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Abstract

The determination of how protein interactions affect gene regulation is an important problem
in systems biology. By identifying quantitative relationships between the interactome and
transcriptome in complex pathologies, we can better characterize dysfunctional pathways,
generate further hypotheses and identify potential targets for therapeutic interventions. This
thesis develops methods and software for elucidating biological networks consistent with
known mechanisms using Bayesian networks (BN) and high-throughput datasets in a novel
methodology termed Mechanistic Bayesian networks (MBN).

This thesis contributes new algorithms for data pre-processing and evaluating hidden
variable models that are implemented in PEBL, an open-source library for MBN modeling
with features unmatched by other software. Due to its ease of use and extensibility, PEBL
allows one to run large, distributed analyses using cloud-computing platforms.

MBN are used to identify the targets of the Sonic hedgehog signaling pathway that
is implicated in development and cancer progression. The use of hidden variable mod-
els and the ability of BN to capture nonlinear, combinatorial and stochastic relationships
identifies known and novel targets that are more biologically meaningful and outperforms
other BN and non-BN methods. The approach developed is useful for identifying path-
way targets, upstream regulators or, more generally, to identify additional components of
partially-characterized topologies.

MBN are next applied to identify subnetworks of the global interactome that govern
gene expression during the epithelial-mesenchymal transition (EMT), a developmental
process implicated in cancer metastasis. By modeling the effects of a protein interaction
on downstream genes, a scoring metric was developed that quantifies the relevance of
interactions to EMT. Application of the method to a cell-line lung cancer dataset identifies
a core subnetwork that recapitulates EMT biology and makes predictions about protein
interactions and their targets. Because the method does not rely on differential expression or
the co-regulation assumptions, it is equally useful for microRNA-target, protein-DNA or

ix



mixed-interaction networks.

The methods and software in this thesis are generally applicable to problems in elu-
cidating interactions among variables using partially characterized knowledge and noisy
high-dimensional datasets and furthers state-of-the-art BN methods by identifying results
consistent with both known mechanisms and statistical relationships in data.
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Chapter 1

Introduction

1.1 Background and motivation

A common challenge in bioinformatics is the integration of diverse datatypes to elucidate
mechanisms in complex biological systems. In this thesis, I present Mechanistic Bayesian
networks as a novel method for identifying molecular entities and interactions that are
consistent with both existing biological knowledge and statistical relationships in high-
throughput experimental data. Although the methods developed in the thesis are general and
can be applied to many problems in high-dimensional domains under uncertainty, they are
demonstrated on two biological processes of scientific and clinical importance.

Many of the phenotypes and pathologies we are interested in understanding emerge
not from a single gene but a complex network of space-, time- and context-dependent
interactions among a large number of biological molecules of different types (Jenkins, 2009;
Kalluri, 2009). The systems approach to biology contends that components of the cellular
network do not function the same in isolation and need to be characterized within the context
of either the entire network or a suitable subset (Sauer et al., 2007). Accordingly, we have
begun to map individual horizontal layers of the cellular network, leading to the so-called
omes that characterize the entire set of molecules or interactions of one type (Greenbaum
et al., 2001). For example, the transcriptome is the set of all mRNA (Velculescu et al., 1997)
and the protein interactome is the set of all observed or computationally-predicted protein-
protein interactions (Sanchez et al., 1999). Understanding the mechanisms underlying a
specific pathology requires identification of interactions within and between the omes in
biologically-relevant contexts.
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1.2 Current challenges

Sources of information useful in identifying biologically-relevant networks can be classified
into two broad categories: general interaction networks and context-specific experimen-
tal data. Both sources possess characteristics that hamper the identification of relevant
interactions. Furthermore, the types of regulatory and signaling relationships known to
occur among biomolecules pose challenges to some analytical methods. In this section,
the relevant characteristics of interaction networks, experimental data and biomolecular
relationships are briefly described.

1.2.1 General interaction networks

Although much is known about biological networks, the existing knowledge is generic.
Examples include interactions observed in noisy high-throughput assays such as yeast two-
hybrid (Young, 1998), low-throughput methods such as co-immunoprecipitation (Moresco
et al., 2010) and those manually extracted from literature (Keshava Prasad et al., 2009).
Interactome databases are constructed by aggregating observations and predictions from
heterogeneous celltypes and experimental conditions and include many false-positive and
false-negative results (Hakes et al., 2008). A typical interactome diagram is shown in
figure 1.1. It depicts the Human Protein Reference Database (HPRD) interactome as manu-
ally extracted from 19,924 journal articles representing many biological and experimental
conditions (Keshava Prasad et al., 2009). The interaction network does not identify which
nodes and edges are relevant to a specific phenotype and is too large for human evaluation.
Although knowledge-driven techniques such as network analysis can identify important
nodes and edges based on topological measures such as centrality and betweenness (Barabasi
and Oltvai, 2004), they cannot determine the relevance to any specific biological context
and can only consider the topology of the network and not the concentrations or activities of
entities.

1.2.2 Experimental data

Experimental data, on the other hand, are generated from specific experiments with known
conditions but are noisy and incomplete. Even large datasets are sparse – they include tens
of thousand of variables but only a few hundred samples. For example, the largest single
dataset in the Gene Expression Omnibus (GEO) (Barrett et al., 2009), a popular public data
repository, includes 41,000 genes but only 202 samples (Noble et al., 2008). Furthermore, if
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Figure 1.1: Human protein reference database (HPRD) interaction network. The
HPRD protein interaction network includes 36,633 interactions between 9,217 proteins
manually extracted from 19,924 journal articles and includes many biological and experi-
mental conditions. The network is not specific to any condition or pathology and does not
identify important nodes or edges. Visually, the network appears as a hairball network and
is too large for human evaluation. The scale of the network necessitates further quantitative
analysis to identify portions relevant to specific conditions.

a study contains only two conditions, determining the differences between them can identify
relevant entities and interactions. Typical studies, however, include many conditions with
unknown dependencies between them. For example, each of the 10 largest datasets in GEO
contains multiple factors such as disease state, tissue, external stimuli and perturbations.
Although there exist methods to calculate differential expression from data with multiple
conditions (Draghici, 2003), they do not take full advantage of the data. Analyzing the
specific pattern of changes between conditions rather than just the magnitude or significance
of change, can identify relationships among genes. Furthermore, most studies only include
a few types of assays and many relevant measurements and interactions such as protein
concentration or protein activity remain unobserved.
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1.2.3 Regulatory and signaling relationships

Finally, many regulatory and signaling relationships involve more than two entities and are
known to be combinatorial, multimodal, nonlinear and stochastic. With existing knowledge
that is generic and data that are noisy, sparse and incomplete, it is difficult to identify specific
mechanisms. But identification of these signaling and regulatory relationships via quanti-
tative and predictive models is crucial for generating further hypotheses and developing
interventional therapies. Although statistical methods such as clustering and functional
enrichment can suggest broad themes in experimental data, they cannot make predictions
about specific molecules and their interactions. How can we identify the context-specific
physical interactions that can lead to further hypotheses and drug targets?

1.3 Bayesian networks

Bayesian networks (BN) are a class of probabilistic graphical models that have emerged as
a popular solution for inferring biological networks (Needham et al., 2007). BN and related
theory and algorithms are described in detail in chapter 2; here, I give a brief overview of
their advantages and limitations. A BN consists of nodes that represent biological entities
such as mRNA and proteins and edges that represent statistical dependence between nodes.

1.3.1 Advantages of Bayesian networks

A BN is both explanatory and predictive: the network is similar to the qualitative pathway
and network diagrams familiar to biologists but also includes a quantitative component
that can be used to make predictions about the effects of interventions. BN models can
learn linear, nonlinear, combinatorial and stochastic relationships between variables and
can be trained and evaluated using noisy data. Not only can BN algorithms infer model
parameters from noisy data, there exist algorithms to learn the model structure itself directly
from data. For these reasons, BN have been used for the de novo inference of different
types of biological networks using a variety of data types such as gene expression and
protein phosphorylation states (Friedman et al., 2000; Friedman, 2004; Smith et al., 2002;
Husmeier, 2003; Woolf et al., 2005; Imoto et al., 2003b; Yoo et al., 2002; Yu et al., 2004;
Sachs et al., 2005). Furthermore, BN learning algorithms can integrate experimental data
with both knowledge about interactions and circumstantial evidence such as colocalization
and coessentiality data (Gevaert et al., 2007; Imoto et al., 2003a; Jansen et al., 2003; Werhli
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and Husmeier, 2007).

One reason for the popularity of BN models in bioinformatics is that the network models
resemble the qualitative pathway and network diagrams familiar to biologists. Based on this
resemblance, most uses of BN in bioinformatics have been formulated as structure learning
problems. One uses a scoring metric and search algorithm to find BN models most consistent
with collected knowledge and data. Either the best-scoring model or a consensus network
constructed from top-scoring networks is then accepted as the correct biological network.
Unlike clustering methods that identify sets of similar entities or enrichment methods that
identify broad themes in data, BN models identify directed relationships between entities
and can help identify causal mechanisms.

1.3.2 Limitations of Bayesian networks

Although structure-learning has been used successfully to elucidate the relationships between
genes, the approach has some limitations that are described here.

Super-exponential search space. First, the search space for BN models grows super-
exponentially with the number of variables and the search problem has been proven to be
NP-Hard (Chickering et al., 1994). For example, given 25 variables, there are 2.7×10111

possible BN models; as a comparison, estimates for the number of atoms in the universe
range between 1072 and 1097. Even after significantly filtering the variables in a typical
microarray assay with tens of thousands of genes, the problem of identifying the most likely
BN model is not solvable. This necessitates the use of search heuristics that tend to find
high-scoring models but offer no guarantees. Thus, given a non-trivial structure learning
problem, even with large computational clusters and grids, one can identify good solutions
but is never sure whether the optimal solution has been found.

Statistical vs physical interactions. Second, the edges in a BN model identify statisti-
cal relationships between variables but make no guarantee that these correspond to actual
physical interactions between biological molecules. The most common use of BN structure
learning in bioinformatics has been to infer Gene Regulatory Networks (GRN) from mi-
croarray data (Friedman et al., 2000; Husmeier, 2003; Imoto et al., 2003b; Yu et al., 2004).
An edge in a GRN implies that the parent gene regulates the child gene but does not describe
the series of proteomic interactions that mediate the regulation. This is because proteins and
their interactions are not observed during most experiments and thus not included in the
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modeling process. In some works, existing knowledge about protein-protein interactions
(PPI) have been used to bias the BN search towards models consistent with known interac-
tions. PPI, however, are modeled as edges between nodes representing mRNA, making the
implicit assumption that mRNA and protein expression are correlated (Imoto et al., 2003a;
Djebbari and Quackenbush, 2008). This assumption, however, has been found to be true
for permanent protein complexes but untrue for transient complexes, signaling interactions
and the interactome in general (Bhardwaj and Lu, 2005; Jansen et al., 2002; Xulvi-Brunet
and Li, 2010). For this reason, GRNs induced from gene expression data and PPI have
shown poor correspondence with known pathways. For example, Djebbari and Quakenbush
(2008) integrated microarray data for genes in the KEGG cell cycle pathway with literature
derived PPI but modeled PPI as between mRNA nodes. The resulting BN models at various
bootstrap-derived confidence thresholds were then compared to the true KEGG pathway.
Even at the most stringent confidence thresholds, the percentage of true positives (PPV =
True Positives/[True + False Positives]) was around 50%. Although the resulting BN models
identified significant statistical relationships between genes, the relationships did not always
correspond to physical interactions.

Although proteins are not measured in most studies, in theory, BN can be used to model
unobserved concentrations and states. A BN can contain hidden nodes to represent variables
for which we do not have data. By integrating or sampling over the possible values for the
hidden nodes, a BN model can still be scored for its consistency with existing knowledge
and data. Hidden nodes, however, have not been used in a structure-learning problem to
represent unobserved proteins because the sampling required to accommodate them further
increases the amount of computation required for identifying high-scoring networks.

Broadly-posed learning problem. Finally, BN structure learning aims to find the network
model that best explains the existing knowledge and observed data. The resulting models
often suffer from the same problem as the large interactome diagrams: they are hairball

networks too large for human evaluation. This is because the problem posed – of finding a
BN structure that best fits knowledge and data – is too broad and does not take advantage of
what is already known.
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Figure 1.2: Mechanistic Bayesian network workflow. In a MBN analysis, one uses ex-
isting knowledge to create a set of hypotheses that are represented by a MBN template.
Bayesian methods are used to assess the fit of each hypothesis to experimental data to
identify models that are consistent with both existing knowledge and experimental data.

1.4 Mechanistic Bayesian networks

This thesis presents Mechanistic Bayesian networks (MBN), a novel approach for creat-
ing biologically-meaningful BN models by using a more targeted method than the usual
structure-learning approach. Rather than searching for unconstrained BN models that best
fit data, one poses specific queries about biological mechanisms in terms of network topolo-
gies. Existing partial knowledge about the topology is then integrated with context-specific
experimental data to answer the query. The narrowly-posed query and existing knowledge
define a constrained search space of possible answers and this smaller search space leads
to two key benefits. First, known mechanisms can be more realistically modeled using
computationally-intensive algorithms like Gibbs sampling. This allows, for example, for
proteomic interactions to be modeled as edges between hidden nodes rather than as between
mRNA nodes. Second, the search space can be exhaustively enumerated, obviating the
need for search heuristics that make only asymptotic guarantees about finding the optimal
solution.
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1.4.1 MBN templates

The constrained search space is defined using a novel representation called MBN templates.
A template defines a combinatorial space of BN models by mixing regular BN nodes cor-
responding to observed or unobserved variables with template nodes that are instantiated
with variables from the dataset based on specified selection criteria. A template is thus
instantiated into a set of BN models, each corresponding to one hypothesis for the query
posed. Each model is scored using the scoring metric described below and finally, statistical
significance is assess via bootstrapping. Figure 1.2 depicts a typical MBN workflow; the
details of each step are described in detail in chapter 2.

1.4.2 MBN scoring metric

BN models can be constructed with both continuous and discrete variables and with different
conditional probability distributions (CPD) and prior distributions for parameters. In this
thesis, I use BN with discrete variables, multinomial CPD and Dirichlet parameter priors
and score models with the Bayesian Dirchlet (BD) scoring metric show in equation 1.1. The
rationale for these choices is explained in detail in chapter 2.

BD =
n

∏
i=1

qi

∏
j=1

Γ(αi j)

Γ(αi j +Ni j)

ri

∏
k=1

Γ(αi jk +Ni jk)

Γ(αi jk)
(1.1)

• Γ(•) is the Gamma function
• n is the number of nodes
• ri is the arity of node i
• qi is the arity of πi (the parent set of node i)
• Ni j is the number of samples where πi is in configuration j
• Ni jk is the number of samples where πi is in configuration j

and the node has value k
• αi j and αi jk are the prior counts corresponding to Ni j and Ni jk

1.4.3 MBN applications

In sections 1.5 and 1.6, I describe two common systems biology problems involving the
relationships between the interactome and transcriptome and show how the use of Bayesian
methods allows me to avoid the disadvantages faced by other techniques. Additionally, by
formulating problems that are more constrained than general BN structure-learning, the
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search space can be exhaustively enumerated and the models can encode existing knowl-
edge more realistically via the use of hidden nodes or a more realistic encoding of known
dependencies.

1.5 Pathway targets

A common bioinformatics problem is the determination of the downstream regulatory targets
of a signaling pathway. Upon presentation of an external stimuli, often in the form of a
ligand that binds a receptor on the cell surface, a series of protein interactions transduce
the signal, resulting in changes in gene expression. Canonical pathways are abstractions of
the portions of the cellular networks that tend to be activated together as part of a modular
process. Identifying the targets of a pathway can provide insight into the effects of a pathway
and can help in identifying pathways that are disregulated in pathologies.

In this section, I first describe the Sonic hedgehog (Shh) signaling pathway as an il-
lustration of typical difficulties in identifying pathway targets and then describe various
existing methods for identifying pathway targets and discuss their advantages and limitations.
Finally, I describe a MBN solution to the problem that avoids many of the limitations of
other methods.

1.5.1 Sonic hedgehog pathway

To illustrate the difficulties in identifying pathway target, consider the Sonic hedgehog (Shh)
pathway. Although the Shh pathway is discussed in further detail in chapter 3, I briefly
describe the characteristics of the pathway that make identification of targets difficult.

Shh is a signaling protein that is critical in development and implicated in multiple
cancers (Jenkins, 2009). Upon reception of the Shh ligand, a signaling cascade transduces
the signal to the Gli transcription factors that then regulate Shh-target genes. A cell’s
transcriptional response to the Shh signal depends on the Shh dosage, the cell type, past or
concurrent reception of other signals and on the extracellular microenvironment (Ingham
and McMahon, 2001; Dessaud et al., 2007). The Shh pathway interacts with many other
pathways including Bmp (Ohkubo et al., 2002), retinoic acid (Riddle et al., 1993; Kondo
et al., 2005), Wnt (Iwatsuki et al., 2007), Ras (Pasca di Magliano et al., 2006), and Notch
(Wall et al., 2005). Furthermore, in some contexts, Shh signaling varies from the canonical
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pathway that is commonly studied (Jenkins, 2009). Identifying the transcriptional targets
of Shh is a critical first step towards understanding its role in normal development and can
suggest therapies for pathologies that implicate a dysfunctional Shh pathway. The context-
dependent response and crosstalk with other pathways, however, make this determination
difficult.

1.5.2 Prior-work: transcriptional profiling

The approach used for most of the large-scale pathway target identification described in
literature is to determine differential gene expression between two or more samples from
studies carefully designed to isolate the effects of the pathway of interest. For the Shh path-
way, this has included inducing the pathway (Yu et al., 2009), inhibiting pathway members
(Xu et al., 2006; Shi et al., 2010), using cell lines with known pathway dysfunctions (Yoon
et al., 2002, 2009) or using mutants (McGlinn et al., 2005; Shah et al., 2009). To isolate the
effects of one pathway, most studies are performed ex vivo. In all cases, a statistical model
and threshold are chosen to determine the list of differentially expressed genes that are then
accepted as pathway targets.

Although the determination of differentially expressed genes has been successful in
identifying many pathway targets, it suffers from three limitations and difficulties. First, the
reliance on controlled experiments to minimize the influence of other pathways makes it
difficult to provide a biologically-relevant context. For example, Zhao et al. (2003) could
only corroborate 37% of the previously-identified in vitro MyoD targets in their in vivo

assay. Second, a recent study by Parikh et al. (2010) noted that determining downstream
targets ”depends crucially on the nature of the experiments” and even with experiments
carefully designed to only perturb a single pathway, they could not delineate the targets
of two tightly-coupled pathways when using differential expression to identify pathway
targets. When attempting to build a database to identify causal pathways given a set of
differentially expressed genes, they were forced to combine the MAPK and PI3K pathways
into one because they couldn’t identify a significant number of non-overlapping targets for
each individual pathway. Additionally, among the 11 pathways they considered, they found
at least 50% overlap in target genes in 3 cases. Third, the use of differential expression to
infer changes in biological activity is problematic. While there are many statistical methods
to calculate differential expression using noisy data (Jiang et al., 2008), they all aim to
quantify the transcriptional activity of genes. Not all targets, however, will exhibit large
expression changes and the magnitude of change cannot be used as proxy for importance
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of target. Transcription factors (TF), for example, are often biologically-important targets
of signaling pathways because they transduce the regulatory influence of the pathway onto
many other genes; their expression change, however, is typically low because they are more
often regulated post-transcriptionally (Yamaguchi et al., 2007).

1.5.3 Prior-work: expression correlation

One method of minimizing the influence of other pathways and identifying low expression-
change targets is to identify genes whose expression correlates with the TFs known to be
the effectors of the pathway; this approach, however, has some limitations. First, although
Parikh et al. (2010) used this method to identify the targets of some pathways, they note that
transcriptional regulators are only known for a limited number of pathways. Additionally,
many pathways have multiple transcriptional regulators that collectively exert combinatorial
control over the targets. For example, the Shh pathway in vertebrates has three canonical
transcriptional regulators: Gli1, Gli2 and Gli3 (Ingham and McMahon, 2001). Each TF has
different but overlapping sets of targets and exert their regulatory influence in a cooperative
and combinatorial manner leading to the so-called Gli code (Ruiz i Altaba et al., 2007).
Such a relationship will not be identified by linear correlation. Third, many TFs including
the Gli proteins, are post-translationally targeted by multiple pathways via mediators that
remain largely unknown (Ingham and McMahon, 2001; Stecca and Ruiz, 2010; Katoh and
Katoh, 2009); thus, even their activity is not an indication of the activity of a single pathway.

1.5.4 Prior-work: model-based approach

What we seek are genes whose expression is a consequence of the events in the pathway of
interest. Although we do not observe their activity experimentally, we have prior knowledge
about some of these interactions. By constructing a predictive model of the pathway, we
can test each candidate target by adding it to the model and assessing how well its predicted
expression matches the observed data. The MetaReg modeling framework has been used in
this model-based approach to identify the targets of signaling pathways in yeast (Gat-Viks
and Shamir, 2007; Szczurek et al., 2009). It’s applicability to mammalian signaling path-
ways, however, remains unknown for two reasons. First, MetaReg assumes that the true
relationship among the signaling ligand, pathway members and targets can be described
using deterministic logical signaling and regulatory functions. Second, these functions
must either be user-supplied or can be automatically chosen from a small set of pre-defined
functions intended to be biologically meaningful. Szczurek et al. limited their analysis to
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a set of six functions with a maximum of one input variable. These two reasons make the
method problematic for analysis in higher organisms that are known to have signaling and
regulatory functions that are nonlinear and stochastic.

1.5.5 MBN solution

In chapter 3, I describe a MBN template based solution for identifying the targets of the Shh
pathway. The early signaling events of the canonical Shh pathway are used to build a tem-
plate in which hidden nodes represent unobserved signaling proteins and their interactions.
The template node is the target gene downstream of this partial pathway and is instantiated
by every variable in the gene-expression dataset. The MBN approach outperforms other
Bayesian and non-Bayesian bioinformatics methods in identifying known targets and in
making biologically-meaningful predictions.

1.6 Active pathways and subnetworks

A complementary problem to the one described in the previous section is that of identifying
subsets of the protein interactome relevant to the transcriptional activity observed during
a complex biological process. The determination of active pathways and subnetworks
is a common bioinformatics approach for analyzing transcriptional data. Often, it is the
next step after basic statistical analysis of gene expression data because it can characterize
observations in terms of existing knowledge and indicate further targets for study (Draghici,
2003; Curtis et al., 2005). A method that better identifies the specific mechanisms involved
promises to have significant impact on many aspects of basic biological and clinical research.

In this section, I first describe the epithelial-mesenchymal transition (EMT), a critical
step in many developmental processes and one that is implicated in cancer metastasis.
Next, I describe various methods for identifying pathways and subnetworks relevant to
observed transcriptional activity. Finally, I describe the MBN solution that avoids many of
the limitations of other methods.

1.6.1 Epithelial-mesenchymal transition

Many biological processes involve interactions among multiple pathways and they function
differently in different biological contexts. Identifying active pathways and subnetworks in
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such processes is difficult and requires the integration of general interaction networks and
context-specific experimental data.

One such process is the epithelial-mesenchymal transition (EMT) that, like the Shh
pathway, is involved in both development and cancer progression (Yang and Weinberg,
2008). During EMT, a fully-differentiated epithelial cell undergoes a transformation to a
mesenchymal phenotype. This is a critical step in cancer metastasis as it allows a localized
tumor cell to free itself from neighboring cells and the basement membrane as a first step
towards establishing distant tumors (Keshamouni and Schiemann, 2009). Elucidating the
biological processes underlying EMT is a necessary step in understanding how non-stem-
cells can undergo such change in phenotype; determining specific mechanisms rather than
abstract pathways or statistical dependencies will assist in identifying potential targets for
therapeutic interventions. Identifying the mechanisms underlying EMT is difficult, however,
because the process requires the coordinated activities of multiple pathways and because the
extent of similarities between EMT in different developmental and oncogenic contexts is
unknown (Kalluri, 2009).

1.6.2 Prior-work: pathway analysis and enrichment

The most common approach for this task is the family of pathway analysis methods. The
simplest methods, often implemented in general purpose bioinformatics software, color or
resize a protein in a network diagram based on the gene’s differential expression (Weniger
et al., 2007; Dahlquist et al., 2002; Mlecnik et al., 2005; Shannon et al., 2003). These meth-
ods, however, force the user to synthesize the results by visual inspection. Other methods
use enrichment analysis based on statistical models such as the hypergeometric distribution
to identify pathways (and other abstract concepts that map to a set of gene) represented in a
user-supplied gene list more often than expected by chance. Over-representation analysis
methods identify pathways enriched in a list of differentially expressed genes (Huang da
et al., 2009b; Sartor et al., 2010) whereas functional class scoring methods like the popular
Gene Set Enrichment Analysis identify pathways that map to genes near the top of a gene
list ordered by differential expression (Subramanian et al., 2005; Tian et al., 2005). Unfor-
tunately, both classes of methods condense a pathway into a gene set, thereby discarding
all topological information. A newer class of enrichment methods transform a pathway
into a weighted gene set using some measure of topological importance. Measures such
as perturbation factor (Draghici et al., 2007), pathway connectivity index (Gao and Wang,
2007) and topology impact score (Liu et al., 2006) have been devised to capture a gene’s
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topological importance or influence. In these methods, an upstream member of a pathway
or a hub node with many connections would be weighted higher than a downstream member
because, based on the topology, it is expected to have more impact on the rest of the pathway.

Although enrichment methods have become popular for exploratory data analysis – a
recent review includes 68 different tools (Huang da et al., 2009a) – the methods, whether
they consider the specific topologies of pathways or not, can only identify previously-
annotated pathways. Furthermore, even in pre-annotated pathways, they do not identify
specific interactions. Two other classes of methods query the global interactome rather
than pre-annotated pathways to find subnetworks relevant to experimental data. They are
described in the two following sections.

1.6.3 Prior-work: seed expansion

Seed-expansion methods query an interactome database for interactions between differen-
tially expressed genes; the resulting seed interactions most likely won’t include all genes in
the list or form a connected network. Thus, they use graph algorithms such as Dijkstra’s
algorithm for shortest path (Dijkstra, 1959) or Yen’s algorithm for k shortest paths (Yen,
1970) to expand the seed network by adding other proteins and interactions. (Campanaro
et al., 2007; Wachi et al., 2005; Cabusora et al., 2005). The resulting networks show the
differentially expressed genes in their topological context.

1.6.4 Prior-work: subnetwork identification

Whereas seed-expansion methods only use experimental data to identify the seed interac-
tions, subnetwork identification methods search for subnetworks with either high internal
similarity or high collective differential expression in the data. There are two classes of
subnetwork identification methods. Node-based methods define a score for network nodes as
a function of differential expression. Edge-based methods, on the other hand, define a score
for network edges as a fucntion of the gene expression similarity of the nodes connected by
the edges. In both cases, the network score is defined as a function of the the node or edge
scores and a search heuristic is used to find high-scoring subnetworks. Ideker et al. (2002)
were the first to formulate this problem and proved that the search problem is NP-Hard.
They provided a node-based score and a simulated annealing search heuristic for finding
a high-scoring, though not provably-optimal, subnetwork. Other node-based scores have
been proposed and used with greedy heuristics (Breitling et al., 2004; Rajagopalan and
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Agarwal, 2005; Nacu et al., 2007; Ulitsky et al., 2008) and linear programming (Dittrich
et al., 2008; Qiu et al., 2009). Similarly, edge-based methods have been proposed more
recently with both simulated annealing (Guo et al., 2007) and greedy search heuristics
(Ulitsky and Shamir, 2007).

The node and edge based subnetwork identification methods described above are prob-
lematic for the following four reasons. (1) Node-based scoring methods use differential
gene expression as an indicator of protein activity but this ignores the effects of post-
transcriptional and post-translational regulation. Indeed, empirical studies have found poor
correlation between mRNA and protein abundance (Gygi et al., 1999; Griffin et al., 2002;
Anderson and Seilhamer, 1997; Chen et al., 2002; Tian et al., 2004) and between mRNA
and protein activity (Glanemann et al., 2003). (2) Even if gene expression is accepted as
an acceptable proxy for protein activity, node-based methods assume that an interaction
between two active proteins is active in the condition represented by the experimental data.
This, however, ignores the fact that global interactomes are constructed from heterogeneous
sources. (3) Although edge-based methods avoid the assumptions made by node-based
methods, they assume that interacting proteins are co-regulated and would exhibit expres-
sion similarity. Although some studies have identified gene expression correlation between
interacting proteins (Hahn et al., 2005), Bhardwaj and Lu (2005) found that gene expression
of interacting proteins is correlated in E. coli but not in yeast, mouse or human. Jansen et
al. (2002) found gene expression correlation between interacting proteins in yeast for a few
permanent complexes but not in transient interactions or for the global interaction network
in general. Furthermore, a recent study not only confirmed the lack of correlation but also
observed that co-expression and protein networks have different structural properties such as
degree distribution, network diameter and shortest path length (Xulvi-Brunet and Li, 2010).
(4) Both node and edge based methods define network scores based on local measures (of
node or edge relevance) that requires search in a combinatorial space of subnetworks and
necessitates the use of heuristics.

1.6.5 MBN solution

Rather than using local measures of relevance (differential expression for nodes or expres-
sion similarity for edges), in chapter 4, I use a MBN approach to identify context-specific
protein subnetworks. I first characterize the transcriptional activity during EMT by identify-
ing a set of differentially expressed genes. I then construct a MBN template in which two
template nodes corresponding to every edge in a global interaction network regulate this set
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of active genes. The resulting scoring metric for interactions relies on the expression profiles
of the two interacting proteins and a set of differentially expressed genes and is no longer a
local measure. Thus, rather than searching for high-scoring subnetworks, I can score each
interactions individually and accept all above a threshold. The resulting EMT subnetwork
recapitulates known EMT biology and makes predictions about specific interactions and the
genes they influence.

1.7 Contributions of this Thesis

In this thesis, I present Mechanistic Bayesian networks (MBN), a set of novel Bayesian
methods and software for integrating knowledge and data that encode known mechanisms
more realistically and thus uncover biological networks that are more biologically mean-
ingful. MBN allow me to avoid some of the limitations of other methods: (1) using mRNA
expression as an indicator of protein activity; (2) using the co-expression assumption that
states that two proteins that interact are coregulated and thus have similar expression profiles;
(3) assuming linear correlation between variables. Additionally, by formulating targeted
problems, I avoid the large space of models that hinder BN structure-learning problems and
can use hidden nodes to model known mechanisms more realistically.

In chapter 2, I describe the underlying theory for Bayesian networks and show how the
choices for CPD and parameter priors and the use of hidden nodes lead to more realistic mod-
eling of known mechanisms. Specifically, I describe novel methods for discretization and
hidden-node sampling. I also describe MBN templates and an open-source implementation
for MBN modeling that includes features unmatched by other commercial or open-source
software.

In chapter 3, I use a MBN template to encode the early events of the Shh signaling
cascade and determine the likely downstream transcriptional targets. The results include
known targets and novel predictions. I demonstrate how the MBN encoding achieves results
that are more meaningful than both the use of differential expression and other BN methods
of encoding known relationships.

In chapter 4, I apply MBN templates to the problem of identifying context-specific
subnetworks of the global interactome responsible for the observed transcriptional changes
during a complex biological process. The MBN-based edge-scoring metric is non-local and

16



Generic knowledge

Transcriptome

Interactome

Mechanistic 
Bayesian 
Networks

Tr
an
sl
at
io
n

Transcriptome

Interactome

mRNA

protein

Entity Type Edge Type

Directed protein interaction

Undirected protein interaction
Transcriptional regulation

Context-specific data

Figure 1.3: Mechanistic Bayesian network overview. MBN integrate existing knowledge
that is generic with experimental data from specific experiments to identify context-specific
cellular networks.

sidesteps the NP-Hard search space in other formulations of this problem. Furthermore,
it neither relies on differential expression nor co-expression to identify relevant protein
interactions. The resulting EMT subnetwork recapitulates known processes and functions
and, furthermore, it makes biologically meaningful predictions about relevant interactions
that would be missed by other methods.

The methods and software developed in this thesis are applicable to a large class of
problems in biology and other fields where the integration of existing knowledge is both
potentially useful and difficult. I apply the methods to systems of critical biological and clin-
ical relevance and show how the proper integration of existing knowledge and experimental
data can identify results that are consistent with both known mechanisms and statistical
relationships in experimental data. The thesis contributes novel methods for uncovering
mechanisms in complex systems and presents a strategy for a more realistic modeling of
existing knowledge. The work presented here has resulted in two publications (Shah and
Woolf, 2009; Shah et al., 2009) and an additional manuscript currently in press.

17



Chapter 2

Bayesian Network Theory and Software

In chapter 1, Mechanistic Bayesian networks (MBN) were presented as a Bayesian net-
work (BN) based method for solving common bioinformatics problems involving generic
knowledge and noisy and incomplete experimental data. Briefly, existing knowledge is
represented by a scaffold BN model and candidate hypothesis are tested by making structural
changes to the models and assessing fit to data. In this chapter, I first describe the theory
underlying Bayesian networks and then describe the Python Environment for Bayesian
Learning (PEBL), a software library for learning BN models that offers features unmatched
by other libraries.

2.1 Bayesian statistics and notations

Bayesian statistics is a mathematical system for describing uncertainties using probabilities.
Unlike the frequentist approach, probabilities do not represent the number of occurrences
of an event in repeated trials; instead, they represent a rational observers beliefs in certain
propositions. The Bayesian approach is subjective: we begin with prior beliefs and update
them using data to get posterior beliefs which can be used as priors for further updating or
to make inferences. In the following section, I briefly describe terms and notations relevant
to the exposition of Bayesian statistics.

Random variables Capital letters are used to denote random variables (or sets of random
variables) and lowercase letters to denote specific values for those variables.

Probabilities P(A) refers to the probability distribution for the random variable A and
P(A = a) refers to the probability of A taking on the specific value a. When the
context is clear, P(a) is used to mean P(A = a).
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Conditional Probability The conditional probability P(A|B) is the probability of some
event A, given the occurrence of another event B or, in the subjective interpretation,
the belief about A after knowing the value or distribution for B. It is read probability
of A under condition B or more simply as probability of A given B.

Joint Probability The joint probability P(A,B) is the probability of both events occurring
together. Note that P(A,B) is a probability distribution whereas P(A = a,B = b) is a
probability density.

Marginalization P(A) is called the marginal or unconditioned probability of A. For any
variable B, P(A) can be calculated as the sum of all the joint probabilities of A and B.
For example, if B can take on three values i,j and k:

P(A) = P(A,B = i)+P(A,B = j)+P(A,B = k)

Marginalization thus allows us to remove variables from consideration by summing
(or integrating, in general) the joint probabilities of multiple variables over all possible
values of the variable to be marginalized.

Statistical Independence A and B are said to be independent if P(A) = P(A|B). That is, if
the information derived from observing B does not alter our beliefs about A, the two
variables are independent.

Conditional Independence A is said to be conditionally independent of B given C if:

P(A) 6= P(A|B) and

P(A,C) = P(A,C|B)

That is, A is normally dependent on B but is independent of B when conditioned on C.
Informally, one can say that any information in B that is relevant to predicting A is
also contained in C.

Bayes Rule Formulated by Rev. Thomas Bayes, the theorem shows the relation between a
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conditional probability and its inverse:

P(A|B) = P(B|A)P(A)
P(B)

(2.1)

• P(A|B) is the posterior distribution. It is our belief about A after observing B.
• P(B|A) is the inverse conditional probability, also called the likelihood.
• P(A) is the prior distribution. It is our belief about A before observing B.
• P(B) is the marginal distribution for B.

2.2 Model representation

Analytical methods must decide how to represent data, relationships in the data and the
learned output. Representation includes both mathematical constructs such as probability
distributions and visual constructs such as the use of oval and arrows to indicate relationships
between variables.

A Bayesian network includes both qualitative and quantitative representations. Qualita-
tively, a BN depicts the dependency structure between variables as a directed acyclical graph
(DAG). A graph is a set of variables (also called nodes or vertices) and a set of pairwise
relations (also called edges, arcs, or arrows) between them. In a directed graph, each edge
has a direction; an edge is said to go from one node to another and the edge A→ B is not
equivalent to B→ A. A DAG is a directed graph without any directed cycles (also called
loops).

Formally, a BN encodes conditional independence relationships and specifies the de-
composition of the joint probability distribution of all variables into lower-dimensional
conditional distributions. The set of nodes that have an edge to a specific node are called
the parents of that node and denoted by πx. For example, in Figure 2.1, πC = {A,B}. In a
BN, a node is independent of all other nodes once conditioned on its parent set. Thus, the
structure of a BN specifies how to decompose the joint distribution into lower-dimensional
conditional distributions with fewer parameters that are easier to estimate from data. For
example, given the BN in Figure 2.1:

P(A,B,C,D,E,F) = P(A)P(B)P(C|A,B)P(D|C)P(E|C)P(F |E) (2.2)
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Figure 2.1: Example Bayesian network. This figure shows an example Bayesian Network
with different forms of conditional probability distributions (CPD). Node A has a multi-
nomial uniform distribution in the form of a conditional probability table (CPT), node B
has a continuous uniform distribution, node C has a multinomial CPT, node D shows a
non-parametric density estimation based CPD and node F shows a linear Gaussian CPD.
Note that this example is not realistic: node B is modeled as both a continuous variable (at
node B’s CPD) and as discrete (at node C’s CPT). In this thesis, models use multinomial
distributions (as shown for nodes A and C). The structure of the network also encodes con-
ditional independence relationship and allows for the decomposition of the joint probability
as shown in Equation 2.2

The qualitative structure of BN works well for use in systems biology. Although not
strictly causal, the edges in a BN are roughly causal relationships and BN have been used
successfully in many causal domains. Additionally, the graphical structure of a BN maps
fairly well to the pathway diagrams common in biology.

A BN is also a quantitative model that can be used to quantify causal relationships in
data or to make predictions. Each node in the network includes a conditional probability
distribution (CPD) relating the values of the node to the values of its parent set. Given
specific values or distributions for the parent set, one can calculate the distribution for the

21



child node. This inference can be propagated through the network and many exact and
approximate algorithms exist for inferring the distribution for a subset of variables given the
observed values or distributions for other variables (Pearl, 1997; Lauritzen and Spiegelhalter,
1988).

Common choices for CPD include the continuous, linear Gaussian distribution; the
discrete multinomial distribution; and non-parametric kernel densities. The linear Gaussian
CPD can use continuous data such as gene expression profiles but enforce a linear relation-
ship between a node and its parents; empirically, they do not perform well with nonlinear
relationships common in biological systems (Friedman, 2004). Non-parametric kernel den-
sity methods do not assume any functional form but are computationally expensive because
any calculation using the CPD requires iterating over all data points; in a non-parametric
method, the data are not reduced to a smaller set of parameters. The multinomial CPD
requires discrete data but can model nonlinear, multi-modal and logical relationships and is
computationally tractable. MBN use the multinomial CPD for this reason but make certain
modifications described later.

2.3 Learning models

With BN, we seek to learn graphical models from data that help us understand the causal
structure of the underlying biological system. BN are typically constructed in one of three
ways depending on the problem domain and availability of data:

1. hand-built structure and parameters.
2. hand-built structure with parameters learned from data.
3. structure and parameters learned from data.

I briefly describe usage 1 and 2 and then focus on 3 because that corresponds to most
problems in systems biology.

2.3.1 Hand-built structure and parameters

A hand-built model is one that is constructed by a person rather than learned or inferred from
data. Some of the earliest uses of BN were in expert systems used for diagnostic purposes.
For example, consider a medical diagnostic system used to infer likely causes for observed
symptoms. A domain expert – a doctor or medical researcher – would specify the relevant
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causes and symptoms, lay out the causal structure between them and specify the conditional
probabilities involved. Then, given a set of symptoms and observations (say, a patients age,
blood pressure and allergies), a software package could infer probabilities for likely causes.
Without a Bayesian model, experts would have to estimate P(CAUSE|SY MPTOMS) for
every possible combination of symptoms a patient could present. With a Bayesian model,
they need to estimate P(SY MPTOMS|CAUSE) and use the Bayes rule to identify causes
with high posterior probability. It was soon discovered, however, that although experts were
successful at identifying relevant variables and laying out the qualitative causal structure
between causes and effects, assigning specific probabilities to these causal relationships was
still too difficult.

2.3.2 Learning parameters from data

Based on the realization that people find it easy to describe causal structures qualitatively
but not quantitatively, later expert systems hand-built the BN structure using experts but
learned parameters from data. The model structure provides a framework for interpreting the
data. Once a structure is specified, the conditional independences encoded in the network
ensure that the CPD at a node depends only on the data for that node and its parent set.
Learning the parameters amounts to fitting data to a specific probability distribution and can
be accomplished using any regression method appropriate for the CPD.

Because the multinomial distribution used by MBN is discrete, it is represented by a
conditional probability table (CPT). The CPT has a column for each possible value of the
child node and rows for every combination of values for the parent set. The parameters
for the multinomial CPT are just the observed counts in the data for every combination of
parent set values and child node value. The CPT at each node can then be used to infer the
child node distribution given the parent values.

2.3.3 Learning structure and parameters from data

Although specifying the qualitative causal structure is easy in some domains such as medical
diagnostics, it is currently not possible for systems biology. There is no expert that knows
the underlying network of gene regulation or protein-protein interactions, for example. In
such cases, both the network structure and parameters must be learned from data. Typically,
in systems biology, we are not interested in building BN for inferential purposes but rather
to understand the causal structure underlying biological systems. We are primarily inter-
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ested in learning the qualitative structure of a BN and use data to select between different
models. There are two main approaches to learning structure and parameters from data:
constraint-based and score-based algorithms.

Constraint-based methods use statistical tests to accept or reject every possible edge of a
network. The exact method is to use statistical tests to check for conditional independence
of a pair of variables conditioned on every subset of the remaining variables. This is a
NP-Hard problem and cannot be solved exactly (Chickering et al., 1994). Although several
heuristics exist for approximate solutions (Margaritis, 2003; Tsamardinos et al., 2003, 2006),
constraint-based methods have not proven to be popular in systems biology.

Score-based methods use a scoring metric for networks and a search algorithm to find
high scoring networks. The space of networks is super-exponential and the search problem
is NP-Hard (Chickering et al., 1994). For example, the number of network structures pos-
sible for a 25-node network is larger than the estimated number of atoms in the universe.
Fortunately, there exist many search heuristics that have been used successfully in other
fields and they can be adapted to search the space of BN structures. An additional benefit of
score-based methods is that many commonly used search algorithms are embarrassingly

parallelizable; that is, they can be implemented to run in parallel very easily. In the following
sections, I describe the scoring metric and search algorithms used by BN.

2.4 Scoring metrics

When searching through the space of BN models, we need a way of comparing different
models to identify the best one. A scoring metric uses data to assign a number to each model
to indicate how correct we think it is. Correct, in this context, refers to how well the model
matches the observed data and any known knowledge. More specifically, in the Bayesian
paradigm, it is the posterior probability of the model: our prior belief in the model updated
using observed data.

In this section, I first describe the theoretical problem of calculating the posterior prob-
ability of a model. I then describe the Bayesian Dirichlet (BD) scoring metric that uses
a set of assumptions to simplify the calculation of the posterior and finally, describe the
modifications I make to BD to score MBN.
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2.4.1 Posterior probability of a model

The posterior probability is calculated using the Bayes rule 2.1. With data D, model struc-
tures M and model parameters θ , we have:

P(M|D) =
P(D|M)P(M)

P(D)
(2.3a)

where P(D|M) =
∫

P(D|M,θ)P(θ)dθ (2.3b)

• P(M) is the structural prior; It is our prior beliefs over models. The probabilities can
come from other sources of data or knowledge or can be uniform.
• P(θ) is the parameter prior for a specific model and is typically a uniform distribution.
• P(D|M) is the marginal likelihood; it is calculated by marginalizing over model

parameters.
• P(D) is the probability of observing the data. It is a scaling term and ensures that the

posterior is a true probability distribution (that it sums to 1.0).

We begin with P(M), the prior belief about model structures. Often, this is a uniform
distribution indicating that, before seeing the data, all models are equally likely to be correct.
For each model, we calculate the posterior belief P(M|D) by multiplying the prior with the
marginal likelihood of data given model, P(D|M). This term assess the likelihood of the
data being generated by a physical process described by the model. As described above,
we calculate the likelihood by marginalizing over all possible parameter values (and their
probability).

2.4.2 BD scoring metric

When calculating the posterior probability of a model, we must keep in mind that the data
is a random sample from the underlying physical system. Another random sample (say,
another set of microarray experiments on the same biological samples) would be slightly
different – due to stochasticities in the physical system and in the measurement technologies
– and would result in slightly different CPT. It is said that the CPT (and resulting BN models)
overfit the idiosyncrasies in the training data and are not generalizable to the underlying
physical system. This is a common problem when using machine-learning techniques with
high-dimensional data and requires the use of regularization methods. With multinomial
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Figure 2.2: Effect of Dirichlet parameter priors. (a) In the network show, P(C|A,B) is
encoded by a multinomial conditional probability table (CPT) in which β111 represents
the number of data sample where A,B,C = 1,1,1. (b) Without a prior distribution for
parameters, our posterior belief is based only on the counts in the observed data. (c) Because
the observed data are stochastic samples from an underlying physical system, we use a prior
distribution for β111 to avoid overfitting the specific idiosyncrasies of the sample. In this
case, we use a Uniform distribution, indicating that before seeing the data, β111 can be any
value between 0 and 1. Updating the prior with the data leads to a posterior with shoulders
around the estimate from data.

CPD, a common regularization solution is to use Dirichlet distributions as the parameter
prior. The Dirichlet distribution is the conjugate prior for the multinomial likelihood. This
means that a Dirichlet prior and multinomial likelihood lead to a Dirichlet posterior. Rather
than a specific value for each model parameter, we infer a probability distribution. Infor-
mally, one can think of this as adding shoulders to the parameter point-estimates learned
from data (Figure 2.2).

To calculate the marginal likelihood requires integrating over the Dirichlet parameter
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distributions. Using four assumptions listed below, the calculation can be simplified and
leads to the Bayesian Dirichlet (BD) scoring metric (Cooper and Herskovits, 1992; Hecker-
man et al., 1995). The assumptions required to derive BD are:

1. All data are discrete.
2. Given a BN structure, data instances are independent.
3. Data contains no missing values.
4. We use a uniform prior over model parameters.

The BD scoring metric has three desirable properties for scoring BN models:

1. global parameter independence – parameters associated with each variable in a net-
work are independent

2. local parameter independence – parameters associated with each states of the parents
of a variable are independent

3. parameter modularity – if a variables has the same parents in two different networks,
the associated parameters in both networks are the same

One property that is often desired is that of likelihood equivalence for BN structures
in a Markov equivalence class. A Markov equivalence class is a set of BN models that
encode the same conditional independencies. Likelihood equivalence states that if the data
used to assess models are not the result of experimental interventions, they should not help
in differentiating between BN models within an equivalence class – that is, the likelihood
P(Data|Model) should be the same for all models in the class.

Although the BD metric is not likelihood equivalent, a related metric called the Bayesian
Dirichlet equivalent (BDe) is likelihood equivalent. BDe is calculated as:

BDe =
n

∏
i=1

qi

∏
j=0

Γ(N′i j)

Γ(N′i j +Ni j)

ri

∏
k=1

Γ(N′i jk +Ni jk)

Γ(N′i jk)
(2.4)

• Γ(•) is the Gamma function
• n is the number of nodes
• ri is the arity of node i
• qi is the arity of πi (the parent set of node i)
• Ni j is the number of samples where πi is in configuration j
• Ni jk is the number of sampler where πi is in configuration j and the node has value k
• N′ is the equivalent sample size for the prior network
• N′i j and N′i jk are counts from a user-specified prior network
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In equation 2.4, N′i jk and N′i j are the exponents for the prior Dirichlet distributions.
Although the BDe metric is likelihood equivalent, it requires user-specified prior network to
calculate N′i jk and N′i j. This is often not feasible in practice. Setting N′i jk = 1 and N′i j = ri

leads to the BD metric. With BD, rather than using a prior network to calculate Dirichlet
priors, we set all Dirichlet exponents to 1, making the assumption that all parameters are
equally likely; that is, we believe that all relationships are equally likely before observing
the data.

Although BD is easier to use in practice than BDe, we would still like to retain the
likelihood equivalence property. In the next section, I show how the discretization used by
MBN ensures likelihood equivalence with the BD metric without the use of a prior network
for calculating Dirichlet parameter priors.

2.4.3 Discretizing data

BD is based on Dirichlet priors and multinomial likelihood and requires discrete data. Data
taking on continuous values must be binned into a finite number of bins. There are many
ways of discretizing data but MBN use a maximum-entropy method. When used with gene
expression data, each discretization method represents an implicit model of how continuous
expression values map to discrete functional states. According to the principle of maximum
entropy (Jaynes, 1957), given a set of distributions that meet required constraints, the one
that best represents the current state of knowledge is the one with largest entropy. In the
case of discretization, the only constraint is the number of bins. Essentially, the maximum-
entropy discretization is the least biased method of mapping continuous values to discrete
states.

Accordingly, rather than creating equal-sized bins or binning based on a specific distri-
bution such as the commonly-used Gaussian, we discretize so that each bin has the same
number of values. This has two important consequences. First, variables have the maximum
entropy given the number of bins; this minimizes the loss of information inherent in any
discretization. Second, each variable has the same entropy. This eliminates scoring bias due
to different variable entropies and ensures likelihood equivalence as shown in following
example.

Suppose we generate data for two variables, A and B, where B = ln(A) (or conversely,
B = eA). As shown in figure 2.3, there are three possible Bayesian network models: 1) A
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Data: 12 samples based on true model.

Figure 2.3: Effect of discretization. Discretization that results in different entropies for
variables introduces bias in the scoring (and structure learning) methods. To the best of
my knowledge, this property of maximum entropy discretization has not previously been
described in literature.

and B are independent, 2) A is the parent of B and 3) B is the parent of A. Given a uniform
prior distribution over network structures, models 2 and 3 should have equal posterior
probability because each describe the data equally well. The posterior probability for model
1 should approach 0.0 as the number of data samples increases. This is the case for the
maximum-entropy discretization. When the variable entropies differ, however, as is the case
in equal-width binning, the network with B as a parent scores much better.

By using a maximum-entropy discretization, MBN minimize information loss inherent
in any discretization and ensure likelihood equivalence with out the use of a prior network.
In the next sections, I show how BD is altered for data that are the result of experimental
interventions and when data contain missing values or hidden variables.

2.4.4 Handling interventions

Given a node, the BD scoring metric approximates the conditional probability of the child
node given its parents. Intuitively, it quantifies the effect that the parents have on the child
node in the data. Some data, however, are not just passive snapshots of the underlying
system. They are the result of specific external interventions. We must take care when
learning CPT for variables that have been intervened upon. Consider the example of using
siRNA silencing for gene knockouts. If gene A was silenced, then the expression value 0
for variable A is the result of the intervention and not of the parent nodes values; we must
ensure that we do not ascribe the cause for the child nodes 0 value to the values of its parents.
I follow the approach used by Yoo et al.: when constructing the CPT for a node, we omit
any data instances that are the result of an intervention on that variable (Yoo et al., 2002).
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2.4.5 Handling missing values and hidden variables

Calculating the BD score relies upon having no missing values for any variables, a restric-
tion too strict for typical systems biology data. Data common in systems biology has both
missing values (from scratches on a microarray, for example) and hidden variables (protein
concentrations not measured, for example). With both missing values and hidden variables,
we can still calculate the posterior probability of a network. The exact solution is to treat the
missing values as a random variable and marginalize over all possible completions of the
partially observed data. With all possible complete data D′ given the partially observed data
D, model M and model parameters θ :

P(M|D) =
∫∫

P(D′|M,θ)P(θ)P(D′)dθ dD′

The number of possible complete data is the product of the number of possible values
for each missing value. Exact integration over all possible complete data is only feasible
with trivial number of missing values; for most cases, I use a Monte Carlo Markov Chain
(MCMC) called Gibbs sampling (Geman and Geman, 1993) to approximate the integral.
Psuedocode for the application of Gibbs sampling to scoring BN models with missing values
or hidden nodes is shown in algorithm 1.

For MBN, I use a modified Gibbs sampler restricted to the space of complete data where
all variables are maximum-entropy discretized (Shah et al., 2009). This ensures that the
marginal probability – the case when a node has no parents – is the same for all nodes,
regardless of whether the variable is fully observed, partially observed or hidden. This
avoids the scoring bias discussed in section 2.4.3. The maximum-entropy Gibbs sampler is
similar to the one in algorithm 1 except for two differences:

1. Line marked 1: Rather than initializing missing values with random values, we
initialized them with random selection from the set of values that ensure that the
variable is maximum-entropy discretized.

2. Lines marked 2-4: Rather than scoring the network by replacing a datum with all
possible values, we swap the value with another for the same variable
(Data[var][i]↔Data[var][ j] where i 6= j), thus ensuring that we only sample missing
value completions that are consistent with maximum-entropy discretization for all
variables.
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Input:
• N: Bayesian network
• D: data matrix
• missing: list of indices in D with missing values
• arity: list of variable arities
• max iters: number of Gibbs sampling interations
• burnin iters: number of iterations for burnin

Output: score for network

1 InitializeMissingValues() // using random values
scores← [ ]

while i < max iters do
foreach (variable,sample) in missing do

2 scorelist← [ ]

3 for value := 0 to arity[variable] do
4 scorelist[value] = ScoreWithData(N, D, variable, sample, value)

end
chosen← ChooseValue(scorelist) // using score as probability
D[variable][sample]← chosen
scores[i]← scorelist[chosen]
i← i + 1

end
end
return average(scores[burnin iters:])

Algorithm 1: Gibbs sampling for scoring BN with missing values

2.5 Network search algorithms

The number of possible BN models grows super-exponentially with the number of variables.
The number of BN models with n variables is given by the recursive equation 2.5 (Robinson,
1977). Table 2.1 lists the number of BN given different number of variables.

f (n) =
n

∑
i=1

(−1)i+1
(

n
i

)
2i(n−1) f (n− i) (2.5)

The large space of BN models makes exhaustive enumeration intractable for non-trivial
structure-learning problems. Thus, once we have selected a scoring metric, either the
standard BD or BD with the modification described above, we need a method for search-
ing for high-scoring models. Two commonly used search methods for BN are the greedy
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Variables BN Models
2 3
3 25
4 543
5 29,281
6 3,781,503
7 1.1×109

10 4.2×1018

20 2.3×1072

25 2.7×10111

50 7.2×10424

100 1.1×101631

500 3.2×1038602

Table 2.1: Number of BN models The number of BN models grows super-exponentially
with the number of variables and necessitates the use of search heuristics for non-trivial
problems.

hill-climbing and simulated annealing (SA) (Kirkpatrick et al., 1983) algorithms that are
popular in many fields for non-convex search and optimization problems. I first describe
hill-climbing and then describe simulated annealing as an extension to hill-climbing.

Although the space of BN models is high-dimensional and discrete, when describing
search algorithms, it is helpful to visualize it as a 3D landscape with each point correspond-
ing to a BN model and the altitude of the point corresponding to the models score. Each
point has many neighboring points: all BN models that are one edit distance away. These
are all networks that can be generated from an existing network by 1) adding an edge, 2)
removing an existing edge or 3) reversing an existing edge. Both algorithms begin with an
initial seed network that is either randomly generated or the best found by another method;
this corresponds to either selecting a random point in the landscape or the highest peak
found previously. The algorithms then explore the landscape, one step at a time, in search of
the highest point.

At each iteration, hill-climbing selects a random neighbor and accepts it as the new
current network if its score is higher. The algorithm is considered greedy because, at each
iteration, it only considers neighboring networks and implicitly assumes that following a
neighbor with a higher score will eventually lead to the global highest-scoring network.
A common problem for greedy algorithms is that they get stuck on local maxima. These
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Figure 2.4: Local maximum in network search space. The high-dimensional, discrete
space of networks is visualized as a continuous 3D landscape to illustrate the problems
with local maxima. Each 2D point corresponds to a network and the height is its posterior
probability (or value of some scoring metric). Because all points neighboring the indicated
local maximum have a lower score, a greedy search algorithm converges with the assumption
that it has found the globally maximum solution. One solution is to run the algorithm using
multiple random starting points. Another solution is to introduce random jumps into the
search algorithm via a method such as the one used in Simulated Annealing.

are minor peaks in the landscape; because all neighboring points are below, the algorithm
believes that it has found the highest peak and thus the best BN model (Figure 2.4). Due
to the susceptibility to local maxima, one typically runs hill-climbing multiple times with
different initial seeds.

Another solution for avoiding local maxima is to use the simulated annealing (SA)
algorithm. SA is based on the metallurgical process of annealing, a technique involving
heating and gradual cooling of a metal to increase crystal size and overall strength. The
heat causes the metal atoms to become unstuck from their initial positions and randomly
explore states of higher energy. The slow cooling gives them more chances of finding
lower energy states than their initial one. Similarly, SA begins with an initial temperature
parameter that slowly decreases over many iterations according to a cooling schedule. At
each iteration, a neighboring network is chosen with a probability that is a function of both
the networks score and the SA temperature. At higher temperatures, SA is more likely to
choose a network with a lower score than the current network and the search is similar
to a random walk. As the temperature cools, this likelihood of choosing a worse network
diminishes and at temperature 0, SA is equivalent to hill-climbing and only chooses better
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Figure 2.5: Example MBN templates. Templates encode topological and semantic con-
straints to define a subspace of BN models. Template nodes specify selection criteria that
can use annotations such as Gene Ontology terms or properties of the data (such as gene
expression fold change).

networks. Although SA is also a greedy algorithm, this allowance for choosing worse
networks during part of the search saves SA from being stuck on local maxima; this feature,
however, depends crucially on the cooling schedule which cannot be determine a priori and
needs to be adjusted empirically for each problem.

2.6 MBN templates

As shown in table 2.1, the number of BN given variables grows super-exponentially. For
non-trivial problems, even with large computational resources, one can only sample a small
subset of the space of all BN models. With MBN, I formulate problems that are more
specific than the general structure-learning problem. This allows me to exhaustively score
all possible models. I present MBN templates as a way to describe a constrained space of
BN models. A template looks like a regular BN – has nodes and edges and is required to be
a DAG – with one crucial difference. A template includes two types of nodes: constant and
template nodes. A constant node is a regular node corresponding to either one variable in
the dataset or an unobserved variable while a template node is a holding place for variables
in the dataset. Template nodes specify selection criteria that are used to generate specific
instantiations of the template. Each instantiation is a regular BN that can be scored using ex-
isting methods. A template is a convenient way to describe and visualize constrained search
spaces where all models have the same structure but different node identities. Figure 2.5
shows three examples of MBN templates and the use of selection criteria.
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2.7 Software implementation

Bayesian statistics in general and the BN formalism specifically have many properties
that are helpful in using high-throughput data to uncover mechanisms underlying complex
biological phenomena. In this chapter, however, we identified several pitfalls in the way BN
have been typically used in systems biology and have offered MBN as a set of modifications
to address those issues. Unfortunately, when I conceived of MBN, there was no software
package that met all the requirements:

• specification of soft and hard priors for integrating biological knowledge
• maximum-entropy discretization
• altered BD for interventional data
• BD with Gibbs sampling for data with missing values and hidden variables
• easy specification of custom algorithms for structure learning in constrained subspaces
• ability to use clusters, grids and cloud platforms

I developed the Python Environment for Bayesian Learning (PEBL) to meet these re-
quirements. More importantly, PEBL is designed in a modular manner that makes it easy
to extend and customize for different BN-related problems. In the following sections, I
describe some notable features of PEBL that make it easy to learn and use MBN models.

2.7.1 Structure learning

PEBL can load data from tab-delimited text files with continuous, discrete and class variables
and can perform maximum entropy discretization. Data collected following an intervention
is important for determining causality but requires an altered scoring procedure (Pe’er et al.,
2001; Sachs et al., 2002). PEBL uses the BD metric for scoring networks and handles
interventional data using the method described by Yoo et al.(Yoo et al., 2002).

PEBL can handle missing values and hidden variables using exact marginalization and
Gibbs sampling (Heckerman, 1998). The Gibbs sampler can be resumed from a previously
suspended state, allowing for interactive inspection of preliminary results or a manual
strategy for determining satisfactory convergence.

A key strength of Bayesian analysis is the ability to use prior knowledge. PEBL supports
structural priors over edges specified as ’hard’ constraints or ’soft’ energy matrices (Imoto
et al., 2003a) and arbitrary constraints specified as Python functions or lambda expressions.
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from pebl import data, result
from pebl.learner.greedy import GreedyLearner
from pebl.taskcontroller.xgrid import XgridController

dataset = data.fromfile(’mydata.txt’)
runner = XgridController(’grid.com’, ’pass’)
learners = [GreedyLearner(dataset) for i in range(10)]
results = runner.run(learners)
result.merge(results).tohtml(’./myoutput’)

(a) Python script

[data]
filename = mydata.txt
[learner]
type = greedy.GreedyLearner
numtasks = 10
[taskcontroller]
type=xgrid.XgridController
[xgrid]
controller = grid.com
password = pass
[result]
output = ./myoutput

(b) PEBL configuration file

Figure 2.6: Two ways of using PEBL: with a Python script and a configuration file. Both
methods create 10 greedy learners with default parameters and run them on an Apple Xgid.
The Python script can be typed in an interactive shell, run as a script or included as part of a
larger application.

PEBL includes greedy hill-climbing and simulated annealing learners and makes writing
custom learners easy. Efficient implementation of learners requires careful programming to
eliminate redundant computation. PEBL provides components to alter, score and rollback
changes to BN in a simple, transactional manner and with these, efficient learners look
remarkably similar to pseudocode.

2.7.2 Convenience and scalability

PEBL includes both a library and a command line application. It aims for a balance between
ease of use, extensibility and performance. The majority of PEBL is written in Python, a
dynamically-typed programming language that runs on all major operating systems. Critical
sections use the Numpy library (Ascher et al., 2001) for high-performance matrix operations
and custom extensions written in ANSI C for portability and speed. The amount of time to
learn networks depends on many factors including the dataset, the learning algorithm and
hardware specifications. As an example, with a dataset of 10 variables and 200 samples,
100,000 iterations of the greedy learner takes approximately 10s on a 2.4 GHz Intel Core 2
Duo CPU.

PEBL’s use of Python makes it suitable for both programmers and domain experts.

36



Python provides interactive shells and notebook interfaces and includes an extensive stan-
dard library and many third-party packages. It has a strong presence in the scientific
computing community (Oliphant, 2007). Figure 2.6 shows a script and configuration file
example that showcase the ease of using PEBL.

While many tasks related to Bayesian learning are embarrassingly parallel in theory,
few software packages take advantage of it. PEBL can execute learning tasks in paral-
lel over multiple processors or CPU cores, an Apple Xgrid1, an IPython cluster2 or the
Amazon EC2 platform3. The EC2 platform is especially attractive for scientists because it
allows one to rent processing power on an on-demand basis and execute PEBL tasks on them.

PEBL can run in parallel not only built-in learners but also custom written ones. The
source code for the custom learners need not be installed on every machine. PEBL will
transparently package the source code and push it out to every machine executing a learning
task. This feature along with the ease of writing custom learners means that researchers can
easily code up new algorithms and run them on distributed platforms with minimal overhead.

With appropriate configuration settings and the use of parallel execution, PEBL can be
used for large learning tasks. Although PEBL has been tested successfully with datasets
with 10000 variables and samples, BN structure learning is a known NP-Hard problem
(Chickering et al., 1994) and analysis using datasets with more than a few hundred variables
is likely to result in poor results due to poor coverage of the search space.

2.7.3 HTML report

The results of a PEBL analysis are available as regular python objects, serialized to a text
file that can be loaded in any python interpreter or as a HTML report. The HTML report is
generated as a set of standalone files that do not require a webserver. The report includes
three tabs that 1) summarize the approximated posterior and show some metadata about
the learning tasks; 2) show the top 10 networks in the posterior; and 3) show the consensus
network at different confidence thresholds. Screenshots of the three tabs in HTML report
are shown in figures 2.7, 2.8 and 2.9 respectively.

1Grid computing solution by Apple, Inc. http://www.apple.com/server/macosx/technology/xgrid.html
2Cluster of Python interpreters. http://ipython.scipy.org
3An pay-per-use, on-demand computing platform by Amazon, Inc. http://aws.amazon.com
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Figure 2.7: HTML report: summary statistics. This screenshot shows the summary
statistics provided in the HTML report. The plot on the left shows the scores for the top
networks found and the table on the right shows the machines where each task was executed
and the runtime. This particular report is from a test run using the Apple Xgrid distributed
computing platform. Note that each learning task was limited to few iterations and thus
finished quickly. In an actual, distributed analysis, each run would last for hours.
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Figure 2.8: HTML report: top scoring networks. This screenshot shows a network viewer
that lets one explore the top-scoring networks found during the analysis. The clickable bar
graph shows the relative scores for the best networks and allows one to choose the network
to view.
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Figure 2.9: HTML report: consensus networks. This screenshot shows a network viewer
that lets one view consensus networks at various confidence thresholds. A consensus network
is created by including all edges with posterior probability above the given threshold.

40



BANJO BNT Causal Explorer Deal LibB PEBL
Latest Version 2.0.1 1.04 1.4 1.2-25 2.1 0.9.10
License Academic 1 GPL Academic 1 GPL Academic 1 MIT
Scripting Language Matlab 2 Matlab Matlab R N/A Python
Application Yes No No No Yes Yes
Interventional Data No Yes No No No Yes
DBN Yes Yes No No No No
Structural Priors Yes 3 No No No No Yes
Missing Data No Yes No No Yes Yes
Parallel Execution No No No No No Yes
1 Custom academic, non-commercial license; not OSI approved.
2 Via a Matlab-Java bridge.
3 Only constraints/hard-priors supported.

Table 2.2: Comparing the features of popular Bayesian network structure learning software.

2.7.4 Extensive documentation

PEBL includes multiple forms of documentation including an installation guide, a tutorial
with many code examples, API and configuration parameter references and a developer’s
guide for programmers interested in extending PEBL.

2.7.5 Development process

The benefits of open source software derive not just from the freedoms afforded by the
software license but also from the open and collaborative development model. PEBL’s
source code repository and issue tracker are hosted at Google Code and freely available to
all. Additionally, PEBL includes 216 automated unit tests and mandates that every source
code submission and resolved error be accompanied with tests.

2.7.6 Related software

While there are many software tools for working with BN, most focus on parameter learning
and inference rather than structure learning. Of the few tools for structure learning, few are
open-source and none provide the set of features included in PEBL. As shown in Table 2.2,
the ability to handle interventional data, model with missing values and hidden variables,
use soft and arbitrary priors and exploit parallel platforms are unique to PEBL. PEBL, how-
ever, does not currently provide any features for inference or learning Dynamic Bayesian
Networks (DBN). Despite its use of optimized matrix libraries and custom C extension
modules, PEBL can be an order of magnitude or more slower than software written in Java
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or C/C++; the ability to use a wider range of data and priors, the parallel processing features
and the ease-of-use, however, should make it an attractive option for many users.

2.8 Conclusions

BN have many features that make them attractive for analyzing biological data. They can
integrate generic knowledge and noisy data and can identify relationships between variables
that are linear, nonlinear, multimodal and stochastic. In this thesis, I present Mechanistic
Bayesian networks (MBN) as the use of BN in narrowly-formulated problems. This has
allowed me to better represent existing knowledge using techniques like the use of hidden
nodes that are computationally intractable for large structure learning problems.

I developed PEBL as a response to the requirements for MBN learning. Even in con-
strained problems, scoring BN models with hidden nodes requires the use of computational
clusters. PEBL thus has support for running algorithms on multiple distributed computing
platforms. Furthermore, PEBL is easy to use for non-expert programmers and complex
analysis can be represented by simple scripts. As a result, PEBL is currently being used
by various users in both bioinformatics and other fields. In the following tw chapters, I
demonstrate how the theory and software described in this chapter are used to solve difficult
problems in relating the interactome and transcriptome.
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Chapter 3

Identifying Pathway Targets

In chapter 1, I introduced Mechanistic Bayesian networks (MBN) as a way of using Bayesian
networks (BN) in a non-structure-learning paradigm to solve targeted problems. By formu-
lating specific problems, the space of possible models is severely constrained making the use
of hidden nodes to represent unobserved proteins tractable even for non trivial problems. In
chapter 2, I described how the use of multinomial conditional probability distributions (CPD)
and Dirichlet parameter priors allow a BN to model linear, nonlinear, combinatorial and
stochastic relationships without overfitting data. I also presented the Python Environment
for Bayesian Learning (PEBL), a software library for MBN analysis. In this chapter, I apply
MBN to the problem of identifying the downstream targets of a signlaing pathway. I take
advantage of PEBL’s ability to score BN models with hidden nodes and to run analysis on
distributing computing platforms.

In the following sections, I first describe the Sonic hedgehog (Shh) signaling pathway,
the methods used to identify the downstream targets of Shh and then show results of the
MBN analysis on an experimental data from a mouse model knockout study. I demonstrate
the MBN’s ability to identify known Shh targets that would be missed by other BN and
non-BN methods.

3.1 Sonic hedgehog pathway

The Shh pathway plays a central role in organismal development and the progression of
some cancers (Michaud and Yoder, 2006). Because of its central role, the Shh pathway
is well studied providing us with an ideal test case to validate our MBN approach. The
details of Shh are reviewed in detail elsewhere (McMahon, 2000; Ingham and McMahon,
2001; Rubin and de Sauvage, 2006), but here we will summarize the early steps of the
pathway that we will use in this work. Shh is a secreted protein that acts as both a short-
range contact-dependant factor and as a long-range diffusible morphogen. The Shh ligand
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Observed variable

Unobserved variable

Directional interaction

Template node

Shh Ptch1 Smo GeneXa)

Shh Ptch1 Smo

GeneX

b)

ShhP Ptch1P SmoP

Shh Ptch1 Smo

GeneX

c)

Figure 3.1: Different representation of the Shh pathway. (a) A sequential BN model of
the pathway that omits protein activity, (b) a parallel BN model of the pathway, and (c) an
MBN model of the pathway. The ovals Shh, Ptch1 and Smo represent mRNA measurements,
while the ovals, ShhP, Ptch1P and SmoP, represent proteins. The oval GeneX indicates a
candidate downstream expression target of the pathway. Dotted ovals represent entities
that are known in the mechanism but are not observed, while unbroken ovals represent
experimentally observed variables. Arrows between nodes represent a directional interaction
but do not specify the functional form.

binds its canonical receptor Patched1 (Ptch1), which releases its inhibition of a second
membrane-bound protein, Smoothened (Smo). Derepression of Smo in turn activates a
signaling cascade inside the cell, eventually activating the Gli transcription factors and
regulating the expression of a variety of genes. While some of the downstream targets of the
pathway are known, many remain unknown. The initial steps of the pathway are shown in
Figure 3.1(c) with the terminal node GeneX representing a putative downstream target. Note
that in this cascade, the Shh, Ptch1, and Smo proteins can all directly or indirectly affect the
target, although in different ways and to different degrees. Figure 3.1(a) and 3.1(b) show
more abstracted representations of the pathway.

Due to its dose-dependant effect and role in development, the Shh signal requires strict
spatio-temporal control. The pathway’s known targets include pathway components, pro-
moters and antagonists, thus regulating the effects of the Shh ligand over time. Cell surface
proteins that promote Shh signaling, for example, are initially expressed in Shh-responsive
cells, sensitizing cells to even low levels of the Shh ligand. As the level of Shh signaling
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increases, downregulation of positive Shh components such as Gas1 and upregulation of
negative components such as Ptch1, Ptch2, and Hhip that sequester the ligand ensure a tight
control over Shh signaling (Allen et al., 2007). Additionally, Shh is known to cooperate with
or antagonize other pathways such as Bmp (Ohkubo et al., 2002), retinoic acid (Riddle et al.,
1993; Kondo et al., 2005), Wnt (Iwatsuki et al., 2007), Ras (Pasca di Magliano et al., 2006),
and Notch (Wall et al., 2005) in a time-, dose-, and spatially-dependant manner. These
factors further complicate the identification of pathway targets.

The Shh pathway raises a more general problem: given gene expression data from
multiple samples, tissue and organs under different genetic knockout conditions, how can we
identify downstream targets of a given pathway? Due to the interactions between different
pathways and multiple cascades between ligand reception and eventual transcriptional regu-
lation, it is not clear what constitutes a downstream target of a specific pathway. Common
analysis approaches include significance testing between samples, differential expression,
and clustering (Draghici, 2003). While these approaches are widely used and helpful, they
fail to incorporate knowledge of the underlying pathway. When the pathway information
is used, it is done while ignoring fundamental biological knowledge such as the central
dogma. DNA, mRNA, and proteins are conflated into one variable and specific interactions
such as protein-protein or protein-DNA are implicitly assumed to be detectable via gene
expression data. To circumvent this problem, we present a novel mechanistic Bayesian
network approach that more closely respects the meaning of both the pathway and the
expression data.

3.2 Methods

In the following sections we describe the theoretical underpinnings of the MBN framework
and provide a method for evaluating the significance of a result. Next we describe how we
tested the MBN method using gene expression data from gene knockout mouse models to
identify targets of the Shh pathway.

3.2.1 Mechanistic Bayesian networks: theory and definition

Mechanistic Bayesian networks represent a subset of a general class of analysis tools called
Bayesian Networks (BN). A BN is a probabilistic graphical model that encodes dependen-
cies between variables in a compact and descriptive manner. A BN can be represented as a
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graph with nodes representing variables and edges representing dependencies or relation-
ships between the variables. Mathematically, each node describes a conditional probability
distribution (CPD) that quantitatively models the relationships between a node and its parent
nodes. Note that an edge (an arrow) between two variables indicates a directed relationship
but does not specify the functional form of the relationship. Said another way, an edge in a
Bayesian network does not indicate activation, inhibition or any other specific function. This
interpretation of an edge differs from the usual definition of an edge in a signaling pathway,
where edges are often assumed to have a defined effect. The advantage of the more broad
edge definition is that the relationships between nodes in a Bayesian network can be more
complex and include functions that are nonlinear, multimodal, or logical.

BNs have been used successfully to model complex phenomenon in many fields and
in systems biology, in particular, to model gene-regulatory networks, protein-interaction
networks, signaling networks and to integrate heterogeneous biological data (Djebbari and
Quackenbush, 2008; Friedman, 2004; Friedman et al., 2000; Jansen et al., 2003; Woolf et al.,
2005). Methods for training and learning BNs are well established (Cooper and Herskovits,
1992; Heckerman, 1998) and are available in a large number of software applications (Korb
and Nicholson, 2003).

In contrast to the more general Bayesian network, a Mechanistic Bayesian Network
(MBN) adheres more closely to known biological mechanisms by differentiating between
mRNA transcripts and proteins, and by including pathway-based structural constraints.
Because most studies do not measure both protein and gene expression, unknown quantities
in an MBN are treated as unobserved, latent variables. By creating models that more closely
resemble the known mechanism, MBN effectively incorporate in additional information that
is not available in the experimental data alone.

3.2.2 Mechanistic Bayesian network templates

When analyzing a biological system, users often want to generate and rank a set of entities
that match certain constraints, such as all downstream targets of the Shh pathway or all
proteins that participate in the crosstalk between the Shh and Wnt pathways. While it is
possible to devise specific sets of constraints and methods for each case, we propose a
generic MBN based template approach. Each set of constraints is expressed as an MBN
template from which specific MBN are instantiated and evaluated against an experimental
dataset. An MBN template is composed of two types of nodes: constant and template nodes.
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A constant node is a regular node corresponding to either one variable in the dataset or an
unobserved variable while a template node is a holding place for variables in the dataset.
Each instantiation of the template is a regular MBN that can be scored using existing BN
methods.

3.2.3 Maximum entropy discretization of the data

Before MBN can be applied to a dataset, the data must be discretized into a finite set of
bins. While there are many ways to bin data, we use the Maximum Entropy principle to
derive our discretization scheme. The principle states that the distribution that maximizes
the information entropy is the true distribution given testable information (Jaynes, 1957).
Accordingly, we bin our data such that each bin contains the same number of data points as
this maximizes the entropy of the distribution. There is no theory prescribing the optimal
number of bins for any given dataset or analytical method; increasing the number of bin
decreases the information loss incurred during discretization but also increases the number
of parameters and thus decreases the statistical power of the analysis given the same data
samples. Most modelers working with systems biology data have arrived at three bins
as a suitable compromise between information loss and statistical power (Djebbari and
Quackenbush, 2008; Friedman et al., 2000; Yu et al., 2004)

3.2.4 Calculating the posterior probability of a model

Once the data are discretized, a particular model topology can be scored as the posterior
probability of a model given data, given by:

P(M|D) =
P(D|M)P(M)

P(D)
(3.1)

• P(M|D) is the posterior probability of the BN or MBN model M given the data D.
Said another way, it is our belief that the model M is correct after having observed the
data D.
• P(M) is the prior probability of the model, that is, our belief that the model M is

correct before having observed the data D. The prior probability allows us to integrate
model probabilities computed using other methods and data.
• P(D|M) is the likelihood that the data was generated from the model M. P(D|M) is

calculated as the likelihood after marginalizing over all model parameters given a
network structure.
• P(D) is a scaling factor that is usually ignored.
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In the MBN framework, a Bayesian network is modeled using a multinomial represen-
tation with Dirichlet priors for the relationships between variables. This representation is
convenient in that it is relatively agnostic to functional forms and has a convenient closed
form solution, the Bayesian Dirichlet (BD) metric, described below.

3.2.5 BD scoring metric

The MBN approach uses the BD scoring metric (Cooper and Herskovits, 1992; Heckerman
et al., 1995) to calculate the marginal likelihood of a dataset given a model. The BD metric
is a closed form solution to the marginal likelihood for a multinomial Bayesian network
model with Dirichlet priors. The BD metric is expressed as:

P(D|M) =
n

∏
i=1

qi

∏
j=1

Γ(αi j)

Γ(αi j +Ni j)

ri

∏
k=1

Γ(αi jk +Ni jk)

Γ(αi jk)
(3.2)

• Γ(•) is the Gamma function
• n is the number of nodes
• ri is the arity of node i
• qi is the arity of πi (the parent set of node i)
• Ni j is the number of samples where πi is in configuration j
• Ni jk is the number of sampler where πi is in configuration j and the node has value k
• αi j and αi jk are the prior counts corresponding to Ni j and Ni jk respectively.

A full derivation of the BD metric is described elsewhere (Heckerman et al., 1995).

In practice, the BD metric is represented in log-space for computational convenience.
Because of this log transformation, all BD scores will be negative.

3.2.6 Calculating the marginal likelihood with missing data

If we have some missing values or latent variables in the dataset, we can use an altered
method for computing the marginal likelihood. Because the likelihood is no longer fully
factorizable into the product of the probabilities for each variable, we must calculate the
marginal likelihood given every potential completion of the missing data. The simplest
method is to marginalize over all possible sets of values for the missing data and take the
average. However, this exact enumeration approach is impractical for non-trivial cases and
so a heuristic must be used.
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In this work we will used a modified Gibbs sampling (Heckerman, 1998) approach to
approximate the marginal likelihood. We alter the method to only sample missing data
completions that result in a maximum entropy discretization for all variables. This maximum
entropy requirement ensures that p(xi) = p(x j) for all sets of variables and eliminates bias
due to differential discretization for observed and hidden variables.

3.2.7 Calculating the marginal likelihood with interventions

When calculating the marginal likelihood, data from interventions such as genetic knockouts
are handled differently. If a particular data sample is the result of an intervention on a set
of variables, the values for those variables no longer depend on their parent sets. They
are, instead, arbitrarily set as the result of the intervention. Accordingly, the specific vari-
able samples are ignored when constructing the multinomial table for any node that was
intervened upon. (Yoo et al., 2002)

3.2.8 Assessing model significance with bootstrapping based p-values

To evaluate the significance of an MBN prediction, we calculate a p-value for each MBN
result using nonparametric bootstrapping (Efron and Tibshirani, 1994). In this approach,
we generate a large number of MBN models with template nodes replaced by randomly
generated variables with the same discretization schemes as the observed variables. The
scores for these MBN models are used as the null model against which MBN scores are
compared to determine p-values. Due to the cost of scoring each bootstrap sample, we can
only resolve p-values down to .001 and cannot correct for multiple hypothesis testing. We
do note here that correction for multiple testing would lower the significance of each result.

3.2.9 Using MBN templates to define and identify shh targets

To determine the downstream targets of the Shh pathway, we created an MBN template based
on the canonical pathway as described in literature with a terminal downstream template
node as shown in Figure 3.1(c). Specific MBN models are instantiated from the template by
replacing the template node (the candidate target gene) with a specific gene from the dataset.
Thus, each instantiated MBN model is a separate hypothesis that can be evaluated against
the experimental data.
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Developmental stage and location wt Shh-/- Ptch1-/- Smo-/-
Embryonic day 8.5, whole embryo 3 3 3
Embryonic day 8.75, whole embryo 3 3 3
Embryonic dat 10.5, head 4 4
Embryonic dat 10.5, limb bud 6 6
Embryonic dat 10.5, trunk 3 3

Table 3.1: Shh knockout experimental design. Experimental design for gathering gene
expression data from a range of developmental stages, locations, and genetic backgrounds.
Columns indicate the genetic background of the mouse model, rows indicate the develop-
mental stage and location of the samples and the numbers within the table cell indicate the
number of samples assayed.

3.2.10 Experimental data

To test our approach, we assembled data from three mouse models with gene knockouts in
Shh, Ptch1, and Smo described in more detail elsewhere (Tenzen et al., 2006). Briefly, sam-
ples from different embryonic tissues at varying developmental stages were assayed using
the U74v2 Affymetrix microarrays to determine the expression profile. Not all combinations
of developmental stages and genetic backgrounds were available due to prenatal lethality
for Ptch1 and Smo. Samples assayed include 6-8- somite-stage (approximately 8.5 days
post fertilization) with wildtype, Smo−/−, and Ptch1−/− backgrounds; 10-13 somite-stage
(approximately 8.75 days post fertilization) with wildtype, Smo−/−, and Ptch1−/− back-
grounds; 10.5 days post fertilization embryo samples from head, trunk, and limb bud with
wildtype and Shh−/− backgrounds. The experimental design is summarized in Table 3.1.

3.2.11 Data preprocessing

The raw gene expression data (.CEL files) were processed using RMA (Irizarry et al., 2003)
as implemented in the Bioconductor Affy package (Gautier et al., 2004). The data were
annotated using updated probeset definitions (.CDF files) provided by the Microarray Lab at
the University of Michigan (Dai et al., 2005).

Data were discretized into 3 bins using the Maximum Entropy discretization scheme
described above. Because the data contain samples from varying developmental stages and
genes with significant expression variation between stages, genes were discretized separately
for each tissue type. This discretization scheme allowed the software to more easily identify
relevant patterns within a tissue type. Gene were knocked out by altering the sequence to
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create inactive protein. Thus, for a knockout on a particular gene, the gene’s expression
was left unaltered but the protein expression was set to 0 and the value was marked as an
intervention so it could be handled differently by the scoring procedure.

3.2.12 MBN template analysis

To test the MBN template system using the Shh dataset, we developed a template that
matched the topology shown in Figure 3.1(c). In this template, we search for a downstream
target node, GeneX, that responds to the Shh signaling cascade. In this search, we assume
that each gene has an equal prior probability of being the target node, and all relationships
are scored using the BD score and a Gibbs sampler, described above. Using this template,
we generated 6299 candidate MBN models – one for each candidate target gene that showed
significant differential expression. Due to the custom CDF annotation, Smo was not present
on the chip, thus we modeled the Smo mRNA expression as a hidden node. No protein
expression was observed in this experiment, so nodes representing protein concentrations or
activities were also modeled as hidden. Rather than selecting the number of iterations for
the Gibbs sampler a priori, we calculated the posterior distribution P(M|D) with 150,000
iterations, then with 300,000 iterations. Although the sampler had largely converged at this
point as evidenced by the observation that the top 25 results did not change significantly, we
resumed the Gibbs’s sampler for the 300,000 run and sampled another 300,000 iterations
for a total of 600,000 iterations per MBN model. The computation took approximately 5.6
minutes per MBN for a total of approximately 12 hours on a 48-node compute grid. P-values
were calculated with bootstrapping describe above using 1054 MBN models to represent
the null distribution. All code and data required to replicate the analysis are included in the
supplemental material. The code can be easily modified to run similar analysis on different
dataset using different MBN templates.

In addition, we also tested two alternative Bayesian approaches shown in Figure 3.1(a)
and 3.1(b). These approaches use topologies that are simpler than the MBN approach in
Figure 3.1(c), but less closely adhere to the known mechanism of the biochemistry of the
pathway.
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3.3 Results and discussion

In the following sections we show the results from the MBN analysis of the Shh knockout
dataset and discuss the biological plausibility for each finding. Next we discuss expected
hedgehog pathway target genes that were not identified by the MBN and a comparison with
other techniques.

Gene
Bayesian
Score P-value

Shh
Correlation

Ptch1
Correlation Citations

Gas1
Growth arrest specific 1 -226.34 < .001 -0.016 -0.57

(Allen et al.,
2007)

Gli1
GLI-Kruppel family member -226.69 < .001 0.61 0.74

(Sheng et al.,
2006)

Ptch2
Patched homolog 2 -229.17 < .001 0.54 0.69

(Motoyama
et al., 1998)

Gtpbp4
GTP binding protein 4 -229.44 < .001 -0.28 0.35
Mig12
Mid1 interacting protein 1 -229.61 < .001 0.2 0.61
Msx1
Homeo box, msh-like 1 -229.87 < .001 0.03 -0.56

(Bok et al.,
2007)

Crabp2
Cellular retinoic acid binding
protein II -229.97 < .001 -0.05 -0.46
Has2
Hyaluronan synthase 2 -231.03 < .001 -0.08 0.46
Foxd1
Forkhead box D1 -231.61 < .001 0.29 0.43

(Jeong et al.,
2004)

Ak1
Adenylate kinase 1 -232.22 < .001 0.16 -0.01

Table 3.2: Results from the MBN analysis (model in Figure 3.1(c)) This table shows the
top 10 predicted downstream targets from the MBN analysis. The columns specify the gene
name and a short description; the Bayesian score as described in Methods; the resulting
p-value for the Bayesian score calculated using a bootstrap method as described in Methods;
a linear correlation to the Shh transcript; a linear correlation to the Ptch1 transcript; and a
literature citation, if available, that specifies that the gene is indeed a true downstream target
of the Shh pathway.

The predicted target genes from the MBN analysis are shown in Table 3.2. The top
scoring hits include many known Shh targets as described below. The top hit, Gas1, has
been shown to be a negative target of Shh signaling whereas knockout and subsequent
gain-of-function studies have shown Gas1 to be a positive component of the Shh pathway
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that acts synergistically with Ptch1 to bind the hedgehog ligand (Allen et al., 2007). The
second target, Gli1, is one of the three Gli transcription factors that regulate Shh target genes
and is often used as a canonical readout of Shh activity. Shh signaling is known to both
induce Gli1 expression and also regulate its nuclear accumulation and therefore its activity
(Sheng et al., 2006). Ptch2 is a homolog of Ptch1 but is expressed in different cells. Like
Ptch1, Ptch2 is known to be transcriptionally modulated by Shh signaling (Motoyama et al.,
1998). Knockout studies have shown that Shh signaling is required for expression of Msx1,
a transcriptional repressor with a putative role in limb-pattern formation (Bok et al., 2007).
Foxc2 and Foxd1 have been shown to be upregulated by Shh signaling in null, conditional,
and constitutively active Smo mutant backgrounds (Jeong et al., 2004).

Beyond these known Shh-related genes, some of the highly ranked results appear to be
novel putative Shh targets. Mig12 binds the Opitz syndrome gene Mid1 and the complex is
thought to stabilize microtubules (Berti et al., 2004). Mid1 is repressed by Shh (Granata and
Quaderi, 2003) and this is partially borne out by our gene expression results which show a
positive influence from Shh and a negative influence from Ptch1. Interestingly though, our
analysis shows Mid1 to be a poor target. Mig12 is not a known Shh target but is a significant
result in our analysis and appears to be upregulated by the Shh pathway.

Both cellular retinoic acid binding proteins, Crabp1 and Crabp2, score well in our
analysis but are not known Shh targets. In some developmental processes, retinoic acid
(RA) has been shown to work synergistically with Shh to create the zone of polarizing
activity, (Riddle et al., 1993) for example, and in adult pluripotent stem cells (Kondo et al.,
2005). Crabp binds RA with high affinity and is thought to spatially modulate the effect of
RA by adjusting the concentration of RA reaching the nucleus (Maden et al., 1988). One
interpretation of the MBN result is that that Shh modulates the effects of RA by regulating
Crabp.

3.3.1 Known Shh targets not identified by MBN

Our results, however, do fail to identify some known and expected targets. For example,
one might expect the genes Foxa2, Gli2, Gli3, Ihh and Dhh to be identified by the MBN as
these are often listed as targets of the Shh pathway, but in our analysis they did not score
near the top. The MBN template used in this analysis (Figure 3.1) detects relationships
between a candidate target and Shh and Ptch1, constrained by the information bottleneck
introduced by the hidden protein nodes. When we examine the relationship between the
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     Samples

Sample groups:
 1. X8 somite, Ptch1-/- (3)
 2. X8 somite, Smo-/- (3)
 3. X8 somite, wt (3)
 4. X13 somite, Ptch1-/- (3)
 5. X13 somite, Smo-/- (3)
 6. X13 somite, wt (3)

  7. Head, Shh-/- (4)
  8. Head, wt (4)
  9. Limb bud, Shh-/- (6)
10. Limb bud, wt (6)
11. Trunk, Shh-/- (3)
12. Trunk, wt (3)
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Figure 3.2: From these expression patterns
one can see that the profiles for Gas1 and
Gli1 closely follow changes in Shh and
Ptch1 expression. Gli2 and Gli3 show
higher activation in the adult tissues as
compared to the somite samples but, even
in the adult tissues, their expression pat-
tern does not correspond to the knockout
state of Shh. Foxa2 expression shows a
strong response to the Ptch1 knockouts in
the somite samples and with Shh knock-
outs in the adult head tissues but there is no
pattern in the adult limb and trunk tissues.
While the patterns in Gli2, Gli3, Foxa2 are
significant, the patterns either do not coin-
cide with patterns in the early steps of the
Shh pathway (Shh, Ptch1, Smo) indicat-
ing that there may be other genes involved
in their regulatory control or the patterns
do not hold over all tissues. Accordingly,
those genes do not score highly in the MBN
method.
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expected but poorly scoring genes and Shh and Ptch1 (Figure 3.2), we find no consistent
pattern of differential expression. It is clear that the expression does not change significantly
or consistently with the pattern of change for Shh or Ptch1. Genes identified as targets by
the MBN such as Gas1, Gli1, Ptch2, Crabp1 and Foxd1, show clear relationships that can be
assessed by eye.

3.3.2 Comparison with non-Bayesian bioinformatics techniques

The results we obtain using MBN are different than those from standard techniques for
determining downstream pathway targets. Whereas clustering, differential expression and
significance testing are, in general, unable to identify nonlinear and multimodal relation-
ships, Bayesian methods such as MBN do not have this limitation. Bayesian methods learn
based on complex patterns of change rather than the magnitude of change or a simple linear
correlation.

Gene Description
Bayesian
Score Citations

Ak1 Adenylate kinase 1 -80.3
Ubc Ubiquitin C -81.84
Pdcd4 Programmed cell death 4 -81.9
Nckap1 NCK-associated protein 1 -81.9
Crabp2 Cellular retinoic acid binding protein II -82.07
Ntn1 Netrin 1 -82.6 (Dakubo et al., 2008)
Oprs1 Opioid receptor, sigma 1 -82.7
Fgf8 Fibroblast growth factor 8 -82.84 (Ohkubo et al., 2002)
Nme6 Expressed in non-metastatic cells 6, protein -83.1
Gtf3c5 General transcription factor IIIC, polypeptide 5 -83.1

Table 3.3: Results from the sequential BN analysis (model in Figure 3.1(a)). This ta-
ble shows the top 10 predicted downstream targets from the sequential BN analysis. The
columns specify the gene name and short description; the Bayesian score as described in
Methods; and a literature citation, if available, that specifies that the gene in indeed a true
downstream target of the Shh pathway.

When we use differential expression as an indicator of significance, for example, we find
none of the canonical targets near the top of the list (full list available in the supplemental
materials). Gli1, the commonly used indicator of Shh activity, ranks 629th in terms of
fold-change, but 2nd with respect to MBN analysis. This difference is expected, however,
because only small changes in gene expression are required to modulate the activities of
transcription factors and pathway components that participate in feedback loops with the
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Gene Description
Bayesian

Score Citations
Foxc2 Forkhead box C2 -115.16 (Jeong et al., 2004)
Gli1 GLI-Kruppel family member GLI1 -116.19 (Sheng et al., 2006)
Ntn1 Netrin 1 -117.24 (Dakubo et al., 2008)
Ptch2 Patched homolog 2 -117.24 (Motoyama et al., 1998)
Gspt1 G1 to S phase transition 1 -117.39
Mid1ip1 Mid1 interacting protein 1 -117.39

B4galt3
UDP-Gal:betaGlcNAc beta
1,4-galactosyltransferase, polypeptide 3 -117.51

Cklfsf8 Chemokine-like factor super family 8 -118.05

Ptprz1
Protein tyrosine phosphatase, receptor
type Z, polypeptide 1 -118.2

Dctn3 Dynactin 3 -118.42

Table 3.4: Results from the parallel BN analysis (model in Figure 3.1(b)) This table
shows the top 10 predicted downstream targets from the sequential BN analysis. The
columns specify the gene name and short description; the Bayesian score as described in
Methods; and a literature citation, if available, that specifies that the gene in indeed a true
downstream target of the Shh pathway.

Shh ligand. We obtain slightly better but still poor results when identifying targets based on
a linear correlation to either Shh or Ptch1 gene expression. This difficulty with clustering
can be seen in Table 3.2. Clustering methods suffer from similar failures as linear correlation
and fail to take into account known information about the initial steps of the pathway.

3.3.3 Comparison with standard BN modeling of the Shh pathway

To isolate the effect of the MBN template over more standard BN approaches, we ran a direct
comparison between the approaches using the three topologies shown in Figure 3.1. The
simplest translation of the Shh pathway, shown in Figure 3.1(a), is to interpret the qualitative
diagram as a BN and replace all arrows with a Bayesian edge to produce a sequential model.
Although the topology looks most similar to a biochemical diagram, for a Bayesian network
the topology indicates that only Smo influences the target gene. An alternative topology is
shown in Figure 3.1(b). In this parallel topology, the target gene is influenced by all of the
genes in the pathway. However, this topology does not capture the unobserved proteomic
effects, nor does the topology distinguish between the relative position of Shh, Ptch, and
Smo in the signaling pathway.

The 10 best-scoring results from the sequential BN, parallel BN and MBN models are
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shown in tables 3.3, 3.4 and 3.2, respectively. When we compare the results from the three
topologies shown in Figure 3.1, we find that the target genes predicted by the MBN topology
(Figure 3.1(c)) best match what is known about the pathway. If we compare the number of
known targets identified in the top 10 targets predicted by each method we find the MBN
predicts 5/10, the parallel topology predicts 4/10, and the sequential topology predicts
2/10. In the MBN results, Gas1, Gli1 and Ptch2 rank 1st, 2nd, and 3rd respectively and are
all well-known Shh targets, while in the parallel model these genes rank 11th, 2nd and 3rd
respectively, and in the sequential model these genes rank 24th, 20th and 21st respectively.
One reason for this discrepancy is that the BN models impose fewer constraints on the
candidate gene which would produce more false positives – a result in line with what we see.
The full lists of target genes for each topology is provided in the supplementary materials.

3.3.4 Extension to larger MBN templates

While we used a small template pathway in this work as a proof of concept, the method can
be applied to larger pathways in a similar way. However, large numbers of hidden nodes
increase the computational requirements and may make the analysis intractable using the
Gibbs sampler used in this work. The MBN template algorithm’s runtime complexity is
O(nm2h2) where n is the number of candidate genes, m is the number of data samples and
h is the number of hidden or latent variables. Because the limiting step is the Gibbs sam-
pling’s O(m2h2) runtime complexity, we could use a more complex but efficient heuristic
sampling method such as variational learning (Beal and Ghahramani, 2006). As currently
implemented, MBN templates should be limited to models with a small number of hidden
nodes.

3.3.5 Extension of MBN to other data types

Although this study focused on gene expression data, the MBN template method can be used
with any type of observed data that can be represented in the pathway. If a molecular entity
can be represented in an MBN template while being faithful to the underlying biochemical
mechanisms, data regarding the molecule’s concentration or activity can be used. Possible
other measurements that could be used with a similar MBN approach include protein ex-
pression, kinase activity, and miRNA expression. Furthermore, MBN templates can be used
to integrate observations for multiple data types assuming that the measurements are made
on a common set of samples.
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3.4 Conclusion

We have shown how MBN can be used to integrate gene expression data and known topo-
logical information to uncover mechanistic details about complex pathways. Although we
have shown only one example with finding downstream targets of the Shh pathway, a similar
approach could be used on other pathway topologies, data types, and to identify targets at
different locations in the pathway. In this example, the MBN method provided better target
predictions than other methods, due in part because the topology assumed by the MBN is
closer to the known biochemical mechanism.

In chapter 4, I use MBN in a problem complementary to the one discussed in this
chapter: given observed transcriptional activity, I identify the subset of the protein interac-
tome that best explains it. Due to the size of the interactome, the use of hidden nodes is
no longer tractable; I thus choose a different network architecture to make the models as
mechanistically realistic as possible.
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Chapter 4

Determining Context-specific Subnetworks

In chapter 1, I introduced Mechanistic Bayesian networks (MBN) as a way of using Bayesian
networks (BN) in a non-structure-learning paradigm to solve targeted problems. In chap-
ter 2, I described how the use of multinomial conditional probability distributions (CPD)
and Dirichlet parameter priors allow a BN to model linear, nonlinear, combinatorial and
stochastic relationships without overfitting data. I also presented the Python Environment
for Bayesian Learning (PEBL), a software library for MBN analysis. In this chapter, I apply
MBN to the problem of identifying the subset of the protein interactome that best explain
observed trancriptional activity during a complex biological process. In chapter 3, the use
of hidden nodes to represent unobserved proteins allowed me to better encode existing
knowledge. Accordingly, the results were more biologically meaningful and had better
agreement with previously described results. The large size of the protein interactome makes
the use of hidden nodes unfeasible for this problem. I use a different approach to model
existing knowledge while being faithful to known mechanisms. By testing for statistical
dependence along the flow of information rather than between precursors of interacting
proteins, I derive a scoring metric that identifies condition-specific protein interactions.

4.1 Introduction

Many biological phenomena are driven by interactions among large numbers of cellular
entities working in concert. Mapping these interactions is critical to defining the processes
that govern cellular processes. Typically, two classes of molecular data are used to map
a biological network: experimental observation of concentrations and states, and prior
knowledge about the interactions involved. Experimental data, when used alone, ignore
what is known about the interactions and processes involved. On the other hand, prior knowl-
edge in bioinformatics databases is aggregated from heterogeneous sources representing a
wide variety of experimental and physiological conditions; not all interactions are relevant
to any specific condition or process. We and others have suggested that integrating both
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experimental and prior data should yield more relevant and interpretable biological maps
(Campanaro et al., 2007; Ideker et al., 2002; Liu et al., 2007; Shah et al., 2009; Wachi et al.,
2005).

In this work, we introduce Netshadow, a Bayesian method for integrating prior mecha-
nistic knowledge networks with experimental observations to identify parts of the global
interactome relevant to a specific biological condition or process. We demonstrate the
method on both a synthetic dataset and an experimental dataset from a TGF-β -induced
epithelial-to-mesenchymal transition (EMT) study. With the EMT dataset, we integrate a
literature-extracted protein-protein interaction (PPI) network with gene expression data to
yield a weighted subnetwork that is mechanistically consistent with both known interactions
and the observed gene expression patterns.

Several studies have previously generated condition-specific subnetworks. Campanaro
et al. and Wachi et al. generated subnetworks from proteins that exhibited differential
gene expression beyond a threshold (Campanaro et al., 2007; Wachi et al., 2005). Idekar et
al. and Liu et al. devised algorithms for identifying active subnetworks and high-scoring
networks, respectively. Both methods identified connected regions of the global interactome
that collectively exhibit significant differential gene expression for a particular condition
even when not every protein in the subnetwork was differentially expressed (Liu et al., 2007;
Ideker et al., 2002). Ulitsky et al. introduced an algorithm for identifying jointly connected
active subnetworks, that is, subnetworks that exhibit high average internal similarity (Ulitsky
and Shamir, 2007).

The prior works described above have relied on one of two assumptions: 1) that proteins
that are important to a condition show significant differential mRNA expression and/or 2)
that proteins that interact are co-regulated and thus have correlated gene expression profiles.
Although both assumptions have led to useful algorithms, they are problematic for the
following reasons. First, using mRNA abundance to quantify protein activity ignores the
effects of microRNA, mRNA stability, and post-translational regulation; indeed, empirical
studies have found poor correlation between mRNA and protein abundance (Gygi et al.,
1999; Griffin et al., 2002; Anderson and Seilhamer, 1997; Chen et al., 2002; Tian et al.,
2004).

Second, proteins that interact often dont have correlated gene expression. Although some
studies have identified gene expression correlation between interacting proteins (Hahn et al.,
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2005), Bhardwaj et al. (Bhardwaj and Lu, 2005) found that gene expression of interacting
proteins is correlated in E. coli but not in yeast, mouse or human. Jansen et al. (Jansen
et al., 2002) found gene expression correlation between interacting proteins in yeast for
a few permanent complexes but not in transient interactions or for the global interaction
network in general. Furthermore, a recent study by Xulvi-Brunet et al. not only confirmed
the lack of correlation but also observed that co-expression and PPI networks have different
structural properties such as degree distribution, network diameter and shortest path length
(Xulvi-Brunet and Li, 2010).

Departing from the differential expression and co-expression assumptions, Netshadow
uses a mechanistically-inspired approach instead. Netshadow identifies physiologically
relevant physical interactions by the effect of that interaction on the expression of other
genes. To identify relevant interactions, we first create a set of differentially expressed genes,
called the target gene set, to represent the activity observed in a biological condition or
process. Next, we use the target gene set as a bait to quantify the relevance of each edge of a
global interaction network to the biological condition with a Bayesian model in which the
interactors indirectly regulate the target genes. Finally, we generate the condition-specific
weighted subnetwork by pruning insignificant edges.

As an example, consider the hypothetical scenario in Figure 4.1 that is used in the simu-
lated study presented in the results. In the hypothetical cellular process, proteins A and B
form a complex that regulates genes e, f and g whereas proteins C and D also form a complex
but have no downstream effect. From an experimental study, we know that the process is
characterized by differential expression of genes e, f and g but we have no measurements
regarding protein interactions or complexes. From a global interactome database, we know
that interactions A–B and C–D have been previously reported but dont know whether they
are physiologically relevant in our biological context. Using Netshadow, we create a target
gene set with genes e, f and g and score models in which A–B and C–D affect the target
genes. Note that the specific mechanics underlying the direct or indirect regulation do not
matter as long as the interaction leads to the eventual regulation of some genes. For example,
rather than forming a complex with B, A could have activated B by a post-translation
modification such as phosphorylation and the activated B could initiate a signaling cascade
that eventually regulates genes e, f and g. Also note that, in our model, the relationship
between the genes need not be a linear or pair-wise correlation. To our knowledge, were
the first to use such a mechanistically-inspired method to identify interactions relevant to a
biological condition or process.
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Figure 4.1: Netshadow example with synthetic data. The figure shows the hypothetical
scenario that is used for the simulated study presented in Results. The left panel depicts a
pathway in which proteins A and B form a complex that regulates genes e, f, and g whereas
proteins C and D also form a complex but have no downstream effects. Synthetic gene
expression data are generated from the pathway with nonlinear relationships and added
noise (described in Methods). The right panel shows two bipartite BN models corresponding
to the interactions A–B and C–D and the interactions scores with different number of data
samples. The true interaction, A–B, outscores the rest with every data sample size.

4.2 Methods

In this section, we describe the theoretical model used in our method, derive the interaction
scoring metric, and describe a bootstrap-based approach for assessing significance. Next,
we describe the python-language implementation of this method. Finally, we present the
synthetic and experimental datasets and the pre-processing steps used with the data.

4.2.1 Theoretical model: bipartite MBN model

We are interested in scoring interactions based on how well they explain the gene expression
activity observed in our experimental dataset. We treat each candidate interaction as a hy-
pothesis and assess how well the experimental data support that hypothesis. Each interaction
is modeled by a bipartite Bayesian network with edges from each interactor to each target
gene, as shown in Figure 4.1(b). The model depicts the direct or indirect regulation of
the target genes by the product of interaction. While BN are described in detail elsewhere

62



(Heckerman, 1998), we note some salient points here. Edges in a BN encode conditional
independence relationships: the child node is independent of all variables except its parent
nodes. Knowing the values for the parent nodes decreases the uncertainty about the child
node and thus the parent nodes are said to explain the child nodes. It is important to note
that edges in a BN do not encode any specific functional form; they dont specify activation
or inactivation, rather, just a probabilistic relationship.

4.2.2 Theoretical model: interaction score

The score for an interaction is the posterior probability of the underlying BN model, which
is given by the Bayes rule P(M|D) = P(D|M)P(M)/P(D). P(D|M) is the likelihood of the
data given the model after marginalizing over all model parameters; it is calculated using the
BD scoring metric (Heckerman, 1998). The likelihood quantifies how well the data agree
with the hypothesis encoded by the BN. P(M) is the prior belief in the model; it can be used
to integrate interaction confidence calculated using other methods and datasets. P(D), the
probability of the data, is calculated by marginalizing over all models and serves as a scaling
term to ensure that P(M|D) is a true probability distribution.

4.2.3 Theoretical model: assessing significance by bootstrapping

A common challenge for many machine-learning methods applied to biological data is
over-fitting. Typical high-throughput datasets contain few samples but a large number of
variables; microarrays assay tens of thousands of genes but studies typically contain less
than a hundred samples. The small sample size does not normally support statistically
significant conclusions. To overcome this problem, we use a non-parametric bootstrapping
procedure (Efron and Tibshirani, 1994) to assess the significance of each interaction. We
first sample interaction scores, with replacement, from the list of all scored interactions.
Next, rather than assume a specific distribution for the scores, we calculate the p-value for a
given interaction by counting the number of bootstrap samples with score greater than that
for the current interaction. We repeat this 10,000 times to calculate the average p-value.

4.2.4 Theoretical model: target and downstream gene sets

The target gene set includes the top differentially expressed genes in the dataset. Not every
gene in the set, however, will be downstream of any specific interaction. We use a simplified
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version of the Netshadow model to identify true downstream genes: each potential down-
stream gene from the target set is scored using a BN with edges from each interactor to
the gene. A bootstrap method is used to calculate the p-value and genes with p < .05 are
reported as downstream for the interaction.

4.2.5 The netshadow pipeline

HPRD

Query prior 
knowledge

Interaction 
Network

Score BN models
Weighted
interaction 
subnetwork

Experimental 
Data

PEBL

MiMI

Visualize in 
Cytoscape

Figure 4.2: Netshadow analysis pipeline. The input to Netshadow is the experimental gene
expression dataset. First, all genes in the dataset are used to query multiple sources of prior
knowledge to generate the prior interaction network. Next, the top differentially expressed
genes are used to create the target gene set and all edges from the prior network are scored
to generate the Netshadow weighted subnetwork. Finally, the subnetwork is exported to
Cytoscape for visualization.

We have implemented the Netshadow method as a python-language application. We
first give a brief overview of the analysis pipeline (Figure 4.2) and then describe each part in
detail. The input to Netshadow is the experimental gene expression dataset. First, all genes
in the dataset are used to query multiple sources of prior knowledge to generate the prior
interaction network. Next, the top differentially expressed genes are used to create the target
gene set and all edges from the prior network are scored to generate the Netshadow weighted
subnetwork. Finally, the subnetwork is exported for visualization and further analysis.

4.2.6 Netshadow: querying prior knowledgebases

Netshadow can query and use results from multiple sources of prior knowledge. The Human
Protein Resource Database (HPRD) is a manually-curated database of PPI extracted from
literature (Keshava Prasad et al., 2009). When using HPRD, Netshadow uses Release 8,
which contains 36,633 PPI (excluding homo-dimers) among 7,773 proteins. The Michigan
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Molecular Interactions (MiMI) database provides PPI and pathway information integrated
from multiple sources with complete provenance information (Tarcea et al., 2009). When
using MiMI, Netshadow uses the r2 version with 154,850 PPI (excluding homo-dimers)
among 10,806 proteins.

4.2.7 Netshadow: scoring models

Netshadow first discretizes data into 3 bins using a maximum-entropy scheme as described
elsewhere (Shah et al., 2009). It uses our open-source Bayesian network software PEBL
(Shah and Woolf, 2009) for scoring BN models and takes advantage of several parallel
processing and cloud platforms.

4.2.8 Netshadow: weighted subnetwork

The interaction network generated by querying prior knowledgebases is pruned and then
weighted by the interaction score for each edge. The interaction score (described in detail
above) is the posterior probability of a bipartite Bayesian network modeling the direct
or indirect regulation of the set of target genes by the interactorbootstrapping approach
described above. Edges with p > .01 are pruned and the remaining edges are weighted by
their interaction score. The network is visualized with edge thickness and color proportional
to its interaction score and node size proportional to its degree (number of edges connected
to it).

4.2.9 Netshadow: results visualization in cytoscape

Cytoscape is an application for analyzing and visualizing networks with an emphasis on
biological data (Shannon et al., 2003). Netshadow generates node and edge attribute files
that can be loaded into Cytoscape to visualize the weighted networks using different criteria
and for further integration and analysis. Cytoscapes VizMapper feature is used to visualize
the weighted interaction network with differing node sizes and edge thickness to highlight
significant interactions and interactors.
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4.2.10 Synthetic dataset

To test Netshadow on a known system, we generated synthetic data corresponding to the
hypothetical scenario described in the introduction and depicted in Figure 4.1(a). The data
were generated using a steady-state assumption and include nonlinear relationships with 20%
Gaussian noise. Specifically, independent variables were sampled from a normal distribution
and dependent variables were modeled with sigmoid functions plus a noise term. Noise
was sampled from a normal distribution with mean 20% of the dependent variables mean.
Scripts for generating and using synthetic data are included in the Supplementary Material.

4.2.11 Experimental dataset and pre-processing

We assembled gene expression data from a previously described gene expression analysis
of TGF-β -induced EMT in A459, lung adenocarcinoma cell line (GEO ID: GSE17708)
(Keshamouni et al., 2009; Sartor et al., 2010). Briefly, in this experiment A459 cells were
stimulated with 5 ng/mL of TGF-β to induce EMT and harvested at 0, 0.5, 1, 2, 4, 8, 16, 24
and 72 hours in 3 separate experiments, and the resulting RNA collected and assayed using
Affymetrix HG-U133 plus 2 arrays. The data were analyzed using the Robust Multichip
Average (RMA) (Bolstad et al., 2003) algorithm as implemented in the Bioconductor Affy
package and annotated using updated probeset definitions (.CDF files) provided by the Mi-
croarray Lab at the University of Michigan (Dai et al., 2005). The custom CDF re-annotation
discarded genes that no longer map to probesets with high confidence, thus decreasing the
number of genes assayed to 16,713. Because our method relies on probabilistic relationships
between gene expression profiles rather than differential expression, we did not need to filter
the genes using a fold-change filter and, instead, selected all 16,713 genes from the assay to
query prior knowledgebases. We used a threshold of f old change > 3.0 to select 485 genes
for the target gene set. Note that differential expression is used to select the set of target
genes that act as bait but not candidate interactors or interactions.

4.3 Results

We first show the results of a simulated study with synthetic data and then describe the
results with the experimental gene expression datasets from the cancer cell-line EMT study.
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4.3.1 Simulated study with synthetic data

We generated synthetic data as described in the Methods. Because the synthetic data were
stochastically generated, for each test, we created 25 different datasets and report the average
results. We also tested the effect of data size by generating datasets with 100, 50, 25, 10
and 5 samples. We compared the interaction score for three interactions: A–B, C–D and a
hypothetical interaction B–C (Figure 4.1(b)). With every dataset size, the true interaction,
A–B, outscores B–C and C–D although with few data samples, the differences in scores are
smaller. Note that the scores for B–C are better than for C–D, indicating that a false inter-
action involving one interactor from a true interaction can score well, leading to potential
false-positives in our final result.

4.3.2 Netshadow analysis of EMT interactome

We queried HPRD with all 16,713 genes in the experimental dataset to generate a prior
interaction network with 28,275 PPI. Using a fold-change threshold of 3.0, we constructed a
target gene set of 485 genes. We then scored each interaction in the 28,275 edge network
and assessed edge confidence as described in Methods. To create the EMT subnetwork, we
pruned all edged with p > .01 and weighted remaining edges with their interaction score.
The resulting subnetwork has 269 interactions between 301 proteins and includes hubs, large
clusters and connected components.

4.3.3 Significant protein-protein interactions

Table 4.1 lists the top 20 interactions from the EMT subnetwork shown in Figure 4.3(c). The
interactions are related to expected cellular processes such as cell cycle regulation, TGF-β
pathway, extracellular matrix modeling, adhesion, migration, differentiation, proliferation
and cytoskeleton organization.

4.3.4 Significant protein hubs

In many different types of cellular networks, a few nodes with high connectivity, called
hubs, act as the backbone and hold the network together by providing a path for interactions
among many other nodes (Barabasi and Oltvai, 2004). Table 4.2 lists the top 20 hubs in the
EMT subnetwork. Most of the hubs are well-known participants in EMT. FN1, CTNNB1,
VIM, COL4A1, TGFB1 are known EMT markers (Zeisberg and Neilson, 2009) and 12 of
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Figure 4.3: Extracting the EMT subnetwork from the global interactome. The top
panel shows the simplification of the global interactome by successive application of the
EMT gene expression data and the Netshadow algorithm. The networks depicted are (1) the
global protein interaction network, (2) the subnetwork among proteins in the EMT dataset
and (3) the Netshadow generated EMT subnetwork (p < .01). The lower panel shows the
EMT subnetwork network in detail. Node size is proportional to the nodes degree (number
of interactions) and edge color and thickness are proportional to the interaction score. The
network is annotated with enriched Gene Ontology terms and the 10 largest hub nodes. Two
interactions that are discussed in the text are highlighted: ATXN1–ANP32A in red square
and NEK6–SMURF2 in green circle.
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Interaction Score P-value
Absolute
Correlation

Correlation
Rank Annotation

CDKN1B –
CCND3 -11944 < 1E-04 0.88 282

TGF-b induced cell cycle regulation (Zhang et al.,
1999, 2005; Toyoshima and Hunter, 1994)

NEK6 –
SMURF2 -12016 1.00E-04 0.39 9134

TGF-b induced cell cycle regulation (Yin et al.,
2003; Ewing et al., 2007; Lin et al., 2000)

ANP32A –
ATXN1 -12054 2.00E-04 0.66 2316

Adhesion-related gene expression repression (Cve-
tanovic et al., 2007; Matilla et al., 1997)

SERPINE2 –
COL4A2 -12065 3.00E-04 0.92 110

ECM modeling (Donovan et al., 1994; Buchholz
et al., 2003)

PAWR –
RRAS2 -12082 3.00E-04 0.89 222
FLNA –
RALA -12094 3.00E-04 0.75 1271 Migration (Ohta et al., 1999)
SERPINE2 –
COL4A1 -12104 3.00E-04 0.96 26

ECM modeling (Donovan et al., 1994; Buchholz
et al., 2003)

TGFBI –
COL4A1 -12131 3.00E-04 0.96 14 Adhesion (Kim et al., 2002)
ARNTL –
AHR -12152 3.00E-04 0.73 1432

Proliferation-related gene expression (Hogenesch
et al., 1997; Shimba et al., 2002)

JAG1 –
THBS1 -12158 3.00E-04 0.89 212 Notch signaling (Aho, 2004)
PDLIM5 –
ACTN1 -12165 3.00E-04 0.87 206 Cytoskeleton organization (Nakagawa et al., 2000)
TGFBI –
COL1A1 -12166 3.00E-04 0.97 11 Adhesion (Kim et al., 2002; Billings et al., 2002)
EGFR –
RASA1 -12167 3.00E-04 0.9 163

Proliferation (Serth et al., 1992; Liu and Pawson,
1991)

EXOC2 –
RALA -12179 4.00E-04 0.84 450

Cytoskeleton organization (Moskalenko et al.,
2003; Sugihara et al., 2002)

TBC1D4 –
NAV1 -12183 4.00E-04 0.75 1191
EXOC1 –
RALA -12183 4.00E-04 0.91 129

Cytoskeleton organization (Moskalenko et al.,
2003; Sugihara et al., 2002; Brymora et al., 2001)

ITGAV –
TGFB1 -12184 5.00E-04 0.87 319 TGF-b pathway (Mu et al., 2002)
TGFB1 –
BMP2 -12184 5.00E-04 0.77 1050 Differentiation (Kim and Niyibizi, 2001)
SAT1 –
CCDC90B -12187 5.00E-04 0.82 592
ATXN1 –
RBM9 -12187 5.00E-04 0.86 344 Proliferation and differentiation (Lim et al., 2006)

Table 4.1: Top 20 interactions in the EMT subnetwork. The BN Score and p-value are
calculated as described in the Methods. The fourth and fifth columns report the absolute
value of the gene expression correlation between interacting proteins and the rank according
to that correlation (where lower number indicates higher ranking). Note that Netshadow’s
mechanistic model ranks interactions significantly differently than linear correlation.
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Protein Description Degree Fold Change FC Rank
ATXN1 ataxin 1 19 2.65 648
FN1 fibronectin 1 12 3.88 210
EGFR epidermal growth factor receptor 11 2.14 1083
ACTN1 actinin, alpha 1 10 2.62 668
COL1A1 collagen, type I, alpha 1 9 1.95 1320
VIM vimentin 9 1.79 1569
FLNA filamin A, alpha 7 2.23 987
PTK2 PTK2 protein tyrosine kinase 2 7 1.51 2207
RASA1 RAS p21 protein activator 1 7 1.57 2076
COL4A1 collagen, type IV, alpha 1 6 6.81 14
COL7A1 collagen, type VII, alpha 1 6 2.49 765
ITGAV integrin, alpha V 6 2.27 952
TGFB1 transforming growth factor, beta 1 6 2.47 778
THBS1 thrombospondin 1 6 4.14 168
AR androgen receptor 5 2.34 877
CCND3 cyclin D3 5 2.04 1196
COL4A2 collagen, type IV, alpha 2 5 6.7 17
CTNNB1 catenin, beta 1, 88kDa 4 1.81 1536
DUT deoxyuridine triphosphatase 4 1.15 3799
EPHB2 EPH receptor B2 4 3.33 360

Table 4.2: Top 20 hubs in the EMT subnetwork. The protein hubs are sorted according
to node degree (number of interactions). The fourth and fifth columns report the gene
expression fold change and ranking based on that metric, respectively. Note that, in the
EMT subnetwork, hub nodes are not generally differentially expressed.

the 20 largest hubs (PTK2, ACTN1, CTNNB1, COL1A1, COL4A1, COL4A2, CCND3,
EGFR, FN1, FLNA, ITGAV, THBS1) reflect actin cytoskeleton reorganization, extracellular
matrix remodeling, cell-cycle regulation and formation of Focal Adhesions which is required
for acquiring a migratory and invasive phenotype during EMT (Keshamouni et al., 2006).

Interestingly, the largest hub, ATXN1, is not known to be involved in EMT. ATXN1
is known for its role in the neurodegenerative disease known as spinocerebral ataxia type
1. Though the precise function is not known, ATXN1 was shown to bind RNA in vitro

(Yue et al., 2001) and demonstrated to have the ability to shuttle between the nucleus and
cytoplasm (Irwin et al., 2005) and to modulate gene transcription (Okazawa et al., 2002;
Tsai et al., 2004; Tsuda et al., 2005; Lam et al., 2006; Serra et al., 2006). In our results, its
interaction partners include adhesion and adherens junction related proteins such as TRIP6,
ITGB4 and ZYX and transcriptional repressors and modulators such as ZHX2, SPEN,
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RBM9, ANP32A and UBE2I, consistent with its role as a transcription modulator. Among
these, the ATXN1 interaction with ANP32A (red square in Figure 4.3(b)) is the third-highest
scoring interaction in our result. ANP32A is a co-repressor that inhibits histone acetyltrans-
ferases, forms a complex with the transcriptional repressor E4F and modulates its activity;
it is known that ATXN1 relieves this transcriptional repression by competitively binding
ANP32A (Cvetanovic et al., 2007). Gene ontology analysis of the downstream genes for
the ATXN1–ANP32A interaction (Figure 4.4) showed enrichment for the processes of cell
adhesion and cell migration in up-regulated genes (ADAM19, GLIPR1, ALOX5AP, BEAN,
PTPRF, PTPRK, RHOU, SLC26A2, SLC29A1 and DOCK4). The one down-regulated
gene, HABP2 which binds hyaluronic acid in the ECM, is a known inhibitor of vascular
smooth muscle cell proliferation and migration (Kannemeier et al., 2004). This suggests
that the ATXN1–ANP32A interaction might play an important role in the regulation of cell
adhesion and migration during TGF-β -induced EMT and worth considering an experimental
validation.

Cellular Component GO ID Count P-value Benjamini
basement membrane GO:0005604 16 2.16E-11 7.69E-09
adherens junction GO:0005912 20 1.05E-10 1.86E-08
extracellular region part GO:0044421 49 3.05E-10 3.62E-08
basolateral plasma membrane GO:0016323 22 3.70E-10 3.29E-08
anchoring junction GO:0070161 20 6.11E-10 4.35E-08
extracellular matrix part GO:0044420 17 7.21E-10 4.28E-08
focal adhesion GO:0005925 15 7.70E-09 3.91E-07
extracellular matrix GO:0031012 26 9.17E-09 4.08E-07
cell-substrate adherens junction GO:0005924 15 1.26E-08 4.98E-07
Cytoskeleton GO:0005856 57 2.40E-08 8.55E-07
cell-substrate junction GO:0030055 15 2.84E-08 9.18E-07
extracellular space GO:0005615 36 6.77E-08 2.01E-06
proteinaceous extracellular matrix GO:0005578 23 1.84E-07 5.03E-06
integrin complex GO:0008305 8 7.46E-07 1.90E-05
cytoplasmic membrane-bounded vesicle lumen GO:0060205 9 1.21E-06 2.87E-05
cell projection GO:0042995 34 1.24E-06 2.76E-05
extracellular region GO:0005576 68 1.49E-06 3.11E-05
actin cytoskeleton GO:0015629 20 1.67E-06 3.30E-05
vesicle lumen GO:0031983 9 1.73E-06 3.24E-05
cytoplasmic vesicle part GO:00044433 16 2.43E-06 4.32E-05

Table 4.3: Top 20 enriched Gene Ontology cellular components in the EMT subnet-
work. The top 20 enriched cellular components in the EMT subnetwork include various
cell-cell and cell-substrate adhesion junctions, the cytoskeleton and components of the extra-
cellular space. The second column reports the number of genes in the Netshadow network
that are annotated with a given Gene Ontology term; the p-value and Benjamini-corrected
p-value are reported in the third and fourth columns, respectively.
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Downstream genes for ATXN1-ANP32A (p<.05)

Figure 4.4: Genes downstream from the interaction between ATXN1 and ANP32A.
The top panel shows the Netshadow generated EMT subnetwork; a close-up surrounding
the interaction between ATXN1 and ANP32A; and the Bayesian networks used to rank the
downstream genes. The heatmap in the lower panel shows the z-score of the gene expression
profile of ATXN1, ANP32A and the downstream genes (p < .05). The arrays are arranged
according to time since TGF-β induction.

4.3.5 Enriched processes, components, and pathways

The functions of proteins in the EMT subnetwork and the pathways in which they participate
were assessed using the DAVID functional analysis tool (Huang da et al., 2009b). The top
20 biological processes, top 20 cellular components and top 10 KEGG pathways enriched in
the list of proteins are shown in tables 4.4, 4.3 and 4.5, respectively. Enriched processes in-
clude those related to adhesion, motility, proliferation and apoptosis. The proteins constitute
cellular components related to inter-cellular and cell-substrate junctions, the extracellular
matrix, the cytoskeleton and vesicle transport. Not surprisingly, the proteins participate in
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adhesion, inter-cellular junction and cytoskeleton related pathways; they also include known
cancer-related gene expression patterns, further supporting the hypothesis that EMT is a
critical step in cancer progression.

4.4 Discussion

In the following section, we discuss the results of the Netshadow analysis with the TGF-β -
induced EMT experimental dataset and compare with other methods.

Biological Process GO ID Count P-value Benjamini
cell adhesion GO:0007155 53 4.53E-18 1.05E-14
biological adhesion GO:0022610 53 4.81E-18 5.60E-15
cellular component movement GO:0006928 40 1.08E-14 8.36E-12
localization of cell GO:0051674 40 1.08E-14 8.36E-12
regulation of cell proliferation GO:0042127 51 1.94E-14 1.13E-11
regulation of cell motion GO:2000145 25 1.10E-13 5.10E-11
cell migration GO:0016477 29 4.43E-13 1.72E-10
enzyme linked receptor protein signaling pathway GO:0007167 31 1.96E-12 6.52E-10
response to wounding GO:0009611 38 3.13E-12 9.11E-10
regulation of cell migration GO:0030334 22 4.53E-12 1.17E-09
cell motility GO:0048870 29 7.40E-12 1.72E-09
positive regulation of macromolecule metabolic
process GO:0010604 47 1.66E-11 3.51E-09
regulation of locomotion GO:0040012 22 5.88E-11 1.14E-08
regulation of apoptosis GO:0042981 45 1.21E-10 2.16E-08
regulation of programmed cell death GO:0043067 45 1.65E-10 2.74E-08
regulation of cell death GO:0010941 45 1.84E-10 2.86E-08
positive regulation of biosynthetic process GO:0009891 41 2.62E-10 3.81E-08
positive regulation of cellular component move-
ment GO:0051272 16 2.86E-10 3.92E-08
cell-substrate adhesion GO:0031589 16 3.32E-10 4.29E-08
positive regulation of cellular biosynthetic process GO:0031328 40 7.08E-10 8.67E-08

Table 4.4: Top 20 enriched Gene Ontology biological processes in the EMT subnet-
work. The top 20 enriched biological processes in the EMT subnetwork relate to adhesion,
motion, proliferation and cell death, processes known to be involved in EMT. The second
column reports the number of genes in the Netshadow network that are annotated with a
given Gene Ontology term; the p-value and Benjamini-corrected p-value are reported in the
third and fourth columns, respectively.
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4.4.1 Netshadow identifies a core subnetwork underlying emt

In general, global PPI network are difficult to interpret, as is shown in Figure 4.3(a). After
a Netshadow analysis, we identify (at p < .01) a smaller core subnetwork (Figure 4.3(b))
that recapitulates biological processes known to be involved in EMT: cell cycle regulation,
TGF-β pathway, cell adhesion, extracellular matrix degradation, cell migration, proliferation,
Notch signaling, and cytoskeleton organization.

4.4.2 Netshadow identifies relevant linear and nonlinear interactions

Table 1 lists the 20 highest scoring interactions in the EMT Netshadow subnetwork. The ta-
ble also lists the Pearson correlation between the interacting proteins and their rank according
to that correlation. Only two of the highest scoring interactions in Table 1 (TGFB1–COL1A1
and TGFB1–COL4A1) are in the top 20 interactions as ranked by interactor correlation,
and only a third in the top 100 (SERPINE2–COL4A1). This is not surprising because
several studies have observed low gene expression correlation between interacting proteins
(Bhardwaj and Lu, 2005; Jansen et al., 2002; Xulvi-Brunet and Li, 2010).

Similarly, our method identifies important proteins that are ranked poorly by differential
gene expression as measured by fold change (Table 2). Only two of the 20 proteins identi-
fied as important by our method (COL4A1 and COL4A2) would be ranked in the top 20
according to the differential gene expression.

4.4.3 Netshadow identifies interactions missed by topological analysis

In weighted networks such as the one generated by Netshadow, each edge is scored using
quantitative data. With unweighted networks, edge importance can be assessed using various
topological measures that consider only the qualitative architecture of the network.

By integrating experimental data, Netshadow identifies physiologically relevant inter-
actions that may or may not be topologically significant. By topologically significant we
mean the interactions that involve hub nodes, are part of a cluster, or connect multiple
clusters. As an example, consider the second-highest scoring interaction in our result, that
between NEK6 and SMURF2 (Table 1). NEK6 is a serine/threonine kinase that is required
for cell cycle progression and implicated in cancer cell transformation (Yin et al., 2003).
SMURF2 is a Smad specific ubiquitin ligase that regulates the stability of Smad proteins
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Pathways KEGG ID Count P-value Benjamini
Pathways in cancer map05200 24 4.30E-08 3.31E-06
Regulation of actin cytoskeleton map04810 13 6.16E-06 2.37E-04
ECM-receptor interaction map04512 11 6.78E-06 1.74E-04
Leukocyte transendothelial migration map04670 12 8.24E-06 1.59E-04
Adherens junction map04520 10 1.19E-04 1.82E-03
Focal adhesion map04510 10 5.00E-04 6.40E-03
p53 signaling pathway map04115 9 1.28E-03 1.40E-02
Thyroid cancer map05216 5 1.77E-03 1.69E-02
Bladder cancer map05219 6 3.13E-03 2.64E-02
Pancreatic cancer map05212 7 3.95E-03 3.00E-02

Table 4.5: Top 10 KEGG pathways in the EMT subnetwork. The top 10 KEGG path-
ways enriched in the EMT subnetwork are related to cytoskeleton remodeling; cell-cell and
cell-ECM interactions; and several cancer-related pathways. The second, third and fourth
columns list the overlap between the pathway and EMT subnetwork, the p-value for that
overlap and that Benjamini-corrected p-value, respectively.

which are mediators of TGF-β signaling (Lin et al., 2000). Additionally, the interaction
has been observed in vivo and implicated in TGF--dependent dissolution of tight junctions
during EMT (Ewing et al., 2007; Barrios-Rodiles et al., 2005). Topologically, however, the
NEK6 and SMURF2 edge is uninteresting in the EMT subnetwork because neither NEK6 or
SMURF2 are hub nodes nor do either interact with hub nodes. Additionally, the interaction
is neither part of a cluster nor does it connect other clusters (blue circle in Figure 4.3(a)).

4.5 Conclusion

Although this analysis used a protein-protein interaction network and gene expression data,
the Netshadow method can be used more generally to integrate mechanistic knowledge
with high-throughput measurements. For example, it would be possible to create a subnet-
work of relevant miRNA-target interactions using a miRNA interactions database and gene
expression data.
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Chapter 5

Conclusions and Future Directions

In this thesis, I undertook the challenge of creating analytical methods for integrating generic
knowledge and noisy experimental high-throughput data to identify relationships between
the interactome and transcriptome that are consistent with both known mechanisms and
statistical relationships in the data. In this chapter, I summarize the key contributions of the
thesis and offer suggestions for future directions.

5.1 Mechanistic Bayesian networks

Systems biology is based on the premise that an integration of more and different types
of information combined with a global quantitative analysis of the cell will yield richer
understanding than analysis of a few molecules in isolation or with one modality of informa-
tion. In chapters 1 and 2, I presented Mechanistic Bayesian networks (MBN) as a modeling
strategy and set of algorithms for constructing Bayesian network (BN) models that are con-
sistent with mechanisms described in existing knowledge and statistical relationships in data.

To learn MBN models, I use modifications to the Bayesian Dirichlet equivalent (BDe)
scoring metric to accommodate learning with data from interventions, data with missing
values and to include hidden variables. In MBN analysis, I formulate problems more specific
than the general structure-learning approach common in BN analysis of bioinformatics data.
This results in a significantly constrained space of models that can be exhaustively enumer-
ated. This constrained space of models also allows me to better represent mechanisms using
methods that are unfeasible with the structure-learning approach. For example, in chapter 3,
I used hidden nodes to represent unmeasured proteins and their interactions and in chapter 4,
I used a mechanistically-faithful model to evaluate proteomic relationships.
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5.1.1 Python environment for Bayesian learning

To learn MBN models required software with the following features that were lacking in
extant Bayesian network and machine learning libraries and applications:

• specification of soft and hard priors for integrating biological knowledge
• maximum-entropy discretization
• altered BDe for interventional data
• BDe with Gibbs sampling for data with missing values and hidden variables
• easy specification of custom algorithms for structure learning in constrained subspaces
• ability to run on distributed clusters and cloud-computing platforms

In chapter 2, I described the development of PEBL, the Python Environment for Bayesian
Learning. PEBL is an open-source python library to learn Bayesian and MBN models from
data and knowledge. In addition to the novel MBN features, PEBL includes features useful
for running large and repeatable analyses. PEBL can be used interactively via the python
shell, be integrated into other scripts or application or be run as a stand-alone binary driven
by a configuration file. PEBL can output its results as python objects or as a set of dynamic
HTML files. PEBL offers an easy way to write custom learners that can search through
a constrained space of network models. Finally, PEBL can transparently run all analysis
on a single computer or on various clusters and cloud-computing services. This mix of
features allows non-expert programmers to easily run large, distributed analyses driven by a
configuration file or simple script. As an example of the simplicity of required programming,
the analyses presented in chapters 3 and 4 are driven by short, easy-to-understand scripts.

The quality of academic software has been widely lamented as being far behind commer-
cial software. All too often, the development process and resulting software do not meet the
basic criteria of quality software development. Because the software is not well-documented,
well-tested, easily-installable or configurable, it is of minimal utility to other researchers
and exists as a record of past analysis rather than as a reusable tool. For all software
development during this thesis, I made a concerted effort to follow the best practices of
the open-source development community. PEBL was developed using publicly-accessible
version control system, issue tracker and mailing lists. PEBL includes a tutorial, developer’s
guide, API reference and source-code comments. It also includes a suite of 216 automated
tests to ensure correctness and guard against introducing errors during the development
process. Finally, all source code is released under a liberal open-source license that allows
for unrestricted academic, non-profit and commercial use.
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5.1.2 MBN for identifying pathway targets

The Sonic Hedgehog pathway that is involved in normal organismal development and cancer
progression is a good example of the complexities present in many biological pathways. The
Shh ligand acts as both a short-range contact-dependant factor and a long-range diffusible
morphogen. The effects of the pathway are time-, dose-, and context-dependent and the
effector genes – Gli1, Gli2 and Gli3 – cooperate with or antagonize other pathways such
as Bmp, retinoic acid, Wnt, Ras and Notch. Generally, due to the interactions with other
pathways and multiple paths between ligand binding and eventual transcriptional regulation,
it is not even clear what constitutes a downstream target of a particular pathway.

In chapter 3, I encoded the known early events in the Shh pathway as a MBN template –
providing a mathematical definition for Shh target genes – and used the template to identify
likely targets using a gene-knockout mouse-model dataset. The results included known Shh
targets, recapitulated the downstream effects of the pathway and presented novel predictions.
A comparison with other methods showed that the MBN method made better target pre-
dictions, due in part because the topology of the MBN template better matched the known
biochemical mechanisms.

Although the specific analysis searched for downstream targets, MBN templates based
on known partial qualitative topology can be used to identify likely members, effectors,
upstream regulators or antagonists of a pathway or network. For larger templates, the
computational complexity of the Gibbs sampling could make the analysis intractable. Other
methods for learning with hidden nodes such as Variational learning (Beal and Ghahramani,
2006) should be explored for suitability within the MBN framework.

5.1.3 MBN for subnetwork identification

Interaction knowledgebases contain qualitative assertions aggregated from literature, past
measurements and past analyses. They represent a high-level compilation of a large amount
of information and are useful in understanding the mechanisms active in biological pro-
cesses. These knowledgebases, however, represent different physiological and experimental
conditions: different cell types, tissues, interventions and experiments. Not every interaction
will be relevant to any specific biological process. Furthermore, the large size of the net-
works makes them inscrutable, leading to the well-known hairball network problem where
a network is inscrutable to visual analysis.
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In chapter 4, I used MBN to integrate interactome knowledge with experimental data to
identify a core subnetwork relevant to the epithelial-mesenchymal transition (EMT). EMT
is a process by which a fully-differentiated epithelial cell undergoes a phenotype change to
become a mesenchymal cell. Like the Shh pathway studied in chapter 3, EMT is critical in
both normal organismal development and cancer progression – it is required, for example,
in growing limbs from a bud and for localized tumors to metastasize.

Typical subnetwork identification methods make one or both of the following assump-
tions: 1) that proteins important to a process or biological condition show significant
differential mRNA expression and 2) that proteins that interact are co-regulated and thus
have correlated gene expression profiles. Many studies have found that these assumptions
are true only in limited cases and cannot be relied upon in the general case. Following the
MBN paradigm, rather than making these assumptions, I created a MBN template in which
the interactors in a candidate interaction regulate the expression of a set of potential target
genes that were observed to be active in the EMT process. This faithful encoding of the
known biochemical mechanisms allowed me to learn a much smaller, targeted subnetwork
that recapitulated processes known to be involved in EMT.

Although gene expression data was used to identify the core subnetwork of an initial
protein-protein interaction network, the method is more generally applicable. The initial
network can be of other interaction types such as miRNA-mRNA or protein-DNA; or it can
contain a mixture of interaction types. For each interaction type, one would need to create a
scoring metric based on a MBN template appropriate for the mechanisms involved in the
interaction.

5.2 Extensions to MBN

In this thesis, MBN templates were used to identify the regulatory targets of a signaling
pathway and the proteomic subnetwork responsible for observed transcriptional activity. In
the following sections, the Sonic hedgehog (Shh) pathway is used as an example to demon-
strate other uses for MBN templates, to identify their limitations and to suggest changes that
allow for a more thorough integration of existing knowledge to identify mechanisms in the
pathway.
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5.2.1 Identifying Shh coregulators and pathway crosstalk

In chapter 3, a MBN template was used to identify the downstream targets of the Sonic
hedgehog (Shh) signaling pathway. Figure 5.1 depicts two other templates that use existing
knowledge about the Shh pathway to identify proteins that co-regulate the Shh target Gas1
and signaling pathways that crosstalk with Shh, respectively. MBN templates present a
principled approach for representing queries about biological systems in terms of interaction
topologies and for using known topological information to identify novel members.

5.2.2 Limitations of MBN templates

MBN templates are a way to represent a set of hypotheses, each specified by a BN model.
A template is similar to a regular BN but has two types of nodes: constant and template
nodes. Constant nodes are regular nodes that represent observed or unobserved variables.
Template nodes are placeholders and replaced by specific variables in each instantiation
of the template. All the hypotheses represented by a MBN template, thus, have the same
structure but differ in the identity of some nodes. In chapter 3, the template node was
instantiated by all variables in the dataset. In chapter 4, the template contained two template
nodes representing interacting proteins; they were instantiated with protein interactions from
the Human Protein Reference Database (HPRD) interactome. MBN templates as used in
this thesis have three limitations:
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Figure 5.1: Other uses of MBN templates. Panel a depicts the template used to identify
Sonic hedgehog (Shh) targets. Panels b and c show templates to identify co-regulators for
the Shh target Gas1 and signaling pathways that might crosstalk with Shh, respectively.
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1. Only node identity can vary between template instantiations.
2. MBN templates are constructed by hand.
3. All template instantiations have equal probability.

These three limitations mean that templates are only useful for visually representing a set
of hypotheses but do not help in generating these hypotheses in the first place. Additionally,
the types of hypotheses that can be represented is limited; hypotheses about different sig-
naling paths from ligand binding to gene transcription, for example, cannot be represented
by a template. Finally, although the models generated by a template are evaluated using
Bayesian methods, templates do not offer any method for calculating prior probabilities.

5.2.3 Increasing the expressiveness of MBN templates

MBN templates, as used in this thesis, cannot describe arbitrary regions of the model search
space because their structure is fixed and only node identities can vary. By using alternate
Bayesian frameworks such as Multi-entity Bayesian networks (MEBN)(Laskey, 2006),
templates can have variable structure, node identities and prior probabilities. Figure 5.2
shows a MEBN-based template. In chapter 3, the template only used the canonical Shh
pathway – those few early events of the pathway that are known with high certainty. With a
MEBN-based template, however, one can exploit knowledge about alternate signaling path-
ways between Shh ligand reception and eventual target regulation. When scoring potential
targets, we can use all available knowledge to calculate posterior probabilities.

5.2.4 Generating hypotheses

MBN templates represent a set of hypotheses for a given biological query. The templates in
this thesis were hand-built after consulting relevant literature and bioinformatics databases.
This manual approach is biased and will become increasingly difficult as the amount of bio-
logical knowledge increases. To fully utilize existing knowledge, we require an automated
method for generating hypotheses.

Existing tools such as HyBrow (Racunas et al., 2004) and BioDeducta (Shrager et al.,
2007) use first-order logic and semantic knowledgebases to identify networks in response
to a user’s query (”all paths from Shh to Gli proteins”) and simple semantic constraints
(”for proteins to interact, they must be expressed in the same cell type”). They do not use
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Figure 5.2: A more expressive Shh template. By defining templates using Bayesian
frameworks such as Multi-entity Bayesian networks (MEBN), templates can describe any
arbitrary region of the model search space by specifying variable structure, node identities
and prior probabilities. This example depicts a more realistic encoding of the Shh pathway
by including alternative paths between Shh ligand reception and target regulation.

experimental data to identify the context-specific variants. Their outputs, however, can be
encoded as templates and further assessed with experimental datasets.

5.2.5 Cloud computing

The concepts and tools described in this thesis requires massive amounts of computing due
to the large amounts of knowledge and data being analyzed and the large space of possible
models that must be evaluated. High-performance computing is moving towards the use
of shared-nothing systems based on commodity off-the-shelf hardware. This means that
rather than using hardware specially designed for a particular application or with high-speed
CPUs and interconnects, one uses standard commercially-available hardware connected via
regular networking hardware and protocols. The ultimate expression of this idea is in the
notion of cloud computing in which computing is treated like a utility not unlike electrical
power or water. A user (or computer) requests some amount of computing resources from
a provider and pays only for the specific usage; for many tasks, this is much cheaper and
more convenient than purchasing and maintaining a dedicated cluster.

PEBL, the Bayesian and MBN software described in chapter 2 can run analysis on
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Figure 5.3: Future MBN workflow. Rather than creating the template by hand, one queries
a semantic reasoner using a formal query language. The reasoner uses semantically-encoded
knowledge to generate a template to represent all the possible answers – along with their
knowledge-based prior probabilities – to the query. Experimental datasets are then used to
calculate the context-specific posterior probabilities. The steps outlined in red are those that
differ from the MBN workflow used in this thesis.

a single-core CPU, on multiple cores or CPUs, on Apple’s Xgrid, on an IPython cluster
or on Amazon’s Elastic Cloud Computing (EC2) platform. A PEBL learner – whether
included in PEBL or custom-written – can be configured to run on different platforms by
changing a few configuration parameters. This has allowed me to write software that use
our lab’s Xgrid but can be distributed to other researchers who may have access to other
clusters. Furthermore, with the EC2 support, one can rent the required resources, making the
code developed in chapters 3 and 4 reusable for labs without dedicated computing resources.

I refactored the cloud-computing parts of PEBL into a separate library called anyCloud
that allows python programmers to integrate similar functionality into their software. With
anyCloud, a python programmer architects his code as a series of tasks that are created
and run using a specified interface. To handle the amount of knowledge, data and analysis
required, anyCloud and similar tools will be crucial for transforming bioinformatics software
to run on public or private clouds rather than being tied to a single machine or specific
cluster and grid technologies.
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5.3 A future MBN workflow

The pathologies we are interested in addressing are complex and involve many unknowns.
To translate results from the lab to the clinic will require modeling at multiple scales and
integration of even more knowledge and data. It appears that the exponential growth we
have witnessed in the amount of available biological information and the ability of new mea-
surement technologies to interrogate living systems will not be slowing for the foreseeable
future. The amount of information (and the rapid pace of new information) is already beyond
the synthesis and reasoning capacity of the human mind. Unless we can find automated
means to synthesize available knowledge and integrate it with targeted experimental data,
the availability of information will become a burden rather than a benefit.

The MBN methodology provides a principled approach for representing queries and
existing knowledge about biological systems and for using experimental datasets to identify
the condition-specific interaction among biomolecules that underlie complex pathologies.
Figure 5.3 depicts a future MBN workflow. By using semantic knowledgebases, semantic
reasoners, expressive MEBN-based templates and Bayesian learning algorithms running on
the cloud, we can effectively utilize all available knowledge and data, however uncertain, to
identify mechanisms in complex biological systems.
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