2. Finally, zε is the independent

residual variation caused by local random effect, and typically modeled as an independent Gaussian

variable1. The only assumption we hold in our model is the variation type of Gaussian, which has

been validated by many characterization works [11, 13].

The two models in (1.1) and 1.2 express the process variation at different spatial levels and are

used for different application in this dissertations thesis work. We will address more details in the

following chapters.

1.2 Design for Yield

In the past few decades, various techniques have been proposed to resolve or mitigate the impact

of process variation. All those techniques can be associated with the term of design for manufactura-

bility (DFM), which is a broad concept and stands for certain methodology to ensure all the measures

for the goal to be reliably and consistently implemented throughout the design, manufacturing, and

assembly processes [15, 16].

One measure in DFM is the productivity subject to certain constraints (logical functionality,

reliability and performance, etc.), which is also classified as yield [15]. In other words, yield is the

1For measurement results, zε may also include the measurement white noise.
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fraction of functional chips that meet the design target over all the chips manufactured.

In nano-scale technologies, process variation has made the conventional approaches insufficient to

achieve desired productivity [4, 17]. A slight difference in process variation modeling/extraction may

lead to significant yield difference. The concept of design for yield (DFY) is hence widely discussed

with a new set of design models/rules/methods to ensure decent yield. Since recent developments in

manufacturing techniques have brought tight control of catastrophic defects, the productivity of the

manufactured chips that are functional (without logical errors) can be guaranteed. Thus, the focus

of this work is placed upon the parametric yield, which is the fraction of chips meeting design target

(performance/power/reliability specifications) over the total number of functional manufactured

chips [15, 16].

In particular, performance/power all have strong dependence on the process parameters [5]. As

process variation has become more prominent, parametric yield happens to show high susceptibility

to the variabilities [4]. To address this issue, numerous variation-aware optimization methods have

been proposed to mitigate the impact of process variation for yield loss minimization [18, 19, 20, 21,

22, 23, 24, 25, 26]. Based on the stage the optimization is performed, these methods can be roughly

classified into pre- and post-silicon optimization.

• Pre-Silicon Optimization is performed at design stage to optimize parametric yield before

chips are fabricated. The optimization decisions are completely based on a priori process

variation knowledge of the technology node and design structure. The decisions are therefore

statistically effective for the manufactured dies. However, they are not necessarily ideal for an

individual chip to meet the design specifications.

• Post-Silicon Optimization is carried out after the fabrication (run-time). With certain

adaptive tuning techniques, the specific variations (both inter- and intra-die) that occur on

a particular die can be mitigated to achieve the design target. Unlike pre-silicon methods,

post-silicon methods can tune each chip individually to better meet design specifications at

the cost of expensive post-silicon testing overhead.

Noting that pre-silicon optimization and post-silicon adaptability target the same design objec-

tive and parameter variability, some recent works [27, 28, 29] coordinate the pre- and post-silicon

optimization at design time. Intuitively speaking, those joint optimization methods explore the

variation space and use traditional pre-silicon techniques to statistically optimize the design, while

certain margin is left for each individual die to perform post-silicon tuning after the actual process

condition is verified at testing time.
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Figure 1.3: Leakage quadratic model and delay linear model

1.3 Adaptive Body Biasing

One most promising post-silicon technique for yield enhancement is adaptive body biasing (ABB)

[27, 28, 30, 31, 32]. Body biasing takes advantage of the body effect phenomenon to modulate the

Vth of a MOSFET [30, 32]. Forward body bias (FBB) can increase the speed but make the device

leakier, whereas reverse body bias (RBB) reduces leakage at the cost of an increased delay. The body

bias coefficient has been traditionally thought to decrease with process scaling, making ABB less

effective in highly scaled process technologies. However, for recent technologies, there is indication

that the body bias coefficient is again increasing [31].

Since the analytical expressions that govern the impact of body bias on delay and leakage at the

gate level are fairly complex, we employ the quadratic leakage model and linear delay model of the

body voltage, as shown in Figure 1.3. The models can achieve an average error of 5.9% and 1.5% in

leakage and delay for 90nm process, respectively. The normalized change of the leakage and delay

for gate i can therefore be computed by:

(1.3) δLi(vb,i) = ∆Li/L0,i = p0,i + p1,ivb,i + p2,iv
2
b,i

(1.4) δsi(vb,i) = ∆Di/D0,i = d0,i + d1,ivb,i

where vb,i is the body voltage for gate i, L0,i and D0,i are the nominal leakage and delay value,
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∆Li and ∆Di are the leakage and delay change, δLi(vb,i) and δsi(vb,i) are the normalized change of

the leakage and delay, pj,i’s (j=0, 1, 2) are the fitted parameters for the leakage quadratic model,

dj,i’s (j=0,1) are the fitted parameters for the delay linear model [27]. The fitted models can greatly

simplify the leakage and delay formulation, while maintaining a high accuracy. Those models will be

used in our yield enhancement techniques and discussed in more details in Chapter II and Chapter

V.

1.4 Oxide Breakdown Reliability

In tradition, DFY techniques focus on the minimization of yield loss caused by power/performance

constraints. However, in nano-meter regime, semiconductor reliability like oxide breakdown has

emerged as a new challenge. Aggressive oxide thickness scaling has caused large vertical electric

fields in MOSFET devices, a situation that makes oxide breakdown (OBD) a crucial issue when

supply voltage is not scaled as aggressively as transistor feature size. Gate oxide degradation leads

to poor device characteristics resulting in delay and voltage swing degradation, and in increased

gate leakage, both of which eventually lead to functional failure and hence yield loss. It therefore

becomes crucial to consider the impact of oxide breakdown in DFY methodologies to ensure the

reliability of ICs over their lifetime.

Oxide, or dielectric, breakdown is a degradation mechanism that results in a low-impedance path

through an insulating or dielectric barrier. Device failures related to this low-impedance path are

typically manifested as abnormally high gate leakage current, changes in circuit switching delay,

or failure to switch (in severe cases of degradation). Researchers have developed several models

to explain the mechanisms of oxide breakdown. A widely used model is the anode hole injection

model [33], according to which, injected electrons generate holes at the anode that can tunnel back

into the oxide and recombine with electrons to generate electron traps. Another model, known as

an electron trap density model, suggests that high gate-oxide electric fields may induce sufficient

energy to trigger oxide breakdown [34]. Though researchers are still debating many details of the

breakdown mechanisms, we can learn from either model that defect generation is a non-deterministic

process.

To handle the breakdown statistics of device-level reliability, a model was proposed by [35] to

capture the scaling of breakdown distribution with oxide area but lacked prediction power about

the dependence on oxide thickness. This model was then improved and replaced by the percolation

model, proposed by R. DeGraeve [36], which generates defects of tunneling charges to model the
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wear-out for thin dielectric films. In this model, when a critical defect density is reached inside

the oxide volume, there is a high probability that a low-impedance defect path ultimately leads to

uncontrolled current and oxide breakdown.

However, limited works address the chip-level oxide breakdown reliability due to the difficulty in

modeling the inherent randomness of chip failure as well as the tremendous number of devices per

chip. Designers have to handle OBD reliability by making worst-case assumptions for each variable.

In practice, however, worst-case conditions rarely occur because some devices have thicker oxides

than others, or they operate at lower temperatures. Also, because degradation is a cumulative

process, periods of low stress lengthen the device’s overall lifetime. Therefore, assuming worst-

case conditions is conservative, and it leads to overly large reliability margins that designers could

otherwise have traded for performance by raising the operating voltage.

1.5 Thesis Overview and Key Contributions

In this research, we focus on parametric yield enhancement through several pre- and post-silicon

optimization techniques under different constraints for nano-meter regime VLSI circuits [37, 38, 39,

40, 41, 42]. The focus is placed upon the statistical modeling and analysis of power/preformance/reliablity

conditions and then performing circuit-level yield optimization with consideration of these specifi-

cations. The outline of the thesis proposal is as follows:

• Design Time Body Bias Selection for Parametric Yield Improvement: Achieving

high parametric yield is always a key design objective, but is complicated by the correlation

between power and performance. Chapter II proposes a novel design time body bias selec-

tion framework for parametric yield optimization to mitigate the impact of variability while

reducing testing costs. The framework considers both inter- and intra-die variations as well

as power-performance correlations. The approach uses a feature extraction technique to ex-

plore the underlying similarity between the gates for effective clustering. Once the gates are

clustered, a Gaussian quadrature based model enables fast yield analysis and optimization.

The work also introduces an incremental method for statistical power computation to further

reduce the optimization complexity.

• Process and Temperature Variation-Aware Oxide Breakdown Reliability Analysis:

In aggressively scaled technologies, reliability concerns such as oxide breakdown have become a

key issue. Unfortunately, the conventional approaches for full chip oxide breakdown reliability
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analysis ignore both the process and temperature/voltage variations by simply using worst-

case reliability modeling assumptions that significantly degrade the accuracy. In practice,

gate-oxide thickness varies from die-to-die and within-die. Thus, as the precision of process

control worsens an alternative reliability analysis approach is needed. In Chapter III, we

propose a new statistical chip-level oxide breakdown model that takes into consideration both

process and temperature/voltage variations. The underlying statistical method uses limited

variables to compactly model the problem which is typically defined on a huge sample space

of several million devices.

• Post-Fabrication Measurement-Driven Oxide Breakdown Reliability Prediction

and Management: As discussed, the conventional guard-band methodology for oxide break-

down assumes uniformly thin oxide thickness and results in overly pessimistic reliability esti-

mation that severely degrades the system performance. In Chapter IV, we present the use of

limited post-fabrication measurements of oxide thicknesses from on-chip sensors to aid in the

chip-level oxide breakdown reliability prediction and quantify the trade-off between reliability

margin and system performance. Given the post-fabrication measurements, chip oxide break-

down reliability can be formulated as a conditional distribution that allows us to achieve a

significantly more accurate chip lifetime estimation. The estimation is then used to individu-

ally tune the supply voltage of each chip for performance maximization while maintaining or

improving the reliability.

• Variation-Aware Gate Sizing and Clustering for Post-Silicon Optimized Circuits:

To coordinate the pre- and post-silicon optimization, in Chapter V, we propose a variation-

aware methodology for the simultaneous gate sizing and clustering for post-silicon tuning with

adaptive body biasing. The proposed methodology uses an accurate table look-up model and

fully explores the interaction between gate sizing and optimal body bias based clustering. In

addition, it is suitable for industrial test cases with tens of thousands gates. Our optimization

methodology includes a body bias distribution alignment strategy to mitigate the impact of

critical gates. In this way, the cluster’s body bias voltage is not simply determined by a few

critical gates.

• Active Learning Framework for Post-Silicon Variation Extraction : Accurate and ef-

ficient yield analysis/optimization in the prior chapters may depend on the extracted variation

model. In tradition, the model is achieved by measuring tens to hundreds of testing wafers

and primarily used for design-time analysis and optimization. However, with the advances of
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post-silicon techniques, accurate variation model is also highly desired in various post-silicon

applications. The accuracy of such post-silicon variation models is greatly improved by incor-

porating test measurements from each product wafer or die. However, to limit test cost, the

number of measurements must be reduced as much as possible. Chapter VI proposes an active

learning framework to dynamically extract post-silicon process variation models with tightened

variance from measurements. The framework is composed of two stages, active training and

model adaptation. Active training collects information and initializes the models to be used

for the forthcoming wafers. Model adaptation stage then validates the models and optimally

determines the test configuration for partial testing to reduce the test cost.

• Conclusions and Future Work : The last chapter concludes the thesis and discusses the

possible extensions to the solutions that were proposed in the thesis.
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CHAPTER II

Design Time Body Bias Selection for Parametric Yield

Improvement

Semiconductor technologies are characterized by trends of ever shrinking feature dimensions and

increasing integration density [2]. As a result, process variability has become more prominent in

sub-nanometer regime designs, and poses a major challenge to improving circuit performance and

reducing leakage [2, 3]. Given the large contribution of leakage power to total power in recent

technology nodes, delay and power are now negatively correlated across process corners [3]. In such

a scenario, high speed parts are also very high leakage, imposing a well-known two-sided constraint

on the feasible region of delay and leakage for parametric yield optimization. This ultimately causes

a significant yield loss of manufactured dies in modern integrated circuits [18].

To address this issue, numerous pre- and post-silicon statistical optimization methods have been

proposed to mitigate yield loss due to process variability [18, 19, 20, 21, 22, 23, 24, 25, 26, 27,

28, 29]. However, several of these approaches neglect the correlation between performance and

power dissipation by treating the impact of delay and power separately [19, 20, 21, 22]. Works in

[23, 24, 25, 26] investigated nonlinear optimization by assuming that gate sizes are continuous and

applied either a simplified power yield model to preserve convexity or transformed yield maximization

to slack minimization in favor of robust programming. These techniques [23, 25, 26] only mitigate

the variation indirectly, rather than performing true yield maximization due to the approximated

formulations as well as the lack of consideration of power-performance correlation. Moreover, growing

circuit size and the complexity of formulating joint yield optimization further restrict the efficacy of

traditional pre-silicon techniques (gate sizing or dual-threshold voltage assignment) in guaranteeing

reliable circuit operation with desired parametric yield [18, 23, 24, 25, 26].

Beyond these pre-silicon approaches, several post-silicon techniques have been proposed for design
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optimization [27, 28, 29]. Among these, adaptive body biasing (ABB) is a promising post-silicon

technique due to its flexibility [30]. Traditionally ABB is used to tune each chip individually after

chip fabrication and testing, as shown in Figure 2.1. Thus, conventional post-silicon ABB is limited

by: (1) routing/control overhead to adjust devices/gates at a very fine grained level [27, 30] and (2)

increased post-fabrication testing costs to determine the optimal body voltage. To reduce overhead

to a feasible level, [27] presented a heuristic clustering method, in which gates are grouped at design

time into a small set of clusters and controlled by one body bias within the cluster. Reference

[28] suggested the coordination of pre-silicon (gate sizing) and post-silicon (ABB) techniques, and

formulated this as a robust programming problem. Similar to [23, 25, 26], both methods [27, 28]

separate the correlation between power and delay and do not evaluate the true parametric yield

(joint yield of power and delay). Above all, the body bias tuning in [27, 28] is carried out entirely

as a post-silicon step. Clearly, such a strategy incurs large post-silicon testing costs.

In order to reduce testing overhead, this chapter presents a low-cost pre-silicon ABB technique

for parametric yield maximization, considering process variability and the correlation between per-

formance and power. The major difference between the proposed framework and traditional ABB

is that our work does not require individual tuning of each chip during post-silicon testing to select

the body bias to be applied. Instead, as shown in Figure 2.2, our framework optimizes and fixes

body bias during design time to improve the yield of manufactured dies. Once the bias levels are

chosen, simple and compact circuits can be readily designed to provide the chosen reference voltages

[43, 44]. This overall approach will save significant testing time and cost.

Unlike post-silicon ABB, where bias voltages for each chip are chosen in a deterministic way

(since measurement results for a particular manufactured die is known and deterministic), pre-silicon

ABB must statistically incorporate the variability during optimization and tune the ensemble of all

chips simultaneously. The proposed pre-silicon ABB approach eliminates the testing cost increases

associated with the post-silicon approaches. Furthermore, pre-silicon ABB can be easily implemented
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using on-chip reference voltages [43, 44] and hence has continuous-domain design variables. This

appealing feature is in contrast to most traditional pre-silicon techniques such as gate sizing or dual

Vth, which have discrete domain design variables. Pre-silicon ABB uses a small number of gate

clusters (where each cluster is assigned to a different bias voltage), and hence enables a theoretically

rigorous formulation of parametric yield as well as scalability to large circuits.

Our framework consists of two phases. We first determine the body bias profiles for each gate,

which reflects the preferred body biases across an expected representative set of dies based on process

variability models. Then a feature extraction technique is applied to those profiles to efficiently

cluster the gates. The general idea behind gate clustering is to group gates with statistically similar

behavior. A complete comparison of the profiles is highly inefficient due to the profile and circuit size.

The heuristic approach in [27] uses an affine function of mean, standard deviation, and correlation

coefficients to determine similarity. In addition to the large runtime and memory consumption for the

greedy search and correlation matrix construction steps, the chosen weights of the affine function

may not be globally applicable across all circuit topologies. Another issue with this approach is

that it discards most information from the original body bias profiles and hence is not robust with

respect to outliers. As a result, in our framework we propose a general and scalable clustering

method based on feature extraction, without any dependence on empirical parameters. The feature

extraction technique projects the original body bias profiles of the gates to a reduced set of features

(feature vector) [45]. The feature vectors contain the general characteristics of the profiles and can

be computed efficiently for body bias profile similarity comparison. In particular, the comparison is

made by computing the distance of two feature vectors and grouping together the gates with closer

distance.

After clustering the gates, the second phase formulates the body bias selection problem as a
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small-sized unconstrained nonlinear programming (NLP). The NLP is solved by a large-scale op-

timizer, Lancelot [46], with a fast yield evaluation scheme called Gaussian quadrature to compute

the objective yield. An incremental method is also introduced to quickly compute the probability

density function (pdf) of leakage power. Experimental results show that the proposed framework

can optimize a circuit with 14592 gates within 20 minutes to achieve 52 point yield improvement.

For eleven circuits of different sizes, parametric yield is improved from 39% to 80% on average. The

key contributions are:

• We present a low-cost pre-silicon ABB framework to select body bias at design time for direct

parametric yield optimization. We show that pre-silicon ABB retains the majority of the yield

benefits of more complex die-specific post-silicon ABB approaches. The framework considers

both process variations and correlation between performance and power.

• To effectively cluster the gates, a feature extraction based technique is employed. We apply a

Haar wavelet transform to extract the features from the statistical body bias profile of each

gate. Then a k-median-like algorithm is presented to optimally cluster the gates with similar

features.

• In the optimization framework, the yield objective is repeatedly computed. We present a

fast and accurate method using Gaussian quadrature to compute the yield in the form of a

bi-variate normal integral. An incremental technique for statistical power computation is also

introduced to further reduce gradient computation complexity.

2.1 Feature Extraction Based Gate Clustering

Gate clustering is a critical step in practical ABB approaches. Once the clustering is performed,

the body voltage of the cluster is determined such that its most timing critical gates meet the

overall circuit delay constraint, indicating that most gates in a cluster will end up requiring a larger

(more forward) body bias than necessary. It is therefore vital to cluster gates with similar body

bias characteristics together to minimize loss of optimality. This section discusses a new feature

extraction based technique for gate clustering.

2.1.1 Design Space Exploration

We assume that each circuit constitutes its own unique design space subject to certain parameter

variations. Our variation formulation incorporates both the inter-die and intra-die variations [47, 48]
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and employs the grid based model in [47] to estimate the correlation between the gates. To identify

the difference in gates, we need to fully explore the design space to construct the statistical body

bias profile for each gate. We first generate multiple ”die samples” following certain variations for

the given circuit in a Monte Carlo fashion. For each sample circuit we assume each gate can be

tuned individually and construct the deterministic quadratic programming (QP) to find the optimal

body bias of each gate for leakage minimization [27]:

Minimize

(2.1)
∑

j

∆Lj(vb,j)

Subject to

ATs = 0(2.2)

ATt < Target(2.3)

ATi,j + DABB
j < ATo,j for ∀j(2.4)

DABB
j = D0,j −∆Dj(vbj) for ∀j(2.5)

lb ≤ vb,j ≤ ub for ∀j(2.6)

where AT is the arrival time of the signal on a wire, subscripts ”i” and ”o” denote input and output,

DABB
j denotes the delay of a biased gate, and lb and ub represent the lower and upper bounds for

the body voltage. The first two constraints limit the arrival times at primary input (PI) to be zero

and the arrival times at primary output (PO) to be less than the design target, where all primary

inputs and primary outputs are tied to super-nodes ”s” and ”t”, respectively. The third and fourth

constraints indicate that the delay at the output of each gate should be at least equal to the arrival

time at each of its inputs plus the delay of the gate DABB
j . This QP can be efficiently solved by

CPLEX [49] to obtain the optimal body voltage for a particular sample (die) in the design space.

Clearly, if the number of samples is sufficient, the histogram of the optimal body bias for a gate sheds

insight on the statistical behavior of the gate in this design space. We can then distill information

from this histogram in determining which gates should share a common body potential - this is the

critical clustering step, which is described next.
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Figure 2.3: Pre-processing procedure: (a) original histogram (b) offset removal for body voltage
(x-scale) (c) envelope construction

2.1.2 Feature Extraction

A straightforward approach to clustering is to group together the gates with similar body bias

profiles. However, it is difficult to define ”similarity” in a quantitative way. Simply using the

complete profiles to cluster the gates is impractical and inefficient, due to both their large sizes and

the resulting sensitivity to noise in the distributions.

As stated earlier, [27] suggested a weighted affine function of mean, deviation and correlation to

judge the similarity between the gates. However, construction of the correlation matrix between the

gates leads to a memory complexity of O(N2) and limits its applicability. Beyond these runtime

concerns, the greedy search is heavily dependent on the carefully chosen weights and the order of the

gates to be visited. This makes the method sensitive to outliers and allows gates to be mis-grouped.

Furthermore, since the affinity of the non-grouped gate to the cluster is computed by taking the

average of the weights, highly deviated data may have a disproportionate impact on the average and

lead to poor selections. We therefore present a faster and more robust clustering strategy in our

framework.

We employ a pattern recognition technique called feature extraction to obtain the main features of

the profile while filtering out noise and redundant information. The intuitive explanation of feature

extraction is to extract the general characteristics of the profiles, maintaining the most common

information and discarding outliers. The body bias profile for each gate is then uniquely identified

16



by a feature vector, vi = [x1, x2, ..., xn]T with n features, which are used to measure similarity.

To apply the technique across all gates and preserve important information, some pre-processing is

performed to build a unified and suitable system. The pre-processing includes two stages:

(1) Offset Removal. This stage simply aligns the histograms to the same body voltage intervals, so

that voltage ranges are unified for all the gates.

(2) Envelope Construction. The original histogram is based on a coarse grid and cannot be directly

used. In this stage, we apply linear interpolation to map the histogram data to a finer grid and

construct the basic shape of the profile envelope. The number of samples is chosen as a power of

2 for feature extraction (128 in our implementation). Figure 2.3(a)-(c) shows the pre-processing

procedure for a randomly selected gate in circuit c6288.

Once the body bias profiles are available in the form of unified envelopes, we apply the feature

extraction technique to determine the underlying characteristics of each gate. The proposed fea-

ture extraction is achieved by Haar wavelet transform, which has low complexity and retains the

information in both the original and transformed domains. With a one-level Haar transform, the

original body bias waveform with n-sample points can be transformed to two n/2-entry vectors

(approximation coefficients xi and detail coefficients yi),

(2.7) xi[n] =
1√
2
(xi−1[2n] + xi−1[2n + 1])

(2.8) yi[n] =
1√
2
(xi−1[2n]− xi−1[2n + 1])

where (2.7) is the summation operation denoting low-pass filter and (2.8) is the difference operation

denoting the high-pass filter. The detail coefficients representing the local characteristics are easily

disturbed by outliers and hence discarded. The approximation coefficients preserving the general

characteristics are then decomposed repeatedly until a feature vector with a required number of

features (n/4, n/8, etc.) is obtained. In our work, an 8-entry feature vector is extracted from the

body bias profile for each gate. Figure 2.4 shows a simple example of a two-level Haar transform

architecture, where g[n] and h[n] represent low-pass and high-pass filters, respectively. A 128-entry

input x1[n] is reduced to a 32-entry vector after a two-level Haar transform.

Since the approximation coefficients indicate the accumulated activities, the feature vectors natu-

rally embody the mean and variance information of the profiles. Moreover, as two highly correlated

gates should exhibit similar body bias profiles and hence similar feature vectors, the correlation
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Figure 2.4: An example of a two-level Haar wavelet transform

between gates is well modeled by the proposed method. Thus, the feature vector preserves more

information than the method in [27].

2.1.3 Gate Clustering

As mentioned above, a metric must be proposed to quantify the similarity of feature vectors.

Thus, we propose the following definition of similarity.

Definition: The similarity of two feature vectors v1, v2 is the cosine of the angle between them:

(2.9) Sv1,v2 = cos(α) =
|v1

Tv2|
‖v1‖‖v2‖

where ‖ · ‖ denotes the Euclidean norm. The use of the angle between vectors provides two main

advantages:

(1) it correctly measures the distance between two vectors. Since any entry in a feature vector is

always non-negative, a larger Euclidean distance is equivalent to a larger angle and hence a smaller

Sv1,v2 ;

(2) the value is normalized and does not depend on any amplitude gains or empirically chosen

weights.

Let us consider the simplest example of two clusters. N -cluster decomposition will be an exten-

sion of the two-cluster case and is discussed in Section 2.1.4. In this example we need to classify

the gates into two clusters based on their feature vectors. The initial seed gates for each cluster

may be easily assigned, namely the most forward-biased and most reverse-biased gates, which are

determined by sorting the mean of the body bias profiles. These two gates should clearly be in

separate clusters. The seeds become the initial centroids of the clusters. The centroid is defined as

a vector that maximizes the sum of similarities of all other points within the cluster to itself. After
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initial seeds are selected, gates are visited in sequence and their similarities to the centroid of each

cluster is computed by (2.9). Each gate is then placed in the cluster with the highest similarity after

which the centroid of the corresponding cluster is updated. This procedure is described in Figure

2.5 and carried out repeatedly until all gates are classified.

Procedure: 2-Cluster Gate Clustering
Input: feature vectors for all the gates
Output: clustered circuit
1: Choose the initial seed for each cluster;
2: For each gate i with feature vector vi do
3: Measure its similarity to the centroid vector uj for cluster j

(j=1, 2) by (2.9);
4: Find cluster j = argmax(Svi,uj

), j=1 or 2;
5: Put gate i into cluster j;
6: Update the centroid of cluster j;
7: End for

Figure 2.5: Algorithm for 2-cluster gate clustering

When updating the centroid, either the arithmetic mean of the vectors within one cluster or the

most representative vector (median) of the cluster can be selected as the centroid. However, noting

that the arithmetic mean is not robust to outliers or noise, we propose a low-cost k-median-like

algorithm in this paper to compute the centroid. Such a strategy circumvents the potential problem

in [27] that the arithmetic average will be skewed by highly deviated data.

Now assume we have m gates in the cluster. A theoretically rigorous formulation for the centroid

is:

(2.10) u = argmax
∑

vi∈cluster

Su,vi
, u ∈ {v1,v2, . . .vm}

This is a nonlinear discrete optimization problem that is difficult to solve. We therefore employ

a two-phase relaxation scheme to tackle this problem. The first phase relaxes the problem to an

unconstrained continuous optimization and finds the optimal condition, which is:

(2.11) max
∑

vi∈cluster

vi
T u

‖vi‖‖u‖ , u ∈ R8×1

This can be further simplified to:

(2.12) max wT x

where w is
∑

i vi/‖vi‖ and x is a normalized vector u/‖u‖. It is well known that the inner product
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of vector a and a normalized vector b is the length of projection of a on b. Thus, the maximum of

(2.12) is reached when vectors x and w lie in the same direction, i.e., x = w/‖w‖. This is denoted

as the optimal condition for centroid selection.

The second phase consists of a local search among gates in the cluster to find the closest match

to the optimal centroid found above. This is achieved by computing the similarity between each

normalized feature vector and the optimal centroid (using (2.9)). The vector with the largest simi-

larity is then chosen to be the centroid of the cluster. The algorithm for centroid update is shown

in Figure 2.6.

Procedure: Centroid Update
Input: feature vectors for all the gates in the cluster
Output: centroid of the cluster
1: Compute the optimal condition vopt of the centroid using (2.12);
2: For each gate i with feature vector vi do
3: Compute Svi,vopt using (2.9);
4: End for
5: Set the gate with the largest Svi,vopt as the centroid;

Figure 2.6: Algorithm for centroid update

2.1.4 Extension to N Clusters

We now extend the 2-cluster gate clustering algorithm in Figure 2.5 to an efficient successive

clustering algorithm for N -clusters. The cluster is recursively bi-partitioned until the number of

clusters reaches or exceeds N . The complete algorithm is presented in Figure 2.7. We use a binary-

tree data structure to model the successive clustering of the gates. The root node of the tree contains

all the gates in the circuit whereas a leaf node represents the resulting cluster without any children

nodes.

There are two possible scenarios to create a leaf node: (1) normal termination; when the total

number of leaf nodes and non-leaf nodes reaches the required N , all the nodes at the lowest level

become leaf nodes; (2) fast termination; for a node with no more than 10% of the total gates 2, we

consider this to be a leaf node without further decomposition. A typical example is shown in Figure

2.8(a) for N = 3. When the tree is decomposed to the second level, the node on the right with

13 gates is immediately considered to be a leaf without further decomposition, as it contains fewer

than 10% of the total gates (fast termination). On the other hand, the node on the left with 153

gates is further decomposed to two nodes with 91 gates and 62 gates on the third level. Since the

total number of non-leaf nodes (on the third level) and leaf nodes (on the second level) has reached
2In practice the number of the clusters will not exceed 10.
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Procedure: N -Cluster Gate Clustering
Input: feature vectors for all the gates, number of clusters N
Output: clustered circuit
1: Set n=1 as the number of the cluster;
2: Set i=1 as the current level of the binary tree;
3: While n < N do
4: Perform 2-Cluster Gate Clustering for all the tree nodes at level i;
5: i = i + 1;
6: For each node j at level i do
7: If node j meets fast termination criterion
8: Set node j as a leaf node;
9: n = n + 1;
10: End if
11: End for
12: Set m as the number of non-leaf nodes on level i;
13: If n + m ≥ N
14: n = n + m;
15: Break;
16: End if
17: End while;
18: If n > N
19: Perform re-combination repeatedly till n==N ;
20: End if

Figure 2.7: Algorithm for N -cluster gate clustering
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Figure 2.8: (a) Two possible scenarios to achieve leaf nodes: fast termination and normal termina-
tion; (b) re-combination of the non-leaf nodes. The number beside each node denotes
the number of gates in the node

the required number N (=3), the two non-leaf nodes are then considered as leafs and terminated

(normal termination).

If the number of the nodes (including leafs and non-leafs on the bottom level) exceeds ”N”, which

commonly occurs, a re-combination stage is employed. For the example circuit in Figure 2.8(b), the

decomposition concludes with 4 nodes on the bottom level while N=3. In this case the node with
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the fewest gates (node A in the figure) is re-combined to either node A’s sibling node or the node

whose parent is the sibling of node A’s parent. The candidate with fewer gates will be chosen. As

shown in Figure 2.8(b), the node A with 12 gates is recombined with node B (having 28 gates), as

their parents are siblings and node B has the second fewest gates among the non-leafs. Since the

number of clusters is limited in practice, the algorithm in general is terminated within 3-4 iterations.

2.2 Design-Time Body Bias Selection

2.2.1 Statistical Delay and Leakage Models for Body Biased Gates

This section describes the statistical gate-level models for the parametric yield optimization

framework. Typically, the delay and leakage of a gate can be expressed as:

(2.13) D = D0 +
p∑

i=1

αp(∆Pp)

L = exp
(
V0 +

∑p

i=1
βp(∆Pp)

)
(2.14)

where D0 and exp(V0) are the nominal values of gate delay and leakage; αp and βp capture the

dependence of gate delay and the log of leakage on the p process parameters of interest. Following

the spirit of [47, 48], each process parameter can be transformed to a linear combination of m

independent Gaussian random variables (zj) and the random residual R from principal component

analysis (PCA). Both delay and log of leakage can then be canonically expressed by two Gaussian

random variables:

D = D0 +
∑m

i=1
aizi + am+1R

ln(L) = V0 +
∑m

i=1
bizi + bm+1R

(2.15)

where ai’s and bi’s are the corresponding coefficients obtained from PCA [47, 48]. Now assume the

gate is biased at a particular body voltage vb. With the body bias models in (1.3)-(1.4), gate delay

and log of leakage can be written as:

(2.16) DABB = ∆k ×D, ln(LABB) = ln(L) + ∆V

where ∆k = 1− d0− d1vb and ∆V = ln(1+ p0 + p1vb + p2v
2
b ). Timing analysis is then performed by

propagating the delay from gate to gate as in [47, 48] with the biased delay model, while maintaining
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the node delay in the same canonical form with different coefficients. Leakage power analysis is

achieved by summing lognormal random variables using Wilkinson’s method as in [18]. The efficiency

of statistical power analysis is further improved with an incremental approach that will be introduced

in Section 2.3.

Since the principal component zi is an independent standard Gaussian random variable (RV),

the correlation between DABB and ln(LABB) can be easily evaluated as:

(2.17) Cov(DABB , ln(LABB)) =
∑m+1

i=1
∆kaibi

2.2.2 Yield Analysis and Optimization

Based on the biased gate models, we can perform statistical timing and power analysis and

compute the correlation between delay and leakage power. Parametric yield of the circuit is defined

as in [18]:

(2.18) Yield = Pr(D < Dcon, ln(PL) < ln(Pcon − PD))

where Dcon and Pcon are constraints for delay and power, respectively, PL is the leakage power and

PD is the dynamic power of the circuit. Note that both circuit delay and log of leakage are two

Gaussian random variables. The underlying problem in (2.18) is then the integral of a bi-variate

normal distribution over a rectangular region. The five parameters (µD, σD, µL, σL, ρ, which

are mean and standard deviation of circuit delay and log of leakage power, and their correlation

coefficient, respectively) are used to define the bi-variate normal distribution.

For simplicity, (2.18) can be written as (2.19) after normalization:

(2.19) Yield= Pr(x < a, y < b) =
1

2π
√

(1− ρ2)

a∫

−∞

b∫

−∞
e
− x2−2ρxy+y2

2(1−ρ2) dxdy

where x = D−µD

σD
and y = ln(PL)−µL

σL
are normalized random variables, a = D0−uD

σD
and b =

ln(P0−Pd)−µL

σL
are the normalized constraints on delay and log of leakage power, and ρ is the cor-

relation coefficient between the circuit delay and log of leakage. To evaluate this integral, [18]

transformed the original rectangular region to a triangular region. The new region is then parti-

tioned into several sub-domains and computed in sequence. This method can suffer from inaccuracy

and a high complexity of transformation and partitioning. To avoid these problems we propose

the use of the Gaussian quadrature technique [50]. Gaussian quadrature is an efficient approach to
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compute integrals by a weighted sum of function values at specified abscissae within the domain

of integration, and can reach analytical accuracy by a suitable choice of abscissae and weights.

Reference [50] suggests a Gaussian quadrature model to compute the integral
∫∞
0

exp(−x2)f(x)dx:

(2.20)

∞∫

0

exp(−x2)f(x)dx ≈
∑15

i=1
wif(xi)

where xi’s and wi’s are abscissae and weights that are fixed for the integral of the form above without

any dependence on f(x). As is proved in [50], (2.20) can reach an accuracy of 10−31, and is therefore

adopted in this paper to evaluate the yield function in (2.19).

With the substitution u = (a−x)√
2(1−ρ2)

, v = (a−y)√
2(1−ρ2)

, a1 = a√
2(1−ρ2)

and b1 = b√
2(1−ρ2)

, (2.19)

can be simplified to:

(2.21) Yield =

√
(1− ρ2)

π

∫ ∞

0

∫ ∞

0

exp(−u2 − v2)Y (u, v)dudv

where

(2.22) Y (u, v) = exp[a1(2u− a1) + b1(2v − b1) + 2ρ(u− a1)(v − b1)]

By applying the model in (2.20) to u and v separately, we obtain:

(2.23) Yield = f(a1, b1, ρ) =
∑15

i=1

∑15

j=1
wiwjY (xi, xj)

Since xi and wi in (2.23) are fixed for any arbitrary function Y (u, v) [50], the computation time of

(2.23) is independent of the problem size.

Based on the proposed yield analysis 3, our yield optimization problem can be formulated as an

unconstrained optimization problem where the objective function is (2.18) and the design variables

are the body voltage of each cluster, as shown below:

(2.24) max Pr(D < Dcon, ln(PL) < ln(Pcon − PD))

This optimization problem is then solved by the optimizer Lancelot [46]. Note that Lancelot numer-

ically evaluates the objective function and gradient of the yield. Thus, the optimization formulation
3 The model in (2.20) requires that when ρ <0, which is the typical case for log of leakage and delay, the constraints

should be a ≤ 0 and b ≤ 0. The other constraint cases, {a ≥ 0, b ≥ 0}, {a ≤ 0, b ≥ 0} and {a ≥ 0, b ≤ 0}, can be easily
transformed to {a ≤ 0, b ≤ 0} by exploiting the underlying characteristics of bi-variate normal pdf, e.g., Pr(x ≤ a,
y ≤ b)=Φ(a)+Φ(b)−1+Pr(x ≤ −a, y ≤ −b), where Φ(x) is the standard normal cumulative density function [50, 51].
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in this section can use high-order models or even table-look-up to compute the intrinsic gate delay

and leakage so as to guarantee the accuracy in optimization.

2.2.3 Gradient Computation and Complexity

Lancelot [46] requires the computation of the gradient of yield with respect to the body voltage

of each cluster. This can be estimated by increasing or decreasing the body voltage of a cluster by a

small amount and then computing the yield difference due to the body voltage change. To improve

the efficiency of this step, we suggest a power perturbation scheme instead of a full-circuit statistical

power analysis.

Assume that the body voltage for a cluster k is changed by a small amount ∆v. The change in

leakage power can then be written as:

∆PL =
∑

i∈clusterk

{Pi,0[1 + pi,0 + p1,i(vb,k + ∆v) + p2,i(vb,k + ∆v)2]

− Pi,0(1 + pi,0 + p1,ivb,k + p2,iv
2
b,k)}

(2.25)

where Pi,0 is the leakage with zero-body bias for gate i, and p1,i and p2,i are the coefficients for the

leakage model in (1). This can be further simplified to:

∆PL =
∑

i∈clusterk

Pi,0(p1,i∆v + p2,i∆v2) + vb,k

∑

i∈clusterk

2Pi,0p2,i∆v(2.26)

Since the body voltage increment ∆v is fixed for all the clusters, vb,k is the only variable in (2.26),

so that the coefficients
∑

i∈clusterk

Pi,0(p1,i∆v + p2,i∆v2) and
∑

i∈clusterk

2Pi,0p2,i∆v can be computed

in advance and used throughout the whole optimization process. In other words, we just need

to perform N summations to compute the change in the leakage pdf for N clusters in gradient

computation. The complexity is reduced from O(NNg) for N full statistical power analysis to

O(N), where Ng is the number of gates.

Timing perturbation is performed by a full statistical static timing analysis (SSTA). Once we

obtain the delay and leakage-power pdfs of the perturbed circuit (the body voltage of the kth cluster

is changed from vb,k to vb,k + ∆v), the yield of the perturbed circuit can be calculated by (2.23),

and the change in yield is used to define the particular component of the yield gradient. Since yield

analysis has a constant complexity, the overall algorithm complexity of this optimization framework

is dominated by SSTA, the complexity of which is O(N(Ng + E)), where E is the number of edges

of the timing graph. Note that the number of clusters is limited in real designs and is negligible
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Table 2.1: Clustering efficiency comparison between the proposed feature extraction-based clustering
method and the empirical affine weighting function based clustering method from [27]

Leakage Comparison (µW) Time (sec) for
CKT. #gates Empir.[27] Feature Clustering

u/σ 95% u/σ 95% Empir. Feature
c432 166 3.8/1.3 6.2 3.5/1.2 5.6 0.8 5.9
c499 519 18.2/7.1 31.7 17.8/6.3 28.3 5.3 6.5
c880 390 4.2/1.6 7.0 3.9/1.5 6.4 4.2 6.3
c1355 558 15.7/5.2 25.0 14.8/4.5 22.1 8.6 6.7
c1908 432 8.9/3.1 14.2 7.8/2.3 12.1 7.5 6.5
c2670 964 8.5/3.3 14.7 7.5/2.8 12.7 26.0 7.4
c3540 962 14.9/6.1 26.7 14.2/5.7 24.5 25.7 7.4
c5315 1750 19.7/7.6 35.6 17.7/7.1 31.4 84.3 9.2
c6288 2502 89/35 155 82/30 134 179 11
c7552 2102 23/10 42 20/8 35 122 10
Vit1 14539 246/110 396 210/80 348 901 52

Average improvement (%) 10/17 13.4

compared to Ng. Thus, the framework maintains a linear complexity 4. Experimental results in

Section 2.3 also validate that yield optimization takes only seconds even for a circuit with tens of

thousands of gates.

2.3 Experimental Results

The proposed algorithms discussed in Section 2.1 and 2.2 were implemented in C and tested on

ISCAS85 benchmark circuits and a Viterbi Decoder circuit (Vit1) that vary in size from 166 to 14539

gates. The circuits were synthesized using an industrial 1.2V 90nm triple-well dual-Vth technology.

The two Vth values are 0.32V (0.33V) and 0.22V (0.24V) for NMOS (PMOS). Body voltage is varied

between ±0.5V. All standard cells in the library were characterized (using SPICE) at both the high-

and low-Vth values. Only channel length variation is considered for simplicity, however the overall

approach can be extended to consider other sources of variability. We consider inter-die, spatially

correlated intra-die, and random components of variation. Total 3σ/u channel length variability is

set to 15% and then split evenly among the three variation components.

2.3.1 Efficacy of Feature Extraction-Based Clustering

Reference [27] proposed a clustering algorithm based on an empirical affine weighting function.

Table 2.1 compares the proposed feature extraction-based clustering algorithm (Feature) with the

work of [27] (Empir.) in terms of both resulting leakage and runtime. Column 2 lists the number of
4The number of Lancelot iterations (around 30) is limited due to the small problem size.
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gates for each circuit, varying from 166 to 14539 gates. Columns 3-6 compare the mean/standard

deviation and 95th percentile leakage of the proposed method and the method from [27], respectively.

The proposed approach improves upon the prior work in all measures and achieves a 10% and 17%

reduction in the mean and standard deviation of the leakage, respectively. The last two columns of

Table 2.1 compare the gate clustering runtime for the two methods. The runtime for the proposed

method shows linear dependence on circuit size with a small slope, whereas the runtime for the

empirical function-based method [27] increases exponentially. On average, the proposed method is

5.1× faster than the method in [27]. For the largest circuit Vit1, the proposed method achieves 18×
speed-up.

2.3.2 Monte Carlo Convergence

The design space exploration step described in Section 2.1.1 is executed only once in the frame-

work but still involves solving a large number of QP problems to determine the body bias profile

across process variability. To speed this step up, we employ the smart sampling approach in [52],

which captures the importance of the samples to reduce the number of the samples. Figure 2.9

shows the dependence of yield optimization results on the number of Monte Carlo samples for the

six largest circuits in our set of benchmarks. The quality of the yield optimization results with 100

samples is similar to the results with 1000 samples. We therefore use 100 samples in the exploration

step, as design space exploration is only required to outline the general features instead of local

details. Moreover, since the QP optimization for a given sample of a circuit is independent of the

QP optimizations for other samples of the same circuit, this step can be easily parallelized to achieve

further speedup.

2.3.3 Pre-Silicon Body Bias Selection Framework vs. Post-Silicon ABB

The proposed pre-silicon body bias selection framework chooses statistically optimal body volt-

ages for the full ensemble of chips, while post-silicon ABB uses measurement results for a particular

manufactured chip and deterministically selects the bias voltage for each cluster of that chip. It

is clear that post-silicon ABB should provide higher yields at the cost of higher testing times and

costs. This section quantifies the yield loss when using the proposed pre-silicon approach compared

to a post-silicon ABB with the same clustering method in Section 2.1.

Given a clustering, the yield of post-silicon ABB is computed by first generating 1000 chip

samples, which are then individually tuned to minimize leakage subject to a delay constraint. The

number of chips that fail to simultaneously meet the leakage and delay targets is then calculated.
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Figure 2.9: Monte Carlo convergence

The yield optimization results of our pre-silicon approach and post-silicon ABB are summarized

in Table 2.2. Column 2 lists the initial pre-optimized yield of each circuit for the target constraint

{Delay<µD+σD, Leakage<µL}. Columns 3-10 display the yield optimization results and yield point

improvement using our pre-silicon framework and post-silicon ABB for 2 and 3 cluster scenarios.

Although post-silicon ABB achieves slightly higher yield than the proposed pre-silicon body bias

selection framework, the difference degrades for larger number of clusters and larger circuits. For

circuit Vit1 with 15K gates, the optimized yield difference between pre- and post-silicon approaches

is only 4.7% for 2-cluster configuration and 0.9% for 3-cluster configuration. Furthermore, while

testing costs increase rapidly with the number of clusters in post-silicon ABB, the only overheads

related to cluster count in our pre-silicon body bias selection framework are physical design related,

and are shared by both techniques (see Section 2.3.6 below).

2.3.4 Pre-Silicon Body Bias Selection Framework vs. Traditional Pre-Silicon Ap-

proaches

We further evaluate the efficacy of our pre-silicon framework in Table 2.3 when compared to tradi-

tional pre-silicon methods (a statistical dual-Vth assignment approach [21] and a yield maximization

approach using gate sizing [18]). Similar as Table 2.2, columns 3-10 list the yield optimization results

and yield point improvement for the constraint {Delay<µD+σD, Leakage<µL} using our pre-silicon

framework and two traditional pre-silicon statistical optimization methods (dual-Vth and gate sizing
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Table 2.2: Comparison of yield optimization results using the proposed pre-silicon body bias selec-
tion framework and post-silicon ABB with different number of clusters (2 clusters and 3
clusters)

Initial Optimized yield(%)/Yield point improvement
CKT. yield pre-silicon BB select post-silicon ABB

(%) 2 cluster 3 cluster 2 cluster 3 cluster
c432 38.4 70.5 32 79.2 41 78.2 40 88.8 50
c499 39.2 65.8 27 74.7 36 77.0 38 82.4 43
c880 38.6 68.7 30 79.1 41 78.4 40 86.4 48
c1355 39.3 68.4 29 82.7 43 81.6 42 89.2 50
c1908 39.0 68.1 29 80.6 42 78.0 39 87.0 48
c2670 38.7 73.3 35 83.1 44 83.8 45 90.7 52
c3540 38.7 65.7 27 77.7 39 75.8 37 84.1 45
c5315 39.2 69.4 30 80.7 42 78.6 39 88.2 39
c6288 38.4 63.4 25 72.1 34 71.1 33 77.8 39
c7552 38.8 69.4 31 80.1 41 76.7 38 86.9 48
Vit1 39.1 78.6 40 90.6 52 83.3 44 91.5 52
Ave. improvement 30 41 40 48

Table 2.3: Comparison of yield optimization results using the proposed pre-silicon body bias selection
framework and traditional pre-silicon approaches (dual-Vth [21] and gate sizing [18])

Initial Optimized yield(%)/Yield point improvement
CKT. yield pre-silicon BB select

(%) 2 cluster 3 cluster dual-Vth[21] sizing[18]

c2670 38.7 73.3 35 83.1 44 39.5 0.8 46.3 7.6
c3540 38.7 65.7 27 77.7 39 41.4 2.7 44.1 5.4
c5315 39.2 69.4 30 80.7 42 40.3 1.1 45.0 5.8
c6288 38.4 63.4 25 72.1 34 38.8 0.4 43.2 4.8
c7552 38.8 69.4 31 80.1 41 40.2 1.4 47.9 9.1
Vit1 39.1 78.6 40 90.6 52 50.7 11.6 52.8 13.7
Ave. improvement 30 41 3.0 7.7

[21, 18]). The proposed approach with either 2 or 3 clusters potentially doubles the original yield

of 39% (the optimized yield is 69% for 2 clusters and 80% for 3 clusters on average) while the yield

improvement is limited to 3.0 point on average for the statistical dual-Vth package [21] and 7.7 point

on average for the method using gate sizing [18]. This further validates the statement in Section I

that the proposed pre-silicon body bias selection has continuous domain design variables and hence

higher flexibility than the traditional pre-silicon approaches like gate sizing or dual-Vth.

2.3.5 Yield Analysis and Optimization

In this section we display the accuracy and optimality of the proposed pre-silicon framework in

Table 2.4 when compared to Monte Carlo simulation. Columns 2-5 list the mean and standard devi-
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Table 2.4: Yield analysis and optimization results for the constraint {Delay<µD+σD, Leakage<µL}
using the proposed method with different number of clusters (2 clusters and 3 clusters),
a statistical dual Vth method [21] and Monte Carlo approaches

Initial Design Initial Yield (%) Optim. Yield(%)/point impro. MC-sweep (%)
CKT.

µD σD µL σL Prop. MC 2 cluster 3 cluster Yield Error

c432 0.74 0.05 0.97 0.26 38.4 43.6 70.5 32 79.2 41 82.5 3.9

c499 0.68 0.04 3.80 1.02 39.2 41.9 65.8 27 74.7 36 76.2 1.9

c880 0.77 0.05 1.17 0.32 38.6 42.6 68.7 30 79.1 41 78.8 0.3

c1355 0.89 0.05 3.57 0.96 39.3 43.8 68.4 29 82.7 43 79.4 4.1

c1908 1.15 0.07 2.16 0.58 39.0 42.1 68.1 29 80.6 42 79.2 1.8

c2670 0.77 0.05 2.06 0.56 38.7 43.4 73.3 35 83.1 44 84.3 1.4

c3540 1.22 0.07 3.15 0.84 38.7 44.5 65.7 27 77.7 39 83.3 6.7

c5315 1.12 0.07 4.14 1.11 39.2 42.2 69.4 30 80.7 42 79.4 1.7

c6288 3.52 0.21 14.77 3.91 38.4 41.1 63.4 25 72.1 34 76.4 5.6

c7552 1.28 0.08 4.14 1.10 38.8 39.7 69.4 31 80.1 41 75.8 5.6

Vit1 2.41 0.14 149.44 39.54 39.1 41.8 78.6 40 90.6 52 91.6 1.0

Average yield point improvement 30 41

Table 2.5: Runtime for critical stages of the proposed framework and total time
Time for Critical Stages(sec.) Total

CKT. #gate
Explo. Clust. Optim. Time (sec.)

Ratio

c432 166 0.68 5.89 2.35 36.11 0.22
c499 519 5.87 6.48 2.40 47.29 0.09
c880 390 3.29 6.32 2.48 41.05 0.11
c1355 558 6.43 6.64 2.68 46.67 0.08
c1908 432 4.13 6.46 3.28 48.82 0.11
c2670 964 18.38 7.38 3.13 64.78 0.07
c3540 962 23.50 7.36 3.37 73.53 0.08
c5315 1750 68.17 9.21 4.03 133.77 0.08
c6288 2502 185.2 10.5 5.0 257.9 0.10
c7552 2102 110.3 9.8 4.3 173.4 0.08
Vit1 14539 747.3 51.9 12.2 1176.5 0.08

ation of the delay and leakage for the initial designs. The target constraint is set to {Delay<µD+σD,

Leakage<µL}. Given this constraint we compute the original yield and compare it with a Monte

Carlo golden model with 2000 samples, shown in Columns 6-7. The absolute errors of the pro-

posed yield analysis in Section 2.2.2 vary from 0.9% to 5.7%, which is due to the computation

approximation in SSTA, e.g., statistical maximization operation.

The optimized yield results and the yield point improvements are shown in Columns 8-11. The

proposed approach with either 2 or 3 clusters potentially doubles the original yield of 39% (the

optimized yield is 69% for 2 clusters and 80% for 3 clusters on average). The improvements are

consistent among all the benchmarks studied. We also perform a Monte Carlo sweep (MC-sweep)

to determine whether the optimized yield obtained by the proposed framework is globally optimal.

MC-sweep performs Monte Carlo simulations on all possible combinations of body voltages for a
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Figure 2.10: Yield optimization trace for c2670.

3-cluster-configuration. The sweep increment is set to 0.1V, i.e., the sweep space is vb,1× vb,2× vb,3,

where vb,i ∈ [−0.5,−0.4, ..., 0.5] for i = 1, 2, 3. The last two columns of Table 2.4 show the maximum

yield found by MC-sweep and the relative deviation of the proposed approach with respect to MC-

sweep. The maximum deviation is 6.7%, which is due to the model approximation and the relatively

coarse grid of the Monte Carlo sweep.

Table 2.5 displays the runtime for the critical stages of the proposed framework (including design

space exploration (Explo.), clustering (Clust.) and yield optimization (Optim.)) as well as the total

runtime. The last column lists the ratio of the total runtime to the circuit size, indicating a linear

relationship. Runtime is dominated for larger circuits by the design space exploration stage, which

can be parallelized across machines as mentioned above.

Figure 2.10 shows the iteration trace of Lancelot for circuit c2670 under a 2-cluster configuration.

The optimizer requires 23 iterations to reach global optimality, which helps explain the small runtime

for yield optimization in Table 2.5. Figure 2.11 illustrates the yield contour of c3540 for a 2-

cluster configuration. We use the proposed framework to explore the interaction between yield and

constraints. The contour clearly illustrates the equivalent constraint sets to achieve a similar yield

and may help designers make beneficial trade-offs.

2.3.6 Implications for Physical Design

Adaptive body bias incurs physical design overheads, including generation/distribution of the

body voltages and extra well spacing. Note that there are a limited number of clusters (2-3 in our
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Figure 2.11: Yield contour for c3540 under 2-cluster configuration

(a) (b)

Figure 2.12: Vit1 placement with physically contiguous cluster regions by CAPO [53] (different
clusters are shown with different colors): (a) 2 clusters; (b) 3 clusters

experiments) and as a result, these overheads can be reasonably bounded. The major impact of

gate clustering on placement is then the extra well spacing between adjacent cells having different

biases imposed by triple-well-layout rules. As stated in Section 2.1, the proposed clustering method

naturally captures the spatial correlation in the feature vectors. In other words, most gates are in-

trinsically clustered within the physically continuous regions and this helps reduce the well spacing

overheads. Moreover, we employ the incremental placer CAPO [53] to minimize the gate displace-

ment and area overhead, following a similar flow as in [27]. CAPO works in its Engineering Change

Order (ECO) mode to make limited changes to the initial placement subject to certain constraints

[53]. Figure 2.12 demonstrates the resulting layout for the Vit1 circuit with both 2 clusters and
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3 clusters after applying CAPO to the initial placement. It is clear that most gates in the layout

are clustered in the physically continuous regions. In particular, the average gate displacement is

2.2-2.3% and half perimeter wire-length increase is 2.7-3.9% compared with the initial designs, for

2- and 3-cluster configurations.

2.4 Summary

In this chapter we presented a gate-level parametric yield optimization framework using design

time body bias selection. The approach considers the power and performance constraints along

with their correlation. A feature extraction based clustering approach is proposed that achieves

speedups of 5.1× on average and up to 18× for 11 benchmark circuits compared to a recently

reported clustering strategy, with leakage savings of more than 10%. In addition the framework

employs a fast yield analysis calculation method and an efficient power perturbation technique for

optimization and achieves 41% yield improvement on average across 11 benchmark circuits.
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CHAPTER III

Process and Temperature Variation-Aware Oxide

Breakdown Reliability Analysis

Over the last few decades, numerous publications have focused on understanding and modeling

the mechanisms leading to defect generation and breakdown in individual devices [54, 55, 56, 57].

Some researchers have initiated an effort to understand the oxide breakdown (OBD) mechanisms

of simple circuits [56]. Recently, a product level approach performing oxide breakdown analysis

on full chip was proposed in [58]. In most of the existing approaches, simple test structures such

as discrete devices or capacitors are used to characterize the oxide breakdown mechanism for a

specific manufacturing process. These discrete device characterization results are then extrapolated

to deduce a model for the full chip oxide reliability which is later calibrated using lifetime tests of

sample product.

However, there are two major concerns with prior approaches:

• Prior approaches assume a uniform oxide thickness for all devices on every chip. In practice, the

non-uniformity in temperature and pressure during the gate-oxidation process leads to within-

die and die-to-die variations in gate oxide thickness. For a given supply voltage and operating

temperature, the reliability of oxide is an exponential function of its thickness and its sensitivity

to thickness variations increases for thinner oxides [59]. Therefore, in previous approaches, it

was imperative to consider a uniform minimum oxide thickness across all devices on a chip and

across all chips for a conservative worst-case analysis. This may lead to significantly pessimistic

estimates of the overall oxide breakdown reliability of the product.

• In addition, prior works assume a worst operating temperature across the chip and throughout

the lifetime. However, it has been well noted that devices operated at different temperature

may deteriorate at different rates, and the mean time to failure (MTTF) of a device exponen-
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tially depends on temperature [60, 61, 62]. Thus, it is overly pessimistic to assume a device in

inactive regions is as equally prone to failure as the one in hot spots.

Since oxide reliability is one of the key factors that sets constraints on the operating supply voltage

and temperature of the chip, any pessimism in oxide reliability analysis limits the maximum operat-

ing voltage and thus the maximum achievable chip-performance [63, 64]. In order to find consistent

supply voltage limits, it is therefore critical to quantify the product oxide breakdown strength with

consideration of both process and temperature variations.

The goal of this work is to develop a new chip-level gate oxide breakdown analysis while accom-

modating both process (diet-to-die, within-die spatially correlated and independent) and temperature

variations into the chip oxide breakdown reliability analysis. If the thickness of each device is mod-

eled as a distinct random variable, then the full chip reliability estimation problem is defined on a

huge sample space of several million devices. By noting that the reliability for a sample device with

a given oxide thickness itself is a random function, the design time full chip reliability estimation

problem turns out to be a multi-dimensional nested stochastic process. Furthermore, temperature

variations may result in different device-level reliability models in hot spots and inactive regions,

which further complicates this problem. Apparently a straightforward Monte Carlo approach is

extremely expensive in both execution time and memory, as we need to perform nested Monte Carlo

analysis on the sample spaces for different chips and different devices across each chip as well as the

sample space of oxide breakdown of each device. The challenge here is how to reduce the tremendous

number of random variables and then achieve a low space/time complexity. To address this issue,

we propose a statistical approach that has the following key modeling contributions:

• First, we present a more consistent and accurate model for statistical full-chip reliability anal-

ysis. Unlike any traditional reliability analysis that simply uses the worst corner, the proposed

model incorporates both the oxide thickness variation and temperature variation to ensure a

reasonable result. This theoretically rigorous OBD reliability model considers variations at

different spatial scales and hence involves the integration over millions of variables, which may

be difficult for a direct solve.

• Second, the proposed framework discusses how to project that tremendous parameter space at

device-level to the granularity of block level by characterizing the Block level Oxide thickness

Distribution (BOD). Figure 3.1 illustrates the global temperature unevenness (corresponding to

different functional modules) and local temperature uniformity for an alpha processors [65, 66].

Based on such observation, a ”block” is defined a region on chip with uniform temperature
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Figure 3.1: Temperature profile for an Alpha processor simulated by HotSpot [65]

spread 6. We therefore present how to map the millions of random variables within each block

to only two distinct random variables of sample mean and sample variance of BLOD. Such a

projection greatly reduces the problem size to a feasible level while still capturing both the

temperature variation and the process variations at different spatial scales.

• Third, we demonstrate how to characterize the sample mean/variance for each block using

principal components and then compute the full-chip OBD reliability in an efficient way. By

expressing the oxide thickness variation with principal components, we can achieve the closed-

form representation of the sample mean/variance for each block as well as their correlation.

Then, with some judicious approximations, the initial high dimensional integration for the

reliability across the ensemble of chips can be simplified to the sum of double integrals, which

enables fast and accurate estimation.

3.1 Oxide Thickness Variation Modeling

As is discussed in Chapter I, the oxide thickness variation can be classified based on the spatial

scale over which it manifests using a chip-level variation model in (1.1) [7, 8, 47, 48]. In this work,

we discuss the proposed approach using the grid based model [47, 48] by partitioning the chip into

n grids and assuming perfect spatial correlation within each grid (see Figure 3.2). In other words,

6This ”block” could be a real architecture level block or some sub-block that can ensure the assumption of uniform
temperature.
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Figure 3.2: A grid based spatial correlation model

the devices within one grid have the correlation coefficient of 1 and hence bear the same spatially-

correlated variation component, whereas devices in two different grids, ith and jth for example,

have a covariance of ρi,jσ
2
corr, with a correlation coefficient ρi,j <1 [47]. To further simplify the

correlation structure, the set of n correlated random variables is mapped to another set of mutually

independent random variables with zero mean and unit variance using the principal components of

the original set. The original random variables are then expressed as a linear combination of the

principal components. These principal components can be obtained by performing an eigenvalue

decomposition of the correlation matrix. For a device in the ith grid, its oxide thickness xi can be

canonically expressed as a linear combination of the principal components:

(3.1) xi = λi,0 +
n∑

j=1

λi,jzj + λrε,

where λi,0 is the mean or nominal value of oxide-thickness in ith grid , zj ’s represent the n inde-

pendent random variables used to express the spatially correlated device parameter variations, ε is

a distinct random variable for each device that represents the residual independent variation, and

the coefficients λi,j ’s represent the sensitivity of thickness variation in ith principal component for

every jth the random variable.

3.2 Reliability Model and Problem Formulation

The gate oxide degradation depends on the oxide thickness, voltage, and temperature. There

are many oxide breakdown models in the literature that attempt to explain the dependence on

these factors. A widely accepted model is the anode hole injection model [67]. According to this

model, injected electrons generate holes at the anode that can tunnel back into the oxide. Intrinsic

breakdown occurs when a critical hole fluence is reached, creating a continuous conducting path
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across the oxide. A second model, known as electron trap density model, has been suggested,

which claims that a critical density of electron traps generated during stress is required to trigger

oxide breakdown [68]. Both models of oxide breakdown mechanisms note that the defect generation

is a non-deterministic process. As a result the oxide breakdown time is inherently a statistically

distributed quantity. Thus the oxide breakdown time is modeled as a random variable typically

characterized by a Weibull probability distribution function, given by [55, 59]:

(3.2) F (t) = 1− e−a( t
α )β

where F is the cumulative distribution function (CDF) of time-to-breakdown t, a is the device area

normalized with respect to the minimum device area, α and β are the scale and shape parameters of

the Weibull distribution. The scale parameter α represents the characteristic life which is the time

where 63.2% of samples fail, whereas the shape parameter β is a function of critical defect density.

The critical defect density depends on device oxide thickness, the oxide field and temperature. For

a given temperature and stress voltage, it has been shown that the slope parameter of the Weibull

distribution varies linearly with oxide thickness [36]. Thus if x denotes the oxide thickness, we have

(3.3) F (t) = 1− e−a( t
α )bx

where b is a constant for given temperature and supply voltage. It has also been noted that the

parameters α and b depend on temperature and can be characterized using some closed-form models

or look up tables w.r.t. temperature for a given process [60, 61, 62, 69].

Another major factor that affects the oxide lifetime is the oxide breakdown failure criterion. A

commonly used failure criterion is soft breakdown (SBD) which is characterized by a small increase

in gate leakage. In practice, however, after SBD the gate leakage current monotonically increases

with time eventually leading to a hard breakdown (HBD) [57]. Figure 3.3 plots the gate leakage

measurement results for a stressed device in 45nm process. It can be observed from the figure how

the gate leakage continuously increases after SBD until HBD is triggered. The time to breakdown

is a function of the gate area, oxide quality, and the bias conditions [58]. For the purpose of this

work, we limit our analysis to determining the initiation of soft breakdown and use this as our failure

criteria since SBD is typically followed rapidly by HBD [58].

A chip is considered to have failed as soon as breakdown occurs for any device on the chip. We

are interested in finding the reliable lifetime of the chip for which none of the devices fail. For such
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Figure 3.3: Typical oxide breakdown procedure characterized by gate leakage for a device in 45nm
process (the stressed condition is 3.1V, 100 ◦C).

weakest link problems, it is more convenient to use an alternate representation known as reliability

function R(t) or survivor function, given by:

(3.4) R(t) = 1− F (t) = P (T > t) =

∞∫

t

f(s)ds

where f(s) is the probability distribution function (PDF) of oxide breakdown of an individual device.

The reliability function is complimentary to the cumulative distribution function (CDF) F (t), taking

the value 1 at t = 0 and tending to 0 as t tends to infinity. Simply stated, a reliability function is the

probability that a device (chip) does not fail by time t. Due to manufacturing variations the thickness

of gate oxide is also a non-deterministic parameter at design time. Thus the reliability function of

a device can be interpreted as its conditional reliability function for a given oxide thickness. For an

ith device having xi oxide thickness the conditional reliability function can be given as

(3.5) Ri(t|xi) = P (t > t|xi) =

∞∫

t

f(s|xi)ds

Due to the spatial correlation of oxide thickness variation, the oxide thicknesses of any two devices on

a chip are correlated with each other. Therefore, in general, their respective reliability functions being

functions of oxide thickness are also correlated with each other. However, if the oxide thicknesses

are known a priori then the defect generation mechanism in one device is independent of any other
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device on the chip for constant voltage and temperature. Thus for a particular chip, if the thicknesses

of all devices are known then any device fails independently of all other devices. Furthermore the

conditional reliability function of the chip Rc(t|x) (with oxide thicknesses known) requires that all

devices on the chip are functioning reliably. Thus, Rc(t|x) is given by the product of reliability

functions of all individual devices:

(3.6) Rc(t|x) =
m∏

i=1

Ri(t|xi)

where x represent the vector of oxide thickness (x1, . . . , xm) and m is the total number of devices

on the chip.

In the traditional analysis, where all oxide thicknesses are supposed to have a single, worst-case

value, the product in (3.6) is taken across a large set of identical reliability functions and can be

analytically solved with a low complexity. However, the key point in our analysis is that, at design

time, each oxide thickness xi is itself a random variable. In addition, these random variables are

correlated across the chip. Furthermore, due to the temperature variation, many devices may have

different reliability functions. If the oxide thicknesses of all devices are characterized by their joint

probability density function (PDF) f(x1, . . . , xm) then the overall reliability function of the entire

ensemble of all manufactured chips can be given by:

Rc(t) =

∞∫

0

. . .

∞∫

0

m∏

i=1

Ri(t|xi)f(x1, . . . , xm)dx1 . . . dxm(3.7)

Due to the huge dimensionality of the above integral, a straight forward numerical evaluation of the

above integral is computationally impractical for full chip analysis. Using judicious approximations

we develop a computationally efficient approach to address this problem in the next section.

3.3 Process Variation and Temperature-Aware Full Chip OBD Reliability

Analysis

The proposed approach for efficiently estimating the overall reliability function Rc(t) is discussed

in a bottom up manner. We first present expressions for finding the conditional reliability function

of a device. Using this expression, the conditional reliability function of a particular chip can be

found given the oxide thickness of all devices on it as well as the temperature profile. We observe

that although the overall reliability functions depends on the spatial and global correlation in oxide
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thickness variation, however, it is independent of the relative location of two devices on the chip.

Hence, for a given chip, we can first partition the chip into the granularity of N functional blocks, in

which devices share similar temperatures. Then, within each block, we can sum together all oxides

of equal thickness and generate a frequency distribution histogram of the oxide thickness. As the

oxide thickness variation of all the individual devices is modeled as a normal random variable and

there are a large number of devices within a block, we show that such frequency distribution across

a given block can be approximated by a normal distribution function. Henceforth, we will refer to

this distribution function as the block level oxide thickness distribution (BOD). The BOD allows us

to compactly represent the oxide thickness of all device within a block of a given chip using just two

parameters - the mean and the variance of the underlying normal distribution function.

In section 3.3.1, we will present how a closed form expression for the block-level reliability

function can be found for one BOD. Then the chip-level reliability for a given chip can also be

analytically computed from N BODs. Finally, we discuss how to compute the overall reliability

function across the entire ensemble of all manufactured chips. As N BODs may vary from die to

die, their means and variances are in fact random variables over the sample space of all manufactured

chips. Hence, the means and variances of N BODs can be represented by two random vectors, with N

entries corresponding to N BODs in each vector. In other words, several million multi-variate oxide

thickness distribution function for each device on the chip can be compactly modeled with just two

random vectors. In section 3.3.3, we will discuss how these two random vectors can be derived from

the oxide thickness process variation model given in (3.1) and thus the overall reliability function

can be computed from it.

For clarity, we define the following notations in Table 3.1 that will be used throughout the

remainder of the chapter.

3.3.1 OBD Reliability Analysis for One Chip

Using the definition of the reliability function and the oxide breakdown time model of an individ-

ual device in (3.3), the conditional reliability function of an ith device on a chip having oxide-thickness

xi is given by

(3.8) Ri(t|xi) = e
−ai(

t
αi

)bixi

where αi and bi are temp device-level reliability parameters for the ith device.

As explained in section 3.2, if the oxide thickens of all devices on a chip is known then the
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Table 3.1: Notations used in OBD reliability analysis

Notation Definition

N number of functional blocks in a chip

m number of devices of a chip

mj number of devices in the jth block, i.e.
∑N

j=1 mj=m

n number of grids in the spatial correlation model of (3.1)

x = [x1, . . . , xm] the oxide thicknesses for m device of a chip

xi,j oxide thickness for the ith device in the jth block of a chip, i = 1 . . . m

ai,j area for the ith device in the jth block of a chip, i = 1 . . . m

Aj total area for the jth block of a chip, j = 1 . . . N

xj=
∑mj

i=1 xi,j/mj the sample mean for mj devices of the jth block

vj=
Pmj

i=1(xi,j−xj)
2

mj−1 the sample variance for mj device of the jth block

fx,y(x, y) joint PDF of x and y, where x and y can be either vector or scalar

reliability function of every device is independent of each other. Thus the reliability function of a

chip is the product of the individual reliability function of all devices. Considering each device on

the chip x = (x1, x2, . . . , xm) and their respective area ai, the conditional reliability of the chip is

given by:

(3.9) Rc(t|x) =
m∏

i=1

Ri(t|xi) = e
−Pm

i=1 ai(
t

αi
)bixi

There may be several million devices on a chip and parameters of αi and bi may differ. Thus, it

is impractical to evaluate the above exponent. In order to efficiently evaluate the overall reliability

across all chips, we need to reduce the dimensionality of the above exponent while considering the

impact of temperature variation across the chip.

It has been noted in Figure 3.1 that the on-chip temperature profile has the characteristics of

global difference and local uniformity. Since both parameters b and α are heavily dependent on

temperature [60, 61, 62], it is therefore unfair to assume that hot spots and inactive areas have the

same reliability model and are hence equally prone to the OBD failure. In practice, temperature

profile of a chip varies continuously across the chip. Transistors within a particular architecture-level

block may share similar temperature due to the similar activities and supply voltage [65, 66]. On

the contrary, temperature variation from block to block is much higher as functional blocks usually

perform completely different operations [66]. It is therefore sufficient to construct a temperature-
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aware reliability analysis model at the granularity of architecture-level blocks. In other words, the

analysis reasonably depends on the fact that devices within a block may bear similar temperature and

hence share approximately the same parameters αi and bi for the reliability functions. As a result,

we considers the block-level worst-case operating temperature and supply voltage in the analysis to

account for the block-level temperature difference and to ensure a correct operation throughout the

entire life time for any application profile. Then, (3.9) can be expressed at the functional block level:

(3.10) Rc(t|x) =
m∏

i=1

Ri(t|xi) = e
−PN

j=1
Pmj

i=1 ai,j(
t

αj
)bjxi,j

where N is the number of architecture-level blocks, αj and bj denote the parameters of the reliability

functions for devices in the jth block.

Equation (3.10) considers the across-chip temperature variation but cannot simplify the model.

To achieve that, we represent the set of devices within a block and their individual oxide thicknesses

using BOD for a particular block in a chip. For example, for the jth block, the shape of its BOD

can be approximated by performing histogram of the oxide thicknesses of xi,j for all the devices

within that block. This block-specific BOD shows how many devices correspond to a particular

oxide thickness within that block. For the sake of understanding, we discretize this oxide-thickness

distribution for the jth block into kj discrete intervals assuming a truncated distribution. It can be

seen that when we make this transformation the area of the devices with identical thickness in a

block can be summed together. Let xi,j denote the midpoint of the ith discrete interval for the jth

BOD and ai,j be the total area of all devices having thickness xi,j in that block. By applying this

transformation, the above expression for Rc(t|x) can be rewritten as

(3.11) Rc(t|x) = e
−PN

j=1
Pkj

i=1 ai,j(
t

αj
)bjxi,j

By making such a transformation the dimensionality of Rc(t|x) can be reduced from number

of devices m to the sum of the number of discrete intervals kj , i.e.,
∑N

j=1 kj . If we normalize the

exponent with total area of each block, the above expression gives

(3.12) Rc(t|x) = exp


−

N∑

j=1

Aj

kj∑

i=1

pi,j(
t

αj
)bjxi,j




where pi,j = ai,j/Aj represents the probability of observing an oxide thickness xi,j on a particular

block of a sample chip. Thus the thickness of all devices on a particular sample chip can be compactly
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characterized by N BODs.

As discussed in section 3.1, the thickness variation of a device includes global variation (inter-die),

spatially correlated intra-die variation (modeled as multi-variate Gaussian random vector for devices

across the chip) and random variation (residual component, modeled as an independent Gaussian

random variable, e.g., N(0, σ2
ε )) [47]. Thus, for a set of devices within one particular block, they

may have different oxide thicknesses due to the variability. The BOD is interpreted as the frequency

distribution histogram of observing certain oxide thicknesses in this block for a sample chip. It can

be characterized by the following lemma:

Lemma 1: Following the oxide thickness variation classification above, BOD can be approximated

by the curve of a Gaussian distribution.

Proof. The proof is straightforward by analyzing the impact of different variation components. First,

within one block, all the devices share the same global variation component (zg).

Second, devices within the same block are closely placed and hence highly or even perfectly spa-

tially correlated. This implies they may have approximately the same spatially-correlated variation

component (zcorr,j).

Third, by using the variation component classification of inter-die, spatially correlated intra-die

and random variations in (1.1), the oxide thickness of a device in the jth block is:

(3.13) xi,j = u0 + zg + zcorr,j + zε,i,j

For any device in the block, u0, zg and zcorr,j are approximately the same. The difference of oxide

thicknesses is therefore mainly caused by the random variation component zε,i,j . In other words,

oxide thickness of any device within the block can be considered as a sample from a Gaussian process

N(u0 + zg + zcorr,j , σ
2
ε ). Due to the independence of the random variation component zε,i,j , oxide

thicknesses of devices within one block are simply samples independently drawn from one common

random process N(u0 + zg + zcorrj , σ
2
ε ).

As long as the number of devices is sufficient, BOD can be well characterized by the histogram

of oxide thickness samples from the Gaussian random process N(u0 + zg + zcorr,j , σ
2
ε ), which hence

follows the curve of a Gaussian distribution.

This lemma helps shed insight into the shape of a BOD and hence how pi,j may change w.r.t.

x. Figure 3.4 validates the lemma with the histograms of oxide thicknesses for two blocks of a

sample chip with different number of devices Monte Carlo simulation. It is clear that either for a
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Fitted curve
Histogram of oxide thickness samples

Figure 3.4: (a) Histogram of the oxide thickness for a block with 5K devices (b) Histogram of the
oxide thickness for a block with 20K devices

block with 5K devices (Figure 3.4(a)) or a block with 20K devices (Figure 3.4(b)), we get distinctly

Gaussian-like curves with fitting goodness (R-square) of 99.8% and 99.5%, respectively.

Thus, the summation part
∑kj

i=1 pi,j( t
αj

)bjxi,j in (3.12) can be expressed by the integration over

x:

Rc(t|x) = Rc(t|u,v)

≈
N∏

j=1

exp[−Aj

∞∫

−∞
φ(

x− uj√
vj

)(
t

αj
)bjxdx]

(3.14)

where φ(x) = 1√
2π

e−x2/2 is the PDF for a standard Guassian distribution. u = (u1, u2, . . . , uN ) and

v = (v1, v2, . . . , vN ), where uj and vj are the mean and variance of the jth BOD.

Since (3.12) computes the conditional reliability Rc(t|x) using only 2N distinct variables, the

dimensionality of the problem in (3.9) is reduced from millions to 2N . However, microprocessors

usually have tens of blocks, making an integration with 2N variables still difficult to solve for

(3.7). Note that exp[−Aj

∫∞
−∞ φ(x−uj√

vj
)( t

αj
)bjxdx] is approximately the product of all the device-

level reliability functions in the jth block, and hence very close to 1 within the lifetime of interest.
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Figure 3.5: Compact representation of oxide thickness variation for the ensemble of chips

By applying first-order Taylor expansion, (3.12) can be further simplified to:

Rc(t|u,v) =
N∏

j=1

1−
[
1− e

−Aj

R∞
−∞ φ(

x−uj√
vj

)( t
αj

)bjxdx
]

≈ 1−
N∑

j=1

[
1− e

−Aj

R∞
−∞ φ(

x−uj√
vj

)( t
αj

)bjxdx
](3.15)

In the above equation, the integral in the exponent can be analytically evaluated by making the

substitution t
αj

= eγ :

∞∫

−∞
φ(

x− uj√
vj

)(
t

α
)bjxdx =

∞∫

−∞
φ(

x− uj√
vj

)eγbjxdx

= −1
2
eγbjuj+γ2b2jvj/2erf(

−x + uj + γbjvj√
2vj

)|∞−∞

= e
ln( t

αj
)bjuj+(ln( t

αj
))2b2jvj/2

(3.16)

Equation (3.16) is denoted as g(uj , vj) for simplicity throughout the remainder of the chapter.

Thus for N given BODs φ(x−uj√
vj

), where j = 1...N , the conditional reliability function of a chip

can be computed by the following closed form expression:

Rc(t|u,v)

= 1−
N∑

j=1

[
1− e−Aje

ln( t
αj

)bjuj+(ln( t
αj

))2b2j vj/2
](3.17)

Hence, the multidimensional exponent in Equation (3.9) can now be compactly represented using a

closed form analytical function of BOD parameters u and v.
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3.3.2 Design-Time OBD Reliability Analysis for the Ensemble of Chips

At design time when chips are not fabricated, designers are unable to know the specific BOD

distribution for any block of any chip. In other words, u and v turn out to be two random vectors at

design time. The OBD reliability is then evaluated for the design (or the ensemble of chips) instead

of a particular chip by integrating the conditional reliability function in (3.17) over the joint PDF

of random vectors u and v. In this section, we will discuss how to achieve a compact expression

of the overall reliability function by enumerating the conditional reliability function derived in the

previous section across the ensemble of all chips.

As shown in Figure 3.5, each sample chip from on design may result in different BODs for the

same block from chip to chip, therefore, the oxide thickness variation of one block across the entire

ensemble of all chips can be represented with a set of BODs for all manufactured chips. Now

each such BOD is characterized by their respective mean uj and variance vj . Therefore, the oxide-

thickness distribution of all devices across all manufactured chips with N blocks can be represented

by 2N random variables u = [u1, u2...uN ] and v = [v1, v2...vN ]. In other words, for one particular

chip, its BODs simply results from the samples of two random vectors.

Now let fuv(u,v) denote the joint probability distribution function (PDF) of u and v. For

computing the overall reliability function, we need to integrate the above expression of reliability

function of one chip over the joint probability distribution function fuv(u,v) of random vectors u

and v:

Rc(t) =

∞∫

−∞
. . .

∞∫

−∞


1−

N∑

j=1

(
1− e−Ajg(uj ,vj)

)

× fu,v(u,v)du1...duNdv1...dvN

= 1−N +
N∑

j=1

∞∫

−∞
. . .

∞∫

−∞
e−Ajg(uj ,vj) × fu,v(u,v)du1dv1...duNdvN

(3.18)

where g(uj , vj) is defined in (3.16). Since exp[−Ajg(uj , vj)] is independent of any other ui or vi that

i 6= j, we have:

∞∫

−∞
. . .

∞∫

−∞
e−Ajg(uj ,vj)fu,v(u,v)du1dv1...duNdvN

=

∞∫

−∞

∞∫

−∞
e−Ajg(uj ,vj) ×

∞∫

−∞
. . .

∞∫

−∞
fu,v(u,v)du1dv1...duNdvN

=

∞∫

−∞

∞∫

−∞
e−Ajg(uj ,vj)fuj,vj

(uj , vj)dujdvj

(3.19)
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Thus, we can express the design time OBD reliability for the ensemble of chips in (3.19) using N

double integrals:

Rc(t) = 1−N +
N∑

j=1

∞∫

−∞

∞∫

−∞
e−Ajg(uj ,vj)fuj,vj

(uj , vj)dujdvj(3.20)

3.3.3 fuj,vj
(uj , vj) Characterization Using Principal Component Analysis

To compute (3.20), it is still required to know the characteristics of joint PDF fuj,vj
(uj , vj) of

each BOD. In this section, we will discuss how to characterize those joint PDFs for blocks by using

principal component analysis.

As is discussed in the previous section, each BOD approximately follows a Gaussian curve and

hence can be represented by their respective mean uj and variance vj . For a particular block j, the

mean uj and and variance vj of its oxide thickness distribution can be estimated by calculating the

unbiased statistical BOD mean and variance of the oxide thickness values observed across the block.

Likewise, the random variables uj and vj can be found in terms of the thickness variation model

discussed in (3.1). Using the oxide thickness variation model given in (3.1), sample mean uj can be

expressed as:

(3.21) uj =
1

mj

mj∑

i=1

xi,j = uj,0 +
n∑

k=1

uj,kzk + uj,n+1ε

The grid-based model in (3.1) partitions the chip into several grids, as discussed in section 3.1.

Assume the ith device in the jth block is located in a grid, e.g., grid gi,j , where gi,j corresponds to

a grid index from 1 to n. Then, we can compute uj,k and uj,n+1 as:

uj,k =
1

mj

mj∑

i=1

λgi,j ,k ∀k = 0 . . . n

uj,n+1 =
1

mj

√√√√
mj∑

i=1

λ2
r =

λr√
mj

The coefficient uj,0 is the nominal value of uj , whereas coefficient uj,i is the sensitivity to the ith

principal component. It is evident that the sensitivity of the independent random component uj,n+1

tends to zero for a large number of devices and thus can be safely neglected for a typical industrial

chip.

Similarly the expression for vj , the sample variance of the jth BOD, in terms of oxide variation
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model in (3.1), can be given as follows:

(3.22) vj =
1

mj − 1

mj∑

i=1

(xi,j − uj)2 =
1

mj − 1

mj∑

i=1

(x2
i,j − uj

2)

Again the above expression can be expressed in terms of principal components as follows:

(3.23) vj = vj,0 +
n∑

i=1

n∑

k=1

vj,i,kzizk

where

vj,0 = λ2
r and vj,i,k =

1
mj − 1

n∑

l=1

(λl,i − uj,i)(λl,k + uj,k)

In this manner, we can express the distributions of uj and vj in terms of a given process variation

model. Note that random variable uj is the sum of normal random variables so it is also a normal

random variable, however, the BOD variance vj is not a normal random variable. By exploring their

characteristics, we have the following lemma for their un-correlation:

Lemma 2: Following the oxide thickness variation model in (3.1), uj and vj for a BOD is uncor-

related, i.e., E[ujvj ] = E[uj ]E[vj ], where E[·] denotes the expectation.

Proof. following the principal component models discussed above, we can express E[ujvj ] as:

E[ujvj ] = E[(uj,0 +
n∑

i=1

uj,izi + uj,p+1ε)× (vj,0 +
n∑

i=1

n∑

k=1

vj,i,kzizk)]

By noting that each principal component zi as an independent standard normal random variable,

we have:

E[zi] = E[z2
i zj ] = E[ziz

2
j ] = E[z3

i ] = 0

E[z2
i ] = 1

(3.24)

for different i and j. Likewise,

E[ε] = E[ε2zj ] = E[ziε
2] = E[ε3] = 0

E[ε2] = 1
(3.25)

Thus, the above expression can be simplified and given by

(3.26) E[ujvj ] = uj,0vj,0 +
n∑

i=1

uj,0vj,i,i = E[uj ]E[vj ].
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Figure 3.6: (a) Joint PDF fujvj
(uj , vj) (b) PDF product fuj

(uj)fvj
(vj)

For two normal random variables to be independent, it is sufficient to show that they are uncor-

related, but in general this is not the case for non-gaussian random variables. The sample variance

vj is not a normal random variable and has the distribution of quadratic forms in normal variables

[70, 71]. However, with numerical experiments we find that the dependence between uj and vj is

weak. As a result, it is reasonable to assume uj and vj as independent variables, which allows us to

express the joint PDF in terms of their marginal distributions fuj
(uj) and fvj

(vj). Figure 3.6 illus-

trates the joint PDF of fujvj
(uj , vj) and the product of the marginal distributions, fuj

(uj)fvj
(vj),

generated by Monte Carlo simulations. It is qualitatively evident from the figure that there does not

exist significant dependence between uj and vj. Furthermore, Figure 3.7 depicts the contour of the

error between joint PDF fuj
(uj)fvj

(vj) and PDF product fuj
(uj)fvj

(vj) normalized with respect to

the peak probability on the joint PDF. It is noted that the maximal error is around 7% in a very

small region whereas most errors are almost negligible.

Thus, this independence approximation between uj and vj can give us a reasonably accurate

estimate of oxide variation with a significantly simpler approach. In other words, the approximation

enables us to enumerate the individual reliability distribution functions of each chip by simply

integrating the marginal distributions fuj
(uj) and fvj

(vj):

Rc(t) = 1−N +
N∑

j=1

∞∫

−∞

∞∫

−∞
e−Ajg(uj ,vj)fuj

(uj)fvj
(vj)dujdvj(3.27)

Now the BOD sample mean uj is a sum of normal random variables, therefore fuj
(uj) can

be characterized by distribution of a normal random variable and analytically computed. However,
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Figure 3.7: Contour of the error between joint PDF fujvj
(uj , vj) and PDF product fuj

(uj)fvj
(vj)

BOD sample variance vj is a quadratic expression of normal random variables. Such an expression is

commonly found in several multi-variate statistics application and is referred to as quadratic normal

form. In statistics literature [70], several techniques have been proposed to accurately estimate the

distribution function of quadratic normal form. In this work, we implemented a computationally

efficient method given in [71] to estimate the distribution of fvj
(vj) using a chi-square approximation:

(3.28) vj ∼ vj,0 + âχ2
b̂

where

â =
n∑

i=1

n∑

k=1

v2
j,i,k/

n∑

i=1

vj,i,i

b̂ = (
n∑

i=1

vj,i,i)2/
n∑

i=1

n∑

k=1

v2
j,i,k

(3.29)

In figure 3.8, we compare the CDF of the distribution of quadratic normal form of a vj by Monte

Carlo simulation and its chi-square approximation. It is apparent that the computationally efficient

chi-square representation is in good agreement with the Monte Carlo simulation result.

In this manner, the marginal distributions fuj
(uj) and fvj

(vj) of uj and vj can be analytically

found for the given process variation model of oxide thickness. Using fuj
(uj) and fvj

(vj), the

overall reliability distribution function can be computed by evaluating N two-dimensional numerical

integrations as in (3.27).
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Figure 3.8: Curves for the distribution of the quadratic form and its χ2 approximation

3.3.4 Overall Algorithm

The overall algorithm of the proposed approach is summarized in figure 3.9. Given the principal

components as well as the oxide thickness variation profiles, we can characterize uj and vj for each

BOD using (3.21) and (3.23). Then we divide the integration domain for (3.27) to l0 × l0 sub-

domains. Since the joint PDF rapidly decreases to 0 beyond a narrow domain, as illustrated in

figure 4, l0=10 is already a reasonable number for accurate integral sum evaluation, which is further

confirmed by the experimental results in section 3.4. Once sample point pair in each sub-domain is

obtained, we can compute analytically the reliability for one chip. Finally the overall reliability is

evaluated by using the integral sum.

It is noted that PCA is a pre-processing step. Thus, we do not include it in the complexity

analysis as it is performed only once and can be shared with other statistical analysis tools. The

overall complexity is O(N(n2 + l20)), where N is the number of blocks, n2 is the number of principal

components and l20 is the number of sub-domains for integration. By noting that unlike the straight-

forward approach, the computation complexity is independent of the total number of devices on the

chip, it is therefore extremely computationally efficient compared with Monte Carlo analysis, whose

complexity heavily depends on the number of devices. Moreover, since temperature and supply volt-

age are used as the input in our model, the correlation of the temperature/voltage profiles between

the blocks are therefore naturally captured in the analysis.
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Procedure: Full Chip OBD Reliability Analysis
Input: Number of devices, block-level configuration and related profiles, prin-
cipal components for (3.1), inter- and intra-die variation profiles, spatial corre-
lation profile.
Output: OBD reliability.
1: Characterize uj and vj for each BOD of a given design using (3.21) and

(3.23);
2: Divide the integration domain for a double integration to l0 × l0 sub-

domains;
3: Compute the sample point pairs (uj , vj) for each sub-domain;
4: For each sample point pair do
5: Analytically compute eAjg(uj ,vj) using (3.16);
6: Evaluate the PDF product fuj

(uj)fvj
(vj) for the sample point;

7: End for
8: Compute the overall reliability with the integral sum;

Figure 3.9: Algorithm for process variation and temperature-aware full chip OBD reliability analysis

3.3.5 Fast Computation Using a Hybrid Analytical/Table-Look-Up Method

At design time, it is common for designers to repeatedly evaluate the reliability of the same

design with different setup and application profiles. Different setup/application profiles may lead to

different device-level reliability parameters α and b and hence require computing the integrations

again. Although the formulation in (3.27) significantly reduces the computation complexity, we may

achieve further speed up by combining this analytical model with a table look-up method. The

pre-calculated look-up table only needs to be computed once for a particular design and can be used

for various setup/application profiles, enabling a significant efficiency improvement. In other words,

we now can efficiently evaluate the reliability of the same design through look-up table with an O(1)

time complexity.

Equation (3.27) is comprised of N double integrals. Take the jth integral for example:

(3.30)

∞∫

−∞

∞∫

−∞
e−Ajg(uj ,vj)fuj

(uj)fvj
(vj)dujdvj

where g(uj , vj) = e
ln( t

αj
)bjuj+(ln( t

αj
))2b2jvj/2 Since uj and vj are integration variables, they will be

eliminated after the integration is computed. Thus, the result of (3.30) is determined by Aj and

the parameters of ln(t/αj) and bj in g(uj , vj), as shown in (3.16). Once the chip is designed, Aj

appears to be a constant for the jth functional block. Thus, with ln(t/α) and b acting as indices, we

can construct a two-dimension look-up table to compute the double integral for each block 7.

Then, the system reliability at any time t under certain temperature/voltage conditions (which

7All the look-up tables for different functional blocks share the same indices of ln(t/αj) and bj . The difference in
look-up entries among the blocks is due to the different block area Aj .
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determine the parameters of α and b), can be easily computed by using simple bilinear interpolation

according to the indices of ln(t/α) and b. For N functional blocks, we have N look-up tables, with

nα×nb entries in each table, where nα(=100) and nb(=100) are the number of indices for parameters

ln(t/α) and b, respectively. Experiments in section 3.4 show that the hybrid method leads to a faster

speed but nearly equivalent accuracy to the analytical approach in section 3.3.4.

3.4 Experimental Results

A simple simulation methodology for estimating the critical defect density required for triggering

a dielectric breakdown in an ultra thin oxide was originally developed in [36]. Using this methodology,

the defect generation relationships for the technology node and the technology dependent parameters

of the oxide reliability function model are then obtained from [55, 60, 61, 62], which are used in the

device-level reliability model (3.3). In practice, such a model can also be characterized from real

oxide breakdown distributions measured from test capacitors or discrete devices for the required

process and technology.

The proposed approach was implemented in MATLAB and tested on six benchmarks (C1-C6)

varying from 50K to 0.84M devices. Design C6 is a alpha processor design with 15 functional blocks

and approximately 0.84M transistors. We then use HotSpot [65] to achieve the temperature profile

of the design with Wattch to estimate the functional block power [72]. In the simulation we consider

the inter-chip, spatially correlated intra-chip, and random components of variation. According to [6],

the 3σ/u ratio for oxide thickness variation is assumed to be 4% for a nominal value of 2.2nm , and

then split to 50% global variation, 25% spatially correlated variation and 25% independent variation,

as estimated in [73]. As the real measurement data for thickness correlation was unavailable, the

covariance matrix for thickness variations used in this work was derived from an exponential decaying

function of the respective distance. The correlation distance of exponential correlation function is

normalized with respect to the chip dimensions.

Given the post-layout design implementation and a process variation model of oxide thickness,

the proposed methodology can compute the overall reliability distribution function. To validate the

results of the proposed method, the overall reliability distribution was also computed from 1000 sam-

ples of Monte Carlo (abbrev. MC) simulations using the same oxide reliability model and thickness

variation model. In Table 3.2, a comparison of lifetime estimation for 1-fault-per-million parts and

10-faults-per-million parts between the proposed statistical approach (statistical) as summarized in

section 3.3.4, the fast hybrid analytical/table-look-up approach (hybrid) and Monte Carlo simula-

54



Table 3.2: Accuracy and run time comparison of the temperature-aware statistical approach in sec-
tion 3.3.4 and hybrid analytical/table-look-up approach in section 3.3.5 with Monte Carlo
simulation

Lifetime estimation error (%) w.r.t. MC Run time (sec.)/Speed up w.r.t. MC

Design #devices 1/million 10/million

statistical hybrid statistical hybrid
statistical hybrid MC

C1 50K 0.84 0.12 1.18 1.84 1.51 177× 0.020 13498× 267

C2 80K 1.50 0.68 1.28 0.30 1.59 238× 0.022 17486× 380

C3 0.1M 2.04 0.16 1.77 2.26 1.92 245× 0.019 24122× 470

C4 0.2M 2.23 0.63 1.90 1.30 1.93 363× 0.020 35206× 702

C5 0.5M 0.20 3.42 0.12 1.65 1.86 837× 0.020 77845× 1557

C6 0.84M 0.64 1.63 0.54 0.76 1.95 1183× 0.020 115325× 2307

Average 1.24 1.11 1.13 1.35 418× 47247×

Table 3.3: Accuracy comparison between the proposed approach in section 3.3.4 and MC simulation
for different correlation distance

Lifetime estimation error w.r.t. MC (%)
circuit

ρdist = 0.25 ρdist = 0.5 ρdist = 0.75
name No. devices 1/million 10/million 1/million 10/million 1/million 10/million
C1 50K 2.31 2.95 0.84 1.18 1.00 1.02
C2 80K 2.26 1.98 1.50 1.28 1.28 1.37
C3 0.1M 3.35 2.72 2.04 1.77 2.17 1.50
C4 0.2M 3.77 3.51 2.23 1.90 1.96 1.73
C5 0.5M 1.62 2.06 0.20 0.12 0.76 0.92
C6 0.84M 1.70 2.18 0.64 0.54 0.86 0.80
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Figure 3.10: Errors of the 10-faults-per-million for Monte Carlo simulation, the proposed
temperature-aware approach, temperature-unaware approach using worst-case temper-
ature and conventional guard-band assuming minimum oxide thickness
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Table 3.4: Accuracy comparison between the proposed approach in section 3.3.4 and MC Simulations
for different grid resolution for design C2

Lifetime estimation error (%) w.r.t. MC simulation
Grid size ρdist = 0.25 ρdist = 0.5 ρdist = 0.75

1/million 10/million 1/million 10/million 1/million 10/million
10×10 3.20 3.17 2.96 3.03 2.87 3.24
20×20 2.91 3.08 2.05 1.97 3.01 2.92
25×25 2.26 1.98 1.50 1.28 1.28 1.37

tions is shown for 6 design circuits. The criterion of n-fault-per-million parts is a commonly used

term in reliability analysis [74], which is defined as the time when the first n out of a million parts

fail. In the spatial correlation model, the relative correlation distance (ρdist) w.r.t. the chip size is

set to 0.5. The size of the circuit under test in terms of number of devices is given in the second

column. As can be seen from columns 3-6, the two proposed methods are in good agreement with

the Monte Carlo simulation, with errors of around 1% on average. Columns 7-11 compare the run

time for three methods. Unlike MC simulation, both our statistical approach and hybrid approach

are able to analyze the circuit in seconds, independent of the number of devices. The statistical

approach in section 3.3.4 demonstrates around 2-3 orders of magnitude speed-up for all the designs,

whereas MC simulation scales super-linearly with the number of devices. The hybrid approach in

section 3.3.5 is even faster. It has around 3 orders and 5 orders of magnitude speed-up compared

with the statistical approach and MC simulation, respectively. Meanwhile it can maintain a similar

accuracy as the statistical approach in section 3.3.4. This is an appealing feature for a real system

with increasingly larger designs that may require repeated reliability calculation.

To verify the robustness of the proposed approach with respect to spatial correlation model we

tested our approach for three different values of correlation distance (ρdist=0.25, 0.5, 0.75). As can

be seen from Table 3.3, the proposed method can still maintain a good accuracy. We also validates

the approach by choosing 4 different resolutions of grid size for design C2. The numerical results

found for 3 different grid size are given in Table 3.4. As the discretization error of the grid-based

model decreases for larger grid size, it can be seen that the error in estimation of reliability function

also decreases in general.

We further compare the overall reliability estimation results in Figure 3.10 using Monte Carlo sim-

ulation, the proposed temperature-aware statistical approach in section 3.3.4, temperature-unaware

approach by using the worst-case temperature across the chip and conventional guard-band ap-

proach that assumes minimum oxide thickness across the chip. Figure 3.10 shows the failure rate

of design C3 during the selected lifetime period and reliability estimation by different methods.
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The chip lifetime distribution (blue curve) is achieved by simulating the failure time of 10000 sam-

ple chips of C3 in a Monte Carlo fashion. One can see that for 10-faults-per-million criterion,

the temperature-unaware approach and conventional guard-band lead to 25.1% and 54.3% errors,

whereas our temperature-aware approach can achieve an accuracy of 1.8% error and is very close to

the result by Monte Carlo simulation. This clearly exemplifies the necessity for a process variation

and temperature-aware approach for OBD reliability analysis.

3.5 Summary

This chapter proposes a statistical methodology for process and temperature variation-aware

chip-level oxide breakdown reliability analysis. It is shown that worst-case oxide reliability analysis

or temperature-unaware approach may not be adequate to predict chip lifetime accurately. The

complexity analysis of the proposed methodology shows that the proposed approach is independent

of the number of devices and is thus scalable to large industrial size circuits. Our simulation results

exemplifies the accuracy and efficiency of the proposed method.
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CHAPTER IV

Post-Fabrication Measurement-Driven Oxide Breakdown

Reliability Prediction and Management

Due to aggressive technology scaling, designing a reliable system has become more challenging

than ever [4]. The worsening process variation increases susceptibility of the system to various wear-

out mechanisms [17]. Among these reliability issues, oxide breakdown (OBD) has emerged as one

of the most pressing concerns. As gate oxide thickness is scaled down to the one nanometer regime,

the stronger electric field across the gate insulator results in faster formation of a conduction path

through the dielectric layer, aggravating the risk of destructive breakdown [58].

Conventional worst-case guard-band methodology analyzes chip OBD reliability by assuming a

minimum oxide thickness across the chip and then sets a supply voltage level to ensure the required

lifetime of the chip. Clearly, such strategy is overly pessimistic and enforces an overly low supply

voltage for the ensemble of chips, causing significant penalty in performance budget [17, 58]. In

practice, no two transistors are exactly the same or have precisely the same characteristics. Instead,

they vary significantly from wafer to wafer, reticle to reticle, die to die and across the die. Hence,

some dies with thinner than average oxides are much more likely to fail than other dies. To more

accurately account for the impact of thickness variation on lifetime prediction, Chapter III developed

a statistical lifetime analysis by incorporating both process and temperature variations.

However, without post-fabrication measurement, designers cannot know the oxide thickness of an

individual transistor on a particular die and hence cannot determine the specific lifetime expectation

from one chip to another. Either the method in Chapter III or Monte-Carlo simulation only relies

on the general variation knowledge of the technology node and results in a more accurate but

ultimately still highly-spread lifetime distribution for any chip. This is due in part to the lack of

information of the unique condition of a particular chip and unfairly implies a chip that happens
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Figure 4.1: Chip lifetime distribution for the ensemble of chips (blue curve) (nominal thickness is
1.67 nm for 65nm device). Red and black curves represent lifetime distributions for two
particular chips with all devices’ oxide thicknesses known.

to have thicker oxides, bears the same risk to failure as the one with thinner oxides. Figure 4.1

presents the chip lifetime distribution (blue curve) by simulating the failure time of 50000 chips in

a Monte-Carlo fashion. The spread in lifetime results is partly from the innate randomness of the

OBD mechanism. The lifetime spread is further increased by thickness variation (3σ/µ=4% [6])

which has an exponential effect on the tunnelling current and injected charge and eventually leads

to the lognormal shape in Figure 1 with a long tail (908.8 year standard deviation / 99.9% reliability

confidence point is 25.5 year) [75]. However, each chip has unique oxide thickness conditions for

each transistor and hence some chips are bound to have significant lifetime margin which could be

traded off for higher performance by allowing these chips to operate at a higher supply voltage.

Thus, if the oxide thickness of each individual transistor on a fabricated chip could be measured,

the lifetime distribution for that chip would be significantly tightened, as shown in Figure 4.1 for two

chips, one with thinner oxides (red curve, 132.3 year standard deviation / 99.9% reliability confidence

point is 11.6 year) and one with thicker oxides (black curve, 204.4 year standard deviation / 99.9%

reliability confidence point is 38.7 year). Then the chip with thinner oxide thickness (red curve)

has a significantly higher risk to fail early and should be operated using a lower maximum supply

voltage, thereby improving the overall reliability of the design. Conversely, the chip with black

curve whose oxide thickness happens to be thicker is less prone to failure and could be operated at

a higher supply voltage limit and therefore obtain a performance gain while still meeting reliability
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target. Hence, understanding the oxide thickness condition on a die can result in both a performance

improvement as well as a higher reliability.

Unfortunately, obtaining oxide thickness condition for all devices on a die is impossible in today’s

chips with hundreds of millions to billions of transistors. However, recent advances in compact oxide

thickness sensors [76, 77] allow tens to hundreds of sensors to be placed on a chip or even inside cores.

Thus, a key challenge, which is the focus of this paper, is how to precisely predict and manage the

reliability condition of each chip with a limited number (<1000) of post-fabrication oxide thickness

measurements using on-chip sensors. This problem is non-trivial:

• First, while the number of measurements is limited, the number of transistors on a die in

today’s technology can be enormous, exceeding 1 billion. It is therefore crucial to fully utilize

of the measurement information to predict the oxide thickness for all devices as accurately as

possible.

• Second, while we can measure the oxide thickness of sensor device with reasonable accuracy, the

thicknesses of all other transistors remain uncertain and must be modeled as random variables.

Even with a fixed oxide thickness, the reliability for a device itself is a random function

representing the probability the device can survive to a certain lifetime [58]. The measurement-

driven chip reliability estimation therefore turns out to have the form of a conditional multi-

dimensional nested stochastic process. Simple Monte-Carlo simulation must model both the

random variation in oxide thickness as well as the innate variation of OBD itself and is therefore

extremely expensive in both time and memory.

• Finally, OBD is also a strong function of the chip operating conditions, such as processor state

and temperature which vary during the operation of a device. For simplicity, our discussion

has not accounted for these factors up to now. However, they have a significant impact on the

lifetime of a particular die and we will outline how to incorporate these effects in our proposed

analysis.

In this chapter, we propose a new post-fabrication measurement-driven OBD reliability prediction

and management methodology using a limited number of measurement points. The measurements of

oxide thicknesses for a subset of devices can be conducted by on-chip sensors [76] or test-structures

[77], which can be easily modified to measure the oxide thickness instead of monitoring the degra-

dation process. Figure 4.2 displays the proposed post-fabrication flow including the OBD reliability

prediction module using the introduced OBD analysis. For each fabricated chip, the measurement
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Figure 4.2: Proposed post-fabrication oxide thickness measurement-driven supply voltage optimiza-
tion flow.

is performed once during post-silicon testing to find the initial oxide thickness at the start of its

lifetime. Then the optimal supply voltage limit is selected by the prediction module to maximize per-

formance while maintaining or improving chip OBD reliability. Given the computed supply voltage

limit, the tester permanently stores the optimized supply voltage for each chip using either fuses or

embedded flash memory. This supply voltage limit is then accessed by the dynamic voltage scaling

algorithms and, if available, dynamic reliability management algorithms [64] that control the chip

operation during runtime.

The OBD reliability prediction and voltage tuning module in this flow consists itself of three

phases. The first phase uses limited post-fabrication measurements to reduce the uncertainty of

the oxide thickness for any unmeasured device. The proposed method accounts for both inter-chip

(global), intra-chip (within-chip) spatially correlated and random residual components [8]. We com-

pute the inter-chip component using a maximum-likelihood estimation method and the other two

by leveraging the spatial correlation between devices and then constructing a conditional distri-

bution based on the post-fabrication measurements, while still preserving the correlation between

devices in a conditional covariance matrix. Based on the conditional distribution, the second phase

applies principal component analysis to predict the chip reliability. The principal components are

employed to derive a tightened lifetime distribution of a particular chip for a given reliability target.

The chip lifetime is then bounded by certain confidence-level interval, the lower bound of which is

conservatively used for lifetime evaluation. Finally, in the third phase, we present an optimization

flow for efficient tuning of the chip maximum supply voltage. As a result, with proper reliabil-

ity management, we can boost chip performance for many chips while maintaining or improving

reliability.

The effectiveness of the proposed methodology is validated on several benchmarks varying in size

from 0.08 to 50 million devices in 65nm CMOS technology. The results show that with merely 25

measurements of oxide thickness, we can achieve performance improvement of 15-19% on average and
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22-27% at maximum for all the designs compared with the conventional guard-band based approach

that assumes the absence of any measurements. The average runtime per chip is only approximately

0.4 second, which is sufficiently fast to allow programming of the maximum supply voltage during

post-silicon testing.

4.1 Review of Oxide Breakdown Reliability Analysis

In the last chapter we discuss in details about the oxide thickness variation modeling and

variation-aware oxide breakdown reliability analysis. Here, for the readers’ convenience, we briefly

review the oxide breakdown reliability analysis.

Conventionally, the gate oxide degradation is considered to depend on oxide thickness, transistor

area, supply voltage, and temperature. Although many of the physical details are still under debate,

most models note the non-deterministic process of defect generation, eventually resulting in a statis-

tically distributed oxide breakdown time and the strong dependence of this random process on oxide

thickness [55, 57]. A common failure criterion for OBD is soft breakdown (SBD) characterized by

a small increase in gate leakage and eventually followed by un-recoverable hard breakdown (HBD).

Due to the stochastic process nature, the oxide breakdown time for SBD is modeled as a random

variable following a Weibull probability distribution [55]:

(4.1) F (t) = 1− e−a( t
α )β

where F is the cumulative distribution function (cdf) of time-to-breakdown t, a is the device area

normalized with the minimum device area, α and β are the scale and shape parameters of the Weibull

model. β can be further expressed as bx for a given temperature and voltage stress, where x is the

gate oxide thickness of a device. The reliability function of a device can then be simply written as:

(4.2) R(t) = P (T > t) = 1− F (t) = e−a( t
α )bx

Due to the non-deterministic characteristic of oxide thickness at design time, the device reliability

function can be interpreted as the conditional reliability function given its oxide thickness and written

as R(t|xi). The overall chip-level reliability function is then given by:

(4.3) Rc(t) =

∞∫

0

. . .

∞∫

0

m∏

i=1

Ri(t|xi)f(x1 . . . xm)dx1 . . . dxm
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where f(x1, . . . , xm) is the joint probability density function (pdf) of the gate oxide thicknesses for

m devices. To handle the tremendous dimensionality of (4.3), Chapter III proposed to project the

parametric space to two distinct random variables, sample mean (u) and variance (v) of the chip

oxide thickness distribution. Based on this, the original product
∏m

i=1 Ri(t|xi) was simplified to a

conditional probability Rc(t|u, v) as in Chapter III. The integral of (4.3) is then compactly expressed

as [38]:

(4.4) Rc(t) =

∞∫

−∞

∞∫

−∞
Rc(t|u, v)fuv(u, v)du dv

where

(4.5) Rc(t|u, v) = exp[−Aeln( t
α )bu+(ln( t

α ))2b2v/2]

and fuv(u, v) is the joint pdf of a Gaussian random variable u and a chi-square random variable v.

However, neither the method in Chapter III nor the guard-band method in [58] allows for in-

corporation of oxide thickness measurements and is unable to distinguish the unique condition of

a particular chip. These methods therefore result in one global lifetime estimation for the entire

ensemble of chips, and unnecessarily degrade the performance for most of them.

4.2 Post-Fabrication Measurement-Driven Oxide Thickness Estimation

In this section, we will show that even with a relatively small number of oxide thickness measure-

ments, it is possible to reduce the uncertainty of oxide thicknesses for a particular chip, and hence

provide significantly more accurate lifetime estimation. However, due to the tremendous number of

unmeasured devices and the constrained stochastic process nature of chip reliability, such estimation

of oxide thicknesses for unmeasured devices is a difficult problem that has not been addressed to

date. This section presents a statistical method to address this problem.

4.2.1 Problem Formulation

Give a particular chip, the inter-chip and intra-chip variation components (spatially correlated

and random) play very different roles in the final transistor oxide thickness. The inter-chip com-

ponent induces the same increment or decrement to the oxide thicknesses for all the devices within

the chip and is a constant in (1.1). On the other hand, the intra-chip spatially correlated and ran-
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dom components are different from device to device. In reality we cannot distinguish the sources of

the variation when the number of measurements is limited. Thus, we combine the two intra-chip

variation components together in analysis and comprehensively evaluate their impact.

Given a chip dissected to N grids as in [47] with m devices in total, the vector of oxide thicknesses

for all the devices can be written as:

(4.6) x = z0 + zg + zcorr + zε = uchip + zintra

where x=[x1, x2, . . . , xm] is the oxide thicknesses for m devices; uchip=z0 + zg denotes the chip-level

oxide thickness mean for this particular chip and may be different from one chip to another; zε

is the vector containing the random variation component of each device; zintra=zcorr+zε is hence

the combined intra-chip variation component that preserves the spatial correlation between devices.

Since zε can be interpreted as a multi-variate Gaussian process Nm(0, σ2
ε Im), where Im is an m×m

identity matrix, zintra is then the sum of two multi-variate Gaussians and remains a multi-variate

Gaussian process Nm(0,Σintra), where Σintra = Σcorr + σ2
ε Im.

The post-fabrication measurement-driven oxide thickness estimation problem is then formulated

as:

Formulation: Given the thickness variation model in (4.6) and the oxide thickness measurements of

n0 devices across a particular chip, estimate the oxide thickness of any unmeasured device, including

the components of uchip and zintra as well as the corresponding variance.

In other words, we need to characterize a conditional distribution for the oxide thickness of each

unmeasured device on the condition of the post-fabrication measurements. This will reduce the

variance of the conditional distribution compared with the initial model in (4.6), and results in

a tightened lifetime distribution. In the following, we present the techniques to solve the above

formulation.

4.2.2 Model Simplification

The grid-based spatial correlation model in [47] indicates that devices within one grid bear

approximately the same inter-chip and intra-chip spatially correlated variation components. This is

reasonable when we have relatively finer grids across the chip. The difference in oxide thicknesses

for devices within one grid are then completely attributed to the random variation component,

which is independent from one device to another and hence cannot be predicted. Thus, instead of

performing device-level estimation and predicting device by device within one grid, we employ a
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grid-based prediction scheme by associating every grid with one random variable and hence achieve

one estimation for each grid, including a random variation component and correlation to other grids.

Clearly, such modeling greatly simplifies the complexity from the dimensionality of millions (number

of devices) to N + n0, where n0 is the number of measurement sites and N denotes the number of

unmeasured sites with each representing one grid.

We then re-formulate the model in (4.6) to the granularity of a grid. Both x and zintra are now

(N+n0)×1 vectors. zintra follows NN+n0(0,Σintra,grid), where Σintra,grid is an (N+n0)×(N+n0)

covariance matrix for N unmeasured sites and n0 measured sites.

4.2.3 Estimation of the Chip-Level Oxide Thickness Mean uchip

As discussed, we need to treat the deterministic component and random component in (4.6)

separately. Removal of the mean from the random data is an integral and essential step to minimize

the mean square error of the estimation [74]. In this subsection, we detail the estimation of the

chip-level oxide thickness mean uchip.

Before measurement, the oxide thickness for the sites to be measured remain unknown and hence

can be characterized by a multi-variate Gaussian model, Nn0(uchip,Σmm). The measured thicknesses

s=[s1, s2...sn0 ] are therefore a sample vector drawn from this stochastic model, with measurements

acting as n0 observations. Thus, by using the maximum likelihood estimation (MLE), the log-

likelihood function is [74]:

`(s|uchip) = − ln((2π)n0/2|Σmm|1/2)

− 1
2
(s− uchip × [1]1×n0)Σ

−1
mm(s− uchip × [1]1×n0)

T
(4.7)

where [1]1×n0 denotes a 1×n0 all-one vector. The maximum in (4.7) is achieved when:

(4.8) uchip ≈ [1]1×n0Σ
−1
mm

[1]1×n0Σ
−1
mm[1]T1×n0

sT

The corresponding MLE estimation variance can be approximately bounded by the Cramer-Rao

bound [74]:

(4.9) var(uchip) ≈ [1]1×n0Σ
−1
mm[1]T1×n0

Since the number of measurements n0 is limited to fewer than hundreds, the matrix inverse in (4.8)

can be efficiently computed within seconds.
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4.2.4 Estimation of the Intra-Chip Variation Component zintra

If every site of a chip could be measured, the variance for the random vector x would be reduced

to 0. Since the number of measurements is limited, measured oxide thicknesses can only reduce

the variance of unmeasured sites, which can still provide designers with significantly more accurate

information of chip oxides condition.

In order to assess the impact of measurements, we separate the oxide thickness vector x into

two sub-vectors as x = [s,xu], where s represents the sites to be measured and xu represents the

unmeasured sites. Σintra,grid then can be expressed as:

(4.10) Σintra,grid = [
Σmm Σmu

Σum Σuu

]

where in each sub-matrix, ”m” is for the sites to be measured (vector ”s”) and ”u” is for the

unmeasured sites (vector ”xu”). The entries in any sub-matrix can be simply obtained from the

covariance matrix Σintra in (4.6) by identifying the grids the sites belong to. Note that both s and

xu are multi-variate Gaussian processes with a mean of uchip and a covariance matrices of Σmm and

Σuu, respectively.

Given the measurement values s = s0 at n0 sites, the sub-vector xu for the oxide thicknesses

at unmeasured sites can then be expressed in a conditional way, i.e., xu|s = s0. Such expression

illustrates the impact of measurements on unmeasured sites. By exploiting the spatial correlation

between xu and s, the pdf for this conditional random vector can be written as:

(4.11) fxu|s=s0(xu) =
fx(xu, s = s0)

fs(s = s0)

where fx(x) and fs(s) are pdf’s for the multi-variate Gaussian random vectors x and s, respectively;

fxu|s=s0(xu) is the conditional pdf for xu given s = s0. Due to space limitation, we only provide an

outline of the deduction.

Based on the decomposition of the covariance matrix in (4.10), we define:

(4.12) uxu|s = uchip + (s− uchip)Σ−1
mmΣmu

(4.13) Σxu|s = Σuu − ΣumΣ−1
mmΣmu
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and then obtain |Σintra,grid| = |Σmm||Σxu|s|. Thus, when s = s0, the conditional pdf in (4.11) can

be expressed as:

fxu|s=s0(xu) =
1

(2π)N/2|Σxu|s|1/2
× exp[

−(xu − uxu|s=s0)Σ
−1
xu|s(xu − uxu|s=s0)

T

2
](4.14)

where uxu|s=s0 and Σxu|s defined in (4.12) and (4.13) are conditional mean and covariance matrix

for the conditioned random vector xu|s=s0 . The details of the conditional distribution can be derived

from general principles in [51], which are widely employed in various works [73, 78].

Intuitively speaking, the vector uxu|s=s0 provides a natural estimation of the oxide thickness at

the unmeasured sites, whereas the diagonal entries of Σxu|s evaluate the variance of the estimation.

Note that every entry in the covariance matrix is positive and that both Σuu and Σmm are positive

definite [8]. The conditional variance in Σxu|s is therefore reduced compared with the unconditional

variance in (4.10).

Although the oxide thicknesses for closely-placed devices are non-continuous due to random

variation, the spatial correlation still allows us to explore the relationship among devices and achieves

improved prediction as the number of measurements increases. Figure 4.3 illustrates the trend of

variance reduction of the conditional estimator uxu|s=s0 for a randomly selected site with respect

to the growing number of measurements. It is noted that with only 9 measurements, the variance

of uxu,i|s=s0 , as computed in (4.13), is reduced by 63% compared with the initial variance when no

measurement is conducted.

4.2.5 Chip-Level Oxide Thickness Mean Refinement

Unlike the unconditional random vector in (4.6) where all the variables share the same mean

uchip, the conditioned random vector in (4.12) may bear different mean values. This is closer to the

realistic condition where the oxide thickness shows variation across the die, and hence provides the

chance to refine the chip-level oxide thickness mean, using both the measured and unmeasured sites.

In theory, the chip-level oxide thickness mean is equal to the sample mean of all the sites, denoted

as xN+n0 :

(4.15) xN+n0 =
1

N + n0
(s0 × [1]n0×1 + uxu|s=s0 × [1]N×1)

The deviation between xN+n0 and uchip is primarily due to the estimation error and may degrade the

analysis effectiveness. Thus, we can perform a refinement step iteratively to reduce the deviation to
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Figure 4.3: Reduction in variance of the conditional estimator uxu|s=s0 for a randomly selected
unmeasured site with increased measurements.

Procedure: Post-Fabrication Measurement-Driven Estimation
Input: measurements s0, process variation model in (4.6)
Output: Oxide thickness estimation for each device and the corresponding
estimation variance
1: Simplify the model as in Section 4.2.2;
2: Compute the chip-level oxide thickness mean and corresponding variance

using (4.8) and (4.9);
3: Estimate the intra-chip variation component zintra using (4.12)-(4.14);
4: Perform chip-level oxide thickness mean refinement;
5: Map the estimation and corresponding variance at the granularity of

grid level to the devices in the same grid;

Figure 4.4: Post-fabrication measurement-driven oxide thickness estimation.

a negligible level, i.e., to make uchip ≈ xN+n0 by repeatedly replacing uchip in (4.12) with xN+n0 and

then computing xN+n0 with (4.15). In general the refinement is completed within tens of iterations

to reach certain tolerance, e.g., 10−5. Moreover, it is worthwhile to note that either the estimation

variance in (4.9) or the conditional covariance matrix in (4.13) does not rely on uchip and remains

unchanged for the updated chip-level oxide thickness mean.

4.2.6 Summary of Post-Fabrication Measurement-Driven Estimation

We summarize the procedure for post-fabrication measurement-driven estimation in Figure 4.4.

The complexity of the procedure is very low as most computations are analytically achievable. The

matrix inverse Σ−1
mm and matrix product in (4.13) are two operations with relatively higher complexly,

which depend on the spatial correlation structure of the design and only need to be computed once

68



-0.8 -0.6 -0.4 -0.2    0  0.2  0.4  0.6  0.8
0

100

200

300

400

500

600

700

Relative error (%)

N
um

be
r o

f c
hi

ps


 

 

MLE
MLE+Refinement

Maximum relative 
error is reduced from 
0.77% to 0.33%

(a)

1.6 1.65 1.7 1.75
1.58

1.6

1.62

1.64

1.66

1.68

1.7

1.72

1.74

1.76

Actual chip-level oxide thickness mean (nm)

E
st

im
at

ed
 c

hi
p-

le
ve

l  
   


ox

id
e 

th
ic

kn
es

s 
m

ea
n 

(n
m

)

 

 

MLE
MLE+Refinement

(b)

Figure 4.5: Accuracy of chip-level oxide thickness mean estimation: (a) Histograms of relative errors
for maximum likelihood estimation (MLE) and maximum likelihood estimation with
refinement (MLE+Refinement) (b) Scatter plots for MLE and MLE+Refinement.

for a particular design with fixed measurement sites. Since the number of measurements is limited

to fewer than hundreds, those operations can be numerically computed within seconds. Note that

the procedure produces a single random value per grid which is the representative for all the devices

in the grid. The estimation for this site is then eventually projected to all the other devices within

the same grid to compute the reliability of the chip.

We apply the proposed procedure to 10000 chips in 65nm technology. Each chip has 0.5 million

devices and is imposed a 50×50 (=2500) grids with 100 uniformly-distributed measurement sites,

which are selected in a chessboard manner. The estimated chip-level oxide thickness mean uchip is

compared with the actual mean of the oxide thicknesses for all the devices in Figure 4.5. From either

the histogram or the scatter plot, it can be seen that the estimation achieved by maximum likelihood

estimation (MLE) in Section 4.2.3 is very accurate with a maximum relative error of 0.77% while

the mean refinement algorithm (in Section 4.2.5) can further reduce the relative error to 0.33%. We

then examine the estimation accuracy at the device level (achieved by step 5 in Figure 4.4) for a

randomly selected chip. Figure 4.6 demonstrates the contour of the difference between the actual

oxide thickness and the estimated thickness mapped from uxu|s=s0 for all the devices on a chip.

One can see that with 100 measurements, the accuracy of the oxide thickness estimation for each

device is already very high, with average relative error of 0.59% and maximum relative error of 2.8%.

Those errors are mainly due to the unpredictable random residual variation but are bounded by the

covariance matrix Σxu|s.

8Actual time to failure is a stochastic process and cannot be known until the chip fails. Thus, we introduce a
quantile-based time-to-failure which can be interpreted as certain quantile of the time-to-failure distribution. In other
words, it is the actual time when chip meets certain reliability target. Note that this value is a deterministic value if
the oxide thicknesses of all the devices are known.
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Figure 4.6: Contour of the device-level oxide thickness estimation error for a chip with 0.5M devices
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4.3 Measurement-Driven OBD Reliability Prediction and Management

Using the proposed oxide thickness estimation with corresponding variance, we now perform a

statistical reliability analysis to tighten the lifetime distribution. Here we focus on chip-level re-

liability analysis and consider the worst-case operating temperature to ensure a correct operation

throughout the entire lifetime. The temperature and voltage drop variations can be easily incorpo-

rated in our flow by performing analysis at the granularity of functional blocks or sub-blocks, where

devices within a block can be assumed to have the same temperature and supply voltage drop.

Given a chip with m devices and N grid cells for spatial correlation modeling, we define the

following notations for the remainder of the paper as in Table 4.1.

4.3.1 Post-Fabrication Measurement-Driven Reliability Prediction

The challenge to the chip-level statistical OBD reliability analysis is the huge dimensionality

of the integral in (4.3). Chapter III proposed to map millions of random variables to two random

variables, sample mean and variance of the chip oxide thickness distribution. However, for a con-

ditioned random vector xu|s0, the variables do not bear the same mean and cannot employ the

method in Chapter III. The conditional covariance matrix (or spatial correlation) also shows com-

pletely different features from the unconditional case. We therefore present a measurement-driven

OBD reliability analysis in this subsection.
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Table 4.1: Notations used in OBD reliability analysis
Notation Definition

x = [x1, . . . , xm] the oxide thicknesses for m device of a chip

xu|s0 the conditional random vector for oxide thicknesses of unmeasured sites, given
the measured oxide thicknesses of s0

xm=
Pm

i=1 xi

m the sample mean for m devices of a chip

v=
Pm

i=1(xi−xm)2

m−1 the sample variance for m device of a chip

R(t0) chip reliability at time t0, which is Pr(t > t0)

Ttarget chip design lifetime target

Rt chip reliability target at the end of lifetime

Tq
quantile-based time-to-failure (QTTF)8, defined as Tq = argTq

{R(Tq) = Pr(t >
Tq) = Rt}.

D0 = [d1, ...dN ] di denotes the number of unmeasured devices in the ith grid

D = diag(D0) a diagonal matrix with diagonal vector of D0

4.3.1.1 Conditional Spatial Correlation Characterization Using Principal Component

Analysis

Since xu|s0 is still a multi-variate Gaussian random vector, its correlation structure in (4.13) can

be simplified by principal component analysis (PCA) to map the correlated variation components

to another set of mutually independent random variables with zero mean and unit variance [38, 47].

For a device in the ith grid, its conditional oxide thickness xu,i|s0 can be canonically expressed as a

linear combination of the principal components:

(4.16) xu,i|s0 = uxu,i|s=s0 +
∑N

j=1
λi,jzj

where N is the number of principal components; zj ’s represent the N independent random variables

used to characterize the conditional spatially correlated variation; and the coefficients λi,j ’s represent

the sensitivity of thickness variation with respect to the jth principal component for the random

variable in the ith grid. Thus, the conditional random vector of N unmeasured sites can be written

compactly with principal components:

(4.17) xu|s0 = uxu|s=s0 + z× Pλ

where Pλ is an N × N matrix containing the sensitivity coefficients λi,j ’s for different principal

components and can be achieved by eigenvalue decomposition; z = [z1, z2, ...zN ] is a vector of

principal components.
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We can then estimate the conditional sample mean and sample variance for devices across the

chip in terms of principal components. As defined earlier, xm and v are:

(4.18) xm = [(xu|s0)DT
0 + s0 × [1]n0×1]/m

(4.19) v =
(xu|s0 − xm)D(xu|s0 − xm)T+ (s0 − xm)(s0 − xm)T

m− 1

Those two variables xm and v illustrate the underlying characteristics of the conditional chip oxide

thickness distribution given measurements s0 at n0 sites.

By noting the equality of uchip in (4.15), (4.18) is simplified to:

(4.20) xm = uchip + ucoeffzT

where ucoeff = 1
mD0P

T
λ . Clearly xm remains a Gaussian with mean of uchip and variance as the

following:

(4.21) var(xm) = var(uchip) + ucoeffucoeff
T

After expanding the numerator of (4.20), we can re-write v as the sum of two random variables

V1 and V2:

(4.22) v = (V0 + 2V1 + V2)/(m− 1)

where

V0 = (uxu|s=s0 − uchip)D(uxu|s=s0 − uchip)T + (s0 − uchip)(s0 − uchip)T

V1 = vcoeffzT and V2 = zV zT

(4.23)

with vcoeff = uxu|s=s0DPT
λ −(m×uchip−s0[1]n0×1)ucoeff and V = (PT

λ +[1]N×1ucoeff )T D(PT
λ −

[1]N×1ucoeff ).

Note that V0 is a constant and V1 is a normal random variable. Since the matrix V is positive and

symmetric, V2 has the form of quadratic normal product and can be approximated by a chi-square

distribution [71], V2 ∼ âχ2
b̂
, with â = tr(V 2)

tr(V ) and b̂ = [tr(V )]2

tr(V 2) , where tr[.] denotes the trace operation

to compute the sum of diagonal entries. Since E(V1)E(V2)=E(V1V2), V1 and V2 turn out to be
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Figure 4.7: Comparison of the histogram of chi-square random variable V2 in (4.23) with degree of
freedom of 2209 (N=2500) and the fitted Gaussian curve. The fitting goodness is 0.98
(R-square).

uncorrelated. Moreover, by noting the degree of freedom for the chi-square distribution b̂ = [tr(V )]2

tr(V 2)

is close to N , the chi-square distribution with a large degree of freedom can be well approximated

by a Gaussian distribution [74], which is validated by the histogram of V2 in Figure 4.7. Thus, the

un-correlation between two Gaussian random variables V1 and V2 implies their independence. In

other words, v is a Gaussian random variable, the mean and variance of which can be computed

from (4.22) and (4.23):

(4.24) E(v) = [V0 + tr(V )]/(m− 1)

var(v) =
2tr(V 2)
(m− 1)2

+
4

(m− 1)2
vcoeffvcoeff

T(4.25)

4.3.1.2 Post-Fabrication Measurement-Driven Lifetime Prediction

Once the underlying distribution of xm and v are characterized, we can conduct the post-

fabrication measurement-driven reliability prediction for a particular chip and analyze the quantile-

based time-to-failure (QTTF) 9 for certain reliability target Rt by using (4.5):

(4.26) R(Tq|xm, v) = exp[−Aeln(
Tq
α )bxm+(ln(

Tq
α )b)2v/2] = Rt

9Tq is defined as Tq=argTq
{R(Tq)=Pr(t>Tq)=Rt}. In other words, it is the quantile of reliability distribution for

certain reliability target Rt.

73



where A is the chip area. This equality illustrates the actual quantile-based time-to-failure when

chip meets ceratin reliability target. The quantile-based time-to-failure is then compared with design

lifetime Ttarget to evaluate chip reliability. To simplify the analysis, we introduce a supplementary

random variable γ = ln(Tq/α)b to derive the distribution of Tq (QTTF), and rewrite the equation

above as:

(4.27) v/2× γ2 + xm × γ − ln(− ln(Rt)/A) = 0

This quadratic equation can be easily solved:

(4.28) γ = γ(xm, v) =
−xm +

√
x2

m + 2 ln(− ln(Rt)/A)× v

v

In other words, when the reliability target Rt is given, γ is a random function depending on the

underlying distributions of xm and v.

By noting that both xm and v have limited variance, we can further simplify (4.28) with first-

order Taylor expansion:

γ ≈ γ(E(xm), E(v)) + [
∂γ(xm, v)

∂xm
,
∂γ(xm, v)

∂v
]|E(xm),E(v) × [xm − E(xm), v − E(v)]T(4.29)

Since both xm and v are Gaussians and almost uncorrelated, we can reasonably justify that γ follows

a Gaussian process with mean and variance:

(4.30) E(γ) =
−E(xm) +

√
E(xm)2 + 2 ln(− ln(Rt)/A)× E(v)

E(v)

(4.31) var(γ) = [(
∂γ

∂xm
)2, (

∂γ

∂v
)2]|E(xm),E(v) × [var(xm), var(v)]T

Quantile-based time-to-failure Tq can then be characterized as a lognormal distribution, as Tq =

α exp[γ/b].

4.3.2 OBD Reliability Management and Performance Optimization

The technique in Section 4.3.1 can characterize the distribution of quantile-based time-to-failure

and achieve a well-tightened lifetime distribution. In practice, the design objective may be a certain

design lifetime Ttarget with a predefined reliability requirement Rt, i.e., the probability of chip failure
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may not exceed 1−Rt within Ttarget years lifetime. However, due to the process variation, some chips

will have thinner oxides and are quicker to fail. The tightened distribution of Tq (QTTF) enables us

to quantitatively evaluate whether the chip will meet the design lifetime target or not. Those chips

that are prone to failure can be tuned to a lower supply voltage limit to improve the reliability yield.

On the other hand, chips with thicker oxides can operate at a higher voltage for better performance.

The next question is then how much voltage we need to tune to optimize the performance, which

will be discussed in the following optimization flow.

Since QTTF itself is a distribution due to the remaining uncertainty of the oxide thicknesses,

we use the lower bound of the distribution with a certain confidence to ensure a robust design.

Conservatively, with a 99.9% confidence level, we can derive the following one-sided confidence

interval:

(4.32) Tq ∈ [α exp

[
E(γ)− 3

√
var(γ)

b

]
,∞]

where the moments of γ can be computed from (4.30) and (4.31). The lower bound of (4.32) is then

denoted as Tlb and used to evaluate chip lifetime in optimization. In other words, after optimization,

we may push the distribution of QTTF to the right of Ttarget and have 99.9% confidence that the

chip will meet the lifetime target. Since both parameters α and b in (4.32) depend on supply voltage,

we formulate the following to maximize the supply voltage while Tlb meets the design lifetime target:

Maximize

(4.33) vchip

Subject to:

(4.34) ln(Tlb) = ln(α(vchip)) +
E(γ)− 3

√
var(γ)

b(vchip)
≥ ln(Ttarget)

(4.35) vmin ≤ vchip ≤ vmax

where vchip denotes the supply voltage; the first constraint in (4.34) implies that the 99.9% confidence

lower bound of QTTF is larger than the design lifetime target; and the second constraint in (4.35)

denotes the possible voltage tuning range. We find that this optimization problem is equivalent to

finding the feasible domain of the inequality in (4.34), where the parameters of the device reliability
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Procedure: Post-Fabrication Measurement-Driven OBD Reliability Prediction
and Management
Input: measurements s0, process variation model in (4.6), reliability target and
design lifetime
Output: optimized supply voltage
1: Given s0, estimate the conditional oxide thickness and covariance matrix

with the flow in Figure 4.4;
2: Apply PCA to the conditional covariance matrix to obtain the distribu-

tions of xm and v using (4.20)-(4.25);
3: Estimate tightened chip lifetime distribution using (4.30) and (4.31);
4: Solve the optimization problem in (4.33)-(4.35) to achieve the optimized

supply voltage;

Figure 4.8: Post-fabrication measurement-driven OBD reliability prediction and management.

function, α(vchip) and b(vchip), indicate the underlying dependence on supply voltage. Since we only

have one variable, even with a complicated physics-based model for α(vchip) and b(vchip), we can still

efficiently solve this problem in a numerical way. In our implementation we adopt the linear models

in [55, 57], i.e., ln(α(vchip))=a1×vchip+a2 and b(vchip) = b1×vchip + b2, and hence have a quadratic

inequality in (4.34), which can be analytically computed. As a result, the optimization flow above

eventually reduces the failure rate to improve reliability yield, while the overall performance is also

enhanced by reducing lifetime safety margins.

4.3.3 Summary of OBD Reliability Prediction and Management

The procedure for post-fabrication measurement-driven reliability prediction and management

is summarized in Figure 4.8. Given n0 measurements for a particular chip, we first estimate the

oxide thicknesses and corresponding variance using a conditional multi-variate Gaussian model. The

conditional spatial correlation is then explored by PCA to derive the distributions of xm and v, which

characterize the underlying conditional chip oxide thickness distribution and help achieve a tightened

lifetime distribution. The lifetime estimation then allows an optimization flow to quantify trade-offs

between reliability and supply voltage/performance.

4.4 Experimental Results

The proposed reliability prediction and management methodology was implemented and tested

on several designs using 65nm LP devices (nominal oxide thickness is 1.67nm). The defect generation

relationships for the technology node and the technology dependent parameters of the oxide relia-

bility function model are obtained from [55, 57]. In practice, this can be obtained by a one time per

technology characterization using test devices [77]. For each design, we used 10000 chips that follow
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the thickness variation model in (1.1) of Chapter I. The overall 3σ/µ of oxide-thickness variation

was set to 4% of the nominal value as in [6] and then split into three variation components. The

relationship between oxide thickness, voltage and performance is determined by SPICE simulation

on 65nm standard cells and then used in our methodology for reliability management and voltage

tuning.

4.4.1 Efficacy of the Proposed OBD Reliability Prediction

Given the post-layout design implementation, a process variation model and limited measure-

ments on device oxide thickness, the proposed method can estimate the quantile-based time-to-

failure (QTTF) distribution for a certain reliability target, with which we can examine whether this

chip may meet the design lifetime or not. To evaluate the accuracy of the proposed method, the

conditional QTTF distribution for a chip was also computed by Monte-Carlo simulation with an

accept-and-reject strategy. In other words, the simulation only accepted the sample vectors with

similar entries on the measurement sites, the tolerance of which was set to 0.01nm in our implemen-

tation. This is equivalent to exploring the parameter space of the conditional random vector xu|s0.

The results are shown in Figure 4.9 for a chip with 0.5 million devices and 25 measurements. It is

clear that the histogram of 1000 sample vectors matches well with the predicted lognormal pdf using

the techniques in Section 4.2 and 4.3. The difference between the mean of the histogram and log-

normal pdf is 0.038 years. The 99.9% confidence lower bound of QTTF is 3.203 year demonstrating

the tightness of the QTTF distribution.

We also explored how the predicted QTTF distribution changes when we increase the number of

measurements. Figure 4.10 clearly shows the reduction in variance as the number of measurements

grows. It is interesting to note that even one or two measurements provide sufficient information

to tighten the distribution whereas 100 measurements help reduce the standard deviation of the

distribution to only 0.16 year. The difference between the actual QTTF and the mean of the

predicted QTTF distribution (using 100 measurements) is only 0.03 year (0.8% estimation error),

while the conventional guard-band is 2.07 year with almost 50% estimation error.

Moreover, we studied the convergence of the mean and 99.9% confidence lower bound (µ−3σ)

of the predicted QTTF distribution to the exact values, as shown in the error-bar plots of Figure

4.11 for two chips, one with thicker oxides and another with thinner oxides. For each particular

measurement number, we picked up 10 different configurations (placement) of measurement sites

and then computed the 10 set mean/ 99.9% confidence lower bound of QTTF distribution to achieve

the error bar. With an increasing number of measurements, both the estimated values and their
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variance converge quickly.

4.4.2 Reliability Management and Performance Optimization

Finally, we applied the proposed post-fabrication measurement-driven methodology to tune the

supply voltage of 10000 chips of a 0.5M-device design to ensure reliability while maximizing perfor-
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Figure 4.11: Convergence of the mean and 99.9% confidence lower bound of the predicted quantile-
based time-to-failure (QTTF) distribution with increased measurements: (a) a chip
with thicker oxides (b) a chip with thinner oxides.

mance. The lifetime target was set to 4 years and the supply voltage tuning range is 0.8V-1.3V.

Figure 4.12 displays the tuning results using a conventional guard-band, the statistical analysis in

Chapter III (denoted as 0 measurement in the figure) and the proposed methodology using different

number of measurements. The guard-band that assumes minimum oxide thickness across the chip,

achieved a single supply voltage for all the chips (0.858V) and was employed as the baseline for

comparison. The other two methods used 99.9% confidence lower bound of the predicted QTTF

distribution as the evaluation of chip’s lifetime. Since the method in Chapter III uses a more accurate

model of the oxide variation compared to the baseline approach, it assigns the ensemble of chip a

slightly higher supply voltage of 0.875V. However, since it is unaware of the unique condition of each

particular chip, it remains overly pessimistic and results in a merely 3% performance improvement.

On the other hand, with only 25 measurements, the proposed methodology can obtain a well-

tightened QTTF distributions and a more precisely optimize voltage for each chip, achieving 15%

performance improvement on average and 26% improvement at maximum. Moreover, although the

method in Chapter III predicts chip lifetime with 99.9% confidence lower bound, still 12 out of

10000 chips fail to meet the lifetime target after tuning, which is beyond the confidence interval.

Meanwhile, since the proposed methodology provides more accurate prediction it quickly reduces

the number of failures to 0 out of 10000 with increased measurements.

Figure 4.13 presents the distributions of optimized supply voltage and the resulting performance

improvement using different numbers of measurements in tuning. Both the plots show a shift to the

right with increased measurements, indicating the capability of the proposed method to choose a

more reasonable supply voltage when the number of measurements is increased.
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Figure 4.13: Distributions of (a) optimized supply voltages and (b) performance improvement with
different numbers of measurements.

The scalability of the proposed methodology is examined in both its dependence on design

complexity/size and run time. We first applied the approach to an alpha-processor-like design, with

15 functional blocks and 0.84M devices in total. Due to the functional block difference, the grids for

spatial correlation model have non-uniform densities, i, e, each grid has different number of devices.

We measured 25 devices per chip and tuned 10000 chips resulting in a performance improvement

of 24.9% at maximum and 17.3% on average compared with conventional guard-band, as shown in

Figure 4.14. We then applied the proposed method to tune 10000 chips of seven different designs
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Figure 4.14: (a) Performance improvement histogram and (b) optimized supply voltage histogram of
10000 chips for an alpha-processor-like design with 0.84M devices and 25 measurements.
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(varying in size from 80K to 50M devices) with 25 measurements for each and recorded performance

improvement and average run time per chip. Figure 4.15 shows a flat curve of runtime of around

0.38 second, and a slightly growing trend of average performance improvement from 15% to 19%

and maximum improvement from 22% to 27%. As stated earlier, both PCA and matrix inverse are

performed once for one design with fixed measurement sites, whereas the analysis and optimization

are mostly analytically achievable. Thus, the methodology runtime only relies on the number of grids

for spatial correlation model instead of circuit size as validated in the figure, which is an appealing

feature for modern processors with increasingly larger designs.
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4.5 Summary

This chapter presents a post-fabrication measurement-driven OBD reliability prediction and man-

agement methodology. The methodology uses limited measurements to estimate the oxides condition

of a chip. The estimation is then incorporated into a statistical model to predict a more accurate

chip lifetime distribution, which is fed to an optimization flow to trade off reliability margin and

system performance. Experimental results show that even for a design with up to 50 million de-

vices, the methodology can achieve 19% performance improvement on average and 27% at maximum

compared with conventional guard-band while average run time is only 0.4 second.
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CHAPTER V

Variation-Aware Gate Sizing and Clustering for Post-Silicon

Optimized Circuits

Susceptibility to system and random process variations increases along with the shrinking size

of VLSI technology features in nano-regime chip designs [2, 30, 47, 79]. This process variation is of

ever increasing concern in design performance estimation due to the demand for low power as well as

the need for operating frequency growth [2, 47]. Because leakage and delay have strong dependence

on the process parameters, the classical deterministic design method turns to be probabilistic. To

address this issues, a handful of statistical optimization approaches that use pre-silicon techniques

have been proposed [21, 25, 26]. These techniques are aimed at optimizing yield and therefore lead

to a statistically optimal solution. The optimization decisions are therefore statistically effective

for the manufactured dies; however, they are not necessarily ideal for an individual chip to meet

the delay/power specifications [27, 28]. Unlike the pre-silicon approaches, post-silicon optimization

techniques, such as adaptive body biasing (ABB), adaptive supply voltage (ASV) and tunable clock

buffer (PST buffer), are carried out after the fabrication [27, 28, 29, 32]. With these adaptive tuning

techniques, the specific variations (both die-to-die and intra-die) that occur on a particular die can

be mitigated to achieve the design target [27, 28, 29].

One difficulty with the post-silicon tuning approaches is that adjusting each transistor/gate in-

dividually leads to excessive overhead in terms of routing of tuning control signals as well as the

circuitry for tuning voltage generation and selection. To reduce overhead to feasible levels, several

studies have investigated how to effectively cluster gates together before fabrication such that gates

are positioned into a small set of clusters, each controlled by one post-silicon tuning parameter.

For example, [27] presents a statistical method for clustering in which gates with statistically sim-

ilar body bias voltages are placed together. However, this optimization is performed entirely as a
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post-processing step, and is divorced from the circuit optimizations such as gate sizing and gate

restructuring and hence is sub-optimal. Other works have coordinated the pre- and post-silicon

optimization at design time [28, 29], noting that pre-silicon optimization and post-silicon adapt-

ability target the same design objective and parameter variability. The approach in [28] combines

the traditional circuit optimization (gate sizing) and post silicon tuning (using ABB) to maximize

design yield. The underlying formulation is a second order conic program (SOCP), which requires a

somewhat simplified linear delay model. The approach in [29] describes a two-stage stochastic opti-

mization for gate sizing in the presence of PST clock tree buffers. This approach uses a cutting-plane

algorithm and is therefore limited in circuit size. A further limitation of these latter two methods is

that neither addresses the issue of clustering, which is a key step necessary for brining the overhead

of post-silicon tuning to feasible levels and complicates the optimization substantially.

In order to reduce the overhead while maintaining tunability to achieve a particular timing

target, it is highly desirable to explore the interaction between gate sizing and clustering. In a

cluster, all the gates are assigned the same body voltage and the final tuning voltage is determined

by the most critical gate in the cluster. The gates on the critical path are modulated through the

body biasing so that they are fast enough to meet the specified timing constraints. This may bind

the other non-critical gates with an unnecessarily high body voltage. Assume that the cluster has

two gates A and B whose body bias voltages have the probability distributions shown in Figure

5.1. Gate A has a higher probability of being assigned a larger body voltage, i.e. A is a critical

gate for this cluster. The same body voltage is assigned to the non-critical gate B, resulting in an

unnecessarily high leakage in gate B. The increase in body voltage may double or even triple the

leakage of the cluster. Hence, it is crucial for all of the gates in a cluster to bear a high probability

of having an identical criticality and therefore maximize the probability that all the gates require

the same body bias voltage. This need for similarity creates dependence between the clustering and

traditional circuit optimizations, such as gate sizing, and significantly complicates the optimization

of the circuit. Furthermore, because this joint optimization must be considered from a statistical

perspective, a typical deterministic optimization engine cannot be applied to the problem.

In this chapter, we propose a new statistical formulation and optimization technique that simul-

taneously considers both clustering and gate sizing. Although we focus on ABB as our post-silicon

technique, our approach can be extended to other methods as well. The approach builds on our

previous clustering strategy in [27] where gates are clustered according to the distribution of optimal

body voltage. For the clustered gates, we coordinate the gate sizing and body voltage distribution

with an alignment strategy. A linear dependence between the mean of body bias voltage distribution
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Figure 5.1: Body bias voltage distribution for critical and non-critical gates

and gate size is proven, which enables efficient gate sizing to match the body bias voltage distribu-

tion for the gates in a cluster. Rather than rely on sizing alone for better leakage saving, some gates

may be further re-clustered. Finally, the circuit is re-balanced by snapping the gate sizes to the cells

in the library. Experimental results show that our methodology can achieve 26.2% leakage savings

for a circuit with up to 14503 gates at almost the same run time as the method in [27].

5.1 Simultaneous Gate Sizing and Clustering for Post-Silicon Tuning

5.1.1 Overview of the Methodology

This chapter proposes a two-stage optimization flow to determine the specific sizes for gates as

well as the clusters to which gates are assigned. Based on the optimization flow, we can perform

post-silicon ABB tuning for clusters to find the best tuning configuration for each die within the

required power and delay envelope. The overall flow of the methodology is described as follows:

• STAGE 1: Generate multiple die samples following the expected Leff distribution for a given

circuit in a Monte Carlo (MC) fashion and then solve each scenario optimally with quadratic

programming (QP) to obtain the optimal body bias probability distribution for each gate.

After that, the gates with statistically similar body bias voltages are grouped together to

obtain the initial clustering.

– Sub-Step 1: Perform deterministic gate sizing on the circuit using any suitable gate sizing

algorithm, such as the steepest decent algorithm used in this paper.
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– Sub-Step 2: Similar as Chapter II, with a fixed gate size, (2.1)-(2.6) turn to be a stochas-

tic quadratic programming problem subject to the channel length variation, where the

objective is quadratic in terms of vb,i and the constraint is linear with the variable ATi.

Monte-Carlo simulation is performed to obtain the die samples [27]. For each sample, the

stochastic QP formulated by (2.1)-(2.6) becomes deterministic, which can be efficiently

solved with CPLEX to determine the optimal body bias voltage for each gate [49].

– Sub-Step 3: After the MC simulation, the frequency histograms (or the body bias profile as

in Chapter II) of the optimal body voltage can be easily computed. We then perform the

initial clustering to group the gates with statistically similar body bias voltage distribution

[27].

• STAGE 2: In this stage, we use an efficient simultaneous gate sizing and clustering technique

to achieve the configuration for better leakage saving. We investigate the linear dependence of

the mean of body bias probability distribution and the gate size. The dependence allows us

to efficiently solve the optimization problem. Based on that, gates are sized up or down and

then adjusted to a new cluster if necessary. After this adjustment the optimized continuous

solution is snapped to the standard library cells with a fast heuristic method.

– Sub-Step 1: Size the gates in each cluster to align the body bias voltage distribution with

a fast linear equation solve. Hence, gates in the cluster will have an aligned body bias

probability distribution. Then, estimate the leakage for different scenarios to re-cluster

the gate if necessary.

– Sub-Step 2: Re-balance the circuit to remove the physical bounds violations (gate sizes

outside the min - max available size in the library) and then snap the gate to the corre-

sponding library cells while still meeting the timing constraints.

5.1.2 Body Bias Voltage Alignment

After STAGE 1 discussed in Section 5.1.1, we can obtain the body bias distribution for each gate,

which is a probability distribution describing the tuning action (i.e. frequency of occurrence of body

bias voltages) of a gate over the sample space of dies. The gates are initially clustered according

to the correlation between their tuning actions [27]. For each cluster, all the gates are assigned the

same body bias voltage as is determined by some critical gates as shown in Figure 5.1. In other

words, the body bias voltage of the cluster is dominated by a small portion of critical gates, even

though a large portion of non-critical gates actually contribute more to the cluster leakage. Note
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the fact that with a body bias voltage raise from 0.0V to 0.5V, the leakage almost triples, while the

gate obtains about 15% speed improvement as illustrated in Figure 1.3. Thus, it is crucial to align

the body bias distribution of those critical gates to the non-critical ones so that the leakage will not

be determined by a small portion of gates, as shown in Figure 5.2.

Body Bias Voltage
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Critical Gate A
Non-critical
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Figure 5.2: Body bias alignment for a critical gate

Sizing the critical gates is an effective way to change the body bias distribution. Generally

speaking, sizing up the gate may shift the distribution to the left for a smaller body bias, whereas

sizing down may increase the probability of being assigned a larger body bias compensating for the

increased delay. However, aligning the distribution requires a more accurate estimation, particularly

when the loaded gates are also sized up or down. Assume the optimal body bias voltage for gate i

is the variable vb,i, and the objective aligned body bias distribution is another variable vi,obj . The

motivation is to make gate i’s delay before alignment almost the same as the delay after alignment.

Hence, we can obtain the following equality using an Elmore delay model to guide the optimization:

DABB
i = q1

∑
k

wi,kli,k + C0,i

wi/li
(1− δsi(vb,i)) ≈ q1

∑
k

wo
i,kli,k + C0,i

wo
i /li

(1− δsi(vi,obj))(5.1)

where wi and wo
i are the widths of gate i before/after sizing, wi,k and wo

i,k are the widths of the loaded

gate k before/after sizing, li and li,k are the channel lengths for gate i and its loads, respectively,

constant C0,i is the wire capacitance or load capacitance, q1 is a constant coefficient for the model.
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Equation (3.12) can be further simplified to the following with the substitution wo
i,kli,k = nkwi,kli,k:

∑
k

nk
wi,kli,kP

k

wi,kli,k+C0,i
+ C0,iP

k

wi,kli,k+C0,i

ni
(1− δsi(vi,obj)) ≈ 1− δsi(vb,i)

(5.2)

where ni is the sizing factor for gate i to be determined. In (5.2), body voltage vb,i is a random

variable related with the channel length variation. We explore the correlation between these two

random variables as shown in Figure 5.3. The curve demonstrates the correlation statistics between

the channel length and corresponding body bias distribution for the ISCAS circuit C7552. The

x-axis denotes the correlations whereas the y-axis denotes the percentage of gates beyond the spe-

cific correlation value. It should be noted that more than 70% gates have the correlation larger

than 0.7. Only around 10% of gates have low-correlation. We can therefore reasonably assume

that vb,i contains similar variation information of the system as channel length, so that the high

order components in (5.2) can be discarded. Experimental results in Section IV show that such an

approximation still maintains a desirable accuracy while simplifying the complexity of the problem.

Using the nominal value of channel length, we may obtain the approximated relationship of the body

bias distribution before and after alignment. With the notations ck = wi,kli,k/(
∑
k

wi,kli,k + C0,i),

c0 = C0,i/(
∑
k

wi,kli,k + C0,i) and n0=1, (5.2) can be written as:

(5.3)
∑

k

cknk/ni × (1− δsi(vi,obj)) = 1− δsi(vb,i)

As a result, the mean value of the objective body bias distribution is:

(5.4) E(vi,obj) = (1− ni∑
k

cknk
)
1− d0,i

d1,i
+

ni∑
k

cknk
E(vb,i)

and the deviation is:

(5.5) D(vi,obj) = (
ni∑

k

cknk
)2D(vb,i)

From (5.3)-(5.5), we see that both the shape and position of body bias voltage distribution can be

changed by adjusting the sizing factors. When the sizing factors of the loaded gates are fixed, (5.4)

demonstrates the linear dependence of the mean of body bias voltage distribution w.r.t. the sizing

factor ni, i.e. E(vi,obj) varies linearly according to ni.
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Figure 5.3: Percentage of gates beyond specific correlation for C7552

5.1.3 Simultaneous Gate Sizing and Re-clustering

Equation (5.4) shows the interaction of the gate sizing and body bias probability distribution.

Assuming Vi,exp is the expected mean of body bias voltage to achieve for any gate i, we can write a

series of equations based on (5.4):

(5.6) Vi,exp = (1− ni∑
k

cknk
)
1− d0,i

d1,i
+

ni∑
k

cknk
E(vb,i), i = 1...n

where E(vb,i) is obtained after STAGE 1) in Section III-A. The system of (5.6) can be further

represented as a linear system with n variables:

Vi,exp

∑

k

cknk = (
∑

k

cknk − ni)
1− d0,i

d1,i
+ E(vb,i)ni, i = 1...n(5.7)

For this linear system we have the following lemma:

Lemma: The linear system defined by (5.7) has a unique solution.

Proof. For a given constant Vi,exp, each equation in (5.7) is exactly in the linear form
∑n

i=1 tini = t0

where ti’s are constants. With a reversed topological sorting, we can levelize the circuit to m levels.

Each level has nj gates that
∑m

j=1 nj = n. Level 1 consists of the gates connected to the primary

outputs. Thus, the level 1 gates are loaded only with a constant capacitance and can be solved
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Figure 5.4: Histogram of the optimal body bias for the cluster with the largest cluster body bias
voltage

directly. At level 2, any gate is only loaded with the wire capacitance and level 1 gates. After the

sizing factors for the gates at level 1 are obtained, the linear equations at level 2 can also be solved.

This procedure will be performed iteratively until level m. Consequently, the whole system defined

by (5.7) can be solved and have a unique solution.

It is straightforward to use the mean of cluster body bias voltage E(vb,cluster) (i.e. the mean of all

the gates’ body bias voltages in the cluster) as an evaluation of Vi,exp. However, since the normalized

leakage change is quadratic, it is unnecessary to size too much for gates in the cluster with a very

low body bias voltage. Thus, we should have different criteria for different clusters. The cluster with

the largest cluster body bias includes the most critical gates. The critical gates in this cluster are

always assigned the maximal body bias voltage as shown in Figure 5.4, which causes the non-critical

gates in the cluster to consume intensive leakage. It is necessary to align E(vb,i) for a critical gate

to a small voltage Vi,exp = E(vb,cluster)− 2D(Vb,i) so that the large tail of the distribution will not

restrict the body bias voltage selection of the cluster. For the cluster with the smallest body bias

voltage, the leakage change is limited. Hence we can set a larger value Vi,exp = E(vb,cluster)+D(Vb,i)

for the critical gate to avoid the unnecessary size-up. For all the other clusters, the expected value

is set as Vi,exp = E(vb,cluster).

Meanwhile some gates may be over-sized resulting in an intense increase in the gate leakage. In
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Procedure: Simultaneous Gate Sizing and Re-clustering
Input: initially clustered circuit, body bias distribution vb,i for each gate
Output: sized gates and new clusters
1: Sort the cluster in the decreasing order by the mean of cluster body bias

voltage;
2: For each cluster n do;
3: For each critical gate i do
4: Evaluate leakage for gate i at three scenarios:
4.1: Maintain the original size with vb,i = E(vb,i),
4.2: Set vb,i as E(vb,cluster) for cluster n and size up the gate,
4.3: Move the gate to the previous cluster n-1, set vb,i as E(vb,cluster)

for cluster n-1 and size down the gate;
5: Selects the scenario with the least leakage;
6: Compute Vi,exp for gate i;
7: end for
8: end for
9: Solve the linear system to obtain the sized gates;

Figure 5.5: Algorithm for simultaneous gate sizing and re-clustering

Procedure: Circuit Re-balancing
Input: optimized circuit, the violated gate i, reduction gradient RATIO
Output: re-balanced circuit
1: Size gate i to its upper bound;
2: Evaluate the new delay Dnew,i for gate i
3: Obtain the reduction ratio R = Dold,i/Dnew,i;
4: If R ≥ RATIO;
5: Continue;
6: else
7: Size down all the gates loaded by gate i to make R = RATIO;
8: For each gate j loaded by gate i do
9: Call Circuit Re-balancing for gate j;
10: Update the delay of the circuit;
11: end for
12: end if
13: Update the delay of the circuit;

Figure 5.6: Algorithm for circuit re-balancing

this case, instead of sizing up, we can move the gate to the cluster with a larger body bias voltage.

The once critical gate then becomes non-critical in the new cluster. Such re-clustering benefits both

the original cluster and gate itself. Thus, we need to evaluate the leakage at different scenarios so

as to determine whether the gate should be removed to a new cluster, sized up or just maintain its

original size. The algorithm for the simultaneous gate sizing and re-clustering is shown in Figure

5.5.
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5.1.4 Circuit Re-balancing and Snapping

The algorithm of simultaneous sizing and re-clustering is carried out without imposing physical

bounds on sizes. Some gates may be sized beyond the available bounds of the cells in the library. In

such a case, we need to re-distribute the over-sized area and re-balance the circuit to meet timing.

Assume gate i is over-sized beyond the upper bound. The circuit re-balancing algorithm will apply

a width reduction on gate i and the related gates in the cone of influence. The motivation is to make

gate i itself see the greatest reduction whereas the farther gates see smaller changes. A reduction

gradient RATIO (=0.95 in our implementation) is introduced as a criterion. For each gate, the

ratio of the original delay and updated delay after re-balancing should be restricted by RATIO.

Consequently, the impact of reduction will gradually become negligible enabling the re-balanced

circuit meeting the timing specification. Since the circuit re-balancing is merely a slight adjustment

of the gate size, we can always use a nominal delay for evaluation, as body bias modulation on

the same gate varies little. The algorithm for circuit re-balancing is shown in Figure 5.6. We have

determined experimentally to limit the proposed strategy performed iteratively within ten levels of

logic in the aforementioned cone of influence. In fact the iteration generally terminates within three

or four levels.

After re-balancing, the optimization decision on each gate is snapped to the corresponding cells

in the library. It can be mathematically formulated as a dynamic programming, which is compu-

tationally difficult. On the contrary, simply rounding the continuous size to the nearest discrete

value may lead to timing violation. In the paper, we prefer a heuristic scheme for trade-off between

run time and accuracy. For each gate, only cells with sizes close to the continuous solution will be

investigated, so that the potential candidates of each gate are restricted to one or two cells. We then

evaluate the possible delay combination for each gate and pick up the configuration with the delay

closest to the optimized value. This procedure will be performed on the levelized circuit for all the

gates leading to a snapped solution with good quality.

5.2 Experimental Results

The experiments are performed on the circuits with industrial 1.2V 90nm triple-well process. The

delay target in this set of experiments is 10% faster than the original design. Body bias voltage is

in the range of -0.5V to 0.5V for our analysis. The benchmarks include nine circuits from ISCAS85

and a VITERBI Decoder circuit with up to 14503 gates (abbrev. Vit1). We choose a recently-

reported efficient post-silicon tuning method in [27] for comparison. The optimization engine for
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QP is CPLEX [49]. In the experiments, the number of clusters is fixed to three. However, our

methodology is a general technique without restriction on the number of clusters and can be applied

to any case.
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Figure 5.7: Body bias voltage v.s. normalized size-up ratio of a randomly selected gate from C432

5.2.1 Body Bias Voltage Alignment Exploration

In Section 5.1.2 we explore the general theory of the body bias voltage alignment via sizing. We

use (5.4) to evaluate the mean of body bias after alignment to guide the further optimization. When

the sizes of the loaded gates are fixed, (5.4) turns to be a linear equation of the size-up ratio, as

shown in Figure 5.7. The y-axis is the mean of body bias voltage after sizing, whereas the x-axis

is the normalized size-up ratio. Figure 5.7 clearly demonstrates the linear dependence of the mean

of body bias distribution and sizing factor for a randomly selected gate. Similar results are also

observed from the other circuits. Figure 5.8 shows the change of the body bias distribution after

sizing. One can see that the distribution shifts to the left with a smaller mean.

5.2.2 Efficiency of the Proposed Methodology

This section shows the experimental results of the proposed methodology and related techniques

discussed in Section 5.1. We use Monte-Carlo simulation to generate the samples of dies to evalu-

ate the leakage/delay envelope of the optimized design. The assumed magnitude of channel length

93



-0.4 -0.2 0 0.2 0.4 0.6
0 

2.5

5

7.5

10

12.5

Body Bias Voltage (V)

P
er

ce
nt

ag
e 

of
 S

am
pl

es
 (

%
) Body Bias Distribution before Sizing

Body Bias Distribution after Sizing

Figure 5.8: Body bias voltage distribution change before/after sizing

variability is 3σ/µ=15%. Table 5.1 and Table 5.2 show the leakage and delay on circuits in compar-

ison with the clustering method from [27], respectively. Columns 3-7 in Table 5.1 record the mean,

standard deviation and 95th percentile of leakage power. Columns 3-7 in Table 5.2 record the mean,

standard deviation and 95th percentile of delay. The last columns of Table 5.1 and Table 5.2 report

the improvement on the 95th leakage and delay by our methodology, respectively. It can be seen

that our methodology significantly outperforms the clustering method in [27]. The 95th percentile

leakage can obtain 25.5% saving in average whereas the circuits maintain almost the same or even

a little faster speed.

Figure 5.9 shows the circuit leakage distributions generated by the proposed methodology and

clustering method in [27] for C3540. Unlike the clustering method in [27], our methodology not

only reduce the 95th percentile leakage (the tail of the leakage distribution) but also improves the

mean value by 24% in average. These evidences indicate that the simultaneous sizing and clustering

for post-silicon tuning is more efficient in exploring the optimization space than simply using post-

processing technique as in [27].

The run time of the proposed methodology is compared in Table 5.3. It is noted that our

method takes almost the same time as the method in [27]. The last column presents the run time

for simultaneous sizing and re-clustering discussed in Section 5.1.3. It is very fast and almost linear

w.r.t. the circuit size. To achieve a full-scale sampling, the Monte-Carlo analysis consumes more
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Table 5.1: Leakage power comparison between the proposed methodology and the method from [27]
Proposed Methodology Method from [27]

CKT. #gates
µ σ 95% µ σ 95%

Improv.(%)

C432 166 2.64 0.90 4.32 3.65 1.20 5.62 23.3%
C499 519 15.09 5.26 23.27 17.87 6.63 29.96 22.4%
C880 390 2.89 1.05 4.87 3.85 1.44 6.37 23.6%
C1908 432 7.39 2.45 11.43 8.43 3.11 14.26 20.0%
C2670 964 5.07 1.96 9.14 7.80 2.82 13.08 30.2%
C3540 962 9.50 3.30 15.00 13.64 5.15 22.70 33.9%
C5315 1750 13.49 4.67 21.46 18.00 6.96 31.00 30.8%
C6288 2502 72.84 26.13 117.80 84.96 34.29 150.08 21.5%
C7552 2102 14.89 5.75 26.09 19.89 7.61 33.62 22.6%
Vit1 14503 173.88 67.71 291.97 246.02 110.40 395.73 26.2%

Average Saving (%) 25.5%

Table 5.2: Delay comparison between the proposed methodology and the method from [27]
Proposed Methodology Method from [27]

CKT. #gates
µ σ 95% µ σ 95%

Improv.(%)

C432 166 0.65 0.00 0.65 0.65 0.00 0.66 1.52%
C499 519 0.53 0.00 0.53 0.53 0.01 0.55 3.64%
C880 390 0.69 0.00 0.70 0.69 0.00 0.70 0%
C1908 432 0.99 0.01 1.00 0.99 0.01 1.00 0%
C2670 964 0.67 0.01 0.67 0.67 0.01 0.67 0%
C3540 962 1.05 0.01 1.06 1.05 0.01 1.07 0.93%
C5315 1750 0.95 0.01 0.96 0.95 0.01 0.97 1.03%
C6288 2502 2.90 0.01 2.91 2.92 0.07 3.11 6.43%
C7552 2102 1.14 0.00 1.15 1.14 0.02 1.18 2.54%
Vit1 14503 2.14 0.01 2.15 2.14 0.02 2.21 2.71%

Average Saving (%) 1.88%

Table 5.3: Run time comparison between the proposed methodology and the method from [27]
Overall Run Time (sec.)/Normalized Ratio Time for

CKT.
Proposed Method Method from [27] Sizing (sec.)

C432 43 1.02× 42 1× 0.03
C499 81 1.04× 78 1× 0.06
C880 60 1.03× 58 1× 0.05
C1908 67 1.02× 66 1× 0.05
C2670 107 1.02× 105 1× 0.08
C3540 129 1.02× 126 1× 0.08
C5315 260 1.02× 254 1× 0.16
C6288 453 1.02× 446 1× 0.28
C7552 302 1.02× 296 1× 0.21
Vit1 1633 1.02× 1608 1× 1.82
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Figure 5.9: Leakage distribution comparison using the proposed methodology and the mthod from
[27]

than 80% of the overall run time. In order to guarantee the convergence, the number of Monte-Carlo

samples increases as the circuit size goes larger [27].

5.3 Summary

This chapter presents an efficient variation-aware methodology for simultaneous gate sizing and

clustering for post-silicon tuning through ABB. It uses a practical table look-up delay model and

can be applied to the circuits with tens of thousands of gates. The proposed body bias alignment

technique helps to actively incorporate the post-silicon tuning procedure in the pre-silicon design

cycle to fully explore the optimization space. Experimental results show 25.5% improvement of

leakage in average for ten different sized benchmarks.
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CHAPTER VI

Active Learning Framework for Post-Silicon Variation

Extraction and Test Cost Reduction

Susceptibility to process variation has increased with the scaling of CMOS into the nano-regime of

VLSI designs [2]. The application of new resolution enhancement techniques complicates an already

complex manufacturing process and makes it more difficult in maintaining process uniformity [2].

As a result, efficient and accurate process variation modeling becomes essential to ensure good yield.

Traditionally process variation modeling is targeted for design-time use and guides engineers

in the optimization of their chips before silicon fabrication [26, 37]. Typically, such design-time

process models rely on characterizing tens to even hundreds of test wafers [8, 11, 12, 73, 80]. The

characterized model is then fed to either the statistical analysis tools to estimate design yield [47, 48]

or statistical optimization engine that efficiently tunes thousands of devices to achieve a robust and

high yield solution [81]. However, in recent years, due to the increasingly significant variability and

the inability to measure every device on a die [82], process variation models are also critical after

chips are fabricated for multiple post-silicon applications, such as:

• Post-silicon tuning which requires an accurate understanding of current process to appro-

priately adjust tuning parameters [28, 83].

• Post-silicon timing characterization where speed binning and critical path diagnosis re-

quire efficient process variation models to reduce test vector sets. [82, 84].

• Post-silicon reliability analysis where accurate models can tighten the process uncertainty

to improve the chip lifetime prediction and enables specific supply voltage adjustment for the

chip to obtain a better lifetime/performance trade-off [39].

Since there is limited research focused on extracting variation models for post-silicon use, most
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Figure 6.1: Ring oscillator (RO) frequency measurements (scaled) of 4 wafers from 2 different lots
in a 65nm process: (a) and (b) are wafers from lot 1; (c) and (d) are wafers from lot 2.
The 2 lots have different global trends.

post-silicon techniques still rely on design-time variation models and do not take advantage of the

availability of test structure measurements from individual wafers and dies. This leads to the fol-

lowing two drawbacks:

• Since a design-time process variation model must capture variations across all wafers and lots,

it results in a significantly more loosely distributed or pessimistic variation model than could

be obtained based on even limited measurements from one or all the wafers within a lot. Figure

6.1 shows 4 wafers from the same 65nm process but two different lots. The wafers of lot 1 in

Figure 6.1(a) and (b) have similar wafer-level global trends, which are quite different from the

ones of lot 2 in (c) and (d). In other words, if we can model the process variation of a wafer

by using information from post-fabrication measurements on the same or another wafer, the

uncertainty of the model may be significantly reduced, which helps mitigate the unnecessary

pessimism in post-silicon applications.

• The extraction of a design-time model assumes that the process remains constant after the

model has been generated using test wafers. However, in practice, the process recipe for test
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wafers run at design time may not correlate well with the one for production chips [82]. In

addition, process is continually optimized and the variation may change over time [13]. This

is only captured by periodically running new test wafers, which is uncommon and expensive.

Instead, what is needed is a dynamic post-silicon variation model that automatically tracks and

adapts to process changes using limited test measurements. Such a model is not only useful for

post-silicon applications but could also be used for future designs in the same process.

However, constructing such a model is not trivial. It is common today to deploy hundreds or

even thousands of test structures (e.g., ring oscillators or resistor arrays) within a product chip or

in the scribe line for process monitoring [13]. But the overhead to measure all structures for all dies

across all wafers is clearly too high [13, 14]. It is also unclear how to reuse measured information

from earlier wafers to facilitate the modeling on a different wafer or lot. To address these issues,

we propose a new framework where we dynamically extract a variation model from measurements

using wafers of product chips that are instrumented with small test structures. The extracted model

accounts for both systematic and spatially-correlated patterns as well as random variations.

Prior works in [73] and [85] also attempt to reduce the number of measurements to monitor

process but either require simulations on tens or hundreds of wafers to achieve converged results or

limit their analysis only to the current wafer under test. In addition, they are fixed approaches that
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do not dynamically adapt to process change. The proposed active learning framework allows the

process model to evolve by reusing information from past wafers to validate and improve the model.

The flow chart in Figure 6.2 gives an overview of the proposed framework. In particular, initial

measurements are conducted for model training with high measurement density which will then be

reduced when the model fidelity increases. In this manner the number of measurements is gradually

decreased over time. This allows the model to adapt and improve with the process changes while

reducing the test cost to a minimum. The framework has the following key modeling contributions:

• Hierarchical process variation modeling. We develop a hierarchical variation model that

incorporates wafer-to-wafer, across-wafer, reticle-to-reticle, across-reticle and independent vari-

ation components, accounting for systematic, spatially correlated and random variations. The

variation is extracted on a reticle basis by noting the design-process interactions in lithography

steps.

• Active training. Active training initializes the active learning models in the framework

(Figure 6.2). This stage completely measures the initial wafer set to achieve deterministic

spatial pattern models and quantify the uncertainty reduction ability of each test site.

• Spatially correlated variation characterization. We employ a sparse Bayesian learning

method [87] to estimate the spatially correlated variation. Measurements from earlier wafers

are used to identify the significance of bases to speed up the estimation.

• Adaptive test configuration determination. Test configuration is defined as a selective set

of m out of n available test structures. Each measurement may reduce the model uncertainty to

a different degree. This algorithm resolves how many and which measurements are conducted

for a desirable accuracy.

• Model validation and adjustment. For an untested wafer, we apply several statistical tests

on a selective set of reticles to justify if the existing model needs an incremental adjustment

or a complete re-construction due to process drift.

The observation and experimental results in this chapter are based on two industrial processes

with two different types of test structures and different reticle sizes. Process 1 is a 65nm technology

process and has approximately 300 wafers with embedded ring oscillators (RO). The test structures

within each reticle are coarse-grained but there are approximately 100 reticles within in each wafer.

Process 2 is a 130nm technology process and has 5 wafers with electrical linewidth measurement

(ELM). The test structures within each reticle are fine-grained with 23 reticles in each wafer. The
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generality and efficiency of the proposed framework is validated on both processes for the two

different test structures, reticle sizes and measurement densities. Experimental results show that

the proposed framework can achieve 83% and 78% variance reduction for two processes in comparison

to design-time models. Meanwhile, the average estimation error is well maintained at ∼2-3% using

merely ∼30% available test structures for two processes. Compared to a recently reported approach

in [85], the framework can further reduce the test cost by more than 37% to achieve the same or

better accuracy.

6.1 Statistical Preliminaries

In this section we briefly review several statistical techniques that will be used throughout the

chapter. The details can be found in [86, 87, 88].

6.1.1 Robust Regression

The deterministic spatial pattern can be fitted from measurements to a given function. Least

square fitting may be easily impacted by outliers or long-tailed error distribution. Robust regression

is an alternative estimator to minimize fitting errors with the following term [86]:

(6.1)
∑

ρ(yi − xT
i β)

where yi − xT
i β is the ith estimation error and ρ is a weighting function to mitigate the impact of

outliers. The details can be found in [86].

6.1.2 Statistical Tests

In the model validation step of Figure 6.2, we need to justify any model before applying it to an

untested wafer. Since the non-deterministic variation for a device is typically modeled as a Gaussian

random variable, we can use the following statistical tests in our framework [86]:

• t-test checks whether the mean of a normal distribution has a value specified in a null hypothe-

sis. In the framework, it is used to justify if a predictor in the polynomial model is statistically

significant.

• χ2 goodness-of-fit test describes how well the given model fits a set of observations. This test

is used to check the overall fitting goodness of an existing model, such as the fitting goodness

of a wafer-level pattern model for the raw data from another wafer.
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• Kurtosis is a measure of the peakedness of the distribution. We use this measure in our

framework to justify if total variance distribution has a fundamental change and hence requires

a re-fitting.

6.1.3 Sparse Bayesian Learning

This section gives a brief review of sparse Bayesian learning (SBL), the details of which can

be found in [87, 88]. The basic idea of sparse Bayesian learning is to solve the following under-

determined system through a Bayesian inference [87]:

(6.2) t = Φw + ε

where Φ is a m× n matrix with each column called a basis and m ≤ n, ε is typically considered to

be zero mean Gaussian random variables with variance of σ2. Given a m × 1 vector t and a priori

knowledge that w is sparse, SBL can find the most probable estimation of w and the corresponding

co-variance matrix. The target vector t has a multi-variate Gaussian likelihood [87]:

(6.3) p(t|w, σ2) = (2π)−m/2σ−me−‖t−Φw‖2/(2σ2)

and the prior over the parameters w is a zero mean Gaussian:

(6.4) p(w|α) = (2π)−n/2
n∏

i=1

α
1/2
i e−αiw

2
i /2

where α = (α1...αn)T are n independent hyper-parameters, one per weight wi, which represents the

inverse of variance for w and pushes the solution to be sparse. The proof of using Gaussian priors

to achieve sparsity is detailed in [87]. Given α, the posterior distribution is then a Gaussian and

can be analytically written as:

(6.5) p(w|t, α, σ2) = p(t|w, σ2)p(w|α)/p(t|α, σ2) = N(w|µ,Σ)

with

(6.6) µ = σ−2ΣΦT t Σ = (A + σ−2ΦT Φ)−1

where A is diag(α1, ...αn).
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The posterior distribution can be achieved by Expectation Maximization method, which is equiv-

alent to solving a type-II marginal likelihood maximization with respect to the hyper-parameters α

[87, 88]:

Max L(α) = logp(t|α, σ2) = log

∫
p(t|w, σ2)p(w|α)dw

= −1/2[Nlog2π + log|C|+ tTC−1t]
(6.7)

with C = σ2 + ΦA−1ΦT . Once the most probable αMP are found, they can be plugged into (6.6) to

get µMP and the covariance matrix ΣMP .

6.2 Hierarchical Modeling and Characterization of Process Variation

In this section we discuss the variation modeling at different spatial levels and the characteriza-

tion of deterministic and non-deterministic parts of the model when complete or partial testing is

conducted.

6.2.1 Hierarchical Modeling of Process Variation

By using the wafer-level variation model (1.2) in Chapter I, the proposed framework extracts

variation on a reticle basis, which may include one or several dies. The reticle directly interacts

with the lithography steps and exhibits certain regularity from reticle to reticle. Assume there are

m1 × n1 available test structures on a reticle with each representing one random variable as defined

in (1.2). Then an m1 × n1 matrix, denoted as Ai for the ith reticle, can be constructed, which

uniquely identifies the process variation of the reticle. According to (1.2), Ai can be written as:

(6.8) Ai = z0 + ziw + zir,i + Aw,i + Ar,i + Aar,i + Ri

where Aw,i and Ar,i are the matrices for wafer- and reticle-level systematic patterns observed in the

ith reticle, Aar,i and Ri are the matrices for the non-deterministic variations representing across-

reticle spatially correlated and independent residual variations, respectively. It is noted that Ar,i is

a deterministic pattern at the reticle scale and hence the same from reticle to reticle. Thus we can

rewrite Ar,i as Ar.
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6.2.2 Variation Characterization at Different Spatial Scales

6.2.2.1 Model Identification of Systematic Spatial Patterns

Deterministic spatial patterns are extracted by completely testing a set of reticles Ais. To split

the mixed effect of two patterns, it is essential to first extract the pattern at lower scale, i.e. reticle-

level pattern. In order to mitigate the impact of wafer-level pattern and other variation components

in (1.2), we take the average of the matrices of Ais:

(6.9) A =
1
l

l∑

i=1

Ai = z0 + ziw +
1
l

l∑

i=1

(Aw,i + Ar + zir,i + Aar,i + Ri)

where l is the number of reticles. By carefully analyzing the characteristics of each component, we

have the following observations:

• Any device in the wafer observes the same z0 and ziw.

• Each entry in Ri is an independent Gaussian with zero mean and the same variance and hence

can be cancelled after taking average.

• zir,i is a constant for all the devices within one reticle. Thus, any entry in A observes the same

constant 1
l

∑l
i=1 zir,i.

• For an entry at a specific location of Aar,i across different reticles, it still follows a zero mean

Gaussian. Thus, 1
l

∑l
i=1 Aar,i ≈ 0.

• The wafer-level pattern typically has symmetric characteristics, e.g. slanted or parabolic surface

[11]. By carefully choosing the reticles symmetrically placed on a wafer, the difference among

entries in 1
l

∑l
i=1 Aw,i is limited and can be approximated to a constant.

Based on those observations, (6.9) can be simplified to:

(6.10) A ≈ Ar + const

where const ≈ z0 + ziw + 1
l

∑l
i=1(Aw,i + zir,i) is a constant. Thus, A is a compound effect of

reticle-level pattern and the average of other variation components. We name it as the reticle-level

common pattern.

Given A and its corresponding reticle-level locations (X0, Y0), a two-dimensional closed-form

function can be fitted. The impact of outlier can be mitigated by using moving average (MA) and
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robust regression (section 6.1.1) [86]. Moving average helps smooth over rapidly varying features

by moving a m0 × n0 sub-block across A and replacing the original entry with the average of the

sub-block. Figure 6.3 demonstrates a reticle-level pattern extraction example including: (a) the

pattern A extracted from process 2 using 23 reticles in a wafer and (b) the change after moving

average is conducted.

Before the regression is applied, we need to determine the model to fit. We here employ a

backward elimination strategy and make the data find the model itself. For example, if the initial

model is a 2nd order full polynomial model, the fitted model by robust regression is then:

(6.11) tA ∼ [1,x0,y0,x0y0,x2
0,y2

0]× pT

where p = [p0, p1...p5] is the parameter vector to be fitted, tA, x0 and y0 are the vectorization results

of matrices A, X0 and Y0 respectively. A t-test is conducted on each parameter in p to compute

the corresponding p-value. The most statistically insignificant predictor in [1,x0,y0,x0y0,x2
0,y2

0]

is then removed to simplify the model. This procedure is performed repeatedly till all the terms

(predictors) in the polynomial model fr(X0,Y0) is significant. Figure 6.3(c) illustrates the acquired

model using backward elimination and robust regression and (d) exhibits the relative error of fitting

compared with the original pattern A in (a). It is observed approximately 2% average relative error,

which indicates the necessity of modeling reticle-level patterns.

After reticle-level pattern is extracted and removed from the raw data, the wafer-level pattern

fw(X,Y) can be extracted in a similar way from the data at wafer-level, except that the coordinate

matrices are now at wafer-level instead of reticle-level. Figure 6.4 demonstrates the reticle-level

and wafer-level patterns for the wafers from two processes. The algorithm of deterministic pattern

extraction is summarized in Figure 6.5.

6.2.2.2 Non-Deterministic Variation Estimation through SBL

After the deterministic patterns are removed from the model, the residual part is comprised of

across-reticle spatially correlated and residual variations10:

(6.12) Arandom = Ai −A−Aw(x, y) ≈ Aar + Ar

10In practice the model is unable to fit perfectly with the data. Aar in the residual model of (6.12) is a compound effect
of actual across-reticle spatially correlated variation and the residual from fitting or modeling approximation. The fitting or
modeling approximation terms can be lumped into the mean of Aar, and captured by SBL method afterwards. For simplicity
we still use Aar here to represent this compound effect.
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Figure 6.3: Reticle-level spatial pattern extraction for a wafer from process 2. (a): the extracted
reticle-level common pattern A; (b): smoothed result after MA; (c): estimated model
using backward elimination and robust regression; (d): relative error of the fitted result
in (c) in comparison with the original pattern in (a).
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Figure 6.4: Deterministic spatial pattern extraction for 2 processes (scaled). (a): reticle-level pattern
and (b): wafer-level pattern (slanted) for 130nm process; (c): reticle-level pattern and
(d): wafer-level pattern (cubic) for 65nm process.

The non-deterministic part can be fully known only when a complete testing is conducted. Thus, a

natural question is, can we characterize the reticle-level variation with certain accuracy when only

partial testing is conducted? We propose to handle this problem using SBL.

Assume there are n entries within each reticle. The matrices Arandom, Aar and Ar can be

vectorized to n×1 vectors, trandom, tar and tr, respectively. When m measurements are conducted

(m ≤ n), we have:

(6.13) tm = Btrandom = Btar + tr,m×1

where tm is a m × 1 vector, and B is a m × n selection matrix. Any row of B is a unit vector ei,

with the ith entry equal to 1 and the other entries equal to 0. Since independent residual variations

tr cannot be estimated but only bounded, the question turns out to be, given measurement of tm

known, how to characterize tar which are masked by tr,m×1?
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Procedure: Deterministic spatial pattern extraction
Input: the raw data matrix A and the corresponding coordinate matrix X, Y,
sub-block size [m0, n0] for MA, initial polynomial model order n
Output: the fitted polynomial model fn(X,Y), the confidence interval C =
[lb, ub] for the fitted parameters in fn(X,Y)
1: Perform MA on A to achieve the smoothed matrix As;
2: Vectorize As, X, Y to tAs , x and y;
3: Construct a full nth-order polynomial model fn(x, y);
4: While TRUE
5: Fit tAs ∼ fn(x, y) to achieve the parameters in p and achieve its

confidence interval C = [lb, ub];
6: Perform t-test on each parameter in p;
7: If all p-values are statistically significant
8: return fn and corresponding coefficients;
9: else;
10: find the most insignificant term and remove it from the model

fn;
11: endif;
12: end while;

Figure 6.5: Algorithm for deterministic spatial pattern extraction

We can associate (6.13) with SBL by applying a sparsity inducing transform ΨT on tar [89, 87]:

(6.14) w = ΨT tar

where ΨT may be an orthogonal transform matrix for either discrete cosine transform (DCT) or

discrete wavelet transform (DWT), i.e., ΦT = Φ−1, and w is sparse or has a few entries that are

more significant than the rest. (6.13) can now be written as:

(6.15) tm = BΨw + tr = Φw + tr

where Φ = BΨ, and w is sparse with k significant entries (k usually is much smaller than m). w

and tar have a canonical one-to-one relationship as in (6.14). Thus if w is accurately estimated, we

can always recover tar from w. If the sparsity inducing transform Ψ is applied to trandom instead

of tar, i.e., tm = Btrandom = BΨw, it turns out to be a compressive sensing problem as in [85].

Compressive sensing is an alternative application of SBL [87], which also requires w to be sparse

and can be solved by linear regression in a point estimate manner [85, 89]. However, including

independent variation into the transform may induce high frequency components and hence the

non-sparsity in the frequency domain, thereby limiting the efficiency of compressive sensing. As a

result we separate tar from trandom to maintain the sparsity in w.

In our framework, the SBL method in [88] is applied to (6.15) to predict w through the mea-
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surements of tm. Similar as section 6.1.3, we have:

Max L(α) = log

∫
p(tm|w, σ2)p(w|α)dw

= −1/2[Nlog2π + log|C|+ tTmC−1tm]
(6.16)

(6.16) can be solved by either using a variational Bayesian inference or more directly in a constructive

manner by adding/deleting the candidate basis (column of Φ) into/from the solution model till the

likelihood is converged [86, 87, 88]. Then, with the estimated µMP and its covariance matrix ΣMP

in (6.6), the distribution of tar given tm can be written as:

(6.17) tar|tm ∼ N(ΨµMP,Ω), Ω = ΨΣMP ΨT

However, to improve the efficiency of SBL in variation extraction, we still need to determine the best

test sites to be measured (or the selection matrix B) and the order to add the bases by information

collected from the test wafers, which will be detailed in the next section.

6.3 Active Learning Framework for Variation Extraction

The framework is composed of two major stages, active training to learn the models and model

adaptation to adjust the models (Figure 6.2). In this section we will discuss the key modules in

those two stages.

6.3.1 Active Training

In the active training stage, the framework learns the models by densely measuring each test

structure in a wafer (or training wafer set). Several tasks are supposed to be conducted by learning

the features of the measurements (denoted as W ), including:

• Model identification that identifies both the wafer- and reticle-level deterministic spatial pat-

terns.

• Uncertainty exploration that exploits the uncertainty reduction each measurement can con-

tribute and scores the contribution.

• Basis significance ranking that gives an initial order of adding bases into the solution when

solving (6.16).
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Procedure: Model identification to extract spatial patterns
Input: the raw data W of wafer 1 and the corresponding coordinate matrix X,
Y
Output: the fitted polynomial model fw(X, Y ) and fr(X0, Y0), confidence in-
terval Cw = [lbw, ubw] for the parameters in fw(X, Y ) and Cr = [lbr, ubr] for
fr(X0, Y0)
1: Compute the reticle-level coordinate matrix (X0, Y0);
2: Compute the averaged matrix A from all the reticles in W ;
3: Extract the reticle-level common pattern model fr(X0, Y0) from A using

the algorithm in Figure 6.5;
4: Compute the residual raw data with reticle-level common pattern removed,

name it Wg;
5: Extract the wafer-level spatial pattern model fw(X, Y ) from Wg using the

algorithm in Figure 6.5;

Figure 6.6: Algorithm to identify the wafer- and reticle-level pattern models

• Linking variance to prediction accuracy that sheds insight into the control of the estimation

accuracy.

Once all those models are characterized in training stage, we start to process the forthcoming wafers

with the learned models.

6.3.1.1 Model Identification

Most of the model identification details are discussed in section 6.2.2.1. Here we briefly summarize

the flow to extract wafer- and reticle-level deterministic patterns in Figure 6.6. After the global

trends are removed from W , we denote the residual raw data as Wr, which enables the exploration

in the next three sections.

6.3.1.2 Uncertainty Exploration

Any measurement may provide a certain amount of information and hence reduce the model

uncertainty. If all the available test structures are measured, the uncertainty of a model is exactly

zero. At training stage we do not have any given variation information. Although it is always

preferred to conduct the measurements that reduce the uncertainty to a maximum, it remains

unclear how to quantitatively evaluate the uncertainty each measurement can reduce.

Here we propose a simple yet efficient method to evaluate the uncertainty reduction ability for

any test site. Denote the raw data of a reticle from Wr as Arandom,i. If all n test structures in the

reticle are measured, the uncertainty of the model for this particular reticle is 0, i.e., U(Arandom,i)=0,

where U(.) denotes the model uncertainty. On the other hand, if there is only one test structure

(jth) unmeasured, SBL in section 6.2.2.2 can estimate its value as well as a covariance matrix Ωj

as in (6.17). Clearly the variance terms in Ωj is due to the unmeasured site, i.e. the uncertainty is
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Figure 6.7: (a): Scaled DCT transform for a reticle with deterministic patterns removed; (b): His-
togram of indices for entries in w that fall into the top three most significant entry set.
The results are collected from 100 reticles of a wafer.

attributed to the jth site. Now define total variance as a measure of uncertainty,

Definition 1: Total variance is defined as the sum of variance for each test site, i.e., TV (j) = tr(Ωj),

where tr(.) computes the sum of diagonal entries and Ωj is the estimation covariance matrix with

jth site unmeasured.

Then the uncertainty reduction by the jth site can be approximated by:

(6.18) ∆U(j) = TV (j)

In this manner, we can check each site in the reticle and name the resulted vector as ∆Ui for

Arandom,i. To mitigate some local effects, we will compute ∆Ui for a representative set of l reticles

(e.g., the reticles in the middle column and middle row of the training wafer) and then take the

average of them, ∆U =
∑

∆Ui/l, as a measure of the uncertainty reduction ability. The normalized

vector Su = ∆U/||∆U || is considered as the uncertainty score for the sites within a reticle. A site

with a higher score is always preferred to be tested first.

6.3.1.3 Basis Significance Ranking

SBL can solve (6.16) by adding/deleting the candidate bases (columns of Φ) to/from the model

and then updating the corresponding hyper-parameters for the selected bases [87]. For an unselected

basis, its hyper-parameter is infinity, and the corresponding entry in w is 0. In other words, the

selected bases correspond to significant entries in w. If we know those significant entries in advance,

we can simply plug the corresponding candidate basis set into the solution model, which is beneficial

for both run-time and accuracy.

Figure 6.7(a) illustrates the DCT transform of a reticle with global patterns extracted. It can
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be seen most entries in the frequency domain happen to be insignificant. On the other hand, the

significant entries in w are limited to a small subset even from reticle to reticle. Figure 6.7(b) shows

the histogram of top 3 most significant entries in w, across 100 reticles within a wafer. Though

there are potentially 32 entries, the entries that are probable to be very significant are actually a

small subset. We then propose a score list Ss to rank the significance of each entry. The basis with

a higher significance score in Ss is first selected into the solution model. In details, we first sort the

significance of orthogonal transform coefficients w from the most to the least significant for each

reticle. The rank vector, ri, for a reticle is then scaled and fed into a continuous score function to

achieve the score for the bases:

(6.19) Ss,i = exp(−ps × ri/max(ri))

where ps is a customized parameter to tune the slope of the exponential function. Then the score

for basis significance is achieve by taking average of Ss,i for all the reticles, i.e., Ss =
∑

Ss,i/l.

6.3.1.4 Linking Variance to Prediction Accuracy

When a reticle is under partial testing, it is essential to know how accurate the prediction may

be. However, the accuracy is unable to be known till all the measurements are conducted. Thus,

we need to find another measure to quantify the quality of the estimation. By noting that the error

is almost always positively correlated with the model uncertainty, we propose to use total variance

(TV ) in Definition 1 for a given set of k0 measurements as a measure of the prediction accuracy.

Figure 6.8(a) shows trends of the average (top) and maximum (bottom) relative prediction error with

respect to TV for 100 reticles of a wafer. Either figure exhibits a strong correlation with TV , with

a correlation coefficient of 0.79 and 0.88, respectively. The relationship between TV and prediction

accuracy is explored in the training stage by conducting k0 measurements on each reticle according

to Su and then recording the total variance for each reticle. It is noted that we are attempting

to evaluate estimation accuracy in a qualitative instead of quantitative way. The data collected

from the training wafer helps describe the statistical behavior of TV in this variation space given

k0 measurements. Figure 6.8(b) shows the histogram of total variance from 100 reticles and its

log-normal fit. This histogram is used to decide the number of measurements to be conducted, as

in section 6.3.2.2.
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Figure 6.8: (a): Strong correlation of prediction accuracy and total variance (TV ); (b): Histogram
of total variance across 100 reticles of a wafer for 65nm process

6.3.2 Model Adaptation

After models at different levels are constructed in training stage, the framework starts partial

testing on the other wafers (from the same lot or different lots), which is the model adaptation stage.

6.3.2.1 Model Validation

It is essential to validate the models before applying them to an untested wafer. The model

validation justifies if the deterministic pattern models fw(X, Y ) and fr(X0, Y0) requires a complete

reconstruction or just incremental adjustment. For the current wafer under test (WUT), the vali-

dation module selects a representative set of reticles. Then the χ2 test in section 6.1.2 is used to

evaluate the overall fitting goodness. If the overall fitting is good, a t-test is then applied to judge

if any parameter in fw(X, Y ) and fr(X0, Y0) needs adjustment. The validation flow is summarized

as follows:

• Step 1: Compute the chi-square statistics χ2 using the raw data from the representatives set

of reticles [86].

• Step 2: If χ2 is beyond the predefined tolerance bound, include the WUT into the training set

and go back to the training stage. Otherwise, go to Step 3.

• Step 3: Extract the wafer- and reticle-level patterns from the representative reticle set using

the algorithms in section 6.3.1.1 to achieve the comparison models fw,c(X, Y ) and fr,c(X0, Y0).

• Step 4: Check if the parameters of fw,c(X, Y ) (or fr,c(X0, Y0)) are in the confidence intervals

Cw (or Cr) for the parameters of fw(X, Y ) (or fr(X0, Y0)).
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(a) (b) (c)

(d) (e) (f)

Figure 6.9: Contours of 3 wafers from the same lot. (a): wafer 1 (training wafer); (b): wafer 2;
(c): wafer 3; and the extracted deterministic spatial patterns (including both wafer- and
reticle-level patterns) for (d): wafer 1; (e): wafer 2; (f): wafer 3.

• Step 5: For those within the bounds, accept the original parameters in fw(X, Y ) or fr(X0, Y0);

for those beyond the bounds, re-fit the parameters using the representative set of reticles.

Figure 6.9 demonstrates the contours of three wafers from the same lot and how the deterministic

pattern models evolve adaptively from wafer to wafer. It can be seen the deterministic patterns of

wafer 2 and wafer 3 (Figure 6.9(e) and (f)) are based on the training patten (Figure 6.9(d)) but still

capture the major features of the original wafer contours.

6.3.2.2 Adaptive Test Configuration Determination

The most important problem for partial test on a reticle is which and how many measurements

to conduct. The uncertain score is a global evaluation across the reticles and not efficient enough for

a particular reticle. To better understand the across-reticle process condition, the proposed partial

test has two phases, within each, k0 and k1 measurements are conducted respectively.

Assume we have nmax available site for testing. In the first phase we conduct k0 measurements
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on the reticle according to Su and apply SBL to achieve the covariance matrix ΩSk0

11. k0 is

the same as the number used in section 6.3.1.4 to characterize a TV histogram (or distribution

with a cumulative density function F (.)). Then the total variance (e.g., TVi) for the reticle is

computed from ΩSk0
. The relative location of TVi in the distribution F (.) is mapped to the number

of measurements to be conducted. In other words, we have:

(6.20) k1 ∼ F (TVi)× (nmax − k0)

Thus, if TVi is large, almost all the measurements will be conducted. Meanwhile fewer measurements

are required for smaller TVi.

The second phase determines where to conduct the k1 measurements. The underlying motivation

is to maximize the uncertainty reduction by those measurements, i.e.,

(6.21) Max ∆USk0∪Sk1
−∆USk0

However, this formulation itself is difficult to evaluate or optimize. It is also noted that if we simply

choose test sites according to Su, most measurements may be conducted at some corner due to the

spatial correlation. It is therefore desirable to conduct measurement on sites with higher Su as well

as relatively uniform distribution. The uniformity requirement is equivalent to the consideration

of correlation among test sites. The closely placed sites usually have higher correlation, and hence

should avoid repeated measurements. This intuition motivates a greedy search algorithm to maxi-

mize the covariance reduction instead of variance. Given the covariance matrix ΩSk0
= [ω1, ω2...ωn]

for n test sites from phase 1 and ωi is a column in ΩSk0
,

• Step 1: set Sk1 = ∅.

• Step 2: choose the site i0, which is:

(6.22) i0 = argmaxi |ωi|T × [1]n×1

where [1]n×1 is an n× 1 all-one vector.

• Step 3: Sk1 = Sk1

⋃
i0. Remove the i0th column and row in ΩSk0

.

• Step 4: Go back to step 2 till k1 sites are found.
11Those measurements are typically a very small subset Sk0 that helps understand the process condition without much

extra overhead to the framework. k0 can be determined at training stage by sweeping several typical numbers and comparing
the results.
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6.3.2.3 Prediction and Model Update

After test configuration is determined, the framework moves forward to estimate the deterministic

and non-deterministic variation components for any untested site. The deterministic components are

calculated using those validated models, given the locations of the device in the reticle and wafer.

The non-deterministic component is acquired by SBL in section 6.2.2.2. The estimated process

parameter is then the sum of those components:

(6.23) zesti = fw(x, y) + fr(x0, y0) + z̃ar

where z̃ar is the estimated spatially correlated variation component. The estimation also comes

with a confidence interval that is computed from the covariance matrix Ω and the estimated σ2 as

in section 6.2.2.2 [87].

To ensure the quality of the prediction, we also employ a cross-validation stage by using another

small subset Scv of measurements to validate the results. Similar as Sk0 , Scv is determined according

to the uncertainty score Su of those unmeasured sites. If the average error of the prediction results

is unable to meet an error tolerance threshold θcv, more measurements will be conducted till cross

validation requirement is satisfied. It is noted that we can always adjust θcv and nmax in section

6.3.2.2 to make tradeoff between estimation accuracy and test cost (number of measurements).

After the prediction results are validated, several models needs updating before the framework

moves to the next wafer:

• Total variance distribution. The total variance with Sk0 measurements can be collected from

each reticle and included into the original TV data set. Kurtosis statistics is applied here to

monitor if the distribution has a fundamental change. Otherwise the next wafer will be set to

a training wafer to reconstruct the TV distribution.

• Basis significance score. According to the prediction values, the significance score for each

reticle can be computed and then combined with the original score.

• Uncertainty score. The covariance matrix for each reticle is achieved from SBL which also

sheds insight into the uncertainty reduction ability.

6.3.3 Summary of the Active Learning Framework

Here we summarize the complete algorithm for our active learning framework in Figure 6.10.

116



Procedure: Summary of the active learning framework
Input: wafers
Output: variation components decomposition, process parameter estimation
and corresponding confidence intevals
1: Perform complete testing on the training wafer and actively learn models

at different scales as in section 6.3.1;
2: Validate the trained models for the next untested wafer as in section

6.3.2.1;
3: Achieve the adjusted wafer- and reticle-level spatial pattern models

fw(X, Y ) and fr(X0, Y0);
4: Determine the test configuration for each untested reticle as in section

6.3.2.2;
5: Estimate the process parameter for untested devices, validate results

using cross-validation and update the models;
6: Move to the next wafer;

Figure 6.10: Summary of the active learning framework

Table 6.1: Simulation results of the proposed framework on two industrial processes (65nm and
130nm)
proc. #wafers ave. err. #failure #measure var. reduc. time/wafer

1 288 0.8% 0.031% 45.9% 83% 20.3 sec
2 5 1.4% 0.025% 54.2% 78% 25.7 sec

6.4 Experimental Results

In this section we demonstrate the efficiency and accuracy of the proposed framework based

on the industrial measurement data from two processes in 65nm and 130nm technologies. All the

experiments are conducted on a 2.0GHz Linux machine with 32GB RAM.

Table 6.1 summarizes the performance and accuracy of the framework, with a 2% average error

tolerance in the cross-validation stage and with all the test structures available for measurement.

Column 2 shows the total number of wafers for two processes. Column 3 is the average relative error

which is computed by:

(6.24)
1
Nt

∑

any untested site

|estimated value− actual measurement|
actual measurement

where Nt is the number of untested structures. Our framework can achieve 0.8% and 1.4% relative

average error for two processes, respectively. In column 4, we present the relative failure number

to evaluate the efficacy of the estimated confidence intervals. A failure is defined as an untested

structure whose actual process (measurement) is beyond the estimated confidence interval. The rel-

ative failure is approximately 0.03% across all the lots. This is in good agreement with the expected

failure of 0.1% from 3σ bounds. Column 5 exhibits the ratio of the number of measurements over the

total number of available test structures. The test cost reduction is up to 50% to achieve an average
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Figure 6.11: Comparison of the post-silicon variation models for 4 dies from 2 wafers in 2 lots and
traditional design-time process variation model

error of ∼1%. The greater saving of test cost can be achieved by loosing the error tolerance, which

will be presented shortly in this section. Column 6 is the average variance reduction of the proposed

post-silicon variation model in comparison with the traditional design-time variation models (char-

acterized from all the wafers). Even with half the test structures measured, the model variance can

be reduced by approximately 80% (5× tighter) for either process, which may significantly reduce the

pessimism in post-silicon applications. The average run time per wafer is listed in the last column

and is expected to be smaller with increased number of wafers. Figure 6.11 further illustrates the

significantly tightened post-silicon process variation models for 4 dies from 2 different wafers in 2

different lots. In the contrast, the design-time model is widely distributed because the wafer/reticle

specific data is not available at design-time.

Figure 6.12 shows the evolution of the average relative error (bottom) and test measurement ratio

(top) from wafer to wafer for all the lots of process 1. The black dashed line denotes the transition

from one lot to another. The spikes of the measurement ratio at some of the transitions are due

to the global pattern difference between two different lots (as shown in Figure 6.1). However, the

framework can adapt the model to capture this difference. Across the lots, the relative average error

is well maintained at approximately 1%.

Figure 6.13 presents the histograms of average relative error and maximum relative error for 100

reticles from the same wafer. Most reticles have limited average error of approximately 1% and max-

imum error smaller than 10%. Figure 6.14 clearly demonstrates the reduction trend of both average
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Figure 6.12: Evolvement of relative average error (bottom) and measurement ratio (top) across the
wafers and lots from process 1
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Figure 6.13: Histograms of average (top) and maximum (bottom) relative error for all the reticles
in a wafer

error and scaled average variance (=3σ/µ) with an increased number of measurements for both 65nm

and 130nm processes. With approximately 30% available test structures, the framework can still

achieve ∼2-3% average relative errors for two processes. The accuracy of the proposed framework is

compared in Figure 6.15 with another two methods, the virtual probe method in [85] and a bilinear

interpolation method on the wafers of 130nm process. The proposed framework can achieve a better

accuracy with much fewer measurements. For the same accuracy of approximately 2% relative error,
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Figure 6.14: Trend of average error and scaled average variance (3σ/µ) reduction with an increased
number of measurements for (a): 65nm and (b): 130nm process
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Figure 6.15: Average relative error comparison with increased measurements for the wafers from
process 2 using the active learning framework, virtual probe method from [85] and
bilinear uniform interpolation

the test cost is reduced by 37% and 75% compared with [85] and bilinear interpolation, respectively.

6.5 Summary

This chapter proposes an active learning framework to extract process variation from measure-

ments and reduce test cost. Several techniques are developed to model the variation. By reusing a

priori knowledge from earlier wafers, the partial test can be conducted on the forthcoming wafers

to achieve the required accuracy and test cost. Experimental results show that the framework can

achieve an accuracy of ∼2-3% relative error using only ∼30% test structures for two industrial
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processes.
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CHAPTER VII

Conclusions and Future Work

This thesis discusses several key problems for nano-meter regime yield enhancement when ac-

counting for the process and environmental variabilities. The topics span both pre- and post-silicon

optimization techniques for power, performance and reliability demands. Besides that, we also

discuss how to efficiently extract variation from limited measurements for post-silicon use.

In the dissertation research work, we first presented a pre-silicon optimization technique that

selects body bias voltage for several cluster of gates at design time. By fixing body voltage at design

time, the testing overhead to determine the body bias is significantly saved. Meanwhile, it has a

higher flexibility than other traditional design-time optimization techniques, like gate sizing and dual

threshold voltage assignment. We also proposed a post-silicon optimization approach to trade off

the oxide breakdown reliability margin for chip performance by using limited measurements. Based

on our statistical oxide breakdown reliability analysis, we can achieve far more accurate chip lifetime

estimation compared with the conventional guard band approach that assumes the worst case oxide

thickness across the chips. The lifetime estimation is then fed to the optimization part and guides

the maximum supply voltage to be chosen for the system. Since pre- and post-silicon techniques

may target at the same design metrics, performing optimization separately may increase unnecessary

overhead or even repeated operations. We then explore the possible coordination of adaptive body

biasing and gate sizing by aligning the body bias profile distribution for gates at design time. It is

also noted that accurate variation modeling is essential for efficient yield optimization. We then

proposed an active learning framework to extract the post-silicon variation model for the product

wafers. The framework helps the model evolve itself by reusing and learning the information from

the tested wafers to validate and improve the models.

There may be several potential research challenges for the topics that were addressed in this

thesis:
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• In Chapter II, when clustering the gates for design-time body bias selection, we accounted for

only the similarity of the body bias profiles, i.e., the electrical behavior (candidate voltage

selection to minimize leakage). However, due to the extra well spacing for cells with different

body bias, it is also important to consider the physical constraints, e.g. routing feasibility

or physical density when grouping gates together. Thus, an interesting research topic is to

determine the clustering policy when considering both the body bias behavior and design

physical constraints.

• In the oxide breakdown reliability analysis, the underlying assumption is the oxide thickness

variation for any device follows a Gaussian distribution. It is possible to extend to the analysis

with arbitrary distribution, which could be simplified using moments analysis.

• There are multiple failure mechanisms in chip designs. Oxide breakdown is only one of them.

Most failure analysis are still based on the worst case corner. It is interesting to extend the oxide

breakdown statistical framework to incorporate other failure modes, e.g. electro-migration.

• In our post-silicon reliability management framework, the measurement sites are uniformly

selected. However, it is known that in real designs different location on a chip may provide

different information and hence reduce the system uncertainty to a different degree. It is

therefore helpful to explore the uncertainty reduction ability each site may have and hence

provide designers with an adaptive measurement sites selection strategy.

• The achieved gate sizes in our co-ordination work are continuous and supposed to be snapped

to discrete cell sizes. It remains an open question how to efficiently discretize the continuous

solution to discrete values while maintaining the optimality of the solution.
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