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Abstract 
Broadband THz imaging is an emerging technology with a plethora of promising 

applications in biological imaging, nondestructive testing, security screening, and process 

control.  Despite the inherent potential of THz technology, there are many factors that 

severely constrain THz systems from large-scale market introduction.  Most notable 

among these factors is the low power of THz emitters and the measurement speeds of 

THz imaging systems.  To live up to its enormous inherent potential, THz imaging has to 

dramatically increase its acquisition speed without compromising the signal to noise ratio 

(SNR) of the imaging system.  This thesis presents research in the area of inverse THz 

imaging architectures via model-based image reconstruction.  In inverse or indirect 

imaging, one can use a single point measurement system with a very high SNR to collect 

a fraction of the measurements needed in direct imaging modalities in order to 

reconstruct the object.   

This thesis begins by building on the initial work of time-reversal THz imaging, a 

simple inverse algorithm, by adapting a waveguide approach first pioneered in ultrasound 

to effectively increase the numerical aperture of the THz imaging system without 

compromising the acquisition speed of the system.  The waveguide approach was a 

success because of the 2.6 x improvement in intensity and the approximate 30% 

improvement in resolution while maintaining the same acquisition time.  The second part 

of the thesis presents the theoretical framework of model-based image reconstruction in 

the context of THz imaging.  Sophisticated algorithms based on this paradigm are 

developed for image reconstruction in both transmission-mode and reflection-mode THz 

systems and for both dielectric and metallic objects.  The reconstructed images via the 

model-based algorithms are shown to be significantly better both quantitatively and 

qualitatively than those obtained via the time-reversal technique.      
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Chapter 1 
Introduction 

On February 1, 2003 the world watched as the Columbia space shuttle disintegrated 

upon re-entry into the earth’s atmosphere, resulting in the death of all seven of its crew 

members [1].  The loss of Columbia is attributed to a piece of foam insulation the size of 

a small briefcase that broke off during launch and subsequently struck the leading edge of 

the left wing, damaging the shuttle’s thermal protection system [2].  The foam was 

dislodged as a result of disbonds or voids underneath it and one can only speculate on 

what might have transpired that day had NASA had the capability to image the insulation 

of the shuttle.  It is very plausible to think that a time-domain terahertz system in a 

backscatter configuration with the potential to penetrate and image tiny defects 

underneath the shuttle’s foam could have averted the shuttle’s tragic end. 

Several attractive properties of THz wave radiation have spurred decades of research 

to develop this frequency band for imaging.  One such property is terahertz’s ability to 

penetrate and image inside most dielectric materials, which may be opaque to visible 

light and or may be low contrast to X-rays, making it applicable to airport screening, 

manufacturing quality control and product inspection [3-5].  Terahertz radiation has low 

photon energies, a million times lower than X-ray photons, and therefore does not cause 

ionization of the biological tissue.  This attractive property makes THz systems 

particularly relevant in biomedical settings [6-7].  Lastly, the coherent time-domain 

mapping of the amplitude and phase of THz electric field provides THz systems with the 

capability of providing spectroscopic images unlike microwave and X-ray imaging 

modalities.   

Despite its unique properties and the potential it holds to shed new light on relatively 

unexplored areas, sensing and imaging with terahertz remains in its infancy with many 

challenges.  Various factors severely constrain the impact that terahertz technology can 
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have on our lives.  Several of these challenges, including signal to noise (SNR), 

acquisition rate, and resolution, reflect common problems in many THz systems [8].  

Current efforts to resolve these issues through higher power THz sources, higher 

sensitivity detectors, and improved understanding of the interaction between THz and 

matter are critical to advancing THz technology.   Equally important but largely 

overlooked is the development of high speed imaging architectures particularly through 

algorithms and signal processing tools that accurately processing THz data into quality 

images.  Hence the focus of this thesis is on advancing THz inverse imaging by 

developing the theoretical foundation for and the software needed to reconstruct quality 

THz images from scattered THz fields.  We begin by first providing a brief history of 

THz and THz imaging in order to specifically point out the challenges and hurdles faced 

by THz. 

History of THz and THz Imaging 

THz radiation, residing between microwave and infrared light, is defined by the 

frequency range of .1 to 10 THz.  Until recently, it has proven to be quite elusive because 

of it resistance to well established techniques from neighboring bands.  That is, it was 

difficult to efficiently generate and detect THz radiation.  On the generation side, most 

THz sources were either low-brightness emitters or single frequency molecular vapor 

lasers and detection usually relied on bolometeric methods which required cryogenic 

operation and generally provided low sensitivity [9, 10]. 
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Figure 1.1. The THz (T-ray) frequency range is situated between microwave 

frequencies and the infrared portion of the optical spectrum. 

   Recently, the field of THz has experienced revitalization because of newly discovered 

generation and detection schemes.  Equally important in the resurgence of THz science 

has been the demonstrated potential for advanced research and commercial applications 

of THz systems to numerous diverse fields including medical, semiconductors, 

manufacturing and defense.  One of the first important uses of terahertz radiation is in an 

optical technique called terahertz time-domain spectroscopy (THz-TDS) [11].  The 

central components of a THz-TDS system are a femtosecond laser and a specially 

designed emitter and detector.  By gating the emitter, on can generate THz transients on 

the order of sub-picoseconds and because the transients are nearly single cycle of the 

electromagnetic field, they span a very broad range of frequencies ≈ 100 GHz to 2 or 3 

THz are routine and more than 5 THz have been demonstrated [12].  The coherent 

detection of THz transients is orders of magnitude more sensitive than typical bolometric 

detection and requires no cooling of any kind [13, 14].     
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 Equally important as spectroscopic studies using THz-TDS systems is the application 

of THz radiation to imaging, which has lately garnered considerable attention.  The 

development of many imaging modalities based on THz radiation has been spurred in 

large part because of the unique properties of THz which makes it an attractive candidate 

for imaging in a wide range of applications.  Research in terahertz imaging, or T-ray 

imaging for short, have increased significantly since its first demonstration by Hu and 

Nuss in 1995 and it is expected that T-ray imaging will continue to grow and find new 

niche applications in a multitude of diverse fields  [15, 16].  Most of the T-ray imaging 

modalities developed are extensions of THz-TDS and therefore do not require any 

cryogenics or shielding for the detector.  Thus T-ray imaging systems have the potential 

to be portable, compact and robust enough for practical application in real world settings. 

T-raying imaging remains an immature technology with principle challenges.  Several 

of these key issues, including SNR, acquisition rate, and resolution reflect common issues 

confronting a number of direct T-ray imaging modalities.  Inverse THz imaging is a 

relatively new imaging modality which also has the potential to address the hurdles 

facing the field of THz.  Inverse imaging is largely an inverse problem and therefore 

requires sophisticated algorithms for image reconstruction.  Inverse problems in physics 

often pose questions such as, “Can one hear the shape of a drum?” [17].  The inverse 

method seeks to analyze scattered light to infer an object’s shape.  Typically in inverse 

problems, one considers the diffraction or scattering of narrow-band wave in the 

frequency domain.  However, in our inverse method we consider the scattering of 

broadband THz transients in the time domain for object reconstruction.  Prior to 

discussing both direct and inverse imaging modalities, we briefly discuss the critical 

issues facing the field of THz in more detail. 

Principle Challenges of THz Systems 

The lack of a high power, low cost, and portable THz source is the most significant 

limitation in THz systems.  The majority of broadband THz sources are based on the 

excitation of different materials with ultrashort pulses.  Conversion efficiencies for THz 

sources are very low (10−6), consequently average THz power tends to be very low as 

compared to the average power of the femtosecond laser.  Photoconductive and optical 
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rectification are two of the most common approaches for generating broadband THz 

pulses.  The physical mechanism for THz pulse generation in photoconductive antennas 

begins with an ultrafast laser pulse which creates electron-hold pairs in the 

photoconductor [18].  The free carriers then accelerate in the static bias field to form a 

transient photocurrent and this fast-varying current radiates electromagnetic waves. A 

conventional photoconductive emitter which is pumped by a Ti:sapphire oscillator 

typically achieves an average power on the order of 1 μW [19, 20]. Optical rectification is 

an alternative mechanism for broadband THz generation  [21, 22].  Again, femtosecond 

laser pulses are required but in contrast to photoconducting elements where the optical 

beam functions as a trigger, the energy of the THz radiation in the optical rectification 

comes directly from the laser pulse excitation.  The conversion efficiency in optical 

rectification depends on the material’s nonlinear coefficient and the phase matching 

condition.  Optical rectification is a second-order nonlinear effect which relies on an 

electro-optic crystal with non-zero order 𝜒(2) coefficient.  The pump pulse induces an 

ultrafast transient polarization, 𝑃(𝑡), which radiates THz.  The temporal THz pulse 

profile is given by the second time derivative of the polarization transient [23].   

A high power THz source will improve both the signal-to-noise ratio (SNR) and the 

dynamic range of imaging and sensing systems by providing the capability to penetrate 

deeper into strongly scattering or absorbing materials.  Furthermore, high power THz 

sources promise to drastically reduce the data acquisition time at current SNR, which 

opens up the possibility for real-time imaging of objects.  The typical power of 

broadband THz source, although is on the order of a 𝜇𝑊, can provide an SNR of 105 or 

higher for a single pixel detector [24].  However, for a detector array system for real-time 

2D imaging, the available THz power is spread over multiple detectors and the dynamic 

range and SNR are considerably reduced.  

Over the past 10 years, the THz power scaling has closely followed improvements to 

the pump lasers.  Further average power scaling for a conventional photoconductive 

emitter that is pumped by a Ti:sapphire oscillator is significantly impeded by saturation 

effects at low repetition rates, and thermal dissipation of the pump at higher repetition 

rates [25].  In contrast, optical rectification of a femtosecond pulse train in a nonlinear 

crystal offers much better THz power scalability [26-29].  One approach for THz power 
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scaling is to scale the pump laser to very low repetition rates and very high pulse 

energies.  In this scheme, the average pump power is held constant, 𝐼𝑝𝑢𝑚𝑝 = 1/𝑁𝑟𝑟, 

which leads to an overall inverse relationship with the system repetition rate.  This 

method has proven very successful at generating high average power THz pulses, 

however the low repetition rate prevents the use of many common noise reduction 

techniques [30].  

Charles Divin, a fellow research group member, has demonstrated a novel technique 

that scales by using a high-power, high-repetition-rate, pump laser in conjunction with 

long crystals fashioned into a waveguide.  By focusing on a system with a high repetition 

rate, he maintained the ability to use mature noise reduction techniques so that the system 

SNR scales with increasing power.  Furthermore, increasing the pump average power 

from a few watts to ten or one hundred watts requires transitioning from Ti:sapphire 

lasers to Yb-doped fiber systems.  For a 1 µm laser system, GaP has been theoretically 

demonstrated to be the optimal optical rectification crystal.  GaP offers many advantages 

over ZnTe, such as a broad velocity-matching bandwidth, absence of two-photon 

absorption at the pump wavelength, and negligible nonlinear refractive index effect.  At 

an optical power of 10 W, he was able to generate broadband THz pulses with an average 

power of 150 µW from a large waveguide and 120 µW from a narrower waveguide.  This 

represented a 12-15x improvement over a 1mm crystal [31]. 

 

Figure 1.2.  Shows the THz power dependence on pump pulse energy.  
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Another challenge faced by THz imaging systems is the signal to noise ratio.  This is 

inherently tied to the average power of the THz emitter.  In THz time domain 

spectroscopy systems, a very high SNR on the order of 105 can be achieved.  However, 

in imaging applications, a number of factors combine to dramatically reduce the SNR to 

the point where it becomes a limiting concern.  Some of these factors include the need to 

accelerate the imaging acquisition speed and the high absorption of many materials.  

Significant advances are required in the acquisition speed of THz systems in order to 

achieve real-time imaging.  Conventional THz imaging systems rely on scanning the 

sample in the 𝑥 and 𝑧 dimensions to obtain an image.  This places a severe limit on the 

available acquisition speed.  Recently, two-dimensional (2D) electro-optic sampling has 

been used together with a CCD camera to provide a dramatic increase in imaging speed.  

However, a lock-in-amplifier cannot be synchronized to multiple pixels resulting in a 

significant reduction in SNR as compared to scanned approach [32].  

Another challenge constraining THz imaging systems is the limited frequency 

bandwidth available to the system.  Ideally a THz imaging system would allow 

spectroscopic responses to be measured up into the infrared region.  This would not only 

allow broader signature to be observed but more importantly, for medical imaging, would 

reduce the potential for water attenuation, which falls dramatically as the frequency 

increases.  Typically a conventional photoconductive antenna sources are limited to 

frequencies below 5 THz.  Optical rectification does proved a wider bandwidth with 

demonstrated generation and detection bandwidths in excess of 30 THz.  However this is 

at the expense of THz power and thus SNR.  The scaling of THz systems via the method 

developed by Dr. Divin present the potential to achieve larger bandwidths without 

reducing the average THz power of the GaP emitter.   

Lastly, scattering is also a challenge for THz systems.  Scattering is a common 

problem encountered by many imaging modalities.  Scattering of X-ray photons causes 

artifacts in the reconstructed images and in optical tomography, it is the main transport 

phenomena [33, 34].  The reconstruction algorithms in optical tomography are based on 

using a diffusive process to model the photon propagation.  THz photons experience less 

Rayleigh scattering than optical and X-ray photons due to the longer wavelength.  
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However, scattering remains an issue for T-ray imaging and accurately modeling the 

scattering process may aid future imaging algorithms.         

THz Imaging Architectures 

 THz imaging systems can be classified as either having a direct or inverse imaging 

architecture.  The majority of imaging systems belong to the former group.  The most 

basic of direct THz imaging modality is the traditional scanning THz imaging system 

first demonstrated by Hu and Nuss in 1995 and is a very simple extension of a standard 

THz-TDS system.  In its simplest form, the sample mount is replaced with a 2D 

translation stage and the rest of the system is unaltered.  As the object is raster-scanned, 

the THz spectrum is measured at every position.  This method does provide extremely 

high SNR but has prohibitively long acquisition times.  Attempts to improve the 

acquisition time of the system via using a longer time constant for the lock-in-amplifier 

or speeding up the motorized translation stage significantly reduce the SNR.  For 

example, if we were to consider a small image of 60 by 60 pixels, 3600 single 

measurements are required and depending on the delay line concept, the desired lock-in 

time constants, and other factors, to record a high-quality THz pulse can take longer than 

30 s and can result in a total measurement time of 30 h for a full image [3].   

A number of variations and alternatives to the traditional raster-scanning THz imaging 

systems have been developed to overcome the prohibitively long acquisition times.  

However, for such direct imaging modalities, the SNR has been compromised because of 

the relegated use of a lock-in-amplifier.  To improve acquisition speed, two-dimensional 

electro-optic detection of THz pulses was developed to provide a parallel detection 

capability and to remove the need to scan the object [32].  The experimental setup is 

similar to THz-TDS with electro-optic sampling, except that rather than focusing the THz 

pulse on the sample, plane wave illumination is used.  Furthermore, the probe beam is 

expanded to a diameter greater than that of the THz beam and the two pulses are incident 

on the EO detector crystal.  The polarization of the probe beam is modulated by the THz 

electric field via the EO effect.  This polarization is converted into an intensity 

modulation and a CCD camera records the 2D spatial distribution of the THz modulated 

probe beam.  Although in principle the acquisition speed of this system is limited by the 
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frame rate of the CCD camera, the SNR of the system is extremely poor because a lock-

in amplifier cannot be used with the CCD. 

Dynamic subtraction with 2D electro-optic detection of THz pulses was developed by 

Jiang as a means to improve the SNR of such a system [35, 36].  In this method, the CCD 

is set to trigger at a fixed sample rate, the trigger out signal from the CCD is then taken as 

the input to a frequency divider circuit, which halves the frequency and this signal is used 

to trigger the chopper.  For example, with a CCD frame rate of 30 frames per second the 

THz signal would be amplitude modulated at a frequency of 15 Hz.  This chopper 

provides a 50% duty cycle and therefore every second frame measures the THz signal 

amplitude, while every other frame simply measures the probe laser power without the 

THz field which corresponds to background noise.  Every second frame is subtracted 

from the previous one and thereby the laser background noise is subtracted from each 

frame to compensate for the long term background drift of the laser.  It is unknown 

quantitatively how well this method compares in performance to that of single point 

measurement systems with a lock-in amplifier. Jiang’s paper does not cite any figure of 

merit for their method.   

Another method for potentially decreasing the acquisition time of a direct THz 

imaging system is based on the EO detection of THz pulses using a chirped pulse probe 

[37, 38]. In conventional THz-TDS, the full temporal profile of the THz pulse is 

measured by having the probe pulse probe the instantaneous THz field at a certain time 

delay, adjusting the delay between the probe pulse and THz pulse, and then repeating the 

measurement.  Using a chirped pulse allows the full waveform to be measured 

simultaneously rather than requiring a rapid scanner to scan the temporal profile.  A 

linear chirp can be applied to the probe pulse using a diffraction grating.  The different 

wavelength components of the probe pulse traverse different path lengths due to the 

variation in the first order diffraction angle with wavelength, 𝜆.  The output from the 

grating pair is a pulse with a longer duration and a wavelength that varies linearly with 

time.  Conceptually the chirped probe pulse can be seen as a succession of short pulses 

each with a different wavelength.  Thus when the chirped probe pulse is modulated by a 

THz pulse in EO detection, each of its wavelength components encodes a different 
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portion of the THz pulse.  A spectrometer spatially separates the different wavelength 

components and retrieves the temporal profile of THz pulse.  The spatial signal output 

from the spectrometer is measured using a CCD.  There are a number of inherent 

drawbacks to this method particularly the distortion of THz spectrum.  The high 

frequency components of the recovered spectrum are strongly attenuated and this causes 

significant broadening of the THz pulse.  In comparison with time scanned THz 

detection, the chirped measurement technique suffers from a reduced temporal resolution 

and reduced frequency bandwidth.   

The focus of this thesis is on the advancement of inverse THz imaging via model-

based image reconstruction.  In inverse or indirect imaging, one can use a single point 

measurement system with a very high SNR to a collect a fraction of the measurements 

needed in direct imaging modalities for image reconstruction.  However, inverse imaging 

architectures require more sophisticated algorithms, as compared to direct methods, in 

order to reconstruct target images.  Time reversal imaging is an early innovative inverse 

imaging method demonstrated with broadband THz by Ruffin et al. at the University of 

Michigan.  By exploiting the time-reversal symmetry of Maxwell’s wave equations they 

derived an image reconstruction algorithm based on the time-domain Huygens-Fresnel 

diffraction integral.  This method allowed them to achieve fast reconstruction of 1D, 2D, 

and 3D amplitude and phase contrast objects based on measurements of the diffracted 

THz field at multiple angles.  However, a principle drawback to this method is the 

significant temporal ringing after the main pulse.  This ringing greatly degrades the 

quality of the reconstructed image.  This thesis attempts to resolve this issue by 

developing algorithms that account for the non-ideal response of the THz imaging system 

to mitigate the effect of the ringing in the reconstruction of the target images.  To do so, 

we introduce the concept of model-based imaging to field of THz which allows us to 

account for the impulse response of our THz imaging system via a system model.  To 

reconstruct images via this technique requires that we “invert” our system model.  

However, the process of “inversion” is not as straightforward as it may sound and thus 

we develop the mathematical formulism that makes such an inversion possible.   We 

assess the performance of the model-based method by comparing its performance to that 

of the time-reversal method.  Both methods have the same acquisition times, which are 
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significantly shorter than the acquisition time of traditional scanning THz systems, but 

the model-based reconstruction algorithm yields significantly better images than the time-

reversal algorithm. 

Dissertation Outline   

 In chapter 2, we present the theory behind time-reversal THz imaging and demonstrate 

two methods that improve upon this technique.  We first adapt a waveguide approach 

previously pioneered in ultrasound to increase the effective numerical aperature of the 

system without decreasing the data acquisition speed of the THz system.  Secondly, we 

implement a simple 1D algorithm based on the principle of model-based reconstruction 

that uses the actual impulse response of the THz system.  Deferring the mathematical 

formulism needed for the development of this algorithm till the next chapter, we 

demonstrate it performance as compared to the time-reversal algorithm for Young’s 

double slit for the cases with and without the waveguide. 

Chapter 3 focuses exclusively on the mathematical formulism of model-based image 

reconstruction.  The model-based method through regularization provides a method for 

“inverting” a forward model that incorporates the actual measured impulse response of 

our THz system.  The model-based method is a 5 step approach in which we: 

A. Parameterize the object using a parametric model  

B. Develop a system model that relates the unknown image to the expectation of 

each detector measurement 

C. Develop a statistical model for how the detector measurements vary about their 

expectations  

D. Choose a cost function with an appropriate regularization term based on the tools 

of estimation theory 

E. Choose an iterative algorithm for minimizing the cost function. 

We provide a thorough discussion of each of the bulleted points in the context of THz 

imaging in preparation for the experimental studies presented in the following chapter.  

In chapter 4, we the principles of model-based image reconstruction, developed in the 

previous chapter, to a 2D THz system operating in reflection mode in order to show fast 

reconstruction of metallic and dielectric objects.  We then compare the performance of 
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this new inverse imaging technique to the time-reversal method in order to show that we 

can obtain better quality images without compromising the acquisition speed of the THz 

imaging system.   

Final conclusions are presented in Chapter 5.  Following the chapter, Appendices A–C 

provide derivations for some of the ideas presented in chapter 3 and chapter 4.    

Dissertation Contributions   

This thesis makes a number of significant contributions to the body of THz imaging.  

Chapter 2 presents 1D THz imaging in transmission mode.  Two methods were presented 

that improved upon the time-reversal algorithm.  The first method adapted a waveguide 

technique first pioneered in ultrasound to increase the effective numerical aperture of the 

system without decreasing the data acquisition speed of the THz system.  The waveguide 

approach was a success because of the 2.6 x improvement in intensity and the 

approximate 30% improvement in resolution while maintaining the same acquisition 

time.  The second approach demonstrated for the first time the application of model-

based image reconstruction to THz systems.  An algorithm based on the principles of 

model-based image reconstruction that made use of the actual impulse response of the 

THz system used to reconstruct an image of a double slit.  The use of impulse response of 

the system greatly led to a quantifiable improvement in the peak SNR of the 

reconstructed images.  Model-based image reconstruction is quite ubiquous in the 

biomedical world.  However, the application of model-base image reconstruction to the 

field of THz science has been relatively unexplored. Thus, chapter 3 developed the 

theoretical framework of model-based image reconstruction in the context of THz 

imaging.  In chapter 4, we applied the principles of model-based image reconstruction, 

developed in the previous chapter, to a 2D THz system operating in reflection mode in 

order to show fast reconstruction of metallic and dielectric objects.  The experiments 
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conducted in chapter 4, clearly showed the qualitative and quantitative improvement of 

the model-based algorithms as compared to the time-reversal technique.   
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Chapter 2 
Time Reversal and Model-Based THz Imaging in a 

Waveguide 
Sensing and imaging using broadband THz radiation has been widely and rapidly 

recognized as a promising non-destructive and non-contact detection technique.  THz 

radiation can penetrate through most of the commonly used dielectric materials, such as 

paper, plastic, leather and wood.  Many chemical materials such as explosives and bio-

chemicals have resonant peaks due to intermolecular or phonon vibrations within the THz 

region [39, 40].  Research in terahertz imaging, or T-ray imaging for short, has increased 

significantly since it first debuted and it is expected that T-ray imaging will continue to 

grow, due to technological advances, and find new niche applications in a multitude of 

diverse fields.  The Coherent detection of THz pulses either in transmission or reflection 

mode does not require any cryogenics or shielding for the detector and thus T-ray 

imaging systems have the potential to be portable, compact and robust enough for 

practical application in real world settings. 

     Direct THz imaging modalities are by far the most prevalent imaging architecture 

available.  The most basic imaging setup belonging to this group is the traditional 

scanning THz imaging system first demonstrated by Hu and Nuss in 1995.  This modality 

is a very simple extension of a standard THz time-domain spectroscopy system (THz-

TDS).  In its simplest form, the sample mount is replaced with a 2D translation stage and 

the rest of the system is unaltered.  As the object is raster-scanned, the THz spectrum is 

measured at every position.  This method provides extremely high SNR but has 

prohibitively long acquisition times.  Attempts to improve the acquisition time of raster 

scanning systems via parallel detection methods such as 2D free space electro-optic 

sampling or via chirped pulse imaging do so, but at the expense of degrading the SNR of 

the images [35-38].  Thus to use the high SNR benefit of single point detection schemes 
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while reducing the number of measurements needed to generate images of targets, 

indirect imaging methods are required.   

 Time reversal imaging is an early innovative inverse imaging method demonstrated 

with broadband THz by Ruffin et al. at the University of Michigan [41].  By exploiting 

the time-reversal symmetry of Maxwell’s equations they derived an image reconstruction 

algorithm based on the time-domain Huygens-Fresnel diffraction integral [42].  This 

method has allowed them to achieve fast reconstruction of 1D, 2D, and 3D amplitude and 

phase contrast objects based on measurements of the diffracted THz field at multiple 

angles [43].  However, a principle drawback to this method is the significant temporal 

ringing after the main pulse.  This ringing greatly degrades the quality of the 

reconstructed image.   

In this chapter, we demonstrate two methods that improve upon the time-reversal 

technique.  We first adapt a waveguide approach previously pioneered in ultrasound to 

increase the effective numerical aperture of the system without decreasing the data 

acquisition speed of the THz system.  Secondly, we implement a simple 1D algorithm 

based on the principle of model-based reconstruction that uses the actual impulse 

response of the THz system.  However, prior to discussing the both methods, we briefly 

review coherent electro-optic THz detection and time-reversal THz imaging. 

Electro-optic Detection 

One of the primary methods for measuring the temporal shape of propagating THz 

fields is through free space electro-optic sampling (FS-EOS).  This method uses the linear 

electro-optic effect to rotate the polarization of an ultrafast probe beam in proportion to 

the instantaneous THz field.  Using a differential intensity technique, the induced 

ellipticity in the probe beam and hence the instantaneous THz field can be measured with 

high precision.  By scanning the relative delay between the THz and optical pulses, the 

complete THz waveform can be sequentially sampled. 

 The determination of the refractive indices for propagation in anisotropic materials is 

accomplished by using a construct known as the index ellipsoid.  If 𝑥1, 𝑥2, and 𝑥3 are 

axes aligned along the principal directions of the anisotropic material, then the index 

ellipsoid is defined by  
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 𝑥12

𝑛12
+
𝑥22

𝑛22
+
𝑥32

𝑛32
= 1 (2.1)  

The relationship between the THz field and the differential probe intensity can be derived 

by beginning with the index ellipsoid equation.  In crystals belonging to the  4�3𝑚 point 

group, such as ZnTe and GaP, the equation for the index ellipsoid is given by: 
 𝑥2 + 𝑦2 + 𝑧2

𝑛2
+ 2𝑟41�𝑦𝑧𝐸𝑧 + 𝑥𝑧𝐸𝑦 + 𝑥𝑦𝐸𝑧� = 1 (2.2)  

It can be shown that a pair of coordinate transforms can recast the index ellipsoid in a 

rotated coordinate system [44].  For optical beam propagating along the (110) crystal 

direction and polarized at an angle 𝜙 with respect to the (001) axis, as shown in Fig. 2.1, 

THz induced birefringence is: 

 
𝑛𝑦′′(𝛼) ≈ 𝑛 +

𝑛3

2
𝐸𝑇𝐻𝑧𝑟41[cosα sin2 𝜃 + cos(𝛼 + 2𝜃)], 

𝑛𝑧′′(𝛼) ≈ 𝑛 +
𝑛3

2
𝐸𝑇𝐻𝑧𝑟41[cosα cos2 𝜃 − cos(𝛼 + 2𝜃)] 

2𝜃 =  − arctan(2 tan𝛼) 

(2.3)  

where ny′′ and nz′′ are the indices of refraction in the new coordinate system, and 𝛼 is the 

angle between the THz electric field and the crystal (001) axis.  For ZnTe, the index of 

refraction (n) and the linear electro-optic coefficient (r41) are approximately 2.79 and 

4 pm/V. 

 
Figure 2.1.  Free space electrooptic sampling setup.  

As the optical probe beam copropagates with the THz beam inside the detection 

crystal, the probe beam acquires an elliptical polarization due to the THz induced 
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birefringence.  In a standard balanced electro-optic detection setup, the optical beam is 

polarized at 45° to the THz induced birefringent axes.  As the beam propagates, the 

acquired ellipticity is measured by passing the probe beam through a quarter wave plate 

and a polarizing beam splitter.  The difference in the intensity between the horizontal and 

vertical polarizations is detected using a pair of photodiodes and the differential intensity 

is given by, 

 ΔI(α)
Ip

≈ �
2𝜋
𝜆
�𝑛3𝐸𝑇𝐻𝑧𝑟41𝐿(cos𝛼 sin 2𝜑 + 2 sin𝛼 cos 2𝜑) (2.4)  

The electro-optic sensitivity is maximized when the THz is polarized along the (11�1) 

axis, α = 90°, and the optical beam is either co-polarized or orthogonal to the THz 

polarization, φ = 0°, 90°. 

Time-Reversal THz Imaging 

Time reversal imaging is a novel inverse imaging method demonstrated with 

broadband THz radiation by Ruffin et al. at the University of Michigan [41, 42].  By 

exploiting the time-reversal symmetry of Maxwell’s equations, they derived an image 

reconstruction algorithm that is based on the time-domain Huygens-Fresnel diffraction.  

It was then shown via this method that fast reconstruction of 1D, 2D, and 3D amplitude 

and phase contrast objects was possible.   

 A time domain view of diffraction is important for developing the idea of time-

reversal of diffracted waveforms.  A pictorial view of diffraction in the time domain is 

shown in Fig. 2.2 for the classical double slit problem.   

 
Figure 2.2.  Time-domain view of diffraction from a double slit.  Impulses originating 

from adjacent points in the aperature plane will add coherently and give rise to the 

multicycle waveforms at off-axis positions. 
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The frequency domain analysis of this example maintains that the phase differences 

between the apertures lead to constructive or destructive interference at off-axis, far-field 

positions.  However, these same phase differences correspond to temporal delays; thus 

intuitively, each temporal feature of the scattered transient corresponds to the arrival of 

an impulse from a different region of the aperatures as shown in Fig.2.2. 

The time-domain Huygens-Fresnel diffraction integral describes the diffraction of 

broadband electromagnetic pulses in free space 
 

𝑢(𝑃0, 𝑡) = �
cos(𝜃)
2𝜋𝑟01

𝜕
𝜕𝑡
𝑢 �𝑃1, 𝑡 −

𝑟01
𝑐
� 𝑑𝜎

Σ

 (2.5)  

where 𝑢(𝒓, 𝑡) is the electric field as a function of position and time, 𝑃1 is a point on the 

object,  𝑃0 is a far-field point on the measurement plane, 𝑟01 is the distance between these 

two points, 𝑐 is the speed of light and 𝜃 is the zenith angle made by line joining 𝑃0 and 𝑃1 

with the wave vector of the incident radiation [45].  This integral can calculate the 

diffracted field, 𝑢(𝑃0, 𝑡), on a distant plane by integrating the time derivative of the field 

at the object plane, 𝑢 �𝑃1, 𝑡 − 𝑟01
𝑐
�, over the aperature Σ.   

 The time-reversal symmetry of Eq. (2.4) can be exploited to allow the field at the 

object plane 𝑃1to be calculated based on the measurements of the diffracted field 𝑃0 at 

several off-axis far-field positions.  The scattered transients correspond to the electric 

field amplitude and so they contain all the time delay (phase) information needed to 

reconstruct the spatial distribution of the electric field scattered from the object.   

 
Figure 2.3.  Pictorial view of Diffraction. 
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For the geometry shown in Fig. 2.3, the reconstruction algorithm obtained by Ruffin et al. 

for the field at the object plane was shown to be: 

 
𝑢(𝑃1, 𝑡) = −

1
4𝜋𝑐

�(1 + cos(𝜃))
𝜕
𝜕𝑡
𝑢 �𝑃0, 𝑡 +

𝑟01
𝑐
�𝑑𝜎′

Σ′

 (2.6)  

where 𝑢 �𝑃0, 𝑡 + 𝑟01
𝑐
� is the time reversed measured scattered field and the integral is 

performed over the measurement semicircle [42]. 

This method was extended to allow 2D objects to be imaged by fixing the detector at a 

given zenith angle, (𝜃 = 120), rotating the object about the optical axis and measuring 

the diffracted field for 72 azimuthal positions (𝜙) between 0 and 2𝜋.  The 2D 

reconstruction algorithm was applied to a 10 mm star and the resultant reconstructed 

image is shown in Fig. 2.4. 

 
Figure 2.4.  Images of a star pattern via (top) conventional scanned THz imaging and 

via (bottom) time-reversal technique. 
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It is clear from Fig. 2.4 that the time-reversed 𝜙-scanning technique produces images of 

quality comparable to the direct imaging technique [4].  The greatest difference between 

these two techniques is the number of measurements required to reproduce the object.  

For direct scanning, the 1.1 mm pixel size required 8100 data points to produce a 90 x 90 

image where as the time-reversal method required only 72 measurements.  This 

represents a considerable saving in acquisition time and demonstrates the power of this 

technique. 

 The resolution of the method was derived using the Sparrow criterion which states that 

two peaks are resolved if there is a clear local minimum between the principal peaks of 

the two waveforms [46].  Consider two temporal waveform measurements that are 

separated in time by ∆𝑡, as shown in Fig. 2.5., then according to the sparrow criterion, the 

two waveforms are resolved if there is a clear local minimum between their principal 

peaks.   

 
Figure 2.5.  Time domain adaption of Sparrow criterion. 

This temporal resolution ∆𝑡 can be translated into a later spatial resolution ∆𝑥 in the 

object plane from simple geometric considerations 
 ∆𝑥 =

𝑐∆𝑡
sin(𝜃) (2.7)  

Using this method, a resolution of 674 𝜇m was demonstrated, which was significantly 

smaller than the mean wavelength of the THz source used.  

 As stated earlier, one of the main objectives of this chapter is to improve upon the 

time-reversal technique.  The first method seeks to increase the numerical aperture of the 
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THz imaging system without decreasing its acquisition speed.  This is done by adapting a 

waveguide approach first in pioneered in ultrasound.  It may not be clear how the 

introduction of multipath can effectively increase the numerical aperture of the system 

and thus we present the theory behind using a waveguide in our system.  The waveguide 

technique in the ultrasound domain has shown super-resolution focusing and this has 

largely motivated us to use this approach. 

Ultrasound Waveguide 

Time-reversal invariance of the acoustic wave equation has spurred the development 

of time reversal mirrors to focus pulsed waves through heterogeneous media.  Time 

reversal mirrors (TRM) are made of reversible transducer arrays, allowing the incident 

acoustic field to be sampled, time reversed and re-emitted [47].  A time-reversal 

experiment conducted in an ultrasonic waveguide by Roux et al showed the substantial 

improvement in the spatio-temporal focusing of the time-reversed field [48].  The 

principle of the experiment is presented in Fig. 2.6.  The water channel is bounded by two 

plane and parallel interfaces (steel).  The total length of the channel along y axis is L=740 

mm and a water depth H=40 mm along the x axis.  A point-like ultrasonic source (a 

single transducer) is located on one side of the waveguide and can be used either as a 

source or as a hydrophone.  A time reversal mirror, made of a linear array of 96 

transducers identical to the transducer source, is located a distance L from the source and 

is located along the x axis. 

 
Figure 2.6.  Schematic of acoustic waveguide 

The transducer source located at S transmits a pulsed wave.  The data recorded by the 

array is time reversed and retransmitted along the same channel.  The time-reversed field 

is measured in the source plane by the transducer source which is used as a hydrophone.  
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The hydrophone can be translated around the initial position S along the x axis to measure 

step by step the time-reversed pressure field ptr(x,t) in order to show the substantial 

improvement in the temporal compression and in spatial focusing of the time-reversed 

field around the initial source [48].   

 
Figure 2.7. (a) B scan of incident acoustic field.  (b) Temporal signal measured on one 

transducer. 

The transmitted field recorded by the array after propagation through the channel is 

shown in Fig.2.7(a).  A set of multipath signals corresponding to multiple reflections of 

the incident wave on the interfaces are shown to be arriving after the arrival of the first 

cylindrical wavefront which corresponds to the direct path [48].  The signal recorded on 

one transducer of the TRM is shown in Fig.2.7(b).    

 

 
Figure 2.8. Directivity pattern of time-reversed field (a) in the plane of the point 

source.  Principle of mirror images (b) applied to the waveguide. 

(a) 
(b) 
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The data recorded by the array is time reversed and retransmitted along the same channel.  

The directivity pattern of the time-reversed beam observed in the source plane is shown 

in Fig. 2.8(a).  It shows that the time-reversed beam is focused on a spot which is much 

smaller than the one observed in the unbounded case and this can be easily explained by 

the principle of mirror images as shown in Fig. 2.8(b).  At the source point, the TRM can 

be considered as a periodic vertical array of TRM images.  Each reflected pulse received 

by the real TRM corresponds to one image of the TRM.  Thus when taking into account 

the first ten echoes receive, the theoretical aperture of the TRM is ten time larger than the 

real aperture since the first echo corresponds to the real TRM and the following nine can 

be interpreted as nine TRM images [48].   

Time-Reversal THz Imaging in a Waveguide 

We adapt the waveguide approach from the ultrasound experiment to a THz imaging 

system to demonstrate the potential this technique has at increasing the effective 

numerical aperture of the imaging system.  The experimental setup, as given in Fig. 2.9, 

is a typical electro-optic THz sampling system with an additional stage in the pump arm 

to compensate for the horizontal translation of one of the imaging parabolas.   

 

Figure 2.9. Experimental setup 
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A femtosecond laser pulse is split into a pump and a probe pulse by a beam splitter.  The 

delayed pump pulse illuminates a large-area photoconductive emitter (TeraSED, 

GigaOptics GmbH) to generate a nearly single cycle THz pulse.  The THz beam is then 

collimated by a polyethylene lens with a focal length of 7.6 cm.  The collimated THz 

beam is used to illuminate an object, which in this experiment consists of two metal slits 

with dimensions of 1 mm x 8 mm and a spacing of 2.0 mm.  The slits are bounded by two 

12 inch flat mirrors which act as a planar waveguide redirecting the THz scattered at 

large angles and therefore delivering higher spatial frequencies into the detection region 

of the imaging parabolas.  The focal plane of parabola A is imaged onto the electro-optic 

(EO) crystal by scanning parabola A across the exit face of the waveguide.  A pellicle 

reflects the probe pulse to propagate collinearly with the THz pulse in the EO crystal at 

the focus of parabola B.  The EO crystal is a (1 1 0) cut ZnTe crystal which velocity 

matches the THz pulse and near IR probe pulse to enable coherent detection of the THz 

pulse.  The THz pulse induces a birefringence in the crystal through the linear electro-

optic effect (Pockels effect), which is probed by the linearly polarized sampling pulse.  

The induced phase modulation of the probe pulse is converted into an intensity 

modulation and detected by a differential photodiode [49].   

 The resolution of an imaging system is limited by its numerical aperture (NA).  A 

higher NA can be obtained by collecting data at larger angles which requires scanning the 

detector over more spatial positions and hence leads to a longer acquisition time.  

However the waveguide technique can effectively increase the numerical aperture of the 

imaging setup without increasing the number of spatial scan positions [48].  We can 

intentionally introduce multipath into our THz imaging setup by bounding our object 

with two planar mirrors and time reversing both the direct signal and the multipath 

signals.  We invoke the principle of mirror images to explain why bounding our object 

with the planar mirrors can effectively increase the numerical aperture of our imaging 

system.  Each reflected pulse that is detected corresponds to a virtual detector position.  

Hence, we can effectively double our numerical aperture with virtual detector positions 

by simply capturing the first set of reflections off the mirrors and accounting for their 

proper time delays in the time-reversal algorithm [48].  Furthermore, the reflected pulses 

which diffracted at larger angles than the direct path signals have a higher spatial 
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frequency content and thus by using a waveguide to redirect them we can improve the 

resolution of our system.  Thus, sampling more spatial points translates to simply 

scanning longer in time. 

 

 

Figure 2.10. Measured THz  wavefield plots without a waveguide and with a 

symmetric and asymmetric placed waveguide and the corresponding reconstructed 

images based on time-reversal. 

In our experimental demonstration, we illuminated a double slit and measured the 

scattered THz radiation in the far field.  The THz wavefield plots shown in Fig. 2.10(a) & 

2.10(c) were obtained by scanning parabola A horizontally in increments of one 

millimeter over a range of 52 mm and a range of 59 mm respectively.  At each position, 

the time domain THz waveform was measured by scanning the delay between pump and 

probe pulses over a 40 s acquisition time.  Hence, the y-axis represents time delay and the 

x-axis represents effective detector position at the exit of the waveguide.  We then carried 

out the same experiment with the waveguide symmetrically and asymmetrically placed 

about the object as shown in Fig 2.10(e) and Fig 2.10(g).  The THz wavefield plots in the 

waveguide cases show, in addition to the direct path signals, pulses arriving at a later 

time corresponding to a single reflection from the waveguide mirrors.  By the principle of 

mirror images, each reflected pulse that is detected corresponds to a virtual detector 

position.  Hence, the first set of reflected signals should effectively double the numerical 
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aperture of the THz system.  In practice, as the angle of an image point increases 

corresponding to the arrival of reflected pulses later in time, the signal strength decreases 

due to the limited acceptance angle of the imaging parabola. Thus only the first set of 

reflections is captured in our system and it is not possible to achieve a full doubling of the 

numerical aperture of the system. In ultrasound, the acoustic detectors are isotropic, 

enabling more reflections to be captured; the use of a shorter focal length parabola and a 

waveguide with a smaller aspect ratio should yield more reflections and thus enable a 

larger numerical aperture for the THz imaging system.   

 The reconstructed images in Fig. 2.10(b), 2.10(d), 2.10(f) and 2.10(h) were obtained 

by numerically back-propagating the corresponding experimental wavefield plots using 

the delay-sum algorithm.  By accounting for the proper time delays of the reflected 

signals, we were able to achieve better spatio-temporal compression of the time-reversed 

fields with the waveguide in place regardless of its symmetry about the object.  We can 

quantify the temporal and spatial improvement as a result of using a waveguide by taking 

a horizontal slice through the reconstructed images via the time-reversal technique.  Fig. 

2.11(a) & 2.11(c) show an intensity enhancement for the symmetric and asymmetric 

waveguides of 2.6 and 1.9 respectively.  These values were computed by taking the ratio 

of the peaks of the waveguide curve (red) to the non-waveguide curve (blue).  The 

increase in intensity for the waveguide cases is attributed to an enhancement of the fields.  

This enhancement is the result of the coherent addition upon back-propagation of the 

pulses reflected from the waveguide walls to the direct pulses, resulting in a larger 

constructive interference of their maxima as well as a larger destructive interference of 

side lobes.  This is in contrast to the case without the waveguide, in which only the direct 

pulses are available for back-propagation and coherent addition.  Fig. 2.11(b) & 2.11(d) 

also shows that the waveguide in both the symmetric and asymmetric cases has led to 

better spatial focusing of the time-reversed fields.  From the resolution plot for the 

symmetric waveguide case, Fig. 2.11(b), we computed a full width half maximum 

(FWHM) value of 1.08 mm for the first peak of the red curve and a FWHM of 1.64 mm 

for the respective peak of the blue curve.  The slits that we imaged, as mentioned earlier, 

have widths of 1 mm.   
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Figure 2.11. Intensity plots for symmetric (a) and asymmetric (c) waveguide 

configurations.  Resolution plots for symmetric (b) and asymmetric (d) waveguide 

configurations. 

Likewise, for the asymmetric waveguide case, Fig. 2.11(d), we computed a FWHM of 

1.16 mm for the first peak of the red curve and a FWHM of 1.36 mm for the respective 

blue curve.  In both waveguide cases, the time-reversal reconstruction of the two slits 

yielded a reconstructed object with dimensions much closer to the true dimensions of the 

two slits.  However, in the asymmetric case the blue curve of Fig. 2.11(d) has a smaller 

FWHM than the blue curve in the symmetric case of Fig. 2.11(b) and this is consistent 

with the fact that in the asymmetric case we scanned more positions and hence we should 

have achieved better reconstruction.  However, the FWHM of the red curve in the 

asymmetric case, Fig. 2.11(d), did not match the FWHM of the red curve of the 

symmetric case, Fig. 2.11(b), even though we sampled more detector positions.  The 

reason for this discrepancy is evident in the wave field plot for the asymmetric case, Fig. 

2.10(g).  One side of the waveguide was much closer to the object than the other side.  

Hence we have more reflected pulses coming from the farther side than the closer side 

which will significantly contribute to a sharper rise on that side of the reconstructed 

object.  Hence the right part of the red curve in the asymmetric case is overlapped with 

the corresponding part of the blue curve.  As mentioned previously, achieving a larger 

angular acceptance in the THz detection will enable a higher effective NA and would 

alleviate this problem. In our experimental demonstration, we were still far from the 

ultimate diffraction limit of our system which has a λpeak= 429 µm and a λmean = 119 µm.   
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Model-based THz Imaging in a Waveguide 

Ideally the time-reversal algorithm enables the realization of an optimal spatio-

temporal filter as a result of the reciprocity theorem, which states that the position of a 

source and receiver can be interchanged without altering the resulting field [48].  We 

have shown that the introduction of a waveguide has effectively increased the NA of our 

setup and thus we have achieved a better spatio-temporal compression of our time-

reversed fields than without the waveguide.  However, the performance of the time-

reversal algorithm is nonetheless degraded by the presence of temporal ringing on the 

THz pulse.  Ringing arises in the system due to reflections in the THz emitter and 

detector, atmospheric absorption lines, and the non-ideal response of the ZnTe electro-

optic crystal.  Although our THz pulse is far from being a clean single cycle pulse, we 

can mitigate the effect of the ringing in our reconstruction algorithm by taking into 

account the measured impulse response of our THz imaging system.  That is, we can 

approach image reconstruction from scattered fields as a model-based inverse problem in 

which we try to recover some underlying function that describes the object from the 

collected data in a “best fit” manner without overly fitting the noise [50].  Hence we have 

investigated replacing the time-reversal reconstruction algorithm with a more general 

statistical algorithm that estimates what the object is from the data collected [50]. 

 At every detector position, the received signal is just a superposition of THz pulses 

from every point in the object plane with an appropriate delay parameter.  That is the 

observed signal at the mth detector position can be expressed as: 

 
𝑆𝑚(𝑡) = �ℎ(𝑡 − 𝜏𝑚𝑛)𝜃𝑛

𝑁

𝑛=1

 (2.8)  

where θn denotes the unknown value of the object’s transmissivity at the nth sample 

position in the object plane, and h(t) is a THz pulse that is delayed by a known parameter 

τmn.  By concatenating our observed signals into one vector, we can recast the above 

equation as: 
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�

𝑠1(𝑡)
𝑠2(𝑡)
⋮

𝑠𝑀(𝑡)

� = �

ℎ(𝑡 − 𝜏11) ℎ(𝑡 − 𝜏12) ⋯ ℎ(𝑡 − 𝜏1𝑁)
ℎ(𝑡 − 𝜏21) ℎ(𝑡 − 𝜏22) ⋯ ℎ(𝑡 − 𝜏2𝑁)

⋮ ⋮ ⋱ ⋮
ℎ(𝑡 − 𝜏𝑀1) ℎ(𝑡 − 𝜏2𝑀) ⋯ ℎ(𝑡 − 𝜏𝑀𝑁)

� (2.9)  

or more succinctly as: 

 𝒚 = 𝑨𝜽 (2.10)  
where y is a vector consisting of observed signals, A is a known system matrix and θ is a 

vector of unknown parameters.  We could find an estimate for θ from y by minimizing 

the following least-squares criterion: 

 𝜽� = min
𝜃
‖𝒚 − 𝑨𝜽‖22 (2.11)  

However, since our goal is not only to obtain an estimate of θ but also to reduce the 

presence of artifacts in our reconstructed images, we minimize instead the following 

regularized least-squares (RLS) cost function: 

 
𝜽� = min

𝜃
‖𝒚 − 𝑨𝜽‖22 − 𝛽�(𝜃𝑛 − 𝜃𝑛−1)2

𝑁

𝑛=1

 (2.12)  

The additional term is a regularizing penalty term and its effect is to discourage 

disparities in neighboring pixel values while the effect of the first term is to encourage a 

best fit of the measured data [50].  Since these two effects are conflicting the adjustable 

parameter β controls the tradeoff between the two and controls the balance between 

spatial resolution and noise in the final estimate [50]. 

 We implemented a one-dimensional reconstruction algorithm based on the RLS 

criterion given in Eq. (2.12) and compared its performance to the performance of the 

time-reversal algorithm in the case without a waveguide and in the case with an 

asymmetrically placed waveguide.  The algorithm for both experiments took on average 

5 iterations to converge.  In the case without the waveguide, the RLS algorithm achieves 

a better reconstruction of the object than the time-reversal algorithm as evident by the 4.5 

x improvement in intensity as shown in Fig. 2.12(a) and we have also calculated a peak 

SNR ratio improvement of 2.2.  The RLS algorithm has also improved the resolution of 

the system.  The FWHM for the red curve is 1.03 mm and the FWHM for blue curve is 

1.36 mm.  Furthermore, the accuracy of our system model can be determined by how 
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well the simulated wavefield data, which can be obtained by multiplying the 

reconstructed object from the RLS algorithm by the system matrix A, matches the 

measured wavefield data.  The measured wavefield data of Fig. 2.12(c) and the simulated 

wavefield data in Fig. 2.12(d) are well matched, and the presence of spurious signals due 

to imperfections in the imaging optics have been removed from the measured data.  

Furthermore, we can better show the accuracy of our system model by taking any 

arbitrary vertical time slice from wavefield plots of Fig. 2.12(c) & 2.12(d) and 

determining how well the measured THz and the simulated THz pulses match at a 

particular detector position.  Fig. 2.12(e) shows a comparison between the measured and 

the forward-propagated RLS-reconstructed THz pulse at detector position 10.  The 

simulated pulse shows strong agreement with the measured direct path THz pulse at -25 

ps, while showing strong suppression of spurious signals, most notably the one present at 

approximately -15 ps.  

 

Figure 2.12. Absolute (a) and normalized intensity (b) obtained by the RLS algorithm 

(red curve) versus the time-reversal algorithm (blue curve).  Fig. 2.12(c) & (d) show 

the similarity of the measured and simulated fields.  Fig. 2.12(e) shows the measured 

and forward-propagated RLS-reconstructed THz waveform. 

The model-based reconstruction algorithm works well in reconstructing the scattering 

object from the measured data.  However in the waveguide case, the algorithm did not 

yield a substantial improvement over the time-reversal algorithm as seen in the intensity 

and the resolution plots of Fig. 2.13(a) & 2.13(b) respectively.  We computed a peak 

SNR improvement of 1.47 for model-based algorithm over the time-reversal algorithm 
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for the case with the waveguide.  The lack of a substantial improvement in the waveguide 

case can be attributed to a combination of two factors.  The first factor is the sensitivity of 

the RLS approach to modeling errors in the system matrix A.  If there is a phase shift that 

we are not accounting for in the waveguide case, the impulse function used to create the 

A matrix will not be able to completely model the waveguide system, particularly the 

reflections off the mirrors.  We can see in Fig 2.13(c) & 2.13(d) that there is a 

discrepancy between the measured and simulated wavefield data indicating the presence 

of an unknown phase shift.  Fig. 2.13(e) further shows that although we modeled the 

direct part of the signal accurately as evident by the strong agreement between the direct 

parts of the measured and simulated signals, there is a mismatch between the reflected 

parts.  The other factor preventing a substantial improvement in reconstruction for the 

waveguide case is the diffraction limit of the system.  The presence of the waveguide has 

improved the NA of the system beyond the acceptance angle of the imaging parabolas 

and hence the RLS algorithm has very little to improve upon as it asymptotically 

approaches the diffraction limit of the system.  Nonetheless, the model-based algorithm 

in conjugation with the waveguide performs better than the time-reversal algorithm with 

the waveguide and we anticipate better performance provided we can generate the correct 

system matrix.     

 
Figure 2.13. Absolute (a) and normalized intensity (b) obtained by the RLS algorithm 

(red curve) versus time-reversal with waveguide (blue curve).  Both plots show the 

peak intensity relative to the time-reversal algorithm without the waveguide.  Fig. 

2.13(c) & (d) show the slight discrepancy between the measured and simulated 

wavefield data.  Fig. 2.13(e) shows the measured and simulated THz signals at 

detector position 10.  
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Conclusion 

In conclusion we have presented two methods for improving the time-reversal imaging 

technique.  We first used a waveguide to increase the effective numerical aperture of the 

system.  The waveguide technique not only yields an improvement in the numerical 

aperture of the system, but more generally illustrates how techniques used in ultrasound 

may be fruitfully adapted to THz imaging technology. Secondly, we implemented a 

model-based reconstruction technique that uses the actual impulse response of the 

experimental THz system and is therefore better suited for reconstructing the object and 

eliminating spurious signals than the simple time-reversal algorithm. We have 

demonstrated the model-based algorithm for a THz system operating in transmission 

mode; however, we can easily extend this algorithm for systems operating in reflection 

mode provided that the impulse response for the system is known in advance in order to 

construct the system matrix.  
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 Chapter 3  
Principles of Model-Based Imaging 

Inverse problems in physics often pose such questions as, “Can one hear the shape of a 

drum?”  Inverse problems are very important in several domains of applied science such 

as medical diagnostics, seismic exploration, atmospheric remote sensing, microscopy, 

and so on.   The relevance of these problems has stimulated, since the beginning of the 

1960s, the development of theoretical and practical methods for determining approximate 

and stable solutions [51].  In Optics, the inverse method seeks to analyze scattered light 

to infer or reconstruct an object’s shape.   

Previously, we have shown a novel form of object reconstruction via numerically 

time-reversing broad-band THz fields.  The extremely broad-band nature of the scattered 

fields is manifested in the coherent detection of nearly single-cycle pulses in the far-field.  

Hence, the time-reversal technique is a time-domain approach in which we simply time-

reverse and back-propagate scattered transients to the object plane.  Although the time-

reversal method does lead to fast reconstruction of objects, the reconstructed images are 

often cluttered.  The reason for such background clutter lies in the fact that the scattered 

pulses are nearly single cycle but not exactly single cycle.  The presence of temporal 

ringing after the main pulse leads to significant clutter in the reconstructed images.  

Simply stated, the time-reversal method does not take into account the nature of the 

detected signal.  However, by incorporating the actual measured THz impulse response of 

our system into a system matrix that captures the imaging process, we can obtain a more 

accurate estimate of the target’s profile and hence reduce artifacts due to the ringing on 

the THz pulse.  In this chapter, we provide a theoretical framework for model-based 

image reconstruction for 2D reflection mode THz system.  In the next chapter, we present 

experimental results showing the substantial improvement of this technique over time-

reversal method for a 2-D reflection mode THz imaging system..   
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The scattering of THz fields can be loosely regarded as the convolution of a kernel and 

of the scattering object’s spatial function.  That is, the forward problem is the well-known 

Fredholm integral equation of the first kind and according to Hadamard is a well-posed 

problem [52, 53].  A mathematical problem is well posed if its solution a) exits, b) is 

unique, and c) is stable [53].  Inverse problems are usually not well-posed.  In most cases 

an “inverse” problem can be obtained from the “direct” or “forward” one by exchanging 

the role of the solution and the data.  In our case, we are interested in the object’s spatial 

function given a known kernel and the observed function (data) [51].  Hence, our 

problem is an inverse problem and thus ill-posed.  It is ill-posed for two significant 

reasons.  The first reason is that the solution is the derivative of the data and hence the 

solution does not depend continuously on the data.  To provide an intuitive reason for 

why such a reason leads to the problem being ill-posed, we consider a simple case.  

Suppose for example, we have a function 𝑓(𝑥) that is perturbed by a very small noise 

term  𝜀 sin𝜔𝑥.  The functions 𝑓(𝑥) and 𝑓(𝑥) + 𝜀 sin𝜔𝑥 can be arbitarly close for small 

𝜀 but their derivatives may be very different if 𝜔 is large enough.  This simply means that 

differentiation “amplifies” high frequency noise and thus our solution will have large 

oscillations.   

Although, the first reason does present a challenge for recovering an object’s profile as 

a function of the recorded data, a more pressing reason for the ill-posedness of our 

problem stems from its underdetermined nature.  The unknown object is a continuous 

function of space but the recorded measurements are finite [54].  Therefore, there are 

uncountably many solutions that agree exactly with the measured data even if the data is 

noiseless and thus nonuniquness is the principle challenge.  The question now is how can 

we recover a physically correct solution that is robust against noise given the insufficient 

data at our disposal?  The answer is regularization theory [54].  Regularization provides 

techniques that exploit a priori information to counter noise in the data and to fill-in 

wherever data is missing.  Model-based image reconstruction falls under the broader 

framework of regularization theory.  Reconstructing an image of a scattering object’s 

spatial function from scattered THz fields is an ill-posed problem for the two reasons 

cited earlier.  Although, we had success using the time-reversal method to reconstruct an 

image of the scattering object’s spatial function from scattered field, despite not having a 
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model to “invert”, the reconstructed images as noted earlier were cluttered.  The model-

based method through regularization provides a method of “inverting” a forward model 

that incorporates the actual measured impulse response of our THz system.  The model-

based method is a 5 step approach [50] in which we: 

A. Parameterize the object using a parametric model  

B. Develop a system model that relates the unknown image to the expectation of 

each detector measurement 

C. Develop a statistical model for how the detector measurements vary about their 

expectations  

D. Choose a cost function with an appropriate regularization term based on the tools 

of estimation theory 

E. Choose an iterative algorithm for minimizing the cost function. 

Theory 

This section provides a theoretical treatment of model-based image reconstruction by 

providing a mathematical discussion of its five components. 

A. Object Parameterization and B. System Model 

The initial steps of model-based image reconstruction are to develop a system model 

for the imaging process and then to parameterize the object space.  The goal of image 

reconstruction is to find the unknown object, 𝑓(𝑥, 𝑧), from a set of measurements 

{𝑦𝜃}𝜃=1𝜃=𝑁.  The unknown object is a continuous function of space but the recorded 

measurements are finite and hence there are an infinite collection of solutions for 𝑓(𝑥, 𝑧).  

Such a scenario necessitates that we impose some type of prior knowledge about 𝑓 in 

order to proceed.  One of the simplest and most straightforward assumptions to make is 

that the unknown object 𝑓 is bandlimited spatially [54].  By parameterizing our unknown 

object using a set of basis functions, we are making the assumption that 𝑓 lies in subspace 

of ℒ2.  If our object is bandlimited, then according to the 2D sampling theorem, there 

exist sample distances Δ𝑥 and Δ𝑧 such that  

 𝑓(𝑥, 𝑧) = � � 𝑓[𝑛,𝑚]𝛽(𝑥 − 𝑛Δx, z − mΔz)
𝑚=𝑀

𝑚=1

𝑛=𝑁

𝑛=1

 (3.1)  

where 𝑓[𝑛,𝑚] = 𝑓(𝑛Δ𝑥,𝑚Δ𝑧) and 𝛽 is a basis function.  The sampling theory for 2D 

band-limited functions requires an infinite double sum.  However for practical purposes, 
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we truncate the double sum.  For THz image reconstruction our basis functions will be 

the comb function, a function consisting of spatially shifted delta functions.   

 
𝑓(𝑥, 𝑧) = � � 𝑓𝑛𝑚𝛿(𝑥 − 𝑛Δx, z − mΔz)

𝑚=𝑀

𝑚=1

𝑛=𝑁

𝑛=1

 (3.2)  

Another natural choice for a basis function is the rectangular function (pixels).  For 

simplicity and proof of concept, it easier to work with the comb function.  Once a suitable 

expansion for our unknown object is chosen, it is inserted into the system model.  

Assuming that our time domain Terahertz system is linear and shift invariant, the output 

of our system can be expressed as a convolution integral.  That is the detected signal as a 

function of angle can be expressed as a convolution between the object’s spatial profile 

and the measured impulse response of our THz system. 

 𝑦𝜃(𝑡) = �𝑓(𝑥, 𝑧)ℎ(𝑡 − 𝜏𝜃𝑥𝑧)𝑑𝑥 𝑑𝑧 (3.3)  

where 𝑓(𝑥, 𝑧) is the object’s spatial profile and ℎ(𝑡) is the impulse response of the THz 

system that is delayed by a known parameter 

𝜏𝜃𝑥𝑧 = 𝑥 sin(𝜃+𝛼)+𝑧 cos(𝜃+𝛼)+𝑥 sin(𝜃−𝛼)+𝑧 cos(𝜃−𝛼)
𝑐

 with respect to the pivot point of the 

system.  The rotating geometry and the plane wave detection our THz setup is captured 

by the delay parameter 𝜏𝜃𝑥𝑧.  In the following chapter, we discuss the geometry of our 

setup in detail.  However, for now it suffices to note that 𝜏𝜃𝑥𝑧 is a known quantity.  By 

inserting Eq. (3.1) into Eq. (3.3), the continuous forward model can be expressed 

discretely as:   
 

𝑦𝜃(𝑡) ≈� � � 𝑓𝑛𝑚𝛽(𝑥 − 𝑛∆𝑥, 𝑧 − 𝑚∆𝑧)
𝑛=𝑁

𝑛=1

ℎ(𝑡 −
𝑚=𝑀

𝑚=1

𝜏𝜃𝑥𝑧) 𝑑𝑥 𝑑𝑧 (3.4)  

 
𝑦𝜃(𝑡) ≈ � � ��𝛽(𝑥 − 𝑖∆𝑥 , 𝑧 − 𝑗∆𝑧)ℎ(𝑡 − 𝜏𝜃𝑥𝑧)𝑑𝑥 𝑑𝑧� 𝑓𝑛𝑚

𝑛=𝑁

𝑛=1

𝑚=𝑀

𝑚=1

 (3.5)  

 
𝑦𝜃(𝑡) ≈ � � 𝐴𝜃𝑚𝑛(𝑡)𝑓𝑛𝑚

𝑛=𝑁

𝑛=1

𝑚=𝑀

𝑚=1
 (3.6)  

 where 
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 𝐴𝜃𝑚𝑛(𝑡) = �𝛽(𝑥, 𝑧)ℎ(𝑡 − 𝜏𝜃𝑥𝑧)𝑑𝑥 𝑑𝑧 

              𝐴𝜃𝑚𝑛(𝑡) = �𝛿(𝑥 − 𝑛∆𝑥 , 𝑧 − 𝑚∆𝑧 ℎ(𝑡 − 𝜏𝜃𝑥𝑧) 

                           𝐴𝜃𝑚𝑛(𝑡) = ℎ(𝑡 − 𝜏𝜃𝑚𝑛)  

(3.7)  

Hence according to the above equations by parameterizing our object, we have 

essentially discretized our object plane into a rotating grid of possible point scatterers 

with reflectivity given by𝑓𝑛𝑚.  Furthermore, the convolution integrals have now become 

finite summations.  Since regularization is a concept borrowed from numerical linear 

algebra, it is more convenient to work in matrix-vector form.  Lexicographic ordering is 

an operation in which a finite sized image, 𝑔[𝑛,𝑚], with domain 𝑁 𝑥 𝑀 is represented by 

a vector 𝑦 of length 𝑁𝑀 and with 𝑖𝑡ℎ element given by  

 𝑦𝑖 = 𝑔[𝑛(𝑖),𝑚(𝑖)],       𝑖 = 1, … . ,𝑁𝑀 (3.8)  

where vector index 𝑖 maps to pixel coordinates [𝑛(𝑖),𝑚(𝑖)] as follows: 

 𝑛(𝑖) ≜ (𝑖 − 1)𝑚𝑜𝑑𝑁 (3.9)  

 𝑚(𝑖) = �
𝑖 − 1
𝑁 � (3.10)  

The following table summarizes the relationship between the vector 𝑦 and the 2D image 

𝑔[𝑛,𝑚]. 
Table 1: illustrates the mapping between a 2D image and a 1D vector 

𝑦1 = 𝑔[0,0] 𝑦2 = 𝑔[1,0] ⋯ 𝑦𝑁 = 𝑔[𝑁 − 1,0] 

𝑦𝑁+1 = 𝑔[0,1] 𝑦𝑁+2 = 𝑔[1,1] ⋯ 𝑦2𝑁 = 𝑔[𝑁 − 1,1] 

⋮ ⋮ ⋮ ⋮ 

𝑦𝑁(𝑀−1)+1 = 𝑔[0,𝑀 − 1] 𝑦𝑁(𝑀−1)+2 = 𝑔[1,𝑀 − 1] ⋯ 𝑦𝑁𝑀 = 𝑔[𝑁 − 1,𝑀 − 1] 

By lexicographically ordering our grid points and concatenating our observed signals, we 

can cast Eq. (3.6) into matrix form as: 

 𝑦 = 𝐴𝑓 (3.11)  

The vector 𝑦 consists of observed signals and has dimension 𝑛𝑑, the number of 

detected measurements.  The known system matrix 𝐴 has dimensions 𝑛𝑑  𝑥  𝑛𝑝, where 

𝑛𝑝 = 𝑁𝑀, and 𝑓 is a vector of unknown parameters of the object’s profile and has 

dimension 𝑛𝑝.  Furthermore, we often assume that the size of 𝑦 is greater than or equal to 
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𝑓, that is the parmeterization scheme yields either an exact-determined or over-

determined linear set of equations.  Previously, our goal had been to recover a continuous 

space function, 𝑓(𝑥, 𝑧), from a finite set of measurements, {𝑦𝜃}𝜃=1𝜃=𝑁 and given the 

inherent under-determined nature of the problem, there had been an infinite number of 

possible solutions from which to choose.  However, by choosing a basis and linearly 

parameterizing our object with respect to the chosen basis, we have reduced our problem 

to one of estimation.  That is our new goal is to determine the object’s parameter vector, 

𝑓, from a finite set of measurements, 𝑦 [54].     

C. Statistical Model 

Although the “deterministic” model given in Eq. (3.11) can be solved algebraically for 

𝑓, it is incomplete because it does not specify a statistical model for the noisy 

measurements.  Hence despite the possibility of incurring additional computation time, 

we must incorporate into Eq. (3.11) a statistical model that describes the distribution of 

each measurement about it mean and then find a measure of similarity between the actual 

measurements and the calculated projections from the forward model [54].  There are 

several statistical models but the most prevalent and relevant one is the additive noise 

model, 𝑖. 𝑒.,  

 𝑦 = 𝐴𝑓 + 𝜀 (3.12)  

where 𝑦, 𝜀 ∈ ℝ𝑛𝑑 ,𝑓 ∈ ℝ𝑛𝑝 , and 𝐴 ∈ ℝ𝑛𝑑 ×𝑛𝑝.  The noise statistics can be described by the 

𝑛𝑑 × 𝑛𝑑 covariance matrix of 𝜀 given by: 

 𝑲𝜀 = 𝐶𝑜𝑣{𝜀} = 𝑬 �(𝜀 − 𝑬[𝜀])(𝜀 − 𝑬[𝜀])𝑇 ′� (3.13)  

where 𝑬[∙] denotes statistical expectation.  The elements of 𝑲𝜺 are given by 

 [𝑲𝜺]𝑖𝑗 = 𝑒𝑖′𝑲𝜺𝑒𝑗 = 𝐶𝑜𝑣�𝜀𝑖, 𝜀𝑗� = 𝑬�(𝜀𝑖 − 𝑬[𝜀𝑖])(𝜀𝑗 − 𝑬�𝜀𝑗�)� (3.14)  

where 𝑒𝑖 denotes the ith unit vector of length 𝑛𝑑.  Assuming that the additive noise has 

zero mean and a known covariance matrix, 𝑲𝜺, that is both symmetric and positive 

definite, then our measurement vector, 𝑦, is a Gaussian random vector with probability 

density function given by: 
 

𝑝(𝑦|𝑓) =
1

�(2𝜋𝑛𝑑|𝑲𝜺|)
exp �−

1
2

(𝑦 − 𝐴𝑓)′𝑇𝑲𝜀
−1(𝑦 − 𝐴𝑓)� (3.15)  
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Although we have had made the assumption that the randomness of our measurements 

is due to electronic noise only, which has a Gaussian distribution, it is possible that in 

other optical imaging systems, the random quantum effects of photon may also dominate 

[54].  The statistics of photons are modeled by a Poisson distribution for such optical 

imaging systems, and thus a more realistic model would account for both distributions.   

D.  Estimation theory, Regularization, and Cost Functions 

By incorporating a statistical model for the noise into our system model, our objective 

becomes one of estimating the unknown object 𝑓 from the noisy measurements in𝑦.  

Hence we can apply the tools of estimation theory to find an estimator 𝑓 = 𝑓(𝑦) of 𝑓.  

The most frequently studied methods of estimation theory are maximum-likelihood 

(ML), Bayesian, and Penalized likelihood [54].  By illustrating the drawbacks to the 

maximum likelihood and the Bayesian estimation methods, we provide suitable grounds 

for using the penalized-likelihood method to find an estimator 𝑓 for 𝑓. 

Maximum Likelihood Estimation 

We can quantify agreement between the measurement vector 𝑦 and a candidate object 

vector 𝑓 by considering the likelihood term 𝑝(𝑦|𝑓).  For maximum likelihood estimation, 

we can find a suitable 𝑓 that best fits the data by maximizing a log-likelihood measure: 

 𝐿(𝑓) ≜ log𝑝(𝑦|𝑓) (3.16)  

We typically drop the dependence of 𝐿 on the data 𝑦 notationally because we have only 

one vector 𝑦 in a given experiment but numerous candidate vectors for 𝑓.  The ML 

estimator is then defined by 
 𝑓𝑀𝐿 = argmax

𝑓
𝐿(𝑓) (3.17)  

To best illustrate the drawbacks to ML, we consider the Gaussian case for which the log-

likelihood term is expressed as: 
 𝐿(𝑥) = −

1
2

(𝑦 − 𝐴𝑓)𝑇𝑲𝜀
−1(𝑦 − 𝐴𝑓) −

1
2

log((2𝜋)𝑛𝑑|𝑲𝜺|) (3.18)  

Neglecting the constant term and assuming Gaussian white noise, 𝑲𝜺 = 𝜎2𝑰, we can 

further simplify the log-likelihood expression as: 
 𝐿(𝑓) = −

1
2

(𝑦 − 𝐴𝑓)𝑇(𝑦 − 𝐴𝑓) (3.19)  
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where T denotes transpose, 𝑓 is a vector of the object’s parameters (pixels), 𝐴 is the 

system matrix, and 𝑦 is a measurement vector.  From a geometric standpoint, we can see 

that the log-likelihood measure can be expressed more compactly as: 
 𝐿(𝑓) = −‖𝑦 − 𝐴𝑓‖22 (3.20)  

Hence the log-likelihood measure can be seen as the negative of the 𝐿2 norm of the 

difference between the measurement vector and the forward projection vector and 

assesses the degree of fit between the data and the model [54].  Thus in order to 

maximize the log-likelihood measure, we must minimize the 𝐿2 norm of the data 

mismatch term [54].  We can redefine our new likelihood term as simply: 
 𝐿(𝑓) = ‖𝑦 − 𝐴𝑓‖22 (3.21)  

To carry out the minimization procedure, we differentiate the norm with respect to the 

vector 𝑓 and set the result to zero.  This yields the so-called normal equations: 

 𝐴𝑇𝐴𝑓 = 𝐴𝑇𝑦 (3.22)  

The solution is then 
 𝑓 = 𝑎𝑟𝑔min

𝑓
𝐿(𝑓) (3.23)  

 𝑓 = �𝑨𝑻𝑨�−1𝑨𝑇𝑦 (3.24)  

Assuming that (𝑨𝑻𝑨) is invertible, this estimator is just the conventional least squares 

estimator (LS).  If 𝑦 is corrupted by noise and our system matrix is ill-conditioned, then 

our estimate 𝑓 is unstable.  To illustrate the instability of this estimation technique, we 

consider a simple image restoration problem.  Suppose we wish to recover an image that 

has been corrupted by a shift-invariant blur.  Furthermore, suppose our system matrix is 

square and invertible.  Thus Eq. (3.24) collapses to:  

 𝑓 = 𝐴−1𝑦 (3.25)  
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Figure 3.1. Shows a) true image, b) blurred image, c) restored image. 

We can restore the true image Fig. 3.1a) from the corrupted image, Fig. 3.1b), by 

obtaining the inverse (pseudo inverse if 𝐴 is rectangular) of our system matrix and 

applying it to the corrupted image.  The restore image is shown in Fig. 3.1c).  In the 

noiseless case, applying the inverse matrix technique restored the blurred image to the 

original image.  However, the inverse method or the pseudo inverse method is not robust 

against noise.  If in addition to blurring, our image is corrupted by zero mean Gaussian 

noise, then the inverse method will not restore the image as was previously shown in the 

noiseless case.   
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Figure 3.2. Shows a) true image, b) blurred and noisy image, c) restored image. 

As shown in Fig. 3.2c) the simple inverse filter approach greatly amplifies high-spatial 

frequency noise and thus the restored image is noisier than the corrupted image, Fig. 

3.2b).  To offset the amplification of noise, we must impose constraints on our estimate.  

For example, a reasonable assumption on our estimate is that it lacks large fluctuations 

between neighboring pixels.  Enforcing such an assumption forces neighboring pixels to 

have similar values and thus prevents amplification of noise.  Bayesian estimation and 

Penalized-likelihood estimation are two very similar methods of incorporating a priori 

information about our estimate.   

Bayesian Estimation 

For Bayesian estimation, in addition to having a statistical model for the 

measurements, the likelihood term 𝑝(𝑦|𝑓), we must also have a probability distribution 

𝑝(𝑓) for the unknown object vector 𝑓 called a prior distribution.  In Bayesian estimation, 
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it is assumed the object properties are known prior to acquiring the measurement vector 

𝑦.  Given a statistical model in the form of a likelihood and a prior, we can devise an 

estimator that minimizes an expected cost function averaged over the family of possible 

objects 𝑓 [54].  The simplest cost function is the mean-squared error (MSE) of an 

estimator 𝑓 given by 

 𝑀𝑆𝐸�𝑓� = 𝐸 ��𝑓 − 𝑓�
2
� = ��𝑓(𝑦) − 𝑓�

2𝑝(𝑦|𝑓)𝑝(𝑓)𝑑𝑦𝑑𝑓 (3.26)  

A classical result in Bayesian estimation is that the minimum means-squared error 

(MMSE) estimator for 𝑓 given 𝑦 is the conditional mean: 

 𝑓𝑀𝑀𝑆𝐸 = argmin
𝑓

𝑀𝑆𝐸�𝑓� = 𝐸[𝑓|𝑦] = �𝑓𝑝(𝑓|𝑦)𝑑𝑓 (3.27)  

In general the MMSE estimator is nonlinear and hence the Bayesian estimator that is 

often used is the maximum a posteriori (MAP) estimator, defined as the maximizer of the 

posterior distribution 𝑝(𝑓|𝑦): 

 𝑓𝑚𝑎𝑝 = 𝑎𝑟𝑔max
𝑓

𝑝(𝑓|𝑦) (3.28)  

This estimator finds the image that has the highest posterior probability given the 

measurement vector 𝑦.  Given a prior distribution 𝑝(𝑓) for an unkown object vector 𝑓, by 

Bayes rule the posterior probability can be expressed more conveniently as: 

 
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟         𝑝(𝑓|𝑦) =

𝑝(𝑦|𝑓)𝑝(𝑓)
𝑝(𝑦)

 (3.29)  

 

The logarithm function is monotone and thus we can simplify the above expression to the 

following: 

 log𝑝(𝑓|𝑦) = log p(y|f) + log p(f) − log p(y) (3.30)  

The negative log-likelihood, −log p(y|f), corresponds to a data mismatch term and the 

term − log p(f) corresponds to a penalty term that penalizes our estimate depending on 

how far it departs from our assumption, the prior.  The term log p(y)  is a constant and 

can be dropped.  The MAP estimator in terms of log likelihood terms can be given by:    
 𝑓𝑀𝐴𝑃 = argmax

𝑓
[log𝑝(𝑦|𝑓) + log𝑝(𝑓)] (3.31)  

In a few special cases there are analytical expressions for the MAP estimator.  We 

consider one of those special cases in hopes of illustrating that one of the drawbacks to 
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Bayesian estimation is that the Bayesian image priors rarely represent the object of 

interest.  For example, suppose we assume additive Gaussian noise and further assume a 

Gaussian prior distribution for 𝑓.  In such a case, we can obtain a closed form solution for 

the MAP estimator.  More specifically, suppose 

• 𝑦 = 𝐴𝑥 + 𝜀 (Linear Model) 

• 𝜀 ∼ 𝑁(𝑂,𝑲𝜺) (Gaussian Noise) 

• 𝑓~𝑁�𝝁𝒇,𝑲𝒇� (Gaussian Prior) 

• 𝜀 and 𝑓 are independent 

• 𝜇𝑓, 𝑲𝜺, and 𝑲𝒇 are all known 

The likelihood term can again be expressed as in Eq. (3.15).  The prior distribution is 

Gaussian and can be expressed as: 

 𝑝(𝑓) =
1

�(2𝜋)𝑛𝑝�𝑲𝒇�
𝑒−

1
2�𝒇−𝝁𝒇�

𝑻𝑲𝒇
−𝟏(𝒇−𝝁𝒇) (3.32)  

Ignoring irrelevant constants, the negative log likelihood can be combined with the 

negative log prior to obtain the following form for the MAP estimator: 

 
𝑓𝑀𝐴𝑃 = 𝑎𝑟𝑔min

𝒇
�

1
2

(𝑦 − 𝑨𝒇)𝑻𝑲𝜺
−𝟏(𝑦 − 𝑨𝒇)

+
1
2 �
𝒇 − 𝝁𝒇�

𝑻𝑲𝒇
−𝟏�𝒇 − 𝝁𝒇�� 

(3.33   

 𝑓𝑀𝐴𝑃 = 𝑎𝑟𝑔min
𝒇
𝚿(𝑓) (3.34   

This cost function unlike the one given in Eq. (3.19) consists of a data fit term and a 

prior.  The quadratic cost function given in Eq. (3.13) has a closed form solution that can 

be obtained by equating the gradient of Ψ(𝑓) with zero.  The gradient is a vector field 

that, for a given point 𝑧 points in the direction of greatest increase of a given function.  

The column gradient is defined to be: 
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∇𝑓=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕
𝜕𝑓1

𝑔(𝒇)

𝜕
𝜕𝑓2

𝑔(𝒇)

𝜕
𝜕𝑓3

𝑔(𝒇)

⋮
𝜕
𝜕𝑓𝑛

𝑔(𝒇)
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3.35)  

It follows that 

 ∇𝑓 �
1
2

(𝑦 − 𝑨𝒇)𝑻𝑲𝜺
−𝟏(𝑦 − 𝑨𝒇)� 

                            = ∇𝑓 �
1
2
𝑦𝑇𝑲𝜺

−𝟏𝑦 − 𝑦𝑇𝑲𝜺
−𝟏𝑨𝑓 +

1
2
𝑓𝑇𝑨𝑻𝑲𝜺

−𝟏𝑨𝑓� 

= −𝑨𝑻𝑲𝜺
−𝟏𝑓 + 𝑨𝑻𝑲𝜺

−𝟏𝑨𝑓             

= −𝑨𝑻𝑲𝜺
−𝟏(𝑦 − 𝑨𝑓)                    

(3.36)  

 

It further follows that 

 ∇𝑓Ψ(𝒇) = −𝑨𝑻𝑲𝜺
−𝟏(𝑦 − 𝑨𝑓) + 𝑲𝒇

−𝟏(𝒇 − 𝝁𝒇) (3.37)  

Equating the gradient term to zero yields the following MAP estimator 

 𝑓𝑀𝐴𝑃 = 𝜇𝑓 + �𝑨𝑻𝑲𝜺
−𝟏𝑨+ 𝑲𝒇

−𝟏�
−1
𝑨𝑻𝑲𝜺

−𝟏(𝑦 − 𝑨𝜇𝑓) (3.38)  

If our confidence in the prior information decreases; that is 𝑲𝒇 ⟶ ∞  �𝑲𝒇
−𝟏 ⟶ 0�, then 

𝑓𝑀𝐴𝑃 = [𝑨𝑻𝑲𝜺
−𝟏𝑨]−1𝑨𝑻𝑲𝜺

−𝟏𝑦 

which is the conventional weighted least-squares (WLS) estimator which also happens to 

be the ML estimator in this case.  If in addition, we have additive white Gaussian noise, 

𝑲𝜺 = 𝜎2𝑰, we obtain the ML or least squares solution given in Eq. (3.24) which was not 

very robust against noise.  Thus, the prior information is essential to avoid the noise 

problems associated with the ML solution.   

We can study the stabilizing effect of incorporating a prior term in our cost function 

by first supposing that the object vector is zero mean, 𝜇𝑥 = 0, and has independent and 

identically 𝑲𝒇 = 1
𝛽
𝑰 distributed components (iid).  We can further suppose that the noise 

is again white and Gaussian, 𝑲𝜺 = 𝜎2𝑰 and thus can rewrite our cost function compactly 

as: 
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 Ψ(𝑓) =
1
2

(𝑦 − 𝑨𝑓)𝑻
1
𝜎2

𝑰(𝑦 − 𝑨𝑓) +
1
2

(𝐟 − µf)𝑻𝛽𝑰�𝑓 − 𝜇𝑓� 

=
1

2𝜎2
‖𝑦 − 𝑨𝑓‖2 +

1
2
𝛽‖𝑓‖2                                  

(3.39)  

We see that under these unrealistic assumptions (neighboring pixels are not necessarily 

iid), the cost function consists of a least squares data term (negative log-likelihood) and 

an energy penalty term.  The MAP estimator for this case is 
 𝑓𝑀𝐴𝑃 = [𝑨𝑻𝑨+ 𝛽𝜎2𝑰]−1𝑨𝑻𝑦 (3.40)  

Previously we had addressed the non-uniqueness of our inverse problem by 

parameterizing our object which resulted in a set of linear equations.  However, as we 

saw in the ML scenario, the discrete system is ill-condition and the presence of noise can 

result in large errors in our estimate of the object parameters.  As Eq. (3.38) shows, the 

presence of a penalty term perturbs the singular values of the original ill-conditioned 

system by pulling them away from zero.  Since β is usually much greater than the 

smallest singular value of the original system, the new system has all its singular values 

greater than or equal to β and thus the new system is better conditioned.   

We further reinforce this point through a simple simulation.  We generated a random 

system matrix, 𝑨, that is 120x64 and so 𝑨𝑻𝑨 is 64x64.  Plotted in Fig. 3.3a) are the 

singular value spectra of the original system, and the new systems with an energy penalty 

term and a roughness penalty.   

 

 

 

 σ1 σ64 Κ 

Original 

System 
133.184 0.006 23268.792 

Energy 

Penalty 
134.184 1.006 133.420 

Roughness 

Penalty 
133.193 0.335 397.404 

 

Figure 3.3. Shows a) plot of singular values of original system and new systems with 
energy and roughness penalty and b) table listing the largest and smallest singular 
values and condition numbers for the original system and the new systems.  
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The roughness penalty term, similar to the energy term, embodies prior information about 

our object vector.  However, in the context of Bayesian estimation under which the 

energy penalty term was derived, a stochastic model was chosen for both the signal and 

the noise process.  However, in the roughness penalty case, our unknown object vector is 

represented as a deterministic spatial function while the noise is still represented by a 

stochastic process.  The roughness penalty term is derived under the framework of 

penalized likelihood estimation which is very similar to Bayesian estimation but differs in 

its interpretation of the penalty term and will be discussed in the next section.  

According to the table in Fig. 3.3b) the energy term improves the condition number of 

the regularized system and thus there does not appear to be any issues with assuming a 

Gaussian prior with zero mean.  However for large 𝛽 values, the estimator assumes our 

confidence in the prior mean is high and thus will drive our solution to the mean, which 

happens to be zero.  Shrinking the estimate to zero is not consistent with most imaging 

problems.  Hence, it would seem that a Gaussian prior with zero mean is an unrealistic 

model form most imaging problems.  In general, it is very difficult to formulate realistic 

prior but it is easier to penalize estimates that deviate from prior assumptions.   

Penalized Likelihood Estimation  

Often ill-posed problems are ill-conditioned when discretized and thus any 

perturbations due to noise in the system matrix or in the measurement vector will lead to 

large errors in our estimate of 𝑓.  Diffraction inherently acts as a low-pass filter in the 

forward direction and since image reconstruction involves inverting diffracted fields, we 

would expect the pseudo inverse of our system matrix to be a high pass filter.  The 

amplification of noise will lead to large image oscillations contrary to our prior 

expectations of what are images should look like.  Noise-reduction methods can be 

employed to reduce the effect of noise on our estimate.  One can either modify the data 

by prefiltering or “denoising” or one can modify the algorithm derived for the ill-

conditioned problem.  That is, we can incorporate a filtering step at every iteration or 

modify the update to dampen high-spatial frequencies.  However, the two approaches to 

noise-reduction cannot guarantee a unique and stable solution.  Conversely, true 

regularization can result in a unique and stable estimate.   
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By redefining the problem to eliminate ill-conditioning we avoid the need to modify 

the data or the algorithm.  There are several options for regularization and they all have 

their apparent advantages and disadvantages.  However, for image reconstruction, a 

straightforward method of regularization is adding a penalty term to the cost function 

very similar to what was done in MAP estimation [54].  This approach termed penalized 

likelihood estimation is generally more attractive than MAP estimation because it is often 

very difficult to derive realistic priors than penalty functions for images [54].  More 

specifically, we seek an estimate, 𝒇�, by minimizing a cost function of the following form: 

 𝑓 = 𝑎𝑟𝑔min
𝑓
Ψ(𝑓) 

Ψ(𝑓) = − log𝑝(𝑦|𝑓) + 𝛽𝑅(𝑓) 
(3.41)  

 The negative of the log-likelihood term quantifies disagreement between 𝑓 and the 

measurement vector y and thus this term should be small.  The second term is a 

regularizing penalty function 𝑅:ℝ𝑛𝑝 → ℝ that penalizes an object vector 𝑓 by how much 

it departs from our assumptions about image properties [54].  The regularization 

parameter 𝛽 controls the tradeoff between the fit to the data and our assumptions of how 

𝑓 should behave.  For very small 𝛽, 𝑓 will closely fit the data, which usually means very 

good spatial resolution in the absence of noise, but very noisy estimates in the presence of 

noise [54].  On the other hand, for large 𝛽, the emphasis will be on minimizing 𝑅(𝑓), 

which usually results in a smoother (filtered) estimate with low noise.  In short the 

amount of regularization should correlate with the amount of noise present.  Selecting a 

penalty function is often subjective and problem dependent.  For example if we expect 

the object vector to have small values then the energy penalty, corresponding to a 

Gaussian prior as discussed earlier, is an option 

 
𝑅(𝑓) =

1
2
‖𝑓‖2 = �

1
2 �
𝑓𝑗�

2
𝑛𝑝

𝑗=1

 (3.42)  

 However for most problems we expect the object to have nonzero energy so this may 

not be a good penalty function for image reconstruction.  It is essential to have a penalty 

term because the lack of such a term in the cost function leads to the inverse solution 

given in by maximum likelihood estimation which greatly amplifies noise and leads to 

large image oscillations.  These oscillations are contrary to our prior expectations about 
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what images should look like.  Therefore penalty functions that discourage highly 

oscillatory images are more natural than an energy penalty.  An apparent disadvantage is 

the subjective choice of the penalty function and in the apparent difficulty in choosing the 

penalty parameter, 𝛽.  For image reconstruction, we generally seek a penalty or a 

potential function that discourages high spatial frequency oscillation and in our search for 

such a function, we must consider whether it will be: 

1. Separable vs. nonseperable 

2. Quadratic vs nonquadratic 

 Separable penalty functions are simpler to minimize and can be expressed as follows: 

 
𝑅(𝑓) = �𝜓�𝑓𝑗�

𝑛𝑝

𝑗=1

 (3.43)  

where 𝜓(𝑡) is a potential function.  For example for the energy penalty function, the 

potential function is given by 𝜓(𝑡) = 𝑡2

2
 and thus: 

 
𝑅(𝑓) = �

𝑓𝑗2

2
=

1
2
𝑓𝑡𝑰𝑓

𝑛𝑝

𝑗=1

 (3.44)  

As we have seen earlier, the penalty energy function penalizes large values of 𝑓 but does 

not explicitly enforce smoothness.  One way to enforce smoothness constraint is to 

penalize anenergy functional that measure the variation with in a function.  In order to 

find smooth solutions, we can define a norm on the solution space.  For a one-

dimensional function 𝑓(𝑥), we can integrate the squared first or second derivative of the 

function, 

 𝑅1 = �𝑓𝑥2(𝑥)𝑑𝑥   

𝑅2 = �𝑓𝑥𝑥2 (𝑥)𝑑𝑥 
(3.45)  

In two dimensions, the corresponding smoothness functionals are given by: 

 𝑅1 = �𝑓𝑥2(𝑥,𝑦) + 𝑓𝑦2(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = �‖∇𝑓(𝑥,𝑦)‖2𝑑𝑥 𝑑𝑦 

𝑅2 = �𝑓𝑥𝑥2 (𝑥,𝑦) + 2𝑓𝑥𝑦2 (𝑥,𝑦)+𝑓𝑦𝑦2 (𝑥,𝑦) 𝑑𝑥 𝑑𝑦                     
(3.46)  

where the mixed term 2𝑓𝑥𝑦2  is needed to make the measure rotationally invariant.   
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 The above first order and second order roughness penalty functions for one and two-

dimensions are for a continuous space image 𝑓(𝑥,𝑦).  There are different methods for 

obtaining discrete forms of the above continuous roughness measures; finite differences, 

splines, and finite element methods.  The finite difference method is the simplest among 

the three.  Using finite difference methods, the first and second order derivative of a one-

dimensional function can be expressed as 
 𝑓𝑥 = 𝑓𝑗 − 𝑓𝑗−1       𝑎𝑛𝑑    𝑓𝑥𝑥 = 𝑓𝑗+1 − 2𝑓𝑗 + 𝑓𝑗−1 (3.47)  

The discrete forms of the first and second order derivatives in the two-dimensional case 

are analogous to the one-dimensional case.  The finite difference values at boundary 

points must be specified by boundary conditions.  The discrete forms of roughness 

penalty function measure the variation among neighboring pixels and penalize large 

variations between neighboring pixels, thereby discouraging roughness and favoring a 

spatially smoother estimate.  To study the effect of such penalty functions, we can 

consider the one-dimensional case and generalize our results to the two-dimensional case 

of images. 

 A 1st-order roughness penalty measures the variation among neighboring pixels 

thereby improving on the energy penalty and can be expressed as: 

 
𝑅(𝑓) = �

1
2 �
𝑓𝑗 − 𝑓𝑗−1�

2𝑁

𝑗=2

 (3.48)  

In matrix-vector form, the above equation can be re-written using N-1xN differencing 

matrix, C.  To begin with, C can be expressed as: 

 

𝑪 = 𝑫𝑁 =

⎣
⎢
⎢
⎢
⎡
−1 1 0 0 ⋯ 0
0 −1 1 0 ⋯ 0

⋱ ⋱
0 ⋯ 0 −1 1 0
0 ⋯ 0 0 −1 1 ⎦

⎥
⎥
⎥
⎤

,    𝑠𝑜 𝑡ℎ𝑎𝑡 𝑪𝑓

= �
𝑓2 − 𝑓1

⋮
𝑓𝑁 − 𝑓𝑁−1

� 

(3.49)  

With 𝑪 being defined so, we see that [𝑪𝑓]𝑘 = 𝑓𝑘+1 − 𝑓𝑘, so that 

 
𝑅(𝑓) = �

1
2

|[𝑪𝑓]𝑘|2 =
1
2
‖𝑪𝑓‖2 =

1
2
𝑓′𝑪′𝑪𝑓 =

1
2
𝑓′𝑹𝑓

𝑁−1

𝑘=1

 (3.50)  
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The matrix 𝑹 is the Hessian of the roughness penalty 𝑅(𝑓); the matrix of its second 

partial derivatives.  The matrix for 𝑹 can be expressed as: 

 

𝑹 = 𝑪′𝑪 =

⎣
⎢
⎢
⎢
⎡

1 −1 0 ⋯ 0 0
−1 2 −1 0 ⋯ 0

⋱ ⋱ ⋱
0 ⋯ 0 −1 2 −1
0 0 ⋯ 0 −1 1 ⎦

⎥
⎥
⎥
⎤
 (3.51)  

This type of penalty function is a quadratic penalty because 𝑅(𝑓) is a quadratic form 

in 𝑓 and but not separable since it couples neighboring pixels.  Quadratic penalties have 

nice attractive properties such as simpler optimization through conjugate gradient.  They 

provide a global smoothing of the estimate and hence it is easier to quantify the noise-

resolution tradeoff.  They are also particularly convenient when the measurements have a 

Gaussian distribution.  The roughness penalty 𝑅 in the forward domain is a highpass filter 

but acts as a lowpass filter in the inverse domain.  Hence when applied to an image, it has 

the drawback of smoothing it.  As a result, we can reduce noise only by compromising 

the spatial resolution and the only way we can only overcome this noise-resolution 

tradeoff is by considering nonquadratic penalty functions.   

Combining the log-likelihood corresponding to the linear Gaussian case given by Eq. 

(3.15) with the quadratic penalty yields the following cost function for penalized 

likelihood estimation: 

 
Ψ(𝑓) =

1
2

(𝑦 − 𝑨𝒇)𝑇𝑲𝜀
−1(𝑦 − 𝑨𝑓) +

𝛽
2
𝑓𝑇𝑹𝑓 (3.52)  

By taking the gradient of Eq. (3.52) and setting it to zero, we obtain the following 

expression for the minimizer: 

 𝑓 = [𝑨𝑻𝑲𝜀
−1𝑨+ 𝛽𝑹]−1𝑨𝑻𝑲𝜀

−1𝑦 (3.53)  

In comparing Eq. (3.53) to Eq. (3.38), we see that the quadratically penalized weighted 

least-squares (QPWLS) estimator is a special case of the MAP estimator with 𝜇𝑓 = 0 and 

𝛽𝑹 = 𝑲𝑓
−𝟏.  In Bayesian terminology the roughness penalty function corresponds to the 

following improper Gaussian prior: 
 𝑝(𝑓) = 𝑐𝑒−

𝛽
2𝑓

𝑇𝑹𝑓 (3.54)  

This prior is improper because the hessian 𝑹 is singular and in general most useful 

quadratic penalty functions have singular hessians which is acceptable in the framework 

of penalized-likelihood estimation but not in Bayesian [54].   
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  To gain insight into the filtering properties of the QPWLS estimator, we apply 

circulant analysis to Eq. (3.53) [55].  We must first alter the form of 𝑅(𝑓) given in Eq. 

(3.38) to make it circularly shift-invariant and convenient for analysis: 

 
𝑅(𝑓) =

1
2

|𝑓1 − 𝑓𝑁|2 + �
1
2 �
𝑓𝑗 − 𝑓𝑗−1�

2𝑁

𝑗=2

 (3.55)  

The differencing matrix 𝑪 is now 𝑁 × 𝑁 and has the following circular form 

 

𝑪 = 𝑫𝑁 =

⎣
⎢
⎢
⎢
⎡
−1 1 0 ⋯ 0
0 −1 1 ⋯ 0

⋱ ⋱
0 ⋯ 0 −1 1
1 0 ⋯ 0 −1⎦

⎥
⎥
⎥
⎤

,    𝑠𝑜 𝑡ℎ𝑎𝑡 𝑪𝑓

= �

𝑓2 − 𝑓1
⋮

𝑓𝑁 − 𝑓𝑁−1
𝑓1 − 𝑓𝑁

� 

(3.56)  

Likewise, 𝑹 is a circulant matrix with the following form: 

 

𝑹 = 𝑪′𝑪 =

⎣
⎢
⎢
⎢
⎡

2 −1 0 ⋯ 0 −1
−1 2 −1 0 ⋯ 0

⋱ ⋱ ⋱
0 ⋯ 0 −1 2 −1
−1 0 ⋯ 0 −1 2 ⎦

⎥
⎥
⎥
⎤
 (3.57)  

Since 𝑹 is circulant, it can be diagonalized by the discrete Fourier transform (DFT); 

that is, it’s eigenvalue decomposition is given by 𝑹 = 𝑸𝛀𝑸𝑻 where 𝑸 is the 𝑁 × 𝑁 

orthonormal DFT matrix with elements 

 𝑄𝑛𝑘 =
1
√𝑁

𝑒𝑖
2𝜋
𝑁 𝑘𝑛,    𝑘,𝑛 = 0, … . . ,𝑁 − 1 (3.58)  

and 𝛀 is a diagonal matrix with eigenvalues that are the DFT coefficients of the first 

column of 𝑹.  𝑸′ performs an fft on an input vector, 𝛀 scales vector, and 𝑸 transforms the 

vector back to the space domain.  The first column of  𝑹 can be expressed as: 

 𝑅 = 2𝛿[𝑚] − 𝛿[𝑚 − 1] − 𝛿[𝑚 + 1] (3.59)  

The DFT of Eq. (3.59) shows that the eigenvalues of 𝛀 are  

 𝑅𝑘 = 2 − 𝑒−𝑖
2𝜋𝑘
𝑁 − 𝑒𝑖

2𝜋𝑘
𝑁 = 2 − 2 cos(2𝜋𝑘 𝑁⁄ ) (3.60)  

Suppose we further assume that the noise is white, 𝑲𝜀 = 𝜎2𝑰 and that the system matrix 

is also circulant and hence diagonalizable by the DFT, 𝑨 = 𝑸𝚪𝑸𝑻.  We then substitute 

our circulant approximation of 𝑨 and 𝑹 into the expression for the QPWLS estimator to 

yield the following: 
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 𝑓 = [𝑨𝑻𝑨+ 𝛽𝜎2𝑹]−1𝑨𝑻𝑦                                              

= 𝑸[𝚪𝑻𝚪 + 𝛽𝜎2𝛀]−1𝚪𝑻𝑸𝑻𝑦 = 𝑸𝑑𝑖𝑎𝑔{𝐿𝑘}𝑸𝑻𝑦 
(3.61)  

The expression above shows that the QPWLS estimator is a linear, circularly shift-

invariant, filter with frequency response given by: 
 

𝐿𝑘 =
𝐵𝑘∗

|𝐵𝑘|2 + 𝛽𝜎2𝑅𝑘
 (3.62)  

We illustrate the overall low pass nature of the QPWLS estimator with a simple 

simulation.  Suppose our system matrix is circulant with impulse response given by: 
 𝑏[𝑛] =

1
4
𝛿[𝑛 − 1] +

1
2
𝛿[𝑛] +

1
4
𝛿[𝑛 + 1] (3.63)  

 
Figure. 3.4. Shows a) System response and b) regularization filter. 

The system response, illustrated in Fig. 3.4a), is a low pass filter, 𝑓𝑓𝑡(𝑨𝑒1), and so the 

inverse of such a filter would be amplify high frequency noise.  Hence it would make 

intuitive sense that the regularization filter, Fig. 3.4b), has a high-pass nature and thus 

acts low-pass filter in the inverse case thereby mitigating the effect of the system 

response.  The competing filters are balanced by the 𝛽 term.  We illustrate in the 

following figure the overall response of both filters for both a small 𝛽, Fig. 3.5a), and a 

large 𝛽 value, Fig. 3.5b).   
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Figure 3.5. Overall system response for a) 𝛽=0.12 and b) 𝛽 = 1.0. 

We see that for both large and small 𝛽 values, the overall system response is a low 

pass filter and so we can reduce noise only by compromising spatial resolution.  We 

further see that for large 𝛽 the cutoff frequency of the overall filter is larger than the 

cutoff frequency for the same system but with a smaller 𝛽 value leading to less noise but 

more smoothing of the image.  There is a fundamental tradeoff between noise and 

resolution that is controlled by 𝛽.  We can illustrate the dependence of this tradeoff on 𝛽 

by analyzing the mean and variance of the QWPLS estimator.  Furthermore, by analyzing 

the mean or bias and the variance of the QWPLS estimator, we can quantify the mean-

square-error (MSE) of our estimate.  To obtain an expression for the bias, we note that 

the estimator is linear and can be written in terms of an operator as 𝑓 = 𝑳𝑦 where  

 𝑳 = [𝑨𝑻𝑨+ 𝛽𝜎2𝑹]−1𝑨𝑻 (3.64)  

We have assumed in Eq. (3.64) that the noise is white Gaussian, 𝜀~𝑁(0,𝜎2𝑰).  By 

linearity of the expectation operator, we have that: 

 𝐸�𝑓|𝑓� = 𝐸[𝑳𝑦|𝑓] = 𝑳𝐸[𝑦|𝑓] = 𝑳𝑨𝑓 = [𝑨𝑻𝑨+ 𝛽𝜎2𝑹]−1𝑨𝑻𝑨𝑓 (3.65)  

Assuming that the system response is linear and shift invariant, (𝑨 is circulant), and 

since by construction 𝑹 is circulant, we can use circulant analysis to simplify Eq. (3.65) 

to: 

 𝐸�𝑓|𝑓� = 𝑸[𝚪𝑻𝚪+ 𝛽𝜎2𝛀]−𝟏𝚪𝑻𝚪𝐐𝐓𝑓 = 𝑸diag{𝑀𝑘}𝑸′𝑓 (3.66)  

Hence, the expectation of 𝑓 is a filtered version of the true object 𝑓 and the frequency 

response of the filter is given by 
 

𝑀𝑘 =
|𝐵𝑘|2

|𝐵𝑘|2 + 𝛽𝜎2𝑅𝑘
 (3.67)  
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where 𝚪 = diag{𝐵𝑘} = 𝑓𝑓𝑡(𝑨𝑒1) and 𝛀 = diag{𝑅𝑘} = 𝑓𝑓𝑡(𝑹𝑒1).  Ideally, for good 

spatial resolution, we would want this filter to pass all spatial frequencies with a gain of 

unity, which means we would like 𝛽𝜎2𝑅𝑘 to be small.   

 The covariance of 𝑓 for a given true object 𝑓 is given by: 

 Cov�𝑓|𝑓� = Cov{𝑳𝑦|𝑓} = 𝑳Cov{y|x}𝑳𝑻 = 𝑳(𝜎2𝑰)𝑳𝑻 

= 𝜎𝟐[𝑨𝑻𝑨+ 𝛽𝜎2𝑹]−1𝑨𝑻𝑨[𝑨𝑻𝑨+ 𝛽𝜎2𝑹]−1     
(3.68)  

Using circulant analysis, Eq. (3.68) simplifies to: 

 Cov�𝑓|𝑓� = 𝜎𝟐𝑸[𝚪𝑻𝚪+ 𝛽𝜎2𝛀]−1𝚪𝑻𝚪[𝚪𝑻𝚪+ 𝛽𝜎2𝛀]−1𝑸𝑇 

= 𝜎𝟐𝑸diag�
|𝐵𝑘|2

(|𝐵𝑘|2 + 𝛽𝜎2𝑅𝑘)2�𝑸
𝑻 

(3.69)  

For low-noise image reconstruction, we would like for the variance of the individual 

components, 𝑓𝑗, of 𝑓 to be small.  The variance of 𝑓𝑗 is given by: 

 Var�𝑓𝚥�|𝑓� = 𝑒𝑗′Cov�𝑓|𝑓�𝑒𝑗                                          

=
𝜎2

𝑁
� �

𝐵𝑘
|𝐵𝑘|2 + 𝛽𝜎2𝑅𝑘

�
2𝑁−1

𝑘=0

 
(3.70)  

According to Eq. (3.70), in order to have small variances for 𝑓𝑗, 𝛽𝑅𝑘 must be large.  

Comparing Eq. (3.67) and Eq. (3.70), we see an apparent tradeoff between bias 

(resolution) and variance (noise).   For good spatial resolution, we want Eq. (3.67) to be 

approximately unity, which means 𝛽𝑅𝑘 ≈ 0, but for low noise, Eq. (3.70) requires that 

𝛽𝑅𝑘 be large.  Hence, we need to choose 𝛽 such that the variance and bias of our 

estimator are balanced.     

Although there are several methods for computing the optimal regularization 

parameters that will result in a balance between bias and variance, these methods are 

computational intensive and hence it is easier to extract a range of reasonable 𝛽values 

graphically [56].  Having obtained expressions for the bias and variance, we are in a 

position to quantify the distance between an estimate, 𝑓, and the true object,𝑓, through 

the mean squared error (MSE).  The MSE consists of both a bias and a variance term.   

The MSE is initially due entirely to the variance of the noise in an estimate.  To reduce 

the MSE, we would need to use a larger 𝛽 value to obtain a smoother image.  However, 

the smoothing introduces distortion and hence the bias term increases.  The larger the 

regularization parameter,𝛽, the more distortion.  Since MSE is the sum of the bias and 
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variance, changes in both terms will affect the overall MSE.  When we use a small 𝛽 the 

reduction of variance outweighs the increase in the bias.  As a result, the MSE is reduced.  

As 𝛽 increases, the variance decreases but the bias will increase.  Eventually, the increase 

in bias will exceed the reduction of variance and the MSE will get larger as 𝛽 increases.  

We illustrate the tradeoff via a simple simulation of a 1D deconvolution problem in 

which the blur is given by: 
 𝑏[𝑛] =

1
4
𝛿[𝑛 + 1] +

1
2
𝛿[𝑛] +

1
4
𝛿[𝑛 − 1] (3.71)  

We can show the tradeoff between spatial resolution by measuring the full width half 

maximum (FWHM) of an impulse and noise variance over a range of values for 𝛽 for 

both first order and second order finite differences.  The arrow in the figure shows the 

direction of increasing 𝛽.   

 
Figure 3.6. Bias vs. Variance tradeoff curve for 1st and 2nd order differences. 

The distance between a point on one of the curves in Fig. 3.6 and the origin is the √𝑀𝑆𝐸 

for a particular value of the regularization parameter, 𝛽.  The minimum MSE is the point 

on a bias-variance curve that has the minimum distance from the origin.   

Although we have provided sufficient reasons for using a roughness penalty by 

considering a 1D example, we require a 2D roughness penalty function for image 

reconstruction.  We can easily extrapolate Eq. (3.48) to 2D.  The simplest 2D quadratic 
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roughness penalty discourages large variations between horizontal and vertical 

neighboring pixels, referred to as a first-order neighborhood roughness penalty.  In 

concise notation, we can write the penalty function as: 
 

𝑅(𝑓) = � �
1
2 �
𝑓𝑗 − 𝑓𝑙�

2

𝑙∈𝒩𝑗

𝑛𝑝

𝑗=1

 (3.72)  

where 𝒩𝑗 denotes half of the set of neighbors of the 𝑗th pixel.  For a first-order 

neighborhood, 𝒩𝑗 is the following set: 

 𝒩𝑗 = {𝑗 − 1, 𝑗 − 𝑁} (3.73)  

If the quadratic roughness penalty is to include diagonal pixels as well, the 2nd order 

neighborhood set would be defined as follows: 
 𝒩𝑗 = {𝑗 − 1, 𝑗 − 𝑁, 𝑗 − 𝑁 − 1, 𝑗 − 𝑁 + 1} (3.74)  

In matrix-vector representation and using the first-order neighborhood, we can write the 

2D roughness penalty function as: 

 𝑅(𝑓) =
1
2
‖𝑪1𝑓‖2 +

1
2
‖𝑪2𝑓‖2 (3.75)  

Because of the lexicographic ordering of 2D image into a 1D object vector, the elements 

of 𝑪1 are as follows: 

 
[𝑪1]𝑘𝑗 = �

1, 𝑘 = 𝑗 = 1 + 𝑛 +𝑚𝑁
−1 𝑘 = 1 + 𝑛 + 𝑚𝑁, 𝑗 = 𝑘 − 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� (3.76)  

for 𝑛 = 1, … ,𝑁 − 1,𝑚 = 0, … ,𝑀 − 1, for 𝑘 = 2, … ,𝑛𝑝 = 𝑁𝑀.  We can define 𝑪𝟐 

similarly.  We can write the quadratic penalty given in Eq. (3.75) even more concisely as: 

 𝑅(𝑓)  =
1
2
‖𝑪𝑓‖2 (3.77)  

 with 𝑪 has dimensions 2𝑁𝑀 × 𝑁𝑀 and the following form 

 𝑪 = �𝑪𝟏𝑪2
� (3.78)  

It’s worth seeing an example of a 2D roughness penalty in order to understand the 

matrix-vector expressions.  Suppose our images has the following pixels, then for the 

roughness penalty given by Eq. (3.77) 𝑪 must have the following form: 
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𝑪𝑓 =

⎣
⎢
⎢
⎢
⎡
−1 1 0 0 0
0 −1 1 0 0
0 0 0 −1 1
−1 0 0 1 0
0 −1 0 0 1⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑓1
𝑓2
𝑓3
𝑓4
𝑓5⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑓2 − 𝑓1
𝑓3 − 𝑓2
𝑓5 − 𝑓4
𝑓4 − 𝑓1
𝑓5 − 𝑓2⎦

⎥
⎥
⎥
⎤

 

and so,  

𝑅(𝑓) = �|[𝑪𝑓]𝑘|2 = |𝑓2 − 𝑓1|2 + |𝑓3 − 𝑓2|2 + |𝑓5 − 𝑓4|2+|𝑓4 − 𝑓1|2 + |𝑓5 − 𝑓2|2
5

𝑘=1

 

As we have seen the quadratic roughness penalty, albeit nonseparable, yields 

behaviors that are better than the separable energy penalty.  Furthermore, it’s quadratic 

and hence its convexity makes it easy to minimize.  However, as discussed earlier, a 

quadratic roughness penalty causes blurring of edges.  In order to preserve edges, we 

would need to replace the quadratic function with a nonquadratic function and even 

possibly a non-convex function.  Nonquadratic or edge-preserving potential functions are 

quadratic near zero, but are approximately linear far from zero.  This property will 

encourage most neighboring pixels to be similar, but will also allow them to be different 

in image locations where there are sufficient discrepancies between neighbors, such as 

image edges.  In general, it is possible to use different potential functions for different 

spatial locations and thus we have the following general form for the penalty function: 
 

𝑅(𝑓) = �𝜓𝑘([𝑪𝑓]𝑘)
𝐾

𝑘=1

 (3.79)  

where [𝑪𝑓]𝑘 = ∑ 𝑐𝑘𝑗𝑓𝑗
𝑛𝑝
𝑗=1 .   The matrix 𝑪 is 𝐾 × 𝑛𝑝 where 𝑛𝑝 = 𝑁𝑀.  For example, for 

the 2D case with vertical and horizontal neighbors, we have 𝐾 = 2𝑁𝑀. 

Although the analysis of the properties of penalized-likelihood estimator 𝑓 is more 

difficult when the regularizer is nonquadratic, we can still get some insight into the edge-



59 
 

preserving characteristics by deriving a recursive expression for 𝑓.  Despite not having a 

quadratic penalty function, the penalized least-squares cost function will still have the 

following form: 
 Ψ(𝑓) =

1
2
‖𝑦 − 𝑨𝑓‖2 + 𝛽𝑹(𝑓) (3.80)  

where the penalty function has the general form of Eq. (3.79) but with 𝜓𝑘 = 𝜓; that is we 

only use one potential function for all locations of the image and that the noise variance 

has been absorbed by 𝛽.  

The following plot illustrates two examples of non-quadratic but convex edge-

preserving potential functions that can be used as penalty functions.  The quadratic 

penalty function was also plotted to show that these two edge-preserving functions 

behave much like the quadratic penalty functions for neighboring pixel values whose 

variations are relatively small.  However, far from zero, the behavior of the edge-

preserving penalty functions deviate from the shape of a parabola.  Thus the edge-

preserving penalty functions assign a lower cost for large differences and hence this leads 

to edge preservations.  We plotted the Huber function which has the following form: 

 

𝜓(𝑡) = �

1
2

|𝑡|2, |𝑡| < 𝛿

𝛿|𝑡| −
1
2

|𝛿|2, |𝑡| > 𝛿
= min �

1
2

|𝑡|2, 𝛿|𝑡| −
1
2

|𝛿|2�� (3.81)  

and the hyperbola function which has the following form 

 
𝜓(𝑡) = 𝛿2 ��1 + �

𝑡
𝛿
�
2
− 1� (3.82)  
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Figure 3.7. Illustration of potential functions 𝜓 used for regularization: the quadratic 
function, and two nonquadratic edge-preserving functions, the Huber function and the 
“broken parabola” function. 

Typical edge-preserving potential functions have the property that they are nearly 

quadratic near zero and roughly linear when the argument exceeds 𝛿.  The parameter 𝛿 

controls the transistion between smoothing and edge-preserving.  Hence for nonquadratic 

edge-preserving functions, we now have an additional parameter 𝛿 that we must set.       

For edge preserving functions, circulant approximations cannot be used because such 

penalty functions introduce local shift-variant effects.  However, we make the following 

assumptions with regards to the potential function 𝜓: 

• 𝜓 is differentiable with derivative 𝜓̇. 

• The following weighting function is defined (finite) and nonnegative for all 𝑡: 

 
𝜔𝜓(𝑡) ≜

𝜓̇(𝑡)
𝑡

  

Fig. 3.8 illustrates the weighting function 𝜔𝜓 for the potential functions shown in Fig. 

3.7.  As stated earlier, the parameter 𝛿 controls the transition between smoothing and 

edge-preserving and so one must have in advance a rough idea of the anticipated 

differences between neighboring pixels that straddle edge boundaries, or use trial and 

error to find 𝛿.  
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Figure 3.8. The potential weighting function 𝜔𝜓(𝑡) for a quadratic potential, Huber 
potential, and a hyperbola potential for 𝛿 = 1.   

To obtain a recursive expression for the nonquadratic estimator, we set the gradient of the 

cost function to zero.  We begin by first taking the gradient of the penalty function is: 
 

∇𝑅(𝑓) = �∇𝜓�𝑐𝑘𝑇𝑓�
𝐾

𝑘=1

= �𝑐𝑘𝜓̇([𝑪𝑓]𝑘) =
𝐾

𝑘=1

� 𝑐𝑘𝜔𝜓([𝑪𝑓]𝑘)[𝑪𝑓]𝑘 = 𝑪𝑻𝑫(𝑓)𝑪𝑓
𝐾

𝑘=1

 

(3.83)  

where 𝑐𝑘𝑇 = 𝑒𝑘𝑇𝑪 denotes the kth row of C and we define the following 𝐾 × 𝐾 diagonal 

weighting matrix: 

 𝑫(𝑓) = diag�𝜔ψ([𝑪𝑓]𝑘)� (3.84)  
Thus the expression of the gradient for the cost function can be written as: 

 ∇Ψ(𝑓) = −𝑨𝑻(𝑦 − 𝑨𝑓) + 𝛽𝑪𝑻𝑫(𝑓)𝑪𝑓 (3.85)  
Equating the gradient of the cost function to zero and rearranging terms yields the 

following expression for the estimator 𝑓: 

 𝑓 = �𝑨𝑻𝑨+ 𝛽𝑪𝑻𝑫�𝑓�𝑪�
−1𝑨𝑻𝑦 (3.86)  

Although, the expression for the estimator is a recursive expression because 𝑓 is present 

on the right-hand side, it does provide insight into the properties of the nonquadratic 
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penalty functions.  First we note that in the quadratic case where (𝑡) = 𝑡2
2�  , we  have 

that 𝜔𝜓(𝑡) = 1 so that 𝑫�𝑓� = 𝑰 and we have the usual quadratic penalized least-squares 

estimator given in Eq. (3.53).   

For more insight into the nonquadratic estimator, we consider a 1D problem.  If we 

knew where the edges were, we would use a spatially weighted penalty function [74]: 
 

𝑅(𝑓) = �𝜔𝑗𝜓�𝑓𝑗 − 𝑓𝑗−1�
𝑁

𝑗=2

 (3.87)  

where we would set 𝜔𝑗 = 0 between pixels straddling an edge, and 𝜔𝑗 = 1 for pixels in 

uniform regions and this would preserve the edges.  In the quadratic case where 𝜓(𝑡) =

𝑡2
2� , this regularizer would have the form: 

 𝑓 = �𝑨𝑻𝑨+ 𝛽𝑪𝑻diag�ωj�𝑪�
−1𝑨𝑻𝑦 (3.88)  

However, in practice we usually do not know where the edges are in advance, so we 

must have the algorithm locate them.  Comparing Eq. (3.88) and Eq. (3.86), we see that 

the only real difference is that in Eq. (3.86) the weights depend on the estimate 𝑓.  If we 

consider the Huber potential function and its corresponding weighting function, we see 

that when the difference [𝑪𝑓]𝑘 between neighboring pixels exceeds 𝛿, the corresponding 

weight is reduced from 1 by 𝜔𝜓 similar to the effect of Eq. (3.88).  Thus instead of 

needing to know the edge locations in advance, a nonquadratic penalty function can 

provide estimate-based weighting.   

E.  General Purpose Minimization Algorithms 

In general, closed-form solutions are unavailable for the minimizer 𝑓 of the cost 

function Eq. (3.41), so iterative algorithms are required.  An iterative algorithm is a 

procedure that starts with an initial guess 𝑓(0) for 𝑓 and then recursively generates a 

sequence 𝑓(1), 𝑓(2), …,  also denoted �𝑓(𝑛)� [57].  In order to minimize a cost function, we 

make the following assumptions about Ψ(𝑓): 

• Ψ(𝑓) is differentiable 

• Ψ(𝑓) has a finite global minimizer 

 ∃ 𝑓 ∈ ℝ𝑛𝑝 ∶  −∞ < Ψ�𝑓� ≤ Ψ(𝑓),             ∀𝑓 ∈  ℝ𝑛𝑝       (3.89)  
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A minimizer of a differentiable cost function Ψ(𝑓) is necessarily the solution of the 

following 𝑛𝑝 equations in 𝑛𝑝 unknowns: 

 ∇Ψ(𝑓)|𝑓=𝑓̂ = 0 (3.90)  
In general there are no closed-form solutions to the system of equations, unless we are 

working with a least squares or a weighted least squares problem, where closed form 

solutions do exist.  However, these direct solutions are computation intensive and thus an 

iterative algorithm is generally required even in those cases.  When developing 

algorithms for image reconstruction, there are many design considerations such as: 

• Convergence rate 

• Computation time per iteration 

• Sensitivity to numerical errors 

• Storage requirements 

However, even more critical than the properties listed above, is the important property 

of monotonicity which plays a significant role in determining whether an algorithm will 

even converge [57].  An algorithm is monotone if it generates a sequence �𝑓(𝑛)� that 

decreases Ψ(𝑓) at every iteration.  That is, if  

 Ψ�𝑓(𝑛+1)� ≤ Ψ�𝑓(𝑛)�,         𝑛 = 0,1,2, …. (3.91)  

Fixed Point Iteration 

A necessary condition that leads to fixed point iteration algorithms can be obtained by 

multiplying both sides of Eq. (3.90) by some 𝑛𝑝 × 𝑛𝑝 matrix 𝑀(𝑓) of choice, that may or 

may not depend on 𝑓, and then subtracting both sides from 𝑓 yielding: 

 𝑓 = 𝑓 −𝑀(𝑓)∇Ψ(𝑓) (3.92)  
If we then replace the equality in the above equation with a recursion, we obtain fixed 

point iterations or the method of successive approximations.   

 𝑓(𝑛+1) =  𝑓(𝑛) −𝑀�𝑓(𝑛)�∇Ψ�𝑓(𝑛)� (3.93)  
Fix point iterations are rarely globally convergent, although they are sometime locally 

convergent and if our choice for 𝑀(𝑓) is ad hoc, then the fixed point algorithm will most 

likely diverge [57].  An algorithm is globally convergent if 𝑓(𝑛) → 𝑓 for any starting point 𝑓0.  

An algorithm is locally convergent if 𝑓(𝑛) → 𝑓 for some nonempty set of initial guesses 𝑥0 that 

are sufficiently close to 𝑓.      
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Preconditioned Gradient Descent (PGD)  

If we choose 𝑀(𝑓) to be a positive scalar, 𝛼,  multiplying a fixed preconditioning 

matrix 𝑷, we obtain the following preconditioned gradient descent (PGD) algorithm [57]: 

 𝑓(𝑛+1) =  𝑓(𝑛) − 𝛼𝑷∇Ψ�𝑓(𝑛)� (3.94)  
If we further assume certain properties of Ψ(𝑓) beyond those given in Eq. (3.89), we can specify 

conditions on 𝛼 and 𝑷 to ensure that the PGD algorithm will monotonically decrease the 

cost function.   

Theorem 5.1  If the gradient of 𝛹(𝑓) satisfies a Lipschitz condition of the following form  

 ‖∇Ψ(𝑓) −Ψ(𝑧)‖
𝑃
1
2� ≤ ‖𝐆(f− z)‖𝑃1 2� ,               ∀𝑓, 𝑧 ∈ ℝ𝑛𝑝 (3.95)  

where P is a symmetric positive definite matrix, G is some 𝑛𝑝  ×  𝑛𝑝 matrix and where  

 0 < 𝛼 < 2 �𝑷1 2� 𝑮𝑷1 2� ��  (3.96)  

then the PGD algorithm will monotonically decrease Ψ(𝑓).  ].  The matrix 𝑮 should 

serve as an upper bound on the difference between the gradients at two points but should 

also be small so that the step size is large in order to achieve faster convergence.  For 

example, suppose we want to find the smallest 𝑮 for the regularized least-squares 

problem.   

Ψ(𝑓) =
1
2
‖𝑦 − 𝑨𝑓‖2 +

𝛽
2
‖𝑪𝑓‖2                  

Ψ(𝑓) =
1
2

(𝑦 − 𝑨𝑓)′(𝑦 − 𝑨𝑓) +
𝛽
2
𝑓′𝑪′𝑪𝑓 

∇Ψ(𝑓) = −𝑨′(𝑦 − 𝑨𝑓) + 𝛽𝑪′𝑪𝑓                       

Subtracting the gradients at 𝑓 and 𝑧 yields the following expression: 

∇Ψ(𝑓) = (𝑨′𝑨 + 𝛽𝑪′𝑪)(𝑓 − 𝑧)                      

It suffices for regularized least squares to choose the 𝑮 = (𝑨′𝑨 + 𝛽𝑪′𝑪) and to choose 

the maximum step size to be 𝛼 < 2 �𝑷1 2� 𝑮𝑷1 2� �� .  Thus for the regularized least-

squares problem, in which the preconditioning matrix, 𝑷 = 𝑰, if the step size is chosen to 

be less than the maximum eigenvalue of 𝑮,  the PGD algorithm will monotonically 

decrease the cost function.  In this example we chose the preconditioning matrix 𝑷 to be 

the identity matrix.  This may not be the best choice.  The best preconditioning matrix is 

the one which leads to the fastest asymptotic convergence rate of the PGD algorithm, i.e, 
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the one that leads to the least number of iterations.  The convergence rate is defined by 

how fast �𝑓(𝑛) − 𝑓� → 0.  

For quadratic cost functions, we can find the exact asymptotic convergence rate but 

for non-quadratic cost functions, we must assume that Ψ(𝑓) is locally quadratic near the 

minimizer, i.e., for 𝑓 = 𝑓.   The following graph illustrates a 1D non-quadratic cost 

function that is approximately parabolic near the minimizer point.   

 
Figure 3.9. Local quadratic approximation for non-quadratic 1D cost functions.  

Near the minimizer 𝑓, the cost function can be expanded using a 2nd order Taylor 

series as follows: 
 Ψ(𝑓) ≅ Ψ�𝑓� + ∇Ψ�𝑓��𝑓 − 𝑓�

+
1
2 �
𝑓 − 𝑓�

𝑻𝑯�𝑓��𝑓 − 𝑓�,           𝑓𝑜𝑟 𝑓 ≈ 𝑓  
(3.97)  

where 𝑯 = ∇2Ψ(𝑓) is the Hessian, the matrix of 2nd order derivatives, and has elements 

given by: 
 

ℎ𝑖𝑗(𝑓) =
𝜕2

𝜕𝑓𝑗𝜕𝑓𝑘
Ψ(𝑓),                  𝑘, 𝑗 = 1, … ,𝑛𝑝 (3.98)  

Furthermore, the necessary condition given in Eq. (3.90) eliminates the second term in 

Eq. (3.97).  Therefore near the minimizer, we have the following approximate expression: 
 Ψ(𝑓) ≅ Ψ�𝑓�+

1
2 �
𝑓 − 𝑓�

𝑻𝑯�𝑓��𝑓 − 𝑓�,           𝑓𝑜𝑟 𝑓 ≈ 𝑓  

and 

∇Ψ�𝑓� = 𝑯�𝑓��𝑓 − 𝑓� 

(3.99)  

Inserting the expression for the gradient in Eq. (3.99) into the expression given by Eq. 

(3.94) and assuming that 𝑓(𝑛) is sufficiently close to 𝑓, we obtain the following: 

 𝑓(𝑛+1) ≈ 𝑓(𝑛) − 𝛼𝑷𝑯�𝑓��𝑓(𝑛) − 𝑓� (3.100)  

Subtracting 𝑓 from both sides of Eq. (3.100) 
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 𝑓(𝑛+1) − 𝑓 ≈ �𝑰 − 𝛼𝑷𝑯�𝑓�� �𝑓(𝑛) − 𝑓� (3.101)  

Using Cauchy-Schwarz inequality, we obtain an approximate expression for the 

asymptotic convergence rate: 
 �𝑓(𝑛+1) − 𝑓� ≤ �𝑰 − 𝛼𝑷𝑯�𝑓����𝑓(𝑛) − 𝑓�� (3.102)  
and hence to within approximation: 

 �𝑓(𝑛+𝑘) − 𝑓� ≤ ��𝑰 − 𝛼𝑷𝑯�𝑓��
𝑘
� ��𝑓(𝑛) − 𝑓�� (3.103)  

Thus, we see that the asymptotic convergence rate of the PGD method is governed by the 

spectral radius of �𝑰 − 𝛼𝑷𝑯�𝑓��, provided that the norm is the ℒ2 norm.  Eq. (3.103) 

provides an upper bound on how fast the distance to the minimzer is decreasing at each 

iteration and that rate is governed by the norm of �𝑰 − 𝛼𝑷𝑯�𝑓��.   

Ideally we would like the matrix, �𝑰 − 𝛼𝑷𝑯�𝑓��, to be as close to 0 as possible.  For 

a given preconditioner 𝑷, the best step size 𝛼 satisfies 𝛼∗ = 2

𝜆𝑚𝑖𝑛�𝑷𝑯�𝒇���+𝜆𝑚𝑎𝑥�𝑷𝑯�𝒇���
, in 

which case the spectral radius of �𝑰 − 𝛼∗𝑷𝑯�𝑓�� is given by: 

 
𝜌 �𝑰 − 𝛼∗𝑷𝑯�𝑓�� =

𝜆𝑚𝑖𝑛 �𝑷𝑯�𝒇��� − 𝜆𝑚𝑎𝑥 �𝑷𝑯�𝒇���

𝜆𝑚𝑖𝑛 �𝑷𝑯�𝒇���+ 𝜆𝑚𝑎𝑥 �𝑷𝑯�𝒇���
=
𝜅 − 1
𝜅 + 1

 (3.104)  

where 𝜅 ≜ 𝜆𝑚𝑎𝑥 �𝑷𝑯�𝑓�� 𝜆𝑚𝑖𝑛 �𝑷𝑯�𝑓���  denotes the condition number of 𝑷𝑯�𝑓�.  

Hence fast convergence happens when 𝑷 is chosen to minimize the condition number of 

𝑷𝑯�𝑓�.  For quadratic cost functions, the ideal precondition would be 𝛼𝑷 = 𝑯−1�𝑓� and 

convergence is achieved in one step because �𝑰 − 𝛼𝑷𝑯�𝑓�� = 0.  For non-quadratic 

Ψ(𝑓), the inverse-Hessian preconditioner  𝛼𝑷 = 𝑯−1�𝑓� would yield superlinear 

convergence rate.   

 For large scale applications, general purpose optimization methods should always be 

used with a preconditioner.  We briefly digress a bit to give a brief intuitive 

understanding of preconditioning.  As its name suggest, precondition is meant to improve 

the condition number of a matrix [58].  Suppose that 𝑴 is a symmetric, positive definite 

matrix that approximates 𝐴 but it is easier to invert.  We can solve the unregularized 

system of equations, 𝑨𝑓 = 𝑦 indirectly by solving 𝑴−1𝑨𝑓 = 𝑴−1𝑦.  If 𝜅(𝑴−1𝑨) ≪
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𝜅(𝑨), or if the eigenvalues of 𝑴−1𝑨 are better clustered than those of 𝑨, we can achieve 

faster convergence by using the preconditioner 𝑴−1.   

 Geometrically speaking, precondition is an attempt to stretch the quadratic cost 

function (or the locally quadratic approximation of a cost function) to make it appear 

more spherical so that the gradient vector points toward the minimizer and that the 

eigenvalues are close to each other.  A perfect precondition is 𝑴 = 𝑨, which scales the 

quadratic form along its eigenvector axes causing it to be perfectly spherical.  Thus the 

solution is reached in one iteration.  However, such a preconditioner is not useful at all 

since we would still have to solve 𝑴𝑓 = 𝑦.   

 The simplest preconditioner is a diagonal matrix whose diagonal entries are identical 

to those of 𝑨  The process of applying this preconditioner is equivalent to scaling the 

quadratic form along the coordinate axes which could prove to beneficial for large 

systems.  Furthermore, a diagonal matrix is trivial to invert.  There are many more 

sophisticated preconditioners that have been developed and in general one should use a 

preconditioner for large scale systems.   

Preconditioned Steepest Descent (PSD) 

An apparent improvement in the PGD algorithm, is to vary the step size in each 

iteration.  If we define a search direction using the preconditioned gradient vector, we can 

then seek the minimizer of Ψ(𝑓) along that direction [57].  The search starts at an 

arbitrary point 𝒇0and then we slide down the gradient until we are close enough to the 

solution.  Mathematically, the iterative procedure is given by  

 𝑓(𝑛+1) = 𝑓(𝑛) + 𝛼𝑛𝑑(𝑛) (3.105)  

where 𝑑(𝑛) = −𝑃∇Ψ�𝑓(𝑛)� is the preconditioned gradient at a given iteration.  Now, the 

question, is how big should the step taken in that direction be?  This line search should 

obviously move us to the point where the cost function takes on a minimum value.  

Hence a necessary condition for finding the minimizing step size 𝛼𝑛 is that  

 𝜕
𝜕𝛼

 Ψ�𝑓(𝑛) + 𝛼𝑑(𝑛)�|𝛼=𝛼𝑛 = 0 (3.106)  

 

Applying the chain rule, we get the following expression: 

 ∇Ψ�𝑓(𝑛) + 𝛼𝑑(𝑛)�
𝑇
𝑑(𝑛)|𝛼=𝛼𝑛 = ∇Ψ�𝑓(𝑛+1)�

𝑇
𝑑(𝑛)|𝛼=𝛼𝑛 = 0 (3.107)  
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The above expression indicates that the next gradient ∇Ψ�𝑓(𝑛+1)� and the current 

search direction 𝑑(𝑛) are to be orthogonal if we are to find an exact minimizer.  What we 

really have here is actually a minimization problem along a line, where the line is given 

by Eq. (3.105) for different values of 𝛼.  This is usually solved as stated earlier by doing 

a line search; that is searching for a minimum point along a line.  Hence, the search for a 

minimum of Ψ(𝑓) is reduced to a sequence of linear searches.  We can obtain an 

expression for minimizing step as follows: 

 𝛼𝑛 = 𝑎𝑟𝑔min
𝛼

Ψ�𝑓(𝑛) + 𝛼𝑑(𝑛)� = ∇Ψ�𝑓(𝑛+1)�
𝑇
𝑑(𝑛) (3.108)  

Near the minimizer, the cost function is approximately parabolic and so ∇Ψ(𝑓) =

𝑯�𝒇���𝑓 − 𝑓�.  Thus we have that: 

 ∇Ψ�𝑓(𝑛+1)�
𝑇
𝑑(𝑛) = �𝑓(𝑛) − 𝑓 + 𝛼𝑑(𝑛)�

𝑇
𝑯�𝒇��𝑑(𝑛) = 0 (3.109)  

Solving for 𝛼, we get the following expression for the minimizing step size: 

 

𝛼𝑛 = ∇Ψ�𝑓(𝑛+1)�
𝑇
𝑑(𝑛) =

�𝑓(𝑛) − 𝑓�
𝑇
𝑯�𝑓�𝑑(𝑛)

𝑑(𝑛)𝑻𝑯�𝑓�𝑑(𝑛)

=
�𝑔(𝑛)�

𝑇
𝑑(𝑛)

𝑑(𝑛)𝑻𝑯�𝑓�𝑑(𝑛)
 

(3.110)  

where 𝑔(𝑛) = ∇Ψ�𝑓(𝑛)� = 𝑯�𝑓��𝑓(𝑛) − 𝑓�.  The preconditioned steepest descent can 

now be expressed as follows: 

 

 

 

 

 

Choosing the preconditioner 𝑷 follows similar analysis as given in the earlier section.  

It can be shown that for the fastest asysmptotic convergence rate, one should choose 𝑷 to 

minimize the condition number of the product of 𝑷𝑯.  If we define the error vector 

𝛿(𝒏) = 𝑷−1 2⁄ �𝑓(𝑛) − 𝑓� and the preconditioned Hessian matrix 𝑯� = 𝑷1 𝟐⁄ 𝑯𝑷1 𝟐⁄ , one 

can show that error norm decreases each iteration by at least as much as the following: 

𝑑(𝑛) = −𝑃∇Ψ�𝑓(𝑛)�                     

𝛼𝑛 = 𝑎𝑟𝑔min
𝛼
Ψ�𝑓(𝑛) + 𝛼𝑑(𝑛)� 

𝑓(𝑛+1) = 𝑓(𝑛) + 𝛼𝑛𝑑(𝑛)                

PSD 
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 �𝛿(𝑛+1)�𝑯�1 2⁄ ≤
𝜅 − 1
𝜅 + 1 �

𝛿(𝑛)�𝑯�1 2⁄  (3.111)  

 

where 𝜅 = 𝜆𝑚𝑎𝑥�𝑯��
𝜆𝑚𝑖𝑛�𝑯��

  is the condition number of 𝑯� .  Hence the closer 𝜅 is to unity the 

faster the convergence should be and hence we should choose 𝑷 to minimize the 

condition number of the product of 𝑷𝑯.  For a more thorough analysis of the Steepest 

Descent algorithm for quadratic cost functions and without preconditioning, refer to 

Appendix A. 

  The method of steepest descent is simple, easy to apply, and each iteration is fast.  It is 

also very stable; if the minimum points exit, the method is guaranteed to locate them after 

at least an infinite number of iterations.   

 
Fig. 3.10. Illustration of slow convergence of steepest descent.  The PSD begins at 
𝑓(0) and the iterates �𝑓(𝑛)� converge slowly to the minimizer 𝑓� = 0. 

But even with all these positive characteristics, the method has one very important 

drawback; it generally has slow convergence. Fig. 3.10 illustrates the slow convergence 

of the PSD algorithm even for simple quadratic cost functions.  For badly scaled systems; 

i.e. if the eigenvalues of the Hessian matrix at the solution point are different by several 

orders of magnitude, the method could end up spending an infinite number of iterations 

before locating a minimum point.  It may start out with a reasonable convergence rate, 

but the progress gets slower and slower as the step size gets smaller and smaller near the 
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stationary point.  The method may converge fast for such badly scaled systems, but is 

then very much dependent on a good choice of starting point.  In short, the steepest 

descent method can be used where one has an indication of where the minimum is, but is 

generally considered to be a poor choice for many optimization problems.  It is mostly 

only used in conjunction with other optimizing methods.   

Preconditioned Conjugate Gradients 

As seen in the previous subsection, the reason why the method of steepest descent 

converges slowly is that it has to take a right angle turn after each step and consequently 

search in the same direction as earlier steps.  The method of conjugate gradients (CG) is 

an attempt to mend this problem by “learning from experience” [57, 58].  To further 

accelerate convergence, CG methods modify the search directions to ensure that they are 

mutually conjugate or approximately so for nonquadratic problems.  Conjugacy means 

that two unequal vectors, 𝑑𝑖 and 𝑑𝑗, are orthogonal with respect to symmetric positive 

definite matrix, 𝑸.   

 𝑑𝑖𝑇𝑯𝑑𝑗 = 0 (3.112)  
This can be looked upon as a generalization of orthogonality, for which H is the 

unitary matrix.  The idea is to let each search direction 𝑑𝑖 be dependent on all the other 

directions searched to locate the minimum of Ψ(𝑓).  A set of such search directions is 

referred to as a 𝑯-orthogonal set and it will take a positive definite 𝑛𝑝-dimensional 

quadratic function such as our penalized least squares cost function to its minimum point 

in at most 𝑛𝑝 exact linear searches for a quadratic cost function. 

We would like to choose a search direction 𝑑(𝑛) that is 𝑯(𝑛−1)-orthogonal to the 

previous search direction 𝑑(𝑛−1), where 𝑯𝑛 is the Hessian of Ψ(𝑓) at 𝑓(𝑛).  For quadratic 

cost function, 𝑯𝑛 = 𝑯 is just constant at every iteration.  Specifically, we would like to 

choose the search direction 𝑑(𝑛) such that the following condition is true 

 �𝑑(𝒏)�
𝑇
𝑯𝑛−1𝑑(𝑛−1) = 0 (3.113)  

We can design the search direction 𝑑(𝑛) to achieve conjugacy using the recursion 

 𝑑(𝑛) = −𝑷𝑔(𝑛) + 𝛾𝑛𝑑(𝑛−1) (3.114)  

where  𝑔(𝑛) = ∇Ψ�𝑓(𝑛)� and we choose 𝛾𝑛 to satisfy Eq. (3.113).  Substituting Eq. 

(3.114) into Eq. (3.113) and simplifying yields 
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 𝛾𝑛 =
�𝑑(𝑛−1)�

𝑇
𝑯(𝑛−1)𝑷𝑔(𝑛)

(𝑑(𝑛−1))𝑇𝑯(𝑛−1)𝑑(𝑛−1) (3.115)  

This choice for 𝛾𝑛 will satisfy the conjugacy relation given in Eq. (3.113) but is 

inconvenient particularly for non-quadratic cost functions because it depend on the 

Hessian 𝑯(𝑛−1).  We would like to have an expression for 𝛾𝑛 that does not depend on the 

Hessian 𝑯(𝑛−1) even if 𝑯(𝑛−1) = 𝑯 is a constant.    

It can be shown that given a set of linearly independent vectors such as the gradient 

vectors, 𝑔(𝑛) at every iteration, can be used to construct a set of mutually H-conjugate 

directions 𝑑(0), 𝑑(1), …𝑑(𝑛−1).  Furthermore, we can obtain the following recursive 

expression for the update 𝛾𝑛 that is independent of the Hessian matrix.  

 𝛾𝑛𝐹𝑅 =
�𝑔(𝑛)�

𝑇
𝑷𝑔(𝑛)

(𝑔(𝑛−1))𝑇𝑷𝑔(𝑛−1) (3.116)  

For a detailed discussion on the generation of such a set and on the derivation of the 

update expression, refer to Appendix B.  This is referred to as the Fletcher-Reeves update 

and it shows that the search direction 𝑑(𝑛) can be generated with knowledge of only the 

current and previous gradients 𝑔(𝑛) and 𝑔(𝑛−1) and the previous search direction 𝑑(𝑛−1).  

This method uses only vector multiplication and is of vital importance when 𝑛𝑝 is large 

and computer storage is not an option.  This method when applied to a positive definite 

quadratic function of 𝑛𝑝 variables will find the minimum in at most 𝑛𝑝 iterations.  

The conjugate gradient method is used to solve a set of positive definite symmetric 

linear equations.  The linear conjugate-gradient algorithm takes the following form, for 

𝑛 = 0,1,⋯, given 𝑓(0) and  

 𝑔(0) = ∇Ψ�𝑓(0)� (3.117)  

then for 𝑛 = 0,1,⋯, 

 𝛾𝑛𝐹𝑅 =
�𝑔(𝑛)�

𝑇
𝑷𝑔(𝑛)

(𝑔(𝑛−1))𝑇𝑷𝑔(𝑛−1) (3.118)  

 

 𝑑(𝑛) = −𝑃𝑔(𝑛) + 𝛾𝑛𝑑(𝑛−1) (3.119)  

It can be shown (appendix B) that the current gradient vector 𝑔(𝑛) is orthogonal to the 

previous search direction, 𝑑(𝑛−1).  That is 𝑔(𝑛)𝑇𝑑(𝑛−1) = 0. Thus 
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 𝛼𝑛 = 𝛼 =
�𝑔(𝑛)�

𝑇
𝑑(𝑛)

𝑑(𝑛)𝑻𝑯𝑑(𝑛)
=
�𝑔(𝑛)�

𝑇
𝑷𝑔(𝑛)

𝑑(𝑛)𝑻𝑯𝑑(𝑛)
=
�𝑔(𝑛)�𝑷1 2⁄

2

𝑑(𝑛)𝑻𝑯𝑑(𝑛)
    (3.120)  

 𝑓(𝑛) + 𝛼𝑑(𝑛) (3.121)  
The impressive performance of PCG is demonstrated in the Fig. 3.11.  Using the same 

quadratic function as in the PSD example (Fig. 3.10), we see that we converge to the 

solution in two iterations which is consistent with the size of the parameter space. 

 

 
Fig. 3.11. Illustrates the fast convergence of the PCG method in which 𝑃 = 𝐼.  Unlike 
PSD, the algorithm converges in two iterations. 

The PCG method can also be used to solve systems where 𝐴 is not symmetric, not 

positive-definite, and not even square.  For example, the unregularized least squares 

problem 

 

 𝑓 = argmin
𝑓

‖𝑦 − 𝑨𝑓‖2 (3.122)  

can be solved by setting the derivate of Eq. (3.122) to zero which yields the normal 

equations 

 𝑨𝑻𝑨𝑓 = 𝑨𝑻𝑦 (3.123)  
If 𝑨 is not square and 𝑨𝑓 = 𝑦 is overconstrained, more linearly independent equations 

than variables, then there may or may not be a solution to 𝑨𝑓 = 𝑦, but it is always 

possible to find a value of 𝑓 that minimizes Eq. (3.122).  𝑨𝑻𝑨 is symmetric and positive 
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because for any 𝑓, 𝑓𝑇𝑨𝑻𝑨𝑓 = ‖𝐴𝑓‖2 ≥ 0.  If 𝑨𝑓 = 𝑦 is not underconstrained, then 𝑨𝑻𝑨 

is nonsingular and PCG can be used to solve Eq. (3.123).  The only issue in doing so is 

that condition number of 𝑨𝑻𝑨 is the square of that of 𝐴 and so convergence is 

significantly slower.  Furthermore, an important technical point is that the matrix 𝑨𝑻𝑨 is 

even denser than 𝑨 and should not be formed explicitly.   

The rate of convergence of PCG is determined by the location of the spectrum of the 

system matrix 𝑨.  Roughly speaking a good spectrum leads to faster convergence.  A 

good spectrum may happen for two reasons:  the eigenvalues maybe grouped in small 

clusters or they may lie well separated in a relative sense from the origin.  First, we 

suppose that the eigenvalues are perfectly clustered but assuming nothing about these 

locations.  If 𝑨 has only 𝑛 distinct eigenvalues, then the CG converges in 𝑛 steps.  At the 

other extreme, suppose we know nothing about any clustering of the eigenvalues but only 

that their distances from the origin vary by at most a factor of 𝜅 ≥ 1.  In other words, 

suppose we know only the 2-norm condition number, 𝜅 = 𝜆𝑚𝑎𝑥
𝜆𝑚𝑖𝑛

, then the following is 

true: 

 
�𝑓(𝑛) − 𝑓�𝐴
�𝑓(0) − 𝑓�𝐴

≤ 2�
√𝜅 − 1
√𝜅 + 1

�
𝑛

≈ 2 �1 −
2
√𝜅
�
𝑛

 (3.124)  

 

The PCG method when applied to general nonlinear functions loses the property of 

finding the minimum in at most 𝑛𝑝 iterations and becomes just an iterative method.  The 

Fletcher-Reeves algorithm suggests reverting periodically after a cycle of 𝑛 linear 

searches to the direction of steepest descent and discarding all previous information on 

directions.  Later, Polak and Ribiere introduced another expression for 𝛾𝑛 given by: 

𝛾𝑛𝑃𝑅 =
�𝑔(𝑛) − 𝑔(𝑛−1)�

𝑡
𝑷𝑔(𝑛)

(𝑔(𝑛−1))𝑡𝑷𝑔(𝑛−1)  

The Polak-Ribier algorithm coincides with the Fletcher-Reeves algorithm whenever it is 

applied to a quadratic function but differs from it when applied to nonlinear functions.  

Due to nonquadratic terms in the objective function and possible inaccurate line searches, 

conjugacy of the directions generated by the CG will be lost and so the Polak-Ribier 
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method is meant to resolve this issue.  The PCG method using Fletcher-Reeves update is 

summarized as follows: 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 

In this chapter, we have provided a detailed discussion of Model-based image 

reconstruction in the context of penalized-likelihood estimation.  First, we showed the 

necessary steps to take for developing suitable system and statistical models.  We then 

presented explicit reasons for using penalized-likelihood estimation as opposed to other 

estimation techniques in deriving a suitable cost function with an appropriate regularizing 

penalty term.  We also gave a general discussion of the properties of the QPWLS 

estimator, particularly its low-pass filtering nature.  We also provided a brief discussion 

of edge-preserving penalty functions.  Lastly, we discussed general purpose optimization 

algorithms and showed the impressive performance of conjugate gradients method for 

quadratic cost functions.    

𝑔(𝑛) = ∇Ψ�𝑓(𝑛)�                       (𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡) 

𝑝(𝑛) = 𝑷𝑔(𝑛)                      (𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) 

𝛾𝑛𝐹𝑅 = �
0 𝑛 = 0

�𝑔(𝑛)�
𝑇
𝑷𝑔(𝑛)

(𝑔(𝑛−1))𝑇𝑷𝑔(𝑛−1)     𝑛 > 1
       � 

                          𝑑(𝑛) = −𝑝(𝑛) + 𝛾𝑛𝑑(𝑛−1)                   (𝑠𝑒𝑎𝑟𝑐ℎ 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) 

                  𝛼𝑛 = min
𝛼∈ℝ

Ψ�𝑓(𝑛) + 𝛼�𝑑(𝑛)                              (𝑠𝑡𝑒𝑝) 

                  𝑓(𝑛+1) = 𝑓(𝑛) + 𝛼𝑛𝑑(𝑛)                                 (𝑢𝑝𝑑𝑎𝑡𝑒) 

PCG Algorithm 
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Chapter 4 
Model-Based THz Imaging for 2D Reflection Mode 

Geometry 
Imaging with terahertz is still in its infancy with many complex challenges.  Various 

factors severely constrain plausible scenarios of applications.  Several of these 

challenges, including signal to noise ratio, SNR, acquisition speed, and resolution, reflect 

common problems that a number of imaging modalities attempt to address.  In direct 

imaging modalities, there is a direct tradeoff between SNR and acquisition speed.  For 

example, the most basic coherent imaging can be achieved by raster scanning a sample 

through the THz focus and recording the full spectroscopic information at each pixel.  If 

we were to consider a small image of 60 by 60 pixels, 3600 single measurements are 

required.  Depending on the delay line concept, the desired lock-in time constants, and 

other factors, to record a high-quality THz pulse can take longer than 30 s and can result 

in a total measurement time of 30 h for this small image.  To increase the acquisition 

speed, a two-dimensional (2D) electro-optic sampling has been used together with a CCD 

camera to provide a dramatic increase in imaging speed and rates as high as 5000 

pixels/second are feasible.  However, a lock-in amplifier cannot be synchronized to 

multiple pixels.  The relegation of the lock-in amplifier results in a significant reduction 

in SNR compared to the scanned approach.   

Inverse imaging architectures have the potential to increase the acquisition speed 

without compromising SNR.  In chapter 2, we discussed time reversal imaging which is 

an inverse imaging scheme and showed that fast reconstruction of objects can be 

obtained.  However, we also addressed that one of the limitation of time-reversal imaging 

is the lack of a system model to “invert” and hence the impulse response of the system 

with its temporal ringing seriously degrades the quality of the reconstructed images.  In 

the previous chapter, we developed the theoretical framework of model-based imaging 

and showed the method by which one can develop a system model and also the steps one 
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must take to “invert such model”.  In this chapter, we apply the principles of model-based 

imaging to a 2D THz system operating in reflection mode to show fast reconstruction of 

metallic and dielectric objects.  At the heart of the model-based image reconstruction 

algorithm, is the minimization of a quadratically penalized least-squares (QPLS) cost 

function via conjugate gradients.  QPLS is a special form of the QPWLS, discussed in the 

previous chapter, but has equal weighting.  We compare the reconstructions by this 

algorithm to that of the time-reversal algorithm for metallic and dielectric objects and 

show that having a system model to “invert” leads to better quality images without 

compromising acquisition speed.   

Experimental Setup 

 
Figure 4.1. Illustrate the 2D THz imaging setup in reflection mode. 

The experimental setup for 2D reflection mode THz imaging is depicted in Fig. 4.1.  A 

Coherent regeneratively amplified laser is used to generate near-infrared (NIR) pulses 

with a pulse duration of approximately 100fs.  The pulse energy is 4 𝜇J at a repetition 

rate of 250 kHz, providing an average power of 1W.  The laser pulses are split into pump 

and probe beams using a beamsplitter.  The pump beam illuminates a large-area 

photoconductive emitter (TeraSED, GigaOptics GmbH) to generate a nearly single cycle 

THz pulse.  Since the optical spot size and hence the THz generation area is much 
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smaller than the THz wavelength the emitted THz radiation is divergent and is collimated 

using an off-axis parabolic mirror, A, with focal length of 102 mm.  The first of the two 

metal coated mirrors in between the parabolic mirrors directs the collimated THz beam 

onto the object while the second mirror directs a portion of the scattered THz onto a 

second parabolic mirror, B, of focal length 76 mm for electro-optic detection in 〈110〉 

ZnTe crystal.   

The probe pulse is reflected by a pellicle to propagate collinearly with the THz pulse.  

As the probe beam propagates through the ZnTe crystal, its polarization is rotated 

proportionally to the instantaneous THz electric field.  ZnTe is favored for EOS because 

of its physical durability, its high second order nonlinearity 𝜒(2) coefficient and its 

excellent phase matching properties.  The group velocity of the 800 nm probe pulse and 

the phase velocity of the THz field are approximately equal in ZnTe.  The birefringence 

of ZnTe is modified by the external THz electric field and the probe beam polarization is 

rotated by the EO or Pockel’s effect.  The induced phase modulation of the probe pulse is 

converted into an intensity modulation and detected by a differential photodiode.  By 

iteratively increasing the probe path length using a rapid delay scanner, the THz electric 

field at later times is measured and the temporal THz pulse profile is recorded.   

The object that is to be imaged is mounted onto a rotation stage and rotated in 

increments of 1 degree for a full revolution.  The resulting wavefield is then processed to 

generate a 2D image of the object’s profile.   In general, a reference waveform is obtained 

for system calibration and for use as the impulse response of the system.  The reference 

waveform is obtained by placing a flat gold mirror at the pivot point of the rotation stage.  

An example of the reference waveform is shown in Fig. 4.2.  The reference waveform 

clearly shows the presence of temporal ringing which will greatly clutter our 

reconstructed images if not properly taken into account.   
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Figure 4.2. Illustrates the impulse response of the THz reflection mode Imaging System. 

Problem Formulation 

To develop a model-based image reconstruction algorithm for 2D THz imaging, we 

must first develop a system model that captures the forward imaging process.  As 

discussed in the previous chapter, the forward imaging process can be described as a 

convolution between the THz impulse response and the object’s spatial profile: 

 𝑦𝜃(𝑡) = �𝑓(𝑥, 𝑧)ℎ(𝑡 − 𝜏𝜃𝑥𝑧)𝑑𝑥 𝑑𝑧 (4.1)  

where 𝑓(𝑥, 𝑧) is the object’s spatial profile and ℎ(𝑡) is the impulse response of the THz 

system that is delayed by a known parameter 𝜏𝜃𝑥𝑧 that is calculated from the geometry of 

our setup.  In image reconstruction, we are interested in the object’s spatial function 

given a known kernel and the observed function. Since our measurement set is finite, 

{𝑦𝜃}𝜃=1𝜃=𝑁 , there are uncountably many objects whose spatial profile fit our measurements 

and thus our image reconstruction problem is ill-posed.  In order to address the ill-

posedness of our problem and to develop a discrete model, we make the assumption that 

our object is band-limited spatially and thus can be represented by a set of basis.  The 

simplest basis to work with is the set generated by spatially shifting 𝛿(𝑥, 𝑧)  

 𝑓(𝑥, 𝑧) = � � 𝑓𝑛𝑚𝛿(𝑥 − 𝑛Δx, z − mΔz)
𝑚=𝑀

𝑚=1

𝑛=𝑁

𝑛=1

 (4.2)  

 

Inserting Eq. (4.2) into Eq. (4.1) and simplifying, we obtain the following discrete 

expression for Eq. (4.1).   
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𝑦𝜃(𝑡) ≈ � � 𝐴𝜃𝑚𝑛(𝑡)𝑓𝑛𝑚

𝑛=𝑁

𝑛=1

𝑚=𝑀

𝑚=1

,   𝑤ℎ𝑒𝑟𝑒   𝐴𝜃𝑛𝑚(𝑡)

= ℎ(𝑡 − 𝜏𝜃𝑚𝑛) 

(4.3)  

By parameterizing the object’s spatial function using a comb function, we have 

essentially discretized our object space into a grid of possible reflectors and thus 𝑓𝑛𝑚 

represents the reflectivity of the object.  To obtain a matrix-vector expression of Eq. 

(4.3), we concatenate our measurements into a 1D vector of length 𝑛𝑑 × 1 and our 2D 

image, 𝑓𝑛𝑚, into a 1D vector, 𝑓, of length 𝑛𝑝 × 1 using lexicographic ordering as discussed 

in the earlier chapter.  The system matrix, 𝑨, consists of shifted impulses, ℎ(𝑡 − 𝜏𝜃𝑚𝑛), 

whose shift is determined by the geometry of our setup.  The derivation for 𝜏𝜃𝑚𝑛 is with 

respect to the pivot point of the rotation stage and can be obtained by considering the 

following geometry. 

 
Figure 4.3. Illustrates the simple geometry used to derive an expression for 𝜏𝜃𝑚𝑛 

As depicted in Fig. 4.3, the total path length difference, 𝑟𝑇, is shown in red.  Hence, we 

have that  

 

𝜏𝜃𝑚𝑛 =
𝑟𝑇
𝑐

=
(𝑟𝑖 + 𝑟𝑟)

𝑐
 

𝜏𝜃𝑚𝑛

=
𝑥 ∗ 𝑠𝑖𝑛(𝜃 + 𝛼) + 𝑧 ∗ 𝑠𝑖𝑛(𝜃 + 𝛼) + 𝑥 ∗ 𝑠𝑖𝑛(𝜃 − 𝛼) + 𝑧 ∗ 𝑐𝑜𝑠(𝜃 − 𝛼)

𝑐
 

(4.4)  

Pivot 
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The expression for the time delay of the pulses is respect to the pivot point of the rotation 

stage.  Hence it is very critical that the time delay of the pivot point is known. 

Experimental Results 

The expression given in Eq. (4.4) captures the rotating geometry of our imaging setup.  

However, it computes the relative time delays of pixels with respect to the pivot point.  

Hence, it is crucial that the location of the pivot point in our time window be known.  

Thus, to calibrate the 2D reflection mode THz imaging system, a steel post with a 

diameter of 12.66 mm was mounted onto a rotation stage and rotated in increments of 1 

degree for a full revolution.  We chose the steel post for calibration for its geometrical 

simplicity, anticipating that if the center of the post rotated about the pivot point, we 

should expect a flat wavefield plot as function of angle and thus the pivot point can be 

calculated easily.  However, as shown in Fig 3.4a), the center of the post does not sit at 

the point of rotation and thus we must account for this offset either by shifting the 

coordinate system or by correcting for the location of the pivot point using this offset.  In 

the following set of experiments, we opt for the latter and in later more complicated 

experiments; we actually shift the whole coordinate plane.   

 

Figure 4.4. Plot of a) Post Wavefield.  Illustration of b) the THz peak as a function of 

rotation angle (green line) and the fit to the THz peak as a function of angle (dashed 

black line). 
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To determine the location of the pivot point in our time window, we plot the THz peak 

reflected off the front surface of a 1/4 in. steel post as a function of angle (green line).  

The post is smooth and hence we can model the relative delay between the pivot point 

and the front surface of the post as a function of the post center and rotation angle 

accurately.  We then seek the 𝑥 −, and 𝑧 − values of the post center that will minimize 

the least-squares error between the actual graph and our time-delay model.  Once the 

values are determined, the pivot point time location is easily calculated from the 

cylindrical geometry of the post. 

 Having determined the location of the pivot point in our time-window and using the 

expression for the relative time delay given in Eq. (4.4), we can model the forward 

imaging process by constructing a system matrix of time-shifted impulses.  With the 

system model in place, we minimize via conjugate gradients the regularized least-squares 

cost function (QPLS) developed in the previous chapter.  That is, we seek the minimum 

to the following expression: 

 𝑓 = 𝑎𝑟𝑔min
𝑓
�

1
2
‖𝑦 − 𝑨𝑓‖2 +

𝛽
2
‖𝑪𝑓‖2� (4.5)  

The first term in the cost function is a measure of the error between the solution and the 

data and we would like this term to be small.  The second term is a regularizing penalty 

term that penalizes an estimate according to how much it departs from our assumption of 

smoothness.  Forcing the solution to be smooth will inevitably reduce the agreement 

between the solution and the data and hence introduce distortion.  Thus, the regularized 

solution is a balance between the fidelity of the solution to the noisy data and the 

distortion introduced by the penalty term and this balance is controlled by the β term.  As 

𝛽 ⟶ ∞, the original least squares solution is achieved whereas  𝛽 ⟶ 0, a perfectly 

smooth solution is obtained.  Thus, one must be careful in choosing the penalty 

parameter.   

 As discussed in the previous chapter, one must adjust 𝛽 such that the desired spatial 

resolution is achieved.  There are many computationally intensive ways for choosing 𝛽 

and it may be worth the effort to rigorously choose 𝛽 according to such methods 

particularly if the system matrix does not change from one experiment to the next.  In the 

2D reflection THz imaging system, as long as the time window does not change the 
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system matrix will not change.  However, we have found a simple and heuristic approach 

for determining 𝛽.  We plot both the maximum amplitude of the point-spread function 

(psf) and the condition number for the Hessian of our cost function, 𝜅(𝑯) = (𝑨𝑇𝑨 +

𝛽𝑹), for a range of 𝛽 as depicted in Fig. 4.5.  From these two plots, we can extract a 

small range of useful 𝛽 values to use in the model-based algorithm.    

 
Figure 4.5. By plotting both the condition number of the Hessian and the maximum 

amplitude of the PSF we can extract a range of reasonable 𝛽 values. 

It is evident from the plot shown in Fig. 4.5 that by choosing a 𝛽 value from the range 

shown in red, then we can better condition our overall system without overly smoothing 

our reconstructed images.   

 To better illustrate the smoothing effect of the 𝛽 parameter, we plot the 2D PSF under 

two cases.  In the first case, a plot of the PSF is shown in Fig. 4.6a) for a reasonable 

choice of 1 for 𝛽, in accordance with the curve in Fig. 4.5.  The inset plot shown in Fig. 

4.6a) is a horizontal line cut through the 2D plot of the PSF.  It clearly shows that the PSF 

remains largely peaked at its pixel position.   

Range of reasonable 𝛽 values 
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Figure 4.6. 2D plot of the PSF for a) 𝛽 = 1  and b) 𝛽 = 64.  The insets are horizontal 

line cuts of the 2D PSF plots. 

In Figure 4.6b) we consider the case in which the 𝛽 parameter is large.  As evident in the 

2D PSF for 𝛽 = 64, the energy in the PSF has been spread to many pixels which has 

resulted in a reduction in the peak amplitude of the PSF, as shown in the inset.  Clearly, 

we must choose a large enough value for 𝛽 such that it stabilizes the Hessian matrix but 

not large enough such that it smears the energy of a signal over a large number of pixels.       

 To assess the performance of the model-based algorithm via regularized least-squares, 

we compared the resulting reconstructed images to those obtained via the time-reversal 
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algorithm.  The first objected to be reconstructed was the 1/4 in steel post whose 

wavefield plot is given in Fig3.4a).   

 
Figure 4.7. Reconstruction of post wavefield data via a) Time-reversal and via b) Model-based. 

After five iterations, the model-based algorithm has achieved a better reconstruction of 

the steel post than did the time reversal.  As evidenced by the reconstructed images 

shown in Fig. 4.7a) and 4.7b), normalized to their respective peaks, we see that both 

algorithms reconstructed the cross section of the steel post with the right dimensions of 

12.7 mm.  However, the model-based image clearly shows that the grid points 

corresponding to points inside the steel post are very close to zero.  However, the time 

reversal algorithm clearly has signal inside the perimeter of the post which arises because 

the time-reversal algorithm does not take into account the temporal ringing in the impulse 

response.  Thus the image produced by the model-based algorithm is qualitatively more 

consistent with the object than the time-reversal.  We can quantify the improvement of 

the model-based algorithm versus the time-reversal algorithm by integrating the 

reconstructed images azimuthally and plotting the resulting signals as a function of radius 

as shown in Fig. 4.8a) and 4.8d).  From the plots we calculated a peak SNR (in 

amplitude) for the model-based algorithm of 80.0 and a peak SNR of 16.9 for the time-

reversal algorithm.  Hence, the model-based algorithm has resulted in a factor of 

approximately 5 (14 dB) improvement in SNR over the time-reversal algorithm.  
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Figure 4.8. Illustrates the resulting 1D signals from azimuthally integrated the 

reconstructed images in Fig. 4.5 as a function of radius via a) time-reversal and b) via 

model-based. 

 In the second experiment, we imaged two wires with diameters of 2 mm and a spacing 

of 8.5 mm.  Since the time window during this experiment is different than the first 

experiment with the post, we had to calibrate the imaging system in the same manner 

outline above to find the new time location of the pivot point.  Furthermore, we created a 

new 𝛽-curve for the new experiment in order to extract a reasonable value for 𝛽.  

However, the curve was nearly identical to the one shown in Fig. 4.5 so we used the same 

value for 𝛽 as the post experiment.  We measured the scattered field off our-two wire 

object in increments of 1 degree for a full revolution.   
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Figure 4.9. Illustrates the wavefield plot for the two wires 

 The wavefield plot shown in Fig. 4.9 illustrates that one of the wires can at certain 

angles be completely shadowed by the other wire.  The second wire is in the shadow of 

the first wire over the range of angles between 65-95 degrees and the first wire is in the 

shadow of the second wire over the range of angles between 245-275 degrees.  This 

shadowing will not however present a problem to both algorithms because of the strong 

scattering from the two wires over a significantly large range of angles.  In addition to the 

main scattering off the wires, the wavefield plot clearly shows the presence of weak 

scattering between the two wires, shown in red.  This scattering will present a challenge 

to the time-reversal algorithm because of the lack of a system model and it will also 

present a challenge to the model-based reconstruction method unless we alter the system 

model to take into account the weak scattering between the two wires.  However, instead 

of modeling the complex scattering process, it was easier to choose a cost function that 

enforces the sparsity of the reconstructed images.  Prior to discussing sparsity 

regularization, we show the reconstructed images from the time-reversal algorithm and 
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also the model-based algorithm using a quadratically penalized least-squares (QPLS) cost 

function.   

 
Figure 4.10. Reconstructed image of two wires using a) time-reversal algorithm and 

b) model-based with QPLS. 

The reconstructed image via the QPLS reconstructed algorithm is qualitatively better than 

the one generated via the time-reversal algorithm.  The ringing around the wires has been 

suppressed in the QPLS reconstructed image whereas it is apparent in the time-reversal 

reconstructed image.  Furthermore, if we were to measure the diameter of the wires in the 

reconstructed images, we obtain a value of 2 mm for the QPLS image and a value of 1.8 

mm for the time-reversal image.  Hence, we see the QPLS reconstruction of the wires is 

more consistent with the true object than the time-reversal algorithm.   
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Figure 4.11. Saturated image of two wires via a) time reversal via b) model-based with QPLS. 

In Fig. 4.11 we saturate the reconstructed images shown in Fig. 4.10 in order to raise the 

background and display the better performance of the model-based algorithm as 

compared to the time reversal.  Again we see the strong signal inside the two wires in 

Fig. 4.11a) which is attributed to the temporal ringing of THz impulse.  We also have 

temporal ringing around the wires in Fig. 4.11a).  However, in Fig. 4.11b), we see that 

much of these artifacts have been suppressed.  We also see that the reconstructed image 

in Fig. 4.11b) is much sharper than the image in Fig. 4.11a). 

 In both reconstructed images, however, we see artifacts due to the presence of the 

weakly scattered signals in the wavefield data.  There is not much that can be done with 

the time-reversal algorithm that can mitigate the effect of the weak scattering that is 

present in the measurement data.  However, in the model based algorithm, we have two 

options as stated earlier.  We can either improve on the system model which would lead 

to an improvement in the qualitative accuracy of the reconstructed images.  Modeling the 

complex scattering process though can be difficult and thus we choose the alternate 

option of using a different cost function.  We know prior hand that the reconstructed 

images will be sparse spatially.  Even if the images were not sparse spatially they can be 

sparse in another domain such as the wavelet domain.  That is the transform of the image 

is sparse.  However, in our case, the reconstructed images are spatially sparse to begin 

with.  Thus we can construct a cost function that consists, as usual, of a data mismatch 

term and also a penalty term that enforces the sparsity of our reconstructed images.  One 
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could use the ℒ0 norm.  The zero norm of 𝑓 is simply the number of non-zero elements of 

𝑓 and it derives its name as being the limit of 𝑝-norms as 𝑝 approaches 0.  That is: 

 ‖𝑓‖0 = lim
𝑝→0

‖𝑓‖𝑝
𝑝 = �1�𝑓𝑗≠0�

𝑗

 (4.6)  

Despite its name, the ℒ0 norm is not really a norm because it violates the triangle 

inequality.  Thus we replace it with the ℒ1 norm which is defined as: 

 
‖𝑓‖1 = ��𝑓𝑗�

𝑛𝑝

𝑗=1

 (4.7)  

Thus our new cost function can be represented as follows: 
 Ψ(𝑓) = 𝐿(𝑓) + 𝛽𝑅(𝑓) =

1
2
‖𝑦 − 𝑨𝑓‖22 +

𝐵
2
‖𝑓‖1 (4.8)  

and thus we seek: 

 𝑓 = 𝑎𝑟𝑔min
𝑓
�

1
2
‖𝑦 − 𝑨𝑓‖22 +

𝐵
2
‖𝑓‖1� (4.9)  

It is clear that this remains an unconstrained convex optimization problem in terms of 𝑓.  

However, this problem is non-differentiable when 𝑓𝑗 = 0 for any 𝑓𝑗.  Thus, we can’t 

obtain a closed form solution for the global minimum in the same way that was done with 

the QPLS cost function.  This drawback has led to the recent introduction of a multitude 

of techniques for dealing with cost functions that are convex but not differentiable.  One 

such approach is optimization transfer.   

 The basic idea of optimization transfer is that when one is faced with a cost function 

Ψ(𝑓) that is difficult to minimize, at the 𝑛𝑡ℎ iteration replace Ψ(𝑓) with a surrogate 

function 𝜙(𝑛)(𝑓) that is easier to minimize.  Usually, minimizing 𝜙(𝑛)(𝑓) will not yield 

the global minimizer 𝑓 of Ψ(𝑓) in one step so we must repeat the process.  We alternate 

between the “S-step:” choosing a surrogate function 𝜙(𝑛)(𝑓) and the “M-Step:” finding 

the minimizer of 𝜙(𝑛)(𝑓).  Thus if we choose the sequence of surrogate functions 

𝜙(𝑛)(𝑓) properly then the sequence of iterates �𝑓(𝑛)� will converge to the global 

minimizer 𝑓 provided that the following three montonicity conditions are upheld 

• 𝜙(𝑛)�𝑓(𝑛)� = Ψ�𝑓(𝑛)� Matched current value 

• ∇𝜙(𝑛)(𝑓)|𝑓=𝑓(𝑛) = ∇Ψ(𝑓)|𝑓=𝑓(𝑛)                Matched Gradient 

• 𝜙(𝑛)(𝑓) ≥ Ψ(𝑥)    ∀𝑥 ≥ 0  Lies above 



90 
 

 
Figure 4.12. Illustration of 1D cost function Ψ(𝑓) and quadratic surrogates at 3 iterations. 

In Fig. 4.12, we illustrate the basic idea of optimization transfer.  The parabolic surrogate 

function 𝜙�𝑓(𝑛)� has the same value as the cost function Ψ�𝑓(𝑛)� at the current iterate 

𝑓(𝑛) and has the same slope at that point.  In addition, the parabolic function lies above 

Ψ�𝑓(𝑛)� and this is the key to having a monotonic algorithm.    

 To minimize the cost function Ψ(𝑓) given in Eq. (4.8), we note the penalty function, 

𝑅(𝑓), like the energy penalty discussed in the last chapter is a separable function, as 

shown in Eq. (4.7).  However, the likelihood term, or the data mismatch term, 𝐿(𝑓) is a 

non-separable function due to the presence of the system matrix.  Hence we seek 

separable surrogates for 𝐿(𝑓).  Expanding the non-separable quadratic 𝐿(𝑓) exactly in 

terms of a second order Taylor series, we obtain the following expression 

 𝐿(𝑓) = 𝐿�𝑓(𝑛)�+ �𝑓 − 𝑓(𝑛)�
𝑇
∇𝐿�𝑓(𝑛)�

+
1
2 �
𝑓 − 𝑓(𝑛)�

𝑇
𝑨𝑻𝑨�𝑓 − 𝑓(𝑛)� 

(4.10)  

A separable quadratic surrogate can be expressed as: 
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 𝜙𝐿
(𝑛)(𝑓) = 𝐿�𝑓(𝑛)� + �𝑓 − 𝑓(𝑛)�

𝑇
∇𝐿�𝑓(𝑛)�

+
1
2 �
𝑓 − 𝑓(𝑛)�

𝑇
𝑐̌𝑰�𝑓 − 𝑓(𝑛)� 

(4.11)  

where 𝑐� is a scalar value and 𝑰 is the identity matrix with the same dimension as 𝑨𝑻𝑨.  

The scalar 𝑐̌ defines the curvature of the surrogate.  If the surrogate function 𝜙𝐿
(𝑛) has low 

curvature, then it will appear “broad” and the algorithm will take large steps and reach 

the minimizer quickly.  Conversely, if the surrogate function has high curvature, then it 

appears as a “skinny” graph, the steps are small, slowing convergence.  In general we 

would like to find low-curvature surrogate function with the caveat that the surrogate 

function is to lie above Ψ(𝑓).  Thus the following must be true to ensure montonicity: 

 𝑐̌𝑰 ≥ 𝑨𝑻𝑨 (4.12)  
Thus one option is to choose the curvature value to be the spectral radius of 𝑨𝑻𝑨, 

𝑐� = 𝜌�𝑨𝑻𝑨�.  Using the spectral radius may not give the tightest upper bound but it will 

likely give a decent upper bound to use in the iterative algorithm.  The overall quadratic 

surrogate for the original cost function Ψ(𝑓) is 

 𝜙(𝑛)(𝑓) = 𝜙𝐿
(𝑛)�𝑓(𝑛)�+

𝐵
2
‖𝑓‖1 (4.13)  

Thus our update expression should have the following form: 

 𝑓(𝑛+1) = argmin
𝑓

�𝜙(𝑛)(𝑓)� (4.14)  

By completing the square, we can express the likelihood surrogate 𝜙𝐿
(𝑛)(𝑓) as  

 
𝜙𝐿

(𝑛)(𝑓) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 
𝑐̌
2�

𝑓 − 𝑓(𝑛) +
1
𝑐̌
∇𝐿�𝑓(𝑛)��

2

2
 (4.15)  

Dropping the constant term and factoring out a negative sign, we can write the surrogate 

for the cost function 𝜙(𝑛)(𝑓) as 

 
𝜙(𝑛)(𝑓) =  

𝑐̌
2�

𝑓(𝑛) − 𝑓 −
1
𝑐̌
∇𝐿�𝑓(𝑛)��

2

2
+ 𝛽‖𝑓‖1 (4.16)  

Since this surrogate is separable, we can expand it in terms of its unknown parameters, 
 

𝜙(𝑛)(𝑓) =
𝑐̌
2
���𝑓𝑗

(𝑛) − 𝑓𝑗 −
1
𝑐̌
∇𝐿 �𝑓𝑗

(𝑛)��
2

+ 𝛽�𝑓𝑗��

𝑛𝑝

𝑗=1

 (4.17)  
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Thus to minimize the expression in Eq. (4.17), we have to minimize each of the 

individual terms separately.  It can be shown that the soft threshold function minimizes a 

function with the following form: 
 𝑠𝑜𝑓𝑡(𝑡,𝛼) = min

𝑠
(|𝑡 − 𝑠|2 + 𝛼|𝑠|) (4.18)  

The soft thresholding function is a nonlinear function that sets all points between –𝛼 and 

𝛼 to 0.  The following graph in Fig. 4.13 illustrates the soft thresholding function for 

𝛼 = 2.   

 
Figure 4.13. Illustrates the soft thresholding function. 

Hence the expression for the minimizer can be written in terms of the soft thresholding 

function as: 

 
𝑓(𝑛+1) = 𝑠𝑜𝑓𝑡 �𝑓(𝑛) −

1
𝑐̌
∇𝐿�𝑓(𝑛)�,

𝛽
𝑐̌
� (4.19)  

where 𝑐̌ has been moved underneath 𝛽 because multiplying a cost function by constant 

does not change the location of the minimizer.  To simplify the expression given in Eq. 

(4.19), we can write the gradient of likelihood as: 

 ∇𝐿�𝑓(𝑛)� = −𝑨𝑻�𝑦 − 𝑨𝑓(𝑛)� (4.20)  
Thus Eq. (4.19) can be expressed as 

 
𝑓(𝑛+1) = 𝑠𝑜𝑓𝑡 �𝑓(𝑛) +

1
𝑐̌
𝑨𝑻�𝑦 − 𝑨𝑓(𝑛)�,

𝛽
𝑐̌
� (4.21)  

 

 Preconditioned Gradient Descent 

Threshold pixel values 
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The algorithm in Eq. (4.21) uses preconditioned gradient descent for the update step and 

then thresholds the resulting pixel values according to the soft thresholding function after 

every iteration.  Heuristically, one could have obtained this algorithm by deciding to 

threshold the values after the update step based on precondition gradient descent.  

However, it is unlikely a suitable step size would have been chosen that would have 

guaranteed a monotonic decrease of the cost function.   

 The algorithm given in Eq. 4.21 is termed Iterative Soft-Thresholding (IST) and we 

have applied this algorithm to the data shown in Fig. 4.9 to see if we can obtain better 

reconstructions than the ones given in Fig. 4.10.  Values for both 𝑐̌ and 𝛽 have to be 

chosen.  We choose the same value for 𝛽 in the IST algorithm as the value used in the 

QPLS algorithm.  In general, for the curvature, 𝑐̌, a suitable choice for the curvature 

parameter, 𝑐̌, is spectral radius of 𝑨𝑇𝑨.  However, finding the largest eigenvalue of 𝑨𝑇𝑨 

is not practical due to the dimensions of 𝑨.  Thus we simply create the system matrix, 

|𝑨|, using the absolute value of the impulse function,  sum the columns of |𝑨|𝑇|𝑨| and 

choose the maximum element in resulting column.   That is, we choose 𝑐̌ as follows: 

 𝑐̌ = max�sum(|𝑨|𝑇|𝑨|)� (4.22)  
This choice for the curvature will be a very conservative upper bound on |𝑨|𝑇|𝑨| but will 

nonetheless guarantee a monotonic decrease of the cost function.   
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Figure 4.14. Time-reversal reconstruction of two wires a). Model-based 

reconstruction of two wires using QPLS b). Iterative Soft Thresholding reconstruction 

of two wires c).    

 For easier comparison, we have included the reconstructed images using the time-

reversal and the QPLS algorithms again to illustrate the better performance of the 

Iterative Soft Thresholding algorithm as shown in Fig.4.14.  Clearly, the IST algorithm 

has removed the phantom rings due to scattering between the wires while retaining a 

sharp image of the wires.  It has selectively threshold the background while maintaining a 

quality reconstruction of the wires.  One may argue that it possible to achieve the same 

results via thresholding the background of the QPLS reconstructed image.  Although, this 

may be true, the justification for using the soft-thresholding function in the IST algorithm 

has stemmed from incorporating a sparsity penalty term in the cost function and then 

using the optimization transfer technique to minimize the resulting cost function.  In more 

complicated settings or for more complex objects, one may not know what ad-hoc steps 

one must take in order to post-process the resulting images to achieve the same results as 

can be achieved via tailored cost functions and optimization transfer.  However for the 

sake of being complete, we demonstrate the effect of wavelet denoising, Fig. 4.15b), of 

the QPLS reconstructed image and also the effect of simply soft-thresholding background 
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of the QPLS reconstructed image, Fig. 4.15c).  The wavelet denoising was implemented 

using 4 levels of decomposition, the symlets wavelet of order 4, and soft-thresholding.  

The wavelet denoising technique was somewhat successful at removing the artifact in the 

image but not as well as the iterative soft thresholding technique.  Since the QPLS 

reconstructed image is sparse, it more straightforward to threshold the pixel values in the 

spatial domain than to transform to the wavelet domain and so we illustrate the effect of 

simply soft-thresholding the image.  The performance of this technique is comparable to 

that of the IST algorithm as shown in Fig. 4.15c).   

 
Figure 4.15. Comparison of Iterative Soft Thresholding a) to post processing of image 

via b) wavelet denoising and c) background soft thresholding. 

 In the previous two experimental studies, the geometry was relatively easy to model 

because the objects were metallic.  For dielectrics, however, the modeling of the 

geometry needs to take into account other parameters for accurate timing of the arrival of 

the pulses at the detector plane.  In the first of two dielectric experiments, we image a 

pencil with a wooden outer shell and a graphite core.    The pencil was rotated in 

increments of 1 degree for a full revolution and the scattered THz field was collected.  

The wavefield plot for the pencil is shown in Fig. 4.14.   
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Figure 4.16. Illustrates the wavefield plot for the pencil. 

The first signal at about 40 ps in Fig. 4.16 corresponds to reflections off the six faces of 

the pencil as it is rotated.  The second fainter signal at about 60 ps corresponds to 

reflections off the graphite core.  Thus we expect to see in the reconstruction of the data a 

hexagonal cross-section corresponding to the wooden outer shell of the pencil and a 

circular cross-section of the graphite core.   

 We reconstructed the above wavefield data using both the time-reversal algorithm and 

the model-based algorithm with a quadratic penalty.  Since the time-window for this 

experiment is the same as the previous experiment with two wires, we kept the 𝛽 value 

the same.  The reconstructed image of the pencil via time-reversal is shown in Fig. 4.17a) 

and via the model-based algorithm is shown in Fig. 4.17b).  Clearly, the model-based 

algorithm has produced a qualitatively more accurate reconstruction of the pencil than the 

time-reversal method particularly inside the hexagonal cross section of the pencil.  We 

see that in both images the cross-section of the graphite core did not fully reconstruct and 

this is due to the fact that at certain angles the scattering off the graphite core is very 

weak (angles 300-360)  as shown in the wavefield plot of Fig. 4.16.  However, the model-

based reconstruction of the core is still significantly better than the time-reversal.  We 

measured the graphite core to be 2 mm in diameter but the diameter according the model-
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based image is only 1.1 mm.  Having neglected the index of refraction in the model-

based algorithm has resulted in the wrong dimension for the diameter of the graphite 

core.  Thus, to get more meaningful reconstructions, we must include the index of 

refraction.      

 
Figure 4.17. Illustrates the a) time-reversal reconstruction and b) model-based 

reconstruction of pencil. 

 The last experiment, in which we attempt to image a plastic cylinder with a defect in 

it, was conducted at Picometrix.  As we shall see, we must take into account refraction in 

the geometrical modeling of the imaging process in order to generate meaningful images.  

The object’s dimensions as well as the dimensions of the defect are shown in the 

following figure: 

 

Figure 4.18. Illustrates the plastic cylinder and the dimensions of the defect in it. 

The data was collected by rotating cylinder in increments of 1 degree for a full 

revolution.  The data is shown in Figure 3.17.   
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Figure 4.19. Illustrates the wavefield data for plastic cylinder with defect. 

The signal shown in Fig. 4.19 between 1400 and 1450 ps corresponds to reflections off 

the plastic cylinder as it is rotated about the pivot point.  The fainter signal corresponds to 

the reflection off the defect.  We can easily make out the signal due to the defect in the 

wavefield plot and thus we should expect to reconstruct the defect.   

 We can naively attempt a reconstruction of the wavefield data by simply including the 

index of refraction, 𝑛, for points inside the cylinder.  We were not given the value for 𝑛, 

thus we had to estimate it from the wavefield data.  We estimated a value of 𝑛 = 1.647 

based on the time of flight difference between the arrival of the first surface pulse and the 

arrival of the second pulse due to the defect.  We also had to calibrate this system in order 

to find the location of the pivot sample and a reasonable value for 𝛽.  We used the 

estimated value of  𝑛 in both the time-reversal algorithm and the model-based algorithm 

to generate the following reconstruction of the cylinder with defect: 
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Figure 4.20. Illustrates the reconstruction of the plastic cylinder with defect via a) 

time reversal and b) via model-based. 

 The reconstructed images in Fig. 4.20 clearly show the presence a defect within the 

cylinder.  However the shape of the defect and the size of it are not correct.  Thus to get 

more accurate reconstructions we must include refraction in the system model.  For a 

detailed explanation of the system model derivation, refer to appendix c.  It suffices to 

note that the geometry of the setup is as follows.   

 
Figure 4.21. Illustrates geometrical setup of the experiment. 
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In the above geometrical setup, there are three regions to consider.  The first region 

corresponds to points that fall in the shadow of the cylinder.  Those points do not 

contribute to the wavefield data.  The second region corresponds to points outside of the 

region, and the optical path length and hence the time of flight is given by Eq. (4.4).  The 

third region corresponds to points that fall within escapable areas of the cylinder.  The 

optical path length for a point that falls in the third region is given by the following 

expression: 

 𝑂𝑃𝐿 = 𝑛1�(𝑥𝑖 − 𝑥𝑐𝑖)2 + (𝑧𝑖 − 𝑧𝑐𝑖)2 + 𝑛2�(𝑥𝑐𝑖 − 𝑥)2 + (𝑧𝑐𝑖 − 𝑧)2

+ 𝑛2�(𝑥 − 𝑥𝑐𝑑)2 + (𝑧 − 𝑧𝑐𝑑)2

+ 𝑛1�(𝑥𝑐𝑑 − 𝑥𝑑)2 + (𝑧𝑐𝑑 − 𝑧𝑐)2         

(4.23)  

 According to the expression given in Eq. (4.23), we must find the two points on the 

surface of the cylinder (𝑥𝑐𝑖, 𝑧𝑐𝑖) and (𝑥𝑐𝑑, 𝑧𝑐𝑑) that the grid point (𝑥, 𝑧) refract to for both 

illumination and detection respectively.   However, in the current geometrical setup, it is 

difficult to find these two points because to solve the resulting equation requires good 

initial guess for the location of these two points.  Thus, it is much simpler to split the 

problem into an illumination and detection phase and then to apply a coordinate rotation 

such that our initial guess will always be correct.  The following figure illustrates the 

splitting of our geometrical setup shown in Fig. 4.21 into two an illumination phase and a 

detection phase.   

 
Figure 4.22. Illustrates the illumination phase of the setup. 
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 In the original coordinate system, the illuminating rays are at 1070 with respect to the 

horizontal, so we rotate the coordinate plane by -170 so that the rays are parallel to the z-

axis.  Since the illumination OPL calculation is the most complicated for points that fall 

within the escapable regions of the cylinder, the following analysis is for points in that 

region.  A grid point, (𝑥, 𝑧) is first transformed into the grid point (𝑥′, 𝑧′) by a coordinate 

transformation.  For the transformed grid point, we must find the corresponding refracted 

point.  To find the refracted point, (𝑥𝑐𝑖′ , 𝑧𝑐𝑖′ ), we must solve the following transcendental 

function for the normal angle, 𝜙, given the transformed grid point (𝑥′, 𝑧′): 

 𝑓(𝜙) = sin(𝜓 − 𝜙) − 𝑛 ∗ sin �tan−1 �𝑟∗sin(𝜙)−𝑧′

𝑟∗cos𝜙−𝑥′
� − 𝜙�=0 (4.24)  

where 𝜓 = 𝜋
2
 because of the rotation and 𝑟 is the radius of the cylinder.  Once we have 

found the value for the normal angle 𝜙, then we can easily solve for (𝑥𝑐𝑖′ , 𝑧𝑐𝑖′ ) by using 

the following trignometric identities: 

𝑥𝑐𝑖′ = 𝑟 ∗ cos𝜙 

𝑧𝑐𝑖′ = 𝑟 ∗ sin𝜙 

Hence, the illumination OPL is given by the following simpler expression: 

 
𝑂𝑃𝐿𝑖𝑙𝑙 = 𝑛1(𝐿 − 𝑧𝑐𝑖′ ) + 𝑛2��𝑥𝑐𝑖′ − 𝑥′�2 + �𝑧𝑐𝑖′ − 𝑧′�2 (4.25)  

where 𝐿 is the distance to the illumination reference plane.   

 We can proceed in a similar manner for the detection phase.  In the original coordinate 

plane, the detected rays are at 730 with respect to the horizontal so we rotate the 

coordinate grid by 170 so that the rays are parallel to the z-axis.   

 
Figure 4.23. Illustrates the detection phase of the setup. 
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A grid point (𝑥, 𝑧) within the escapable region of the cylinder is transformed into the 

point (𝑥′′, 𝑧′′).  Given the transformed gird point, we locate the point (𝑥𝑐𝑑′′ , 𝑧𝑐𝑑′′ ) to where 

it refracts to on the surface of the cylinder.  Again, solving for the point (𝑥𝑐𝑑′′ , 𝑧𝑐𝑑′′ ), 

requires solving the transcendental equation given in Eq. (4.24) for the normal angle, 𝜙.  

Using the computed value for 𝜙 we can solve for (𝑥𝑐𝑑′′ , 𝑧𝑐𝑑′′ ) using the above trig. 

identities.  The final expression for the detected OPL is given by: 
 

𝑂𝑃𝐿𝑑𝑒𝑡 = 𝑛1(𝐿 − 𝑧𝑐𝑑′′ ) + 𝑛2�(𝑥𝑐𝑑′′ − 𝑥′′)2 + (𝑧𝑐𝑑′′ − 𝑧′′)2 (4.26)  

 To test the analysis presented here, we simulated a cylinder with the same dimensions 

as our cylinder for a rotation angle Θ = 0 as shown in Fig. 4.24.  The left half of Fig. 

4.24 shows the three regions discussed earlier for illumination, detection, and combined 

phases.  The right half of Fig. 4.24 shows the computed OPL for all three phases.  

 
Figure 4.24. Simulation of illumination, detection, and total OPL for cylinder. 



103 
 

 The analysis presented earlier for calculating the correct time of flight information by 

including refraction assumed that the center of the object was at the pivot point.  Thus, 

we correct for the off-centering by first locating the center of plastic cylinder and then 

shifting the center and hence the coordinate grid to the origin, which we have designated 

as our pivot point.  We have incorporated the correct time of flight information based on 

the new OPL calculation for both the time-reversal algorithm and the model-based 

algorithm.  We then reconstructed the wavefield data for the cylinder with the defect.  

The reconstructed images via both algorithms are shown in Fig. 4.23. 

 
Figure 4.25. Illustrates the reconstructed images with correct time of flight via a) 

time-reversal and via b) model-based. 

 The correct time of flight information has resulted in a better reconstruction of the 

defect via the model-based algorithm, Fig. 4.25b), than via the time reversal method, Fig. 

4.25a).  Accounting for refraction did very little to improve the reconstruction of the 

defect via time-reversal but has significantly aided in the reconstruction of the defect via 

the model-based algorithm.  Furthermore, the location and size of the defect shown in 

Fig. 4.25b) is more comparable to the true object’s defect than the reconstructed defect in 

the uncorrected case, Fig. 4.20.  In the corrected case, the reconstructed diameter of the 

defect is approximately 3.5 mm whereas the true diameter size of defect is 5.0 mm.  The 

reconstructed defect’s distance from the outer surface of the object is 3.5 mm and the true 

distance is 4.0 mm.  It’s plausible that much of the deviations in the reconstructed 
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defect’s dimension and location stems from the fact our estimate of the index of 

refraction, 𝑛, might not be correct.  As stated earlier, this value was not supplied to us by 

PicoMetrix and thus had to be estimated.   

Conclusion 

In this chapter, we have applied the principles of model-based imaging, developed in 

the previous chapter, to a 2D THz system operating in reflection mode to show fast 

reconstruction of metallic and dielectric objects.  We have compared the performance of 

this new inverse imaging technique to the time-reversal method in order to show that we 

can obtain better quality images without an increase in the acquisition speed of the THz 

imaging system.  Initially, we presented a brief discussion on the need to calibrate our 2D 

THz system using a well machined post.  We then applied the model-based algorithm 

with a simple quadratic penalty to the post wavefield data and showed the better 

performance achieved via this algorithm as compared to the time-reversal algorithm.  We 

then showed the limitation of the QPLS algorithm when applied to a two wire object 

because of its inability to suppress the weakly scattered signals in the data.  Although, we 

could have changed the system model to take into account the weak scattering process, 

we opted to go in a different route and develop the Iterative Soft Thresholding algorithm 

based on optimization transfer to suppress the weakly scattered signals.  We then 

characterized the performance of this algorithm as compared to the time-reversal and the 

QPLS algorithms.  Lastly, we discussed imaging dielectric objects and the obstacles 

associated with such an endeavor.  We began with imaging a pencil and compared the 

reconstruction of the pencil wavefield data via the time-reversal and the model-based 

algorithm based on QPLS.  Although, qualitatively the model-based algorithm was 

superior in reconstructing a better image of the pencil than the time-reversal, the 

reconstructed graphite core did not have the correct diameter because we neglected the 

index of refraction of the pencil.  We then naively attempted to reconstruct the wavefield 

data belonging to a plastic cylinder with a 5 mm defect without taking into account 

refraction.  The reconstruction via both algorithms showed the presence of a defect in the 

cylinder.  However, neither the size nor the location of the defect was correct.  We then 

modeled the refraction geometry to obtain better timing information and then 

incorporated that information in both algorithms.  In the model-based algorithm, the 
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correct time greatly improved the reconstruction of the defect but did very little to help 

the time-reversal algorithm.  The experimental studies in this chapter clearly show that 

the theory presented in the previous chapter is very applicable to THz imaging.  

 Inverse imaging architectures such as the model-based THz imaging have the potential 

to reconstruct quality images from scattered fields without compromising the acquisition 

speed of the system.  The iterative algorithms developed for demonstrating model-based 

THz imaging were not optimized for speed and were meant for demonstration purposes.  

To obtain a speed up of the algorithms, one would need to migrate the algorithms to a 

compiled language like C and not rely on the Matlab (Mathworks) environment.  A 

further speed of these algorithms can be obtained via parallelization of the algorithms.  

Thus the acquisition speed of a model-based THz imaging system much like the time-

reversal imaging system is largely dependent on the hardware of the system and the 

number of measurements and not so much on the algorithms.   
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Chapter 5 
Conclusion 

THz imaging is an emergent technology that has found relevancy in many diverse 

fields.  Despite it promising potential, there are many obstacles that stand in the way of 

its large scale industrial introduction.  There are a number of key research areas that 

promise significant continuing advances in THz technology.  Current efforts in THz 

hardware are vital for THz to make its transition from the laboratory to industrial settings.  

Equally important is the development of imaging architectures and algorithms that 

accurately and quickly process THz data into images.  Direct imaging architectures are 

the most established and probably the most commonly used THz imaging techniques.  

However, these systems are limited either by speed or by SNR.  For example, the 

traditional scanned THz imaging system is very popular because of its simple setup and 

its impressive SNR.  The need to raster scan the object however leads to a long 

acquisition time.  Attempts to increase the speed of the system via 2D free space electro-

optic sampling  or via chirping the probe pulse do so but at the expense of SNR.  

However, by using an inverse architecture one can still use a single point detection 

scheme to benefit from the high SNR while collecting a fraction of the number of 

measurements need by a scanning THz system.   

The goal of this thesis has largely been on advancing the field of THz imaging via 

inverse imaging methods.  The inspiration for this thesis has sprung from Ruffin’s work 

in time-reversal THz imaging.   Our goal in chapter 2 had been to improve on the time-

reversal method via two approaches.  The first method was along the lines of a hardware 

improvement.  We wanted to improve the numerical aperture of our THz imaging system 

and so we adapted a waveguide approach first pioneered in ultrasound to reach that goal.  

The waveguide approach was a success because of the 2.6 x improvement in intensity 

and the approximate 30% improvement in resolution.  The second method presented an 

algorithm improvement to the time-reversal technique.  The time-reversal method simply 
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back-propagates the diffracted field so that it focuses at the object plane.  It does not take 

into account the impulse response of the THz system which has significant ringing.  The 

ringing degrades the quality of the reconstructed image.  In chapter 2 we develop a 

model-based algorithm that takes into account the impulse response of the THz system,  

and attempts to recover some underlying function that describes the object from the 

collected data in a “best fit” manner without overly fitting the noise.  The 1D RLS 

algorithm is developed in chapter 2 without a rigorous discussion of the theory behind 

model-based image reconstruction, which has been deferred till chapter3.  The algorithm 

was implemented in the presence and absence of the waveguide.  In absence of the 

waveguide, the algorithm was able to achieve a peak SNR ratio improvement of 2.2 and 

an approximate improvement of 25% in the resolution.  In the case of the waveguide, the 

improvement was not as dramatic as one would have hoped and this largely stems from 

the fact that we could not accurately model the waveguide.  In hind sight, we should have 

fitted the wavefield data to obtain the distance and pitch of the waveguide instead of 

relying on the approximate measurements from the lab.   Nonetheless the algorithm did 

result in a peak SNR ratio improvement of 1.47.  The improvement of resolution though 

was negligible.   

In chapter 3, we focused exclusively on the mathematical formulism of model-based 

image reconstruction as means for deriving algorithms that solve inverse problems.  The 

model-based approach through regularization provides a stable method for inverting a 

forward imaging model that incorporates the actual impulse response of the imaging 

system.  We discussed the five steps to model-based image reconstruction which are: 

• Parameterization of the object using a parametric model 

• Development of a system model that relates the unknown image to the 

expectation of each detector measurement 

• Development of a statistical model for how the detector measurements vary about 

their expectations 

• The selection of a cost function with an appropriate regularization term based on 

the tools of penalized-likelihood estimation 
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• The selection of an interative algorithm for the minimization of the regularized 

cost function 

We provided a thorough discussion of each of the bulleted points in preparation for the 

experimental studies presented in chapter 4. 

 In Chapter 4, we apply the principles of model-based image reconstruction developed 

in chapter 3 to a 2D THz imaging system operating in reflection to show fast 

reconstruction of metallic and dielectric objects.  We then compared the performance of 

this new inverse imaging technique to the time-reversal method to show that we can 

obtain better quality images without compromising the acquisition speed of the THz 

imaging system.  The first experiment consisted of reconstructing the wavefield data for a 

well machined post.  Both the model-based and time-reversal method reconstructed the 

post.  However the artifacts caused by the temporal ringing on the THz pulse have been 

mitigated by the model-based algorithm and has resulted in a 14 dB improvement in the 

SNR over the time-reversal algorithm.  In the next experiment we imaged two metal 

wires.  The proximity of the two wires led to weak scattering between them and this was 

very apparent in the wavefield data.  The reconstructed image via the model-based 

algorithm based on QPLS was better than the time-reversal because much of the ringing 

has been suppressed and the image looks sharper than the time-reversal image.  However, 

in both images the weak scattering that was present in the wavefield data has 

reconstructed to a double ring artifact in the image.  This is attributed to the fact that we 

did not model the weak scattering.   One option to suppress the double ring artifact that 

we pursued was to use a penalty function that enforced the sparsity of our image.  

However, the use of this penalty function has resulted in a cost function that is difficult to 

minimize and thus we introduced the concept of optimization transfer which enabled us 

to use surrogate functions to minimize our cost function.  The resulting Iterative Soft 

Thresholding algorithm was able to suppress the double ring artifact while preserving the 

reconstruction of the wire.  Thus, optimization transfer allows one to minimize custom 

cost functions that in general may not be amiable to general purpose minimization 

techniques such as conjugate gradients. 

 We showed the applicability of model-based image reconstruction in the context of 

imaging dielectrics.  We showed that the reconstruction of the pencil via model-based 
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was better than the time-reversal algorithm because of the suppression of the artifacts due 

to the temporal ringing on the impulse response of the system.  However, since we 

neglected the index of refraction of the pencil, the dimension of the reconstructed 

graphite core was not accurate.  We showed that when accounting for the proper time 

delays we were able to obtain a reconstruction of a defect inside a plastic cylinder via the 

model-based algorithm.  However, the ringing in the reconstructed image via time-

reversal obscured the defect.   

Future Work 

There are a vast number of open questions and promising future research problems 

associated with any rapidly emerging technology and THz imaging is no exception.  This 

section highlights promising extensions of the work presented in this thesis.  

Development of higher power THz sources and higher sensitivity detectors remains a 

fundamental area of research.  However, engineering considerations such as the 

development of high speed imaging systems and algorithms for accurately processing 

THz measurements are equally important for large scale introduction of THz systems.   

In chapter 2, we developed the waveguide technique as way to effectively increase the 

numerical aperture without compromising acquisition speed.  A promising avenue to 

pursue is to develop a better model for the waveguide technique and to extend it to 2-

dimensions.  In chapter 3, model-based image reconstruction in context of THz imaging 

systems was developed as an alternative to time-reversal THz imaging.  The model-based 

algorithms provide a better approach than the time-reversal technique for imaging point 

scatters in homogenous backgrounds and this may find application in identifying defects 

such as voids in foam insulation.  However, for more general targets, nonlinear 

estimation techniques need to be explored and this can serve as a future research 

endeavor.  Furthermore, in the context of imaging dielectrics better modeling of dielectric 

properties are needed.  In chapter 4, several experimental case studies are conducted to 

verify the performance of the model-based algorithms.  Future extensions to this chapter 

could include demonstrating the time-reversal technique with negative signals, 

developing a better statistical model for a “non quiet laser”, and incorporating a sign 

reversal for the pencil data.  .  Another avenue of research is to develop nonlinear 



110 
 

estimation algorithms for general targets and to experimentally assess the performance of 

these algorithms.     
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Appendix A 
Convergence Analysis of Steepest Descent Algorithm 

In order to analyze the converges of steepest descent algorithm for a quadratic cost 

function given by,  

 Ψ(𝑥) =
1
2
𝑥𝑇𝐴𝑥 − 𝑏𝑥 + 𝑐 (1.1)  

 

we introduce a few definitions: The error 𝑒(𝑖) = 𝑥(𝑖) − 𝑥� is a vector that indicates how far 

we are from the solution.  The residual 𝑟(𝑖) = 𝑦 − 𝐴𝑥(𝑖) indicates how far we are from the 

correct value of 𝑦.  It is important to note that the residual is the error transformed by 𝐴 

into the same space as   𝑦 so that that 𝑟(𝑖) = −𝐴𝑒(𝑖) as well as being the direction of 

steepest descent 𝑟(𝑖) = −Ψ′(𝑥𝑖).   

It can be shown that if 𝐴 is symmetric, there exists a set of 𝑛 orthogonal eigenvectors of 

𝐴.  Furthermore these eigenvectors can be scaled to have unit length. 

 𝑣𝑗𝑇𝑣𝑘 = �
1 𝑗 = 𝑘
0 𝑗 ≠ 𝑘

� (1.2)  

To begin with, we express the error vector 𝑒(𝑖) as a linear combination of eigenvectors.   

 𝑒(𝑖) = �𝜉𝑗𝑣𝑗

𝑛

𝑗=1

 (1.3)  

Where 𝜉𝑗 is the length of each component of 𝑒(𝑖).  Form the above two equations, we have 

the following identities: 

 𝑟(𝑖) = −𝐴𝑒(𝑖) = −�𝜉𝑗𝜆𝑗𝑣𝑗

𝑛

𝑗=1

 (1.4)  
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�𝑒(𝑖)�
2 = 𝑒(𝑖)

𝑇𝑒(𝑖) = ��𝜉𝑗𝑣𝑗𝑇
𝑛

𝑗=1

��� 𝜉𝑚𝑣𝑚

𝑛

𝑚=1

�              

�𝑒(𝑖)�
2 = � � 𝜉𝑗𝜉𝑚𝑣𝑗𝑇𝑣𝑚 =

𝑛

𝑚=1

�� 𝜉𝑗𝜉𝑚𝛿(𝑗 − 𝑚)
𝑛

𝑚=1

𝑛

𝑗=1

𝑛

𝑗=1

 

�𝑒(𝑖)�
2 = �𝜉𝑗2

𝑛

𝑗=1

  

(1.5)  

 

�𝑒(𝑖)�𝐴
2 = 𝑒(𝑖)

𝑇𝐴𝑒(𝑖)

= ��𝜉𝑗𝑣𝑗𝑇
𝑛

𝑗=1

�𝐴 �� 𝜉𝑚𝑣𝑚

𝑛

𝑚=1

�                                  

�𝑒(𝑖)�𝐴
2 = ��𝜉𝑗𝑣𝑗𝑇

𝑛

𝑗=1

��� 𝜉𝑚𝐴𝑣𝑚

𝑛

𝑚=1

�

= ��𝜉𝑗𝑣𝑗𝑇
𝑛

𝑗=1

��� 𝜉𝑚𝜆𝑚𝑣𝑚

𝑛

𝑚=1

� 

�𝑒(𝑖)�𝐴
2 = � � 𝜉𝑗𝜉𝑚𝜆𝑚𝛿(𝑗 − 𝑚)

𝑛

𝑚=1

𝑛

𝑗=1

= �𝜉𝑗2𝜆𝑗

𝑛

𝑗=1

   

 

 

(1.6)  

Likewise for the residuals we have the following identities without proofs: 

 �𝑟(𝑖)�
2 = 𝑟(𝑖)

𝑇𝑟(𝑖) = �𝜉𝑗2𝜆𝑗
2

𝑛

𝑗=1

          (1.7)  

and  

 �𝑟(𝑖)�𝐴
2 = 𝑟(𝑖)

𝑇𝐴𝑟(𝑖) = �𝜉𝑗2𝜆𝑗
3

𝑛

𝑗=1

          (1.8)  

To bound the convergence of steepest descent in the general case, we use the energy 

norm instead of Euclidean norm.  We first note that: 

 𝑒(𝑖+1) = 𝑥(𝑖+1) − 𝑥� = 𝑥(𝑖) + 𝛼𝑖𝑟𝑖 − 𝑥� = 𝑒(𝑖) + +𝛼𝑖𝑟𝑖 (1.9)  
and that the step length for the steepest descent algorithm is given by 

 𝛼𝑖 =
𝑟(𝑖)

𝑇𝑟(𝑖)

𝑟(𝑖)
𝑇𝐴𝑟(𝑖)

 (1.10)  
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So that we can define the following 

 

�𝑒(𝑖+1)�𝐴
2 = 𝑒(𝑖+1)

𝑇𝐴𝑒(𝑖+1) = �𝑒(𝑖) + +𝛼𝑖𝑟(𝑖)�
𝑇𝐴�𝑒(𝑖) + +𝛼𝑖𝑟(𝑖)�                

�𝑒(𝑖+1)�𝐴
2 = 𝑒(𝑖)

𝑇𝐴𝑒(𝑖) + 2𝛼𝑖𝑟(𝑖)
𝑇𝐴𝑒(𝑖) + 𝛼𝑖2𝑟(𝑖)

𝑇𝐴𝑟(𝑖)                                    

�𝑒(𝑖+1)�𝐴
2 = �𝑒(𝑖)�𝐴

2 + 2
𝑟(𝑖)

𝑇𝑟(𝑖)

𝑟(𝑖)
𝑇𝐴𝑟(𝑖)

�−𝑟(𝑖)
𝑇𝑟(𝑖)� + �

𝑟(𝑖)
𝑇𝑟(𝑖)

𝑟(𝑖)
𝑇𝐴𝑟(𝑖)

�
2

𝑟(𝑖)
𝑇𝐴𝑟(𝑖)  

�𝑒(𝑖+1)�𝐴
2 = �𝑒(𝑖)�𝐴

2 −
�𝑟(𝑖)

𝑇𝑟(𝑖)�
2

�𝑟(𝑖)
𝑇𝐴𝑟(𝑖)�

 

(1.11)  

We can further simplify this expression as follows: 

 �𝑒(𝑖+1)�𝐴
2 = �𝑒(𝑖)�𝐴

2 �1 −
�𝑟(𝑖)

𝑇𝑟(𝑖)�
2

�𝑟(𝑖)
𝑇𝐴𝑟(𝑖)��𝑒(𝑖)

𝑇𝐴𝑒(𝑖)�
� (1.12)  

Substituting into eq. 1.12 the expressions given in eq. 1.5, 1.7, and 1.8, we get the 

following expression 

 �𝑒(𝑖+1)�𝐴
2 = �𝑒(𝑖)�𝐴

2 �1−
�∑ 𝜉𝑗2𝜆𝑗

2𝑛
𝑗=1 �

2

�∑ 𝜉𝑗2𝜆𝑗
3𝑛

𝑗=1 ��∑ 𝜉𝑗2𝜆𝑗𝑛
𝑗=1 �

� (1.13)  

which can be rewritten as: 

 �𝑒(𝑖+1)�𝐴
2 = �𝑒(𝑖)�𝐴

2𝑤2, 𝑤2 = �1−
�∑ 𝜉𝑗2𝜆𝑗

2𝑛
𝑗=1 �

2

�∑ 𝜉𝑗2𝜆𝑗
3𝑛

𝑗=1 ��∑ 𝜉𝑗2𝜆𝑗𝑛
𝑗=1 �

� (1.14)  

The convergence analysis now hinges on finding an upper bound for 𝑤 which without 

proof is shown to be 

 𝑤 ≤
𝜅 − 1
𝜅 + 1

 (1.15)  

where 𝜅, the condition number of 𝐴, is the ratio of the largest eigenvalue of 𝐴 to the 

smallest eigenvalue of 𝐴.  Hence, the convergence result for steepest descent is  

 �𝑒(𝑖+1)�𝐴
2 ≤ �𝑒(𝑖)�𝐴

2 �
𝜅 − 1
𝜅 + 1

� (1.16)  
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Appendix B 
Derivation of CG Update Expression 

The conjugate-gradient algorithm is an iterative method for unconstrained minimization 

that produces a better approximation to the minimum of a general unconstrained 

nonlinear equation of 𝑁 variables, 𝑥1, 𝑥2, … . , 𝑥𝑁 with each iteration [58].  Within a given 

iteration an estimate is made of the best way to change each component of the vector 𝒙 so 

as to produce the maximum reduction of the function by finding the gradient fo the 

function with respect to the variables and combining this gradient with information from 

previous iterations to produce a search direction.  The search direction is an estimate of 

the relative change in each component of the vector 𝒙 to produce the maximum reduction 

in the function F.  To find the magnitude of the changes along the search direction, an 

optimal step size must be estimated.  The new vector after an iteration of the conjugate 

gradient 𝒙𝒌+𝟏 is given by the previous vector 𝒙𝒌+𝟏 plus an optimal step size times the 

search direction.   

The conjugate gradient falls in the family of conjugate-direction method and was 

developed by Hesstenes and Stieffel (1952) [58].  To understand CG or CD, one must 

understand the concept of conjugacy.  Suppose we consider the following quadratic 

function given by: 

 𝐹(𝒙) =
1
2
𝒙′𝑮𝒙+ 𝒃′𝒙 + 𝑐 (2.1)  

where 𝑮 is a positive definite symmetric matrix, 𝒃 a vector, and 𝑐 a scalar.  Then the 

directions directions respresented by two vectors 𝒖 ≠ 0 and 𝒗 ≠ 0 are conjugate with 

respect to 𝑮 if  

 𝒖′𝑮𝒗 = 0 (2.2)  
 

Theorem 1.  If the vectors 𝒅𝑗are mutually conjugate (i.e. 𝒅𝒊′𝑮𝒅𝒋 = 0  𝑓𝑜𝑟 𝑖 ≠

𝑗,𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗), then they are linearly independent. 
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It follows that there exists at least one set of 𝑛 independent vectors mutally conjugate 

with respect to the matrix 𝑮; the set of eigenvectors of G forms such a set.  We now look 

at minimizing 𝐹(𝑥) subject to 𝒙 ∈ ℝ𝑁. 

Theorem 2.  Let 𝒙𝒌+𝟏and 𝒙𝒌 be consecutive current points in a minimization of 𝐹(𝒙).  If 

(𝑖) 𝒙𝒌 minimizes 𝐹(𝒙) in direction 𝒅𝒍, (𝑖𝑖) 𝒙𝒌+𝟏 minimizes 𝐹(𝒙) in direction 𝒅𝒎, (𝑖𝑖𝑖) 𝒅𝒍 

and 𝒅𝒎 are conjugate directions, then 𝒙𝒌+𝟏 also minimizes 𝐹(𝒙) in direction 𝒅𝒍.   

If we denote gradient evaluated at the point 𝒙𝒌 by 𝒈𝑘 = ∇𝐹(𝒙𝒌), then condition (i) and 

condition (iii) imply that 𝒅𝒌−𝟏𝑇 𝒈𝑙 = 0    𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑘 = 0, … . , 𝑙    

 

Starting with Eq. 1, the gradient of 𝐹(𝒙) is  

 𝒈(𝒙) = 𝒃 + 𝑮𝒙 (2.3)  
and for another point 𝒙𝒌, the gradient is equal to the following: 

 𝒈(𝒙𝒌) = 𝒃 + 𝑮𝒙𝒌 (2.4)  
The line minimization is given as: 

 𝑑𝐹(𝒙𝒌 + 𝛼𝒅𝒌)
𝑑𝛼

= 0 (2.5)  

Taking a quadratic approximation about point 𝒙𝒌 using Taylor series: 

𝐹(𝒙) ≈ 𝐹(𝒙𝒌) + ∇𝑇𝐹(𝒙𝒌)(𝒙 − 𝒙𝒌) +
1
2

(𝒙 − 𝒙𝒌)𝑇∇2𝐹(𝒙𝒌)(𝒙 − 𝒙𝒌) 

Taking G=∇2𝐹(𝒙𝒌), the Hessian of F, and setting 𝒙 = 𝒙𝒌 + 𝛼𝒅𝒌 yielding  

𝐹(𝒙𝒌 + 𝛼𝒅𝒌) ≈ 𝐹(𝒙𝒌) + α∇𝑇𝐹(𝒙𝒌)𝒅𝒌 +
1
2
𝛼2(𝒅𝒌)𝑇𝑮𝒅𝒌 

𝑑𝐹(𝒙𝒌 + 𝛼𝒅𝒌)
𝑑𝛼

= ∇𝑇𝐹(𝒙𝒌)𝒅𝒌 + 𝛼(𝒅𝒌)𝑇𝑮𝒅𝒌 = 0 

Solving for 𝛼 yields 

 𝛼𝑘 =
−∇𝑇𝐹(𝒙𝒌)𝒅𝒌

(𝒅𝒌)𝑇𝑮𝒅𝒌
=
−𝒈(𝒙𝒌)𝑻𝒅𝒌
(𝒅𝒌)𝑇𝑮𝒅𝒌

=
−𝒈𝒌𝑻𝒅𝒌

(𝒅𝒌)𝑇𝑮𝒅𝒌
 (2.6)  

We also have by expanding the gradient term and introducing 𝒙𝑘+1 = 𝒙𝒌 + 𝛼𝑘𝒅𝒌 that 

(𝒃 + 𝑮𝒙𝒌)𝑻𝒅𝒌 + 𝛼𝑘(𝒅𝒌)𝑇𝑮𝒅𝒌 = 𝟎 

𝒅𝒌
𝑇(𝒃 + 𝑮𝒙𝒌) + (𝒅𝒌)𝑇𝑮(𝒙𝑘+1 − 𝒙𝒌) = 𝟎 

𝒅𝒌
𝑇(𝒃 + 𝑮𝒙𝑘+1) = 0 

 𝒅𝒌
𝑇𝒈𝒌+𝟏 = 𝟎 (2.7)  
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This equation shows that the gradient at the point 𝒙𝑘+1 is orthogonal to the previous 

search direction 𝒅𝒌.  To prove now that 𝒅𝒌−𝟏𝑇 𝒈𝑙 = 0    𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑘 = 0, … . , 𝑙 , we first 

note the recursion relationship: 

𝒙𝑘+1 = 𝒙𝒌 + 𝛼𝑘𝒅𝒌 

𝒙𝑘+3 = 𝒙𝒌 + 𝛼𝑘𝒅𝒌 + 𝛼𝑘+1𝒅𝒌+𝟏 + 𝛼𝑘+2𝒅𝒌+𝟐 = 𝒙𝒌 + �𝛼𝑖𝒅𝒊

𝟐

𝒊=𝟎

 

Hence in general we have the following recursive formula 

 𝒙𝑙 = 𝒙𝒌 + �𝛼𝑖𝒅𝒊

𝒍−𝟏

𝒊=𝒌

 (2.8)  

We start from the expression for the gradient 

𝒈𝑙 = 𝒃 + 𝑮𝒙𝒍 = 𝒃 + 𝑮�𝒙𝒌 + �𝛼𝑖𝒅𝒊

𝒍−𝟏

𝒊=𝒌

� = 𝒃 + 𝑮𝒙𝒌 + �𝛼𝑖𝑮𝒅𝒊

𝒍−𝟏

𝒊=𝒌

 

This expression further simplifies to 

𝒈𝑙 = 𝒈𝒌 + �𝛼𝑖𝑮𝒅𝒊

𝒍−𝟏

𝒊=𝒌

 

Premultiplication of this equation by 𝒅𝑘−1𝑇  yields  

𝒅𝑘−1𝑇 𝒈𝑙 = 𝒅𝑘−1𝑇 𝒈𝑘 + �𝛼𝑖𝒅𝑘−1𝑇 𝑮𝒅𝒊

𝒍−𝟏

𝒊=𝒌

 

The first term on the right hand side of the above equation vanishes since we have 

already proven that the gradient at a point is orthogonal to the previous search direction if 

the quadratic function is minimized in that search direction.  All of the terms in the sum 

of the second term on the right hand side of the Eq. () vanishes because of conjugacy.  

Hence, 

 𝒅𝑘−1𝑇 𝒈𝑙 = 0,    𝑓𝑜𝑟   0 ≤ 𝑘 ≤ 𝑙 (2.9)  
Theorem 3:  Let 𝒅𝑖 ,    𝑖 = 1, … ,𝑚 (𝑚 ≤ 𝑛) be mutually conjugate directions.  Then the 

global minimum of 𝐹(𝒙) can be found from an arbitrary starting point 𝒙0by a finite 

descent computation in which each of the 𝒅𝑖 is used as a descent direction only once. 
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Construction of a set of mutually conjugate directions 

Given a set of linearly independent vectors 𝒗𝟎, … ,𝒗𝒏−𝟏, one can construct a set of 

mutually G-conjugate directions 𝒅0, … ,𝒅𝑛−1 by the following procedure [58].  Set 

𝒅0 = 𝒗𝟎 

And then for 𝑖 = 1, …𝑛 − 1 successively define  

𝒅𝑖 = 𝒗𝒊 + �𝑎𝑖𝑗𝒅𝒋

𝒊−𝟏

𝒋=𝟎

 

where 𝑎𝑖𝑗 are coefficients chosen so that 𝒅𝑖 is G-conjugate to the previous directions 

𝒅𝑖−1,𝒅𝑖−2, … . ,𝒅0 .  This is possible if, for 𝑙 = 0, … , 𝑖 − 1, 

𝒅𝑖𝑇𝑮𝒅𝒍 = 𝒗𝑖𝑇𝑮𝒅𝑙 + �𝑎𝑖𝑗𝒅𝒋
𝑇𝑮𝒅𝑙 = 0

𝒊−𝟏

𝒋=𝟎

 

If previous coefficients 𝑎𝑖𝑗 were chosen so that 𝒅0, … ,𝒅𝑖−1 are G-conjugate, then we 

have that 

𝒅𝒋
𝑇𝑮𝒅𝑙 = �1 𝑗 = 𝑙

0 𝑗 ≠ 𝑙
� 

Thus only one term in the summation is present and thus we have that: 

 𝑎𝑖𝑗 =
𝒗𝑖𝑇𝑮𝒅𝑙
𝒅𝒋

𝑇𝑮𝒅𝑙
    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1, …𝑛 − 1 𝑎𝑛𝑑 𝑗 = 0, … , 𝑖 − 1 (2.10)  

Thus the generated set of directions 𝒅0, … ,𝒅𝑛−1 is G-conjugate and the subspaces 

spanned by 𝒅0, … ,𝒅𝑖 is equal to the subspace spanned by 𝒗0, … ,𝒗𝑖. 

If in the construction process described above we take the initial step is in the direction of 

steepest descent 

𝒗0 = −𝒈0 

And the rest of the vectors are 𝒗1 = −𝒈1, … . ,𝒗𝑛−1 = −𝒈𝑛−1, we then find by a line 

search the point 

𝒙1 = 𝒙0 + 𝛼0𝒅0 

The second direction 𝒅1 is found using Eq. 11 with  𝒗0 = −𝒈0 and 𝒗1 = −𝒈1.  This 

gives 

𝒅1 = −𝒈1 +
𝒈1𝑇𝑮𝒅𝟎
𝒅0𝑇𝑮𝒅𝟎

𝒅𝟎 
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We also have that 𝒈1 − 𝒈0 = 𝑮(𝒙1 − 𝒙0) = 𝑮(𝒙0 + 𝛼0𝒅0 − 𝒙0) = 𝛼0𝑮𝒅0 and so we 

can write 

𝒅1 = −𝒈1 +
𝒈1𝑇(𝒈1 − 𝒈0)
𝒅0𝑇(𝒈1 − 𝒈0)𝒅𝟎 

Repeating the procedure with 𝒗0 = −𝒈0,  𝒗1 = −𝒈1, and 𝒗𝑘 = −𝒈𝑘, we obtain  

𝒅𝑘 = −𝒈𝑘 + �
𝒈𝑘𝑇�𝒈𝑗+1 − 𝒈𝑗�
𝒅𝑗𝑇�𝒈𝑗+1 − 𝒈𝑗�

𝒅𝒋

𝑘−1

𝑗=0

 

 Using the fact that 𝒈𝑘𝑇𝒅𝑖 = 0,    𝑓𝑜𝑟   0 ≤ 𝑖 ≤ 𝑘 − 1, we obtain the following 

𝒈𝑘𝑇𝒅𝑖 = −𝒈𝑘𝑇𝒈𝑖 + �
𝒈𝑘𝑇�𝒈𝑗+1 − 𝒈𝑗�
𝒅𝑗𝑇�𝒈𝑗+1 − 𝒈𝑗�

𝒈𝑘𝑇𝒅𝒊 = 𝟎
𝑘−1

𝑗=0

 

Hence we obtain that  

𝒈𝑘𝑇𝒈𝑖 = 0       𝑓𝑜𝑟   0 ≤ 𝑖 ≤ 𝑘 − 1 

We can simplify Eq. 20 to the simpler formula 

𝒅𝑘 = −𝒈𝑘 + 𝛽𝑘−1𝒅𝑘−1 

With  

𝛽𝑘−1 =
𝒈𝑘𝑇(𝒈𝑘 − 𝒈𝑘)

𝒅𝑘−1𝑇 (𝒈𝑘 − 𝒈𝑘−1) =
𝒈𝑘𝑇𝒈𝑘

𝒅𝑘−1𝑇 (−𝒈𝑘−1) 

We know that 𝒅𝑘−1 = −𝒈𝑘−1 + 𝛽𝑘−1𝒅𝑘−2 and so 𝛽𝑘 further reduces to 

 
𝛽𝑘−1 =

𝒈𝑘𝑇𝒈𝑘
𝒅𝑘−1𝑇 (−𝒈𝑘−1)

=
𝒈𝑘𝑇𝒈𝑘

(−𝒈𝑘−1 + 𝛽𝑘−1𝒅𝑘−2)(−𝒈𝑘−1)

=
𝒈𝑘𝑇𝒈𝑘

𝒈𝑘−1𝒈𝑘−1
 

(2.11)  

The important conclusion is that in order to generate the direction 𝒅𝑘 we need to only 

know current and previous gradients 𝒈𝑘 and 𝒈𝑘−1 and the previous search direction 𝒅𝑘.   

The conjugate gradient method is used as a method of   solving a set of positive definite 

symmetric linear equations.  The linear conjugate-gradient method only uses products of 

a matrix with a vector and does not require the elements of the matrix explicitly.  One can 

also solve for a positive definite matrix 𝑹 



119 
 

Appendix C 
Calculation of Refracted Point on Cylinder 

Due to the symmetry of the problem, we opt to choose the detection phase in order to 
derive the transcendental equation for the normal angle that allows the calculation of the 
refracted point on the cylinder.  The following figure illustrates the geometry for the 
derivation of the transcendental equation. 

 
Figure C.1. Illustrates the geometry for the derivation of transcendental equation. 

We derive the transcendental equation for an arbitrary orientation of the detection plane.  

In the actual experiment of chapter 4, we rotated our coordinate system so that the angle 

of the detector is at 900 with respect to the vertical.  This simplified our computation of 

the temporal delays.  However, here we assume that the detector plane is at 𝜓 with 

respect to the vertical. Assuming that our grid point is at (𝑥,𝑦), we would like to find the 

refracted point (𝑥𝑐,𝑦𝑐).  Hence the following is true: 

 𝜓 = 𝜃𝑎 + 𝜙𝑛 (3.1)  

but 

 𝜙𝑛 = tan−1 �
𝑦𝑐
𝑥𝑐
� (3.2)  

By Snell’s law, we have the following expression for 𝜃𝑎 
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 𝜃𝑎 = sin−1(𝑛 ∗ sin(𝜃𝑛)) (3.3)  

and according to Fig. C.1, we have the following express for 𝜃𝑛 

 
𝜃𝑛 = 𝜀 − 𝜙𝑛 

𝜃𝑛 = tan−1 �
𝑦𝑐 − 𝑦
𝑥𝑐 − 𝑥

� − 𝜙𝑛 (3.4)  

We also rewrite 𝑥𝑐 and 𝑦𝑐 in terms of polar coordinates so that we obtain a final 

expression for the normal angle.   

 

𝑦𝑐 = 𝑟 sin�𝜙𝑛� 

𝑥𝑐 = 𝑟 cos�𝜙𝑛� 

 

(3.5)  

Thus we have the following expression for 𝜃𝑛 

 𝜃𝑛 = tan−1 �
𝑟 sin(𝜙𝑛) − 𝑦
𝑟 cos(𝜙𝑛) − 𝑥�

− 𝜙𝑛 (3.6)  

Substituting Eq. (3.6) and Eq. (3.3) into Eq. (3.1), we obtain the following: 

 𝜓 = sin−1 �𝑛 ∗ sin�tan−1 �
𝑟 sin(𝜙𝑛) − 𝑦
𝑟 cos(𝜙𝑛) − 𝑥�

− 𝜙𝑛��+ 𝜙𝑛 (3.7)  

We can simplify further by moving 𝜙𝑛 to the left hand-side of Eq. (3.7) and taking the sin 

of both sides. 

 sin(𝜓 − 𝜙𝑛) = 𝑛 ∗ sin�tan−1 �
𝑟 sin(𝜙𝑛)− 𝑦
𝑟 cos(𝜙𝑛)− 𝑥�

− 𝜙𝑛� (3.8)  

We now have an expression that is a function of 𝜙𝑛 and we would like to find the zero of 

it.  Thus we seek the zero of the following function 

 𝑓(𝜙𝑛) = sin(𝜓 − 𝜙𝑛)− 𝑛 ∗ sin�tan−1 �
𝑟 sin(𝜙𝑛)− 𝑦
𝑟 cos(𝜙𝑛) − 𝑥�

− 𝜙𝑛� (3.9)  
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