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CHAPTER I

Introduction

This dissertation investigates three interesting problems in event history data.

Chapter II considers the positive stable frailty model for clustered failure time data,

but allows the frailty distribution to depend on cluster-level covariates. Chap-

ter III proposes a computationally efficient marginal proportional rates model with

piecewise-constant baseline rate function for recurrent event data and illustrates its

implementation using SAS. Chapter IV introduces a new estimation method for

fixed center effects under the proportional rates model for recurrent event data for

the setting where comparisons across centers are of interest.

In biomedical studies, researchers often encounter data in which failure times

from the same cluster are correlated due to sharing genetic and perhaps environ-

mental factors; e.g. failure times among family members. It is often of interest to

estimate both the hazard ratios and the degree of heterogeneity across clusters. In

the presence of dependence within clusters, there are generally two approaches that

can be adopted, with each addressing different aspects of the quantities of interest.

Marginal hazards models can be used when comparisons between any two randomly

selected subjects (i.e., possibly from different clusters) are of interest. For example,

inference procedures for the regression parameters and baseline hazard function un-
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der the marginal proportional hazards models have been established by Wei, Lin,

and Weissfeld (1989); Lee, Wei, and Amato (1992) and Spiekerman and Lin (1998).

However, the within-cluster dependence structure is left unspecified in the formu-

lation of these models, which may result in loss of efficiency. When within-cluster

interpretations of hazard ratios are of interest, the frailty (random effects) model

may be preferred. In such cases, the degree of between-cluster heterogeneity is then

described by the parameters indexing the distribution of the frailty; e.g. the scale

parameter of a gamma distribution with unit mean. In many cases, a common

frailty distribution is imposed, assuming equal intra-cluster dependence. However,

this assumption may be violated. Moreover, it is typically inconvenient to obtain a

marginal (population-averaged) interpretation of covariate effects using frailty model

unless the frailty distribution follows a particular form, as in Glidden and Self (1999)

and Pipper and Martinussen (2003) for Clayton-Oakes model.

In Chapter II, we propose a positive stable proportional hazards frailty model

for clustered failure time data, with the frailty distribution allowed to depend on

cluster-level covariates. We consider the positive stable frailty distribution due to

its mathematical property enabling proportionality for both the marginal and con-

ditional hazard functions. As a result, the marginal regression parameter equals the

product of the dependence parameter and the conditional regression parameter. We

propose a two-step estimation approach which capitalizes on this special feature.

In addition, the model we propose connects the cluster-level covariate with the de-

pendence parameter of the frailty through a logit link function, since the range of

the dependence parameter is between 0 and 1. We establish large-sample proper-

ties and assess the performance of the proposed estimation procedure under finite

samples through simulation. The proposed model is then applied to national kidney
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transplant data.

Recurrent events represent another type of event history data, in which succes-

sive event occurrences within-subject are observed over time. The data structure is

similar to that of clustered failure time data in that within-subject event times are

correlated. When recurrent event data are subject to clustering, within-cluster corre-

lation is present additionally, e.g., hospital admissions among patients treated at the

same facility. Methods dealing with recurrent event data have been well developed

and incorporated in standard statistical software (e.g. Andersen and Gill, 1982; Lin,

Wei, Yang, and Ying, 2000; Lawless and Nadeau, 1995; Schaubel and Cai, 2005).

Most existing methods, in handling the baseline rate/intensity function nonpara-

metrically, are carried out based on the risk set defined at each distinct recurrent

event time, which includes subjects who are under observation and are at risk of

recurrent events. When the number of distinct recurrent event times is very large,

those methods are usually slow in computation. For example, consider an analysis of

hospitalization rates among U.S. dialysis patients over a span of three years. In this

case, days of hospitalization (as opposed to hospital admissions) are the recurrent

events of interest. A hospital admission with a length-of-stay of 8 days would then

consist of 8 recurrent events, with event times at each day hospitalized. This study

includes a total of 345,937 patients with an average of 22 hospital days during the 3-

year period. Hence, the computation using traditional methods would be extremely

slow for this study. If, on the other hand, we assume a piecewise-constant structure

for the baseline rate/intensity function, recurrent event data can be grouped accord-

ingly, leading to interval-grouped count data with appropriately defined exposure

times for each interval. Such grouping for recurrent event data greatly reduces the

computation time, especially when large databases are used or prevalence data is of
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interest.

Various methods have been developed to analyze interval-grouped data, includ-

ing the nonparametric methods of Thall and Lachin (1988); Sun and Kalbfleisch

(1995); Wellner and Zhang (2000), semiparametric method of Sun and Wei (2000)

and parametric model of Lawless and Zhan (1998). Many of these methods assume a

common baseline rate function and may not be easily extended to the situation where

the baseline is cluster-specific, especially when the number of clusters is relatively

large. Moreover, most of the existing methods for interval-grouped recurrent event

data cannot be carried out with standard software and thus have limited popularity.

The presence of a terminal event is a characteristic frequently encountered in re-

current event data. In practice, the occurrence recurrent events is typically stopped

by the terminating event (e.g. death). Two popular approaches for analyzing re-

current/termial event data include the marginal model (e.g. Ghosh and Lin, 2002),

which essentially averages the occurrence rate over the survival experience; and the

partial marginal model (e.g. Cook and Lawless, 1997), which considers the recurrent

event rate among survivors.

In Chapter III, we propose a partial marginal rates model for clustered recurrent

event data with piecewise-constant baseline rate function. The parametric specifica-

tion of the baseline rate function enables the modeling of intermittent counts instead

of recurrent event times, which results in data reduction and remedies computational

issues resulting from the size of the database. Within-subject correlations are accom-

modated by the proposed inference procedures through a robust covariance matrix.

The proposed model is an extension of the Poisson model with piecewise-constant

rate functions described in Cook and Lawless (2007) and can be implemented in stan-

dard statistical software for Cox regression (e.g. SAS, R). Asymptotic properties of



5

both the regression parameter estimates and the baseline rate functions are derived.

Numerical studies are conducted to evaluate the asymptotic results of the estimators

in finite samples. The proposed model is applied to national hospitalization data

among dialysis patients.

In large registry studies such as the aforementioned national hospitalization study,

comparisons among clinical centers are often of interest. Fixed effects models (FEM)

are commonly used when the purpose of the analysis is to compare centers. In FEMs,

center effects are usually estimated by incorporating center-specific indicator vari-

ables. However, the increasing dimension of the parameter space with the increasing

number of centers might cause computational difficulties or even be infeasible, espe-

cially when the number of centers is large relative to sample size.

In Chapter IV, we study the estimation of center effects through fixed effects mod-

els for recurrent event data, applicable in both the presence or absence of a terminal

event. In the proposed models, fixed center effects are assumed to multiplicatively

influence the recurrent event rate functions. We then show that the center effect can

be consistently estimated by the ratio of the observed cumulative number of events

and the corresponding expected quantity based on a weighted average center effect

and the same patient mix. The proposed estimation method is computationally more

efficient since the dimension of the regression parameter space is not influenced by the

number of centers. We provide asymptotic properties of the center effect estimators,

as well as the cumulative baseline rate functions. The finite sample performance of

the proposed estimators are investigated through simulation studies. We then apply

the proposed method to a study of hospital admissions among dialysis patients using

a national registry database.



CHAPTER II

A Positive Stable Frailty Model for Clustered

Failure Time Data with Covariate Dependent

Frailty

2.1 Introduction

Clustered failure time data are frequently observed in biomedical studies. For

example, in the kidney transplantation setting, transplant failure times are of interest

and can be taken as clustered failure times with transplant facilities as clusters. In

family disease studies, time to disease onset is of interest and families are natural

clusters. Subjects within cluster are correlated, with the intra-cluster dependence

possibly due to sharing similar environmental and/or genetic conditions.

Several methods have been proposed for clustered failure time data. In general,

these can be categorized into two broad strategies. In marginal models, the cluster

structure is usually ignored when estimating the population averaged covariate effect,

but is used to derive valid standard error estimates. Marginal models can be used

when the comparison of lifetimes across clusters is of interest. Examples include Wei

et al. (1989); Lee et al. (1992) and Spiekerman and Lin (1998). These authors used

generalized estimating equations with an independence working assumption and the

intra-cluster correlation structure left unspecified. As a result, some efficiency loss

6



7

may occur, potentially affecting the significance of estimated covariate effects.

When the comparison of lifetimes within the same cluster is of interest, frailty

models may be more appropriate. In this case, the correlation structure is specified

by incorporating a random effect (frailty) which is common to subjects within the

same cluster. The covariate effect is then interpreted as being conditional on the

frailties and is cluster specific. One can also obtain marginal covariate effects by

making additional assumptions about the frailty distribution as was done by Glidden

and Self (1999) and Pipper and Martinussen (2003) under the Clayton-Oakes model.

In frailty models, it is usually assumed that the frailty variables follow the same

distribution across clusters, which implies equal intra-cluster dependence as well as

between-cluster heterogeneity. This assumption may be violated in practice.

In studies comparing U.S. kidney transplant centers to the national average, the

ratio of observed to expected deaths, known as the standardized mortality ratio

(SMR), is used, with the expected deaths obtained from a marginal Cox model. An

SMR > 1 indicates a mortality rate above the national average. In the shared frailty

model, this statistic is actually a nonparametric Poisson-type estimator (Glidden and

Vittinghoff, 2004) for the corresponding frailty, given the observed data in the center.

An investigation of the SMRs suggests that there may be greater heterogeneity for

smaller facilities, since SMRs for smaller centers are more frequently seen at either

the top or the bottom of the ordered list. Although this is partly due to sampling

variance of the SMR estimator, it is also possible that an unequal degree of hetero-

geneity across centers results from varying cluster characteristics. This suggests a

shared frailty model, but with the frailty distribution allowed to depend on cluster

size. Other cluster level covariates may also have an effect on the frailty distribu-

tion. For example, urban transplant facilities may exhibit more uniform practices
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than rural transplant hospitals, corresponding to less heterogeneity (smaller vari-

ance) for frailties of urban centers. In these examples of clustered failure time data,

the population averaged effect is of primary interest. At the same time, however, the

incorporation of cluster level covariate effects on the frailty distribution is of practical

interest and should be considered.

Similar situations exist for other types of clustered data. Prentice (1986) pro-

posed a regression model for clustered binary data, in which the correlation between

pairs of binary observation within clusters were assumed to depend on cluster level

covariates. Lin, Raz, and Harlow (1997) proposed a linear mixed model with het-

erogeneous within-cluster variances, where the within-cluster errors were assumed to

follow a normal distribution with cluster-specific covariance matrix. Specifically, the

variance of the measurement error was assumed to follow an inverse gamma distribu-

tion, where the mean depends on some linear combination of cluster level covariates

through a log link. Heagerty (1999) proposed a marginally specified logistic-normal

model for longitudinal binary data in which the marginal mean, rather than the

conditional mean, was regressed on covariates. In addition, a conditional model

on a Gaussian latent variable is specified, where the random effect additively influ-

ences the logit of the conditional mean. Wang and Louis (2004) further extended

this method to clustered binary data, allowing the distribution parameters of the

random effect to depend on some cluster level covariates. Their approach used a

“bridge” distribution previously identified by Wang and Louis (2003) for the random

effect to unify the form of the marginal and the conditional models. As a result,

the conditional regression parameters can be expressed as functions of the marginal

regression parameters and a parameter in the bridge distribution. Under this model,

the regression parameter estimates have a direct marginal interpretation, while the
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conditional regression parameter estimates can easily be obtained. Moreover, the

influence of the cluster level covariates on the random effect can be estimated.

The positive stable distribution (Hougaard, 1986) serves as a bridge distribu-

tion for clustered failure time data under a Cox proportional hazards shared frailty

model in the same sense as Wang and Louis (2003) since the resulting marginal

regression parameter is a product of the conditional regression parameters and the

frailty parameter. This relationship allows both marginal and conditional inference,

while accounting for intra-cluster dependence. The shared positive stable frailty

model has attracted renewed attention recently (e.g. Fine, Glidden, and Lee, 2003;

Martinussen and Pipper, 2005).

In this chapter, we propose a covariate-dependent positive stable shared frailty

model. The bridge type frailties are allowed to depend on cluster-level covariates and

so to follow different distributions across clusters. Under this unified framework, the

marginal regression parameters and the covariate effects on the frailty distribution

can be consistently estimated. The major contributions of this project are the meth-

ods proposed for modeling the effects of the cluster-level covariates on the frailty

distribution and the corresponding estimation of the marginal regression effects.

The remainder of this chapter is organized as follows. In Section 2.2, we introduce

the proposed covariate dependent frailty model and describe the estimation proce-

dures. We obtain the large sample properties of the model parameter estimators

in Section 2.3 and Section 2.4 presents simulation studies. The proposed method is

then applied to kidney transplant data from the Scientific Registry of Transplant Re-

cipients (SRTR) in Section 2.5. In Section 2.6, we provide some concluding remarks

and discussion. Proofs of the results are provided in an Appendix.
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2.2 Model Specification and Estimation

2.2.1 The Positive Stable Shared Frailty Cox Proportional Hazards Model

with Covariate Dependent Frailty

In this section, we specify a positive stable shared frailty Cox model, with the

frailty distribution depending on cluster level covariates and the corresponding marginal

hazard having a proportional hazards form. Our ultimate purpose is to estimate clus-

ter level covariate effects on the frailty distribution, as well as the correlation within

clusters and heterogeneity between clusters. We first define the Cox-type conditional

and marginal hazard functions through the “bridge” property of the positive stable

distribution. The relationship between the conditional hazard parameters, marginal

hazard parameters and frailty distribution parameter can be obtained accordingly.

Cluster level covariates are related to the frailty distribution parameter through a

link function. Finally, we derive the individual intensity process given the observed

history of all the individuals with the parameters of interest. We begin this section

by establishing the requisite notation.

Suppose we have measurements from subjects in K clusters and that the cluster

sizes nk (k = 1, 2, . . . , K) are independent and identically distributed bounded ran-

dom variables. Given nk, let Dik and Cik be the failure and censoring times for the

ith individual (i = 1, . . . , nk) in the kth cluster; let Tik = Dik ∧ Cik be the follow-up

time and ∆ik = I(Dik ≤ Cik) the observed death indicator. Let Wk denote the

positive stable distributed frailty with dependence parameter αk for the kth cluster

which we use to describes within-cluster dependence possibly due to unobserved co-

variate information. Let Zik be a p-vector of time independent covariates measured

on individual (i, k). In addition, let Xk be a q-vector of time independent cluster

level covariates which may influence αk. Let Dk = (D1k, . . . , Dnkk), with Ck and
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Zk defined similarly. We assume that (Dk, Ck, Zk, Xk, nk,Wk) are independent and

identically distributed for k = 1, . . . , K. Define the at risk process Yik(t) = I(Tik ≥ t)

and the individual counting process Nik(t) = ∆ikI(Tik ≤ t). We define the filtrations

Ft = σ {Nik(s), Yik(s), Zik, Xk, nk : k = 1, . . . , K, i = 1, . . . , nk, 0 ≤ s ≤ t}

Ht = σ {Nik(s), Yik(s), Zik, Xk, nk,Wk : k = 1, . . . , K, i = 1, . . . , nk, 0 ≤ s ≤ t} .

Similar to Martinussen and Pipper (2005), we term Ft the observed filtration and

Ht the conditional filtration.

We assume that Wk follows a positive stable distribution with shape parameter

αk (0 < αk ≤ 1). The positive stable distribution has been used by Hougaard (1986)

for multivariate failure time data; its density function of and Laplace transform are

respectively given by

fαk
(w) = −

1

πw

∞∑

i=1

Γ(iαk + 1)

i!
(−w−αk)i sin(αkiπ),

and

L(s) = E {exp(−sWk)} = exp(−sαk) (s ≥ 0)

respectively.

Given (Zk, Xk,Wk, nk), the failure time Dik, i = 1, . . . , nk are assumed to be

independent with hazard function

lim
h→0+

P (t ≤ Dik ≤ t+ h|Dik ≥ t, Zk, Xk, nk,Wk)/h = Wkλ0k(t)e
βT

k
Zik ,(2.1)

where λ0k(t) (k = 1, . . . , K) are unknown cluster specific baseline hazard functions

and βk (k = 1, . . . , K) are p-vectors of unknown cluster specific regression parame-

ters, all of which rely on αk through the derived marginal hazard function below.



12

Since Wk has the positive stable distribution, the marginal hazard function of

Dik is given by

lim
h→0+

P (t ≤ Dik ≤ t+ h|Dik ≥ t, Zk, Xk, nk)/h = h0(t)e
γT Zik ,(2.2)

where h0(t) is an unspecified baseline hazard and γ is a p-vector of unknown marginal

regression parameters. In this, we have assumed a constant marginal log lazard ratio

γ, which, given (2.1) and (2.2), impose the restriction γ = αkβk, k = 1, . . . , K. Note

also that Λ0k(t) = H0(t)
α−1

k , where Λ0k(t) =
∫ t

0
λ0k(s)ds and H0(t) =

∫ t

0
h0(s)ds.

We further relate Xk and αk through a link function αk = g̃(η;Xk) and let

α−1
k = g(η;Xk), where η is a (q+ 1)-vector of unknown parameters. Here we assume

that g(·) is monotone and twice differentiable with respect to η. Since αk ∈ (0, 1] , a

natural choice for g̃ is the logit link function and we set

g(η;Xk) = 1 + e−ηT eXk ,(2.3)

with X̃k = (1, XT
k )T and η = (η1, η

T
2 )T where η1 is a scalar intercept and η2 is a

q-vector of regression parameters.

In addition, we assume that the Dik and Cik are independent given Zik for i =

1, . . . , nk. Under this conditional independent censoring assumption, model (2.1)

implies that the individual intensity process with respect to the conditional filtration

Ht is

λik(t|Ht−) = Yik(t)Wkλ0k(t)e
βT

k Zik .(2.4)

By applying the innovation theorem (Andersen, Borgan, Gill, and Keiding, 1993)

to (2.4) and inserting the link function (2.3), the individual intensity process with

respect to the observed filtration Ft is

λik(t|Ft−) = Yik(t)fk(t)λ0k(t)e
g(η;Xk)γT Zik ,(2.5)
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where fk(t) = E(Wk|Ft−) has the explicit form

fk(t) =
EWk

[
W

N.k(t−)+1
k e−Wk

Pnk
i=1

R t−

0 Yik(t)eg(η;Xk)γT ZikdH
g(η;Xk)
0 (s)

]

EWk

[
W

N.k(t−)
k e−Wk

Pnk
i=1

R t−

0 Yik(t)eg(η;Xk)γT ZikdH
g(η;Xk)
0 (s)

] ,(2.6)

with “.” denoting summation over a subscript.

2.2.2 Estimation

Model (2.4) differs from the existing positive stable shared frailty Cox propor-

tional model in that it allows the frailty distribution parameter αk to depend on

cluster level covariates, which induces the cluster specific conditional regression pa-

rameter βk = α−1
k γ and the cluster specific conditional baseline hazard λ0k(t). It can

be easily seen that when η2 = 0, αk is a constant and the proposed model reduces

to the common positive stable shared frailty model for which several estimation pro-

cedures have been developed. For example, Wang, Klein, and Moeschberger (1995)

applied the E-M algorithm for parameter estimation. Fine et al. (2003) presented

a simple estimation procedure which fitted a marginal model and stratified model

separately and utilized the relationship α = γ/β. Martinussen and Pipper (2005)

proposed a likelihood based estimation procedure based on the individual intensity

process with respect to an observed filtration similar to (2.5), but with αk = α and

βk = β. However, we are not able to extend these estimation procedures in the pro-

posed model, since the regression parameter βk in the conditional hazard is cluster

specific.

As can be seen in the existing literature, simulations and applications of the

positive stable shared frailty model are usually based on small clusters, such as twin

or family studies, especially when the estimation of frailties is needed. In order to

apply the positive stable frailty model to studies with large clusters, it is useful to
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avoid the estimation of fk(t) in (2.6). We notice that model (2.5) can be written as

λik(t|Ft−) = Yik(t)λ̃0k(t)e
g(η;Xk)γT Zik ,

where λ̃0k(t) = λ0k(t)fk(t), which is actually a stratified Cox model, except that

the covariate effect is cluster specific and depends on a function of cluster level

covariates. The stratified partial likelihood approach (Cox, 1975; Kalbfleisch and

Prentice, 2002) can be directly applied here. Due to the loss of information in fk(t)

and the multiplicative relationship between g and γ, we cannot estimate the intercept

term η1 and the remaining parameters simultaneously. Therefore, our estimation

procedure is actually based on two results from models (2.2) and (2.5) respectively.

Before proceeding, it is convenient to introduce the following two sets of notation

for k = 1. . . . , K and r = 0, 1, 2,

S(r)(γ, t) = K−1

K∑

k=1

nk∑

i=1

Yik(t)e
γT ZikZ⊗r

ik ,

E(γ, t) = S(1)(γ, t)/S(0)(γ, t), V (γ, t) = S(2)(γ, t)/S(0)(γ, t)− {E(γ, t)}⊗2 ,

where a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT , and

S
(r)
k (η; γ, t) =

nk∑

i=1

Yik(t)e
g(η;Xk)γT Zik

{
g1(η;Xk)γ

TZik

}⊗r
,

S
(3)
k (η; γ, t) =

nk∑

i=1

Yik(t)e
g(η;Xk)γT Zikg2(η;Xk)γ

TZik,

S
(4)
k (η; γ, t) =

nk∑

i=1

Yik(t)e
g(η;Xk)γT Zikg1(η;Xk)Z

T
ik,

S
(5)
k (η; γ, t) =

nk∑

i=1

Yik(t)e
g(η;Xk)γT Zikg(η;Xk)Z

T
ik,

S
(6)
k (η; γ, t) =

nk∑

i=1

Yik(t)e
g(η;Xk)γT Zikg1(η;Xk)γ

TZ⊗2
ik g(η;Xk),

E1
k(η; γ, t) = S

(1)
k (η; γ, t)/S

(0)
k (η; γ, t), E3

k(η; γ, t) = S
(3)
k (η; γ, t)/S

(0)
k (η; γ, t),

E4
k(η; γ, t) = S

(4)
k (η; γ, t)/S

(0)
k (η; γ, t), E5

k(η; γ, t) = S
(5)
k (η; γ, t)/S

(0)
k (η; γ, t),
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V 1
k (η; γ, t) = S

(2)
k (η; γ, t)/S

(0)
k (η; γ, t)−

{
E1

k(η; γ, t)
}⊗2

,

V 2
k (η; γ, t) = S

(6)
k (η; γ, t)/S

(0)
k (η; γ, t)− E1

k(η; γ, t)E
5
k(η; γ, t),

g1(η;X) = ∂g(η;X)/∂η, g2(η;X) = ∂g1(η;X)/∂ηT .

We first estimate γ from model (2.2) by maximizing the pseudo partial log-

likelihood

`1(γ) =
K∑

k=1

nk∑

i=1

∫ τ

0

{
γTZik − log S(0)(γ, t)

}
dNik(t)

under the working independence assumption (Wei et al., 1989). The corresponding

estimating equation can be written as

U1(γ) =
K∑

k=1

nk∑

i=1

∫ τ

0

{Zik −E(γ, t)} dNik(t).

Given an estimator γ̂ of γ from model (2.2), we estimate η from model (2.5) by

maximizing the pseudo-stratified partial log-likelihood

`2(η; γ̂) =
K∑

k=1

nk∑

i=1

∫ τ

0

{
g(η;Xk)γ̂

TZik − logS
(0)
k (η; γ̂, t)

}
dNik(t),

with corresponding score function,

U2(η; γ̂) =
K∑

k=1

nk∑

i=1

∫ τ

0

{
g1(η;Xk)γ̂

TZik − E1
k(η; γ̂, t)

}
dNik(t).

Solving U2(η; γ̂) = 0, we can obtain the estimator η̂ for η.

2.3 Asymptotic Properties

Denote γ0 and η0 as the true values of the parameters γ and η respectively. In

this section, we emphasize the large sample results for η̂. We begin by re-stating a

previously derived result. We list the assumed conditions, state a previously derived

result and then state the theorems for our estimators. Proofs are provided in the

Appendix.
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The following conditions are assumed throughout this chapter, where for all k =

1, . . . , K and some constant τ > 0 :

(a) (Dk, Ck, Zk, Xk, nk,Wk) are independent and identically distributed;

(b) P {Yik(τ ) = 1} > 0 for i = 1, . . . , nk;

(c) |Zikl| < BZ <∞ and |Xkj | < BX <∞ for all l = 1, . . . , p and j = 1, . . . , q and

some constants BZ and BX;

(d) g(·) is twice continuously differentiable with respect to η.

(e) γ0 and η0 are interior to the parameter space.

(f) The following matrices are positive definite,

A1 = E

{∫ τ

0

V (γ0, t)S
(0)(γ0, t)dH0(t)

}
,

A2 = E

{∫ τ

0

V 1
k (η0; γ0, t)S

(0)
k (η0; γ0, t)fk(t)dΛ0k(t)

}
.

Large sample results for γ̂ have been provided by Lee et al. (1992), who showed

that K1/2(γ̂−γ0) is asymptotically mean zero normal with variance Σ1 = A−1
1 B1A

−1
1 ,

whereA1 andB1 can be consistently estimated by Â1 = K−1Î and B̂1 = K−1
∑K

k=1 ψ̂
⊗2
k ,

with

Î =

K∑

k=1

nk∑

i=1

∫ τ

0

V (γ̂, t)dNik(t),

ψ̂k =

nk∑

i=1

∫ τ

0

{Zik −E(γ̂, t)}
{
dNik − Yik(t)e

γ̂TZikdĤ0(t)
}
,

where

Ĥ0(t) =
K∑

k=1

nk∑

i=1

∫ t

0

dNik(u)/S
(0)(γ̂, u).
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Theorem II.1. Under conditions (a)− (f), η̂ is unique and converges almost surely

to η0 as K → ∞.

The proof of the consistency of η̂ is similar to that of Prentice and Self (1983)

and Lemma 3.1 in Andersen and Gill (1982) and is shown in Appendix (2.7.1).

Theorem II.2. Under conditions (a)−(f), the random vector K1/2(η̂−η0) converges

weakly to a (q + 1)-variate normal vector with mean 0 and covariance matrix

Σ2 = A−1
2 (A2 +B2Σ1B

T
2 − 2CBT

2 )A−1
2 ,

where A2 is defined in condition (f) and

B2 = E

{∫ τ

0

V 2
k (η0; γ0, t)S

(0)
k (η0; γ0, t)fk(t)dΛ0k(t)

}
,

C = E
{
ukψ

T
k

}
A−1

1 ,

with

uk =

nk∑

i=1

∫ τ

0

{
g1(η0;Xk)γ

T
0 Zik −E1

k(η0; γ0, t)
}
dNik(t),

ψk =

nk∑

i=1

∫ τ

0

{Zik − e(γ0, t)}
{
dNik − Yik(t)e

γT
0 ZikdH0(t)

}
,

and

e(γ, t) =
E

{
S(1)(γ, t)

}

E {S(0)(γ, t)}
.

Theorem II.2 is proved in Appendix 2.7.2. Using the proof of Theorems II.1

and II.2, together with the results from Lee et al. (1992), we can show that Σ2 can

be consistently estimated by

Σ̂2 = Â−1
2 (Â2 + B̂2Σ̂1B̂

T
2 − 2ĈB̂T

2 )Â−1
2
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with

Â2 = −K−1∂U2(η; γ)/∂η
T |η=η̂,γ=γ̂

= K−1
K∑

k=1

nk∑

i=1

∫ τ

0

{
V 1

k (η̂; γ̂, t) − g2(η̂;Xk)γ̂
TZik + E3

k(η̂; γ̂, t)
}
dNik(t),

B̂2 = −K−1∂U2(η; γ)/∂γ
T |η=η̂,γ=γ̂

= K−1

K∑

k=1

nk∑

i=1

∫ τ

0

{
V 2

k (η̂; γ̂, t) − g1(η̂;Xk)Z
T
ik − E4

k(η̂; γ̂, t)
}
dNik(t),

Ĉ = K−1

K∑

k=1

ûkψ̂
T
k Â

−1
1 ,

where

ûk =

nk∑

i=1

∫ τ

0

{
g1(η̂;Xk)γ̂

TZik −E1
k(η̂; γ̂, t)

}
dNik(t).

2.4 Numerical Studies

Simulation studies were conducted to assess the finite sample behavior of η̂. We

also compare our method to that of Fine et al. (2003) under the special case where

αk is common among clusters.

In the first simulation study, clustered failure time data were simulated from mod-

els (2.3) and (2.4) with K = 50, 100; H0(t) = t; γ = (0.5, 1)T ; η1 = −0.5,−0.25, 0,

0.25, 0.5; and η2 = 0.5. Cluster sizes were simulated from a discrete uniform dis-

tribution in the following four intervals [5, 20],[21, 50], [51, 100] and [101, 200] with

approximately equal number of clusters in each interval. The cluster level covari-

ate Xk was the cluster size measured in units of 100 subjects. The positive stable

frailties, Wk, were simulated following the method in Chambers, Mallows, and Stuck

(1976),

Wk =
sin(αkW1k)

sin(W1k)1/αk

[
sin{(1 − αk)W1k}

W2k

](1−αk)/αk

,
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where W1k and W2k are independent, with W1k following a uniform distribution

U(0, π) and W2k following an exponential distribution with mean 1. The individ-

ual level covariate Zik = (Zikalp02, Zik2)
T was independently generated, with Zikalp02

from a Bernoulli distribution with p = 0.5 and Zik2 from N(0, 1) distribution. The

censoring times were simulated from the uniform distribution, U(0.25, 1), yielding

censoring probabilities of approximately 46%. For each scenario, 1000 replicates were

carried out.

The results are summarized in Table 2.4. We report bias of the sampling mean of

the estimators (BIAS), the mean of the standard error estimators (ASE), empirical

standard deviation of the estimators (ESD), and the 95% empirical coverage prob-

ability (CP). In the last column, we present the approximate range of αk for the

simulated data. We also present the results for γ̂. We can see that the estimator η̂ is

nearly unbiased. The (ASE) is generally fairly close to the ESD and, correspondingly,

95% empirical coverage probabilities are generally close to the nominal values. As

the number of clusters increases from K = 50 to K = 100, the coverage probability

is generally closer to the nominal value. In addition, as the value of αk decreases,

the coverage probability becomes lower. This may partly due to the fact that, for a

fixed sample size, the amount of independent information decreases as αk decreases;

i.e., smaller value of αk corresponds to stronger association within clusters.

To assess the asymptotic normality of the regression parameter estimates, we

study the quantile-quantile (Q-Q) plots of η̂ after being standardized against stan-

dard normal variable. In Figure 2.4, we show the Q-Q plots of η̂1 and η̂2 when

K = 100 and η1 = −0.5, 0 and 0.5. All six plots exhibit diagonal lines which

suggests that the asymptotic normal approximation is reasonable.

In the second simulation study, we compare the proposed method (LKS) with
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Table 2.1: Summary of results for the first simulation study with η2 = 0.5, γ1 = 0.5 and γ2 = 1 based on 1000 replicates.

η̂ γ̂
K Param True BIAS ASE ESD CP Param BIAS ASE ESD CP Range of αk

50 η1 0.5 0.01 0.27 0.27 0.96 γ1 0.01 0.06 0.06 0.92 0.63-0.82
η2 0.03 0.22 0.23 0.94 γ2 0.00 0.08 0.08 0.90
η1 0.25 0.02 0.24 0.24 0.96 γ1 0.01 0.06 0.06 0.91 0.57-0.78
η2 0.01 0.18 0.19 0.94 γ2 0.00 0.08 0.09 0.90
η1 0 0.03 0.22 0.23 0.94 γ1 0.01 0.06 0.07 0.92 0.51-0.73
η2 0.00 0.15 0.16 0.93 γ2 0.00 0.09 0.10 0.91
η1 -0.25 0.04 0.21 0.22 0.93 γ1 0.01 0.07 0.07 0.91 0.44-0.68
η2 -0.01 0.12 0.13 0.92 γ2 0.00 0.10 0.11 0.91
η1 -0.5 0.07 0.20 0.22 0.91 γ1 0.01 0.07 0.07 0.92 0.38-0.62
η2 -0.04 0.10 0.12 0.87 γ2 0.01 0.11 0.11 0.91

100 η1 0.5 0.01 0.20 0.19 0.95 γ1 0.01 0.04 0.04 0.94 0.63-0.82
η2 0.02 0.15 0.15 0.95 γ2 0.00 0.06 0.06 0.92
η1 0.25 0.02 0.17 0.18 0.95 γ1 0.01 0.05 0.05 0.93 0.57-0.78
η2 0.00 0.13 0.12 0.95 γ2 0.00 0.06 0.06 0.93
η1 0 0.02 0.16 0.16 0.93 γ1 0.01 0.05 0.05 0.93 0.51-0.73
η2 0.00 0.10 0.10 0.94 γ2 0.00 0.07 0.07 0.93
η1 -0.25 0.03 0.15 0.16 0.93 γ1 0.01 0.05 0.05 0.93 0.44-0.68
η2 -0.02 0.09 0.09 0.92 γ2 0.00 0.07 0.07 0.94
η1 -0.5 0.04 0.14 0.15 0.91 γ1 0.01 0.05 0.05 0.94 0.38-0.62
η2 -0.03 0.07 0.08 0.87 γ2 0.00 0.08 0.08 0.93
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Figure 2.1: Q-Q plots for η̂1 and η̂2 when K = 100 and η1 = −0.5, 0 and 0.5.
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Table 2.2: Summary of results for the second simulation study comparing the pro-
posed method (LKS) with FGL (see Fine et al., 2003) in the special case of
constant αk = α, k = 1, . . . , K with γ1 = 0.5, γ2 = 1. and 1000 replicates.

LKS FGL
K Param True BIAS ASE ESD CP BIAS ASE ESD CP
50 α 0.5 0.01 0.06 0.06 0.92 0.01 0.06 0.06 0.91

γ1 0.01 0.07 0.08 0.92
γ2 0.01 0.11 0.12 0.91
α 0.75 0.01 0.06 0.06 0.91 0.01 0.06 0.06 0.87
γ1 0.02 0.06 0.06 0.91
γ2 0.01 0.08 0.09 0.88

100 α 0.5 0.00 0.04 0.04 0.94 0.00 0.04 0.05 0.94
γ1 0.01 0.05 0.05 0.94
γ2 0.00 0.08 0.09 0.94
α 0.75 0.00 0.05 0.05 0.93 0.00 0.04 0.05 0.90
γ1 0.01 0.04 0.04 0.94
γ2 0.00 0.06 0.06 0.92

Fine et al. (2003) (FGL) when αk is fixed for all clusters. We keep the same setting

for H0, γ and K. The individual level covariates and the censoring variable follow

the same distribution as the first study. We fix αk = 0.5 or αk = 0.75 for all clusters.

When using our method, we let η2 = 0 and estimate η1 only. For the FGL method,

α is estimated by averaging the truncated ratio of the marginal and conditional

regression parameter estimators. The results are displayed in Table 2.4, In order to

facilitate the comparison, we show the results for α̂ rather than η̂.

Both methods give an almost unbiased estimator for α, and the estimated stan-

dard error and coverage probability are reasonable. Similar to the results in Table 2.4,

when the number of clusters increases from 50 to 100, the asymptotic standard er-

rors of the estimators decrease and the coverage probability tends to be closer to the

nominal value. The asymptotic standard error estimators from the two methods are

very close. The LKS method gives somewhat better coverage probability than FGL.

Simulations have been done under covariate dependent frailty and common frailty
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settings. Since there is no existing method to compare with under the covariate

dependent frailty setting, we only make comparison under the common frailty setting.

For this, three methods are available. Both the traditional EM method (Wang et al.,

1995) and the Martinussen and Pipper (2005) method (MP) involve estimation of

the frailties as missing data, which is computationally very slow when large number

of deaths are observed for some clusters and dose not yield standard error easily. On

the other hand, FGL does not involve the estimation of the frailties as is the case

with the LKS method. Since our primary application of interest has clusters with

large number of observed deaths, we have compared our method to FGL only.

2.5 Application

We applied the proposed methods to data on deceased donor kidney transplants

performed between 2000 and 2004 in the United States. Data were obtained from the

SRTR. Failure time (recorded in days) was defined as the time from transplantation

to graft failure, retransplantation or death, whichever occurred first. There were 224

facilities and a total of 23,027 transplants included in the study. The facility size

varied from 1 to 708 patients. We fitted the proposed covariate dependent frailty

model to the data with the logit link function for the dependence parameter αk.

A total of 12 patient level covariates and 4 cluster level covariates are considered

in the proportional hazards model. The same cluster level covariates are included

in the link function for αk. Patient level covariates included age at transplantation

(by decade), race (African-American, Other), gender, time on dialysis (2 dummy

variables), body mass index (BMI; 3 dummy variables) and primary cause of renal

disease (4 dummy variables). Cluster level covariates included percentage of female

patients, percentage of African-American patients, percentage of patients caused by
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diabetes and center size (per 100 patients) in a center.

We expect that any covariate that is associated with the between-cluster variabil-

ity may also be related to within-cluster variation. Moreover, it is easier to interpret

a covariate’s effect on the frailty variance after adjusting for its effect on the hazard

function itself. Therefore, as a modeling strategy, covariates included in the logit

link function should also be represented in the marginal hazards model. Naturally,

such cluster-level covariates will not be used in the second stage of the estimation

procedures, due to the stratification.

Results of our analysis are shown in Table 2.5. Percentage of female patients has

a significant effect (p=0.0063) on the frailty parameter. It is found that facilities

with fewer female patients tend to have a smaller value of αk, which corresponds

to greater heterogeneity in facility performance. The percentage of female patients

also influences the hazards significantly. Upon examining the point estimates, one

could interpret these results as being in the same direction, as higher percent female

implies lower graft failure hazard and lower variation; both desirable outcomes.

2.6 Discussion

Covariate dependent frailty models for clustered failure time data have rarely

been studied previously. Wassell and Moeschberger (1993) proposed a bivariate sur-

vival model with the gamma frailty parameter depending on a pair-wise covariate.

Their approach only considered paired survival times in each cluster and cannot be

applied to studies with larger cluster sizes. Wassell, Kulczycki, and Moyer (1995)

also pointed out the increasing complexity of the application of a frailty model to

clustered failure time data with larger group sizes. The model proposed in this chap-

ter enables one to adjust for covariate effects on the frailty distribution and permits
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Table 2.3: Analysis of SRTR kidney transplant data

Covariates Estimates SE P-value
γ (Patient Level)

Age (in decades) 0.1541 0.0104 < .0001
African-American 0.2738 0.0293 < .0001
Female -0.0957 0.0254 0.0002
Time on Dialysis(in years)
≤ 1 -0.1379 0.0372 0.0002
> 3 0.1153 0.0277 < .0001

Recipient BMI
< 20 0.0732 0.0502 0.1450
[25, 30) 0.0391 0.0298 0.1904
>= 30 0.1369 0.0320 < .0001

Cause of ESRD
Diabetes 0.2970 0.0359 < .0001
Hypertension 0.1646 0.0375 < .0001
Polycystic -0.3106 0.0571 < .0001
Other 0.1156 0.0392 0.0032

γ (Cluster Level)
Percent of Female (pct) -0.0063 0.0022 0.0035
Percent of African-American (pct) 0.0039 0.0007 < .0001
Percent of Diabetes (pct) 0.0084 0.0017 < .0001
Center Size (in 100 pts) 0.0097 0.0068 0.1548

η
Intercept -2.3192 2.0945 0.2682
Percent of Female (pct) 0.1046 0.0382 0.0063
Percent of African-American (pct) 0.0389 0.0325 0.2316
Percent of Diabetes (pct) 0.0298 0.0531 0.5745
Center Size (in 100 pts) -0.2288 0.2705 0.3977
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both marginal and conditional inference for clustered failure time data regardless of

the group size. Further consideration of the proposed method reveals two additional

advantages. First, model (2.5), on which we make inference, allows for covariate-

by-cluster interaction. The covariate effect is multiplicatively influenced by clusters

through the cluster level covariate-dependent frailty parameter αk. Second, with the

rapid development of various methods for frailty models, researchers have begun to

consider more carefully issues of ease of implementation and computation time (e.g.

Fine et al., 2003; Liu and Huang, 2007). The proposed method performs well in both

aspects. The method can be implemented using SAS IML. When we evaluated the

computation time in the simulation study, it took approximately 4 hours for 1000

runs, with approximately 1/3 of the time spent on the PROC PHREG call.

Recalling that Λ0k(t) = H0(t)
α−1

k , we can estimate Λ0k with Ĥ0(t)
g(bη;Xk), k =

1, . . . , K, where the estimator Ĥ0(t) of H0(t) can be estimated from model (2.2) (see

Spiekerman and Lin, 1998). Since the joint distribution of Ĥ0(t) and η̂ is complicated,

we have not been able to obtain the asymptotic distribution of the the Λ0k’s.

We noted that when a cluster level covariate is included in the conditional pro-

portional hazard model, its effect is nearly nonidentifiable and does not interfere the

estimation of other covariate effects. This is due to the use of the stratified partial

likelihood approach in the estimation. Since the motivation of the proposed method

is to model cluster level covariate effects on between-cluster heterogeneity and within-

cluster association, the inclusion of a cluster level covariate in the conditional hazard

is not needed. On the other hand, one is able to obtain the marginal effect of a

cluster level covariate due to the proportional hazard in the marginal model.

For ease of computation and to avoid the estimation of the fk(t) (which is difficult

for studies with large clusters), we first attempted using a stratified partial likelihood
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approach based on model (2.5) only. We found that this approach does not lead to

useful estimators for the parameter η1. As an alternative, we estimate γ from model

(2.2), then use the estimator γ̂ in model (2.5) to obtain a consistent estimator for η.

The proposed estimation procedure is actually a two-step procedure. Such approach

has been employed previously in the context of maximum likelihood by (e.g. Gong

and Samaniego, 1981) and for the Clayton-Oakes model with a proportional hazards

model for the margins by Glidden (2000). It should be noted that some efficiency is

lost under the stratified partial likelihood approach in the second stage, as exemplified

by the fact that the same estimation would be obtained if we let fk(t) = 1.

Several areas of future research are possible. The proposed method relies on the

specification of a link function, and model checking on this function is of potential

interest. Future research on this method may also include the extension to other

frailty distributions.

2.7 Appendix

2.7.1 Proof of Theorem II.1

The individual counting process martingale for the observed filtration is

Mik(t) = Nik(t)−

∫ t

0

Yik(s)fk(s)e
g(η0;Xk)γT

0 ZikdΛ0k(s).

The proof of the consistency of η̂ considers the following two processes,

G(η, γ̂) = K−1 {l2(η, γ̂, t) − l2(η0, γ0, t)}

= K−1

K∑

k=1

nk∑

i=1

∫ τ

0

[
{
g(η;Xk)γ̂

T − g(η0;Xk)γ
T
0

}
Zik − log

S
(0)
k (η, γ̂, t)

S
(0)
k (η0, γ0, t)

]
dNik(t),

and

Ξ(η) = K−1

K∑

k=1

nk∑

i=1

∫ τ

0

[
{
g(η;Xk)γ

T
0 − g(η0;Xk)γ

T
0

}
Zik − log

S
(0)
k (η, γ0, t)

S
(0)
k (η0, γ0, t)

]

Yik(t)fk(t)e
g(η0;Xk)γT

0 ZikdΛ0k(t).
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The difference between them can be decomposed into two parts,

G(η, γ̂) − Ξ(η)

= {G(η, γ̂) −G(η, γ0)} + {G(η, γ0) − Ξ(η)}

= K−1

K∑

k=1

nk∑

i=1

∫ τ

0

{
g(η;Xk)Zik(γ̂ − γ0) − log

S
(0)
k (η, γ̂, t)

S
(0)
k (η, γ0, t)

}
dNik(t)+

K−1

K∑

k=1

nk∑

i=1

∫ τ

0

[
{g(η;Xk) − g(η0;Xk)} γ

T
0 Zik − log

S
(0)
k (η, γ0, t)

S
(0)
k (η0, γ0, t)

]
dMik(t).

For each η, the first term on the right-hand side of the equation converges almost

surely to zero due to the consistency of γ̂ and under conditions (a)-(f) in Section 2.3,

the second term is a summation of K independent and identical distributed zero

mean random variables. By the Strong Law of Large Numbers (SLLN), as K → ∞,

G(η, γ̂) converges almost surely to the same limiting function of η as Ξ(η).

By the boundness conditions (d)-(f) in Section 2.3, we can evaluate the first and

the second derivatives of this limiting function by taking the partial derivatives inside

the integral of Ξ(η). The first derivative is thus

E

[
nk∑

i=1

∫ τ

0

{
g1(η;Xk)γ

T
0 Zik − E1

k(η; γ0, t)
}
Yik(t)fk(t)e

g(η0;Xk)γT
0 ZikdΛ0k(t)

]
.

It is 0 at η = η0. The second derivative

E

[
−

nk∑

i=1

∫ τ

0

V 1
k (η; γ0, t)S

(0)
k (η; γ0, t)fk(t)dΛ0k(t)

]

is minus a positive definite matrix at η = η0 by condition (f). Therefore, G(η, γ̂)

converges almost surely to a concave function of η with a unique maximum at η = η0.

Since η̂ maximizes G(η, γ̂), it follows that η̂
a.s.
→ η0 as K → ∞.
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2.7.2 Proof of Theorem II.2

The first order Taylor series expansion of K−1/2U2(η̂, γ̂) about η = η0 and γ = γ0

gives

K−1/2U2(η̂; γ̂) = K−1/2U2(η0; γ0) − B̂2(η0; γ
∗)K1/2(γ̂ − γ0) − Â2(η

∗; γ̂)K1/2(η̂ − η0),

where η∗ is on the line segment between η̂ and η0 and γ∗ is on the line segment

between γ̂ and γ0. Thus, we have

K1/2(η̂ − η0) = Â−1
2 (η∗; γ̂)

{
K−1/2U2(η0; γ0) − B̂2(η0; γ

∗)K1/2(γ̂ − γ0)
}
.

With the consistency of η̂ and γ̂ and the SLLN, we can show that Â2(η
∗; γ̂)

p
→ A2,

and B̂2(η0; γ
∗)

p
→ B2 and that A2 and B2 can be consistently estimated by Â2 and

B̂2 respectively.

It has been noted in Section 2.3 that K1/2(γ̂ − γ0) converges in distribution to

N(0,Σ1). We will prove that K−1/2U2(η0; γ0) converges in distribution to N(0, A2).

It can be easily seen that the process K−1/2U2(η0; γ0, t) can be written as a sum of

orthogonal martingales,

K−1/2U2(η0; γ0, t) = K−1/2
K∑

k=1

nk∑

i=1

∫ t

0

{
g1(η0;Xk)γ

T
0 Zik − E1

k(η0; γ0, s)
}
dMik(s),

with predictable variation process

〈
K−1/2U2(η0; γ0)

〉
(t) = K−1

K∑

k=1

nk∑

i=1

∫ t

0

{
g1(η0;Xk)γ

T
0 Zik − E1

k(η0; γ0, s)
}⊗2

× Yik(s)fk(s)e
g(η0;Xk)γT

0 Zik(s)dΛ0k(s)

= K−1

K∑

k=1

∫ t

0

V 1
k (η0; γ0, s)S

(0)
k (η0; γ0, s)fk(s)dΛ0k(s).

From Rebolledo’s Theorem, the Weak Law of Large Numbers (WLLN) and condition

(f), we can easily show that K−1/2U2(η0; γ0, τ ) converges in distribution to a zero
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mean Gaussian vector with covariance matrix

lim
K→∞

〈
K−1/2U2(η0; γ0)

〉
(τ ) = A2.

Finally, we need to obtain the asymptotic covariance matrix of K−1/2U2(η0; γ0)

and K1/2(γ̂ − γ0). We can see that both items can be written as a summation of K

iid zero mean random vectors,

K−1/2U2(η0; γ0) = K−1/2
K∑

k=1

uk,

K1/2(γ̂ − γ0) = K−1/2Â1(γ
∗)−1

K∑

k=1

ψk + op(1),

with

uk(η0; γ0) =

nk∑

i=1

∫ τ

0

{
g1(η0;Xk)γ

T
0 Zik − E1

k(η0; γ0, t)
}
dNik(t),

and

ψk(γ0, H0) =

nk∑

i=1

∫ τ

0

{Zik − e(γ0, t)}
{
dNik − Yik(t)e

γT
0 ZikdH0(t)

}
.

With the consistency of γ̂ and the WLLN, the asymptotic covariance matrix of

K−1/2U2(η0; γ0) and K1/2(γ̂ − γ0) is C = E
{
ukψ

T
k

}
A−1

1 .

In summary, K1/2(η̂ − η0) converges in distribution to a N(0,Σ2), where

Σ2 = A−1
2 (A2 +B2Σ1B

T
2 − 2CBT

2 )A−1
2 ,

which can be consistently estimated by replacing each quantity with its corresponding

estimator.



CHAPTER III

Computationally Efficient Marginal Model for

Clustered Recurrent Event Data

3.1 Introduction

Hospitalizations are generally very costly events. For example, hospital stays

represent over one third of total Medicare expenditures for dialysis patients (U.S.

Renal Data System, 2006). Quantifying the impact of patient characteristics on the

frequency and duration of hospitalization is an essential step towards the controlling

of escalating medical costs, and can play an important role in providing cost-effective

health care. In addition, assessment of dialysis facility outcomes in terms of hospi-

talization and comparison with outcomes at the national level can help to enhance

a facility’s understanding of its quality of care and how it relates to other facilities.

Therefore, statistical modeling of hospitalization is needed to estimate and compare

hospitalization rates. Since dialysis patients may have multiple hospital admissions,

both hospital admissions (reflecting incidence) and hospital days (reflecting preva-

lence) can be considered as recurrent event data. Moreover, clustering is introduced

both through the dependence among patients in the same facility and the correlation

of outcomes over time for a given patient.

Many statistical methods have been proposed for recurrent event data (e.g. An-

31
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dersen and Gill, 1982; Lawless and Nadeau, 1995; Lin, Wei, Yang, and Ying, 2000).

The semiparametric proportional rates model of Lin et al. (2000) is widely used due

to the ease of its implementation with standard statistical software such as SAS and

R. The method has been extended to accommodate clustered recurrent event data.

For example, Schaubel and Cai (2005) proposed two extensions applicable to clus-

tered recurrent event data. The first assumes a cluster-specific baseline rate function,

while the second assumes a common baseline rate function. It should be noted that

each of the aforementioned methods requires the observation of each event occur-

rence time. Each is rank-based and, as such, uses the exact event times to order

the failure and censoring time to construct the risk sets (and related summations)

appropriately.

The analysis that motivated our current work considers the hospitalization ex-

perience among U.S. dialysis patients using both national end-stage renal disease

(ESRD) registry data and that obtained from the Centers for Medicare and Med-

icaid Services (CMS). The pertinent analysis file is extremely large since there are

over 5,000 dialysis facilities in the U.S. and more than 500,000 end-stage renal dis-

ease (ESRD) patients receiving dialysis treatment each year. Each dialysis patient

may have multiple hospital admissions every year; on average, patients have 1.25

admissions with an average stay of 8 days for each admission. It has been known for

some time that standard Cox regression software (e.g., R’s coxph(·), SAS’s PROC

PHREG) can be used to fit the proportional rates model of Lin et al. (2000). Specif-

ically, each patient’s follow-up is represented by a set of records, one per recurrent

event (plus one for the final censoring event censoring). For example, the experience

of a patient with events at 4, 7, 9 and censored at time 12 would be represented by 4

records: (0,4], (4,7], (7,9] and (9,12]; the event indicator would equal 1 for the first 3
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records and 0 for the last record. This has come to be known as the ‘counting process’

style data structure; e.g., as described in Allison (2010). In our motivating example,

days hospitalized is of interest, as opposed to hospital admissions. If one uses the

left-truncated data structure just described, it is clear that even moderate-sized data

sets can become unduly large if subjects are hospitalized frequently or tend to have

long stays. For example, a hospitalization at time 7 with duration 8 days would result

in 9 separate records: (6,7], (7,8] , . . ., (13,14]; the event indicator set to 1 for each.

Therefore, our use of the U.S. national ESRD and CMS databases will introduce

computational difficulties. In settings such as these, the use of a piecewise-constant

recurrent event rate model allows for the grouping of the recurrent event data, which

leads to a flexible event rate model and a resulting data reduction which ameliorates

the computational burden.

The proposed methods involve grouping recurrent events into intervals corre-

sponding to the “pieces” implied by the assumed piece-wise constant baseline rate

function. With respect to the interval-grouped event data, several authors have inves-

tigated nonparametric methods in estimating the mean and rate functions (e.g., Thall

and Lachin, 1988; Sun and Kalbfleisch, 1995; Wellner and Zhang, 2000)). However,

such methods do not consider covariate effects. Lawless and Zhan (1998) proposed a

proportional rates model with a piecewise-constant baseline rate for interval-grouped

recurrent event data. The authors developed robust estimation techniques based on

generalized estimating equations, without assumptions on the event process. How-

ever, such methods assume a common baseline rate function and may not be easily

extended to the situation where the baseline is cluster-specific, especially when the

number of clusters is relatively large. Sun and Wei (2000) proposed semiparametric

methods for the analysis of panel count data under informative observation and cen-
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soring times. Such methods are also applicable to a proportional rates model with

cluster-specific baseline rates. However, the authors emphasized regression parame-

ter estimation only and did not consider estimation of baseline rate function. Most

of the existing methods dealing with interval-grouped recurrent event data cannot

be easily carried out using standard software. Cook and Lawless (2007) described a

Poisson model with piecewise-constant rate functions for recurrent event data and

illustrated the use of Poisson log-linear regression software for parameter estimation.

This method assumes independent counting process increments given the covariates

and, similar to Lawless and Zhan (1998), is not applicable to cluster-specific baseline

rate function settings with relatively large number of clusters.

Another characteristic of the hospitalization data, common to many other recur-

rent event data settings, is the presence of a terminal event i.e., an event which stops

the recurrent event process (e.g. death). Models for the rate function of recurrent

event data in the presence of a terminal event can generally be categorized as (1)

marginal model (e.g. Ghosh and Lin, 2002; Schaubel and Zhang, 2010) which can be

interpreted as the occurrence rate averaging over mortality experience, (2) partial

marginal model (e.g. Cook and Lawless, 1997; Ye, Kalbfleisch, and Schaubel, 2007)

which models the rate of the recurrent events among survivors. In this chapter,

we consider the partial marginal model for the rate function of the recurrent event

with unspecified dependence structure between the recurrent events and the terminal

event.

The remainder of this chapter is organized as follows. In Section 3.2, we first pro-

pose the proportional rates model with piecewise-constant baseline rate function for

clustered recurrent event data, in the absence of a terminal event. The dependence

structures for within-patient events are left completely unspecified. The extension to
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the setting with a terminating event then follows, under a partial-marginal model.

The essential parts of the estimation procedure are quite similar, although the in-

terpretation of the covariate effects is different. The proposed estimation procedure

requires only the interval-specific event and person-time totals, instead of the exact

recurrent event times, which leads to considerable data reduction and hence re-

duced computing time. In Section 3.3, we compare the proposed estimation method

to a joint estimating equation method based on pseudo likelihood. We derive the

large-sample properties of the proposed estimators in Section 3.4 and assess their

small-sample performance in Section 3.5 under various data configurations, includ-

ing settings in which the model is misspecified. In Section 3.6, we apply the proposed

the model to the study of days hospitalized among U.S. dialysis patients. The chapter

then concludes with some discussion in Section 3.7.

3.2 Model Specification and Estimation

3.2.1 In the Absence of a Terminal Event

As the name implies, the proposed model assumes that the baseline rate is con-

stant over pre-specified intervals and is applied to recurrent event data in the absence

of terminal event. Denote the largest observation time by τ . Let a0 < a1 < . . . < aL

denote the cut points for the L intervals on [0, τ ], where a0 = 0, aL = τ and

Ω` = (a`−1, a`] for ` = 1, . . . , L. Let k index cluster, with cluster sizes n1, . . . , nK and

let i index the subject (i = 1, . . . , n) with n =
∑K

k=1 nk. For subject i, let Gi denote

cluster. Let Ci denote the right censoring time for subject i. Since data are often left-

truncated, we explicitly allow for left-truncation in the formulation of the proposed

methods. The left-truncation time is represented by Bi. We then define the at-risk

process by Ỹi(t) = I(Bi ≤ t ≤ Ci) with I(·) being the indicator function. Let Ñ∗
i (t)
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denote the cumulative number of events up to time t and let Ñi(t) =
∫ t

0
Ỹi(s)dÑ

∗
i (s)

denote the observed number of events. We then specify the rate function for subject

i from cluster k as

E{dÑ∗
i (t)|Zi(t), Gi = k} = ρk`e

γT
0 Zi`dt,

where, for ` = 1, . . . , L, ρk` is the baseline rate function for the kth cluster, γ0

is a p-vector parameter, Zi` = Zi(t), t ∈ Ω` is a p-vector possibly time-varying

covariates for subject i. Note that any time-dependent covariates are assumed to be

external (Kalbfleisch and Prentice, 2002) and constant within each interval Ω`. Define

Gik = I(Gi = k), Ỹik(t) = GikỸi(t), dÑ
∗
ik(t) = GikdÑ

∗
i (t) and dÑik(t) = GikdÑi(t).

Under the assumption of independent left truncation and censoring, which can be

specified as

E{dÑ∗
ik(t)|Zi(t), Gi = k, Ỹi(t) = 1} = E{dÑ∗

ik(t)|Zi(t), Gi = k},

we have

E{dÑik(t)|Zi(t), Ỹik(t)} = Ỹik(t)ρk`e
γT
0 Zi`dt.(3.1)

3.2.2 Piecewise-Constant Baseline Rates Model in the Presence of a Ter-

minating Event

When the recurrent event is potentially stopped by a terminal event (e.g. death),

we can similarly specify a partial marginal model with piecewise-constant baseline

rates. Let Di denote the death time for subject i. Define the follow-up time Xi =

Ci ∧Di, with a∧ b = min(a, b) and the at risk process Yi(t) = I(Bi ≤ t ≤ Xi). Then

the counting process for the recurrent eventsN∗
i (t) = N∗

i (t∧Di), which acknowledges

the fact that death stops the further occurrence of recurrent events, such that N∗
i (t)

is a constant after Di. Similar to the model in the absence of terminal event, the
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occurrence rate function for subject i from cluster k conditional on being alive is

given as

E{dN∗
i (t)|Zi(t), Di ≥ t, Gi = k} = αk`e

βT
0 Zi`dt,

where, for ` = 1, . . . , L, αk` is the baseline rate function for the kth cluster and

β0 is a p-vector parameter. Define Yik(t) = GikYi(t), dN
∗
ik(t) = GikdN

∗
i (t) and

dNik(t) = GikdNi(t). Under the assumption of independent left truncation and

censoring, which is written as

E{dN∗
ik(t)|Zi(t), Yi(t) = 1, Gi = k} = E{dN∗

ik(t)|Zi(t), Di ≥ t, Gi = k},

we have

E{dNik(t)|Zi(t), Yik(t)} = Yik(t)αk`e
βT
0 Zi`dt.(3.2)

3.2.3 Estimation

Next, we describe the estimation method for the model in the presence of a

terminal event. Similar estimating procedure can be applied to the model in the

absence of terminating event by setting Di = τ . We first define some notation. For

subject i (from cluster k), let tik` =
∫ a`

a`−1
Yik(t)dt denote the time at risk (exposure

time) and dik` =
∫ a`

a`−1
dNik(t) be the observed number of events experienced in Ω` .

In addition, for r = 0, 1, 2, k = 1, . . . , K and ` = 1, . . . , L, we define

S
(r)
k` (β) = n−1

n∑

i=1

Z⊗r
i` tik`e

βT Zi`,

Zk`(β) = S
(1)
k` (β)/S

(0)
k` (β),

Vk`(β) = S
(2)
k` (β)/S

(0)
k` (β)− Zk`(β)⊗2

where a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT . We next define the compensated counting

process,

dMik(t) = dNik(t) − Yik(t)αk`e
βT
0 Zi`dt, t ∈ Ω`,
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for ` = 1, . . . , L. By the specification of the model (3.2) and under the corresponding

independent left truncation and censoring assumption, E{dMik(t)|Zi`, Yik(t)} = 0 for

t ∈ Ω`. Thus, it follows that

ξik`(β0) =

∫ a`

a`−1

dMik(t) = dik` − αk`tik`e
βT
0 Zi`

has mean zero since

E
{∫ a`

a`−1

dMik(t)
}

= E
[∫ a`

a`−1

E {dMik(t)|Zi`, Yik(t)}
]

= 0.

We consider the estimating function,

U(β) =
n∑

i=1

K∑

k=1

L∑

`=1

{Zi` − Zk`(β)}ξik`(β),

motivated by the fact that U(β0) can be shown to have mean 0 asymptotically, which

can be proved by replacing Zk`(β) with the corresponding limiting values in U(β).

We can simplify U(β) to

U(β) =

n∑

i=1

L∑

`=1

K∑

k=1

{Zi` − Zk`(β)}dik`,(3.3)

such that an estimator for β0, β̂, can be obtained by solving U(β) = 0. A Breslow-

Aalen type estimator for αk` is then given as

α̂k`(β̂) =
d•k`

nS
(0)
k` (β̂)

,(3.4)

where • denotes the summation over the corresponding subscript. Therefore, the

corresponding Breslow-Aalen type estimator for the cumulative baseline rate function

µ0k(t) =
∑L

`=1 αk`(a` ∧ t− a`−1) is given as

µ̂0k(t; β̂) =

L∑

`=1

d•k`

nS
(0)
k` (β̂)

(a` ∧ t− a`−1),(3.5)

One may notice that (3.3) is similar to the partial score equation for recurrent

event data except for an offset term, and a weight term. Therefore, the proposed
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estimation method is easy to implement with SAS (PROC PHREG) or R (coxph)

with the censoring variable dik`, the weight term wik` = max(dik`, 1), and the offset

term log(tik`)−log(wik`). It should also be noted that, unlike the conventional partial

score equation in which statistics are computed at each distinct recurrent event time,

the proposed estimating equation is calculated only for each interval, which greatly

speeds up the calculation, especially when the number of event occurrences is large.

A few additional notes are in order. First, if the data are not left-truncated, the

proposed methods can be applied by setting Bi = 0 for all i = 1, . . . , n. Second, in

the absence of terminating event the unbiasedness of U(β0) can be proved based on

conditional expectation argument (e.g. Appendix 7.1 in Schaubel and Cai, 2005).

Finally, we emphasize cluster-specific baseline rates model in this chapter. When the

baseline rate function is common to all clusters, an analogous estimation procedure

can be carried out with S
(r)
k` and d•k` (k = 1, . . . , K, ` = 1, . . . , L) replaced by the

corresponding quantities summing over all the clusters in (3.3) and (3.4).

3.3 Comparison with Joint Estimating Equation Approach

An alternative estimation approach is based on pseudo-likelihood that ignores

within-subject and within-cluster dependence. Let α = (α11, . . . , α1L, . . . , αK1, . . . , αKL)′

and θ = (α′, β ′)′. The pseudo-likelihood function is thenL(θ) =
∏n

i=1

∏K
k=1

∏L
`=1 Lik`(θ),

where Lik`(θ) is given as

Lik`(θ) = (αk`e
βT Zi`)dik`e−αk`tik`e

βT Zi` .

The resulting log-likelihood is then

`(θ) =
n∑

i=1

K∑

k=1

L∑

`=1

{
dik`(log αk` + βTZi`) − αk`tik`e

βT Zi`

}
.
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The score vector UJ (θ) = {UT
α (θ), UT

β (θ)}T , with Uα = (Uα11 , . . . , UαKL
)T , can be

obtained by taking the partial derivative of `(θ) with respect to θ as

Uαk`
(θ) =

d•k`

αk`
− nS

(0)
k` (β), k = 1, . . . , K, ` = 1, . . . , L,(3.6)

Uβ(θ) =
n∑

i=1

L∑

`=1

K∑

k=1

Zi`ξik`(β).(3.7)

The solution of the joint estimating equation UJ (θ) = 0, θ, is then an estimator for

θ. It can be easily seen that this joint estimating equation method (JM) gives the

same estimator as the proposed method (PM). A profile estimator α̃(β) for α can

be obtained from (3.6) given β, which equals the Breslow-Aalen estimator from PM.

Replacing α with α̃(β) in (3.7) then gives the same estimating function (3.3) for β

in PM . Moreover, unlike PM that calculates the estimated covariance matrix for

α̂ and β̂ separately, JM estimates the joint covariance matrix for α̂ and β̂, which

involves inverting the observed information matrix IJ . As the minus second partial

derivative of `(θ), IJ is of dimension (KL+ p) with the upper left square submatrix

corresponding to α being a diagonal matrix with the {k(L − 1) + `}th diagonal

element equal to d•k`/α
2
k`. When d•k` = 0, which is quite possible for clusters with

small cluster size or less frequent recurrent events in interval Ω`, I
J is not positive

definite. As a result, JM cannot give an estimator for the joint covariance matrix.

3.4 Asymptotic Properties

The asymptotic properties are derived for the model in the presence of a terminal

event. As illustrated in Section 3.2.3, in the absence of terminal event, one can obtain

similar results by letting Di = τ .

For i = 1, . . . , n, we impose the following regularity conditions:

(a) {Ni(t), Yi(t), Zi(t), Gi}
n
i=1 are independent and identically distributed;
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(b) P{Gik = 1} ∈ (0, 1];

(c) E{Yi(t)} > 0, for all t ∈ (0, τ ];

(d) Ni(t), are bounded by a constant;

(e) Zi`, ` = 1, . . . , L are bounded by a constant;

(f) Let B be a neighborhood of β0. For d = 0, 1, 2, s
(d)
k` (β) are continuous functions

of β ∈ B, where s
(d)
k` (β) is the limiting values of S

(d)
k` (β); s

(1)
k` (β) and s

(2)
k` (β) are

bounded and s
(0)
k` (β) is bounded away from 0 on B with

s
(1)
k` (β) =

∂

∂β
s
(0)
k` (β), s

(2)
k` (β) =

∂2

∂β∂βT
s
(0)
k` (β).

(g) Positive-definiteness of the matrix

A = lim
n→∞

n−1

K∑

k=1

L∑

`=1

αk`vk`(β0)s
(0)
k` (β0),

where vk`(β) = s
(2)
k` (β)/s

(0)
k` (β)− z̄k`(β)⊗2 and z̄k`(β) = s

(1)
k` (β)/s

(0)
k` (β).

Assumption (a) specifies that the independent units in the proposed method

are subjects. Assumption (b) states that the probability of a randomly selected

subject being assigned to a cluster is nonzero for any cluster. Both conditions are

necessary so that parameter estimators for the cluster-specific baseline rate functions

are estimable for all clusters.

We next summarize the theoretical results for β̂ by the following theorem.

Theorem III.1. Under regularity conditions (a)− (g), β̂ converges almost surely to

β0 as n → ∞, while n1/2(β̂ − β0) converges to a p-variate normal vector with mean

0 and covariance matrix Σ = A−1BA−1, where B = E{U1(β0)
⊗2}, with

Ui(β) =
K∑

k=1

L∑

`=1

{Zi` − z̄k`(β)}ξik`(β).
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A consistent estimator for Σ can be obtained as Σ̂ = Â(β̂)B̂(β̂)Â(β̂), where

Â(β) = n−1
n∑

i=1

K∑

k=1

L∑

`=1

Vk`(β)dik`,

B̂(β) = n−1
n∑

i=1

Ûi(β)⊗2,

Ûi(β) =
K∑

k=1

L∑

`=1

{Zi` − Zk`(β)}ξ̂ik`(β),

ξ̂ik`(β) = dik` − α̂k`(β)tik`e
βTZik`

Theorem (III.1) can be proved by combining the Uniform Strong Law of Large

Numbers (USLLN) and the Central Limit Theorem (CLT), as is shown in the Ap-

pendix. We next present the essential asymptotic properties for µ̂0k(t; β̂).

Theorem III.2. Under regularity conditions (a) − (f), for k = 1, . . . , K, µ̂0k(t; β̂)

converges almost surely to µ0k(t) uniformly in t ∈ [0, τ ]; the process n1/2{µ̂0k(t; β̂)−

µ0k(t)} converges to a zero-mean Gaussian process with covariance function Ψk(s, t) =

E{ψ1k(s)ψ1k(t)}, where

ψik(t) =

L∑

`=1

ψik`(β0)(a` ∧ t− a`−1),

ψik`(β) =
ξik`(β)

s
(0)
k` (β)

− αk`z̄k`(β)A−1Ui(β0).

We show in Appendix that n1/2{µ̂0k(t; β̂)−µ0k(t)} is asymptotically equivalent to

n−1/2
∑n

i=1 ψik(t). A consistent estimator for Ψk(s, t) is then n−1
∑n

i=1 ψ̂ik(s)ψ̂ik(t)

with

ψ̂ik(t) =
L∑

`=1

ψ̂ik`(β̂)(a` ∧ t− a`−1),

ψ̂ik`(β) =
ξ̂ik`(β)

S
(0)
k` (β)

−
d•k`Zk`(β)

S
(0)
k` (β)

Â−1(β)Ûi(β).
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3.5 Simulation Study

Simulation studies were conducted to assess the performance of the estimation

method in finite samples both in the absence and presence of a terminal event. We

present the results in the presence of a terminal event only, since they exhibit similar

patterns as those in the absence of terminal event.

In the first simulation study, for subject (i, k), we generate recurrent event times

from

E{dN∗
ik(t)|Zi,Wi, Di ≥ t} = Wiλ0k(t)e

βT
0 Zidt,

where the subject-level random effect Wi follows Gamma distribution with unit mean

and variance σ2 = 1, and the cluster-specific baseline rate function dµ0k(t) = 1, Zi =

{Zi1, Zi2} are 2-vector covariates with Zi1 ∼ Bernoulli(0.5) and Zi2 ∼ N(0, 0.25),

β1 = 0.5 and β2 = 0.25, 0.5, 0.75, 1. In addition, we let Di ∼ Exp(0.1 + 0.1Zi1) and

Ci ∼ U(5, 10). The average number of recurrent events ranged from 6 to 8. We set

K = 50, 100 and nk = 20, 50, 100. For each simulated data set, we estimated β0 under

model (3.2) with three settings for the piecewise-constant baseline rate function: the

first setting is with L = 3 pieces defined by 0, 2, 4, 10; the second setting is with L = 6

pieces defined by 0, 1, . . . , 5, 10; the third setting is with L = 12 pieces resulting from

adding 6 midpoints of the intervals in the second setting. The results are shown in

Table 3.1 and Table 3.2 for β̂1 and β̂2 respectively based on 1000 simulations.

For the first simulation study where the true model is actually piecewise-constant,

we do not present the results based on L = 3 since it gives similar results to L = 6

and L = 12. For all of the data configurations in Table 3.1, the estimator for β1

corresponding to the binary covariate, β̂1, is approximately unbiased with the bias

reduced with increasing cluster size. The mean of the asymptotic standard error
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(ASE) of β̂1 is generally close to the empirical standard deviation (ESD) of β̂1, and

the coverage probabilities (CP) are fairly close to the nominal value. Adding more

cut points does not seem to improve the performance of the estimator. Results in

Table 3.2 for β̂2, the estimator corresponding to the normal covariate, are similar

to those of β̂1 except that the CPs for the settings with smaller cluster size tend

to underestimate the nominal values, but do get closer to 95% as the true value

decrease.

In the second simulation study, we let µ0k(t) = 0.5t2 and keep everything else

the same. The average number of recurrent events per subject ranged from 18 to

20. For each setting, 1000 data sets are simulated. We then assess the proposed

methods under mis-specification assuming piecewise-constant baseline rates with the

same setting as the first simulation study. The results for β̂1 are shown in Table 3.4,

again based on 1000 replicates.

Under mis-specification of the baseline rate function, results for β̂1 are similar

to those in the first simulation study; except for the comparison among the three

choices of cut points. In particular, it appears that β̂1 is approximately unbiased,

with the bias reduced by adding more pieces to the baseline rate function. The ASEs

and ESDs are fairly close to each other under all settings examined. Adding more

pieces do not seem to improve the efficiency, although the CP gets closer to the

nominal level as more prices are added to the assumed baseline rate function. The

improvement is more obvious comparing L = 3 and L = 12. Results for β̂2 are very

similar to those for β̂1 and, hence, are not presented.

In the third simulation study, we assess the asymptotic properties for µ̂0k(t) with

β0 = (0.5, 1) and K = 50 under two scenarios; one in which µ0k(t) = t and a second in

which µ0k(t) = 0.5 t2. Remaining characteristics are as described previously. We let
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Table 3.1: Results of β̂1 in the first simulation study with β1 = 0.5, µ0k(t) = t and 1000 replicates.

L = 6 L = 12
K nk β2 BIAS ASE ESD CP BIAS ASE ESD CP
50 20 1 -0.003 0.064 0.060 0.958 -0.003 0.063 0.060 0.957

0.75 -0.004 0.061 0.059 0.962 -0.004 0.061 0.059 0.963
0.5 -0.004 0.060 0.058 0.958 -0.004 0.060 0.058 0.952
0.25 -0.004 0.059 0.056 0.959 -0.004 0.059 0.056 0.958

50 50 1 0.008 0.048 0.046 0.958 0.008 0.048 0.046 0.959
0.75 0.007 0.047 0.044 0.962 0.007 0.046 0.044 0.960
0.5 0.007 0.045 0.043 0.959 0.007 0.045 0.043 0.961
0.25 0.007 0.045 0.042 0.962 0.007 0.045 0.042 0.960

50 100 1 0.010 0.037 0.037 0.949 0.010 0.037 0.037 0.948
0.75 0.009 0.036 0.035 0.952 0.010 0.036 0.035 0.950
0.5 0.009 0.035 0.033 0.953 0.009 0.035 0.033 0.954
0.25 0.010 0.034 0.033 0.944 0.010 0.034 0.033 0.946

100 20 1 0.012 0.050 0.049 0.944 0.012 0.050 0.049 0.947
0.75 0.010 0.049 0.047 0.949 0.010 0.049 0.047 0.950
0.5 0.011 0.048 0.046 0.949 0.011 0.048 0.045 0.949
0.25 0.011 0.047 0.045 0.957 0.011 0.047 0.045 0.958

100 50 1 0.010 0.036 0.036 0.938 0.010 0.036 0.036 0.935
0.75 0.010 0.035 0.034 0.952 0.010 0.035 0.035 0.951
0.5 0.010 0.034 0.033 0.949 0.010 0.034 0.033 0.945
0.25 0.011 0.033 0.032 0.940 0.011 0.033 0.032 0.939

100 100 1 -0.000 0.027 0.027 0.962 -0.000 0.027 0.027 0.960
0.75 -0.001 0.026 0.025 0.959 -0.001 0.026 0.025 0.958
0.5 -0.001 0.025 0.024 0.966 -0.001 0.025 0.024 0.967
0.25 -0.000 0.025 0.023 0.961 -0.000 0.025 0.023 0.961
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Table 3.2: Results of β̂2 in the first simulation study with β1 = 0.5, µ0k(t) = t and 1000 replicates.

β̂2

L = 6 L = 12
K nk β2 BIAS ASE ESD CP BIAS ASE ESD CP
50 20 1 -0.001 0.067 0.072 0.927 -0.001 0.067 0.072 0.925

0.75 -0.001 0.063 0.067 0.930 -0.001 0.063 0.067 0.927
0.5 -0.001 0.061 0.063 0.929 -0.001 0.061 0.063 0.929
0.25 -0.001 0.059 0.062 0.935 -0.001 0.059 0.062 0.935

50 50 1 0.000 0.052 0.055 0.937 0.000 0.051 0.055 0.938
0.75 0.001 0.049 0.051 0.941 0.001 0.048 0.051 0.943
0.5 0.000 0.046 0.048 0.945 0.000 0.046 0.048 0.947
0.25 0.001 0.045 0.046 0.940 0.001 0.045 0.046 0.941

50 100 1 0.000 0.040 0.043 0.936 0.000 0.040 0.043 0.937
0.75 0.001 0.037 0.039 0.945 0.001 0.037 0.039 0.944
0.5 0.000 0.036 0.036 0.950 0.000 0.035 0.036 0.950
0.25 0.001 0.034 0.035 0.948 0.001 0.034 0.035 0.947

100 20 1 -0.000 0.053 0.059 0.921 -0.000 0.052 0.059 0.921
0.75 0.000 0.050 0.055 0.928 0.000 0.050 0.055 0.924
0.5 0.000 0.048 0.051 0.943 0.000 0.048 0.051 0.943
0.25 0.001 0.047 0.050 0.934 0.001 0.047 0.050 0.934

100 50 1 0.000 0.038 0.042 0.930 0.000 0.038 0.042 0.928
0.75 0.000 0.036 0.039 0.938 0.000 0.036 0.039 0.936
0.5 -0.000 0.035 0.036 0.942 -0.000 0.034 0.036 0.942
0.25 0.001 0.034 0.035 0.939 0.001 0.033 0.035 0.941

100 100 1 0.001 0.029 0.031 0.934 0.001 0.029 0.031 0.934
0.75 0.000 0.027 0.029 0.938 0.000 0.027 0.029 0.938
0.5 0.000 0.026 0.027 0.933 0.000 0.026 0.027 0.933
0.25 0.000 0.025 0.026 0.930 0.000 0.025 0.026 0.930
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Table 3.3: Results of the second simulation study for β̂1 with β1 = 0.5, µ0k(t) = 0.5t2 and 1000 replicates.

L = 3 L = 6 L = 12
K nk β2 BIAS ASE ESD CP BIAS ASE ESD CP BIAS ASE ESD CP
50 20 1 -0.042 0.071 0.071 0.907 -0.026 0.071 0.070 0.935 -0.018 0.071 0.070 0.946

0.75 -0.042 0.069 0.067 0.909 -0.026 0.068 0.065 0.934 -0.018 0.068 0.067 0.952
0.5 -0.041 0.067 0.065 0.912 -0.026 0.067 0.065 0.944 -0.017 0.066 0.065 0.947
0.25 -0.042 0.066 0.064 0.917 -0.026 0.066 0.064 0.937 -0.018 0.065 0.064 0.945

50 50 1 -0.025 0.055 0.053 0.922 -0.010 0.054 0.052 0.957 -0.002 0.054 0.052 0.957
0.75 -0.025 0.053 0.050 0.928 -0.010 0.052 0.050 0.959 -0.003 0.052 0.050 0.961
0.5 -0.025 0.051 0.049 0.925 -0.010 0.051 0.048 0.956 -0.002 0.050 0.048 0.960
0.25 -0.025 0.050 0.047 0.938 -0.010 0.050 0.047 0.962 -0.002 0.050 0.047 0.962

50 100 1 -0.022 0.042 0.042 0.907 -0.001 0.042 0.042 0.947 0.001 0.042 0.042 0.951
0.75 -0.022 0.040 0.040 0.915 -0.006 0.040 0.040 0.951 0.002 0.040 0.039 0.948
0.5 -0.021 0.039 0.038 0.910 -0.007 0.039 0.038 0.948 0.001 0.039 0.038 0.955
0.25 -0.021 0.038 0.037 0.912 -0.007 0.038 0.037 0.955 0.001 0.038 0.037 0.960

100 20 1 -0.022 0.056 0.056 0.921 -0.006 0.056 0.056 0.940 0.002 0.056 0.056 0.950
0.75 -0.022 0.054 0.054 0.928 -0.006 0.054 0.054 0.948 0.002 0.054 0.054 0.949
0.5 -0.022 0.053 0.052 0.926 -0.006 0.053 0.052 0.955 0.002 0.053 0.052 0.949
0.25 -0.022 0.052 0.051 0.929 -0.007 0.052 0.051 0.950 0.002 0.052 0.051 0.942

100 50 1 -0.022 0.041 0.041 0.904 -0.001 0.040 0.041 0.937 0.001 0.040 0.041 0.942
0.75 -0.022 0.039 0.039 0.909 -0.001 0.039 0.039 0.942 0.001 0.039 0.039 0.947
0.5 -0.022 0.038 0.037 0.907 -0.001 0.038 0.037 0.940 0.001 0.038 0.037 0.949
0.25 -0.022 0.037 0.036 0.910 -0.001 0.037 0.036 0.950 0.001 0.037 0.036 0.957

100 100 1 -0.029 0.031 0.030 0.836 0.000 0.030 0.030 0.942 0.000 0.030 0.030 0.945
0.75 -0.028 0.029 0.029 0.831 0.000 0.029 0.029 0.945 0.000 0.029 0.028 0.948
0.5 -0.028 0.028 0.027 0.824 0.000 0.028 0.027 0.955 0.000 0.028 0.027 0.950
0.25 -0.028 0.028 0.026 0.820 0.000 0.028 0.026 0.950 0.000 0.028 0.026 0.958
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n1 = 50, n2 = 100, n3 = 200, n4 = 500 and nk = 50 for k = 5, . . . , 50. In both cases,

the rates are assumed to be piece-wise constant. Specifically, we estimated µ0k(t)

under model (3.2) with two settings for the cut points of the piecewise-constant

baseline rate function: (i) with L = 6 and a` = 0, 1, . . . , 5, 10 (ii) with L = 12 and

a` = 0, 0.5, 1, 1.5, . . . , 5, 7.5, 10. In the second setting, we double the number of cut

points by including the mid-points of all the intervals from the first setting. We

then evaluate the performance of the estimator for µ(t) at 5 selected time points,

t = 1, . . . , t = 5 respectively. For each setting, 1,000 data sets are simulated.

Results for the third simulation study are shown in Table 3.4 and Table 3.5. The

estimator for µ(t) is approximately unbiased under both piecewise-constant baseline

rates and linear baseline rates settings for dµ(t), with the bias reduced with increasing

cluster size. On the other hand, the bias increases with t since the number of subjects

at risk decreases with increasing t. The ASE is generally similar to the ESD, and

the CP is close to 95%. Results for L = 6 and L = 12 are almost the same under

piecewise-constant baseline rates setting. When data are simulated from the linear

baseline rates model, the piecewise-constant baseline rates model with L = 12 does

not seem to produce a better estimator than the model with L = 6 for µ(t) at the 5

selected time points, in terms of unbiasedness and efficiency.

3.6 Application

We applied the proposed marginal models with piecewise-constant baseline rates

to the study of hospitalization days among Medicare dialysis patients. Between 2005

and 2007, there were 345,937 Medicare dialysis patients from 5,302 dialysis facilities

being hospitalized in the U.S. with facility sizes varying from 3 to 2923 dialysis

patients. Hospitalization days per patient ranged from 1 to 788 with an average of
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Table 3.4: Results of the third simulation study with β1 = 0.5, β2 = 1, µ0k(t) = t
and 1000 replicates.

L = 6 L = 12
k nk t µ0k(t) BIAS ASE ESD CP BIAS ASE ESD CP
1 50 1 1 0.002 0.192 0.201 0.926 0.003 0.193 0.201 0.928

2 2 0.034 0.364 0.376 0.932 0.035 0.364 0.376 0.932
3 3 0.066 0.541 0.570 0.926 0.067 0.541 0.570 0.928
4 4 0.129 0.728 0.755 0.933 0.130 0.728 0.755 0.934
5 5 0.215 0.932 0.962 0.924 0.216 0.932 0.962 0.925

2 100 1 1 0.004 0.141 0.145 0.935 0.004 0.141 0.149 0.935
2 2 0.024 0.260 0.277 0.932 0.024 0.260 0.277 0.934
3 3 0.084 0.389 0.415 0.929 0.084 0.389 0.415 0.929
4 4 0.154 0.528 0.552 0.938 0.154 0.529 0.552 0.938
5 5 0.218 0.675 0.706 0.938 0.218 0.675 0.707 0.940

3 200 1 1 0.017 0.102 0.110 0.921 0.017 0.102 0.110 0.921
2 2 0.018 0.190 0.207 0.922 0.017 0.190 0.207 0.924
3 3 0.006 0.280 0.302 0.927 0.005 0.280 0.302 0.925
4 4 -0.013 0.372 0.398 0.929 -0.014 0.373 0.398 0.930
5 5 -0.039 0.468 0.503 0.927 -0.040 0.469 0.503 0.928

4 500 1 1 0.008 0.063 0.069 0.923 0.008 0.063 0.069 0.923
2 2 0.015 0.116 0.131 0.918 0.015 0.116 0.131 0.918
3 3 0.033 0.172 0.191 0.924 0.032 0.172 0.192 0.921
4 4 0.058 0.230 0.257 0.919 0.057 0.231 0.257 0.918
5 5 0.088 0.292 0.328 0.913 0.087 0.293 0.328 0.913
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Table 3.5: Results of the third simulation study with β1 = 0.5, β2 = 1, µ0k(t) = 0.5t2

and 1000 replicates.

L = 6 L = 12
k nk t µ0k(t) BIAS ASE ESD CP BIAS ASE ESD CP
1 50 1 0.5 -0.005 0.113 0.119 0.932 0.002 0.115 0.121 0.932

2 2 0.036 0.375 0.396 0.930 0.048 0.378 0.399 0.933
3 4.5 0.136 0.832 0.874 0.932 0.149 0.835 0.877 0.934
4 8 0.351 1.496 1.567 0.918 0.364 1.499 1.570 0.917
5 12.5 0.789 2.438 2.571 0.919 0.798 2.441 2.573 0.922

2 100 1 0.5 -0.005 0.082 0.089 0.929 0.003 0.083 0.090 0.928
2 2 0.031 0.266 0.290 0.927 0.043 0.268 0.291 0.925
3 4.5 0.158 0.589 0.626 0.928 0.170 0.591 0.628 0.922
4 8 0.403 1.081 1.131 0.926 0.412 1.083 1.133 0.924
5 12.5 0.733 1.760 1.837 0.925 0.734 1.761 1.837 0.925

3 200 1 0.5 -0.002 0.059 0.063 0.921 0.006 0.060 0.064 0.925
2 2 -0.007 0.195 0.216 0.921 0.004 0.196 0.217 0.925
3 4.5 -0.046 0.424 0.459 0.920 -0.034 0.425 0.461 0.920
4 8 -0.120 0.756 0.817 0.914 -0.113 0.757 0.817 0.918
5 12.5 -0.206 1.201 1.281 0.915 -0.207 1.202 1.280 0.916

4 500 1 0.5 -0.004 0.037 0.039 0.934 0.004 0.038 0.040 0.944
2 2 0.009 0.120 0.135 0.910 0.020 0.120 0.135 0.916
3 4.5 0.053 0.261 0.300 0.904 0.063 0.262 0.300 0.901
4 8 0.156 0.470 0.545 0.904 0.162 0.471 0.544 0.901
5 12.5 0.329 0.758 0.868 0.895 0.326 0.758 0.866 0.899
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22 days during the 3-year period. In this study, hospital days are viewed as recurrent

event data, with time of follow-up defined as time from 90 days after the initiation

of end-stage renal disease (ESRD) therapy. We use the 90-day period to assure that

most patients are eligible for Medicare insurance either as their primary or secondary

insurer. Patients who died during the first 90 days of ESRD are excluded from the

analysis. Patients are subject to left truncation at the start of the observation period,

Jan 1, 2005. Subjects are followed until the earliest of death and right censoring,

with the latter defined as the earliest of Dec 31, 2007, 3 days prior to transplant

and loss to follow-up. Since a patient’s hospitalization rate may be influenced by the

facility at which (s)he receives dialysis, we fitted a facility-stratified model to adjust

for facility effects.

Patient characteristics of interest include age, race, gender, diabetes, ethnicity,

nursing home (NH) status and body mass index (BMI). All covariates are coded as

categorical variables through binary indicators. According to the proposed methods,

we summarize patient hospital days as intermittent counts and exposure times in

6 time since ESRD intervals with cut points 90 days (time 0), 6 months, 1 year, 2

years, 3 years and 5 years. Patient age is recorded at the beginning of each interval.

Nursing home status is recorded as whether a patient was in nursing home in the

previous calendar year. All the rest variables are measured at the beginning of the

study, thus are time independent. Results from the proposed method are summarized

in Table 3.6 below.

All the included covariates significantly influence the recurrent rate of hospital-

ization days. When comparing within the same cluster, patients at the age 25-44

have lowest hospitalization rates among survivors with all the other patient mix

held the same. Asian dialysis patients are more frequently hospitalized among sur-
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Table 3.6: Analysis of hospitalization days for Medicare dialysis patients in the U.S.

Covariates Estimates SE p-value
Age (in Years)

0-24 0.0091 0.0265 0.7331
25-44 -0.0885 0.0085 < .0001
45-59 -0.0209 0.0057 0.0002
60-74 0 . .
75+ -0.0140 0.0054 < .0001

Race
African-American -0.0706 0.0061 < .0001
Asian -0.3430 0.0160 < .0001
Native -0.0370 0.0230 0.0014
Other 0.0125 0.0203 0.5377
Caucasian 0 . .

Gender
Female 0.1147 0.0044 < .0001
Male 0 . .

Diagnoses
Diabetes 0.2524 0.0048 < .0001
Non-Diabetes 0 . .

Ethnicity
Hispanic -0.1530 0.0091 < .0001
Non-Hispanic 0 . .

Nursing Home Status
Yes 0.7685 0.0057 < .0001
No 0 . .

BMI
Underweight 0.0371 0.0088 < .0001
Normal 0 . .
Overweight -0.0351 0.0057 < .0001
Obese -0.0406 0.0057 < .0001
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vivors. Female patients, diabetic patients, non-Hispanic patients and under-weighted

patients have higher hospitalization rates among survivors than the corresponding

comparable groups. Conditional on being alive, dialysis patients are more frequently

hospitalized if h/she was in the nursing home in the previous calendar year.

3.7 Discussion

In this report, we propose a proportional rates model with cluster-specific piecewise-

constant baseline rate function for recurrent event data, which applies to the settings

with and without a terminal event. With the parametric setting for the baseline rate

function, we are able to estimate the regression parameter and cumulative baseline

rates based on intermittent counts and exposure times within each pre-specified in-

terval, which is defined according to the “pieces” in the baseline rate function. The

proposed method reduces data storage volume and speed up the computation. The

Cox format of the estimating equation enables the feasibility of stratification, which

is difficult to implement under the joint estimating equation approach when the

number of clusters is relatively large, as the illustrating example in Section 3.6.

The proposed method is applicable to both recurrent event and failure time data

from large registry study or large observational study such as claims data in insurance

or hospitalization data. When the number of distinct event times is large, we can

fold the data by recording the counts and exposure time in pre-specified intervals

and analyze the folded data using the proposed method.
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3.8 Appendix

3.8.1 Proof of Theorem III.1

Define

Pn(β) = n−1
n∑

i=1

K∑

k=1

L∑

`=1

{βTZi` − logS
(0)
k` (β)}dik`,

and let Wn(β) = Pn(β)− Pn(β0), which can be written as

Wn(β) = n−1
n∑

i=1

K∑

k=1

L∑

`=1

{
(βT − βT

0 )Zi` − log
S

(0)
k` (β)

S
(0)
k` (β0)

}
dik`.

With condition (a) to (e) in Section 3.4, the Strong Law of Large Number (SLLN)

and the fact that dik` and S
(0)
k` (β) have bounded variation, we can show that Wn(β)

converges almost surely to

W(β) = lim
n→∞

n−1

n∑

i=1

K∑

k=1

L∑

`=1

{
(βT − βT

0 )Zi` − log
s
(0)
k` (β)

s
(0)
k` (β0)

}
αk`tik`e

βT
0 Zi`,

for every β. Obviously,

∂2Wn(β)

∂β∂βT
= −n−1

n∑

i=1

K∑

k=1

L∑

`=1

Vk`(β)dik`

= −n−1

n∑

i=1

K∑

k=1

L∑

`=1

{Zi` − Zk`(β)}⊗2d•k`/S
(0)
k` (β)tik`e

βT Zi`

is negative semidefinite. Therefore, Wn(β) is concave. By Theorem 10.8 of Rockafel-

lar (1970), the convergence of Wn(β) to W(β) is uniform on any compact set of β.

Specifically, defining a compact set of β, Br = β : ‖β − β0‖ ≤ r, we have

sup
β∈Br

‖Wn(β)−W(β)‖ → 0.(3.8)

In addition, ∂W(β0)/∂β = 0 and ∂2W(β0)/∂β∂β
T = −A, which is assumed to be

negative semidefinite through condition (g). Hence, W(β) has a unique maximizer

at β0. In particular, supβ∈∂Br
{W(β)} < W(β0), where ∂Br = β : ‖β − β0‖ = r is
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the boundary of Br. This fact, together with expression (3.8), implies that Wn(β) <

Wn(β0) for all β ∈ ∂Br and large n. Therefore, there must exists a maximizer of

Wn(β), i.e. the solution to ∂Wn(β) ∂β = 0, say β̂, in the interior of Br, and the

argument in Jacobsen (1989) can be used to show the uniqueness of this maximizer.

Since r can be arbitrarily small, letting r → 0 yields that β̂
a.s.
→ β0 as n→ ∞.

The weak convergence of β̂ can be shown through the first order Taylor series

expansion about β = β0 on U(β̂) as

U(β̂) = U(β0) +
∂U(β∗)

∂β
(β̂ − β0),

where β∗ is on the line segment joining β̂ and β0. It follows that

n1/2(β̂ − β0) = Â−1(β∗)n−1/2U(β0).

The almost sure convergence of β̂ to β0 and the fact that ξik`(β0) is zero mean implies

that Â(β∗)
a.s.
→ A as n→ ∞.

Next, we derive the distribution of n−1/2U(β0) beginning by the following decom-

position

(3.9) U(β0) =
n∑

i=1

K∑

k=1

∑̀

`=1

{Zi` − z̄k`(β0)}ξik`(β0)−

K∑

k=1

∑̀

`=1

{Zk`(β0) − z̄k`(β0)}ξ•k`(β0).

The first term on the right-hand side of equation (3.9) is a sum of n i.i.d. dis-

tributed random vectors with zero mean and finite variance. The second term on

the right-hand side of equation (3.9) is op(n
1/2) since Zk`(β0) − z̄k`(β0)

p
→ 0 and

‖n−1/2ξ•k`(β0)‖ = O(1) by the boundedness conditions (d) and (e).

Thus n−1/2U(β0) converges weakly to a p-variate normal vector with mean 0 and

covariance matrix B(β0) by the multivariate central limit theorem. From Slutsky’s
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theorem and the consistency of Â(β∗) to A, n1/2(β̂ − β0) converges to a p-variate

normal vector with mean 0 and covariance matrix Σ.

3.8.2 Proof of Theorem III.2

We now derive the asymptotic properties for α̂k`(β̂). The asymptotic results of

µ̂0k(t; β̂) then directly applies by combining the results of α̂k`(β̂) over t.

We first consider the following decomposition

α̂k`(β̂) − αk` = φ1 + φ2,

where φ1 = α̂k`(β0)−αk`, and φ2 = α̂k`(β̂)−α̂k`(β0).We can write φ1 = n−1ξ•k`(β0)/S
(0)
k` (β0).

The SLLN and condition (f) implies that φ1
a.s.
→ 0. By Taylor series expansion,

φ2 = −n−1d•k`Zk`(β0)

S
(0)
k` (β0)

(β̂ − β0) + op(n
−1/2).

By the boundedness conditions (d) and (f), and the almost sure convergence of β̂ to

β0, φ2
a.s.
→ 0. The almost sure convergence of α̂k`(β̂) to αk` then follows. This result,

together with (3.5) implies that µ̂0k(t; β̂) converges almost surely to µ0k(t) uniformly

in t.

Next, we prove the weak convergence of n1/2{α̂k`(β̂)−αk`}. With the previously

derived arguments,

n1/2φ1 = n−1/2

n∑

i=1

ξik`(β0)

S
(0)
k` (β0)

,

n1/2φ2 = −n−1
n∑

i=1

dik`Zk`(β0)

S
(0)
k` (β0)

n1/2(β̂ − β0) + op(1).

Using condition (f),

n1/2φ1 = n−1/2

n∑

i=1

ξik`(β0)

s
(0)
k` (β0)

,(3.10)
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Using condition (a) to (f) and the SLLN,

−n−1
n∑

i=1

dik`Zk`(β0)

S
(0)
k` (β0)

a.s.
→ αk`z̄k`(β0).

Combing with the fact that

n1/2(β̂ − β0) = A−1(β0)n
−1/2

n∑

i=1

Ui(β0) + op(1),

it follows that

n1/2φ2 = n−1/2

n∑

i=1

αk`z̄k`(β0)A
−1(β0)Ui(β0) + op(1).(3.11)

With (3.10) and (3.11),

n1/2{α̂k`(β̂) − αk`} = n−1/2
n∑

i=1

ψik`(β0) + op(1).

This result, together with (3.5) implies that

n1/2{µ̂0k(t; β̂) − µ0k(t)} = n−1/2

n∑

i=1

L∑

`=1

ψik`(β0)(a` ∧ t− a`−1) + op(1),

which converges to a zero-mean Gaussian process with covariance function Ψk(s, t).



CHAPTER IV

Fixed Center Effect Model for Recurrent Event

Data

4.1 Introduction

In many large registry studies, comparisons among clinical centers are often of

interest. Comparisons of center-specific outcomes to those of the population average

help in understanding the facility’s influence on patient prognosis and, hence, may

ultimately improve quality of care. For example, dialysis facility-specific measures of

hospitalization rates reflect a facility’s quality of service (in terms of morbidity) rela-

tive to the population average level. Such measures thus assist patients in selecting a

health care provider. Statistical models for multi-center studies have been developed

for various outcomes, including clustered continuous, binary and time-to-failure data

(e.g. Gould, 1998; Agresti and Hartzel, 2000; Localio, Berlin, Ten Have, and Kimmel,

2001; Glidden and Vittinghoff, 2004). The majority of such models devote primary

attention to treatment differences, with center effects viewed as merely requiring

adjustment. However, when the evaluation of center performance is of primary in-

terest, inference on center effects becomes the ultimate purposes (as illustrated in

the example above).

Existing methods of estimating center effects can be classified as fixed effects

58
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models (FEM) or random effects models (REM). FEMs treat the center effects as

fixed factors and typically yield a direct contrast between each center’s performance

relative to a pre-specified reference level. Conclusions drawn from an analysis based

on FEMs will generally concern the centers included in the study only. In FEMs,

parameters for center effects are usually estimated by including indicator variables

for each center. However, when the number of centers is large, and with relatively

small center sizes present, this estimation method leads to difficulty, as pointed

out by Glidden and Vittinghoff (2004). On the other hand, REMs typically treat

the center effects as random variates, assumed to follow a specific distribution across

centers; often with only one additional parameter indexing the degree of dependence.

The estimation procedure depend on the distribution of the random effects and the

likelihood typically dose not have a closed form unless the random effect distribution

is carefully chosen. Conclusions regarding center effects will be influenced by the

whole population from which this particular center is randomly selected.

In this chapter, we propose fixed effects methods for estimating center effects in

the context of recurrent event data. The problem motivating this research arose in

a nationwide dialysis facility assessment study on hospitalization. Dialysis patients

may be admitted from dialysis facilities to hospitals at any time since initiation of

end-stage renal disease (ESRD) therapy. Frequency of hospitalization is an impor-

tant factor to be considered when attempting to address issues regarding escalating

medical costs. As a measure of hospitalization, hospital admissions can be viewed

as recurrent events since dialysis patients may have multiple hospitalizations. Each

year, over 5,000 dialysis facilities are assessed in the U.S., with facility sizes ranging

from fewer than 10 to more than 2,000 dialysis patients. Each facility’s hospital-

ization experience is then evaluated by comparing its outcomes to a risk adjusted
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national average. The proportional rates model of Lin, Wei, Yang, and Ying (2000)

is widely used for the analysis of recurrent event data, due to flexibility and its ease

of implementation. The method proposed by Lin et al. (2000) assumes that subjects

are independent units. To account for within cluster correlation, Schaubel and Cai

(2005) proposed two semiparametric proportional rates models for clustered recur-

rent event data with 1) common baseline rates and 2) cluster specific baseline rates.

When the estimation of center effects for recurrent event data is of interest, one might

consider multiplicative center effects in the common baseline rates model of Schaubel

and Cai (2005). We will discuss this model in detail in the next section. Due to the

large number of facilities in the motivating example, traditional estimation methods

that treat centers as categorical variables have many parameters and are thus often

not feasible to implement; especially with a large number of distinct recurrent event

times. In order to circumvent this problem, we propose a new estimation method

for FEMs for recurrent event data, which is based on the ratio of center-specific ob-

served to expected numbers of recurrent events. The proposed methods can also be

generalized to a model in which a terminal event (e.g. death) is also present.

This chapter is organized as follows. We specify fixed center effects models (Sec-

tion 4.2); describe the estimation method (Section 4.3); derive pertinent theoretical

properties of the proposed methods (Section 4.4); assess the performance of the pro-

posed estimators and compare them with those obtained from the traditional esti-

mation method (Section 4.5); apply the proposed method to the motivating example

(Section 4.6); and conclude the chapter with some discussion (Section 4.7).
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4.2 Fixed Center Effect Model

Let N∗(t) denote the number of events that occur over interval (0, t] . Let Z(t) be

a p-vector of external covariates (Kalbfleisch and Prentice, 2002). Let k = 1, . . . , K

index the centers which are assumed to be independent of each other with center size

nk and let n =
∑K

k=1 nk be the population size. Let G be the center index. Assuming

a multiplicative center effect on the rates of the counting process N∗(t), the fixed

center effects proportional rates model can be specified as

E{dN∗(t)|G = k, Z(t)} = exp{β∗T
0Z(t)}θ∗kdµ

∗
0(t),(4.1)

where β∗
0 is an unknown p-vector of regression parameters, µ∗

0(t) is an unspecified

baseline cumulative rate function, and θ∗k represents the fixed center effects for the

k-th center, k = 1, . . . , K. The θ∗k’s are positive valued parameters which, for identi-

fiability, are subject to the constraint
∑K

k=1 wkθ
∗
k = 1, for some pre-specified weight

wk, k = 1, . . . , K. Thus, θ∗k can be interpreted as the center effect relative to this

weighted average.

When a terminal event (death) is present, the recurrent event process stops at

the terminal event (death) time D. Analogous to model (4.1), a partial marginal

model (e.g. Cook and Lawless, 1997; Ye, Kalbfleisch, and Schaubel, 2007) with fixed

center effects is considered. This specifies the occurrence rates for subject in the kth

center conditional on being alive as

E{dN∗(t)|G = k, Z(t), D ≥ t} = exp{βT
0 Z(t)}θkdµ0(t).(4.2)

A constraint on the θk’s, such as
∑K

k=1 wkθk = 1 with known weight terms wk, is

again necessary for the identifiability of µ0(t).

One may notice that by letting D → ∞, model (4.2) reduces to model (4.1).
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Thus, we emphasize model (4.2) henceforth with estimation and inference under

model (4.1) being similar to model (4.2).

Another FEM incorporates center effects within the exponential function as

E{dN∗(t)|G = k, Z(t), D ≥ t} = exp{ηk + βT
0 Z(t)}dµ0(t),(4.3)

where ηk denote center effects with exp(ηk) = θk. Model (4.3) is equivalent to model

(4.2), but this form is used more frequently due to the fact that ηk in model (4.3)

can be estimated directly together with the regression parameters β0. The drawback,

however, is the large dimension of the parameter space when the number of centers

are large. In addition, the estimates of ηk’s can be −∞ which plays havoc with

standardization. In the next section, we propose a new estimator for center effects

θk under model (4.2) without increasing the dimension of the design matrix as the

number of centers increases. We also derive an alternative estimator based on the

commonly used estimator for ηk so that it is comparable to θ̂k, i.e., it is relative to

the same reference.

In the following, we specify the independent left truncation and right censoring

assumption. In many applications, subjects may enter the study at different stages

of follow-up and be followed for a limited time. Thus, N∗(t) may not be fully

observed before D. Let B and C denote the left truncation and right censoring

time respectively. Define the at risk process Y (t) = I(B < t ≤ C ∧ D) with

a ∧ b = min(a, b). The observed cumulative number of events as of time t is N(t) =

∫ t

0
Y (s)dN∗(s). Under the assumption that N∗(t) is subject to independent left

truncation and right censoring, which can be specified as

E{dN∗(t)|G = k, Z(t), Y (t) = 1} = E{dN∗(t)|G = k, Z(t), D ≥ t},
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we have that

E{dN(t)|G = k, Z(t), Y (t)} = Y (t) exp{βT
0 Z(t)}θkdµ0(t).(4.4)

4.3 Estimation Methods

In this section, we propose new methods for estimating fixed center effects, θk,

based on the ratio of the observed number of recurrent events to that expected

under model (4.2). One may notice that model (4.2) is actually a special case of

cluster-specific proportional rates model with dµ0k(t) = θkdµ0(t). Schaubel and

Cai (2005) studied the cluster-specific proportional rates model for recurrent event

data. With the estimators for β and µ0k(t) as in Schaubel and Cai (2005), one is

then able to obtain an estimator for µ0(t) based on the constraint of θk specified

in Section 4.2. An estimator of θk follows by replacing the true values with the

corresponding estimators for β and µ0k(t) in the expected number of recurrent events

for center k. To compare with the proposed estimators, we consider transforming

the commonly used estimators for ηk from model (4.3). After transformation, the

familiar estimators have the same reference level as the proposed estimators.

We begin by defining the following relevant notation. For subject i (i = 1, . . . , n),

let Ni(t), Yi(t), Zi(t), Gi, Bi and Ci be as defined above. Let Gik = I(Gi = k),

where I(·) is an indicator function. In addition, let Yik(t) = GikYi(t) and dNik(t) =

GikdNi(t). We assume that {Ni(t), Yi(t), Zi(t), Gi}
n
i=1 are independent and identically

distributed. For d = 0, 1, 2 and k = 1, . . . , K, let

S
(d)
k (β, t) = n−1

n∑

i=1

Yik(t)Zi(t)
⊗d exp{βTZi(t)},

Zk(β, t) = S
(1)
k (β, t)/S

(0)
k (β, t),

Vk(β, t) = S
(2)
k (β, t)/S

(0)
k (β, t)− Zk(β, t)

⊗2
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where a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT for a vector a.

Under the independent left truncation and right censoring assumptions, one can

see that the score function is

U(β) =
n∑

i=1

K∑

k=1

∫ τ

0

{Zi(t) − Zk(β, t)}dMik(t),(4.5)

where

dMik(t) = dNik(t)− Yik(t) exp{βT
0 Zi(t)}θkdµ0(t).

We can simplify (4.5) to

U(β) =
n∑

i=1

K∑

k=1

∫ τ

0

{Zi(t) − Zk(β, t)}dNik(t),(4.6)

and thus an estimator β̂ of β can be obtained by solving U(β) = 0. Schaubel and

Cai (2005) derived the large sample properties for β̂ under the setting that K → ∞.

Theoretical results for β̂ under the setting that n→ ∞ can be obtained similarly.

The Breslow-Aalen-type estimators of µ0k(t) = θkµ0(t) for k = 1, . . . , K are given

by

µ̂0k(t)(β̂, t) = n−1
n∑

i=1

∫ t

0

dNik(s)

S
(0)
k (β̂, s)

.

With µ0k(t) = θkµ0(t), our chief interest is focused on µ0(t) and θk, k = 1, . . . , K.

Under the constraint for the θk’s in model (4.2),
K∑

k=1

wkθk = 1, it follows that

K∑

k=1

{wkθkµ0(t)} = µ0(t).

Therefore, a natural estimator of µ0(t) is

µ̂0(β̂, t) =
K∑

k=1

wkµ̂0k(β̂, t).(4.7)

Next, we consider estimation for θk in model (4.2). From (4.4), we have that

E{dNik(t)|Gi = k, Zi(t), Yik(t)} = Yik(t) exp{βT
0 Zi(t)}θkdµ0(t).
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It then follows by summing over n on both sides of the above equation that

n∑

i=1

E{dNik(t)|Gi = k, Zi(t), Yik(t)} = θkdµ0(t)nS
(0)
k (β0, t).

Thus, a natural estimator for θk is

θ̂k =
Nk(τ )∫ τ

0
S

(0)
k (β̂, t)dµ̂0(β̂, t)

,(4.8)

where Nk(τ ) = n−1
∑n

i=1

∫ τ

0
dNik(t) = n−1

∑n
i=1 Nik(τ ). This estimator θ̂k has a

standardized ratio format. Specifically, the numerator is the observed number of

events up to time τ , while the denominator is the estimated expected number of

events based on a (weighted) average center effect for subjects with characteristics

and at-risk patterns observed in the kth center.

Finally, we consider an alternative estimator based directly on the model (4.3).

In order to avoid identifiability issues, investigators usually choose a reference center

and estimate the difference between the selected center effects and the reference

level. With center r as the reference center, the estimators η̃k from model (4.3) can

be thought of as estimating ηk − ηr with η̃r = 0. Since the reference level under

model (4.2) is
∑K

k=1 wkθk and exp(ηk) = θk, an alternative estimator for θk is

θ̃k =
exp(η̃k + ηr)∑K

k=1 wk exp(η̃k + ηr)
.

This estimator can be written as

θ̃k = fk(η̃
r),(4.9)

where η̃r = (η̃1, . . . , η̃K)T and

fk(x1, . . . , xK) =
exp(xk)∑K

k=1 wk exp(xk)
.
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4.4 Asymptotic Results

To derive large sample properties of the parameters of interest, we first impose

the following regularity conditions for i = 1, . . . , n and k = 1, . . . , K.

(a) {Ni(t), Yi(t), Zi(t), Gi}
n
i=1 are independent and identically distributed;

(b) E{Yi(t)} > 0, for all t ∈ (0, τ ];

(c) Nik(τ ) are bounded;

(d) Zi(·) have bounded total variations, i.e. |Zji(0)|+
∫ τ

0
|dZji(t)| < cZ <∞ for all

j = 1, . . . , p, where Zji(·) is the jth component of Zi(·) and cZ is a constant;

(e) µ0(τ ) is bounded;

(f) P{Gi = k} > 0;

(g) There exists a neighborhood B of β0 such that the following hold. For d = 0, 1, 2

and k = 1, . . . , K, s
(d)
k (β, t) is a continuous function of β ∈ B uniformly in

t ∈ [0, τ ], where s
(d)
k (β, t) is the limiting values of S

(d)
k (β, t); functions s

(1)
k (β, t)

and s
(2)
k (β, t) are bounded and s

(0)
k (β, t) is bounded away from 0 on B × [0, τ ]

with

s
(1)
k (β, t) =

∂

∂β
s
(0)
k (β, t), s

(2)
k (β, t) =

∂2

∂β∂βT
s
(0)
k (β, t).

(h) Positive-definiteness of the matrix

A =
K∑

k=1

∫ τ

0

vk(β0, t)s
(0)
k (β0, t)θkdµ0(t),

where vk(β, t) = s
(2)
k (β, t)/s

(0)
k (β, t)−z̄k(β, t)

⊗2 and z̄k(β, t) = s
(1)
k (β, t)/s

(0)
k (β, t).

We now describe the asymptotic property of µ̂0(β̂, t).
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Theorem IV.1. Under regularity conditions (a) − (h), µ̂0(β̂, t) converges almost

surely to µ0(t), uniformly in t ∈ [0, τ ]; n1/2{µ̂0(β̂, t)−µ0(t)} converges in distribution

to a Gaussian process with covariance function ξ(s, t) = E{Φi(β0, s)Φi(β0, t)}, where

Φi(β, t) = h(β, t)TA−1Ψ1i(β) + Ψ2i(β, t),

h(β, t) = −
K∑

k=1

wk

∫ t

0

z̄k(β, s)θkdµ0(s),

Ψ1i(β) =

K∑

k=1

∫ τ

0

{Zi(t) − z̄k(β, t)}dMik(t)

Ψ2i(β, t) =
K∑

k=1

wk

∫ t

0

s
(0)
k (β, s)−1dMik(β, s),

Mik(β, t) = Nik(t) −

∫ t

0

Yik(s) exp{βTZi(s)}θkdµ0(s).

In the Appendix, we prove that ξ(s, t) can be consistently estimated by ξ̂(s, t),

where ξ̂(s, t) = n−1
∑n

i=1{Φ̂i(β̂, s)Φ̂i(β̂, t)} with Φ̂i(β̂, t) obtained by replacing all

limiting values in Φi(β0, t) with their empirical counterparts and replacing θkµ0(t)

with µ̂0k(β̂, t).

Next, we establish the asymptotic property for θ̂k.

Theorem IV.2. For k = 1, . . . , K, under conditions (a)−(h), θ̂k → θk almost surely

as n → ∞; n1/2(θ̂k − θk) is asymptotically normally distributed with mean zero and

covariance ΣP
k = E{Γki(β0)

2}, where

Γki(β0) = P 1
ki(β0) + P 2

ki(β0) + P 3
ki(β0),

P 1
ki(β0) = −θ2

ko
−1
k

{∫ τ

0

s
(1)
k (β0, t)dµ0(t) +

∫ τ

0

s
(0)
k (β0, t)dh(β0, t)

}T

A−1Ψ1i(β0),

P 2
ki(β0) = −θ2

ko
−1
k

∫ τ

0

s
(0)
k (β0, t)dΨ2i(β0, t),

P 3
ki(β0) = θko

−1
k

∫ τ

0

dMik(β0, t)

with ok = lim
n→∞

N̄k(τ ) and N̄k(τ ) = n−1Nk(τ ).
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In the Appendix, we prove that Σk can be consistently estimated by Σ̂k, where

Σ̂k = n−1
∑n

i=1 Γ̂ki(β̂)2 with Γ̂ki(β̂) obtained by replacing all limiting values in Γki(β0)

with their empirical counterparts and replacing θkµ0(t) with µ̂0k(β̂, t).

The consistency of θ̃k follows from the Slutsky’s theorem and the known large

sample properties of the regression parameters under the proportional rates model

(Lin et al., 2000). Its asymptotic distribution can be obtained using the delta method.

Specifically, let θ = (θ1, . . . , θK)T and θ̃ be the corresponding estimator. It can be

easily shown that n1/2(θ̃ − θ) converges to a K-variate normal vector with mean

zero and a covariance matrix, which can be estimated as Σ̃ = Q̃T Ω̃Q̃, where Q̃ is

a K × (K − 1) matrix with the k-th row equal to the partial derivative of fk(η̃
r)

(omitting the r-th argument) and Ω̃ is the consistent estimator of the asymptotic

covariance matrix for η̃, where η̃ is a (K− 1)-vector without the r-th element in η̃r.

Comparison between center effects is another point of interest in FEM. If one

wants to compare center effects θk and θl, the null hypothesis is H0 : θk = θl. We

consider three test statistics with one based on the proposed method (PM) and

two based on the commonly used method (CM). For PM, one can first obtain the

asymptotic distribution for n1/2(θ̂ − θ), where θ̂ denotes the estimators for θ from

PM. According to Theorem IV.2, n1/2(θ̂−θ) converges to a K-variate normal vector

with mean zero and covariance matrix Σ = E{Γ1(β0)
2}, where Γ1 is a K-vector

with the kth element equal to Γk1(β0). It can be easily shown that Σ̂, a consistent

estimator for Σ, can be obtained similarly to Σ̂k for Σk. The test statistic is then

T1 = eT
kl(θ̂ − θ)/(n−1eT

kl Σ̂ ekl)
1/2 for the one-sided test and T 2

1 for the two-sided,

where ekl is a K-vector with the k-th element equal to 1, the l-th element equal to

-1 and the rest K − 2 elements equal to 0. For CM, two test statistics are available.

One is based on the transformed estimator θ̃, and is T2 = eT
kl(θ̃−θ)/(n−1eT

kl Σ̃ ekl)
1/2
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for the one-sided and T 2
2 for the two-sided. The other one is the Wald statistic for

η̃k, the estimator for ηk − ηl obtained from CM with reference center l. This yields

T3 = eT
k (η̃ − η)/(n−1eT

k Ω̃ ek)
1/2 for the one-sided test and T 2

3 for the two-sided,

where η is the true value of η̃ and ek is a (K − 1)-vector with k-th element equal to

1 and the rest equal to 0.

4.5 Simulation

In this section, we assess the finite sample properties of the proposed estimator

θ̂k through a series of simulation studies. Recurrent event data are simulated from

the conditional Poisson model

E{dN∗
ik(t)|Gi = k, Zi, Di ≥ t,Wi} = Wi exp{βT

0 Zi}θkdµ0(t),(4.10)

where Wi follows a gamma distribution with mean 1 and variance 0.5, Zi follows

a Bernoulli distribution with P (Zi = 1) = 0.5, β0 = 0.5, and µ0(t) = 0.5t. The

censoring time is fixed at 3 and the death time Di ∼ U(0, 9). For the first 12

centers, we consider the combination of θk = 0.5, 1, 1.5 and nk = 20, 50, 100, 200.

The remaining centers have center size of 50 and center effect alternating among

0.5, 1, and 1.5. The total number of centers is always a multiple of three so that

the weighted averaged center effect equals to 1 with weights wk = 1/K. Obviously,

model (4.10) satisfies model (4.2). We consider K = 30, 60, 150.

We then compare the two estimators (4.8) and (4.9) from PM and CM respec-

tively. The results shown in Table 4.1 are based on 1000 replicates. We report the

bias of the sampling mean of the estimators (BIAS), the averaged standard error

estimators (ASE), the empirical standard deviation of the estimators (ESD) and the

95% coverage probability (CP) for both θ̂k and θ̃k, k = 1, . . . , 12. In the last column,

we report the asymptotic relative efficiency of θ̃k with respect to θ̂k (ARE), which
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is calculated as the ratio of the squared ESD(θ̂k) to the squared ESD(θ̃k). There

is very little difference between the two estimators at least in the cases considered.

Both are unbiased and CPs become accurate as the center size increases. The results

with K = 150 are similar to K = 60 and are not shown. As expected, the pro-

posed estimator does not overperform the commonly used estimator since the partial

likelihood estimator is semiparametric efficient. However, the proposed estimator is

considerably more efficient in terms of computational time, which is important when

the number of centers is very large. The times to compute 1000 replicates for PM

and CM are respectively 1.5 hours and 4 hours when K = 30, 2.5 hours and 17.33

hours when K = 60, and 8 hours and 150 hours when K = 150. The advantage of

PM becomes increasingly pronounced as the number of centers increases (note: the

ESRD database for the motivating example has >5000 centers). This is due to the

fact that for PM, the dimension of the parameter space does not change with the

number of centers, while it does change under CM. Another important advantage of

the PM estimates is its observed-to-expected structure, which is simple to describe

to non-statisticians.

In the second simulation study, we compare the two estimators when the recurrent

events and the terminating event are correlated. Specifically, we simulateDi = WiD
1
i

with D1
i ∼ U(0, 9). We keep the rest settings the same as the first simulation study.

The results based on 1000 replicates are shown in Table 4.2. Similar to the first

simulation study, both estimators are unbiased with closed ESDs and ASEs. The

CPs becomes closer to the nominal value as center size increases. Again, there is

little difference between the two estimators except that PM has remarkably shorter

computation time.
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Table 4.1: Results of the first simulation study with β = 0.5, µ0k(t) = 0.5t and 1000 replicates comparing θ̂k and θ̃k.

PM(θ̂k) CM(θ̃k)
K nk θk BIAS ASE ESD CP BIAS ASE ESD CP ARE
30 20 0.5 -0.002 0.140 0.154 0.892 -0.002 0.140 0.154 0.895 1.000

1 -0.002 0.221 0.236 0.907 -0.002 0.222 0.236 0.908 0.991
1.5 -0.012 0.295 0.323 0.903 -0.012 0.296 0.323 0.903 0.993

50 0.5 -0.001 0.092 0.095 0.931 -0.001 0.092 0.095 0.929 1.000
1 -0.004 0.146 0.146 0.930 -0.004 0.146 0.146 0.930 1.000
1.5 -0.001 0.198 0.208 0.926 -0.001 0.199 0.208 0.925 0.990

100 0.5 0.002 0.067 0.067 0.950 0.002 0.067 0.067 0.951 1.000
1 0.004 0.108 0.102 0.959 0.004 0.108 0.102 0.957 1.000
1.5 -0.010 0.145 0.150 0.935 -0.010 0.145 0.150 0.935 1.000

200 0.5 0.001 0.049 0.047 0.946 0.000 0.049 0.047 0.946 1.000
1 0.008 0.080 0.085 0.942 0.008 0.080 0.085 0.942 1.000
1.5 0.000 0.108 0.107 0.947 0.000 0.108 0.107 0.946 1.000

60 20 0.5 -0.002 0.141 0.155 0.892 -0.002 0.141 0.155 0.893 1.000
1 -0.002 0.225 0.240 0.908 -0.002 0.226 0.240 0.910 0.991
1.5 -0.011 0.301 0.329 0.909 -0.011 0.302 0.329 0.910 0.993

50 0.5 -0.002 0.092 0.095 0.930 -0.001 0.092 0.095 0.930 1.000
1 -0.004 0.147 0.148 0.929 -0.004 0.147 0.148 0.929 1.000
1.5 -0.001 0.201 0.213 0.922 -0.001 0.201 0.213 0.923 1.000

100 0.5 0.002 0.067 0.067 0.945 0.002 0.067 0.067 0.946 1.000
1 0.003 0.108 0.102 0.961 0.003 0.108 0.102 0.960 1.000
1.5 -0.011 0.146 0.150 0.939 -0.011 0.146 0.150 0.938 1.000

200 0.5 0.000 0.048 0.046 0.952 0.000 0.048 0.046 0.952 1.000
1 0.007 0.078 0.084 0.947 0.007 0.078 0.084 0.945 1.000
1.5 -0.001 0.106 0.105 0.944 -0.001 0.106 0.105 0.946 1.000
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Table 4.2: Results of the second simulation study with β = 0.5, µ0k(t) = 0.5t and 1000 replicates comparing θ̂k and θ̃k.

PM(θ̂k) CM(θ̃k)
K nk θk BIAS ASE ESD CP BIAS ASE ESD CP ARE
30 20 0.5 -0.001 0.135 0.149 0.893 -0.001 0.136 0.149 0.892 0.985

1 -0.000 0.210 0.228 0.906 0.001 0.211 0.228 0.907 0.991
1.5 -0.018 0.279 0.304 0.896 -0.016 0.280 0.305 0.898 0.993

50 0.5 -0.003 0.089 0.093 0.924 -0.003 0.089 0.093 0.925 1.000
1 -0.005 0.139 0.137 0.941 -0.003 0.139 0.138 0.939 1.000
1.5 -0.005 0.185 0.199 0.919 -0.003 0.186 0.199 0.919 0.989

100 0.5 0.005 0.065 0.066 0.934 0.006 0.065 0.066 0.933 1.000
1 0.004 0.104 0.103 0.943 0.006 0.104 0.104 0.943 1.000
1.5 -0.006 0.138 0.138 0.948 -0.004 0.138 0.138 0.951 1.000

200 0.5 0.001 0.047 0.047 0.942 0.002 0.047 0.047 0.940 1.000
1 0.008 0.076 0.078 0.942 0.009 0.076 0.078 0.940 1.000
1.5 -0.004 0.102 0.102 0.952 -0.002 0.102 0.102 0.953 1.000

60 20 0.5 -0.001 0.136 0.150 0.892 -0.001 0.136 0.150 0.893 1.000
1 0.000 0.213 0.232 0.907 0.001 0.214 0.232 0.911 0.991
1.5 -0.017 0.285 0.309 0.895 -0.015 0.287 0.310 0.896 0.986

50 0.5 -0.004 0.089 0.093 0.921 -0.003 0.089 0.093 0.923 1.000
1 -0.005 0.140 0.139 0.940 -0.004 0.140 0.139 0.939 1.000
1.5 -0.005 0.188 0.204 0.905 -0.003 0.188 0.204 0.907 1.000

100 0.5 0.005 0.065 0.066 0.932 0.006 0.065 0.066 0.933 1.000
1 0.004 0.103 0.104 0.943 0.005 0.104 0.104 0.943 0.981
1.5 -0.006 0.138 0.140 0.948 -0.004 0.138 0.141 0.947 1.000

200 0.5 0.001 0.047 0.046 0.944 0.002 0.047 0.046 0.944 1.000
1 0.007 0.075 0.076 0.939 0.008 0.075 0.077 0.939 1.000
1.5 -0.005 0.100 0.100 0.948 -0.003 0.101 0.100 0.945 1.000
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4.6 Application

In this section, we apply the fixed center effects model to the dialysis patients

hospital admission study and estimate the center effects using the proposed method.

The hospital admission records are obtained using both national end-stage renal

disease (ESRD) registry data and that from the Centers for Medicare and Medi-

card Services (CMS). Patients are included in the study on day 91 since diagnosis

of ESRD in order to assure that most patients are eligible for Medicare insurance

either as their primary or secondary insurer. For illustrative purposes, we analyze

hospital admission from dialysis patients treated in Michigan dialysis facilities in

2008. Therefore, the data are subject to left truncation (Jan. 1, 2008), a terminat-

ing event (death), and right censoring (Dec. 31, 2008 and loss to follow-up). In 2008,

there were 8,204 dialysis patients treated in 173 Medicare-certified dialysis facilities

in Michigan, with facility sizes ranging from 1 to 187 patients. Times of hospital

admissions are recorded for each patient and are measured in days. The average

number of hospital admissions per patient was 2.7.

We adjust for the following patient characteristics: age, race, gender, ethnicity

and diabetes status. Patient age is categorized as 0-14, 15-24, 25-44, 45-59, 60-74,

and ≥75. Race is classified as African-American, Caucasian, Asian, Native-American

and other. Ethnicity includes 3 levels, Hispanic, non-Hispanic and missing/unknown.

Similarly, diabetes status was represented by three levels: diabetic, non-diabetic

and missing/unknown. Under the proposed method, we estimate the center effects

relative to the weighted average of center effect with the weights defined as the

sampling proportion of each facility (nk/n). In figure 4.1, the estimated effects and

the p-value from the one-sided test H0 : θk > 1.2 are plotted. There are 9 (5%)
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Figure 4.1: Scatter plot of estimated center effect from PM and the corresponding
p-value for H0 : θk > 1.2.

centers flagged with p-value less than 0.05.

4.7 Discussion

In this chapter, we proposed an alternative estimator for center effects in the fixed

center effects proportional rates model for recurrent event data. Both the absence

and the presence of a terminal event are considered. The new estimator is the ratio of

the observed recurrent events and the expected quantity based on a weighted average

center effect and the same patient mix. The new estimator performs as well as the
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commonly used estimator which is obtained by including parameter for centers in

the regression parameters and transforming accordingly. The proposed estimation

procedure is computationally more efficient, since the dimension of the regression

parameter space only depends on the number of adjusting covariates. When the

number of centers is large, such as large registry studies, the commonly used method

may not be computationally feasible. In this case, particularly, one may consider

the usage of the proposed estimator for evaluation of center effects. In addition,

the standardization with respect to this multiplicative center effect θk instead of

the additive center effect ηk within the exponential form avoids the problems when

ηk = −∞.

It should be noted that the interpretation of the center effect θk is relative to the

weighted average center effect, which is constrained to be 1 in Section 4.2 for the

purpose of identifiability. When the weight changes, the interpretation should also

changes accordingly.

Another possible estimation method is based on the population averaged model,

which can be obtained from (4.2) by integrating out G as

E{dN∗(t)|Z(t), D ≥ t} = exp{βT
0 Z(t)}dµ0(t)

K∑

k=1

θkP{G = k|Z(t), D ≥ t}.

If the distribution of G does not depend on patient characteristics and whether the

patient is alive, i.e. P{G = k|Z(t), D ≥ t} = P{G = k}, the population averaged

model still keeps the proportional rates format as

E{dN∗(t)|Z(t), D ≥ t} = exp{βT
0 Z(t)}dµ∗

0(t),(4.11)

where dµ∗
0(t) = dµ0(t)

∑K
k=1 θ

∗
kP{G = k} = dµ0(t) under the constraint that

∑K
k=1 θkP{G = k} = 1. An estimator for µ0(t) can be obtained from the marginal

model with β̂TZ(t) as an offset. An estimator for θk can then be obtained similar
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to θ̂k. Under this condition, dµ0(t) can be interpreted as the population averaged

baseline rate function, and θk can be interpreted as the center effect relative to the

population level. If, in practice, the distribution of G does not depend on Z(t) and

is a constant over time, this estimator could be used without specifying the weight

terms. For the motivating study, however, this condition may not be satisfied. For

example, pediatric dialysis patients might more likely receive treatment from pedi-

atric dialysis units.

The proposed method can be easily extended to the fixed center effects propor-

tional hazards model for failure time data. Similarly, it can also be extended to other

semiparametric models with appropriate constraint on the fixed center effects.

4.8 Appendix

4.8.1 Proof of Theorem IV.1

Consistency of µ̂0(β̂, t)

Let φ0(t) = µ̂0(β̂, t)− µ0(t) = φ1(t) + φ2(t), where φ1(t) = µ̂0(β̂, t)− µ̂0(β, t) and

φ2(t) = µ̂0(β0, t) − µ0(t). By the triangle inequality,

sup
t∈[0,τ ]

|φ0(t)| ≤ sup
t∈[0,τ ]

|φ1(t)| + sup
t∈[0,τ ]

|φ2(t)|.(4.12)

A Taylor series expansion of

φ1(t) = n−1

n∑

i=1

K∑

k=1

wk

{∫ t

0

dNik(s)

S
(0)
k (β̂, s)

−

∫ t

0

dNik(s)

S
(0)
k (β0, s)

}

yields

φ1(t) = H(β†, t)T (β̂ − β0) + op(n
−1/2),

where β† lies in the line segment between β̂ and β0 and H(β, t) = n−1
∑n

i=1 Hi(β, t)

with

Hi(β, t) = −
K∑

k=1

wk

∫ t

0

Z̄k(β, s)

S
(0)
k (β, s)

dNik(s).
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Since Nik(s), S
(1)
k (β, s) are bounded and S

(0)
k (β, s) is bounded away from 0 for β ∈ B

and s ∈ [0, τ ] as n → ∞, it folows that H(β, t) = n−1
∑n

i=1 Hi(β, t) is bounded for

sufficiently large n. Since β̂
a.s.
→ β0 as n→ ∞, it follows that

sup
t∈[0,τ ]

|φ1(t)|
a.s.
→ 0.(4.13)

Further, since
∑K

k=1 wkθk = 1, we find

φ2(t) =

K∑

k=1

wk

{
n∑

i=1

∫ t

0

dNik(s)

nS
(0)
k (β0, s)

− θkµ0(t)

}

=
K∑

k=1

wk

n∑

i=1

∫ t

0

dNik(s) − Yik(s) exp{βT
0 Zi(s)}θkdµ0(s)

nS
(0)
k (β0, s)

= n−1

n∑

i=1

K∑

k=1

wk

∫ t

0

dMik(β0, s)

S
(0)
k (β0, s)

.

Since S
(0)
k (β0, s) is bounded away from 0 and n−1

∑n
i=1

∑K
k=1 Mik(β0, s)

a.s.
→ 0 by the

Strong Law of Large Numbers (SLLN) as n→ ∞ for s ∈ [0, τ ] , we have that

sup
t∈[0,τ ]

|φ2(t)|
a.s.
→ 0.(4.14)

The uniform consistency of µ̂0(β̂, t) follows from (4.12), (4.13) and (4.14).

Weak Convergence of µ̂0(β̂, t)

We now consider the process n1/2φ0(t) = n1/2φ1(t) + n1/2φ2(t). We see that

n1/2φ1(t) = H(β0, t)
Tn1/2(β̂ − β0) + op(1)

n1/2φ2(t) = n−1/2

n∑

i=1

Ψ̂2i(β0, t),

where Ψ̂2i(β0, t) =
∑K

k=1 wk

∫ t

0
S

(0)
k (β0, s)

−1dMik(β0, s).

Under conditions (a) − (g), it follows that sup
t∈[0,τ ]

|µ̂0k(β̂, t) − µ0k(t)|
a.s.
→ 0, k =

1, . . . , K, and H(β0, t)
a.s.
→ h(β0, t) for t ∈ [0, τ ].
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The partial likelihood score equation (4.6) can be written as

U(β) =
n∑

i=1

Ψ̂i(β),

Ψ̂1i(β) =

K∑

k=1

∫ τ

0

{Zi(t)− Z̄k(β, t)}dMik(t).

Under condition (e), Ψ̂1i(β) converges to Ψ1i(β) for i = 1, . . . , n. A Taylor series

expansion of the score equation at β = β̂ around β0 yields

U(β0) = Î(β0)(β̂ − β0) + op(n
−1/2),

Î(β0) =
n∑

i=1

K∑

k=1

∫ τ

0

Vik(t)dNik(t).

As n → ∞, n−1Î(β0)
a.s.
→ A, where A is the positive definite matrix defined in

condition (f). We can see that

n1/2φ1(t) = h(β0, t)
TA−1n−1/2

n∑

i=1

Ψ1i(β0) + op(1).(4.15)

Under condition (e), Ψ̂2i(β0, t) converges to Ψ2i(β0, t) for i = 1, . . . , n. Hence

n1/2φ2(t) =

n∑

i=1

Ψ2i(β0, t) + op(1).(4.16)

Combining (4.15) and (4.16), we see that n1/2φ0(t) = n−1/2
∑n

i=1 Φi(β0, t) + op(1),

which converges weakly to a Gaussian Process with covariance function ξ.

4.8.2 Proof of Theorem IV.2

Consistency of θ̂k

From (4.8),

θ̂k − θk =
n−1

∑n
i=1

∫ τ

0

[
dNik(t)− Yik(t) exp{β̂TZi(t)}θkdµ̂0(β̂, t)

]

∫ τ

0
S

(0)
k (β̂, t)dµ̂0(β̂, t)

.(4.17)

With the uniform consistency of β̂ and µ̂0(β̂, t) as n→ ∞,

n−1

n∑

i=1

{∫ τ

0

Yik(t) exp{β̂TZi(t)}θkdµ̂0(β̂, t) −

∫ τ

0

Yik(t) exp{βT
0 Zi(t)}θkdµ0(β, t)

}
a.s.
→ 0.
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In addition,

n−1

n∑

i=1

∫ τ

0

[
dNik(t) − Yik(t) exp{βT

0 Zi(t)}θkdµ0(β, t)
]

= n−1

n∑

i=1

∫ τ

0

dMik(β0, t)
a.s.
→ 0

by the SLLN as n → ∞. Hence the numerator in (4.17) converges almost surely to

0 as n → ∞. With the boundness condition (c) and (e), the denominator in (4.17)

is also bounded. Hence,

θ̂k − θk
a.s.
→ 0.

Weak convergence of θ̂k

Let ζk = θ−1
k and ζ̂k = θ̂−1

k for k = 1, . . . , K. In the following, we will first show

the asymptotic approximation of n1/2(ζ̂k − ηk) and then use the delta method to

obtain the asymptotic properties for n1/2(θ̂k − θk). Since

n1/2(η̂k − ηk) = n1/2

{
N̄k(τ )

−1

∫ τ

0

S
(0)
k (β̂, t)dµ̂0(β̂, t) − θ−1

k

}

= n1/2N̄k(τ )
−1θ−1

k

∫ τ

0

{
S

(0)
k (β̂, t)θkdµ̂0(β̂, t) − dN̄k(t)

}
,

n1/2(η̂k − ηk) can be decomposed into three terms as

n1/2(η̂k − ηk) = n1/2N̄k(τ )
−1

∫ τ

0

{
S

(0)
k (β̂, t)dµ̂0(β̂, t) − S

(0)
k (β0, t)dµ̂0(β0, t)

}

+ n1/2N̄k(τ )
−1

∫ τ

0

S
(0)
k (β0, t) {dµ̂0(β0, t) − dµ0(t)}

+ n1/2N̄k(τ )
−1θ−1

k

∫ τ

0

{
S

(0)
k (β0, t)θkdµ0(t) − dN̄k(t)

}
.

(4.18)

A Taylor series expansion of the first term of the right-hand side of equation (4.18)

equals

n1/2N̄k(τ )
−1

{∫ τ

0

S
(1)
k (β†, t)dµ̂0(β

†, t) +

∫ τ

0

S
(0)
k (β†, t)dH(β†, t)

}T

(β̂ − β0),

where β† is on the line segment between β̂ and β0. With the results in 4.8.1, condition

(e) and the uniform consistency of β̂ and µ̂0(β̂, t), the first term of the right-hand

side of equation (4.18) equals
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(4.19) n−1/2o−1
k

{∫ τ

0

s
(1)
k (β0, t)dµ0(t) +

∫ τ

0

s
(0)
k (β0, t)dh(β0, t)

}T

× A−1
n∑

i=1

Ψ1i(β0) + op(1).

With the results in (4.8.1) and condition (e), the second term of the right-hand

side of equation (4.18) equals

n−1/2o−1
k

n∑

i=1

∫ τ

0

s
(0)
k (β0, t)dΨ2i(β0, t) + op(1).(4.20)

The third term of the right-hand side of equation (4.18) equals

−n−1/2o−1
k θ−1

k

n∑

i=1

∫ τ

0

dMik(β0, t) + op(1).(4.21)

Combining (4.18), (4.19), (4.20) and (4.21), we see that

n1/2(η̂k − ηk) = n−1/2

n∑

i=1

−ζ2
kΓki(β0) + op(1).

Therefore, n1/2(η̂k − ηk) converges in distribution to a normal variable with mean 0

and variance is asymptotically E(ζ4Γki(β0)
2). Since θ̂k = 1/ζ̂k , applying the delta

method, we have that n1/2(θ̂k−θk) is asymptotically normally distributed with mean

0 and covariance Σk = E(Γki(β0)
2).



CHAPTER V

Conclusion

This dissertation proposes three novel methods for clustered event history data,

under the setting that the number of clusters are large relative to the sample size. Mo-

tivated by the real problems in kidney transplant data and hospitalization of dialysis

patients data in the U.S., the three papers not only address statistical problems, but

also contribute in meeting specific needs of answering clinical questions. Chapter II

investigates cluster effects on the variability of failure times under the proportional

hazards model. Chapter III proposes a computationally efficient proportional rates

model for clustered recurrent event data with cluster-specific piecewise-constant base-

line rate function, which can be fitted using standard statistical software. Chapter IV

addresses the estimation of fixed center effects under a proportional rates model for

recurrent event data when the number of centers is large, where the traditional esti-

mation method might not be feasible.

The consideration of covariate-dependent frailty in Chapter II is novel in that

it advocates cluster effects on the heterogeneity of the failure time distribution.

Through the use of a stratified Cox model and the “bridge” property of the pos-

itive stable distribution, the proposed estimation procedure avoids the calculation of

the conditional expectation of the frailties, which may not be feasible when cluster
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sizes are large. Chapter III and Chapter IV target the computation difficulties for

recurrent event data from a large registry study. Chapter III considers the situa-

tion when the number of distinct recurrent event times is large, i.e. high occurrence

rates. By measuring the time at risk and the counts of the recurrent events within

certain pre-specified intervals, calculations are carried out only at the cut-points of

those intervals. This interval-grouping method reduces the data storage volume and

makes the estimation feasible for recurrent event data with high occurrence rates.

Chapter IV considers the situation when the number of centers is large and proposes

a new estimator for fixed center effects, which performs as well as the traditional

estimator, but is much more efficient in terms of computation.

Applying the method in Chapter II on the national kidney transplant data, we

found that lower percentage of female patients in a facility is associated with greater

heterogeneity in facility performance. For the study of hospitalization days of Medi-

care dialysis patients in the U.S., we collect the number of hospital days and the time

at risk within intervals defined by 6 months, 1 year, 2 year2, 3 years, and 5 years since

90 days of diagnosis ESRD for each Medicare dialysis patients. Using the method in

Chapter III with facility-specific baseline rate functions, we obtained the effects of

gender, race, ethnicity, diabetes, BMI and whether patients stayed in nursing home

in the previous calendar year on the hospitalization rates. For the same study with

hospital admission as the measure of interests, we apply the method in Chapter IV

and evaluate center effects for 173 dialysis facilities in Michigan.

There are several possible extensions of the methods in this dissertation. For

method in Chapter II, one could develop models based on other frailty distribution.

Combining the methods in Chapter III and Chapter IV, we could develop methods

evaluating center effects for recurrent event data with both large number of centers
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and high occurrence rates. Another possible extension is to consider the marginal

model instead of partial marginal model in Chapter IV in the presence of a terminal

event. The corresponding fixed center effects then evaluate centers’ influence on the

occurrence rate averaging over mortality experience.
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