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ABSTRACT

Cutset Based Processing and Compression of Markov Random Fields

by

Matthew G. Reyes

Chair: David L. Neuhoff

Markov random fields (MRFs) are an extremely and increasingly important class

of probability distributions. MRFs are essentially probability distributions on the

ways to color an undirected graph and are particularly suited for problems where

the data in question is spatially distributed or arises through the interaction of a

large number of individual units. The have been used to model natural phenomena,

including the ferromagnetic interactions of iron (and other) atoms, dynamic processes

on social networks, spatially distributed data such as images, and more recently, gene

regulatory networks. In addition, they are being applied to man-made scenarios

such as sensor and control networks in which a large number of interacting units

combine to provide some global effect. They have been studied extensively from the

points of view of statistical inference, modelling, parameter estimation and more. An

important area in which they had not been thoroughly studied is data compression,

the process of finding efficient representations of data to be stored on a computer,

camera, cell phone or any other digital device. With the relevance of MRFs as great

as it is, and seeming to grow by the year, and our world’s ever-increasing reliance on

digital media as a means of obtaining and communicating information, compression
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of MRFs is an significant topic. This thesis develops a framework for the compression

of Markov random fields. In particular, it presents a method for compressing MRFs

based on a special type of subset within the graph associated with a given MRF.

However, the analytical and algorithmic tools established have application to other

potential means of compressing MRFs and indeed to the wide range of traditional

research areas for MRFs. Though the compression methods and analysis we present

in this thesis are applicable to general MRFs, we focus on images modelled as MRFs

as image compression is our motivating concern.

In this thesis we present a number of results related to the problem of compressing

a Markov random field (MRF) X defined on a graph G = (V,E) by first losslessly

compressing a cutset of sites U and then either losslessly compressing or estimating

the remaining sites conditioned on the cutset values.

As an instance of the latter problem, we consider a square grid cutset consisting

of evenly spaced rows and columns of the image for a homogeneous Ising model. We

present analytical solutions to the MAP estimate of a block conditioned on the com-

monly occurring boundaries with two or fewer runs of black, for both 4 pt. and 8

pt. grid graphs. Using these results we empirically demonstrate that Max-Product

Loopy Belief Propagation converges to the correct results. We present a simple adap-

tive Arithmetic Encoding (AC) based method for losslessly compressing a square grid

cutset consisting of evenly spaced rows and columns of a binary image and, applying

the Ising reconstruction results, show that the resulting lossy bilevel image coder is

competitive compared to other such methods. Our results are significant in the con-

text of the Ising model as it is the first MRF to be studied and the principal example

of an MRF used in most contexts. The application of this algorithm to the lossy cod-

ing of bilevel images could represent a breakthrough in bilevel image compression as

smooth contours are reconstructed from edge-preserving information from the origi-

nal image. The grid cutset that is losslessly encoded preserves edges from the original
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image and preserving this key structural information allows faithful reconstructions

from a simple algorithm.

We present a rigorous development of Local Conditioning for MRFs, an algorithm

for exact inference in cyclic graphs. Again, our theoretical contributions with regard

to LC are significant. Because many interesting and difficult problems are modelled

as MRFs (generally, on cyclic graphs), our developments here could potentially have

wide effect. More specifically, for problems that must be solved in a truly distributed

manner, for instance sensor networks, the more popular method of clustering nodes

into supernodes will not work, so LC will be required to optimize performance of an

inference or related algorithm.

We prove that the entropy of a family of MRFs is monotone increasing in the asso-

ciated exponential parameters and that the exponential parameters for the moment-

matching reduced MRF induced by U for a given subset of nodes are component-wise

greater than the original exponential parameters within U . We also show that the di-

vergence between an MRF induced by exponential parameter θ and another induced

by θ′ is monotone increasing in θ′. Furthermore, we prove that the divergence between

the marginal distribution for X and a reduced MRF follows a Pythagorean decom-

position, providing a reduced MRF analogue to a well-known result in information

geometry.

We also present efficient algorithms for optimal AC based lossless compression of

acyclic and EASY cyclic MRFs, and use these as the basis for a suboptimal lossless

compression for HARD cyclic MRFs, called Reduced Cutset Coding. We show experi-

mental results of RCC on homogeneous Ising models and verify that the performance

is nearly optimal. Moreover, the empirical performance of RCC provides estimates

of upper and lower bounds to the entropy. One of the very intriguing side benefits of

our work on RCC is that it can be used to obtain estimates of important quantities of

an MRF model. For example, the entroy upper and lower bounds mentioned earlier.
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CHAPTER I

Introduction

1.1 Motivation

Digital media play an ever increasing role in our modern world. With the inter-

net well into its second decade of popular use, one may be forgiven for taking for

granted the speed and accessibility with which information - in the form of photos,

documents, forms, etc., - pinballs between computers scattered over nearly the en-

tire globe. Of course, it is the mathematical tools of data storage and transmission,

studied and developed under the name Information Theory, that make this efficient

process possible.

First, the methods of Source Coding, or Data Compression, allow for information

to be stored efficiently, in computers, cell phones, cameras, and more. The storage

is necessarily in binary digits, or bits, as this is the currency of modern computers.

Efficiency is obtained when redundancy in the data is sufficiently removed so that,

on average, the minimum number of bits is required to store the information. Once

the data are compressed into a sequence of bits, referred to as a bitstring, these bits

of information can be transmitted over a wireless network, uploaded or downloaded.

Reliability of this transmission is within the purview of Channel Coding, which adds

redundancy to the bitstring in order detect errors introduced through the possibly

corrupted medium. The focus of this thesis is on data compression, in particular the
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compression of sources of information that can be described as Markov random fields,

as well as the algorithmic and analytical tools related to this problem that also find

application in other problems. The process of representing the original data in binary

form is called encoding, while the reverse process of transforming the binary digits

back to the original, or an approximation thereof, is called decoding.

It can be argued that the perpetual gains being made in computer memory and

processing power obviate the need for further sophistication of data compression and

transmission systems. However, with oil’s last drop around the corner, we should

fully grasp the horizon in front of us: a world in which mass transportation, of all

forms, is greatly diminished, at a time when global commerce, research, and gen-

eral information-sharing is likely to be even more intertwined than at present. This

means that our reliance on digital data and the accompanying concerns of storage

and transmission are, if anything, to increase significantly in the future. And perhaps

more importantly, the underlying mathematical questions will still be there, and as

a civilized society how can we allow them to lie untouched?

Data compression, pursued in an information-theoretic sense, is necessarily proba-

bilistic. If we look at a particular type of data, for instance images to be recorded by a

personal camera, we clearly expect some images to occur more frequently than others.

For example, we would expect images of faces, houses, and trees to be more likely

than pictures of the moon or of an anthill. Therefore, if we want an efficient data

compression system we need a probability model that roughly describes the relative

likelihoods of different pieces of data. This is important because otherwise we might

assign long bitstrings to images that are very likely to occur and short bitstrings to

images that are not likely, which is of course the reverse of what we want. An im-

portant class of probability models that has gained increasing amounts of attention

in varied fields over the last few decades is Markov random fields.

The goal of this thesis is to develop an outline or structure for how to approach
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the compression of Markov random fields. While Markov random fields have been the

focus of intense research and application, very little has been undertaken previously

regarding their compression. Along the way we will encounter problems that have

application in other areas and in fact are quite significant in their own right.

1.2 Problem Statement

The basic problem we are interested in is the following. A collection of N random

variables X = XV = X1, . . . , XN , indexed by a set V , are generated according to a

Markov random field (MRF) distribution p. We observe a realization (also config-

uration or image) x = (x1, . . . , xN), encode it into a bitstring of length l(x), then

decode the bitstring back to the original x or to an approximation x̂. If the bitstring

is decoded to the original, the compression is lossless, whereas if we decode to an

approximation, the compression is lossy.

For lossless compression, the performance criterion is the length of the average

bitstring over all possible configurations or images. One would therefore like to min-

imize this average over all possible encoding/decoding schemes, and it is well-known

that for any encoding/decoding scheme the average bitstring length is at least as big

as the entropy of the source. If the average length is the entropy, this is referred

to as optimal compression. Without significant loss of optimality, we can assume

that Arithmetic Encoding (AC) is used, which involves ordering the random variables

X1, X2, . . . , XN into a one-dimensional sequence, referred to as a scan. To encode the

sequence X1, . . . , XN one computes a coding distribution for each Xi in the sequence,

and in so doing effectively computes a coding distribution for the entire sequence. The

closeness of the computed coding distribution to the true distribution for X1, . . . , XN

is called the divergence between the two distributions, and gives the difference between

the average bitstring length and the source’s entropy. Therefore, optimal compression

requires exact inference. Often we speak of the rate, which is the average bitstring
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length normalized by the number of variables.

For lossy compression, there are two performance criteria. Since we are not re-

quiring a perfect reconstruction of the original, there is great flexibility in the average

number of bits that can be encoded. However, for a given average number of encoded

bits we want to measure the distortion or error between the original and the output.

Thus in lossy compression we keep track of both the average number of bits per pixel

stored and the distortion between the original and reconstructed images. In this the-

sis we narrow this a bit by losslessly encoding a subset of the variables XU and then

estimating the unencoded variables XV \U conditioned on the values of those that

were encoded. In this sense we are approaching lossy compression in two stages, the

first being a lossless compression problem, the second a sampling and reconstruction

problem. From an operational point of view the additional goal in our approach to

lossy compression is to find a subset together with an efficient estimation algorithm

such that the resulting reconstructions have small distortion, however we choose to

measure that. If the image were bandlimited, for instance, then Shannon’s sampling

theory tells us that what subgrids provide for optimal reconstruction [47]. In other

words, the subset should depend on the type of signal being observed.

The Markov random field distribution for X means that we can view p as a

distribution on the ways to color the nodes of an associated undirected graph G =

(V,E), where V is the set of nodes and E the set of edges connecting nodes in V .

The structure of G has implications for our ability to perform exact inference for

X, and hence to optimally compress X. We will see that for a general MRF, lossless

compression will also need to be performed in two stages, the first where a subsetXU is

suboptimally encoded, the second where the remaining variables XV \U are optimally

encoded given the first. Similarly, the structure or topology of G has much to do

with our ability to perform efficient and accurate estimation of unsampled variables

conditioned on the sampled variables. More specifically, the topology of G dictates
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what subsets of initially encoded, i.e. sampled, variables will permit efficient and

accurate estimation of the unsampled variables. As we have in mind image coding,

the node set V is a rectangular array of sites and the edges in E connect either

horizontally and vertically adjacent nodes, or these plus diagonally adjacent nodes.

In the former case the graph G is called a 4 pt. grid graph and in the latter G is an

8 pt. grid graph.

In addition to the graphical structure, an MRF is specified by attaching weights

to the edges and nodes within the graph, where larger weights indicate stronger

correlations. In both the lossless and lossy compression problems we will perform an

initial encoding of a subset of the variables. This compression will be suboptimal since

exact inference will be intractable. Therefore, an approximate probability distribution

is computed for the initial subset, and we would like to quantify the divergence

between the approximate and true probability distributions for XU . This will allow

us to optimize the approximate distribution over some restricted class of approximate

distributions by analyzing the divergence between the true distribution and members

of this class. Furthermore, since we will be modeling XU using another distribution,

we would like to compare the entropy of XU and the entropy of the approximate

distribution. Because the graphical structure of G is what determines whether exact

inference is possible, the type of approximations pursued will be those based on

thinning the original graph G by removing edges. Using an approximate distribution

obtained by thinning or removing edges is common for MRFs and other probability

distributions on graphs [33, 55, 31].

Once a tractable, thinned model is chosen for the approximate distribution of XU ,

optimal inference can be performed on this model. Furthermore, once the subset XU

is encoded, exact inference is required on XV \U , in the lossless compression case, and

efficient estimation of XV \U is needed in the lossy case. One can therefore view this

thesis as consisting of a few main problems. First, how to optimally compress an
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acyclic MRF and then extend this to optimally compress a tractable cyclic MRF.

Second, how to compare the distribution for a subset of random variables XU with an

approximate distribution chosen to be a tractable MRF. And third, how to estimate

a subset of sites conditioned on XU .

1.3 Why Care About Markov?

Before getting to the contributions of this thesis, it is natural to first ask of the

value in looking at the compression of Markov random fields. A quick survey of the

literature [21, 22, 8, 15, 2, 53, 56, 11, 54, 31] will show that many groups throughout

the country and indeed the world are looking into practical ways to model various

information sources as MRFs.

If p is positive, in that p(x) > 0 for all x, then we can parameterize p so that it can

be expressed as a product of functions defined over subsets of the random variables.

This defines a graph G = (V,E) with respect to which p is said to be Markov in

that the values of two nodes not connected by an edge are independent of each other

conditioned on the values of all other nodes. Therefore, at least to the extent that one

believes in the positivity assumption, one must also believe in the Markov assumption.

There are of course nonpositive Markov distributions. Alternatively, one can start

with a graph and then define a distribution as a product of functions on the graph.

This is the approach adopted in this thesis.

A motivating reason for considering Markov models for real world data is the

observation or assumption that for information that is spatially distributed, if we

need to know (estimate) what happened in a particular region of the image, it is

not necessary to know what occurred in the entire surrounding region. Instead, it

is sufficient, i.e., just as good, to know the information in some smaller surrounding

region. Implicit here is the notion of a boundary for a set of pixels, conditioned

upon which the set of pixels is completely independent of all other data, which is

6



an alternative formulation of the definition of Markov. In Chapter III we apply this

belief in a lossy cutset based coding method for a class of Ising models. The type of

Ising model considered there is in fact the oldest known MRF and has been suggested

many times as an important model for information theory.

At this point it is important to draw a distinction between studying the com-

pression of sources that follow a Markov random field distribution versus studying

Markov random fields or MRF models as a means of compressing, say, images. The

former is a purely mathematical investigation, as an MRF is a mathematical object,

while the latter is a practical pursuit, seeking to exploit certain properties of MRFs

or algorithms developed for such for the efficient compression of images, for example.

It is a subtle point, but what is important to emphasize is that in order to seriously

undertake the second task, that of compressing images using MRF models, there must

already be in place a solid foundation for how to compress Markov random fields, as

the mathematical objects that they are. Then, one can experiment with different

MRF models, in each case applying the general and therefore applicable rules on

how to compress such a source. As such, the principal concern of this thesis is the

development of tools, analysis, and direct methods for compressing MRFs.

1.4 Thesis Overview and Contributions

In a sense, the primary contribution of this thesis is presenting a coherent frame-

work for the compression of Markov random fields, and along the way, many algorith-

mic and analytic tools that promise to be useful in other potential MRF compression

schemes as well as myriad other MRF research areas. Moreover, the theory in this

thesis is demonstrated on the Ising model, the first and still best known example of

an MRF, which places the ideas presented in this thesis on a firm footing. In the

following we detail the specific contributions of each chapter.
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Chapter II: Background Information. In this chapter we introduce the

required graph-theoretic notation; discuss MRFs as probability distributions with

respect to graphs, the representation of MRFs as members of exponential families,

and Belief Propagation (BP) as a tool for performing inference within MRFs; and

introduce the necessary ideas from information theory and source coding.

Chapter III: Lossy Cutset Coding of Ising Model. In this chapter we

introduce the idea of lossy Cutset Coding in the context of a homogeneous Ising

model. This approach entails first losslessly encoding a square grid cutset consisting

of evenly spaced rows and columns of the image and then estimating the unencoded

interiors conditioned on the cutset. Though the Ising model has been the object of

intense research [7, 40, 32, 19, 48] since being introduced [29], including bounds on

its lossy compression [36], this is the first (practical) method presented for its lossy

compression. In fact, this is the first practical lossy coding method presented for

any MRF, though there have been existential results for certain classes of algorithms

[60, 34]. MAP decoding is one estimation criterion which reduces to MAP estimating

a block conditioned on its boundary. In Section 3.2 we give analytical solutions for

MAP reconstructions of a block when the boundary has four or fewer black-white

transitions, which are the most frequently occurring cases. These are done for both

the 4 pt. and 8 pt. grid graphs and are applicable for a general sampling and re-

construction problem. Using these analytical results as a point of comparison, we

find empirically in 3.3 that the Max-Product version of Loopy Belief Propagation

converges to the correct values in this sampling and reconstruction setting. This is

significant as the performance of this algorithm is generally not well-understood [37].

In Section 3.4 we give reconstruction results for both simulated and real-world images

and in Section 3.5 we introduce a modification to the MAP decoding algorithm that

enhances the perceptual quality of the reconstructions. We compare this modified

lossy compression algorithm to competing algorithms and find that it outperforms
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them. In the final section of the chapter we present a practical method to do the

lossless compression component of the overall lossy algorithm, and we make an im-

portant connection between Cutset Coding and the recently introduced concept of

erasure entropy [51, 52].

Chapter IV: Local Conditioning for Markov Random Fields. Local Con-

ditioning (LC) is an algorithm for exact inference in graphs with cycles that greatly re-

duces the complexity of performing exact inference in graphs with cycles. In this chap-

ter we develop the Local Conditioning algorithm for Markov random fields on undi-

rected graphs. LC has been developed for Bayesian networks [38, 39, 49, 6, 46, 13, 14],

which are essentially MRFs on directed graphs. The undirectedness of the edges in

MRFs makes analysis more accessible, and therefore allows us to put LC for MRFs on

a firm theoretical foundation, which could potentially be extended into the Bayesian

network case. In Section 4.3 we give message recursion and belief computation formu-

las for LC that are analogous to those for traditional BP. In 4.4 we look at examples

of different unwrappings based on a given loop cutset for a 4 pt. grid graph and

analyze the complexity of LC.

Chapter V: Monotonicity and Reduced MRFs. The lossy and lossless

compression methods of Chapter III and Section 6.2, respectively, begin by encoding

a subset of pixels. To simplify the encoding we simplify the graph by removing edges

connecting pixels in the subset to pixels outside the subset. Cutting an edge, of

course, is equivalent to setting the associated edge weight to zero. We are therefore

interested in the effect that this cutting has on the entropy of the subset and in the

divergence between the marginal distribution of the subset and the new distribution

after removing edges, which we call a reduced MRF distribution. We prove that for

any subset of nodes, the marginal entropy of that subset is upper bounded by the

entropy of the MRF defined on the subgraph induced by the subset. As a step in

this proof, we prove that moment-matching for the MRF on the induced subgraph
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corresponds to a monotone increase in the exponential coordinates associated with

nodes and edges within the subset. We also show that the divergence between the

marginal distribution of the subset and the reduced MRF follows a Pythagorean

decomposition analogous to a well-known result comparing an original MRF with a

thinned model on the original set of nodes [3]. This decomposition makes it possible

to optimize the coding distribution over all possible reduced MRFs on the induced

subgraph.

It is intuitive that, for MRFs where the random variables are coupled in a way to

favor similar values, the entropy should decrease if the weight on an edge is increased.

Despite its intuitiveness, this is proved for the first time in this chapter and examples

are provided illustrating this concept. Besides being significant in its own right,

this result is used in proving the above mentioned inequality regarding the marginal

entropy of a subset and the reduced MRF distribution obtained by dropping edges.

This is because it is well-known that the moment-matching reduced MRF has higher

entropy than the marginal distribution [9] and from our earlier result that moment-

matching requires a monotone increase in the edge weights. Moreover, we prove a

similar monotonicity result for the divergence between MRFs, as this is relevant for

the common scenarios where a thinned model is used as an approximation to an

intractable original. We also state a conjecture about the asymmetry of divergence

in MRFs and give a simple example supporting it.

Chapter VI: Lossless Compression of MRFs. In this chapter we develop

Arithmetic Encoding based lossless coding techniques for Markov random fields. We

give the formulas for the optimal coding distributions for an acyclic MRF. We also give

an algorithm for optimal lossless compression of an acyclic MRF, which arises through

interpreting the optimal coding distribution formula. We present two algorithms for

optimal compression of a cyclic MRF defined on a tractable graph, one based on a

well-known clustering algorithm [53] for exact inference in cyclic MRFs, the other
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based on the Local Conditioning algorithm presented in Chapter IV. The clustering

based optimal compression algorithm uses the same coding distribution formulas as

the acyclic MRF case, whereas a new optimal coding distribution formula is presented

for the Local Conditioning based algorithm. For cyclic MRFs that are not defined on

tractable graphs, we present Reduced Cutset Coding (RCC), a suboptimal method

based on first encoding a cutset of sites. We demonstrate that this algorithm is nearly

optimal for the homogeneous Ising model on the 4 pt. and 8 pt. grid graphs.
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CHAPTER II

Background

2.1 Markov Random Fields

In this section we introduce Markov random fields (MRFs), which again, can

broadly be described as probability distributions on the colorings of a graph.

2.1.1 Graphs

A graph G is defined by a pair of sets V and E and is expressed as G = (V,E),

where V is a set of nodes (also called pixels or sites), and E is a set of unordered

pairs of nodes, referred to as edges. We assume throughout that the set V is finite.

A graph is depicted by considering the elements of V to be points where two points

are connected by an undirected line if the points are an edge in E. If {i, j} is an

edge in E, nodes i and j are said to be adjacent. A path in a graph is a sequence

of nodes, each successive pair joined by an edge in E. Alternatively, a path can be

described as a sequence of edges. A graph is said to be connected if every pair of

nodes i, j ∈ V can be joined by some path, and disconnected otherwise. A component

of a disconnected graph G is a maximal connected subset C ⊂ V . A cycle in a graph

is a path where the first and last nodes coincide. A graph without any cycles is called

acyclic. A connected acyclic graph is called a tree while one that is disconnected is

referred to as a forest. In working with trees one often designates a particular node
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chosen as the root of the tree. Non root nodes that have only one neighbor are called

leaves of the tree. This defines what are called parent-child relations throughout the

tree as follows. For node i and neighbor j, if j lies on the path connecting i to the

root, then j is said to be the parent of i and is denoted by π(i). If j lies on a path

connecting i to a leaf node that does not go through the root, then j is said to be a

child of i and belongs to the set σ(i).

For any U ⊂ V , its boundary ∂U is the set of nodes not in U connected by an

edge to a member of U . As a shorthand, ∂i denotes ∂{i}, i ∈ V . The surface of a

set U consists of those nodes in U that are connected by an edge to some element of

∂U and will be denoted by γ(U). For a subset U , we let EU ⊂ E be the subset of

edges both of whose endpoints are contained in U . Then, the graph GU = (U,EU)

is the subgraph induced by U . For subset U , the complement of U is the set V \ U .

The graph G \ U is obtained by removing U and all edges incident to it from G. In

other words, G \ U is the subgraph GV \U induced by the complement of U . If G

is connected, then a subset U ⊂ V is called a cutset if G \ U is disconnected. For

a general G, U is a cutset if G \ U contains more components than G. In this case

G\U , like any disconnected graph, is simply the collection of the (disjoint) subgraphs

{GCi} induced by the respective components. For connected G, if U ⊂ V is a cutset

and subsets C1, C2 ⊂ V are contained in distinct components of G \U , then U is said

to separate C1 and C2.

(a) (b) (c)

Figure 2.1: (a) Acyclic graph; (b) 4pt. grid graph; (c) 8pt. grid graph. Sample
cutsets are indicated in red.
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The graphs of particular significance in this thesis are grid graphs, graphs in which

the node set can be described as a rectangular array of sites, for instance the pixel

locations of an image. Of these, we will focus on the 4-pt. grid graph, whose edge

set consists of horizontal and vertical nearest neighbors, and the 8-pt. grid graph,

the edges in which are horizontal and vertical, as well as diagonal nearest neighbors.

Figure 2.1 shows (a) an acyclic graph, (b) a 4-pt. grid graph, and (c) an 8-pt. grid

graph.

A clique of a graph G is a subset of nodes K such that if i and j are in K, then

i and j are connected by an edge, and is also called a complete subgraph. In the

4-pt. grid graph the cliques are individual nodes and edges, whereas in the 8-pt. grid

graph, the cliques are nodes and edges as well as triples and quadruples of neighboring

nodes.

2.1.2 Images on Graphs

It is common practice to model images as a random process X assuming values

on the sites or nodes of an undirected graph. Figure 2.2 (a) shows a smooth binary

image and (b) illustrates a binary image on a graph. In this thesis, white and black

nodes will denote binary values assigned to the associated pixels.

For each node i ∈ V , an associated random variable Xi can assume values in

alphabet Xi, a particular value being denoted by xi. In this thesis we only consider

MRFs where the alphabets at each node are finite in size. For an entire image

assuming values on V , the alphabet is denoted X , an image x and the random process

on the entire site set X. For a subset U ⊂ V of sites, the random subfield XU assumes

values in alphabet XU , where a configuration on U is denoted as xU . We will assume

throughout that each node i has a common alphabet Xi = X . For an image or

configuration x the probability of x is denoted generically as p(x). When we wish

to emphasize the underlying graph G, the probability of configuration x on G is
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(a) (b)

Figure 2.2: (a) Smooth binary image; (b) Representation of a binary image on 8pt.
grid graph.

denoted pG(x), the probability of a configuration on a subset U of pixels pUG(xU), and

the probability of a configuration on pixel i as piG(xi).

2.1.3 Conditional Independence

A random field X is said to be Markov with respect to G if for any two subsets

C1, C2 ⊂ V of nodes separated by a third subset U , the random subfields XC1 and

XC2 are conditionally independent of each other given the values of XU [35]. In other

words, conditioning on the values on a cutset U leaves the components of G \ U

conditionally independent. In this thesis we will look primarily at cutsets of grid

graphs consisting either of evenly spaced rows of the graph, or of evenly spaced rows

and columns of the graph. Figure 2.3 illustrates these respective cases.

Depending on whether the underlying graph for an MRF is cyclic or acyclic, we

say that we have a cyclic or acyclic MRF, respectively.

2.1.4 Product Representation

The probability distribution of an MRF X can be expressed as a product of

functions defined on cliques of the graph [25]. In this thesis we focus on pairwise

MRFs in which functions are defined over nodes and edges of the graph. This is
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(a) (b)

Figure 2.3: (a) Cutset of lines in 4pt. grid graph; (b) Grid cutset in 8pt. grid graph.

useful both for analytical reasons and also for the Belief Propagation algorithms

introduced in Section 2.4.1 For each edge {i, j} ∈ E there is a nonnegative function

Ψi,j : X × X −→ R+ called an edge potential ; and for each node i ∈ V , there

is a nonnegative function Φi : X −→ R+ called a self-potential 1. Then for any

x = {xi : i ∈ V }, the probability that X equals x is given by the Gibbs distribution

pG(x) =
1

Q

∏
{i,j}∈E

Ψi,j(xi, xj)
∏
i∈V

Φi(xi), (2.1)

where Q is a normalizing constant called the partition function. For subset A ⊂ V

and an assignment of values xA to nodes in A,

ZA(xA)
∆
=
∑
x′
V \A

∏
{i,j}∈E

Ψi,j(xi, xj)
∏
i∈V

Φi(xi) (2.2)

is the partial sum over all variables not in the set A, with nodes in A fixed to con-

figuration xA. The partition function can then be expressed as Q =
∑

xA
ZA(xA).

Because the probability that XA equals xA is proportional to ZA(xA), the vector

ZA = (ZA(xA) : xA ∈ XA) is called the belief for A. As shorthand, we denote Z{i} by

Zi. One can verify the Markov property using the product representation in (2.1). In

doing so, one can see that for any subset C ⊂ V of nodes, the conditional probability

1Actually, it is more common to call − log Ψ and − log Φ potentials.
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p(XC |X∂C) given the configuration on the boundary is itself an MRF distribution

on the induced subgraph GC , the only modifications to the original potentials in C

being updates to the self-potentials on those nodes on the surface of C, which take

into account the boundary values x∂C .

2.1.5 Exponential Family Representation

It is often convenient to make use of the so-called exponential representation of a

family of MRFs. For instance, consider scaling each of the potentials in (2.1) by an

exponent that accounts for the relative importance of Ψij or Φi, as in

pG(x; θ) =
1

Q(θ)

∏
{i,j}∈E

Ψ
θij
ij

∏
i∈V

Φθi
i .

We can the rewrite the probability as

pG(x; θ) = exp{
∑
{i,j}∈E

θij ln Ψij +
∑
i∈V

θi ln Φi − lnQ(θ)}

= exp{
∑
{i,j}∈E

θijtij +
∑
i∈V

θiti − Φ(θ)}

where we have introduced the statistics {ti = ln Φi} and {tij = ln Ψij} and where

Φ(θ) = lnQ(θ) is the log-partition function. As before, the subscript G on p indicates

the graph on which the MRF is defined. We let t stand for the collection of both the

{ti} and {tij}.

The entire family of MRFs on G based on t is generated through the exponential

parameter θ = (θi, i ∈ V ; θij, {i, j} ∈ E) where for each node i, and neighbor j ∈ ∂i,

θi and θij scale the sensitivity of the distribution pG(x) = pG(x; θ) to the functions ti

and tij, respectively. We will suppress dependence of the MRF on t. The probability

distribution pG(θ) of an MRF X based on t with exponential parameter θ can be
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expressed compactly as

pG(x; θ) =
1

Q(θ)
exp{〈θ, t(x)〉}, (2.3)

where 〈 , 〉 denotes inner product, Q(θ) is the partition function. The set Θ(G) =

{θ ∈ R|V |+|E|+ } is the set of admissible exponential parameters for MRFs on G, while

Ft(G) = {pG(θ) | θ ∈ Θ(G)} is the family of all MRFs on G based on t. The set

Θ = Θ(G) is a coordinate system for MRFs in F = Ft(G). In this sense, F is

statistical manifold, where probability distributions in F are indexed by elements θ

of the coordinate system Θ [3].

For a subset of nodes U ⊂ V we let tU and θU be the components of θ and t,

respectively, corresponding to nodes and edges in U . We will sometimes partition an

exponential parameter θ in the form θ = (θU , \θU), where \θU is the complement of

θU in θ.

2.1.6 Gibbs Sampling

Given an MRF model for images on a particular graph, it is often desired to sim-

ulate an instance from that probability distribution, one on which empirical averages

are very close to statistical averages for the MRF model. Such an image is referred

to as a typical image, and the standard algorithm for generating typical images from

an MRF or Gibbs distribution is the Gibbs Sampler [21].

The most basic version of the Gibbs Sampler operates by generating a sequence

of images {x(t)} by changing or updating the value at a single site per iteration.

That is, images x(t) and x(t − 1) differ at a single site. The initial image x(1) is

usually chosen arbitrarily. The site i(t) to be updated at time t is usually chosen at

random. Then one looks at the configuration x∂i(t− 1) on the neighborhood of i(t),

and draws a random sample x′ from the conditional distribution piG(·|x∂i(t−1)). The
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image x(t) is generated by replacing xi(t−1) with x′ and leaving all other values the

same. Research into the convergence properties of Gibbs Sampling continues, but

it is generally understood that a few hundred “visitations” per site is sufficient to

generate a good sample [61] for typical (i.e., 256× 256 or 512× 512) grid graphs.

2.1.7 Ising Model

The first Markov random field (MRF) to be studied, and the principal example

throughout this thesis, is the Ising model. The Ising model was first studied in sta-

tistical physics to model magnetism, the value at a given node is historically referred

to as a spin and can take values in {−1, 1}. Give our application of interest, we will

typically refer to the values as colors, black and white being the alternatives, with

black connoting −1 and white +1. The probability pG(x; θ) of an image under an

Ising model is

pG(x; θ) =
1

Q(θ)
exp{

∑
{i,j}∈E

θijxixj +
∑
i∈V

θixi} (2.4)

Historically, the Ising model was originally associated with the 4 pt. grid graph, but

has come to mean any binary MRF with the form given in (2.4). The coordinates

{θij} are generally thought of as coupling parameters whereas the coordinates {θi}

are interpreted as part of an external field biasing the values of the individual nodes.

In this thesis we consider the case that θij = θ for all edges {i, j} ∈ E and some θ.

Also, we assume that θi = 0 for all i ∈ V . This is referred to as the case of no external

field and uniform coupling, in which case (2.4) reduces to

pG(x; θ) =
1

Q′(θ)
exp{−2θO(x)}, (2.5)

where O(x) is the number of edges in the image which have different colors on the

endpoints. Such edges are referred to as black-white transitions, or more commonly,
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as odd bonds. Note that Q′() in (2.5) is in general not equal to Q() in (2.4). Figures

(2.4) (a) and (b) show sample images of Ising models generated with Gibbs Sampling

with θ = 0.5 on, respectively, a 400× 400 4pt. and 8pt. grid graph.

(a) (b)

Figure 2.4: (a) Sample of uniform, no external field Ising model on 400 × 400 4pt.
grid graph; (b) sample of Ising model on 400× 400 8pt. grid graph.

The Ising model has been studied for quite some time [29, 7, 40, 32] and is the

model that motivated the concept of a Markov random field and its subsequent de-

velopment [17, 18, 25, 19, 48, 41]. In 1925, Ernst Ising introduced the model that

would come to bear his name, as a model for the ferromagnetic interactions of iron

atoms [29]. It was known that for temperatures beneath a certain so-called critical

temperature, the magnetic spins of the iron atoms would spontaneously align, indi-

cating long-range dependency between the spin values. This phenomenon is referred

to as spontaneous magnetization or more generally as a phase transition. In partic-

ular, Ising was curious whether the parameter θ of the homogeneous model could

predict the temperature-dependent phase transition known to occur in reality. He

was disappointed to find that in one dimension no such phase transition existed, and

erroneously concluded that the same was true in two dimensions as well. Peierls later

showed that on the 4-pt. grid graph such a phase transition does occur [40].

In this thesis we consider homogeneous Ising models as models for binary images

because typical images from this distribution (for certain ranges of values of the
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parameter θ) are “blobby” with well-defined contours separating regions of white and

black.

2.1.8 Dual Parameterizations

For a given exponential coordinate vector θ, we let µ = µ(θ) denote the vector

expected value of the statistic t under the MRF induced by θ, and we refer to µ as

the moment parameter of the MRF. The set of moment parameters arising from ex-

ponential parameters in Θ(G) is Mt(G), which is referred to as the set of achievable

moment parameters for MRFs on G based on t. If the components of t are affinely

independent, t is called minimal, and the mapping between Θ and M = Mt(G) is

one-to-one, and therefore,M provides a second coordinate system for MRFs in F [3].

We can then index an MRF p by either the associated exponential parameter θ or the

corresponding moment parameter µ, where the moment parameter can similarly be

expressed in partitioned form as µ = (µU , \µU). Figure 2.5 illustrates the correspon-

dence between an MRF p and the associated exponential parameter θ and moment

parameter µ. Moreover, we can index an MRF p in mixed notation, for example, as

p ∼ (µU ; \θU), in the sense that this too is a one-to-one correspondence [3].

Figure 2.5: Mappings between manifold Ft(G) and sets of exponential parameters
Θ(G) and moment parameters Mt(G).
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2.1.9 Reduced Markov Random Fields

For a subset of nodes U ⊂ V , the marginal distribution of XU for the original

MRF on G under exponential parameter θ ∈ Θ(G) is

pUG(xU ; θ) =
∑
xV \U

pG(xU , xV \U ; θ),

where the superscript U denotes the subset of nodes whose marginal distribution is

being considered. We can also consider MRF distributions for XU . We say that an

MRF on the subgraph GU based on tU is a reduced MRF, where as before tU denotes

the restriction of t to coordinates corresponding to nodes and edges in U . Specified

in exponential coordinates θU ∈ Θ(GU), the reduced MRF distribution is denoted

pGU (XU ; θU) and has the form

pGU (xU ; θU) =
∑
xV \U

pG(xU , xV \U ; θ) exp{〈θU , tU〉 − ΦU(θU)} (2.6)

If t is minimal for the family of MRFs on G, the subvector tU is minimal for the

family of MRFs F(GU) on the induced subgraph GU , so Θ(GU) andM(GU) are dual

coordinate systems for MRFs on GU . For µU ∈ M(GU), the reduced MRF on GU is

denoted by pGU (µU). The marginal and reduced MRF distributions will be expressed

in shorthand as pUG(θ) and pGU (θU), respectively.

For a subset C of nodes, the conditional distribution on XC given a configuration

x∂C on its boundary is a reduced MRF on GC , where the self potentials on the surface

γC of the set C are modified to account for x∂C .

2.2 Basics of Information Theory

In this section we introduce the basic information theoretic quantities considered

in this thesis. These are entropy, KL-divergence, and mutual information.
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2.2.1 Entropy

The notion of entropy was introduced in the context of statistical physics by

Boltzmann . A slightly generalized version was presented in 1948 by Shannon in the

context of a communication problem. This latter version is the one we consider here.

The entropy of a random field X is defined to be

H(X) = −
∑
x∈X

p(x) log p(x).

The conditional entropy of random variable X2 given another random variable X1 is

H(X2|X1) = −
∑
x1

p(x1)
∑
x2

p(x2|x1) log p(x2|x1).

The entropy is a measure of the randomness of a stochastic process. For an MRF,

the entropy has the form

HG(X; θ) = logQ(θ)− µT θ.

In words, the entropy is the log-partition function minus the inner product between

the moment and exponential parameter vectors. The entropy of an MRF pG(θ) will

be denoted by HG(X; θ), or in shorthand by HG(θ), and the marginal entropy of a

subfield XU , U ⊂ V , by HU
G (X; θ) or HU

G (θ). The conditional entropy of a subset of

nodes W given another subset U is denoted H
W |U
G (θ).

2.2.2 Divergence

The Kullback-Leibler (KL) divergence between probability distributions p and q is

D( p || q ) =
∑
x∈X

p(x) log
p(x)

q(x)
. (2.7)
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If p, q ∈ F are MRFs on G induced by exponential parameters θ1 and θ2, respectively,

the KL-divergence between p and q has the form

D( p(θ1) || q(θ2) ) = log
QG(θ2)

QG(θ1)
− µT1 (θ2 − θ1). (2.8)

The divergence is generally taken to be a measure of “distance” between two proba-

bility distributions. However, it is asymmetric, as D(p||q) and D(q||p) in general are

not equal.

2.2.3 Mutual Information

The mutual information between random variables X1 and X2 is

I(X1;X2) = H(X1)−H(X1|X2) = H(X2)−H(X2|X1) (2.9)

= H(X1) +H(X2)−H(X1, X2). (2.10)

and it is known that I(X1;X2) = D(p(X1, X2)||p(X1)p(X2)).

2.3 Basics of Source Coding

In this section we discuss the basic aspects of source coding. First we look at loss-

less compression, then Arithmetic Encoding (AC), then lossy compression. We will

see that the quantities introduced in the previous section have operational significance

for the compression of an information source.

In a source coding or compression scheme there is an encoder which transforms

the input data x into a bitstring to be stored on a computer and a decoder that takes

the binary data and transforms it into the output data x̂. The goals are storage of the

data on computers in efficient form and faithful reconstructions, so the performance

measures are the average number of bits stored over all possible input data, and the
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average distortion. These are discussed below in more detail. In lossless compression

the fidelity criterion is perfect reconstruction and therefore we want to minimize the

average number of bits stored. In lossy compression, the fidelity criterion may vary

according to the application, but for a fixed level of permitted distortion we want

to minimize the average number of bits. Alternatively, the application may place a

constraint on the average number of bits stored or transmitted, and for a fixed limit

on this quantity, we want to minimize the distortion. Figure 2.6 illustrates this these

basic concepts.

2.3.1 Lossless Compression

In lossless compression the output data x̂ in Figure 2.6 is identical to the input

data x. Here, we observe an observation x from a finite alphabet X and the encoder

assigns to it a bit string of length l(x). It is this bit string that is stored on a computer

or transmitted over a channel and the encoding must be done in such a way that x

is faithfully reproduced as the decoder output. To optimize the efficiency of such a

coding scheme, we wish to minimize the expected bit string length E [l(X)] over all

possible encoding schemes.

The following is well-known [9]:

Proposition II.1. For any random field X,

E [l(X)] ≥ H(X), .

It always possible to come within one bit of entropy, though for a finite alphabet X,

it may not be possible to attain it.
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Figure 2.6: Block diagram illustrating basic idea of source coding.

2.3.2 Arithmetic Encoding

Arithmetic Encoding (AC) is a well-known lossless coding algorithm [44]. To apply

Arithmetic Encoding to an MRF, we first order or scan the nodes, i.e., arrange them

into a one-dimensional sequence, x = (x1, x2, . . . , xN). Then for i = 1, . . . , N , the

ith node value xi is fed to the arithmetic encoder along with a coding distribution fi,

which is a function fi : X → [0, 1],
∑

x∈X fi(x) = 1. Ordinarily, fi will also depend on

some or all of the previous pixel values xi−1
1 = (x1, . . . , xi−1), but this is not reflected

in the notation. The encoder outputs a sequence of bits from which the arithmetic

decoder recreates x. This sequence of bits is a codeword for the image x, and we

denote its length as l(x). The decoder uses a prefix of the codeword to decode xi−1
1 ,

and uses subsequent bits and fi (which it can compute since x1, . . . , xi−1 are known)

in the decoding of xi. For the purposes of this thesis, it suffices to state the well

known fact [45] that the length of the codeword produced by AC when encoding x

with the sequence of coding distributions f1, . . . , fN is

l(x) ≈ − log

(
N∏
i=1

fi(xi)

)
= −

N∑
i=1

log fi(xi) ,

where all logs have base 2. In a slight abuse of notation we refer to the distribution

f(x)
∆
=
∏N

i=1 fi(xi) as the coding distribution. Figure 2.7 illustrates the AC encoding

and decoding algorithm.

We let pi|∗(xi|xi−1
1 ) denote the conditional probability that the ith scanned node

assumes value xi when the preceding i−1 symbols have the value xi−1
1 . It is straight-
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Figure 2.7: Block diagram illustrating Arithmetic Encoding.

forward to show that if fi = pi|∗ for all i, then the average codeword length satisfies

E l(X) ≈ H(X) ,

where E denotes expected value. In this case we say that the coding distribution f

is optimal for p. If the source X is distributed according to distribution p and the

coding distribution is optimal for another distribution q, it is well-known [9] that the

average codeword length is

E l(X) ≈ H(X) +D(p||q) ,

where D(p||q) is the KL-divergence between distributions p and q. Since the term

D(p||q) is amount by which the rate exceeds optimal coding, it is referred to as the

redundancy in rate.

2.3.3 Lossy Compression

Sometimes it is unnecessary to require perfect reconstruction at the decoder. In

the case of lossy compression, the output x̂ in Figure 2.6 is in general not identical

to the input x. We introduce a distortion measure d : X × X̂ 7→ R+ such that if x is

the original image and x̂ is the reconstruction, then d(x, x̂) is the distortion between
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the original and reconstructed images. We then define

D
∆
= E

[
d(X, X̂)

]

to be the average distortion over all images. The goal is few bits and small average

distortion.

The transition probability pT (x̂|x) distribution between input images x and re-

constructions x̂ allows us to compute the average distortion

D̄(X, X̂) = EpT
[
d(X, X̂)

]
=

∑
x

p(x)
∑
x̂

pT (x̂|x)d(x, x̂).

2.4 Inference and Estimation

Inference in the context of this thesis includes computing a marginal probability at

a given node i or a block of nodes B; or computing the the maximum probabilities for

blocks with different values at node i. The former involves computing Zi, the belief

for node i, and since marginalization involves summing over a subset of nodes and

because the distribution of an MRF can be expressed as a product, marginalization2 is

referred to as the Sum-Product problem. The beliefs Zi, then, are really Sum-Product

beliefs but since we use these more throughout the thesis, they will simply be called

beliefs. Analogously, the latter problem, of finding maximum probabilities, is called

the Max-Product problem. For instance, if observations are made at a subset of nodes

∂B, we can compute, for each node i and each value xi, the Max-Product belief

ZMP
i (xi)

∆
= max

xB\i

∏
k∈B

Φk(xk)
∏
{k,j}∈E

Ψk,j(xk, xj), (2.11)

2Also, finding a conditional probability, which is a marginal with certain nodes fixed.
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where B is a block of sites and E is the set of edges in B∪∂B. As with Sum-Product

beliefs, the Max-Product beliefs are considered equivalent up to a scale factor, though

in the Max-Product case the components will in general not sum to 1. If for each

node i ∈ B we choose an estimate x̂i ∈ argmaxx′i Z
MP
i (x′i), this is used as a proxy

for finding a maximum aposteriori (MAP) estimate of the nodes in B conditioned on

x∂B, giving

x̂B ∈ argmax
x′B

p
B|∂B
G (x′B|x∂B). (2.12)

When there are ties for x̂i ∈ argmaxx′i Z
MP
i (x′i), then breaking the ties at individual

nodes rather than jointly may result in something that is not truly MAP. Computing

either the beliefs or the Max-Product beliefs for a node i is nontrivial since it involves,

respectively, a number of summations or comparisons that is exponential in |V | or |B|.

However,when the underlying graph G is acyclic, there is an efficient algorithm, called

Belief Propagation (BP) [39], for computing these beliefs. The algorithm involves a

sequence of recursive message passing operations between neighboring nodes, where

a message is a table of numbers each corresponding to a value in the alphabet of the

receiving node.

2.4.1 Belief Propagation

We now introduce the Belief Propagation algorithm and do so in the context of the

beliefs Zi. However, the same algorithm applies for computing Max-Product beliefs

ZMP
i , replacing “

∑
” with “max” in what follows. An edge {i, j} of a connected

graph G such that removing the edge connecting i and j disconnects the graph is

called a cut edge. For a cut edge {i, j}, we let Gi\j be the component of G \ j that

contains i, and similarly for Gj\i. Analogously, we let Zi\j(xi) be the belief at node i

in Gi\j evaluated at the value xi. This notation allows us to derive the familiar BP

equations.
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Definition II.2. For cut edge {i, j}, the message from node j to node i is defined to

be the set of all values of the function

mj→i(xi) =
∑
xj

Ψij(xi, xj)Zj\i(xj). (2.13)

Alternatively, mj→i = {mj→i(xi) : xi ∈ X} can be viewed as a message from the

subgraph Gj\i to the subgraph Gi\j.

For an acyclic graph every edge is a cut edge, and the above definition can be used

to establish a recursive relationship between outgoing messages of adjacent nodes in

the graph. Below is a well-known proposition for the beliefs of an acyclic MRF

computed with BP. The proofs of Propositions II.3 and II.4 are given in Section 2.5.

Proposition II.3 (Belief Decomposition). Let G = (V,E) be acyclic and connected.

Then, for each node i ∈ V and all xi ∈ χi, we have

Zi(xi) = Φi(xi)
∏
j∈∂i

mj→i(xi), (2.14)

where mj→i is the message from node j to node i.

The messages in the above proposition are easily computed in a recursive manner

using the proposition below.

Proposition II.4 (Message Recursion). For an acyclic graph, the Belief Propagation

messages follow the recursion

mj→i(xi) =
∑
xj

Ψji(xj, xi)Φj(xj)
∏
k∈∂j\i

mk→j(xj),

where ∂k \ i is the set of neighbors of node k except i.

Propositions II.4 and II.3 motivate a recursive algorithm for computing messages

and beliefs. The recursion begins with each leaf node j sending to its unique neighbor
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δj the message component

mj→δj(xδj) =
∑
xj

Φj(xj)Ψj,δj(xj, xδj) (2.15)

for each xδj ∈ X . The algorithm proceeds with each non-leaf node j passing to

neighbor i ∈ δj the message mj→i with components determined by

mj→i(xi) =
∑
xj

Ψj,i(xj, xi)Φj(xj)
∏
k∈∂j\i

mk→j(xj) , (2.16)

with the rule that node j does not form the message to send to i until receiv-

ing incoming messages from all other neighbors. After all messages are computed

the beliefs for any node i can be computed using (2.14). Moreover, the messages

{mj→i,mi→j : {i, j} ∈ E} can be used to compute, for example, the belief for a con-

nected subset of nodes A ⊆ V [30]. The complexity of BP is on the order of |V ||X |2.

That is, it is linear in the number of nodes of G for an acyclic graph and the square

of the alphabet size.

We can also express the belief propagation equations in matrix notation, which will

be useful in comparing analogous formulas for Local Conditioning algorithm presented

later. For edge {i, j}, we define Ai,j = [Ψi,j(xi, xj)] be the matrix of potentials between

different values of xi, xj, where the rows correspond to values of xj and columns

values of xi. If we let mj→i denote the vector [mj→i(0), . . . ,mj→i(|X | − 1)]T , Φj the

vector [Φj(0), . . . ,Φj(|X |)]T , � component-wise multiplication, and · ordinary matrix

multiplication, the message recursion is

mj→i = Aj,i ·

Φj �
�∏

k∈∂j\i

mk→j

 , (2.17)
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while the belief at node i is

Zi = Φi �
�∏

k∈∂i

mk→i. (2.18)

2.4.2 BP with Fixed Nodes

Suppose that a subset of the nodes L ⊂ V of an acyclic graph T has fixed values

x̄l, l ∈ L. The BP algorithm presented in Section 2.4.1 can still be applied to an

MRF on T by modifying the self-potential of the fixed leaf node as

Φ̂l(xl) = Φl(xl)δ(x̄l, xl), (2.19)

With this modification to the self-potentials of fixed nodes, the usual message and

belief formulas apply, the delta function picking out the fixed value for each node.

2.4.3 BP on a Forest

Suppose that T is disconnected. For simplicity’s sake, assume that T consists of

two components, T1 = (V1, E1) and T2 = (V2, E2). The belief at node i ∈ T1 is then

Zi(xi) = Φi(xi)
∑
xV \i

∏
k∈V \i

Φk(xk)
∏
{j,k}

Ψj,k(xj, xk)

= Φi(xi)
∑
xV1\i

∏
k∈V1\i

Φk(xk)
∏

{j,k}∈E1

Ψj,k(xj, xk)

·
∑
xV2

∏
k∈V2\i

Φk(xk)
∏

{j,k}∈E2

Ψj,k(xj, xk) (2.20)

= ZT1
i (xi)Q

T2

= Φi(xi)
∏
k∈∂i

mk→i(xi)Q
T2 , (2.21)

where ZT1
i is the belief at node i in component T1 and QT2 is the partition function

for component T2. Equality (2.20) above follows from the fact that there are no edges

connecting T1 and T2, and therefore the two sums separate into factors. Since QT2
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is a constant for all values of x1 this shows that each component can be viewed as

a separate MRF, and hence the MRFs on T1 and T2 are independent of each other.

This naturally generalizes to graphs of more than two components.

Equation (2.21) indicates that it is not necessary to run BP on the separate

components. For instance, one can simply begin the algorithm at leaves as usual

and follow the BP operations. However, for node i the product of its self-potential

and the incoming messages is not the belief as defined in (2.2), but rather the belief

with respect to the MRF on its component. To get the full belief as in (2.2) we must

multiply the component belief by the partition functions of the remaining components.

However, since the values of these partition functions are constant for all values of

xi, the probability distribution at each node i can be computed using only the self-

potential and the incoming messages that are computed on its component. Later,

in Section 4.2.1.2, we will encounter a situation where we will be running BP on

a disconnected graph where not only are some of the nodes fixed, but fixed nodes

on different components are constrained to assume the same value. In this case, as

we will discuss then, the partition functions from different components cannot be

ignored.

2.4.4 Clustering Algorithm for Cyclic Graphs

So far BP applies to acyclic graphs. When the graph has cycles, one possibility

is to partition the nodes into supernodes and form an acyclic graph of supernodes.

It is always possible to partition the nodes into supernodes. A cluster graph, is then

formed by connecting two supernodes with an edge if each of the supernodes contains

an endpoint of an edge of the original cyclic graph. If supernodes can be chosen so

that the resulting cluster graph is a cluster tree, then one can apply BP and use it to

compute beliefs for the nodes in the original graph. Figure 2.8 (a) shows an original

grid graph and (b) a cluster graph formed by lumping columns into supernodes.
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Potentials ΦC and ΨC are assigned to the cluster tree in the following way. For a

supernode ci, the self potential ΦC is defined as

ΦC
ci

(xci) =
∏
j∈ci

Φj(xj)
∏
i,j∈ci

Ψi,j(xi, xj). (2.22)

For two supernodes ci and ck connected by an edge in Ĝ, the edge potential is defined

as

ΨC
ci,cj

(xci , xcj) =
∏

m∈ci,n∈cj

Ψm,n(xm, xn). (2.23)

(a) (b)

Figure 2.8: (a) Original 4-pt. grid graph; (b) Cluster graph.

This defines an MRF on Ĝ for which beliefs Zci are naturally defined. Since the

junction tree is acyclic, BP can be run on the cluster tree, computing beliefs for

supernodes ci. Beliefs for individual nodes i of G can be computed, for example,

by computing the beliefs for a supernode containing i and summing out the nodes

other than i. The complexity of the junction tree algorithm is on the order of the

number of supernodes times |X |maxi |ci|. Thus, it is exponential in the size of the

largest supernode. As can be seen from Figure 2.8, the complexity of performing

exact inference on an M × N grid graph using the cluster method is exponential in

the smaller of M and N .
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2.4.5 Loopy Belief Propagation

For cyclic graphs, the complexity of the Cluster Tree method might be too great,

in which case an approximation algorithm must be used. The most common such al-

gorithm is called Loopy Belief Propagation (LBP) [39], which is an iterative algorithm

that operates by treating the cyclic graph as if it were locally a tree. In this thesis

we will consider only the Max-Product variant of LBP, in Section 3.3, so we give the

LBP update formulas in terms of it:

m
(n)
j→i(xi) = max

xj
Ψj,i(xj, xi)Φj(xj)

∏
k∈∂j\i

m
(n−1)
k→j (xj) , (2.24)

which give, at each iteration n and each node i, an updated LBP Max-Product belief

Ẑ
(n),MP
i (xi) = Φi(xi)

∏
j∈∂i

m
(n−1)
j→i (xi), (2.25)

where the iterates {Ẑ(n)
i } are estimates of the Max-Product belief vector ZMP

i . The

algorithm is typically initialized with uniform values, as in

m
(0)
j→i = 1.

Example II.5. This example is relevant to the lossy coding problem discussed in

Chapter III. Consider a binary MRF on a graph G, and let B denote a block of

sites where a configuration x∂B is observed on its boundary ∂B. Now suppose that

we run Max-Product LBP in B and that the beliefs Z
(n)
i converge after N iterations.

Furthermore, suppose that the computed beliefs are correct, i.e., Z
(N)
i = ZMP

i for all

i ∈ B. We now wish to use the (correct) computed beliefs to do MAP estimation of

XB conditioned on X∂B = x∂B.

If for i ∈ B, Z
(N)
i (−1) > Z

(N)
i (1), then in all MAP configurations x̂B on B given
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x∂B, x̂i = −1, so we can safely estimate Xi as -1. Similarly, if Z
(N)
i (1) > Z

(N)
i (−1),

Xi can be estimated as a 1. However, if for site i, Z
(N)
i (−1) = Z

(N)
i (1), then there

is a MAP configuration x̂1
B in which x̂1

i = −1 and a MAP configuration x̂2
B in which

x̂2
i = 1. If there is only one site i that can assume different values in different

MAP configurations on B, then we can choose arbitrarily between estimating Xi as

-1 or 1, since all other sites in B assume only one possible value under all MAP

configurations. However, if there are two sites i and j for which Z
(N)
i (−1) = Z

(N)
i (1)

and Z
(N)
j (−1) = Z

(N)
j (1), then we cannot independently estimate Xi and Xj. This is

because x̂i and x̂j may equal each other in all MAP configurations, so that estimating

them independently could result in a block estimate x̂ where x̂i 6= x̂j, which would not

be MAP.

Loopy Belief Propagation has been the subject of intense research over the last

decade plus [57, 37, 58, 50, 62, 55], in part because its distributed nature is appealing

and part because it has been demonstrated to work well in practice [37]. Despite

the empirical success, little is known about the exact answers produced by LBP

[37]. However, it is now known that LBP can be understood as a limiting case

of a family of approximate reparameterizations based on MRFs on subtrees of the

original cyclic graph [55], and this analysis has afforded insight into the closeness of

the approximation. Additionally, it can also be viewed as an extreme case of a family

of approximate clustering algorithms [62], where greater accuracy can be obtained by

clustering into larger groups of nodes.

2.5 Proofs

2.5.1 A Useful Lemma

The following lemma is used in proving Propositions II.3 and II.4.

36



Lemma II.6. If node i lies on cut edge {i, j}, then

Zi(xi) = Zi\j(xi)mj→i(xi), (2.26)

where we say that mj→i(xi) =
∑

x′j
Ψij(xi, x

′
j)Zj\i(x

′
j) is the message from node j to

node i.

Proof. First, for a subset A ⊂ V of nodes, we let

Φ′A(xA) =
∏
i∈A

Φi(xi)
∏
{i,j}⊂A

Ψi,j(xi, xj).

In other words, we define the self-potential Φ′ on a subset of nodes to be the product

of the potentials Φ and Ψ on nodes and edges contained within the subset Then, for

fixed but arbitrary x̄i, we see that

Zi(x̄i) = Φi(x̄i)
∑
x\i

Ψij(x̄i, xj)Φ
′
Vi\j

(xVi\j)Φ
′
Vj\i

(xVj\i)

= Φi(x̄i)

 ∑
xVi\j\i

Φ′Vi\j(xVi\j)

 ·
∑
xVj\i

Ψij(x̄i, xj)Φ
′
Vj\i

(xVj\i)


= Zi\j(x̄i)

∑
xj

Ψij(x̄i, xj)
∑
xVj\i\j

Φ′Vj\i(xVj\i)


= Zi\j(x̄i)

∑
xj

Ψij(x̄i, xj)Zj\i(xj)


= Zi\j(x̄i)mj→i(x̄i),

which proves the lemma.
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2.5.2 Proof of Proposition II.3

Proof. We prove by induction on the number n = | ∂i | of neighbors of i. For n = 1

this follows immediately Lemma II.6, as

Zi(xi) = Zi\j(xi)mj→i(xi)

= Φi(xi)mj→i(xi).

We now make the induction hypothesis that the proposition holds for some | ∂i |=

k ≥ 1. For the case | ∂i |= k + 1, we enumerate the members of ∂i as 1, . . . , k + 1.

Then,

Zi(xi) = Zi\k+1(xi)mk+1→i(xi) (2.27)

= Φi(xi)
k∏
t=1

mt→i(xi)mk+1→i(xi) (2.28)

= Φi(xi)
∏
t∈∂i

mt→i(xi),

where (2.27) follows from Proposition II.6, and (2.28) follows from the inductive

hypothesis.

2.5.3 Proof of Proposition II.4

Proof.

mi→j(xj) =
∑
x′i

Ψij(x
′
i, xj)Zi\j(x

′
i)

=
∑
x′i

Ψij(x
′
i, xj)Φi(x

′
i)
∏
k∈∂i\j

mk→i(x
′
i),

38



where the last equality comes from applying Proposition (II.3) to the subgraph Gi\j.
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CHAPTER III

Lossy Cutset Coding of Ising Model

In this chapter we introduce the concept of lossy Cutset Coding and apply it to

a homogeneous Ising model. An image x from an Ising distribution is observed at

the encoder. The encoder losslessly compresses the values xU on a square grid cutset

U of the graph and transmits the resulting bit string to the decoder. The decoder

perfectly reconstructs the cutset values xU and estimates the missing values xV \U

conditioned on xU . The cutset U partitions the remaining sites V \ U into disjoint

blocks that are conditionally independent of each other from the Markov property,

so that each block can be estimated independently on the basis of its immediate

boundary. There are many estimation criteria for XV \U , including MAP estimation

of each pixel given the cutset or of each block conditioned on the cutset. For reasons

discussed in Section 3.1 we focus on block MAP estimation. The main emphasis of

this chapter, then, is deriving analytical solutions to the block MAP estimation of a

block from its immediate boundary. In Section 3.2 we give exact solutions to the set

of block MAP configurations conditioned on boundaries with four or fewer black-to-

white transitions, which are the predominantly occurring boundary configurations.

We are able to find these solutions because block MAP estimation in a homoge-

neous Ising model is the combinatorial problem of finding the interior configuration

that results in the fewest odd bonds together with the boundary. One can also use
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Loopy Belief Propagation to do the estimation, at least approximately. In Section 3.3

we use the exact analytical solutions to the cases of four or fewer boundary odd bonds

to examine the performance of Max-Product Loopy Belief Propagation as a decoding,

i.e., interpolation, tool. Specifically, the iterations of LBP produce for each site in

a block a sequence of estimates for the difference between the minimum numbers of

odd bonds when the site is white or black. Our analytical block MAP solutions per-

mit us to state what these differences actually should be in the most common cases

mentioned above, and we can run Max-Product LBP and compare the answers given

by it to the correct answers. We see empirically that LBP converges and converges

to the correct values.

Peierls showed that for the family of homogeneous Ising models on the 4 pt. grid

graph a phase transition did occur [40] and he did so by considering a site at the

center of a large block of sites. He demonstrated that for ranges of the coupling

parameter θ, the configuration on the boundary of the block biased the conditional

distribution of the center site, even as the block size tended to infinity. And it was

the existence of this bias that indicated the long-range dependence associated with a

phase transition.

The block MAP reconstruction results in this chapter, therefore, are in a sense

complementary to Peierls’ results. Because we give block MAP solutions for bound-

aries of four or fewer boundary odd bonds, these results apply to small or moderate

sized blocks as opposed to the very large blocks of Peierls’ analysis. Moreover, whereas

Peierls’ work showed the existence of an effect of the boundary configuration on the

conditional distribution of a center pixel, our work describes the precise effect of a

boundary configuration on an extremum of the conditional distribution for the entire

block interior.

In Section 3.1 we formally introduce the new encoding/decoding framework and

in Section 3.2 we discuss analytical solutions for MAP reconstructions of a block, in
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both the 4 pt. and 8 pt. homogeneous Ising models, for boundary configurations with

four or fewer black-white transitions. In Section 3.3 we use the analytical results from

Section 3.2 to analyze the performance of Max-Product Loopy Belief Propagation as

an alternative decoding/interpolation algorithm. In Section 3.4 we give reconstruction

results for different images and in Section 3.5 we introduce a modification to the MAP

decoding algorithm to enhance perceptual quality of the reconstructions. Finally, in

Section 3.6 we discuss a simple adaptive method for losslessly encoding the grid cutset,

show a rate-distortion plot of performance and discuss how erasure entropy can be

used to analyze this rate. Proofs are given either inline or in the final section of this

chapter.

3.1 Lossy Cutset Coding

The information source is a (homogeneous) Ising model defined on either a 4-pt.

or an 8-pt. grid graph G. A cutset U ⊂ V of sites consisting of every Nth row and

every Nth column of G, later referred to as a grid cutset, is chosen and the image xU

on the cutset is losslessly encoded at rate

RU =
1

|U |
E [l(xU)] bits/sample

for example using Arithmetic Encoding. Because the remaining pixels xV \U are not

encoded, the rate RV \U is zero, so that the overall rate is

R =
|U |
|V |

RU .

The grid spacing parameter N determines the rate RU . Moreover, as the cut-

set partitions the remaining sites V \ U into disjoint N − 1 × N − 1 blocks, by the

Markov property these blocks can be optimally estimated independently of one an-
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other. Therefore, the grid spacing N also determines the size of the blocks that must

be estimated from their respective boundaries. As an estimation criterion, we can

find the per pixel MAP reconstruction, that is, to find the value at each pixel that

maximizes its conditional probability distribution given the cutset values. This esti-

mation criterion is equivalent to minimizing the Hamming distortion, which is given

by

D(x, x̂) =
1

|V |
∑
i∈V

I(xi 6=x̂i),

where I(·) is the indicator function assuming value 1 when the argument is true and 0

otherwise. Alternatively, we can find the block MAP reconstruction, that is, find the

configuration within each block that maximizes its conditional probability given the

cutset values. This is equivalent to minimizing the number of odd bonds within the

block estimate and between it and its boundary. Both of these estimation schemes can

in theory be carried out with a variant of BP, the former as a Sum-Product problem

and the latter as a Max-Product. Because of the many cycles, however, LBP would

have to be used and the performance of this algorithm is unknown in this setting [37].

Since the estimation can be carried out independently block-by-block and since

MAP estimation reduces to minimizing the number of odd bonds in the block config-

uration, we can develop some simple combinatorial arguments showing the complete

set of MAP estimates. We do this analytically in Section 3.2 for the most commonly

occurring boundaries consisting of a single run of black pixels and two runs of black

pixels, and in Section 3.3 we use these results to analyze LBP as a decoding algo-

rithm. Moreover, minimizing the number of odd bonds within each block yields a

“smoothest” reconstruction consistent with the preserved cutset information. This

is important since we do have in mind the application of this coding method to the

encoding of real-world bilevel images.

In Section 3.4 we consider the application of the MAP decoding algorithm to real-

world bilevel images, such as shown in Figure 2.2 (a) as well as to typical images from
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different homogeneous Ising models. In Section 3.5 we introduce a modification to

MAP decoding, called decision-bit decoding, on the basis of the following observation.

For blocks whose boundaries contain two runs of black and two runs of white, there are

two principal ways to reconstruct the block interior, one with a white swath through

the interior and the other with a black swath. For blocks with two runs of white and

black, then, the encoder encodes an additional bit informing the decoder which of

these two basic patterns to pursue. The reason for this modification, of course, is to

enhance the perceptual quality of the reconstructed images.

The lossless coding of the grid can be done in a variety of ways. In Section 3.6

we consider a simple adaptive method using Arithmetic Encoding. In Chapter V we

explore relationships between the marginal distribution of a given subset XU of an

MRF and an MRF defined on the subgraph induced by U . Furthermore, the concept

of lossy Cutset Coding is related to erasure entropy [51, 52] and in Section 3.6 we

also begin to explore erasure entropy as a means of analyzing the rate of encoding

the grid cutset.

3.2 Analytical Block MAP Solutions

In this section we derive analytic solutions for the set of (block) MAP estimates of

the interior of a block B given the values on its boundary ∂B. In the case of uniform

edge potentials (θij = θ) and no external field (αij = 0), the probability of a block

xB conditioned on the boundary x∂B is a monotone function of the number of odd

bonds in the joint realization (xB, x∂B). Therefore, if x∗B is a MAP estimate given

x∂B, then for any other configuration xB, (xB, x∂B) has at least as many odd bonds
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as (x∗B, x∂B). In other words, a MAP estimate satisfies

x̂B ∈ argmax
x′B∈XB

Pr (x′B|x∂B)

= argmin
x′B∈XB

O(x′B, x∂B).

If there were no boundary constraints, an optimal block would be either the all black

or all white configurations. It is intuitive, then, that with the boundary constraints

an optimal interior x∗B would be such that the sites decoded as 1 (black) should

be connected to the sites on the boundary whose value is 1 and the sites decoded

as -1 (white) should be connected to the boundary sites whose value is -1. Where

it gets interesting are the contours separating regions of black and white. We first

prove a basic result that allows us to limit attention to block reconstructions defined

by “smooth” contours connecting the endpoints of these runs of 1s. We then argue

constructively what the form of these MAP reconstructions should be in the case that

there is a single run of 1s on the boundary. We then use the reconstruction results

for the single-run case to construct MAP solutions for the case of two runs on the

boundary.

3.2.1 Preliminaries

We consider square grid graphs with either the 4pt. or 8pt. topology. We will

often refer to the 4 pt. or 8 pt. models, which include both the particular topology

and the homogenous coupling parameter and the absence of an external field. A block

or block interior is denoted by B and we define B = B ∪ ∂B to be the closure of

B. We will index sites in B̄ with coordinates (n,m) in the usual way for matrices.

That is, the top left corner has coordinates (1, 1) and the bottom right corner has

coordinates (N + 1, N + 1). Recall that a path is a sequence of sites such that any

two successive sites are connected by an edge and that a subset of sites A ⊂ V is
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connected if for all distinct sites i, j ∈ A, there exists a path from i to j. An HV-path

is a path p where successive sites are joined by a vertical or horizontal edge in E. All

paths in the 4-pt. topology are HV-paths. The subset A is said to be HV-connected

if for distinct sites i, j ∈ A, there exists an HV-path from i to j. If A is connected but

not HV-connected, then we say that A is 8-connected. Clearly, in the 4pt. topology,

a set is either HV-connected or disconnected whereas in the 8pt. topology a set can

be HV-connected, 8-connected, or disconnected. A loop is a path where the first and

last sites coincide. As with paths, all loops in the 4-pt. topology consist of horizontal

and vertical edges. A site i is in the interior I(l) of a loop l if every HV-path from i

to the boundary intersects l.

We now consider subsets of B induced by a particular configuration in the interior.

Under configuration xB, the set B̄b = B̄b(xB) is the set of sites in B whose value is

1 (black) in xB. Similarly for B̄w. In the following, the dependence of B̄b or B̄w on

xB̄ should be clear from context and will be omitted. Under a given configuration, a

monotone path is a path of sites whose values (colors) are all the same. Likewise for

a monotone loop, whose interior is defined as above.

An island is a subset of sites that form the interior of a monotone loop. The

sites in an island are not connected through a monotone HV path to the boundary.

Alternatively, if each site in the block interior is connected to the boundary through

a monotone HV path, then there are no islands. We have the following lemma about

islands in MAP reconstructions, which holds for both 4 pt. and 8 pt. models.

Lemma III.1 (Cycle filling). Let x∗B be a MAP configuration on B conditioned on

x∂B. If l is a monotone loop of sites, then the interior is monotone of the same color.

Equivalently, in a MAP reconstruction, there is a monotone HV path connecting each

interior site to the boundary.

We define a widget to be 2× 2 subblock of xB̄ such that the upper right and lower

left corners are black (or white) and the upper left and lower right corners are white
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(or black).

3.2.2 No Odd Bounds in Boundary

If there are no odd bonds in the boundary, then the boundary is either all black

or all white. By Lemma III.1 the interior must be the same color.

3.2.3 Two Odd Bonds in Boundary

In this section we will derive the MAP solutions for block boundaries with two

odd bonds. One can look at the boundary as consisting of two runs, one of black

sites and the other of white sites, and because of this we will refer to such boundaries

as one-run boundaries. We denote the black run as rb = (rb1, r
b
2) and the white

run as rw = (rw1 , r
w
2 ), where (rbi ) and (rwi ) are the coordinates of the run endpoints.

Lemma III.1 tells us that for each site i ∈ B, there is a monotone HV-path to the

boundary. For a boundary with two odd bonds, the black boundary sites are HV-

connected. Therefore, in a MAP reconstruction the set B̄b is HV-connected. Similarly

with the white boundary sites and a MAP reconstruction set B̄w. This means that a

MAP reconstruction x∗
B̄

can be described by a (potentially backtracking) monotone

reconstruction path connecting the endpoints of either the black or white runs that

exclude boundary sites of the opposite color. Figure 3.16 (a) shows a block boundary,

(b) an arbitrary coloring of the inside, and (c) and (d) two different applications of

the Cycle-Filling lemma. Note that because the black regions are HV-connected, the

outer contours can be described by a path. By indicating a black reconstruction path

from rb1 to rb2, one simultaneously indicates an adjacent white reconstruction path

from rw1 to rw2 . It is these adjacent paths that determine a MAP reconstruction in the

following way: the black reconstruction path from rb1 to rb2 combined with the black

run rb make a monotone loop the interior of which must be filled in black by Lemma

III.1. Likewise for the monotone loop from rw1 to rw2 and the monotone path rw. For
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(a) (b)

(c) (d)

Figure 3.1: (a) Block boundary; (b) Arbitrary filling of interior; c) Interior obtained by
applying Cycle filling lemma; (d) Another block obtained through Cycle filling
lemma.

concreteness we will focus on black reconstruction paths connecting the black run

endpoints, though of course all statements apply equally to the white reconstruction

paths with appropriate substitutions.

We note that two different reconstruction paths can yield the same block recon-

struction, and this is illustrated in Figure 3.2. However, we adopt the convention that

shortest path describing a given reconstruction is the one considered, e.g., as many

diagonal edges are used as possible, further noting that the shortest such path will in

general differ according to whether we are considering the 4 pt. or 8 pt. topologies.

For example, in the 8 pt. topology, a horizontal edge followed by a vertical edge is

sometimes equivalent to a diagonal edge, whereas in the 4 pt. topology the horizontal,

then vertical, edge combination is minimal.

The coordinates of the black run endpoints are rb1 = (kb1, l
b
1) and rb2 = (kb2, l

b
2) and

from this we define

∆V = |kb2 − kb1|, ∆H = |lb2 − lb1|

to be the vertical and horizontal differences, respectively. The major and minor
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(a) (b) (c)

Figure 3.2: (a) Black reconstruction path; (b) Equivalent black path with adjacent white
path in 4 pt. topology; (c) Equivalent black path with adjacent white path in
8 pt. topology.

differences are then defined as

∆max = max{∆V,∆H}

∆min = min{∆V,∆H}.

Note that the quantities ∆max and ∆min will differ according to whether the white

or black run is being considered. A simple path between endpoints rb1 and rb2 is a

shortest path connecting the two points, one in which each step or edge of the path

decreases the distance to the endpoint.

3.2.3.1 4-pt. Topology

In the 4 pt. topology, simple paths consists of horizontal and vertical edges and

as such each simple path has ∆max + ∆min edges. There will be ∆max edges in

the direction of major difference and ∆min edges in the direction of minor difference

and one see that there are
(∆max+∆min

∆min

)
simple paths connecting the endpoints. The

theorem below characterizes the MAP reconstruction paths for one-run boundaries

in the 4 pt. model.

Theorem III.2 (4 pt. one-run-optimal paths). Let rb be the black run on the bound-

ary and let ∆max and ∆min be the major and minor differences of this run. Also, let

c denote the number of corners of δB contained in rb. The following characterize the
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set of MAP reconstructions determined by MAP paths connecting rb1 and rb2.

(a) If c = 0, the one and only MAP path consists of the run itself.

(b) If c = 1, the
(∆max+∆min

∆min

)
simple paths connecting rb1 and rb2 generate all(∆max+∆min

∆min

)
distinct MAP reconstructions.

(c) If c = 2, the
(∆max+∆min−1

∆min

)
simple paths connecting rb1 and rb2 that exclude

rw generate all
(∆max+∆min−1

∆min

)
distinct MAP reconstructions.

(d) If c = 3, the
(∆max+∆min−2

∆min−1

)
simple paths connecting rb1 and rb2 that do not

intersect rw generate all
(∆max+∆min−2

∆min−1

)
distinct MAP reconstructions.

(e) If c = 4, the one and only MAP path is not simple: if the direction of maxi-

mum distance is vertical, then the first and final steps are horizontal with ∆max

vertical steps in between; if the direction of maximum distance is horizontal, the

the first and last steps are vertical with ∆max horizontal steps in between.

(f) The number of odd bonds in a MAP reconstruction is

O∗1(rb) =

 ∆max + ∆min − c+ 3, 0 ≤ c ≤ 3

∆min + 1, c = 4

The reconstruction path that together with the run encloses the most sites is

called the outer path, while the run that encloses the fewest sites, together with

the run, is the inner path. In Figure 3.3 we can see some MAP reconstructions for

different block boundaries. In (c) the black run contains no corners and the MAP

path is the run itself. In (a) and (d) we see different reconstructions for the same

boundary. Note the range of equiprobable MAP reconstructions. In (b) and (e) we

see MAP reconstructions for a given boundary containing two corners. In both of

these, the first step is constrained to be vertical so as not to intersect the white run.

In (f) we see a MAP reconstruction for a boundary containing three corners. For this

boundary, the first step is constrained to be vertical and the last step is constrained
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: Different one-run boundaries and MAP reconstruction paths in the 4-pt. topol-
ogy.

to be horizontal.

3.2.3.2 8-pt. Topology

In the 8 pt. model, simple paths between rb1 and rb2 consist of ∆max edges where

∆max −∆min of the edges are either vertical or horizontal, in the direction of major

difference, and ∆min of the edges are diagonal. There are
(

∆max
∆min

)
such simple paths

connecting the endpoints rb1 and rb2. Note that simple paths in the 8 pt. model consist

of fewer steps to connect the same points. This is because a diagonal edges is used

in place of successive horizontal-vertical or vertical-horizontal combinations.

Theorem III.3 (8pt. one-run-optimal paths). Let rb be the black run on the boundary

and let ∆max and ∆min be the major and minor differences of this run. Also, let c

denote the number of corners of δB contained in rb. The following characterize the

set of MAP reconstructions determined by MAP paths connecting rb1 and rb2.

(a) Every MAP path for rb has ∆max edges.

(b) If 0 ≤ c ≤ 2, the
(

∆max
∆min

)
simple paths connecting rb1 and rb2 generate all

(
∆max
∆min

)
distinct MAP reconstructions.

51



(c) If c = 3, the
(

∆max−1
∆min−1

)
simple paths connecting rb1 and rb2 that do not intersect

rw generate all
(

∆max−1
∆min−1

)
distinct MAP reconstructions.

(d) If c = 4, the one and only MAP path is not simple: it begins with a diagonal

edge, ends with the other type of diagonal edge, and in between it has ∆max − 2

edges that are all vertical or all horizontal.

(e) The number of odd bonds in a MAP reconstruction is

O∗1(rb) =

 3∆max + ∆min − 2c+ 5, 0 ≤ c ≤ 3

3∆min − 1, c = 4

A MAP path will be termed one-run-optimal for rb. We reiterate that the above

theorems hold for the white run rw as well, with a different ∆max and ∆min, as

well as a different number of corners. For instance, if rb contains three corners, the

above theorem could be applied to rw using the different ∆max and ∆min and letting

c = 1. In this way, it is always possible to describe a MAP reconstruction as being

determined by a MAP path connecting the endpoints of a run containing two or fewer

corners. However, Theorems III.2 and III.3 as stated will be useful in the following

sections.

In Figure 3.4 we see some MAP reconstructions for different one-run boundaries.

3.2.4 Four Odd Bonds in Boundary

This is the case of four odd bonds in the boundary, or two runs of black and two

runs of white. Let r = (rb,1, rb,2, rw,1, rw,2) be the four runs on the boundary. Unless

otherwise specified we will use a clockwise ordering of the endpoints of the runs so

that, for example, the endpoints of run rb,1 will be denoted as rb,11 and rb,12 . We let

O∗2(r) be the number of odd bonds in a MAP reconstruction for the boundary with

runs r. We will analyze the case of a two-run boundary by attempting to decompose

the problem into one-run problems. For example, for run rb,1, we will consider the
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Different one-run boundaries and MAP reconstruction paths in the 8-pt. topol-
ogy.

boundary with black run rb,1 and the rest of the boundary white, and look at one-run

optimal reconstructions for such a boundary. Recall from the last section that O∗1(rb,1)

is the number of odd bonds in a MAP reconstruction for that boundary, determined

by a one-run optimal path.

Looking at the two black runs rb,1 and rb,2, suppose that we connect the endpoints

of rb,1 with a one-run-optimal path and do the same for rb,2. We now define the

quantity

O2(rb,1, rb,2)
∆
= O∗1(rb,1) +O∗1(rb,2),

which is the number of odd bonds in a reconstruction determined by these two one-

run-optimal paths provided they do not touch. If these two one-run-optimal paths

touch, then the number of odd bonds in the reconstruction would be lower than

O2(rb,1, rb,2). Let Bb,1 be the set of sites enclosed (inclusively) by the outer path for

rb,1 and likewise for Bb,2, Bw,1, and Bw,2. If Bb,1 and Bb,2 are not adjacent (i.e., there

are no edges directly connecting them), then any pair of one-run-optimal paths for

rb,1 and rb,2 give a white-HV reconstruction with O2(rb,1, rb,2) odd bonds that is the

best white-HV reconstruction.
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Let Ob−HV (r) be the minimum number of odd bonds of all reconstructions in which

the black sites B̄b are HV connected, and similarly for Ow−HV (r) as the minimum

number of odd bonds of all reconstructions in which the white sites B̄w are HV

connected. Let Owid(r) be the minimum number of odd bonds from all reconstructions

with a single widget and no islands.

3.2.4.1 4-pt. Topology

We now discuss the set of block MAP reconstructions for boundaries in the 4 pt.

model with two runs of black and two runs of white.

Lemma III.4. In the 4 pt. model, B̄b is connected if and only if B̄w is disconnected.

Proof. Assume that B̄b is connected and assume that rw,1 comes after rb,2 and before

rb,1 in a clockwise ordering of the runs. Let B′w,1 denote the set of white pixels

connected to rw,1. Since B̄b is connected there is a path from the first endpoint rb,11

of the first black run to the second endpoint rb,22 of the second black path. If we

hypothetically flip the white run rw,1 from white to black, then we have a black loop,

adjoining the original path from rb,11 to rb,22 with the new black path through rw,1.

Therefore, the sites in B′w,1 are contained in a black loop, thus are not connected to

rw,2.

For the 4 pt. model, there are four possible scenarios:

(i) black connected: the set B̄b is connected and the set B̄w is disconnected,

(ii) white connected: the set B̄w is connected and the set B̄b is disconnected,

(iii) disconnected: both sets B̄b and B̄w are disconnected.

Lemma III.5. In the 4 pt. model, there can be at most one interior widget in a MAP

reconstruction.

We now characterize the sets of MAP reconstructions for two-run boundaries in

the 4 pt. model.
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(a) (b)

(c) (d) (e)

Figure 3.5: Reconstructions for different two run boundaries in 4pt. model.

Theorem III.6 (4 pt. Two Run Optimal). Let x∂B be a boundary configuration with

runs r = (rb,1, rb,2, rw,1, rw,2). Then,

(a) O∗(r) = min{O2(rb,1, rb,2), O2(rw,1, rw,2)}

(b) If O∗(r) = O2(rb,1, rb,2), then merging any one-run-optimal reconstruction for

rb,1 with any one-run-optimal reconstruction for rb,2 yields a MAP reconstruction

given x∂B.

(c) If O∗(r) = O2(rw,1, rw,2), then merging any one-run-optimal reconstruction for

rw,1 with any one-run-optimal reconstruction for rw,2 yields a MAP reconstruction

given x∂B.

Again from Theorem III.6 we can note the wide range of equiprobable MAP

reconstructions for a given boundary in the 4 pt. model. Even for boundaries where

neither pair of Bb,1 and Bb,2 or Bw,1 and Bw,2 intersect or are adjacent, reconstructions

involving two large black rectangles in the interior and the reconstruction with an all

white interior are equally MAP. A wide range of MAP reconstructions is especially

true for block boundaries where the sets Bb,1, Bb,2, Bw,1, and Bw,2 all meet at a

widget. In this case the number of odd bonds from white one-run-optimal paths

is the same as that from black one-run-optimal paths. This means that white HV
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connected reconstructions determined by black one-run-optimal paths and black HV

reconstructions determined by white one-run-optimal paths have the same number

of odd bonds and therefore are equally likely. In particular, the reconstructions with

all white interior and all black interior are both MAP and equally likely. These are

likewise as equally likely as the reconstruction with the widget.

3.2.4.2 8-pt. Topology

In the 8 pt. model, there are diagonal edges so the presence of a widget would

reduce the number of odd bonds due to the diagonal edges being even. Whereas in

the 4 pt. model, the sets Bb,1 and Bb,2 can be HV connected or disconnected, in the

8 pt. model the possible cases are:

(i) the set B̄b is HV-connected and the set B̄w is disconnected,

(ii) the set B̄w is HV-connected and the set B̄b is disconnected,

(iii) the sets B̄b and B̄w are each 8-connected; in this case the block reconstruction

is said to be bi-connected.

Note that in a bi-connected reconstruction there must be a widget. However, we

can narrow things down a bit in terms of where such a widget may be located in a

MAP reconstruction in the 8 pt. model.

Lemma III.7. In the 8-pt. model, if there is a widget in a MAP reconstruction, then

the widget is on the boundary.

With this information and the notation for the endpoints of the boundary runs,

if there is a widget on the boundary, it must contain one of the following edges:

{rw,12 , rb,11 }, {r
b,1
2 , rw,21 }, {r

w,2
2 , rb,21 }, {r

b,2
2 , rw,11 } (3.1)

Theorem III.8. If x∗B is a bi-connected MAP reconstruction, then x∗B has exactly

one widget on its boundary.
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The above lemma and theorem make it possible to consider only four possible

locations for a boundary widget to occur.

Theorem III.9 (8 pt. Two Run Optimal). Let x∂B be a boundary configuration with

runs r = (rb,1, rb,2, rw,1, rw,2). Then,

(a) O∗(r) = min{O2(rb,1, rb,2), O2(rw,1, rw,2), Owid(r)}

(b) If the sets Bb,1, Bb,2, Bw,1, and Bw,2 meet at a boundary widget, then the

reconstruction determined by these sets is MAP given x∂B.

(c) If the sets Bb,1, Bb,2, Bw,1, and Bw,2 do not meet at a widget, then

(i) If O∗(r) = O2(rb,1, rb,2), then merging a one-run-optimal reconstruction for

rb,1 with a one-run-optimal reconstruction for rb,2 yields a MAP reconstruction

of the interior given x∂B.

(ii) If O∗(r) = O2(rw,1, rw,2), then the merging of a one-run-optimal recon-

struction for rw,1 with a one-run-optimal reconstruction for rw,2 yields a MAP

reconstruction of the interior given x∂B.

(a) (b) (c)

Figure 3.6: Some block reconstructions for two run boundaries in 8 pt. model.

3.2.5 Procedure for MAP Decoding

We now give an outline for performing MAP Decoding.

(i) If block has no runs, decode interior as same color as boundary

(ii) If block has one run, follow Theorem III.2 or Theorem III.3.

(iii) If block has two runs, follow Theorem III.6 or Theorem III.9.
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(iv) If block has more than two runs, consider the two longest runs and apply (iii).

This is a suboptimal but reasonable approach. Note that this is asymmetric in the

black and white runs.

3.3 BP Block MAP Solutions

In this section we consider Max-Product LBP as an algorithm for estimating

XB conditioned on boundary configuration x∂B, and use the analytical Block MAP

solutions of the previous section to evaluate its performance. The probability of a

block configuration xB conditioned on a boundary configuration x∂B is a function of

the number of odd bonds within the joint configuration (xB, x∂B). The components

of the Max-Product belief at a given site in B are therefore going to be functions of

the number of odd bonds under some subset of configurations. It will be convenient

in this chapter to indicate sites in B using bivariate coordinates (i, j) where i is the

row of B the site is in and j is the column. For site (i, j) ∈ B, we let

o∗ij(−1) = min
xB :

(xB)ij=0

o(xB, x∂B)

o∗ij(1) = min
xB :

(xB)ij=1

o(xB, x∂B)

be the minimum number of odd bonds under configuration on B, conditioned on

x∂B, where site (i, j) has value -1 or 1, respectively. Therefore, using (2.5), the Max-
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Product belief vector QMP
ij for site (i, j) is proportional to

ZMP
ij =

 exp{−2θo∗ij(−1)}

exp{−2θo∗ij(1)}

 (3.2)

∝

 1

exp{−2θ(o∗ij(1)− o∗ij(−1))}

 (3.3)

=

 1

exp{−2θo∗ij}

 , (3.4)

where we let

o∗ij = o∗ij(1)− o∗ij(−1)

be the difference between these two minimum numbers of odd bonds.

We can think of Loopy Belief Propagation, then, as computing for each (i, j) ∈ B

a sequence of estimates {o(n)
ij } of the quantity o∗ij. Figure 3.7 shows the sequence of

estimates {o(n)
ij } for all sites within a block of the 4 pt. grid graph, for different values

of n. The red squares indicate negative values. We can use the results of the previous

section, in particular Theorem III.2, to state what the true o∗ij values should be and

use these to compare to the empirical values shown in Figure 3.7.

Theorem III.10. Let B be a block of sites in the 4 pt. model. Let boundary config-

uration x∂B be given with runs r = (rb, rw). Furthermore, let Bb be the set of sites

enclosed, inclusively, by the run rb and the outer path for it, and similarly for Bw.

For site (i, j) ∈ B the quantity o∗ij is determined as follows

if (i, j) ∈ Bw ∩Bb, then o∗ij = 0;

if (i, j) ∈ Bw \Bb and (i, j) ∈ ∂Bb, then o∗ij = 2;

if (i, j) ∈ Bb \Bw and (i, j) ∈ ∂Bw, then o∗ij = −2;

if (i, j) ∈ Bw \ (Bb ∪ ∂Bb), then o∗ij = 4;
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if (i, j) ∈ Bb \ (Bw ∪ ∂Bw), then o∗ij = −4.

(a) (b) (c) (d)

Figure 3.7: Block of {o(n)
ij } values after (a) zero; (b) two; (c) six; (d) and ten iterations.

Referring back to Figure 3.7, we can compare against Theorem III.2 and see that

after ten iterations Max-Product LBP converges to the correct collection of values

{o∗ij}. In particular, we see that for sites (i, j) that are enclosed by the black outer

path, that o∗ij = −1. This is because these sites are also enclosed by the white outer

path, which means that for each of these sites (i, j) there is a MAP reconstruction

in which each this site has value -1 and another MAP reconstruction in which this

site has value 1. Therefore o∗ij(−1) and o∗ij(1) will be equal for such sites. In Figure

3.7 we see that in the early iterations of the algorithm, the sites nearest the black

run have negative values, which means that at these early stages of the LBP run,

the estimates of their Max-Product beliefs Q(n) are biased towards 1 (black). This is

because after only a few iterations each site has only received “information” from the

boundary sites closest to them. Also, we can see that those sites (i, j) that are not

enclosed by the black outer path have positive o∗ij values. This is because in every

MAP reconstruction these sites have value 0.

In Figure 3.8 we show the block updates for a different one run boundary and

again see that Max-Product LBP converges after nine iterations. In this case, neither

the black outer path nor white outer path encloses all sites in the block interior, so

that some o∗ij values are positive and some are negative. We can see in (b) and (c) that

before convergence of the algorithm, sites closest to the black run have estimates o(n)
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that are negative in value, and those that are closest to the white run have estimates

o(n) that are positive. We again see in (d) that those sites that are enclosed by both

the white and black outer paths have o∗ij values of 0.

(e) (f) (g) (h)

Figure 3.8: Block of {o(n)
ij } values after (a) zero; (b) two; (c) six; (d) and nine itera-

tions.

We tried a number of cases of block boundaries of one and two runs in both the 4

pt. and 8 pt. models and found that after a reasonable number of iterations (no more

than twice N) the algorithm would converge to the correct values. We know that the

answers are correct for boundaries with one and two run because of Theorem III.10,

which followed from the results of the last section. We make the following conjecture.

Conjecture III.11. In the 4 pt. and 8 pt. homogeneous Ising models, Max-Product

BP converges to the correct values {o∗ij} in the boundary interpolation problem.

If this conjecture is correct, it would seem that Max-Product LBP would be an

ideal choice for an interpolation algorithm for homogeneous Ising models, in that it

would be both efficient and correct. It is also natural, given the distributed nature of

the algorithm, for it to be employed in estimation problems that are truly distributed,

in the sense that decisions are made at individual nodes independently of the decisions

at other nodes. That is, in estimation problems where there is no centralized observer

that can jointly decide the values of multiple sites. For instance, if o∗ij > 0, then

the site (i, j) can decode itself as a 1 (black), and if o∗ij < 0, as a -1 (white). If

o∗ij = 0, however, there are MAP configurations with (i, j) as -1 and as 1. If the
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(a) (b) (c)

Figure 3.9: Reconstructions for different two run boundaries in 4pt. model.

estimation decisions are made independently at each node (i, j) for which o∗ij = 0,

then the resulting block estimate might not be MAP, since the collection of values

{x(i,j) : o∗ij = 0} may not appear in any MAP configuration. In Figure 3.9 (a) and (b)

we show two MAP configurations for a given boundary in the 4 pt. model. Because

there is a MAP configuration in which each site can be 0 or a 1, o∗ij = 0 for all (i, j).

Thus independent estimation at each site could produce a non-MAP configuration as

in (c). We note that there will always be sites within a block for which the o∗ value

is 0. We can see this by considering a one run boundary and the MAP configuration

determined by the black outer path. This reconstruction is also determined by the

white inner path. Since the white outer path encloses more sites than the white inner

path, it must enclose sites that are also enclosed by the black outer path, and as

proved by Theorem III.10 and seen in Figures 3.7 and 3.8, these sites have o∗ values

of 0.
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(a) (b)

(c) (d)

Figure 3.10: (a) Typical image; (b) - (d) MAP reconstructions.

3.4 Experimental Testing of MAP Reconstructions on Whole

Images

In this section we look at MAP reconstructions for a few different images using

the analytical solutions of Section 3.2. Before looking at specific image reconstruc-

tions, we give a few words on how one might expect the reconstruction quality of the

lossy Cutset Coding algorithm to depend on different input images. Exact solutions

were given in Section 3.2 for block boundaries with zero, one or two runs of black

(alternatively, white) pixels.

A block boundary will be more likely to have fewer than three runs if the original
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image is smooth, in the sense that there are large regions of white and large regions

of black that meet at given contours within the image. Since for blocks of three or

more runs we resort to a sub-optimal ad-hoc approach, we expect the algorithm to

give reconstructions that are closer to optimal for smooth images, as there will be

more block boundaries for which the exact solutions can be applied. Another issue

affecting reconstruction quality is the size of the blocks being interpolated. If the

original block interior contains an island, then this will clearly be lost in a MAP

reconstruction of the interior, by Lemma III.1. For small- to moderate-sized blocks,

there is less chance of the original interior containing an island, so block interpolations

will “miss” potentially important image information such as islands less frequently

for smaller blocks. This difference between large and small blocks is especially true

for less smooth images as it is more likely that these will have “activity” within a

block.

For simulated, i.e., typical, images from a homogeneous Ising distribution, we

can see the relationship between image smoothness and reconstruction quality by

varying the parameter θ. In Figure 3.10 (a) we see an original typical image from

a homogeneous Ising distribution on the 8 pt. grid with parameter θ = .2875. We

are interested in this value of θ because using a Gibbs Sampling based method of

parameter estimation [23, 15], this was the estimate obtained for the real-world image

in Figures 2.2 (a) and 3.13 (a) modeling it as a homogeneous Ising model on the 8

pt. grid graph.

We see that the image in (a) is fairly smooth with a small amount of speckle.

In Figure 3.10 (b), (c) and (d) we see the reconstruction using interior block sizes

N − 1 = 4, 7, and 11. We see that as the block size increases, the reconstructions has

less speckle. This is because the block MAP reconstructions will not contain islands,

so the only speckle that will appear in a reconstruction is that which occurs on the

perfectly preserved grid cutset. For larger block sizes, the grid contains fewer pixels
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(a) (b)

(c) (d)

Figure 3.11: (a) Typical image; (b) - (d) MAP reconstructions.

and the grid pixels that are preserved farther apart.

In Figure 3.11 (a) we show typical image from a homogeneous Ising model on

the 8 pt. grid graph with exponential parameter θ = .1875. This is clearly a less

smooth image so we would expect the reconstructions from lossy cutset coding to

be less faithful. In (b), (c), and (d) we see reconstructions with interior block sizes

N−1 = 2, 7, and 13. We see that the reconstructions are less accurate in reproducing

the image in (a). Because there is much more speckle or islands in the original image,

much more is preserved on the grid cutset, which is apparent in the reconstructions

(b), (c), and (d) in the form of dotted horizontal and vertical lines throughout the

reconstruction. Moreover, the contours that cut through the original blocks are less
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(a) (b)

(c) (d)

Figure 3.12: (a) Original image; (b) - (d) MAP reconstructions.

smooth than those produced by MAP decoding, so the reconstructed blocks appear

much smoother than the original blocks. This is especially true for the reconstruction

in (d).

In Figure 3.12 (a) we see a smooth binary real-world image. In (b), (c), and (d)

we see reconstructions using the lossy cutset coding method with interior block sizes

N−1 = 4, 7, and 11. In Figure 3.13 (a) we see a less smooth binary real-world image.
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(a) (b)

(c) (d)

Figure 3.13: (a) Original image; (b) - (d) MAP reconstructions.

In (b), (c), and (d) we see reconstructions using the lossy cutset coding method with

interior block sizes N − 1 = 4, 7, and 11. Note that in block MAP decoding, the

parameter value θ does not matter, so it is independent of a parameter estimate.
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(a) (b)

Figure 3.14: (a) MAP reconstruction; (b) reconstruction with decision-bits.

3.5 Decision-bit Encoding/Decoding

We can see in the reconstructions in Figures 3.12 (c) and 3.13 (c) that regions of

the hair, the collar, and lines in the upper right of the image are broken up by the

MAP decoder. The reason for this is simple: the blocks in these regions have two or

more runs on their boundaries. With a block boundary that has two runs of black

and two runs of white, there are two main patterns that can be reconstructed, one

with a white swath through the block, the other with a black swath. In Figure 3.13

(c), for example, in the lines at the upper right of the image, it is possible that for a

few of the blocks in this region, while the original block had a black swath through

the interior, the MAP estimate shown has a white swath. Since perceptual quality is

the most important criterion for a decoding algorithm, we need to correct this error.

Fixing this problem is rather simple: for a block with two runs of black and two

runs of white we need to transmit to the decoder an extra bit indicating which of the

two general reconstruction patterns to pursue. During the decoding process, when

the decoder observes that the current block has two runs of black and two runs of
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white, it will access the string of decision bits for the bit corresponding to the current

block, and then interpolate correctly. There are various ways to assign the decision

bits. The decision bit rule that is currently being implemented is that when the

encoder encounters a block with two runs of black and two runs of white, it finds

the block reconstruction determined by the inner paths connecting the endpoints

of the black runs and it also find the reconstruction determined by the inner white

paths. It computes the Hamming distortion between each of these reconstructions and

the original block and transmits a bit corresponding to the one having the minimum

distance to the original block. For blocks of three or more runs, we follow the following

ad-hoc procedure: for each color, we consider the two longest runs and change all other

runs of this color to the opposite color, reconstruct according to the inner paths for

this color; and then compare each of these reconstructions to the original. Figure 3.14

(b) shows the reconstruction with interior block size N − 1 = 7 using the decision

bit reconstruction, while (a) shows the MAP reconstruction with the same block size.

We see that the decision-bit decoder produces a much nicer-looking reconstruction.

The lines are no longer broken, and in general, the reconstructed image could pass

for an original, though there it is obviously not identical to the original image.
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3.6 Encoding the Grid Cutset and Rate Analysis

We described in the last section that decision bits are transmitted from the encoder

to the decoder for blocks of two or more runs to determine the best reconstruction

pattern. The majority of the bits sent from the encoder to the decoder are those

for lossless compression of the grid cutset pixels XU . Figure 3.15 shows a plot of

Hamming distortion versus rate of the MAP decoder and decision-bit decoder, along

with two competing methods, for the figure in Figure 3.13 (a). The method used to

encode the grid is a simple adaptive method based on Arithmetic Encoding. We first

consider the subgraph GU induced by the cutset. Then, for each grid node that is

in both a column and a row, but not the top row, we remove the edge connecting

it to its left neighbor, if it has one. We then form a tree rooted at the upper left

node of the graph. This determines parent-child relations down to the leaves of the

tree. We then scan the nodes of this tree left to right in each row, top to bottom

from the top row. This is a lineal scan in that the parent is always encoded before

its children. The coding distributions computed are first-order in that the coding

distribution for the ith node is a conditional distribution conditioned on the value of

the parent node π(i). This will of course be sub-optimal since the grid cutset subfield

XU is not really Markov with respect to a tree. The coding distribution for the first

node is f1(x1) = 1/2 and for the ith node, i = 2, . . . , |U |, fi(xi|xπ(i)) is computed as

fi(xi|xπ(i)) =

i=1∑
k=2

I(xk=xi,xπ(k)=xπ(i))

i=1∑
k=2

I(xπ(k)=xπ(i))

. (3.5)

In other words, the coding distribution used for the ith node of the scan is a condi-

tional distribution given the value of its parent. The conditional distribution used is

not computed from the model, but rather from the empirical statistics of the previ-

ously scanned grid pixels.
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Figure 3.15: Rate vs. Distortion performance of MAP and Decision-bit decoding on
image in Figure 3.13 (a).

We see in Figure 3.15 that the decision-bit coder gives better performance than

the MAP decoder in that for comparable bit rates, the Hamming distortion is less

for the decision-bit decoder. We found that the typical rate RU for the grid pixels

was around .3, and this was fairly constant over different block sizes. Also in Figure

3.15 is the Hamming distortion vs. rate performance of two competing algorithms.

The labeled “Culik” in the plot is a finite automata based method [28] and the one

labeled “JBIG” is a simulated lossy coder created by concatenating a morphological

filter followed by lossless JBIG [27].

The rate of lossy cutset coding can be analyzed further through the recently

introduced concept of erasure entropy [51, 52]. The erasure entropy H−(X) is defined

as

H−(X) =
1

|V |

|V |∑
i=1

H(Xi|XV \i),

which is the normalized sum of the conditional entropies of each random variable given
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the remaining random variables. The interpretation of the i-th term is the average

number of bits needed to describe the random variable Xi conditioned on all other

variables, or in the context of Markov random fields, conditioned on its neighbors

X∂i. For MRFs on a rectangular grid of sites V we can extend this concept to block

erasure entropy for N − 1×N − 1 blocks of sites as

H−N−1(X) =
1

|B|
∑
B∈B

H(XB|X∂B), (3.6)

where the Bi are N − 1×N − 1 blocks and the set B is the set of all N − 1×N − 1

blocks within the grid, containing the upper left N−1×N−1 block of sites and such

that if Bi ∈ B, then the block obtained by shifting Bi one row down or one column

to the right is also in B so long as it is contained within the rectangular grid of sites.

The quantity H−N−1(X) would of course be the average number of bits required to

losslessly encode an N −1×N −1 block of missing sites conditioned on its boundary.

Now suppose the MRF is a homogeneous Ising model on a grid graph G. In

this case, each term of (3.6) is the same except for those blocks Bi that do not

have a full boundary in G, i.e., those that intersect either the first or last row or

first or last column of G. If G is large enough, the N − 1 × N − 1 block erasure

entropy H−N−1(X) will be dominated by blocks having a full boundary within G and

will roughly equal the conditional entropy H(XBi|X∂Bi) of such a block given its

boundary. If U is a grid cutset with row and column spacing N , each component of

G\U is an N−1×N−1 block of sites with a full boundary in G, thus the conditional

entropy of each component of G \ U given its boundary is approximately H−N−1(X).

Assuming there are M such blocks in G \ U , the entropy of the homogeneous Ising

model can be expressed as

H(X) = H(XU) +MH−N−1(X). (3.7)
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which says that the rate saved by not encoding the blocks is at least MH−N(X). In

Section 6.2 we discuss an algorithm for lossless compression for MRFs and in Section

6.3 apply this to homogeneous Ising models on 4 pt. and 8 pt. grid graphs. As

explained in this latter section, the encoding rates on a typical image can be used

to obtain a close estimate Ĥ(X) of H(X). By a very similar method as discussed

in Section 6.3, one can obtain a close estimate Ĥ−N−1(X) of H−N−1(X). Therefore,

by computing these estimates and plugging them into (3.7), one can get an estimate

Ĥ(XU) of the entropy H(XU) of the grid cutset for various block sizes N − 1. Since

the rate of lossy cutset coding is dominated by the rate of lossless coding of the grid

cutset, one can then use these estimates and compare versus the rates obtained, for

example, in Figure 3.15.
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3.7 Proofs

3.7.1 Proof of Lemma III.1

3.7.1.1 8-pt. topology

To prove Lemma III.1 for the 8-pt. model we need the following definition and

lemma. Given disjoint sets U, V ⊂ B̄, let e(U, V ) denote the number of edges from a

pixel in U to a pixel in V .

Lemma III.12. In the 8-pt. topology, if l is any loop in B̄, then

e(I(l), l) ≥ e(I(l), E(l))

, with equality if and only if l consists of the horizontal and vertical neighbors of a

single pixel.

Proof. Let l be an arbitrary loop in B̄. First note that each edge from the interior to

the exterior of l, counted in e(I(l), E(l)), is diagonal. We first observe that if s ∈ I(l)

and t is a neighbor of s in the exterior E(l), then the two neighbors that s and t share

are in l. This is because if u were in ∂s ∩ ∂t but not in l, then s− u− t would be an

HV-path from s to t not intersection l, which when appended to an HV-path from t

to ∂B would be an HV-path from s to the boundary not intersecting l. This would

contradict the fact that s is in the interior of l. Therefore, u must be in l.

Clearly,

e(I(l), E(l)) =
∑
i∈I(l)

| ∂i ∩ E(l) | .

For each i, | ∂i ∩ E(l) |= 0, 1, 2, 3 or 4 since the only edges from the interior to the

exterior are diagonal. Using the earlier observation, one may directly check that in

each of these five cases | ∂i ∩ E(l) |≤| ∂i ∩ l |, with equality only in the cases that

| ∂i∩E(l) |= 0 or | ∂i∩E(l) |= 4. The former does not contribute to the summation
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(a) (b) (c)

Figure 3.16: Black monotone loop with (a) all white interior; (b) all black interior;
(c) arbitrary interior.

above, while the latter happens when and only when l consists of the four horizontal

and vertical pixels surrounding a single pixel. It follows then that

e(I(l), E(l)) ≤
∑
i∈I(l)

| ∂i ∩ l |= e(I(l), l).

Equality holds when and only when for each i, | ∂i ∩ E(l) |=| ∂i ∩ l |, which can

happen when and only when l consists of the horizontal and vertical neighbors of a

single pixel.

Proof. We now prove Lemma III.1 for the 8 pt. model. Assume that x̂B is a MAP

reconstruction for a boundary x∂B that contains a monotone loop l, which we can

assume without loss of generality to be black. We must show that the interior xI(l)

is entirely black. The key fact, shown below, is that an entirely black loop interior is

strictly better than an entirely white loop interior, no matter the color of the pixels

surrounding the loop. This fact is used to prove the lemma as follows. If there were

any white pixels in the interior of the loop l, then there must be a connected set

of white pixels in the interior of l surrounded by a monotone black loop l′ of pixels

within l ∪ I(l), whose interior I(l′) is the connected set of white pixels. By the key

fact, replacing xI(l′) with black pixels would strictly decrease the number of odd bonds

in x̂B̄. Since x̂B̄ is MAP, this is not possible. Therefore, there must not be any white

pixels in the interior of l, i.e. all pixels in I(l) must be black.
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We now prove the key fact that an entirely black interior of a loop l is strictly

better than an entirely white interior, no matter the color of pixels in the exterior of

l. First note that the number of odd bonds between pixels in the exterior of l is the

same regardless of whether the interior is all white or all black. The same is true for

the number of odd bonds between the loop and the exterior of the loop. Moreover,

for both and all white or an all black interior, the number of odd bonds between sites

in the interior is zero. Therefore, the only odd bonds that depend on the color of I(l)

are those between the interior and the exterior of the loop, and those between the

interior of the loop and the loop itself. Since in Lemma 3.7.1.1 we showed that the

number of edges between the interior of the loop to the loop is at least as great as the

number of edges between the interior and exterior of the loop, it follows that a smaller

number of odd bonds results by making the interior of the loop the same color as the

loop itself. Thus, if l does not consist of the vertical and horizontal neighbors of a

single pixel, then an entirely black interior is strictly better than an entirely white

interior.

On the other hand, if l is the horizontal and vertical neighbors of a single pixel,

then the single pixel must be black. For, if one of the diagonal neighbors of this single

pixel is black, then it will have more black neighbors than white, and it will therefore

be strictly better for it to be black as well. If, on the other hand, all of the diagonal

neighbors are white, this creates a widget, which by Lemma III.7 is not possible in

a MAP reconstruction. This completes the proof that the interior of a black loop is

entirely black in a MAP reconstruction.

Figure 3.16 illustrates the above arguments.

3.7.1.2 4-pt. topology

Proof. Let l be a monotone black loop. If i is in the interior of l then all of i’s

neighbors are either also in the interior or are in the loop l. For, if k is some node
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(a) (b) (c)

Figure 3.17: Black boundary run containing (a) no corners; (b) one corner; (c) two
corners.

in the exterior that is also a neighbor of i, then i − k is an HV-path which, when

concatenated with the HV-path from k to the boundary, gives an HV-path from i

to the boundary, which would be a contradiction. Since there are no diagonal edges,

there are no edges from a node in the loop interior node to a node in the loop exterior.

Therefore, an black interior is strictly better than an all white interior. By similar

arguments to those in the previous proof, an all black interior is better to an arbitrary

interior.

3.7.2 Proof of Theorem III.2

Suppose x∂B contains one run of black pixels and one run of white pixels. Without

loss of generality we restrict attention to reconstructions generated by the black run

and black reconstruction paths. We will prove the theorem by cases, according to

the number of corners contained by the black run. Considering a counterclockwise

ordering of the endpoints of the black run, we will let rb1 denote the first endpoint

and rb2 the second endpoint. We will prove the theorem for the different cases by

first considering an arbitrary run containing no corners and then successively and

arbitrarily extending rb2 counterclockwise around the block boundary so that each of

the corner cases is considered in succession. The statements for each of the corner

cases will be proved by beginning with and modifying the conclusions of the previous

case. One may wish to consult Figure 3.17 in reading the arguments below.
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no corners: If the black run contains no corners, then it is entirely contained within

one side of the block, which without loss of generality we assume to be the right side.

The simple path consisting of the black run itself results in ∆max + 1 horizontal odd

bonds and ∆min + 2 vertical odd bonds. Thus there are ∆max + ∆min + 3 odd bonds,

as stated in (f). Moreover, there is
(∆max+∆min

∆min

)
= 1 such path as stated in (a).

one corner: Beginning with a black run contained within the right side of the

block, we note that all odd bonds are vertical or horizontal and to the left of the run.

Arbitrarily placing rb2 on the top of the block so that the black run contains one (the

upper right) corner, we prove the theorem for the one case in the following way. There

are
(∆max+∆min

∆min

)
simple paths connecting rb1 and rb2 as stated in (a). Furthermore, t

is straightforward to see that each of these results in the same number of odd bonds

per row and column as in the no corner case, with the following exception. The

vertical odd bond between rb2 and the row above is no longer included. Thus there

are ∆max + ∆min + 3− c odd bonds, since c = 1.

two corners: We now place rb2 arbitrarily on the left side of the block, so that

the resulting run now contains two corners. There are now
(

∆max−1
∆min

)
simple paths

connecting rb1 and rb2. We can see this, for example if rb2 is closer to the top row

than rb1, because the first step from rb2 to rb1 must be horizontal otherwise it would

run into a white boundary pixel. This verifies (a) for the case that the run contains

two corners. Additionally, the same number of odd bonds per row and column are

counted as in the one corner case except that now the vertical odd bond between rb2

and the row below is not included. Thus, since c = 2, there are ∆max + ∆min + 3− c

odd bonds.

three corners: If the black run contains three corners, then the white run contains

one corner. We let ∆′max, ∆′min and c′ refer to the white run and note that ∆max =

∆′max + 1 and ∆min = ∆′min + 1 and c = c′ + 2. We then compute that the number

of odd bonds is
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∆′max + ∆′min + 3− c′ = (∆max − 1) + (∆min − 1) + 3− (c− 2) (3.8)

= ∆max + ∆min + 3− c (3.9)

There are now
(

∆max−2
∆min−1

)
because the first step from rb2 to rb1 must be horizontal

while the last step must be vertical.

four corners: If the black run contains four corners then the white run contains

no corners and the claims can be established by considering the no corner case. Note

that the resulting MAP path is no simple.

3.7.3 Proof of Theorem III.3

To prove the theorem we will use the following fact, which is easy to verify.

Fact: The number of diagonal odd bonds between two successive rows of pixels is

(a) 0, if the two rows are monotone of the same color,

(b) 1, if one row is monotone and all pixels of the other have the same color except

one at its end,

(c) 2, if one row is monotone and the other has the same color except for the pixels

on each end of the row,

(d) 2, if one row has white pixels to the left, black pixels to the right and the

second row is identical to the first, or has the same form except that the transition

from white to black occurs one pixel to the left or to the right of the transition in the

first row,

(e) at least 3 in all other cases

One can verify the above fact using Figure 3.18.

Now, suppose we have a run of black pixels with major and minor differences ∆max

and ∆min, and furthermore suppose that the vertical distance between the endpoints
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Figure 3.18: Rows of a block illustrating the Fact.

is greater than the horizontal difference. Now consider a reconstruction formed by

a simple path connecting the endpoints of the run with those pixels falling between

the simple path and the boundary run being filled in as black, and the rest as white.

Note that there are ∆max (consecutive) pairs of adjacent rows, one of which is non-

monotone, and that each such pair satisfies either case (c) or (d) above, and therefore

has 2 diagonal odd bonds between the two rows. Moreover, if a reconstruction is

formed by a path that is not simple, then there exists a pair of adjacent rows, one

of which is non-monotone, such that case (e) applies and that therefore there are

more than 2 odd bonds between them. Were the major difference in the horizontal

direction we could apply the same argument counting diagonal odd bonds between

adjacent columns of reconstructions determined by simple paths. We conclude that

in the 8 pt. model reconstructions determined by simple paths attain the minimum

number of diagonal odd bonds. Furthermore, by noting that simple paths between

endpoints rb1 and rb2 in the 8 pt. model are a subset of those between these endpoints

in the 4 pt. model, and recalling that simple paths between given endpoints in the

4 pt. model attain the minimum number of horizontal and vertical odd bonds, we

additionally conclude that reconstructions in the 8 pt. model resulting from simple

paths attain the minimum total number of odd bonds. Thus it remains to count the

numbers of valid simple reconstruction paths for each case, as well as the numbers of

odd bonds for each.

Suppose x∂B contains one run of black pixels and one run of white pixels. Without

loss of generality we restrict attention to reconstructions generated by the black run

80



and black reconstruction paths. Again, one may wish to consult Figure 3.17 in reading

the arguments below.

no corners: If the black run contains no corners, then it is entirely contained

within one side of the block, which without loss of generality we assume to be the

right side. By Theorem III.2 there are ∆max + ∆min + 3− c horizontal and vertical

odd bonds in a reconstruction determined by the single simple path connecting rb1

and rb2. By the above Fact, there are 2∆max diagonal odd bonds between the rows

intervening rb1 and rb2. In addition there is a diagonal odd bond between rb2 and its

neighbor to the northwest and an additional diagonal odd bond between rb1 and its

neighbor to the southwest. Thus, there are 3∆max + ∆min + 5 odd bonds.

one corner: Arbitrarily placing rb2 on the top of the block so that the resulting

run contains one corner, we note that the number of horizontal, vertical and diagonal

odd bonds is a 3∆max + ∆min + 5− 4 since rb2 no longer has neighbors to the north

and northwest. One can see that there are again
(

∆max
∆min

)
simple paths connecting rb1

and rb2, as stated in (a) and (b).

two corners: Arbitrarily placing rb2 on the left side of the block so that the resulting

run contains two corners, we note that the number of horizontal, vertical and diagonal

odd bonds is a 3∆max + ∆min + 5 − 2 since rb2 no longer has neighbors to the west

and southwest. One can see that there are
(

∆max
∆min

)
simple paths connecting rb1 and

rb2, as stated in (a) and (b).

three corners: If the black run contains three corners, then the white run contains

one corner. We let ∆′max, ∆′min and c′ refer to the white run and note that ∆max =

∆′max + 1 and ∆min = ∆′min + 1 and c = c′ + 2. We then compute that the number

of odd bonds is
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3∆′max + ∆′min + 5− 2c′ = 3(∆max − 1) + (∆min − 1) + 5− 2(c− 2) (3.10)

= 3∆max + ∆min + 5− 2c (3.11)

We see that there are again
(

∆max
∆min

)
valid simple paths connecting rb1 and rb2.

four corners: If the black run contains four corners then the white run contains

no corners and the claims can be established by considering the no corner case.

3.7.4 Proof of Lemma III.5

Let C = (w1, b2, w2, b2) be an interior widget in a MAP reconstruction, where w1

is in the upper left corner, b1 in the upper right, w2 in the lower right, and b2 in the

lower left. By Lemma III.1, b1 is connected by a monotone path to a black run, say,

rb,1, and b2 is monotone connected to the other black run, rb,2. This is because if b1

and b2 were monotone connected to the same run, then concatenating the monotone

path from b1 to rb,1 with the monotone path from rb,1 to b2 would result in a monotone

loop the interior of which would contain either w1 or w2. This would contradict the

MAP assumption. Now assume there exists a second widget C ′ = (w′1, b
′
2, w

′
2, b
′
2). By

the same argument as above, b′1 and b′2 are monotone connected to different runs.

Assume without loss of generality that b1 and b′1 are monotone connected to the

same black run and bw and b′w are monotone connected to the other black run. Now,

concatenating the monotone paths from b1 to rb,1, rb,1 to b′1, b′1 to b′2, b′2 to rb,2, rb,2 to

b2, and that from b2 to b1 results in a monotone loop the interior of which contains

either w2 or w1. This again contradicts MAP and therefore there is no other widget.

This completes the proof.
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3.7.5 Proof of Theorem III.6

(a) We must show that O∗(r) = min{O2(rb,1, rb,2), O2(rw,1, rw,2)}. First, O∗(r) ≤

O2(rb,1, rb,2), because as mentioned at the beginning of Section 3.2.4, merging the

black pixels in one-run-optimal black reconstructions for rb,1 and rb,2 yields a re-

construction with at most O2(rb,1, rb,2) odd bonds. Similarly, O∗(r) ≤ O2(rb,1, rb,2).

It follows that O∗(r) ≤ min{O2(rb,1, rb,2), O2(rw,1, rw,2)}. To show the reverse in-

equality, we note that O∗(r) = min{Ow−HV (r), Ob−HV (r)}, where Ow−HV (r) denotes

the minimum number of odd bonds of all reconstructions where the white pixels

are connected, and Ob−HV (r) is defined similarly. This is due to Lemma III.5, in

that if there is a single widget in a MAP reconstruction, because there are no

diagonal edges in the 4 pt. model, we can flip one of the black widget pixels

to give a white-HV reconstruction, so that Owid ≥ Ow−HV , and likewise Owid ≥

Ob−HV . Since O∗(r) = min{Ow−HV (r), Ob−HV (r), Owid(r)}, this verifies the claim that

O∗(r) = min{Ow−HV (r), Ob−HV (r)}. We now show that Ow−HV (r) ≥ O2(rb,1, rb,2).

Let Bw, B
′
b,1, B

′
b,2 prescribe a white HV-connected reconstruction with fewest odd

bonds. Since, B′b,1 and B′b,2 do not touch, the number of odd bonds in this re-

construction is at least O∗(rb,1) + O∗(rb,2)
∆
=O2(rb,1, rb,2). Therefore, Ow−HV (r) ≥

O2(rb,1, rb,2). Similarly, Ob−HV (r) ≥ O2(rb,1, rb,2). It now follows that O∗(r) =

min{Ow−HV (r), Ob−HV (r)} ≥ min{O2(rb,1, rb,2), O2(rw,1, rw,2)}, and this completes

the proof of (a).

(b,c) Merging the black pixels in any one-run-optimal black reconstructions for

rb,1 and rb,2 yields a reconstruction with at most O2(rb,1, rb,2) odd bonds. In fact, the

number of odd bonds in such a reconstruction equals O2(rb,1, rb,2) if and only if the

reconstructions for rb,1 and rb,2 do not touch. Thus, if there exists one-run-optimal

reconstructions for rb,1 and rb,2 that do touch, then there exists a reconstruction with

fewer odd bonds than O2(rb,1, rb,2), which would mean O∗(r) < O2(rb,1, rb,2). The

contrapositive says that if O∗(r) = O2(rb,1, rb,2), then no pair of one-run-optimal re-
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constructions for rb,1 and rb,2 can touch. Furthermore, since the number of odd bonds

in the reconstruction generated by merging is O2(rb,1, rb,2), which by hypothesis equals

O∗(r), we see that every such pair yields a white connected MAP reconstruction. This

proves (b) and (c) is proved similarly.

3.7.6 Proof of Lemma III.7

Proof. This is proved by contraposition. Namely, we prove that if a configuration

x̂B contains a widget, then one or two of the pixels in the widget can be changed to

reduce the number of odd bonds, indicating that x̂B is not MAP. Let C denote a 2×2

subblock of B in which x̂B is a widget. We let i and j denote the black widget sites

and let k and l denote the white widget sites. Site i has five neighbors that are not

in C, and these are referred to as non-C neighbors. By the Pigeon Hole Principal, at

least three are black or at least three are white. The same holds for j. There are two

basic cases to consider.

(A) Assume that at least three of i’s non-C neighbors are white. Since i has two

neighbors in C that are white, the number of odd bonds in x̂B can be decreased by

changing i to white. The same holds if j has at least three non-C white neighbors.

Therefore, if i or j has at least three white non-C neighbors, then x̂B is not MAP.

(B) The remaining case is where both i and j have at least three black non-C

neighbors. Pixel i shares two non-C neighbors with site k and two more with site l.

Let bi(k) and bi(l) denote the numbers of black non-C neighbors that pixel i shares

with k and l, respectively. Then 0 ≤ bi(k), bi(l) ≤ 2, and because i has at least three

black non-C neighbors, we have bi(k) + bi(l) ≥ 2. Similar definitions are made for

bj(k) and bj(l), and the same bounds apply. We consider three specific cases based

on the values of the bi’s and bj’s.

(B1) Suppose bi(k) = 0, so that bi(l) = 2. There are two subcases. (B1a) If

bj(l) > 0, then one can see that l has more black neighbors than white, which means
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that changing l to black decreases the number of odd bonds, and therefore x̂B is not

MAP. (B1b) If bj(l) = 0, then bj(k) = 2, and k and l each have at least four black

neighbors, i.e. at leat four odd bonds. By changing both to black means that each

has at least five black neighbors, because each becomes a black neighbor of the other.

Thus, each now has at most three odd bonds, a reduction, which again shows that

x̂B is not MAP.

(B2) Suppose that bi(k) = 1, so that bi(l) ≥ 1. There are three subcases. (B2a)

If bj(k) = 0, then bj(l) = 2, and pixel l has at least five black neighbors, so that

changing it to black reduces the number of odd bonds, and hence x̂B is not MAP.

(B2b) If bj(k) = 1, then bj(l) ≥ 1, and both k and l have at least four black neighbors.

Changing both to black as in (B1b) reduces the number of odd bonds, hence x̂B is

not MAP. (B2c) If bj(k) = 2, then k has at least five black neighbors. Changing it to

black reduces the number of odd bonds. Hence x̂B is not MAP.

(B3) Suppose bi(k) = 2. There are two subcases. (B3a) If bj(k) > 0, then k has at

least five black neighbors, and changing it to white reduces the number of odd bonds.

Hence x̂B is not MAP. (B3b) If bj(k) = 0, then both k and l have at least four black

neighbors, so that changing them both to black reduces the number of odd bonds.

Hence, x̂B is not MAP.

This completes the proof of Lemma III.7

3.7.7 Proof of Theorem III.8

Proof. Assume there exists a widget w on the boundary of (x∗B, x∂B). Assume without

loss of generality that w includes the edge {rw,12 , rb,11 } consisting of the last endpoint of

the first white run and the first endpoint of the second black run. First, assume that

neither rw,22 nor rb,11 is a corner pixel. The other black pixel in the widget is wb and

the other white widget site is ww. Assuming clockwise indexing, the black runs are

rb,1 = (rb,11 , rb,12 ) and rb,2 = (rb,21 , rb,22 ), and similarly for the white runs rw,1 and rw,2.
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The edge {wb, rb,11 } is diagonal. If wb is connected to rb,1 through a path intersecting

rb,1 at a site r′ distinct from rb,11 , then the white widget pixel ww is enclosed in the

loop wb− r′− rb,11 −wb, which contradicts the assumption that x∗B is MAP. Thus the

black site wb is not HV-connected to the run rb,1. By Lemma III.1, therefore, wb is

monotone (black) HV-connected to rb,2 which means that the sets Bw
1 and Bw

2 are

connected only through the diagonal edge {ww, rw,12}.

There is a path from wb to rb,22 and a path from wb to rb,21
1. Hence, there is

a monotone black cycle wb − rb,21 − rb,22 − wb. Now assume there is a widget at

{rb,22 , rw,11 }, and again assume that neither rb,22 nor rw,11 is a corner pixel. Letting w′b

and w′w denote the black and white interior pixels of this second widget, we note

that the edge {rb,22 , r′′} is diagonal and the white pixel w′w is contained in the above

mentioned black monotone cycle. Again, this contradicts the assumption that x∗B is

MAP. Of course the same arguments hold if we assume a second widget at {rb,21 , rw,22 },

and naturally, for any other choice of two or more widgets.

Now assume that rb,11 is a corner pixel. Since by assumption rb,11 is part of a widget,

the black run rb,1 consists of a single pixel, hence rb,11 = rb,12 . Obviously, then, wb is

not monotone HV connected to rb,1 and is therefore monotone HV connected to rb,2.

Now assume without loss of generality that there is a second widget at {rb,22 , rw,11 }

where neither endpoint of this edge is a corner pixel. By arguments similar to those

above, this implies that the white interior pixel w′w of the second widget is contained

within a monotone black loop, which contradicts the MAP assumption.

Now assume that there are two widgets that each contain a corner. It is straight-

forward to show that corner pixel of both widgets must be the same color. Without

loss of generality, assume that both corner widget pixels are black. Thus the bound-

ary consists of two isolated black pixels and the rest white. It is clear that the MAP

reconstruction has an all white interior.

1Each of these paths is a one-run optimal path.
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This proves that if x∗B is a bi-connected MAP reconstruction, then x∗B has exactly

one widget on the boundary.

3.7.8 Proof of Theorem III.9

Proof. (a) We must show that O∗(r) = min{O2(rb1, r
b
2), O2(rw1 , r

w
2 ), Owid(r)}. First,

O∗(r) ≤ O2(rb1, r
b
2), because as mentioned just before the theorem, merging the black

pixels in one-run-optimal black reconstructions for rb1 and rb2 yields a reconstruction

with at most O2(rb1, r
b
2) odd bonds. Similarly, O∗(r) ≤ O2(rb1, r

b
2). By definition

O∗(r) ≤ Owid(r). It follows that O∗(r) ≤ min{O2(rb1, r
b
2), O2(rw1 , r

w
2 ), Owid(r)}. To

show the reverse inequality, we note that O∗(r) = min{Ow−HV (r), Ob−HV (r), Owid(r)}.

We now show that Ow−HV (r) ≥ O2(rb1, r
b
2). Let Bw, B

′
b,1, B

′
b,2 prescribe a white HV-

connected reconstruction with fewest odd bonds. Since, B′b,1 and B′b,2 do not touch,

the number of odd bonds in this reconstruction is at least O∗(rb1)+O∗(rb2)
∆
=O2(rb1, r

b
2).

Therefore, Ow−HV (r) ≥ O2(rb1, r
b
2). Similarly, Ob−HV (r) ≥ O2(rb1, r

b
2). It now follows

thatO∗(r) = min{Ow−HV (r), Ob−HV (r), Owid(r)} ≥ min{O2(rb1, r
b
2), O2(rw1 , r

w
2 ), Owid(r)},

and this completes the proof of (a).

(b) We first argue that Owid(r) ≥ max{O2(rb1, r
b
2), O2(rw1 , r

w
2 )} − 2. Consider a

bi-connected reconstruction with one widget on the boundary and no islands that

has Owid(r) odd bonds. It is determined by two black paths and two white paths.

Consider the black path that does not include the boundary widget pixel, and call it

p1. It is monotone HV connected to one of the black runs, say, rb1. If we flip the black

boundary widget pixel to white, then the run p1 has at least O∗1(rb1) odd bonds. Now

consider the black path p2 that is monotone HV connected to rb2 and thus includes

the boundary widget pixel. If we flip the black interior widget pixel to white, then

p2 has at least O∗1(rb2) odd bonds. Since the widget reduces the number of odd bonds

from these two paths by a total of 2, Owid(r) ≥ max{O2(rb1, r
b
2), O2(rw1 , r

w
2 )} − 2. If

the sets Bb,1, Bb,2, Bw,1, and Bw,2 meet at a widget then O2(rb1, r
b
2) = O2(rw1 , r

w
2 ) and
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the resulting reconstruction therefore has min{O2(rb1, r
b
2), O2(rw1 , r

w
2 )} − 2 odd bonds,

which means Owid(r) = O2(rb1, r
b
2) − 2 = O2(rw1 , r

w
2 ) − 2, hence O∗(r) = Owid(r). The

reconstruction determined by Bb,1, Bb,2, Bw,1, and Bw,2 obtain this minimum.

(c) (i, ii) Below we prove that if a bi-connected reconstruction has fewer odd bonds

than any white or black HV connected reconstruction, then the sets Bb,1, Bb,2, Bw,1,

and Bw,2 meet at a widget. The contrapositive of this says that if Bb,1 and Bb,2 do not

touch at the boundary or if Bw,1 and Bw,2 do not touch at the boundary, then there

is an HV connected reconstruction with at most Owid(r) odd bonds. In particular,

if Bw,1 and Bw,2 touch at the boundary, the number of odd bonds determined by

these sets is O2(rw1 , r
w
2 ) − 2, whereas a white HV connected reconstruction would

have at least O2(rw1 , r
w
2 ) odd bonds, so that Ow−HV > Owid(r). This means that if

Bb,1 and Bb,2 do not touch at the boundary, then any pair of one-run-optimal paths

for rb1 and rb2 will have O2(rb1, r
b
2) odd bonds, which by the contrapositive, and the

fact that Ow−HV > Owid(r), will be no more than Owid(r) ≤ O2(rw1 , r
w
2 ) − 2. Thus,

O∗(r) = O2(rb1, r
b
2) and merging the reconstructions for any pair of one-run-optimal

paths for rb1 and rb2 will determine a MAP reconstruction. If neither Bb,1 and Bb,2 nor

Bw,1 and Bw,2 meet at the boundary, then O∗(r) = min{O2(rb1, r
b
2), O2(rw1 , r

w
2 )} by the

contrapositive and any pair of one-run-optimal paths for the runs corresponding to

this minimum will determine a MAP reconstruction.

Now we prove that if a bi-connected reconstruction has fewer odd bonds than any

white or black HV connected reconstruction, then the sets Bb,1, Bb,2, Bw,1, and Bw,2

meet at a widget. There are two cases to consider: Neither widget pixel being in a

corner, and one of the widget pixels being in the corner. We first consider the former.

Assume that a bi-connected reconstruction x̄B is uniquely MAP. Consider the

3 × 4 subrectangle where the middle two sites of the top row are the two boundary

widget sites. This is illustrated in Figure 3.19 (c) and (d). Without loss of generality

assume that the upper right widget pixel is black and the upper left is white. We
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(a) (b) (c) (d)

Figure 3.19: Blocks illustrating the last part of the proof of Theorem III.9

denote the white boundary widget pixel as ww1 and the black boundary widget pixel

as wb1. The middle two pixels in the second row of the rectangle are widget pixels

and we refer to the white and black interior widget pixels as ww2 and wb2, respectively.

We will enumerate the remaining sites of the rectangle 1, 2, . . . , 8 beginning at the

top left and moving counterclockwise to the top right site of the rectangle. Since we

assume that x̄B is uniquely MAP, then the interior black widget pixel wb2 must have

at least four black neighbors in addition to wb1. Since it has two white neighbors in

ww1 and ww2 , wb2 can have four or five black neighbors in positions 1 through 5. By

the symmetric argument, the interior white widget pixel ww2 must have four or five

white neighbors in positions 4 through 8. Since there are only 8 available positions,

it is clear that positions 1 through 3 must be black and positions 6 through 8 must

be white. If a white pixel is in position 4 and a black pixel is in position 5, then

this would form an interior widget with ww2 and wb2, so positions 1 through 4 must

be black and positions 5 through 8 must be white. This completes the configuration

inside the 3× 4 rectangle.

To show that this configuration corresponds to outer black and outer white paths,

first note that the isolated boundary widget pixels are themselves (trivial) runs. Next,

the black pixel in position 1 is one endpoint of the other black run. Let us denote

the other endpoint of this run by rb. Note that if we remove the top row of the block,

by Lemma III.7 the remainder of the block contains no widgets and the contour

connecting wb2 and rb must be one-run-optimal. If rb is directly under or to the right
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of ww2 , then there is a white column of some white between wb1 and a black pixel,

call it b, directly beneath ww2 . Moreover, since the contour between wb2 and rb is one-

run-optimal, the entire under ww1 is black. It can be shown that filling in the white

column between ww2 and b with black yields a black HV connected reconstruction

that is no worse (i.e., does not increase the number of odd bonds), which contradicts

the assumption that x̄B is uniquely MAP. Therefore, the other black run endpoint

rb must be directly under or to the left of wb2. By the symmetric argument, the run

endpoint rw (connected to the white pixel in position 8) must be directly under or

to the right of w2
w. This implies that rb is directly under wb2 and rw is directly under

ww2 . Thus the path from the black pixel in position 1 to rb is the outer path, and the

path from the white pixel in position 8 to rw is the outer path. This completes the

proof for the case that neither boundary widget pixel is in the corner.

For the case where one of the boundary widget pixels is in the corner, assume

without loss of generality that the upper left corner of x̄B is white. Then, the pixels

to the right and below this pixel are black. For the analysis we consider the 3 × 3

subblock in the upper corner of B̄, illustrated in Figure 3.19 (a) and (b). We label

the widget pixels in the same manner as before, as ww1 , wb1, wb2 and ww2 , and the

remaining sites of the 3×3 subblock as 1, 2, . . . , 5 beginning in the lower left corner and

proceeding counterclockwise. First note that wb1 and wb2 belong to distinct monotone

HV components. At least four of pixels 1 through 5 must be white, or else pixel ww2

could be flipped to black to yield a black HV-connected reconstruction with fewer

odd bonds, which by assumption is not possible. If all five of 1, . . . , 5 are white, then

we are done, as wb1 and wb2 would be the (trivial) outer paths of the runs consisting

of themselves, ww1 would similarly be the outer path for the run consisting of itself,

and 1 − ww2 − 5 would be the outer path for the other white run. If there are four

white pixels, then pixel 1 or 5 must be black, because if 2, 3, or 4 is black they would

not be HV connected to wb1 or wb2 which would be the two black runs. Without loss
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of generality assume that site 1 is black and 2 through 5 are white. Now let b be the

endpoint of the black run containing wb2 and let w be the endpoint of the white run

containing pixel 5. Clearly, b and w are adjacent.

The endpoint b must be on the left border of ∂B. Otherwise we can find a black

HV reconstruction that is at least as good. For example, if b is under or to the right

of wb1, then there will be a black pixel, call it b′, directly under wb1 so that we can fill

in the entire column between wb1 and b′ black and create a black HV reconstruction

that is at least as good. Since b is on the left border of the block, the only simple

path from wb2 to b is the black run itself, and the resulting white path from 5 to w

is the outer path for this white run. This complete the proof for the case where the

widget includes a corner of the block, and it completes the proof that if a bi-connected

reconstruction has fewer odd bonds than all HV reconstructions, then the outer paths

from rb1 to rb2 touch and those from rw1 to rw2 all touch.

3.7.9 Proof of Theorem III.10

Proof. We will prove this case by case.

First assume that (i, j) ∈ Bw∩Bb. Since (i, j) ∈ Bw there is a MAP configuration

x̂1 with x̂1
(i,j) = 0 and since (i, j) ∈ Bb there is a MAP configuration x̂2 with x̂2

(i,j) = 1.

Since x̂1 and x̂2 are both MAP, they have the same number of odd bonds, therefore

o∗ij(0) = o∗ij(1) and hence o∗ij = 0.

Now assume that (i, j) ∈ Bw \ Bb and (i, j) ∈ ∂Bb. Since (i, j) 6∈ Bb, in all MAP

configurations x̂ on B, x̂(i,j) = 0. Now let x̂ be the MAP configuration determined

by Bb. We claim that since (i, j) ∈ ∂Bb, it is connected to only one site in Bb. To

see this, suppose that (i, j) has two neighbors (m1, n1) and (m2, n2) in Bb. Suppose

without loss of generality that (m1, n1) is a horizontal neighbor of (i, j) and (m2, n2)

is a vertical neighbor of (i, j). Flipping site (i, j) to black reduces the number of

odd bonds between (i, j) and its neighbors by 2, since it would now agree with both
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(m1, n1) and (m2, n2). Since (i, j) only has four neighbors, the net result of flipping

(i, j) to black is either a reduction in the number of odd bonds or keeping the number

the same. In the former case, this contradicts the assumption that x̂ is MAP; in the

latter case this contradicts the assumption that x̂ is determined by the outer path for

rb, which by definition, contains the most black pixels of all MAP reconstructions.

Therefore, we conclude that (i, j) has only a single neighbor in Bb.

The configuration x̂ determined by Bb obtains the minimum number of odd bonds

of all configurations with site (i, j) as 0. We now want to flip (i, j) to 1 and count

the increase in the number of odd bonds. We claim that the resulting number of

odd bonds is the minimum number of odd bonds out of all configurations with (i, j)

have the value 1. Since (i, j) has only one neighbor in Bb, assume without loss of

generality that it is a horizontal neighbor (m,n) = (i, j + 1). It is straightforward to

verify that Bb∩B is a rectangle of sites. It follows that columns 1, . . . , j are white, i.e.

have value 0, in x̂. If we flip (i, j) to black, then, we remove the odd bond between

(i, j) and (i, j + 1) and add an odd bond between (i, j) and (i, j − 1), so the number

of horizontal odd bonds is the same. However, there will be an addition of at least

two odd bonds in column j by letting pixel (i, j) be 1. Now suppose there is a MAP

configuration in which site (i, j+1) is white. Now, all neighbors of site (i, j) are white

so flipping it to black will result in four additional odd bonds. Therefore o∗ij = 2 as

claimed in the theorem.

Now suppose that (i, j) ∈ Bw \ (Bb∪∂Bb). Let x̂ again be the MAP configuration

determined by Bb. In x̂ all neighbors of site (i, j) are white so flipping (i, j) to black

increases the number of odd bonds by four. Suppose without loss of generality that

site (i, j−k) ∈ Bb is the nearest site in Bb to (i, j). Flipping additional sites of B \Bb

to black in order to connect (i, j) to Bb would incur at least 2(k−1) additional vertical

odd bonds, where k ≥ 2, while removing only 2 horizontal odd bonds. Therefore,

o∗ij = 4.
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Similar arguments show that if (i, j) ∈ Bb \ Bw and (i, j) ∈ ∂Bw, then o∗ij = −2

and that if (i, j) ∈ Bb \ (Bw ∪ ∂Bw), then o∗ij = −4.
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CHAPTER IV

Local Conditioning for Markov Random Fields

In this chapter we discuss Local Conditioning, a method for performing exact

statistical inference in a cyclic MRF. As mentioned in Section 2.4, we focus on in-

ference for a single node but this can of course be generalized to larger subsets as

we discuss briefly at the end of Section 4.1. By exact we mean that it can be shown

that said probabilities are correct for the particular model, as opposed to approxi-

mate methods for which no guarantee can be given. In this chapter we present Local

Conditioning in the context of the Sum-Product problem, but everything holds just

as well for Max-Product, along with any other problem that can fit in the framework

of the Generalized Distributive Law [1]. To compute the probability pG(xi) that node

i assumes value xi, we need to compute the belief Zi(xi), from which the probability

can be computed straightforwardly as

pG(xi) =
Zi(xi)

Z

=
Zi(xi)∑

x′i∈Xi
Zi(x′i)

.

If G has no cycles, the beliefs can be computed using the respective message recursion

and belief computation formulas (II.4) and (II.3).

In order to compute exact beliefs for nodes of a cyclic graph, one can use, for ex-
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ample, the clustering method described in Section 2.4.4, or some other such method

involving grouping together nodes of the original graph. However, approximate meth-

ods such as LBP and its Tree-reweighted generalization are appealing because they

are truly distributed, meaning that messages are exchanged between individual nodes

of the graph rather than aggregate supernodes. This is important for scenarios such

as sensor networks, where there is no natural analogue to “lumping nodes together”.

The Local Conditioning algorithm discussed in this chapter has the best of both of

these worlds, in that it is an exact inference algorithm for cyclic graphs in which

messages are passed between individual nodes rather than supernodes.

Local Conditioning is an adaptation to a general algorithm known as Condition-

ing, which centers around the concept of a loop cutset of nodes, a subset L ⊂ V

of sites such that removing those sites and all edges connected to them leaves an

acyclic graph. Fixing the value at a node i is equivalent to removing i from the

graph and augmenting the self-potential Φj(xj) of each neighbor j ∈ ∂i by the fac-

tor Ψij(xi, xj), where xi is the fixed value at node i, giving the new self-potential

Φ̂j(xj) = Ψi,j(xi, xj)Φj(xj). Therefore, by fixing the values on a loop cutset L, we

can remove L from the graph, modify the self-potentials on neighbors of L, and run

BP on the acyclic remainder. Messages and beliefs computed in this manner would

of course be conditioned on the particular configuration xL assigned to L, but by it-

erating over all possible assignments xL to nodes in L, the overall beliefs for nodes in

V \L can be computed. Because of this it is helpful to think of the loop cutset nodes

as representing or corresponding to deterministic variables, values that can change,

but once fixed, remain constant while the values at other nodes are allowed to vary.

This is the basis of Conditioning algorithms.

In order to compute beliefs for nodes in L, however, it is convenient to, instead of

removing L, splitting the nodes in L into multiple copies. This will create a new graph

G, called an edge cover, in which there is a one-one correspondence between edges
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in G and edges in G. Note that the copies of nodes in L can be viewed as simply

representations of the induced self-potentials described above. Retaining copies of

nodes in L not only makes it easier to compute beliefs for nodes in L, since there

will be nodes to “receive” information for them, but also for performing Conditioning

in a parallel rather than serial fashion. Here, instead of iterating over different loop

cutset configurations xL, at each iteration passing the usual vector messages, we can

perform a single round of BP with matrix-valued messages. In this case, a column

of the message matrix would correspond to the vector-valued message computed for

that edge conditioned on some value xL of the loop cutset nodes.

Conditioning was introduced in Pearl’s early work on BP [38, 39] in the context

of probabilistic models on directed graphs. Much research followed in regard to find-

ing small loop cutsets [49, 6, 13] and various algorithm adaptations [46, 14]. Diez

introduced the idea of Local Conditioning as a means of reducing complexity [16] by

recognizing that the size of the matrix message over a given edge could be reduced by

looking at the topology of the graph. Then Fay and Jaffray [20] gave an analytical

justification for LC, by focusing on a (canonical) example of a directed graph. The

reason the analysis in [20] was restricted to an example is that the directionality of the

edges in such models limited what could be stated in terms of global update formulas

and complexity formulas.

As mentioned above, Local Conditioning has a distinct advantage over clustering

algorithms in that the latter require lumping nodes together into super-nodes, while

the former is truly distributed with messages passed between individual units. This

is important not only for sensor network type applications, but also hardware imple-

mentation on digital circuits. Furthermore, an appealing aspect of LC is that it is

analogous to the “reasoning by cases” that humans do [38].

In Section 4.1 we discuss edge covers and conditioning. In Section 4.2 we review

the basics of the Method of Conditioning for MRFs. In Section 4.3 we introduce Local
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Conditioning for MRFs. Finally, in Section 4.4 we look at an example loop cutset

for a 4 pt. grid graph and analyze the complexity of Local Conditioning under three

different splitting schemes.

4.1 Edge Covers and Conditioning

In this section we discuss the idea of splitting nodes of a graph G to produce an

edge cover G and how to properly define potentials on G to yield an equivalent MRF,

by which we mean an MRF, defined on G, on which computed beliefs correspond to

the true beliefs on the original MRF defined on G.

An edge cover for G is a graph G = (V̄ , Ē) for which there exists an onto mapping

ρ : V̄ → V satisfying the following conditions: if {i, j} ∈ Ē, then {ρ(i), ρ(j)} ∈ E;

and if {i, j} ∈ E, there exists a unique edge {i, j} ∈ Ē such that ρ(i) = i and

ρ(j) = j. In other words, there is a one-to-one correspondence between edges of a

graph G and those of an edge cover G for it. The inverse mapping ρ−1 from V to V̄ is

not a function from V to V , as some nodes in V will be mapped to multiple nodes in

V̄ , but instead can be thought of as a splitting of G, meaning, if for node i ∈ V , ρ−1(i)

consists of more than one node in V̄ , the mapping ρ−1 can be thought of as splitting i

into |ρ−1(i)| copies. For instance, if i has k neighbors in G, then we can split i into 2,

3, up to k, copies. We let L ⊂ V denote the set of nodes that are split and let L̄ ⊂ V

denote the copies of these split nodes in G. From here on out, we restrict attention

to edge covers such that if i ∈ L and j ∈ ∂i, then j 6∈ L. For l ∈ L, let k(l) denote

the number of copies of l in G. Then, for i = 1, 2, . . . , k(l), we let l(1), l(2), . . . , l(k(l))

denote the respective copies of l in V̄ . The map ρ induces a partition of ∂l according

to the copies of l to which it is connected. That is, for i = 1, 2, . . . , k(l), ρ maps

the neighborhood ∂l(i) to a subset Ali of ∂l, i.e., ρ(∂l(i)) = Ali. Therefore there is a

correspondence between a split node l and the set of copies l(1), l(2), . . . , l(k(l)) of l in

G. For each non-split node i ∈ V \ L there is a unique non-copy node i ∈ V̄ \ L̄ that
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: (a) An acyclic graph with split node indicated in red; (b) partial unwrap-
ping, (c) complete unwrapping. (d) Cyclic grid graph with split node
indicated in red; (e) partial unwrapping, (f) complete unwrapping.

corresponds to it. As such we will often interchange i and i when these correspond.

If G is an edge cover for G and is acyclic, then it is called an acyclic edge cover. If

G is acyclic and disconnected, then G is called a forest. Note that an edge cover G

is a function both of the set of split nodes L and the splitting ρ−1. We will at times

refer to an edge cover both as a splitting and an unwrapping of the original graph

G. If the splitting map ρ−1 is such that for each split node l ∈ L there are as many

copies of l in G as there are neighbors of l in G, then we refer to this as a complete

unwrapping of G based on L, and denote it by G
∗

= G
∗
L. This means that in G, each

copy of l is a leaf node with a unique neighbor. Figure 4.1 illustrates splitting nodes

for two different graphs. In (a) we see an original acyclic graph and in (b) and (c) we

see two different unwrappings. In (d) we see a cyclic grid graph and in (e) and (f)

two different unwrappings for it. Subsequently, we refer to L as split nodes and L̄ as

copy nodes.

An assignment xL̄ to the copy nodes in G is determined or induced by a config-
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uration xL on the split nodes of G in the following way. Given a value xl for split

node l, each copy l(i) of l is assigned the value xl(i) = xl. That is, all copies of a given

split node are constrained to have the same value and that value corresponds to the

same value on the original split node. Given the value xj on a non-split node j, the

corresponding non-copy node j is assigned the value xj = xj. In this way, we have

established a one-to-one correspondence between configurations x on G and configu-

rations x̄ on G. The correspondence can be thought of in a two-step manner. First,

a configuration xL on the split nodes induces or selects a configuration xL̄ on the

deterministic copy nodes of G. Then, an assignment to nodes in V \L corresponds to

an identical assignment to nodes in V̄ \ L̄. A configuration on the copy nodes L̄ such

that all copies of the same split node have the same value is referred to as induced

or valid configuration and corresponds to a configuration on the split nodes. There

is a one to one correspondence between configurations on the split nodes in L and

valid configurations on L̄. In the context of the upcoming Conditioning algorithms,

we will perform inference over all configurations of X on G by fixing a configuration

on L̄, then performing inference over all configurations on V̄ \ L̄, then repeating for

all subsequent valid configurations on L̄, and then summing them in the appropriate

way.

The purpose of using an unwrapped graph G and configurations on it is to use

it to compute beliefs for nodes in G. For a non-split node j ∈ V \ L, we want to

compute the belief Zj(xj) for different values of xj as

Zj(xj) =
∑
xL

Zj∪L(xj, xL) (4.1)

and for a split node j ∈ L, as

Zj(xj) =
∑
xL\j

ZL(xj, xL\j). (4.2)
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With the goal of using beliefs on G to compute these beliefs on G, we now consider

potentials on the nodes and edges of G, namely Φ and Ψ. This will specify an MRF.

However, the configurations of this MRF do not all contain valid configurations for

the copy nodes. Therefore, we are not interested in this MRF, but we are interested in

the distribution of the configurations of this MRF conditioned on valid configurations

of the copy nodes. We find such conditional distributions by finding conditional

beliefs. In particular, for a fixed configuration xL and induced configuration xL̄, the

conditional belief for a node j on G and conditioned on xL is denoted Z
(xL)

j , and is

well defined in the usual1 way for beliefs:

for non-copy node j 6∈ L̄

Z
(xL)

j (xj) =
∑

xV̄ \(L̄∪j)

∏
i∈V̄

Φi(xi)
∏
{i,k}

Ψi,k(xi, xk) (4.3)

for j ∈ L̄

Z
(xL)

j (xj) =


∑
xV̄ \L̄

∏
i∈V̄

Φi(xi)
∏
{i,k}

Ψi,k(xi, xk), xj = (xL)j

0, else

(4.4)

If we were not restricting attention to configurations with valid MRFs, beliefs

would be equivalent up to a scale factor. However, in this case it will matter for

computing not only beliefs for copy nodes but non-copy nodes as well, as we will

see shortly. Notice that the belief vector for each copy node j in L̄ has one nonzero

component and it is the same for all copy nodes, namely, Z
(xL)

j ((xL)j) is the same for

all j.

In order for beliefs computed on G to be used to compute beliefs on G, the

1Except for the fact that we are not summing over the values of copy nodes, since they are
assumed to be fixed.
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potentials Φi, Ψi,j should be defined to preserve the local characteristics of the original

MRF on G. Namely, for edge {i, j} ∈ Ē, i, j 6∈ L̄, we assign the edge potential

Ψi,j(xi, xj)
∆
= Ψi,j(xi, xj), where i = ρ(i) and j = ρ(j). For edge {l(k), j} ∈ Ē, where

j corresponds to a neighbor of l in G, we assign the edge potential Ψl(k),j(xl(k) , xj)
∆
=

Ψl,j(xl, xj), where xl(k) = xl and xj = xj. That is, since each edge of the edge cover

corresponds to an edge in the original graph, the edge potentials from the MRF on

the original graph are used on the corresponding edges for the MRF on the edge

cover. By assumption there are no edges from a copy of one node to another copy

of that node or to a copy of another node. Likewise, for i 6∈ L̄ the self potential

Φi(xi)
∆
= Φi(xi) is used, where the arguments must agree. However, for a split node

l ∈ L, there are now multiple copies in G corresponding to l in the original MRF, so

some modification to the self-potential of the original node must be made in order

for beliefs computed on G to be used for beliefs on G. Self-potentials on split nodes

are assigned as Φl(k)(xl)
∆
=Φl(xl)

e(k)δ(xl), where the e(k) can be chosen to be any real

numbers that sum to one.2 Implicit is the dependence of Φ and Ψ on the configuration

xL.

Theorem IV.1. Given an MRF X on G, an edge cover G, with split nodes L, a

given xL on L, and Φ and Ψ chosen as above, we have for each j 6∈ L,

Zj∪L(xj, xL) = Z
(xL)

j (xj),

where xj = xj, and for each j ∈ L,

ZL(xL) = Z
(xL)

j (xj),

for each j that is a copy of j, where xj = (xL)j.

2What matters is that the product of self-potentials of copy nodes equals the self-potential of the
original split node.
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Note that the above holds not only for any copy j̄ of j, but also for any split node

j ∈ L. This is straightforward to see, as under a given configuration xL, the copy

nodes L = ρ−1(L) are fixed to the configuration xL induced by the configuration on

the split nodes. Therefore, for a fixed configuration xL on the split nodes, the belief

Z
(xL)

j (xj) is constant for all j ∈ L and all xj, as long as xj is induced by xL. It follows

that in order to use beliefs on the unwrapped graph to compute beliefs (conditioned

on a configuration of the split nodes) for nodes in the original graph, one computes

the belief for the corresponding node of each non split nodes, and the belief of one of

the copies of a split node.

If we substitute the results of this theorem into (4.1) and (4.2), we see that beliefs

for nodes in the original graph G can be computed straightforwardly:

For j 6∈ L,

Zj(xj) =
∑
x′L

Zj∪L(xj, x
′
L)

=
∑
x′L

Z
(x′L)

j
(xj), (4.5)

and for node j ∈ L,

Zj(xj) =
∑
x′
L\j

ZL(xj, x
′
L\j)

=
∑
x′
L\j

Z
(x′L)

j
(xj) (4.6)

for any copy j of j. This is how we use the unwrapped graph to compute beliefs for

G and is the basis of the method of Conditioning discussed in the following section.

The generalization of (4.1) and (4.2) to a subset A ⊂ V of arbitrary size is

ZA(xA) =
∑
xL\A

ZL∪A(xA, xL\A). (4.7)
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As with single node beliefs, we can compute the belief ZA by computing the belief for

a corresponding subset of nodes A ⊂ L in an unwrapped graph G based on the loop

cutset L. Before, when computing the belief for a split node j ∈ L, we computed the

belief for one copy j̄ ∈ L of j. Similarly, the subset A is chosen such that for each

node j ∈ A ∩ L, exactly one copy of j appears in A. It is straightforward to show,

analogously to Theorem IV.1, that

ZL∪A(xA, xL\A) = Z
(xL)

A (xA), (4.8)

where the beliefs Z
(xL)

A (xA) are defined similarly to (4.4), the constraint in the top

line of (4.4) being now applied to nodes j̄ ∈ A ∩ V . Therefore, as before, the belief

for subset A ⊂ V is computed as

ZA(xA) =
∑
xL\A

ZL∪A(xA, xL\A)

=
∑
xL\A

Z
(xL)

A (xA). (4.9)

In the remainder of this chapter we will restrict attention to the case where A consists

of a single node. However, in Section 6.1.2.2 we will compute beliefs Z
(xL)

A for subsets

in an unwrapped graph as a means of computing optimal coding distributions for

nodes in an original cyclic MRF.

4.2 The Method of Conditioning

We saw in the last section that beliefs computed for valid configurations of an

MRF on G can be used to compute beliefs in the original MRF X on G. In this

section we discuss an algorithm for doing this when the original graph G is cyclic.

We choose L to be a loop cutset, which is a subset of nodes whose removal leaves an

acyclic graph. In this case, the complete splitting G
∗

is acyclic. Therefore, for any
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valid configuration, one can exactly compute conditional beliefs for G using the BP

algorithm for acyclic graphs with fixed nodes as described in Section 2.4.2. Indeed,

as we will review, if one runs BP for all valid configurations one can combine the

results to get the beliefs for nodes in the original graph. This is called the method

of conditioning. For the remainder of this chapter we assume the original G is cyclic

and the split nodes will be loop cutset nodes of G and we will be referred to as such.

The corresponding nodes in the edge cover will still be called copy nodes.

Conditioning is used to compute beliefs for both non loop cutset nodes and loop

cutset nodes. Therefore, messages will be passed to and from all nodes, including

copies of loop cutset nodes. All of the BP operations will be the same, the only

difference being that, for a given configuration xL on the loop cutset nodes, each

copy node will have only one value that it can assume. In the following subsections

we will discuss running BP on the edge cover for a fixed valid configuration on the

loop cutset L and doing so in a serial manner over all configurations on the loop

cutset. Then, we will discuss performing the BP runs on the conditional MRFs in a

parallel manner.

4.2.1 Serial Conditioning

In this section we discuss running BP for valid configurations of an MRF on an

acyclic edge cover one valid configuration at a time, and combining the results to get

beliefs for the original MRF. We choose a loop cutset L, form an acyclic unwrapping

G based on L, and assign potentials to nodes and edges of G to satisfy the conditions

used by Theorem IV.1. We then fix a configuration xL on the loop cutset nodes of

the original graph G which induces the fixed value xL̄ to the copy nodes of the edge

cover. Belief Propagation is run on G for each configuration xL of loop cutset nodes.

To indicate that the message are being passed on the edge cover, they will be denoted,

for instance, as mk→j. We will separately consider the cases where G is connected or
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not.

4.2.1.1 G Connected

If the unwrapped graph G is connected, to compute beliefs we run BP as usual,

beginning with the leaves and passing the messages

m
(xL̄)

l→k (x′
k
) =

∑
x′
l

Φl(x
′
l
)Ψl,k(x

′
l
, x′

k
). (4.10)

Subsequently, internal nodes pass the messages

m
(xL̄)

k→j(x
′
j
) =

∑
x′
k

Φk(x
′
k
)Ψk,j(x

′
k
, x′

j
)
∏
i∈∂k\j

mi→j(x
′
j
) (4.11)

once they have received messages from all other neighbors. Note that in the above

summations, if l or k, are copy nodes, the sum consists of the single term corre-

sponding to the sole value assumed by the respective copy node. The beliefs are then

computed as

Z
(xL̄)

j (x′
j
) = Φj(x

′
j
)
∏
k∈∂j

mk→j(x
′
j
) (4.12)

for a non-copy node, and for a copy node as

Z
(xL)

j (x′
j
) =


Φj(x

′
j
)
∏
k∈∂j

mk→j(x
′
j
) x′j = (xL)j

0 else

(4.13)

Once the beliefs Z
(xL)

j have been computed for all nodes j ∈ V̄ for all valid

configurations on L̄, these are summed using (4.5) and (4.6) to give the beliefs for

nodes in the original graph G.
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(a) (b) (c)

Figure 4.2: (a) A cycle with loop cutset nodes in red; (b), (c) Components of G.

4.2.1.2 G Disconnected

If G is disconnected, then we can compute beliefs for a node j by running BP on

each component of G and combining them. In Section 2.4.3, the components of the

forest are independent, and therefore, the probability distribution for a given node j

can be computed simply by running BP on the component containing j. However, in

a disconnected G the components are not independent because different copies of the

same loop cutset node might lie on different components and must assume the same

value. The components of G are conditionally independent, though, which means

that we can run BP on each component independently of the other components. To

compute the beliefs for a given node, however, we must combine the belief computed

for that node on its component with the (conditional) partition functions of other

components. Figure 4.2 (a) shows an original cycle while (b) and (c) show the two

components of G.

Let Cj be the component of G containing j. By again beginning the BP algorithm

at the leaves of G and applying the recursive message passing updates, for each node

j we compute

Ẑ
(Cj ,xL̄)

j (xj) = Ψj(xj)
∏
k∈∂j

mk→j(xj), (4.14)

where the additional superscript Cj indicates that it is for the component Cj. To

compute the full belief Ẑ
(xL̄)

j (xj) we must combine Ẑ
(Cj ,xL̄)

j (xj) with the partition
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functions from the other components of G, as described in the following theorem.

Theorem IV.2. Let C̄1, C̄2, . . . , C̄M denote the components of G. Then,

for j 6∈ L̄,

Z
(xL̄)

j (xj) = Ẑ
(Cj ,xL̄)

j (xj)
∏
i:j 6∈C̄i

Q
(xL)

C̄i
, (4.15)

and for j ∈ L̄,

Z
(xL̄)

j (xj) =


∏

j
′∈ρ−1(j)

Ẑ
(Cj ,xL̄)

j
′ (xj′)

∏
i:j 6∈C̄i

Q
(xL)

C̄i
, xj = (xL)j

0 else

(4.16)

In the above, Q
(xL)

C̄i
is the partition function on component C̄i with the copy nodes of

C̄i fixed to the values determined by xL.

Proof. Let C1, C2, . . . , CM denote the components of G. There must be at least one

non-copy node on each component. If this were not true for some component, then

that component would consist of a single copy node, and since there is no edge this

singleton can be removed. Or, there would be two adjacent copy nodes which violates

the restriction imposed in Section 4.1. Let k1, k2, . . . , kM denote a non-copy node on

each of the respective components.

For j 6∈ L̄,

Z
(xL)

j (xj) =
∑
xV̄ \L̄

∏
i∈V̄

Φi(xi)
∏
{i,k}

Ψi,k(xi, xk)

=
∑
xC

j

∏
i∈Cj

Φi(xi)
∏
i,k∈Cj

Ψi,k(xi, xk)
∏
i:j 6∈C̄i

∑
x′
ki

Ẑ
(xL̄)

ki
(xki) (4.17)

= Ẑ
(xL̄)

j (xj)
∏
i:j 6∈C̄i

∑
x′
ki

∑
x′
ki

Ẑ
(xL̄)

ki
(xki) (4.18)

= Ẑ
(xL̄)

j (xj)
∏
i:j 6∈C̄i

Q
(xL)

C̄i
. (4.19)
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For j ∈ L̄, Z
(xL)

j (xj) = 0 if xj is not induced by xL, since under the valid configu-

ration xj any other value of xj is not possible. If xj is induced by xL, then

Z
(xL)

j (xj) =
∏

k:j 6∈C̄k

∑
xCk

∏
i∈Cj

Φi(xi)
∏
i,k∈Cj

Ψi,k(xi, xk)
∏
i:j 6∈C̄i

∑
x′
ki

Ẑ
(xL̄)

ki
(xki) (4.20)

= Ẑ
(xL̄)

j (xj)
∏
i:j 6∈C̄i

Q
(xL)

C̄i
. (4.21)

Example IV.3. Consider a binary MRF on the cycle in Figure 4.2 with L = {1, 4}.

Let C1 denote the component in (b) and C2 the component in (c). As an example of

computing the probability distribution of a node not in L we compute the probability

that X5 = 0 as

Pr(X5 = 0) =
∑
xL

Pr(X5 = 0, XL = xL)

=
∑
xL

Z5∪L(0, xL)∑
x′L

∑
x5

Z5∪L(x5, x′L)

=
∑
xL

Z
(xL)

5 (0)∑
x′L

∑
x5

Z
(x′L)

5 (x5)
(4.22)

=
∑
xL

Z
(C2,xL)

5 (0)Q(C1,xL)∑
x′L

∑
x5

Z
(C2,x′L)

5 (x5)Q(C1,x′L)
,

where (4.22) follows from Theorem IV.1. Since Q(C1,xL) does not cancel with Q(C1,x′L)

for all values of x′L, we see that we need to combine the partition functions from other

components to get the belief for a given node.
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Now as an example of computing the distribution of a node in L we see

Pr(X4 = 0) =
∑
xL

Pr(X4 = 0, XL = xL)

=
∑
xL

ZL(0, xL)∑
x′L

∑
x4

ZL(x4, x′L)

=
∑
xL

Z
(xL)

4 (0)δ(0, (xL)4)∑
x′L

∑
x4

Z
(x′L)

4 (x4)δ(x4, (xL)4)
(4.23)

=
∑
xL

Z
(C2,xL)

4 (0)Z
(C1,xL)

4 (0)δ(0, (xL)4)∑
x′L

∑
x4

Z
(C2,x′L)

4 (x4)Z
(C1,x′L)
4 (x4)δ(x4, (xL)4)

,

where in the expression on the right side of equality (4.23) we use the fact that the

value at node 4 must agree with the valid configuration on xL, and as above, (4.23)

follows from Theorem IV.1.

The complexity of serial conditioning is on the order of |E||X ||L|+2.

4.2.2 Parallel Conditioning

In addition to conditioning on loop cutset configurations in a serial or iterative

manner, we will show that one can simultaneously condition on all possible assign-

ments xL to the loop cutset, and run BP on the corresponding valid configurations of

the loop cutset nodes. Performing the conditioning in a parallel manner means that

matrix-valued messages will be passed, a given column corresponding to the message

over the particular edge under a specific configuration to the copy nodes. We will

refer to these matrix-valued messages as super messages. Here, a copy node of the

edge cover will no longer be held fixed to a given value but rather can be viewed

as a processor having access to all of the possible values the copy node can assume.

Once the message passing is complete, matrix-valued beliefs are computed, a column

of which is computed from the corresponding columns of the incoming messages,
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together with the self-potential. Parallel computation of the conditional messages

requires that each copy node of G “be aware” of the configuration on the set of copy

nodes corresponding to each column of the incoming message matrices, because the

self-potential on the copy node will depend the corresponding valid configuration.

Such awareness would be achieved, for instance, through a predetermined ordering

of the columns of the super message, so that each copy node would ”know” the cor-

responding configuration on xL and adjust its self-potential accordingly. Non copy

nodes, however, will simply process the incoming messages in the usual way.

Though it is possible to perform parallel conditioning on a disconnected G, using

Theorem IV.2 as in the serial case above, there are advantages to using a connected

unwrapping G. One is that fewer overall computations will be required since we will

not have to combined BP-conditional beliefs computed on different components. More

importantly, though, a connected unwrappingG is required for the Local Conditioning

algorithm discussed in the next chapter. Therefore, for the remainder of the chapter

we assume that a connected unwrapping G is used. The following theorem states

that it is always possible to find a connected acyclic edge cover based on a given

loop cutset. Figure 4.3 (a) shows a grid graph and a checkerboard loop cutset, (b) a

complete unwrapping, and (c) a partial unwrapping.

Theorem IV.4. Let G = (V,E) be a connected cyclic graph and let L ⊂ V be a loop

cutset of G. Then there exists a connected acyclic edge cover G based on L.

For ease of notation, we enumerate the different configurations on L̄ as 0, 1, . . . ,

|XL| − 1. The nodes of G will pass the following matrix-valued messages

M
(L)

k→i
∆
=
[
m

(xL=0)

k→i ,m
(xL=1)

k→i , . . . ,m
(xL=|XL|−1)

k→i

]
,

where each m
(xL)

k→i of M
(L̄)

k→i is a column vector representing the message values for all

choices of xi conditioned on the configuration listed in the superscript. Moreover,
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(a) (b) (c)

Figure 4.3: (a) A graph with fixed node indicated in red; (b) complete unwrapping;
(c) partial unwrapping.

each column of M
(L̄)

k→i, which is a conditional message, is created in the same way

as in (4.11) and is used in the same way to create further outgoing messages. The

conditional beliefs for each node will be computed as

Z
(L̄)

j

∆
=
[
Z

(xL̄=0)

j (xj), Z
(xL̄=1)

j (xj), . . . , Z
(xL̄=|X̄ |−1)

j (xj)
]

where each column of Z
(L̄)

j is computed by applying (4.14) to the corresponding

columns of the incoming messages M
(L̄)

k→j, k ∈ ∂j.

Since each column of a super message is a message conditioned on a configuration

of loop cutset nodes, when a fixed copy node l(i) of G processes a particular column of

the incoming super messages, it modifies its self-potential as in (2.19) to correspond

with the value assigned to l in that configuration of loop cutset nodes. The number

of columns is exponential in the size of L. This is referred to as Global Conditioning

since each message is conditioned on all loop cutset nodes and the complexity is on

the order of |E||X ||L|+2.
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4.3 Local Conditioning

In this section we describe Local Conditioning and show how it can result in

dramatic computational savings over Global Conditioning. The Local Conditioning

(LC) conditioning algorithm involves messages of the form M
(A)

k→i, where A is some

subset of the loop cutset nodes upon which the messages are conditioned, and there

is a column in M for every possible configuration of the nodes in A. The set A

is referred to as the conditioning set for the message M
(A)

and since complexity is

proportional to the number of columns and the number of columns is exponential

in the size of A, reducing the conditioning set from L to a strict subset A causes

an exponential decrease in complexity. That is, the savings obtained through LC

stem from there being fewer columns in the super messages over those of Global

Conditioning. Sometimes we will refer to a message passed over an edge without

wishing to mention the subset A. In this case we will refer to the message simply as

Mk→i. In the following we will show how to choose A as small as possible in a way

that nevertheless permits the beliefs to be computed.

4.3.1 Setup

Let G = G(L, ρ) be a connected acyclic unwrapping of G based on loop cutset L

and splitting ρ−1. We define Gk\i and Gi\k similarly to Gk\i and Gi\k in Section 2.4.1,

to be the component trees containing k, respectively i, after removing edge {i, k}

from tree G.

Definition IV.5. A node j ∈ V̄ is said to be upstream of message Mk→i if j ∈ Gk\i

and downstream of message Mk→i if j ∈ Gi\k.

For edge {i, k} ∈ Ē, the set of loop cutset nodes in G whose copies in G are all

upstream of Mi→k (equivalently downstream of Mk→i) will be denoted by Li\k
3. As

3Dependence on G is implicit.
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(a) (b) (c)

Figure 4.4: Unwrapping of 5 × 5 grid with green nodes indicating (a) downstream
nodes; (b) upstream nodes; (c) relevant loop cutset nodes.

we will see, the method of Local Conditioning reduces the complexity of computing a

message Mk→i from k to i by identifying those loop cutset nodes all copies of which

are upstream or all copies of which are downstream of Mk→i. For edge {i, k} ∈ Ē,

we let Rki = Rik denote the set L \ (Li\k ∪Lk\i) of loop cutset nodes that are neither

upstream nor downstream and it is referred to as the relevant set of loop cutset nodes

for {i, k}. For node i, the set

Ri =
⋃
k∈∂i

Rki

is the relevant set for i. If a loop cutset node l belongs to Lk\i for some k ∈ ∂i, then

l is not relevant for edge {k, i} and hence is not relevant for i. Therefore, we can

express the relevant set Ri as

Ri = L \ (
⋃
k∈∂i

Lk\i). (4.24)

Moreover, for two distinct neighbors k1 and k2 of i, a loop cutset node cannot belong

to both Lk1\i and Lk2\i. In other words, the sets Lk\i, k ∈ ∂i, partition the loop

cutset nodes L \Ri that are not relevant for a node i. However, there does not exist

a decomposition similar to (4.24) for loop cutset nodes in the sets Li\k, k ∈ ∂i. The

reason is that a loop cutset node may be downstream of a message Mk→i yet still

be relevant for the edge connecting i to another of its neighbors, and hence relevant
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for i itself. In sum, for an edge the relevant loop cutset nodes are determined by

redundant and summable loop cutset nodes, whereas for a node, it is the summable

nodes that determine the relevant set.

For loop cutset node l ∈ L, we define G
(l)

L to be the subgraph of G consisting

of all nodes and edges contained in non-backtracking paths connecting copies of l

in G.4 We can see that Ri is the set of loop cutset nodes l such that i lies on the

subtree G
(l)

L . For instance, if k is a neighbor of i and if l(m) and l(n) are two copies

of a given loop cutset node l ∈ L such that l(m) is downstream of Mk→i and l(n)

is upstream of Mk→i, then the path connecting l(n) and l(m) goes through the edge

{k, i}, and therefore node i. It is the sizes of the sets {Rik} and {Ri} that determine

the complexity of Local Conditioning.

4.3.2 Reduced and Summed Out Loop Cutset Nodes

In this section we show how the notions of upstream and downstream nodes pro-

vide a means of reducing the complexity from that of Global Conditioning.

Definition IV.6. A loop cutset node l ∈ L is said to be redundant with respect to

message Mk→i if each copy l(m) is downstream of Mk→i. In other words, the set Li\k

is the set of redundant loop cutset nodes with respect to Mk→i.

If l is redundant with respect to Mk→i, i.e., all copies of cutset node l are down-

stream of message Mk→i, then for each configuration xL, the conditional message

m
(xL)

k→i is not a function of xl. In other words, for two configurations xL and x′L on the

loop cutset nodes that agree everywhere except at a redundant loop cutset node l, the

message vectors m
(xL)

k→i and m
(x′L)

k→i will be identical. This is because, by Definition II.2,

m
(xL)

k→i is function consisting of sums and products of potentials for nodes and edges

contained in the subtree Gk\i, and no copy of a redundant node l is in the subtree

Gk\i. This leads to the following proposition.

4There is only one non-backtracking path connecting any two copies of a given loop cutset node.
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Proposition IV.7 (Redundant Loop Cutset Nodes). Let B ⊂ Li\k be a subset of

loop cutset nodes that are redundant with respect to Mk→i, and let xL and x′L be

configurations such that xL\B = x′L\B and xB 6= x′B. Then,

m
(xL)

k→i = m
(x′L)

k→i .

For a given configuration xL\Li\k on loop cutset nodes that are not redundant with

respect to Mk→i, there are |X ||Li\k identical message column vectors all corresponding

to this configuration. Therefore, we send reduced super messages by sending only one

of these message columns and we let M̃k→i denote the reduced super message. Since

the reduced message array M̃
(L\B)

k→i has fewer columns than M
(L)
k→i, the resulting BP

complexity is O(|X ||L|−|B|) rather than O(|X ||L|). However, this creates the need for

an operation that allows us to “fill out” incoming messages that have been reduced

so that they can be combined appropriately.

Example IV.8. Consider the 2 × 3 grid graph shown in Figure 4.5. Because 1 is

redundant for M3→2, the message from node 3 to node 2 is a function of loop cutset

node 6 only and therefore reduces to the form

M̃
({1,6})
3→2 =

[
m

(x6=0)
3→2 ,m

(x6=1)
3→2

]
. (4.25)

On the other hand, the message from node 1 to node 2 is a function of node 1 only

and of the form

M̃
({1,6})
1→2 =

[
m

(x1=0)
1→2 ,m

(x1=1)
1→2

]
. (4.26)

Upon receiving these two messages, node 2 applies an expansion operator W (·) to
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produce “filled-out” messages having a column for every possible pair of x1, x6 values.

W (M̃
({1,6})
3→2 ) =

[
m

(x6=0)
3→2 ,m

(x6=1)
3→2 ,m

(x6=0)
3→2 ,m

(x6=1)
3→2

]
=

[
m

(x1x6=00)
3→2 ,m

(x1x6=01)
3→2 ,m

(x1x6=10)
3→2 ,m

(x1x6=11)
3→2

]
.

and

W (M̃
({1,6})
1→2 ) =

[
m

(x1=0)
1→2 ,m

(x1=0)
1→2 ,m

(x1=1)
1→2 ,m

(x1=1)
1→2

]
,

=
[
m

(x1x6=00)
1→2 ,m

(x1x6=01)
1→2 ,m

(x1x6=10)
1→2 ,m

(x1x6=11)
1→2

]
.

respectively. To form the message from 2 to 5, the matrices W (M̃
({1,6})
3→2 ) and W (M̃

({1,6})
1→2 )

are multiplied together component-wise and combined with the self-potential for node

2 to form the matrix

[
Φ1m

(x1=0)
1→2 m

(x6=0)
3→2 ,Φ1m

(x1=0)
1→2 m

(x6=1)
3→2 ,Φ1m

(x1=1)
1→2 m

(x6=0)
3→2 ,Φ1m

(x1=1)
1→2 m

(x6=1)
3→2

]
(4.27)

which is then multiplied by the potential matrix

A2,5 =

 Ψ2,5(0, 0) Ψ2,5(1, 0)

Ψ2,5(0, 1) Ψ2,5(1, 1)

 (4.28)

to form the outgoing message M̃
{1,6}
2→5 . �

As seen in this example, a node i may receive incoming messages that are con-

ditioned on different subsets of L. To form an outgoing message M̃i→k we have to

expand each of the incoming messages to the same size.

Definition IV.9. For A ⊂ B ⊂ V , we define WB
A to be the operator that maps
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(a) (b)

Figure 4.5: (a) 2× 3 grid, loop cutset nodes in red; (b) Unwrapping based on {1, 6}.

message array M̃
(XA)
k→i to message array M̃

(XA,XB\A)

k→i through the identity

m
(xA,xB\A)

k→i = m
(xA)
k→i (4.29)

for all xA ∈ XA and xB\A ∈ XB\A.

The operator WB
A (·) allows us to take a reduced message M̃ (A) and expand it

to reduced message M̃ (B), where A ⊂ B, by simply creating duplicates of message

column vectors of M̃ (A). In particular, if a node i receives incoming messages M̃
(An)

kn→i

and wishes to form from these an outgoing reduced message, then each of the incoming

reduced messages need to be filled out so that the effective conditioning set B is the

union of the conditioning setsAn of the incoming messages. Namely, for each incoming

message M̃
(An)

kn→i
we apply the expansion W

⋃
nAn

An
(·).

Complementary to redundant loop cutset nodes, and the other source of compu-

tational savings from LC, are summable loop cutset nodes.

Definition IV.10. A loop cutset node l is said to be summable with respect to mes-

sage Mk→i if each copy l(m) is upstream of Mk→i. In other words, the set Lk\i is the

set of summable loop cutset nodes with respect to Mk→i.

If loop cutset node l ∈ L is upstream of Mk→i then Mk→i does not need to be

conditioned on Xl because, as we will explain, message columns corresponding to

configurations of the loop cutset nodes differing only in the values of summable nodes
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can be added together, thus further reducing the number of message columns that

must be transmitted in a given message.

Definition IV.11. For a subset B ⊂ Li\k of the loop cutset nodes that are summable

with respect to message Mk→i, the summed out message m̂
(xL\B)

k→i is defined as

m̂
(xL\B)

k→i (xi) =
∑
x′B

m
(xL\B ,xB)

k→i (xi). (4.30)

No loss of information takes place through this summing out process, in that sub-

sequent summed out messages can be computed from incoming summed out messages,

as summarized in the following.

Theorem IV.12 (Summed Out Message Recursion). Let B ⊂ Lk\i be a subset of

loop cutset nodes that are summable with respect to message Mk→i. For each neighbor

jn ∈ ∂k \ i, let An ⊂ Ljn\k be a subset of loop cutset nodes summable with respect to

message M jn\k such that An ⊂ B for all n. Then

m̂
(xL\B)

k→i (xi) =
∑
x̄′
k

Ψik(xi, x
′
k
)Φk(x

′
k
)

∑
x′
B\(

⋃
n An)

∏
jn∈∂k\i

m̂
(xL\An ,xAn )

jn→k
(x′

k
) (4.31)

This theorem says that if a node k receives summed out messages from its neigh-

bors, it can use them to compute outgoing summed out messages. The condition

that each of the An be contained in the set B is required, in that if for some m,

Am is not contained in B, then certain loop cutset nodes will have been summed

out in the message m̂jm→k whereas they should not be summed out in summed out

message m̂k→i. Summed out messages reduce the complexity of a message Mk→i

in much the same way as reduced messages. In reduced super messages, message

columns corresponding to different configurations on redundant loop cutset nodes are

all replicates of each other and therefore can be identified with any of them. In super

messages where summed out messages M̂k→i are used, message columns corresponding
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to different configurations on summable loop cutset nodes can be added to together,

leaving a single summed out message vector. Because summing out summable loop

cutset nodes will reduce the size of the super messages being passed, expansion will

be needed to combine incoming summed out messages from different neighbors.

Example IV.13. Consider the graph shown in Figure 4.6. The message from node

4 to node 3 is

M
({1,8})
4→3 =

[
m

(x1x8=00)
4→3 , m

(x1x8=01)
4→3 ,m

(x1x8=10)
4→3 , m

(x1x8=11)
4→3

]
(4.32)

and the message from node 7 to node 3 is

M
({8})
7→3 =

[
m

(x1x8=00)
7→3 , m

(x1x8=01)
7→3 ,m

(x1x8=10)
7→3 , m

(x1x8=11)
7→3

]
. (4.33)

These two incoming messages are first combined through component-wise multi-

plication to yield the outgoing super message from 3 to 2

M
({1,8})
3→2 =

[
m

(x1x8=00)
3→2 , m

(x1x8=01)
3→2 ,m

(x1x8=10)
3→2 , m

(x1x8=11)
3→2

]
. (4.34)

Since node 8 is upstream of the message from 3 to 2, we sum out node 8 to form

the summed out message

M̂
({1})
3→2 =

[
m

(x1x8=00)
3→2 + m

(x1x8=10)
3→2 , m

(x1x8=01)
3→2 + m

(x1x8=11)
3→2

]
. (4.35)

As a word of contrast, with reduced messages, the complexity reducing operation

is on the super message, by identifying identical columns so that fewer messages have

to be computed. This complexity reducing operation is invertible, by replicating

columns to fill out the super message to a super message conditioned on a larger

subset of loop cutset nodes. With summed out messages, the complexity reducing
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(a) (b)

Figure 4.6: (a) 2× 3 grid, loop cutset nodes in red; (b) Unwrapping based on {1, 6}.

operation is on columns of the super message, adding certain of them together. This

operation is not invertible and is the reason for the inclusion constraint in Theorem

IV.12.

Combining reduced and summed out messages yields the method of Local Con-

ditioning. This achieves a great computational advantage over Global Conditioning.

For a given message Mk→i, the subset of summable loop cutset nodes B is chosen

to be the entire set of summable nodes with respect to Mk→i, which is Lk\i. Then,

summed out messages will be of the form m̂
(xR

ik
,xL

i\k
)

k→i . By Proposition IV.7, for dis-

tinct configurations xLi\k and x′Li\k on the redundant loop cutset nodes for Mk→i,

m̂
(xR

ik
,xL

i\k
)

k→i = m̂
(xR

ik
,x′L

i\k
)

k→i . Therefore the message sent over edge {k, i} should be

conditioned only on the relevant loop cutset nodes Rik for the edge, and therefore

denoted as m̂
(xR

ik
)

k→i .

The following theorem is similar to Theorem IV.12, the difference being that all

nodes in Lk→i are being summed out and we are taking into account the redundant

nodes Li→k.

Theorem IV.14 (Local Conditioning Message Recursion). Let Rik = Rki be the set

of relevant nodes for edge {i, k}. Then,

m̂
(xR

ik
)

k→i =
∑
x′
k

Ψik(xi, x
′
k
)Φk(x

′
k
)
∑
x′
L̄
k\i

∏
j∈∂k\i

m̂
(xR

jk
)

j→k (x′k) (4.36)
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We can now combine summed out messages as with standard messages before to get

what we call Local Conditioning beliefs.

Definition IV.15 (Local Conditioning Beliefs). Using the summed out messages

m̂
(xR

ik
)

k→i , the Local Conditioning beliefs are defined as

Ẑ
(xR

i
)

i
(xi)

∆
= Φi(xi)

∏
k∈∂i

m̂
(xR

ik
)

k→i (xi). (4.37)

The following theorem states that the original beliefs for nodes in G can be com-

puted from the Local Conditioning beliefs. It is analogous to combining (4.1) and

(4.2) with Theorem IV.1 above.

Theorem IV.16 (Beliefs from Local Conditioning Beliefs). The beliefs can be com-

puted from the summed out messages as

Zi(xi) =
∑
xR

i

Ẑ
(xR

i
)

i
(xi). (4.38)

The following new theorem establishes the LC propagation formulas for undirected

cyclic graphs analogous to (2.17) and (2.18) for undirected acyclic graphs.

Theorem IV.17. The LC formulas (in matrix notation) are

Ẑ
(Ri)

i
= W

Ri
i (Φi)�

�∏
k∈∂ī

WRi
Rki

(M̂
(Rki)

k→ī ).

and

M̂
(Rik)

i→k = Ai,k ·

WRi
i

(Φi)�
�∏

j∈∂ī\k

W
Ri
Rji

(M̂
(Rji)

j→ī )

 · ski ,
where ski is a |Ri| × |Rik| matrix that performs the ‘summing out’ over the loop cutset

nodes in ∪j∈∂i\kRji.
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4.3.3 Complexity of LC

The complexity of LC on a given graph G is no longer strictly a matter of the

number of loop cutset nodes. It is the topology of the (connected) unwrapping G

based on L that determines the relevant set for a particular edge, and therefore the

complexity of performing LC on G.

Theorem IV.18. The complexity of LC using loop cutset L is O(|E||X |c(L)), where

we say the cost of L is

c(L) = max
i∈V
|Ri|. (4.39)

Proof. Without loss of generality, assume that each node assumes values in a com-

mon alphabet X . By examining Theorem IV.17 one can see that the number of

multiplications that are required in combining the incoming messages is |X ||Ri|.

4.4 Example: Checkerboard Loop Cutset on 4 pt. Grid

Graph

In this section we use Theorem VI.8 to evaluate the complexity of Local Condi-

tioning with three different unwrapping patterns based on this loop cutset. Consider

an m × n 4 pt. grid graph G and the checkerboard loop cutset shown in Figure 4.3

(a). We want to look at unwrapping patterns rather than simply unwrappings at

this point since different values of m and n will define different graphs and therefore

unwrappings of these graphs will be different even if they follow the same pattern and

hence have complexity which is the same function of m and n. The first unwrapping

pattern that we will look at is illustrated in Figure 4.3 (c) and again in Figure 4.7

and will be denoted in this section G1. It can be seen as “unzipping” the original grid

graph, moving up and then down adjacent columns. The next unwrapping pattern is

shown in Figure 4.8 (a) and will be indicated by G2. It can be seen as anchoring the

grid graph at the top row, and then separating adjacent columns straight down from
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(a) (b)

(c)

Figure 4.7: (a)-(b) Relevant sets for different horizontal edges; (c) Relevant set for a
node.

the top row. The third unwrapping pattern is displayed in Figure 4.9 (b) and will

be denoted by G3. It is similar to G2 except that the middle row is anchored. Note

that each of these unwrappings is a partial unwrapping, as the complete unwrapping

G
∗

based on the checkerboard loop cutset is disconnected, as shown in Figure 4.3

(b). Also, for each of these unwrappings we note further that the unwrapping can

leave each of the columns connected or each of the rows connected. We will assume

throughout that m < n and that the columns are connected in the unwrappings.

Theorem IV.19. Let G be an m × n (m < n) 4 pt. grid graph. The complexity of

Local Conditioning using the unwrapping pattern G1 of G based on the checkerboard

loop cutset is O(|E||X |m)

Proof. Looking at Figure 4.4 (c) one can observe that with columns connected in

unwraping G1, each vertical edge of G1 has a relevant node in each row. Two vertical

edges incident to the same node have all but one of their relevant nodes in common,

so the relevant set for that node is again the number of rows of G1 plus one. The

horizontal edges of G1 either likewise have a relevant node in each row or have only
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(a) (b)

(c)

Figure 4.8: (a) Unwrapped graph G2. (b) Unwrapped graph G3.

one relevant node. A horizontal edge and vertical edge that are incident to the same

node also have the same relevant set, so the relevant set for the common node is again

the same size.

In G2 and G3, not only are the unwrappings partial, but certain nodes of the

checkerboard loop cutset have not been split. The split graphs G2 and G3 can still be

thought of as unwrappings based on the checkerboard loop cutset where the mapping

ρ−1 is simply a one-to-one correspondence for these nodes, or one can identify a

smaller loop cutset on which G2 and G3 are based.

Theorem IV.20. Let G be an m × n (m < n) 4 pt. grid graph. The complexity of

Local Conditioning using the unwrapping pattern G2 of G based on the checkerboard

loop cutset is O(|E||X |(3/2)m)

Proof. In this unwrapping there is one connected row. From Figure 4.8 (a) we can

see that in G2 with columns connected, the size of the relevant set for a vertical edge

depends on how close the vertical is to the connected row. For a vertical edge that is

incident to the connected row, roughly half of the nodes in the same column and half
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of the nodes in each of the two adjacent columns are relevant. Each horizontal edge

along the top row of the unwrapping has relevant nodes in half of the two nearest

columns. Therefore the size of the largest relevant set is (approximately) one-and-a-

half times the number of rows.

(a) (b)

(c)

Figure 4.9: (a) Unwrapped graph G2. (b) Unwrapped graph G3.

Theorem IV.21. Let G be an m × n (m < n) 4 pt. grid graph. The complexity of

Local Conditioning using the unwrapping pattern G3 of G based on the checkerboard

loop cutset is O(|E||X |(3/2)m)

Proof. As withG2 there is one connected row, and furthermore, the size of the relevant

set for a vertical edge depends on how close it is to the connected row. For a vertical

edge incident to the connected row, the size of the relevant set is roughly 3/4 times

the number of rows, but arguments similar to the case of G2. For a node on the

connected row, the union of the relevant sets for the two incident vertical edges has

size 3/2 times the number of rows, and the relevant set for a horizontal edge on the

connected row is a subset of this union.
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We can see from these examples that while the unwrapping patterns G2 and G3

are based on loop cutsets that are strict subsets of the checkerboard loop cutset,

the exponent in the order of complexity is greater. However, there is a more varied

distribution of complexity over the edges of the unwrapping. This is because in

unwrapping pattern G1 all vertical edges have the same complexity, whereas in G2

vertical edges that are furthest from the connected row have complexity proportional

to |X |2.
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4.5 Proofs

4.5.1 Proof of Theorem IV.1

Proof. Assume that j ∈ L. If x is a configuration on G and x̄ is the corresponding

configuration on Ḡ, then

Z̄(xL)(x̄j(m)) =
∑
x̄′

(V̄ \L̄)

∏
{i,k}:
i,k 6∈L̄

Ψ̄i,k(x̄
′
i, x̄
′
k)
∏
i 6∈L̄

Φ̄i(x̄
′
i)

∏
l̄∈L̄\ρ−1(j)

Φ̄l̄(x̄l̄)
∏
k∈∂l̄

Ψ̄l̄,k(x̄l̄, x̄
′
k)Φ̄j(m)(x̄j(m))

·
∏

k∈∂j(m)

Ψ̄j(m),k(x̄j(m) , x̄k)
∏

j(n)∈ρ−1(j)\j(m)

Φ̄j(n)(x̄j(n))
∏

k∈∂j(n)

Ψ̄j(n),k(x̄j(n) , x̄k)

=
∑
x̄′

(V̄ \L̄)

∏
{i,k}:
i,k 6∈L̄

Ψ̄i,k(x̄
′
i, x̄
′
k)
∏
i 6∈L̄

Φ̄i(x̄
′
i)

∏
l̄∈L̄\ρ−1(j)

k(l)∏
m=1

Φ̄l(m)(x̄l(m))
∏

j̄∈∂l(m)

Ψ̄l(m),j̄(x̄l(m) , x̄′j̄)

·
∏

j(n)∈ρ−1(j)

Φ̄j(n)(x̄j(n))
∏

k∈∂j(n)

Ψ̄j(n),k(x̄j(n) , x̄k)

=
∑
x̄′

(V̄ \L̄)

∏
{̄i,j̄}:
i,j 6∈L

Ψ̄ī,j̄(x̄
′
ī, x̄
′
j̄)
∏
i 6∈L

Φ̄ī(x̄ī)
∏
l∈L\j

∏
j∈∂l

Ψl,j(xl, x
′′
j )

k(l)∏
m=1

Φ
e(m)
l (xl)

·
∏

j(n)∈ρ−1(j)

Φj(x̄j)
e(n)

∏
k∈∂j(n)

Ψj,k(xj, xk)

=
∑
x′′

(V \L)

∏
{i,j}:
i,j 6∈L

Ψi,j(x
′′
i , x

′′
j )
∏
i 6∈L

Φi(x
′′
i )
∏
l∈L

∏
j∈∂l

Ψl,j(xl, x
′′
j )

k(l)∏
m=1

Φ
e(m)
l (xl) (4.40)

=
∑
x′′

(V \L)

∏
{i,j}:
i,j 6∈L

Ψi,j(x
′′
i , x

′′
j )
∏
i 6∈L

Φi(x
′′
i )
∏
l∈L

∏
j∈∂l

Ψl,j(xl, x
′′
j )Φl(xl)

= ZL(xj, xL),

where the equality in 4.41 follows from the fact that there is a one-one correspondence

between configurations on Ḡ and configurations on G, and because for each corre-

sponding pair of configurations the respective summands are equal. A very similar

argument establishes the case where j 6∈ L.
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Z̄(x̄L̄)(x̄j̄) =
∑

x̄′
V̄ \(L̄∪{j̄})

∏
{̄i,j̄}:
ī,j̄ 6∈L̄∪j

Ψ̄ī,j̄(x̄
′
ī, x̄
′
j̄)
∏
ī 6∈L̄∪j

Φ̄ī(x̄
′
ī)
∏
l̄∈L̄

Φ̄l̄(x̄l̄)
∏
j̄∈∂l̄

Ψ̄l̄,j̄(x̄l̄, x̄
′
j̄)

·Φ̄j(x̄j)
∏
k̄∈∂j̄

Ψ̄j,k̄(x̄j, x̄k̄)

=
∑

x̄′
V̄ \(L̄∪{j̄})

∏
{̄i,j̄}:
i,j 6∈L∪j

Ψ̄ī,j̄(x̄
′
ī, x̄
′
j̄)
∏
i 6∈L∪j

Φ̄ī(x̄ī)
∏
l̄∈L̄

k(l)∏
m=1

Φ̄l(m)(x̄l(m))
∏

j̄∈∂l(m)

Ψ̄l(m),j̄(x̄l(m) , x̄′j̄)

·Φ̄j(x̄j)
∏
k̄∈∂j̄

Ψ̄j,k̄(x̄j, x̄k̄)

=
∑

x′′
V \(L∪{j})

∏
{i,j}:
i,j 6∈L∪j

Ψi,j(x
′′
i , x

′′
j )
∏
i 6∈L∪j

Φi(x
′′
i )
∏
l∈L

∏
j∈∂l

Ψl,j(xl, x
′′
j )

k(l)∏
m=1

Φ
e(m)
l (xl) (4.41)

=
∑

x′′
V \(L∪{j})

∏
{i,j}:
i,j 6∈L∪j

Ψi,j(x
′′
i , x

′′
j )
∏
i 6∈L∪j

Φi(x
′′
i )
∏
l∈L

∏
j∈∂l

Ψl,j(xl, x
′′
j )Φl(xl)

= ZL(xj, xL),

4.5.2 Proof of connected acyclic edge cover

Proof. We let G be an unwrapping of G based on some loop cutset L. If G is

connected the theorem is proved so we assume that G is a forest. We enumerate

the components of G as C1, C2, · · · , Cp. We will form a tree iteratively by adding

components one-by-one as follows. Letting G(n) denote the tree formed after n

iterations, we will ‘re-identify’ a copy l(a) of a loop cutset node on a component

Ci not in G(n) with a copy l(b) of the same loop cutset node on the tree G(n). We

will denote by An ⊂ {1, 2, . . . , p} the set of component indices connected after n

iterations and by L̄(n) ⊂ L the set of cutset nodes copies of which are in G.

Choose an arbitrary i ∈ {1, 2, · · · , p} and set A1 = i. For n ∈ {2, · · · , p}, suppose
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there exists a copy node l(m) ∈
⋃
j∈An

Cj and a component Ck, k /∈ An, containing

another copy l(t) of the same loop cutset node. Then, we attach Ck to the tree G(n)

by identifying l(m) and l(t), forming G(n + 1). We then set An+1 = An ∪ {k}, and in

this case, L̄(n+ 1) = L̄(n). Now suppose that for all loop cutset nodes l ∈ L̄(n) and

all k /∈ An, Ck does not contain a copy of l. This implies that G(n) corresponds to its

own graph, that the original graph G was disconnected, a contradiction. Therefore,

we can always find component Ck that can be attached to G(n), hence we can form

a tree.

4.5.3 Proof of Proposition IV.7

Proof. Let L be a loop cutset of the graph G and G an unwrapping of G based on L.

Expressing m
(xL)

k→i in terms of potentials we get

m
(xL)

k→i (xi) =
∑
xk

Φi(xi)Ψk,i(xk, xi)Z
(xL)

k\i (xk).

Since Z
(xL)

k\i (xk) is the belief of node k in the subgraph Gk\i it is a function of potentials

defined on nodes and edges within Gk\i. Since all copies of l are downstream of Mk→i,

no copy l is contained in Gk\i, hence m
(xL\l,xl)

k→i is not a function of xl. This completes

the proof.

4.5.4 Proof of Theorem IV.12

Proof. First, note that for each jn ∈ ∂k \ i, the set of loop cutset nodes Ljn\k is fully

contained in Lk\i. Note that for jm and jn in ∂k \ i, the sets Ljm\k and Ljn\k are
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disjoint. Through direct computation we have

m̂
(xL\B)

k→i (xi) =
∑
x′B

m
(xL\B ,x

′
B)

k→i (xi)

=
∑

x′
B\

⋃
nAn

∑
x′A1

· · ·
∑

x′A|∂k|−1

m
(xL\B ,x

′
B)

k→i (xi)

=
∑

x′
B\

⋃
nAn

∑
x′A1

· · ·
∑

x′A|∂k|−1

∑
x′
k

Ψik(xi, x
′
k
)Φk(x

′
k)

|∂k|−1∏
n=1

m
(xL\B ,x

′
B)

jn→k
(x′

k
)

=
∑

x′
B\

⋃
nAn

∑
x′
k

Ψik(xi, x
′
k
)Φk̄(x

′
k
)
∑
x′A1

· · ·
∑

x′A|∂k|−1

|∂k|−1∏
n=1

m
(xL\B ,x

′
B)

jn→k
(x′

k
)

=
∑

x′
B\

⋃
nAn

∑
x′
k

Ψik(xi, x
′
k
)Φk̄(x

′
k
)

|∂k|−1∏
n=1

∑
x′An

m
(xL\B ,x

′
B\An

x′An )

jn→k
(x′

k
)

=
∑

x′
B\

⋃
nAn

∑
x′
k

Ψik(xī, x
′
k
)Φk(x

′
k
)

|∂k|−1∏
n=1

∑
x′An

m
(x′′
L\An

,x′An )

jn→k
(x′

k
)

=
∑

x′
B\

⋃
nAn

∑
x′
k

Ψik(xi, x
′
k
)Φk(x

′
k
)
∏

jn∈∂k\i

m̂
(x′′
L\An

)

jn→k
(x′

k
)

where x′′L\An = (xL\B, x
′
B\An).

4.5.5 Proof of Theorem IV.14

Proof. First, note that for each j ∈ ∂k \ i, the set of loop cutset nodes Lj\k is fully

contained in Lk\i. Next, let L̄k\i = Lk\i \
(⋃

j∈∂k\i

)
. Note that for jm and jn in ∂k \ i,

the sets Ljm\k and Ljn\k are disjoint. Also note that for each jm ∈ ∂k \ i, the sets
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Ljm\k and L̄k\i are disjoint. Through direct computation we have

m̃
(xRik )

k→i =
∑
x′Lk\i

m
(xLk\i ,xRik )

k→i (xi)

=
∑
x′Lk\i

∑
x′′k

Ψik(xi, x
′′
k)Φk(x

′′
k)
∏
j∈∂k\i

m
(xLj\k ,xRjk )

j→k (x′′k)

=
∑
x′′k

Ψik(xi, x
′′
k)Φk(x

′′
k)
∑
x′Lk\i

∏
j∈∂k\i

m
(xLj\k ,xRjk )

j→k (x′′k)

=
∑
x′′k

Ψik(xi, x
′′
k)Φk(x

′′
k)
∑
x′
L̄k\i

∏
j∈∂k\i

∑
x′Lj\k

m
(xLj\k ,xRjk )

j→k (x′′k)

=
∑
x′′k

Ψik(xi, x
′′
k)Φk(x

′′
k)
∑
x′
L̄k\i

∏
j∈∂k\i

m̃
(xRjk )

j→k (x′′k)

4.5.6 Proof of Theorem IV.16

Proof. Let L be a loop cutset for a graph G, G an unwrapping of G based on L, and

L the corresponding set of copy nodes in G. We first note that, for a given node i,

the set of loop cutset nodes L can be partitioned as L = (Ri, Lk1\i, Lk2\i, . . . , Lkn\i).

Then, we have

Zi(xi) =
∑
xL

Z
(xL)

i (xi)

=
∑
xL

Φi(xi)
∏
k∈∂i

m
(xL)

k→i (x
′
i
)

=
∑
xR

i

Φi(xi)
∑
xL\R

i

∏
k∈∂i

m
(xL)

k→i (x
′
i
)

=
∑
xR

i

Φi(xi)
∏
k∈∂i

∑
xL

k\i

m
(xR

ki
,xL

k\i
)

k→i (x′
i
)

=
∑
xR

i

Φi(xi)
∏
k∈∂i

m̂
(xR

ki
)

k→i (x′
i
)
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CHAPTER V

Monotonicity and Reduction in MRFs

In Chapter III we presented the general idea of lossy cutset coding and gave

explicit MAP reconstruction results when applied to the class of homogenous Ising

models with no external field. Later, in Section 6.2, we present a lossless cutset

coding method for general MRFs in which a cutset of nodes is losslessly encoded

and then the remaining nodes are losslessly encoded conditioned on the cutset. The

rationale behind this approach is that by losslessly encoding the values XU on a

cutset, processing (i.e., encoding or estimating) the remaining variables is simplified

due to the conditional independence properties of Markov random fields. This still

leaves the generally intractable task of encoding the cutset XU , for even if U itself is

relatively sparse, marginalizing over the remaining |V \ U | variables has complexity

of exponential order. And herein lies the tradeoff: in order to guarantee tractable

solutions at the decoder approximations have to be made at the encoder in that the

cutset XU must be encoded using a proxy distribution p̃U instead of the true marginal

distribution pU .

Due to the convenient parametrization of an MRF1 as a labeling of an associated

graph, the most natural proxy distributions are those derived by thinning or reducing

the model by eliminating edges of the graph. The effect of this is that the new, reduced

proxy distribution is more tractable to inference (or, for that matter, parameter

1And graphical models more generally.
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estimation) algorithms. For example, removing all edges from a fully connected graph

yields a memoryless distribution, which is trivial to process. Eliminating all edges is

unnecessary, of course, since there will be many proper subgraphs whose connectivity

lends them to available inference algorithms. The exponential representation of MRFs

introduced in Section 2.1.5 allows one to analyze such approximations as the removal

of an edge is effectively accomplished by setting the associated exponential coordinate

to zero.

Using an approximate distribution obtained by thinning or removing edges is

common for MRFs and other probability distributions on graphs [33, 55, 31]. The

exponential family representation and information geometry has been used to analyze

problems in multi-terminal information theory [26] and approximations to the full

MRF distribution by model-thinning [2]. Moreover, significant progress has been

made in understanding Belief Propagation through a spanning tree-based analysis

that uses information geometry [55]. In [31] an approximate inference algorithm for

Gaussian MRFs is introduced in which a cutset is used to permit exact inference on

the remaining, tractable components, while requiring that approximations be made

in the inference for the cutset itself. The approximations in [31] are analyzed using

information geometry.

In this chapter we will consider proxy distributions that are reduced MRFs, which

as introduced in Section 2.1.9, are MRFs defined on proper subgraphs of the original

graph. In particular, most of our attention will be on MRFs defined on the subgraph

induced by the cutset U though we will also consider proper subgraphs of the induced

subgraph. As a note, we mention that while it may be tempting to refer to an MRF

defined on the induced subgraph as the induced MRF, the exponential coordinates

for edges in this graph can vary leading to different MRF models. Since in this thesis

the principal concern is compression, the quantities that we will be looking at and

comparing between marginal and reduced MRF distributions will be those directly
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concerning data compression. Namely, we will examine entropy and divergence, and

have a little discussion of mutual information.

There is certainly the option of using an approximate inference method to compute

the marginal distribution of the cutset. One reason against this approach is that

approximate methods offer little guarantee as to what they actually compute. We

prefer to compute exactly, something which is not correct, but in such a way that

allows us to quantify the loss due to the approximation. This was a motivating

reason for pursuing the exact inference method of Local Conditioning in the previous

chapter, as opposed to one of the many approximate inference algorithms available

for MRFs, and for the suboptimal lossless coding method presented in Section 6.2 of

the following chapter.

In Section 5.1 we introduce the necessary background material for this chapter.

In Section 5.2 we discuss monotonicity properties of MRFs with respect to the ex-

ponential parameters. In Section 5.3 we discuss reduced Markov random fields, in

particular a Pythagorean decomposition comparisons between marginal and reduced

MRF entropies. The proofs are given either inline or in the last section of the chapter.

5.1 Preliminaries

In this chapter we consider a family of MRFs based on a statistic t, which we

assume throughout to be minimal, on a graph G. We can and do assume that G

is connected, for if it were not then any MRF defined on G could be decomposed

into a collection of independent MRFs each defined on a connected graph. For two

exponential parameter vectors θ1 and θ2, we say θ2 � θ1 if (θ2)ij ≥ (θ1)ij for all

{i, j} ∈ E and θ2 � θ1 if θ2 � θ1 and (θ2)ij > (θ1)ij for some edge {i, j} ∈ E. For

edge {i, j} the coordinate µij is the expected value Eθ [tij(Xi, Xj)] of the statistic

tij defined on that edge, and similarly for the coordinate µi as the expected value

of statistic ti. By covθ (tij, tkl) we denote the covariance Eθ [tij(Xi, Xj)tkl(Xk, Xl)] −
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Eθ [tij(Xi, Xj)]Eθ [tkl(Xk, Xl)] between the edge statistics tij and tkl, and similarly for

the respective covariances covθ (ti, tkl) and covθ (ti, tj) between a node statistic ti and

an edge statistic tkl, and between two node statistics ti and tj.

The log-partition function plays an important role in the analysis of MRFs gener-

ally [53, 54] and especially in our analysis of monotonicity that follows. It is straight-

forward to show the following result, which is well known [56].

Proposition V.1.

∂

∂θij
logQG(θ) = µij

∂

∂θi
logQG(θ) = µi

∂2

∂θkl∂θij
logQG(θ) = covθ (tij, tkl)

∂2

∂θkl∂θi
logQG(θ) = covθ (ti, tkl)

∂2

∂θj∂θi
logQG(θ) = covθ (ti, tj)

Since this shows that the Hessian of the log-partition function Φ(θ)
∆
= logQG(θ) is

a covariance matrix, and therefore nonnegative definite, we conclude from the above

that the log-partition function is convex, in that for all θ1, θ2 and λ ∈ [0, 1], we have

Φ(λθ1 + (1− λ)θ2) ≤ λΦ(θ1) + (1− λ)Φ(θ2). Since t is minimal, it is known that Φ(·)

is strictly convex, in that the above inequality is strict for all θ1, θ2 [4]. The gradient

inequality for a convex functions shows that for all θ1, θ2

Φ(θ1) ≥ Φ(θ2) +∇Φ(θ2)T (θ1 − θ2)
∆
= Φ̂θ2(θ1),

where we recognize Φ̂θ2(θ1) as the first-order Taylor series expansion of Φ(·) about

the point θ2. In other words, the gradient inequality states that the Taylor series
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approximation is a global underestimator of Φ(·). The gradient inequality is strict for

θ1 6= θ2 if Φ(·) is strictly convex.

A statistic t is said to be positively correlated if for θ � 0 the MRF induced by θ

has cov (tij, tlk) ≥ 0, cov (tij, tm) ≥ 0, and cov (tm, tn) ≥ 0, for all {i, j}, {l, k} ∈ E

and all n,m ∈ V . Again, since we assume t to be minimal, the preceding covariance

inequalitites are strict for a positively correlated statistic t. For example, the statistic

used to generate an Ising model with no external field is positively correlated [24].

Since the entries of the Hessian ∇2Φ(θ) are covariances between the tij’s, between the

ti’s, and between the ti’s and tij’s, if t is positively correlated, then for θ2 � θ1 � 0,

∇Φ(θ2) � ∇Φ(θ1). In other words, the moment parameter µ is monotone increasing

in the exponential parameter θ.

5.2 Monotonicity

In this section we consider how properties of an MRF vary when making monotone

adjustments to the exponential coordinates assigned as weights to the nodes and edges

of the corresponding graph. It is intuitive, for instance, that for an MRF based on

a positively correlated statistic t, increasing the exponential parameter on an edge

{i, j} will “pull” the pair of random variables Xi, Xj towards the configurations x′i, x
′
j

that maximize the value of the statistic tij(·, ·). For example, for a given i and

x′i, for each k ∈ ∂i \ j, the positive correlation of the statistic is going to draw

the value of each k towards that value that maximizes the value of the statistic

tik(x
′
i, ·), and so on throughout the network. Such biasing of the random variables

decreases the entropy. This effect would be even more pronounced if we increase

the exponential coordinates associated with multiple edges. Likewise, increasing the

exponential coordinate associated with the statistic for an individual node i is going

to pull the random variable Xi towards the particular value or values that maximize

ti and have a similar propagating effect on the bias of the remaining nodes in the
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network. Now looking at the divergence between an original MRF and another, it

is reasonable to assume that by “moving” the second MRF even “further away”,

for instance by increasing the differences in the exponential coordinates, we should

get an increase in the divergence. Finally, if we consider two subsets of the random

variables that partition the graph, we would expect that increasing the weight of

an edge connecting the two would result in an increase in the mutual information

between the two subsets of random variables.

5.2.1 Entropy

In this subsection we show that the entropy of a family of MRFs is monotone

increasing in the exponential parameters. As developers of source codes we have an

obvious interest in the entropy of an MRF, as it gives the lower bound to all lossless

coding schemes for the model. For example, by thinning a model to something that

is more tractable2, we can use the entropy of the simplified model as a substitute or

approximation to that of the original joint distribution. By showing that entropy is

monotone decreasing in the exponential parameters, we know that the entropy of a

thinned model is an upper bound to the entropy of the original MRF. The utility of

monotonicity is further demonstrated in Section 5.3 by showing that the entropy of

the reduced MRF with matching exponential parameters is greater than that of the

reduced MRF with matching moment coordinates. While monotonicity is an intuitive

idea, we were surprised not to have found the result in the literature. It follows directly

from the observation that the entropy of an MRF induced by exponential parameter

2Though we show monotonicity with respect to both edge and node potentials, tractability de-
pends on the presence of edges, so it is the exponential parameters associated with edges that matter
in “thinning” applications.
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Figure 5.1: The entropy of a Markov random field can be expressed as a Taylor series
approximation of a convex function Φ(·).

θ is expressed as

H(X; θ) = Φ(θ)−∇Φ(θ)T θ

= Φ(θ) +∇Φ(θ)T (0− θ),

i.e., as the first-order Taylor series expansion of Φ(·) evaluated at the point 0. This

is illustrated in Figure 5.1. The following is a new information inequality for Markov

random fields.

Theorem V.2 (Monotonicity of Entropy). Let X ∼ p(·; θ) be an MRF on a graph G

based on positively correlated statistic t. Then, for θ1, θ2 ∈ Θ, 0 � θ1 ≺ θ2, we have

that

HG(X; θ1) > HG(X; θ2).

Proof. Assume t is positively correlated. Then, as explained earlier, we know that
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for θ2 � θ1 � 0, ∇Φ(θ2) � ∇Φ(θ1). Therefore,

H(X; θ2) = Φ(θ2)−∇Φ(θ2)T θ2

= Φ(θ2) +∇Φ(θ2)T (θ1 − θ2)−∇Φ(θ2)T θ1

< Φ(θ1)−∇Φ(θ2)T θ1 (5.1)

< Φ(θ1)−∇Φ(θ1)T θ1 (5.2)

= H(X; θ1)

where (5.1) follows from the gradient inequality of convex functions and (5.2) from

the positive correlation assumption. This demonstrates the desired monotonicity.

The previous proof shows that monotonicity of entropy follows from both the

convexity of Φ and positive correlation of the statistic t. One might wonder if the

positive correlation assumption is too strict, i.e., if there are families of MRFs based

on non-positively correlated statistics that also exhibit monotonicity of entropy. The

following, a converse of the preceding theorem, states that positive correlation is in

fact required.

Theorem V.3 (Converse: Monotonicity implies Positive Correlation). Let t be the

statistic for a family of MRFs on a graph G such that HG(X; θ1) > HG(X; θ2) for

0 � θ1 ≺ θ2. Then, t is positively correlated.

Proof. By assumption the entropy is monotone decreasing in the exponential coordi-

nates. Therefore, it is decreasing with respect to an incremental increase in a single
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exponential coordinate. Thus, we have that for any θ � 0,

0 >
∂

∂θij
H(X; θ)

=
∂

∂θij
Φ(θ)− ∂

∂θij

∑
m∈V

θmµm −
∂

∂θij

∑
{k,l}

θklµkl

= µij −
∑
m∈V

θicov (tij, tm)−
∑

{k,l}6={i,j}

θklcov (tij, tkl)− (µij + θijcov (tij, tij))

= −
∑
m∈E

θmcov (tij, tm)−
∑
{k,l}∈E

θklcov (tij, tkl) . (5.3)

Since this holds for arbitrary values of θ each of the covariances in (5.3) must be

positive. Likewise, for the exponential coordinate on the statistic of an individual

node,

0 >
∂

∂θi
H(X; θ)

= −
∑
m∈V

θmcov (ti, tm)−
∑
{k,l}∈E

θklcov (ti, tkl) (5.4)

implies that each of the covariances in (5.4) must also be positive. Since the above

arguments hold for an arbitrary edge {i, j} and arbitrary node i, the statistic t is

positively correlated.

The previous two theorems provide a characterization of those families of MRFs

in which entropy is monotone decreasing in the exponential parameters. To say that

increasing the weights on the edges and nodes of an MRF increases the coupling of

the random variables and the bias of the node distributions, and thus decreases the

entropy, is to say that the components of the statistic on which the MRF is based

all have positive covariance with one another. Thus the family of Ising models is

not only the prototypical example of a family of MRFs, but also of one exhibiting

monotonicity of entropy.

Example V.4. Let TN be an Ising tree on N nodes with edge weights {θij} and no
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external field. The entropy, denoted by HN
T (X; θ), can be shown to satisfy (expressions

for Q and µ can be found in [5])

HN
T (X; θ) = ln

2N
∏
{i,j}∈E

cosh θij

− ∑
{i,j}∈E

θij tanh θij (5.5)

= N ln 2 +
∑
{i,j}∈E

[ln cosh θij − θij tanh θij] (5.6)

= N ln 2 +
∑
{i,j}∈E

c(θij), (5.7)

where

c(θij) = ln cosh θij + θij tanh θij.

To see the effect on entropy of increasing the weight θij attached to a given edge we

plot c(θij) as a function of θij, shown in Figure 5.2. From the plot one can see that

if all other exponential parameters are kept the same, the entropy decreases as θij is

increased. Moreover, it can be shown that the derivative of c(θij) with respect to θij is

negative. From Figure 5.2 we can also see that c(θij) is nonpositive. This makes sense

as the first term on in (5.6) is the entropy of an independent equiprobable distribution.

Thus each summand c(θij) is the reduction in entroy by connecting nodes i and j by

an edge with weight θij.

An immediate application of Monotonicity is that we can upper bound the entropy

of a Markov random field by setting some of the exponential parameters to zero, which

in graphical terms amounts to removing edges from the graph.

Corollary V.5. Let θ ∈ Θ be an exponential parameter vector for an MRF on G =

(V,E), let A be a subset of edges of E, and let θ̄ = (θE\A, 0) be the coordinate vector

obtained by setting the components for edges in A to zero. Then,

HG(X; θ) < HG(X; θ̄).
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Figure 5.2: A plot of c(θij).

(a) (b) (c)

(d) (e)

Figure 5.3: Different graphs on five nodes.

Obviously, monotonicity can also be used to analyze situations where an edge is

added to a graph. We have seen theoretically and through an example that increasing

the weight of an edge in an MRF results in a new MRF with lower entropy. However,

how much the entropy decreases depends in large part on the significance of the edge

in coupling the random variables.

Example V.6. Let C denote a graph with M nodes {1, 2, . . . ,M} connected succes-

sively in a cycle. It can be shown (for example, by substituting expressions for Q and
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µ found in [5]) that the entropy of a cycle C on M nodes is

HM
C (X; θ) = M ln 2 + ln

[∏
i,i+1

cosh θi,i+1 +
∏
i,i+1

sinh θi,i+1

]

−

∑
i,i+1

θi,i+1

[
cosh θi,i+1

∏
j 6=i

sinh θj,j+1 + sinh θi,i+1

∏
j 6=i

cosh θj,j+1

]

2

[ ∏
i,i+1

cosh θi,i+1 +
∏
i,i+1

sinh θi,i+1

] .

One can therefore show that the entropy of an Ising model on a single cycle graph

consisting of a single cycle C connected to a tree T is (proof given in Section 5.4)

HM,N−M
C,T = HM

C +HN−M
T − ln 2, (5.8)

where the cycle C consists of M nodes, the tree T consists of N −M nodes, and they

intersect at one node so that the total number of nodes is N − 1. It does not matter

whether they intersect at a leaf or interior node of the tree.

Now consider a chain graph of N nodes, for example as shown in Figure 5.3 (a),

with a homogeneous Ising model defined with common edge weight θ. Now consider

adding an edge between node 1 and either node N or node 3, resulting respectively in,

for example, the graphs in (b) and (c). In Figure 5.4 we show plots of the entropy

of the resulting Ising models when N = 20 and the new edge weight θ′ varies from

0 to 5. In (a) θ = 0.5 on the original edges and in (b) θ = 1 on the original edges.

We can see that when the original parameter θ is the larger value 1 and θ′ is small,

forming the tighter 3-node cycle lowers the entropy more than forming the 20-node

cycle. But for larger values of θ′, the entropy of the 20-node cycle becomes lower. For

the lower value 0.5 of θ, the 3-node cycle has lower entropy than the 20-node cycle

for all values of the new edge weight. As θ′ −→ ∞, the edge connecting either {1, 3}

or {1, 20} the edge effectively contracts until the endpoints are identically equal. In
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the model with the 3-node cycle, then, as θ′ −→ ∞ nodes 1 and 3 effectively become

the same node. Since each is already connected to node 2, the entropy tends to that of

a 19-node chain where all edges have weight θ and one edge (at the beginning of the

chain) has edge weight 2θ. For the 20-node cycle, as θ′ −→ ∞ the entropy tends to

that of a 19-node cycle with uniform edge weight θ. An explanation for the different

behavior observed in the plots is that for lower values of θ having an edge with twice

the weight lowers the entropy more, while at higher values of θ the increased weight

on an edge matters less in terms of decrease in entropy.

(a) (b)

Figure 5.4: Plots of entropy adding edge for (a) θ = 0.5; (b) θ = 1

Example V.7. This example is similar to Example V.6 except that here we begin with

the graph created by adding the edge {1, 3} in the example above, for example, as shown

in Figure 5.3 (c). This time we consider decreasing the weight of either edge {1, 3} or

edge {N − 1, N}, until the edge is effectively removed with θ′ = 0. The effects on the

entropy of the resulting graph by varying edge weight associated with either of these

two edges from the common edge weight θ to 0 are shown in Figure 5.5 for different

values of the uniform weight θ. We can see that for θ = .5, lowering the weight of edge

{1, 3} results in a greater increase in entropy that lowering the coordinate for edge

{19, 20}. For θ = 1, lowering the weight for edge {19, 20} increases the entropy more

than doing so for edge {1, 3} up to a certain point. After this point, breaking the cycle

results in a greater increase in entropy than creating the isolated node. For θ = 1.5,
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(a) (b)

(c)

Figure 5.5: Plots of entropy adding edge for (a) θ = 1; (b) θ = .5; (c) θ = 1.5.

the entropy is so low, that it is more beneficial (in terms of increasing entropy) to

create the isolated node than to create the tree.

5.2.2 Divergence

In this section we explore the monotonicity of divergence between two MRFs.

Whereas with entropy we can begin to understand how increasing and decreasing the

weight on different edges leads to different decreases and increases, respectively, of

the entropy, with the divergence we can look at how the adjustment to specific edges

affects the divergence between a new MRF and an original MRF.

The divergence between an MRF induced by exponential parameter θ1 and an

MRF induced by parameter θ2 is denoted in shorthand by D(θ1||θ2) and can be

expressed as

D(θ1||θ2) = Φ(θ2)− Φ(θ1) + µT1 (θ1 − θ2)

= Φ(θ2)− Φ̂θ1(θ2).
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That is, the divergence between pG(θ1) and pG(θ2) is the error in the first-order Taylor

series approximation of Φ(θ) about θ1. We have the following theorem regarding the

monotonicity of divergence.

Theorem V.8. The X be a Markov random field based on a positively correlated,

minimal statistic t. For arbitrary θ1 ≺ θ2 ≺ θ3, we have

D(θ1||θ2) < D(θ1||θ3). (5.9)

Proof. Taking the gradient of D(θ1||θ) with respect to θ gives

∇D(θ1||θ) = µ− µ1,

where µ and µ1 are the moment coordinates for exponential parameters θ and θ1,

respectively. Since for a positively correlated and minimal statistic t, the gradient

of Φ(θ), which equals the moment coordinates µ, is component-wise increasing, this

shows that the divergence is as well, in the second argument.

Since in source coding scenarios the first argument of D(·||·) corresponds to the

original or true model and the second argument to the proxy, the theorem as stated

aligns with the case of approximating an original MRF by a “heavier” proxy model

and by considering monotone increases in divergence by going to an even heavier

proxy model. The typical situation, of course, is the reverse: modeling the original

MRF by a lighter model and asking what happens by going to an even lighter model.

The theorem holds in this direction as well, for if θ ≺ θ1, then for a positively

correlated and minimal statistic, µ ≺ µ1 so the gradient of D(θ1||θ) with respect

to θ is component-wise negative, which means that decreasing θ results in greater

divergence.

Example V.9. Consider the graphs in Figure 5.6 (a), (b), (c), and (e). There is
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a uniform Ising distribution with common edge weight θ = .5 in all three cases. By

comparing the first four lines or the last three lines of Table 5.1, we can see that the

divergence increases as additional edges are removed from the graph.

(a) (b) (c)

(d) (e)

Figure 5.6: Graphs with different edge sets on four nodes.

Example V.10. Consider again the graphs in Figure 5.6. Looking at the divergences

D(c||a) and D(c||e) suggests that the relative entropy from a given MRF to a second

MRF whose edge set (exponential parameters) contains that of the first depends on the

location of the removed edge(s). For instance, an explanation for why the divergence

D(c||a) is smaller than D(c||e) is that the graph in (e) has a tree component that

makes it “farther” from (c) than (a), in which all nodes are bound in a cycle.

It is well-known that relative entropy is asymmetric. In the case of MRFs,

where the exponential parameters associated with the two MRFs are related through

component-wise inequality, it is interesting to consider whether there is a pattern to

the asymmetry. In the example graphs considered above, we use the same edge weight

θ = .5 on all edges, so the divergences in some sense are measuring the contribution

of additional or missing edges in the “distance” from one MRF to another. Observing

that for two graphs where one edge set is contained in the other, the relative entropy

from the “smaller” MRF to the “larger” MRF is greater than that from “larger” to

“smaller”. This leads the author to offer the following conjecture.
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θ1 θ2 D(θ1||θ2) D(θ2||θ1)

(b) (c) 0.0902 0.1121

(b) (a) 0.2321 0.3079

(b) (e) 0.3035 .4158

(b) (d) 0.5591 0.7556

(c) (a) 0.1055 0.1281

(c) (d) 0.3438 0.4351

(c) (e) 0.1245 0.1463

Table 5.1: Divergences between pairs of graphs from Figure 5.6.

Conjecture V.11. Let X be a minimal, positively correlated MRF. If θ1 ≺ θ2, then

D(θ1||θ2) > D(θ2||θ1).

If this is true then it offers some insight into the asymmetry of relative entropy.

This can be understood in an extreme case. Suppose the coordinates of θ2 are very

large, much larger than those of θ1. In this case, there will be many configurations x

for which pG(θ2) is very close to zero, due to the high coupling of the random variables.

For such configurations, the term log pG(x; θ1)/pG(x; θ2) is going to be very large and

is going to dominate the terms contributing to the two divergences in question.

5.2.3 Mutual Information

It is just as intuitive that for such an MRF model, decreasing the exponential

coordinate for an edge {i, j}, where i ∈ B and j ∈ ∂B, should decrease the mutual

information between XB and X∂B. We let I(XB;X∂B||θ) denote the mutual informa-

tion between the random subfields XB and X∂B in the MRF distribution induced by

exponential parameter θ. Then, it can be shown that

I(XB;X∂B; θ) = D(pG(θ) || pBG(θ)p∂BG (θ))

= logQG(θ) + Eθ
[
log

Ψ̄B,∂B

mB→∂Bm∂B→B

]
,
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where

Ψ̄U,∂U(xU , x∂U) =
∏
{i,j}∈E
i∈U,j∈∂U

Ψij(xi, xj)

=
∏
{i,j}∈E
i∈U,j∈∂U

exp{θijtij(xi, xj)}

= exp{
∑

k∈EU,∂U

θktk(xk)},

and for subsets A,B ⊂ V ,

mA→B(xB) =
∑
x′A

Ψ̄A,B(x′A, xB)
∏
i∈A

Φi(xi).

Conjecture V.12. For a minimal, positively correlated MRF, the mutual informa-

tion is monotone increasing in the exponential parameter.

5.3 Reduced Markov Random Fields

In this section we consider an MRF based on a (minimal) statistic t, whose com-

ponents correspond to subsets of the nodes and edges of the graph G. For a given

subset U ⊂ V of sites, we are interested in MRF distributions for XU . As mentioned

in Section 2.1.9, for a subset U of sites the subvectors tU , θU , and µU correspond,

respectively, to the statistic components, exponential coordinates, and moment coor-

dinates for nodes and edges contained within the subset U . A reduced MRF on the

subgraph GU based on tU is expressed in terms of exponential coordinates θU ∈ Θ(G)

as

pGU (xU ; θU) = exp{〈θU , tU〉 − ΦU(θU)}. (5.10)

Alternatively, it can be indexed by the moment coordinates as µU ∈M(GU). Since t
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is minimal for the family of MRFs on G, the subvector tU is minimal for the family of

MRFs F(GU) on the induced subgraphGU , so Θ(GU) andM(GU) are dual coordinate

systems for MRFs on GU . For µU ∈M(GU), the reduced MRF on GU is denoted by

pGU (µU).

The first step in analyzing reduced MRFs on GU is to isolate the induced subgraph

GU from the remainder of the graph. The reason for isolating GU is that we want

to consider MRFs on GU alone, with no edges connecting it to other nodes. Since

θ is a coordinate system for the collection of MRFs F on G based on statistic t,

we can isolate GU by setting to zero those exponential coordinates corresponding to

edges one of whose endpoints is in U , the other not. However, to simplify the coming

analysis we choose to set to zero the exponential coordinates \θU for all nodes and

edges outside of U . That is, we consider the e-flat submanifold [3]

F ′U(0) = {p′ ∈ F : \θ′U = 0}

of MRFs on G. Because of the zeroed out exponential coordinates, this e-flat sub-

manifold can be seen as the family of MRF on the induced subgraph GU together

with | V \U | isolated nodes, where the isolated nodes are independent and uniformly

distributed.

5.3.1 Moment-matching Reduced MRF

Given an MRF pG on G, it is not immediately clear whether the subvector µU

corresponding to moment coordinates for nodes and edges inside a subset U is a valid

moment parameter for MRFs on GU based on tU , i.e., it is not clear if it is inM(GU).

We now use the fact that the moment parameters µ provide a coordinate system for

F and consider the m-flat submanifold [3]

151



F ′′U(µU) = {p′′ ∈ F : µ′′U = µU}

of all MRFs whose moment coordinates µ′′ for edges and nodes in U are equal to the

corresponding coordinates µU from the original MRF p ∼ µ. In partition form, an

MRF pG(·;µ′′) ∈ F ′′U is parameterized by a moment vector µ′′ = (µU , \µ′′U).

In the information geometry literature, the submanifolds F ′U and F ′′U are known as

orthogonal submanifolds [3, 2] because the retained moment coordinates and zeroed

out exponential coordinates partition the set of coordinate indices. It follows that F ′U

and F ′′U intersect uniquely at an MRF p∗G with mixed coordinates (µU , \θ∗U = 0) and

exponential coordinates θ∗(µ) = (θ∗U(µ), 0). This is called the m-projection of pG(·; θ)

onto the the thinned model [3, 2]. Figure 5.7 gives a schematic of the manifold F

of MRFs on G based on t and submanifolds F ′′U and F ′U . Though p∗G = pG(·; θ∗) is

defined on the original graph G, the subfields XU and XV \U are independent under

p∗G, so that

pUG(XU ; θ∗) = pGU (XU ; θ∗U).

Since t is minimal for the original family of MRFs, tU is minimal for reduced MRFs

on GU , and in this case, for any MRF on G, µU ∈ M(GU), as these are the unique

moment coordinates to induce the reduced MRF distribution pGU (θ∗), thus making

clear what was not clear earlier, that indeed µU is a valid moment parameter for an

MRF on GU .

5.3.2 Pythagorean Decomposition for Reduced MRFs

Let θ′ be an exponential parameter for an MRF in F ′U(0), and given some MRF in

F with moment parameter µ, let θ∗ be the moment-matching exponential parameter

for the MRF in the intersection of F ′U(0) and F ′′U(µU). Then for any θ inducing an
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Figure 5.7: Orthogonal submanifolds F ′U(0) and F ′′U(µU) in manifold F of MRFs on
G.

MRF in F , the divergence between pG(θ) and pG(θ′) can be decomposed as [2]

D(pG(θ)||pG(θ′)) = D(pG(θ)||pG(θ∗)) +D(pG(θ∗)||pG(θ′)). (5.11)

This is a well-known Pythagorean relation of information geometry. This shows

that of all MRFs p(θ′) in the e-flat submanifold F ′U the one with minimum reverse

divergence with the original MRF p(θ) is the moment-matching MRF p(θ∗).

We can use the above Pythagorean formula to simplify the divergence between

pUG(θ) and pGU (θ′U) by first noting that MRFs in F ′U have a particularly simple form.

The MRF pG(θ′) induced by θ′ is simply the product of the reduced MRF pGU (θ′U) and

the product of the independent distributions for the isolated nodes. Given a second

MRF pG(θ′′) in F ′U , the divergence between pG(θ′) and pG(θ′′) can be decomposed as

the divergence between the reduced MRFs pGU (θ′U) and pGU (θ′′U), plus the divergence

between the two independent parts. But the independent parts are identical so the

divergence is simply the divergence between the two reduced MRFs, as summarized

in the following lemma.

Lemma V.13. Let θ′, θ′′ ∈ F ′U . Then,

DG(θ′||θ′′) = DGU (θ′U ||θ′′U). (5.12)
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(a) (b)

Figure 5.8: (a) A graph with subsets indicated in yellow and red; (b) induced sub-
graphs for respective subsets.

Because of their simple form, we can decompose the entropy of an MRF pG(θ′) in

the e-flat submanifold F ′U in the following way.

Lemma V.14. Let θ′ induce an MRF in F ′U . Then,

HG(θ′) = HGU (θ′U) + |V \ U | log |X |. (5.13)

Again owing to the simple form of MRFs in F ′U , we can decompose the divergence

between the original MRF pG(θ) and an MRF pG(θ′) in F ′U as follows.

Lemma V.15. Let θ be given, and let θ′ induce an MRF in F ′U . Then,

D(θ||θ′) = D(pUG(θ)||pUGU (θ′U)) + |V \ U | log |X | −HV \U |U
G (θ). (5.14)

We substitute the decompositions from the above two lemmas into (5.11) to derive

a decomposition for the divergence between the marginal distribution pUG(θ) and the

reduced MRF pGU (θ′U).

Theorem V.16. Let θ induce an MRF in F and let µ be the corresponding moment

coordinate vector and let θ′ be an exponential coordinate vector for an MRF in F ′U(0).

Furthermore, let U be a nonempty subset of sites. Then

D(pUG(θ)||pUGU (θ′U)) = D(pUG(θ)||pUGU (µU)) +D(pGU (µU)||pGU (θ′U)). (5.15)
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(a) (b)

Figure 5.9: (a) A graph with subsets indicated in yellow and red; (b) induced sub-
graphs for respective subsets.

5.3.3 Reduced MRF Entropy

In Section 5.2.1 we showed that removing edges from a graph, by way of setting

the corresponding exponential coordinates to zero, increases the entropy of an MRF.

In this section we again assume that θ induces and original MRF with corresponding

moment parameter µ, and we consider a subset U of V and show that

HGU (θU) ≥ HU
G (θ). (5.16)

In other words, we show that the reduced MRF entropy HGU (θU) is an upper bound

to the marginal entropy HU
G (θ). That is, isolating GU by eliminating edges connected

to U cannot decrease the entropy of XU . We show this in two steps – first showing

that HGU (µU) ≥ HU
G (θ), and then demonstrating that HGU (θU) ≥ HGU (µU).

Given an exponential parameter θ, let θ′ = (θU , 0) be the exponential parameter

obtained by setting coordinates for edges outside of U to zero. We know from The-

orem V.3 that HG(θ′) > HG(θ), however this does not give us a comparison between

HGU (θ′U) and HU
G (θ). Since µU is a valid moment parameter for reduced MRFs on GU ,

the first step is accomplished by using the well-known maximum entropy principle

for exponential families [9], a slight variation of which is given below.

Proposition V.17 (Maximum Entropy). Let U ⊂ V be a subset of nodes, let µU ∈

M(GU), and let PµU be the set of (not necessarily Markov) probability distributions
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(a) (b)

Figure 5.10: (a) Original cycle on which Ising model defined. Subset U indicated in
black. (b) Induced subgraph GU on which upper bound HGU (XU ; θU) is
based.

on XU satisfying

Ep [tU(X)] = µU .

If p ∈ PµU , then

Hp(XU) ≤ HGU (XU ;µU),

with equality if and only if p = pGU (XU ;µU).

We now conclude from this proposition that HGU (µU) ≥ HU
G (θ), which completes the

first step.

To do the second and final step we show that the exponential coordinate vector θ∗U

for the moment-matching MRF on GU is component-wise larger than the subvector

θU of the original exponential parameter. This is stated in the following theorem.

Theorem V.18. Let G = (V,E) be an undirected graph, let t be a positively corre-

lated, minimal statistic for MRFs on G, and let θ ∈ Θ be an exponential parameter

for MRFs on G with corresponding mean parameter vector µ. For a subset of nodes

U ⊂ V , let θ∗U be the exponential parameter vector for MRFs on GU with correspond-

ing moment vector µU . Then

θ∗U � θU ,

with equality if and only if θ∗U = θU .

Proof. We do this by first showing that ∇ΦU(θ∗U) � ∇ΦU(θU). Let θ′ = (θU , 0) be

156



the exponential parameter for an MRF obtained by zeroing out coordinates for nodes

and edges outside of U . Then,

∇ΦU(θ∗U) = µU (5.16)

= [∇Φ(θ)]U (5.17)

� [∇Φ(θ′)]U (5.18)

= ∇ΦU(θU) (5.19)

where (5.16) and (5.17) follow from the moment-matching constraint on θ∗, (5.18)

follows from the fact that the gradient ∇Φ(·) is increasing for positively correlated t,

and (5.19) is due to pG(θ′) being the reduced MRF on GU with exponential parameter

θU , times an independent part.

We now let µ′U be the moment parameter for the MRF on GU corresponding to

exponential parameter θU . Consider the mapping Λ : Θ −→ M from exponential

coordinates to moment coordinates. Since µU � µ′U , the theorem is proved if we can

show that the inverse map Λ−1 : M −→ Θ exists and is increasing. By the positive

correlation assumption, Λ is strictly increasing which means that it is invertible,

hence Λ−1 exists. Moreover, since the derivative of the inverse function is simply the

reciprocal of the derivative of the original function, we see that indeed, Λ−1 is strictly

increasing as well. Therefore, θ∗U � θU and the theorem is proved.

We now summarize in the following theorem.

Theorem V.19. Let X be a minimal, positively correlated Markov random field in-

duced by exponential parameter θ and corresponding moment parameter µ. Then,

HU
G (θ) ≤ HGU (µU) ≤ HGU (θU). (5.20)

We now quantify the gap of the first inequality in (5.20).
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Figure 5.11: Entropy of marginal, moment-matching and exponential-matching re-
duced MRFs for cycle graph shown in Figure 5.10.

In the previous subsection we discussed how, given an exponential parameter θ and

a cutset U , the MRF in the e-flat submanifold F ′U with minimum reverse divergence to

p(θ) is induced by the moment-matching exponential parameter θ∗. It is well-known

and straightforward to show that

HG(θ∗) = HG(θ) +D(pG(θ)||pG(θ∗)). (5.21)

Substituting the results of Lemmas V.14 and V.15 into (5.21) gives us the following

theorem.

Theorem V.20. Let G = (V,E) be an undirected graph on which MRF X is defined.

For an arbitrary subset U ⊂ V ,

HGU (µU) = HU
G (θ) +D(pUG(θ)||pGU (µU)). (5.22)
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5.4 Proofs

5.4.1 Proof of Equation (5.8)

Proof. We enumerate the nodes on the cycle as 1, 2, · · · ,m, and then enumerate the

nodes on the subtree in such a way that along any path toward the leaves, the numbers

get bigger. Then,

H(X1, · · · , Xm+n; θ) = Hm
C (X1, · · · , Xm; β) +

m+n∑
i=m+1

H(Xi | Xπ(i); β)

= Hm
C +

m+n∑
i=m+1

H(Xi | Xπ(i); β)

= Hm
C +

m+n∑
i=m+1

HG({i,j})(Xi | Xπ(i); βiπ(i))

= Hm
C +

∑
{i,j}∈E(T )

[
− eβij

eβij + e−βij
ln

eβij

eβij + e−βij

]

+
∑

{i,j}∈E(T )

[
− e−βij

eβij + e−βij
ln

e−βij

eβij + e−βij

]
= Hm

C +
∑

{i,j}∈E(T )

[ln (2 cosh βij)− θij tanh βij]

= Hm
C + (n− 1) [ln 2 + ln (cosh βij)− βij tanh βij]

= Hm
C +Hn

T − ln 2
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5.4.2 Proof of Lemma V.13

Proof. Let θ′ and θ′′ induce MRFs in the e-flat manifold F ′U . Then,

DG(θ′||θ′′) =
∑
x

pG(x; θ′) log
pG(x; θ′)

pG(x; θ′′)

=
∑
xU

pGU (xU ; θ′U) log
pGU (xU ; θ′U)

pGU (xU ; θ′′U)
+
∑
x

pG(x; θ′) log
pGV \U (xV \U ; θ′V \U)

pGV \U (xV \U ; θ′′V \U)

= DGU (θ′U ||θ′′U), (5.23)

where equality (5.23) follows from the fact that θ′ and θ′′ agree on coordinates for

V \ U .

5.4.3 Proof of Lemma V.14

Proof. Let θ′ induce an MRF in F ′U . Then,

HG(θ′) = HG(xU ; θ′) +H
V \U |U
G (θ′)

= HGU (θ′U) + |V \ U | log |X |, (5.24)

where equality (5.24) follows from the fact the under θ′, V \ U is independent and

identically distributed with uniform distribution.

5.4.4 Proof of Lemma V.15

Proof. Let θ be given, and let θ′ induce an MRF in F ′U . Then,

D(θ||θ′) =
∑
x

pG(x; θ) log
pG(x; θ)

pG(x; θ′)

=
∑
xU

pUG(xU ; θ) log
pG(xU ; θ)

pGU (xU ; θ′U)
+
∑
x

pG(x; θ′) log
pGV \U|U (xV \U ; θ)

pGV \U (xV \U ; θ′V \U)

= D(pUG(θ)||pUGU (θ′U)) + |V \ U | log |X | −HV \U |U
G (θ).
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CHAPTER VI

Lossless Compression of MRFs

In this chapter we discuss lossless compression of Markov random fields based on

Arithmetic Encoding (AC). As discussed in Section 2.3.2, the redundancy in rate in

using Arithmetic Encoding is the divergence between the original distribution and

the coding distribution determined by the product of the coding distributions for

the individual symbols. This means that to achieve optimal compression of an MRF

X, one must be able to perform exact inference. The connection between optimal

compression and exact inference has been known for some time [42, 43], but in the

context of Markov random fields this has a direct implication: since Belief Propagation

is the standard method for performing inference in an MRF, it is only possible to

optimally losslessly compress an MRF if the associated graph is amenable to exact

inference by BP. Since most sources can be described as Markov random fields on some

graph, it is interesting to note that the existence of practical, efficient algorithms for

optimally losslessly compressing that source depends on how “interconnected” the

source is. In this chapter we discuss optimal compression for acyclic and EASY cyclic

MRFs, and introduce a method for suboptimal lossless compression of HARD cyclic

MRFs.

Recall from Section 2.3.2 that Arithmetic Encoding involves forming a scan x1, x2,

. . . , x|V | of the pixel values and then for each i, computing a coding distribution
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fi(x
′
i), which is passed along with the pixel value xi to the encoder. The decoder

reverses the process, recomputing the coding distributions to perfectly reproduce the

scan of pixel values. When the MRF is defined on an acyclic graph, optimal direct

encoding can be performed in two stages. In the first, which will be referred to as

the upward pre-encoding phase, the graph is viewed as a tree with the first scanned

pixel as its root. The Belief Propagation (BP) algorithm is run, starting at the leaves,

with messages being passed from children to parents, until messages are received at

the root. These messages do not depend on the pixel values and are of the form

indicated in Proposition II.4. In the second stage, the downward encoding phase, a

lineal scan is chosen, which means that every parent is scanned before its children.

Then, for i = 1, . . . , N , the optimal coding distribution pi|∗ is computed from the

upward messages into node i from its children and the value of the edge potential

Ψi,π(i)(xi, x̄π(i)) between i and its parent xπ(i), where x̄π(i) is the observed value of the

parent node. The values in x1, . . . , xi−1 other than xπ(i) are irrelevant in computing

pi|∗ due to the tree structure and the Markov property. Overall, the complexity is

proportional to |V | times the alphabet size squared. The algorithm for encoding

an acyclic MRF is the basis for both the optimal and suboptimal methods for AC

encoding a cyclic graph discussed in this chapter.

In an MRF defined on a cyclic graph, the cycles prevent efficient computation of

the pi|∗ using the standard BP algorithm. Thus the problem of optimally compressing

a cyclic MRF boils down to the familiar tactics used to perform inference in a cyclic

MRF. For some graphs it may be possible to form a cluster tree with reasonable sized

clusters or there may be a loop cutset and associated unwrapping where the largest

relevant set is of reasonable size. Such MRFs are called EASY. In the former case, one

can group nodes together to form a cluster tree Ĝ and then run the acyclic encoding

algorithm, and in the latter, one can choose a loop-cutset L and an unwrapped graph

G based on L, then apply Local Conditioning to encode an image x. For example, an
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MRF on a 10×100 grid graph is EASY, since the columns can be grouped into clusters

of size 10 and, as shown in Section 4.4, the checkerboard cutset has an unwrapping

with largest relevant set size 10. In each of these methods, a lineal scan is chosen,

an initial round of upward messages toward the root, followed by a downward pass

in which the current node of the scan uses the upward messages from its children

combined with conditional information from nodes encoded before it.

A Markov random field on a graph for which neither of the two previous approaches

lead to methods with reasonable complexity is called a HARD MRF. For instance,

an MRF on a 100 × 100 grid graph is HARD. For HARD cyclic Markov random

fields, one can of course use the Sum-Product variant of Loopy Belief Propagation.

However, as is well known [37], very little is understood about the answers, that is,

beliefs, that LBP produces. Indeed, in few cases can we say exactly what LBP is

computing, for example in Gaussian MRFs [59] or finite-valued MRFs defined on

a single-cycle [57, 58]. For any application requiring an inference algorithm this is

sure to be frustrating, but perhaps more so in the source coding problem because of

the operational significance of the divergence between the true distribution and what

the inference algorithm is actually computing. In Section 6.2 we propose Reduced

Cutset Coding (RCC), a suboptimal method for HARD cyclic MRFs, in which we

can explicitly quantify the divergence between the original and coding distributions.

A cutset U is chosen so that the subgraph induced by the cutset and the components

of G \ U are all tractable to the clustering methods or to Local Conditioning. If

the components of G \ U are EASY, then the remaining sites V \ U can be encoded

optimally conditioned on the cutset. If the induced subgraph GU is tractable, we can

exactly compute a reduced MRF coding distribution for XU . This is suboptimal since

we would not be using the marginal distribution of XU . However, we can quantify the

redundancy and even optimize with respect to reduced MRFs onGU . This approach of

using suboptimal inference on a cutset in order to guarantee optimal performance on
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the remaining components is similar to the suboptimal inference method for Gaussian

MRFs in [31].

In Section 6.1 we discuss optimal coding of acyclic MRFs and EASY cyclic MRFs.

In Section 6.2 we discuss the Reduced Cutset Coding method. In Section 6.3 we

demonstrate the RCC method on homogeneous Ising models on both the 4 pt. and

8 pt. graphs. For these models, the performance of this method is near optimal. In

Section 6.4 we model bilevel images as Ising models on a 4 pt. grid graphs and apply

RCC. Proofs are in the last section of the chapter.

6.1 Optimal AC Encoding of MRFs

As can be seen from formula (2.11) for the average bitstring length produced by

an AC encoder, optimal compression occurs when exact inference is possible. For

MRFs defined on acyclic graphs, this is always the case. For cyclic MRFs, this is the

case when defined on EASY graphs.

6.1.1 Acyclic MRFs

First, a lineal scan 1, 2, . . . , |V | of the nodes is formed, and we denote by Ai the

first i nodes of the scan. The optimal coding distribution for node i is then computed

as

pi|∗(xi|xAi−1
) =

p(xAi)

p(xAi−1
)

=
ZAi(xAi)

ZAi−1
(xAi−1

)

using the usual messages from the BP algorithm. Since the scan is lineal, the set Ai is

connected. Therefore, the beliefs in the numerator and denominator above can each

be computed using a formula analogous to (2.14) [30]. However, due to the Markov

property and the lineal scan, the optimal coding distribution pi|∗(xi|xAi−1) can be
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computed more simply as

pi|∗(xi|xAi−1
) =

p(xπ(i), xi)

p(xπ(i))

=
Z{π(i),i}(xπ(i), xi)

Zπ(i)(xπ(i))
,

since Xi is conditionally independent of XAi−1
\ Xπ(i) conditioned on Xπ(i). The

following theorem shows how the pi|∗’s can be efficiently computed using the BP

messages.

(a) (b)

(c) (d)

Figure 6.1: (a) Upward messages to root node; (b) Encoding root node with messages
from children; (c) Continue encoding with messages from children and
conditional message from parent; (d) Encoding final node of scan. The
black and white nodes indicate observed pixel values.

Theorem VI.1. Suppose the graph G = (V,E) of an MRF X is acyclic, and suppose

that a lineal scan of the nodes in G is chosen. Then,

pi|∗(xi|xAi) =

Ψπ(i),i(xπ(i), xi)Φi(xi)
∏

j∈σ(i)

mj→i(xi)∑
x′i

Ψπ(i),i(xπ(i), x′i)Φi(x′i)
∏

j∈σ(i)

mj→i(x′i)
. (6.1)

Notice that this theorem says that the optimal coding distribution for node i
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(a) (b)

(c) (d)

Figure 6.2: (a) Upward messages to root node; (b) Encoding root node with messages
from children; (c) Continue encoding with messages from children and
conditional message from parent; Encoding final node of scan.

depends only on messages from its children and the value of its parent. Therefore,

one can efficiently encode an image x with the two-stage process described in the

Introduction. The first pixel to be scanned is chosen arbitrarily. The graph is viewed

as a tree with this pixel as its root. The scan order for the remaining pixels can

be any lineal scan, where parent-child relationships are determined by the choice of

root. In the first stage, an upward pre-encoding phase starting at the leaves, BP

successively computes and passes messages from children to parents, using (2.15) and

(2.16), up to the root node of the scan. In the second stage, a downward encoding

phase from the root to the leafs takes place, where for i = 1 to N , Theorem VI.1 is

used to compute pi|∗(·). The factor Ψπ(i),i(xπ(i), xi) can be viewed as a conditional

message from node π(i) to its child i. One feeds it along with xi to the AC encoder.
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Note that we did not need to actually compute the individual node beliefs nor the

messages from parents to children. The complexity of this method is on the same

order as that of ordinary BP message passing on the acyclic graph. More specifically,

the total number of computations is roughly half that of regular BP, since only one

message per edge is computed rather than the two when beliefs at all nodes is the

objective.

Example VI.2. Consider the acyclic graph shown in Figure 6.1. The encoding is

done with one scan, while in Figure 6.2 the encoding is done with a different scan. In

particular, the first nodes of the respective scans are different. As long as both scans

are connected, then the compression will be optimal. However, as one can observe, the

root node in Figure 6.1 has a smaller greatest distance to the leaves, which means that

if the message passing is partitioned among parallel processors, running the encoding

algorithm on the graph in Figure 6.1 will require less time than on the graph in Figure

6.2.

6.1.2 EASY Cyclic MRFs

If the graph G has cycles, then it is still possible to perform optimal compression,

provided the conditions for performing exact inference are met. This means that a

cluster tree can be formed where the size of the largest cluster is of reasonable size, or

that there is a loop cutset and an acyclic edge cover based on it such that the largest

relevant set is not too large.

6.1.2.1 Cluster Tree Based Coding

Suppose the nodes of the original cyclic graph G can be grouped into clusters

resulting in a cluster tree Ĝ where the largest cluster is of reasonable size. Then the

acyclic algorithm of the previous section can be applied to the resulting MRF on the

cluster tree. Since the clusters of the cluster tree partition the nodes of the original
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graph, the nodes of G can be encoded together as groups or blocks of nodes.

(a) (b)

Figure 6.3: (a) Original 4-pt. grid graph; (b) Cluster graph.

Example VI.3. Consider the 2×3 grid graph shown in Figure 6.3 (a). A cluster tree

can be formed by lumping the columns together, as shown in (b). The resulting MRF

on this cluster tree can be encoded, for example, by beginning at the rightmost cluster,

passing usual BP messages to the leftmost node, and the starting the downward phase,

encoding the cluster nodes from left to right.

6.1.2.2 Local Conditioning Based Coding

In this section we losslessly compress an MRF on a cyclic graph G = (V,E). The

nodes of V will be scanned as 1, 2, . . . , |V |, and we let Ai indicate the first i nodes of

the scan, i.e., the first i nodes to be encoded. The optimal coding distribution could

in principle be brute force computed as

pi|∗(xi) =
p(xAi)

p(xAi−1
)

=
ZAi(xAi)

ZAi−1
(xAi−1

)
. (6.2)

Of course, since G is cyclic such computation of the numerator and denominator is

prohibitively complex. However, if there exists a loop cutset L of G, together with

a connected unwrapping G based on L with a reasonably sized max{i,j} |Rij| and

maxi |RAi
| − |L ∩ Ai|, then one can compute the optimal coding distributions with
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reasonable complexity using Local Conditioning. In this case, Local Conditioning is

performed on the unwrapped graph G. Using the generalization of Theorem IV.1 to

subsets of arbitrary size and the subsequent decomposition of beliefs given by (4.9),

the optimal coding distribution can be expressed in terms of the conditional beliefs

produced by Local Conditioning as

pi|∗(xi) =

∑
xL\Ai

ZL∪Ai(xAi , xL\Ai)∑
xL\Ai−1

ZL∪Ai−1
(xAi−1

, xL\Ai−1
)

=

∑
xL\Ai

Z
(xL)

Ai
(xAi)∑

xL\Ai−1

Z
(xL)

Ai−1
(xAi−1

)
,

where Ai is a set of nodes in G corresponding to the set Ai such that for each loop

cutset node l ∈ Ai ∩ L, there is exactly one copy l of l in Ai.

To simplify the algorithm and analysis, we want the Ai to form a lineal sub-scan

1, 2, . . . , |V | of the nodes in G with the following properties: for each non loop cutset

node i 6∈ L, the corresponding node i = ρ−1(i) is in the sub-scan; for each loop cutset

node l ∈ L, there is exactly one copy l ∈ ρ−1(l) of l in the sub-scan; and for each i in

the sub-scan, its parent π(i) precedes it. The following proposition, whose proof is in

the last section of this chapter, tells us that by choosing the scan 1, 2, . . . , |V | to be

connected at each iteration i, it is possible to construct a lineal sub-scan of nodes in

G.

Proposition VI.4. Let 1, 2, . . . , |V | be a scan of nodes in G. If for each i, the set

Ai is connected in G, then there exists a corresponding Ai that is connected in G.

Therefore there exists a lineal sub-scan 1, 2, . . . , |V | of the nodes of G such that i = i

or i is a copy of i.

Given the acyclic graph G, the initial node 1 of the lineal sub-scan defines parent-

child relations throughout G as described in Section 2.1.1, and is thus the root of the

170



resulting tree. Note that it does not matter whether this initial node of the lineal

sub-scan is a copy node or not. As in the acyclic case, the upward pre-encoding phase

depends only on knowledge of the root, while the downward encoding phase depends

on knowledge of the entire lineal sub-scan.

Recall from Section 2.1.1 that σ(i) is the set of neighbors of i that lie on non-

backtracking paths between i and the leaves of G. By construction, the set Ai contains

the root of the sub-scan on G used to encode the original cyclic MRF. Therefore the

boundary ∂Ai of Ai is also the set of children σ(Ai) of Ai and thus denoted by

σ(Ai) =
{
k 6∈ Ai | π(k) ∈ Ai

}
. (6.3)

Just as the relevant set for a node ī in G can be expressed as Rī = L \ (
⋃
k̄∈∂ī Lk̄\̄i)

we can likewise define the relevant set of loop cutset nodes for the connected set Ai

as follows

RAi
= L \

 ⋃
k̄∈σ(Ai)

Lk̄\π(k̄)

 . (6.4)

That is, for a connected set of nodes in G, the relevant set of loop cutset nodes are

those that are not summable with respect to a message incoming to that set. The

reason that “summability” rather than “redundancy” determines the relevant loop

cutset nodes for the set RAi
is that a loop cutset node may be redundant for a message

Mk→π(i) incoming to RAi
yet still be relevant for RAi

.

The nodes in RAi
that have already been encoded through the ith iteration of the

encoding will be denoted Re
Ai

, while those that have not been encoded are indicated

by Ru
Ai

. Similarly for the relevant set for an edge {k, j}. The following theorem states

the formulas for the optimal coding distributions for a node i in an EASY cyclic MRF.

As well, Section 2.1.1 defines the surface of the set Ai to be the subset of nodes γ(Ai)

one of whose neighbors are not in Ai.
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Theorem VI.5. Suppose the graph G = (V,E) of an MRF X is cyclic, and that G is

a connected unwrapping of G based on a loop cutset L. Furthermore, let 1, 2, . . . , |V |

be a scan of V such that there is a corresponding sequence of nodes 1, 2, . . . , |V | in G

is a lineal sub-scan of nodes in G. Then, for i /∈ L,

pi|∗(xi|xAi−1
) =

Φī(xi)Ψī,π(̄i)(xi, xπ(i))
∑

yRu
Ai−1

∏
k̄∈∂Ai−1\̄i

m̂
(yRu

k̄π(k̄)
,xRe

k̄π(k̄)
)

k̄→π(k̄)
(xπ(i))

∏
k̄∈σ(̄i)

m̂
(yRu

k̄ī
,xRe

k̄ī
)

k̄→ī (xi)

∑
x′′
ī

Φī(x
′′
i
)Ψī,π(̄i)(x

′′
i
, xπ(i))

∑
yRu
Ai−1

∏
k̄∈∂Ai−1\̄i

m̂
(yRu

k̄π(k̄)
,xRe

k̄π(k̄)
)

k̄→π(k̄)
(xπ(i))

∏
k̄∈σ(̄i)

m̂
(yRu

k̄ī
,xRe

k̄ī
)

k̄→ī (x′′
i
)

where Ru
Ai

= RAi
\ Ai are the relevant nodes for Ai that have not been encoded and

Re
Ai

= RAi
∩Ai are those that have been encoded. Similarly, for Ru

k̄ī
and Re

k̄ī
for edge

{k̄, ī}. For i ∈ L,

pi|∗(xi|xAi−1
) =

Φī(xi)Ψī,π(̄i)(xi, xπ(i))
∑

yRu
Ai−1

∏
k̄∈∂Ai−1\̄i

m̂
(yRu

k̄π(k̄)
,xRe

k̄π(k̄)
)

k̄→π(k̄)
(xπ(k))

∏
k̄∈σ(̄i)

m̂
(xRu

k̄ī
,xRe

k̄ī
)

k̄→ī (xi)

∑
yi

∑
x′′
ī

Φī(x
′′
i
)Ψī,π(̄i)(x

′′
i
, xπ(i))

∑
yRu
Ai−1

\i

∏
k̄∈∂Ai−1\̄i

m̂
(yRu

k̄π(k̄)
,xRe

k̄π(k̄)
)

k̄→π(k̄)
(xπ(k))

∏
k̄∈σī

m̂
(yRu

k̄ī
,xRe

k̄ī
)

k̄→ī (x′′
i
)

First, a word on the denominators of the equations in Theorem VI.5. As is made

clearer in the proof, given in the last section of the chapter, the denominator, properly,

should include a summation over RAi−1
rather than RAi

. However, if node i is not in

L, then RAi
= RAi−1

. And if i is in L, then we can simply sum over xi first, as in

the denominator of the second equation above. Notice that in the case where i ∈ L

the denominator includes two summations over the values at node i. The first,
∑

xi
,

is over the values of the loop cutset node i in the original graph G. Each such value,

combined with the various configurations on the other loop cutset nodes L \ i, induce

configurations on the copy nodes of G and thereby a particular conditional MRF on
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the acyclic graph G. The second summation,
∑

xi
, is over the values the copy i of i

that is included in the lineal sub-scan. The range of values that xi can assume in G

is the same range as for xi in G. However, when we sum over xi, one factor of the

summand is the self-potential on i, which is implicitly a function of the particular

configuration xL, hence of xi. In other words, for each value of xi, only the induced

value xi contributes to the summand within
∑

xi
.

As in the acyclic case, the formula for the optimal coding distributions suggests

the algorithm to carry out the computations. First, though, the formula and thus the

algorithm for computing the optimal coding distributions in an EASY cyclic MRF

differs from an acyclic MRF in the following critical way. In an acyclic MRF the

optimal coding distribution computed at a node i is function of the self-potential

on i, the edge potential between i and its parent π(i), and messages incoming to

node i. As stated above in Theorem VI.5, in a cyclic MRF not only is the optimal

coding distribution computed at a node i a function of the self-potential on node i,

the edge potential between i and its parent π(i), and the (LC) messages incoming

to i, but additionally, of (LC) messages into the remaining nodes on the surface of

Ai. This difference is due to the fact that, in the acyclic case the optimal coding

distribution is a ratio of beliefs on an acyclic MRF and therefore messages incoming

to Ai \ i cancel in the numerator and denominator; whereas in the EASY cyclic case

the optimal coding distribution is a ratio of sums of beliefs on acyclic MRFs, and

because messages incoming to Ai \ i are functions of the different values on loop

cutset nodes, over which the summations are taking place, these cannot be canceled.

The upward pre-encoding phase begins at the leaves of G, with LC super messages

M̂ (Rk̄ī) = [m̂
(xRk̄ī

)

k̄→ī ] passed up to the root 1 of the sub-scan, where the summed out

message m̂
(xRk̄ī

)

k̄→ī is as defined in Section 4.3. As defined in Section 4.3, m̂(Rk̄ī) is

the summed out and reduced message in which the redundant loop cutset nodes for

edge {k̄, ī} have been ignored and the summable loop cutset nodes have already been
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summed out. A column of M̂ (Rk̄ī) = [m̂
(xRk̄ī

)

k̄→ī ], passed over edge {k, i}, is a BP message

conditioned on a particular configuration of Rki.

Theorem VI.6. Let G = (V,E) be a cyclic graph and let G = (V ,E) be a connected

unwrapping based on loop cutset L. The complexity of the upward pre-encoding phase

is then O(|E||X |c′(L)), where we say the cost of L is

c′(L) = max
i∈V

∣∣∣∣∣∣
⋃

k∈σ(i)

Rik

∣∣∣∣∣∣ . (6.5)

Proof. For a given node i ∈ V the incoming LC super messages M̂
(Rik)

k→i , k ∈ σ(i), are

filled out to account for configurations on the set
⋃
k∈σ(i) Rik, so that the number of

multiplications required to combine each of these filled out messages is proportional

to a number that is exponential in the size of this set.

Similar to the algorithm for optimal AC encoding of an acyclic MRF, a downward

encoding phase begins with the root of the sub-scan combining the incoming super

messages with the self-potential for node 1, as in Theorem IV.17, to compute the

optimal coding distribution for the initial node in the scan of G. Following this,

subsequent nodes of the lineal sub-scan are visited and at each node i in G the

optimal coding distribution pi|∗(·) is computed for the corresponding node i = ρ(i) in

G. As can be seen from the two equations of Theorem VI.5, this coding distribution

is computed the with LC messages incoming to the set Ai. These incoming messages

will in general need to be filled out so that they are conditioned on XRAi
rather

than some Xk̄j̄k̄
. Once these messages are combined, the columns corresponding to

different configurations on RAi
are summed together to give the belief vector for node

ī in G which is used to compute the optimal coding distribution for i in G.

It is natural to ask whether the set RAi
is monotonic in i, whether the size is

increasing or decreasing as the encoding proceeds. The following theorem tells us
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that, in fact, the RAi
are monotone nondecreasing in size.

Theorem VI.7. Let G = (V,E) be a cyclic graph and let G = (V ,E) be a connected

unwrapping based on loop cutset L. Let 1, 2, . . . , |V | be a scan of V with 1, 2, . . . , |V |

the corresponding lineal sub-scan of V , and RAi
the relevant set for the first i nodes

of the lineal sub-scan. Then,

RAi
⊂ RAi+1

. (6.6)

Proof. Using (6.4), we see that

RAi
= L \

 ⋃
k∈σ(Ai)\i+1

Lk\π(k)

⋃(
Li+1\π(i+1)

) (6.7)

and

RAi+1
= L \

 ⋃
k∈σ(Ai)\i+1

Lk\π(k)

⋃ ⋃
k∈σ(i+1)

Lk\i+1

 . (6.8)

It is straightforward to see that

( ⋃
k∈σ(i+1)

Lk\i+1

)
⊂ Li+1\π(i+1), from which the the-

orem statement can easily be deduced.

Because the relevant sets for the Ai it might seem that the complexity of the down-

ward phase is increasing with i. This is not necessarily the case, as the complexity

of the downward encoding phase is actually determined by the unencoded relevant

nodes Ru
Ai

, since the LC super messages incoming to the surface of Ai need to be

filled out to the size of the alphabet for this set. The following theorem states this

formally.

Theorem VI.8. Let G = (V,E) be a cyclic graph and let G = (V ,E) be a connected

unwrapping based on loop cutset L. Let 1, 2, . . . , |V | be a scan of V with 1, 2, . . . , |V |

the corresponding lineal sub-scan of V . The complexity of the downward encoding

phase of LC based AC encoding using is O(|E||X |c′′(L)), where the cost of L is
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c′′(L) = max
i∈{1,2,...,|V |}

|Ru
Ai
| (6.9)

= max
i∈{1,2,...,|V |}

|RAi
| − |Ai ∩ L|. (6.10)

Proof. Without loss of generality, assume that each node assumes values in a common

alphabet X . Each of the incoming LC super messages M̂
(Rkπ(k))

k→π(k)
, k ∈ σ(Ai), must

be “filled out” to the set Ru
Ai

. The number of multiplications that are required in

combining these filled out incoming messages is |X ||R
u
Ai
|
.

Example VI.9. Consider a binary MRF on the 2× 3 grid graph G shown in Figure

6.4 (a). Loop cutset L = {2, 6} is indicated in red. In (b) we see an unwrapped graph

G based on L. Note that a copy of node 2 is internal to G. Also, (b) illustrates

the upward phase of super message passing to the root node 1. In (c) the messages

into 1 are used to encode the observed value X1 = 1 (black). The second node in

the scan is the copy node 2(1,3), and (d) illustrates the encoding of the observed value

X2 = 0 (white). Once the coding distribution is computed for this copy node and the

value of the original node in G is encoded, all copies corresponding to this original

node become fixed to that (induced) value. For the encoding of non-copy node epicted

in (e), since a copy of node 2 is already encoded of node 4 must be conditioned on

the observed value of X2. On the other hand, even though loop cutset node 6 is

relevant for node 4, no copy of it has been encoded, so encoding of node 4 will not

be conditioned on any particular value of X6. The upward messages used to encode

node 4 will be m
(X2=0,X6=0)
5→4 and m

(X2=0,X6=1)
5→4 from node 5 to 4 and m

(X2=0,X6=0)

3→2(1,3) and

m
(X2=0,X6=1)

3→2(1,3) from node 3 to node 2(1,3). These will be combined according to the value

of X6 and then the two resulting columns will be summed over the value of X6. This

will yield a belief vector for node 4 conditioned on X2 = 0 from which the optimal

coding distribution will be computed. In (f), node 3 is being encoded. Again, the value

of X2 is fixed to its observed value, the incoming messages are matched up according

to the value of X6, then the two columns corresponding to the different values of X6
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(a) (b) (c)

(d) (e) (f)

Figure 6.4: (a) Original graph; (b) Upward (super) message passing; (c) - (f) Stages
of the downward encoding phase, using the lineal sub-scan 1, 2(1,3), 4, 3
followed by either 6(3), 5; 5, 6(3); or 5, 6(5).

are summed together to give a belief vector for node 3 conditioned on X2 = 0.

We summarize the above results of optimal compression of MRFs in the following

theorem.

Theorem VI.10. Let X be an MRF defined on a graph G = (V,E) that is either

acyclic or EASY cyclic. Then, using the algorithms given above, optimal compression

is obtainable with the following complexity.

A) If G is acyclic, |E||X |2,

B) If G is cyclic,

(I) and the cluster tree algorithm is used, |Ê||X |maxi |Ki|, where Ê is the set of

edges in the cluster tree and maxi |Ki| is the size of the largest cluster,

(II) and the LC based algorithm is used, |E||X |c′(L) for the pre-encoding phase,
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where

c′(L) = max
i∈V

∣∣∣∣∣∣
⋃

k∈σ(i)

Rik

∣∣∣∣∣∣ , (6.11)

and |X |c′′(L) for the encoding phase, where

c′′(L) = max
i∈{1,2,...,|V |}

|Ru
Ai
|. (6.12)

6.2 Reduced Cutset Coding of HARD Cyclic MRFs

In this section we introduce Reduced Cutset Coding (RCC), a suboptimal method

for losslessly compressing a HARD Markov random field. A cutset of sites U is chosen,

XU is AC encoded and the remainder XV \U is AC encoded conditioned on XU . The

rate for encoding XU is

RU =
1

|U |
RU , (6.13)

where RU = E [l(XU)] is the expected codeword length for XU . The remaining

variables XV \U are encoded at rate

RV \U =
1

|V \ U |
RV \U , (6.14)

where RV \U = E
[
l(XV \U)

]
. The total encoding rate for X is

R =
1

|V |
R =

|U |
|V |

RU +
|V \ U |
|V |

RV \U . (6.15)

The quantities RU , RV \U , and R will be referred to a the total rates for encoding XU ,

XV \U , and X, respectively.

In RCC, the cutset U is selected so that the induced subgraph GU and all of the

components C1, . . . , CK of G\U are either acyclic or EASY, in that they are tractable

to either the cluster or LC based encoding methods for cyclic graphs. From (2.11)

178



we see that XU would be encoded optimally if the coding distribution f had been

chosen to be the marginal distribution pUG(θ) of XU . However, by assumption in this

section G is HARD, so computing pUG(θ) is intractable. By choosing GU to be EASY,

XU can be efficiently encoded with an optimal distribution computed for an MRF on

GU , which in the language of Chapter V, is a reduced MRF on GU . However, we can

choose the potentials on GU in a way to optimize minimize the divergence between

the computed coding distribution and the marginal distribution pUG(θ) for XU . Since

the components C1, . . . , CK are tractable, and since the conditional distribution of a

set of sites Ci conditioned on its boundary is an MRF on the induced subgraph GCi

with the self potentials appropriately modified to account for the configuration on

the boundary ∂Ci, the components are encoded optimally conditioned on the values

XU of the cutset.

Because in encoding XU , we compute the optimal distribution for on MRF on

GU , i.e. we cut the edges from U to ∂U , to permit analysis it is best to use the

exponential representation of MRFs. This analysis will then allow us to choose the

optimal potentials for GU . For the remainder of this section we assume a fixed t and

a distribution p, indexed by either a fixed but arbitrary exponential vector θ ∈ Θ or

the corresponding moment vector µ = µ(θ).

6.2.1 Encoding the Cutset

Because the cutset U is chosen so that the induced subgraph GU is tractable

to either the clustering method or LC, we can efficiently compute any AC coding

distribution f = pGU (θcU), where θcU is an exponential coordinate used to encode XU .

In other words, we have the freedom to choose any collection of potentials on GU .

Also from (2.11) we see that the redundancy incurred by encoding XU with

reduced MRF coding distribution pGU (θcU) instead of its marginal distribution is
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D(pUG(θ)||pGU (θcU). Therefore, the rate of encoding XU in this way is

RU =
1

|U |
[
HG(XU) +D(pUG(θ)||pGU (θc))

]
. (6.16)

We showed in Section 5.3.2 that the redundancy decomposes as

D(pUG(θ)||pGU (θcU) = D(pUG(θ)||pGU (µU)) +D(pGU (µU)||pGU (θcU)),

which implies that the choice of θc that minimizes this divergence and therefore in-

duces the optimal reduced MRF coding distribution, is the one, θ∗U , that preserves

the moments of U . To determine the optimal θ∗U the first step is to compute the

moment coordinates for nodes and edges in U . For acyclic MRFs, the moment coor-

dinates for nodes i and edge {i, j} can be computed straightforwardly, using (2.14)

and its generalization to edges. Once these moment coordinates are obtained, there

are straightforward formulas for the moment-matching exponential coordinates for

nodes and edges in U [55, 56].

For cyclic graphs, however, one can use the cluster or Local Conditioning based

methods to make analogous computations. However, if the graph is HARD, then

an approximate inference method, such as Loopy Belief Propagation could be used

instead. However, we note that these moment calculations are part of the “design”

and not the running of the algorithm. That is, they are done only once. Thus even if

they are HARD, they don’t contribute to operational complexity. Once the moment

parameter µU or an approximation µ̂U is obtained, one can use Iterative Proportional

Fitting [10], Iterative Scaling [12], or variations thereof, to compute the adjusted

exponential coordinates θ∗U for the moment-preserving reduced MRF on GU .

Another issue in the choice of U is that we would like the divergence in (6.16) to

be small. This would likely have to be determined empirically for a given application,

though one might be able to show an inequality indicating which of two or more
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candidate cutsets should be used.

6.2.2 Conditional Component Coding

As mentioned, the cutset U is also chosen so that the disjoint subgraphs GC1 , GC2 ,

. . . , GCK induced by the components of G \ U are tractable to either JC or LC.

Therefore, if each of the disjoint subgraphs of G \ U is tractable, then LC or the

cluster method can be used to optimally encode the random variables XCi on each

component of G \ U conditioned on XU .

Before analyzing conditional coding, we consider how well it would work if we

encoded XV \U independently. If we encode each component XCi independently of XU

with a reduced MRF coding distribution pGCi (θ
′
Ci

) then the total rate for encoding

the remainder XV \U would be

RV \U = H
V \U
G +

∑
Ci

D(pCiG (θ)||pGCi (θ
′
Ci

))

= H
V \U |U
G (θ) + I(XV \U ;XU ||θ) +

∑
Ci

D(pCiG (θ)||pGCi (θ
′
Ci

))

=
∑
Ci

|Ci|
|V \ U |

RCi + I(XV \U ;XU ||θ) +
∑
Ci

D(pCiG (θ)||pGCi (θ
′
Ci

)),

where RCi is the rate of encoding component Ci. We see here that the redundancy

can be broken into a penalty for independently encoding XV \U , which is the mu-

tual information between XU and XV \U plus a divergence penalty for encoding each

component XCi with a reduced MRF coding distribution rather than its marginal

distribution.

If we instead encode each component XCi with its marginal distribution pCiG (θ)

independently of XU , the total rate for the remainder XV \U would be

RV \U = H
V \U
G (θ) = H

V \U |U
G (θ) + I(XV \U ;XU ; ; θ).
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Here, we do not pay the divergence penalty since we are using the marginal distri-

bution. However, there is still the mutual information penalty for encoding XV \U

independently of XU .

We now return to what we actually do in RCC, conditional coding of XV \U .

We choose to encode each component XCi with its conditional distribution given

the configuration X∂Ci on its boundary. As noted in Section 2.1.4, the conditional

distribution for component XCi given XU is a reduced MRF distribution on GCi with

modified potentials on the surface of Ci. The total rate is the conditional entropy

H
V \U |U
G (θ) of the remainder conditioned on the cutset.

This means that the remainder is encoded optimally, and that the only subop-

timality in the RCC method is in the encoding of XU with a reduced MRF coding

distribution. We now summarize with the following theorem on the performance of

RCC:

Theorem VI.11. Let G = (V,E) be an undirected graph on which an MRF pG(θ) is

defined and let µ be the moment coordinates corresponding to exponential parameter

θ. If a cutset U ⊂ V is encoded using coding distribution pGU (θcU), then the rates with

Reduced Cutset Coding are

RU = 1
|U |

[
HU
G (θ) +D(pUG(θ)||pGU (µU)) +D(pGU (µU)||pGU (θcU))

]
,

RV \U = 1
|V \U |

[
HG(XV \U |XU)

]
=
∑
Ci

|Ci|
|V \U |

1
|Ci|HG(XCi |X∂Ci) =

∑
Ci

|Ci|
|V \U |RCi ,

where the redundancy is D(pUG(θ)||pGU (µU)) +D(pGU (µU)||pGU (θcU)) and can be min-

imized by choosing θcU to match the moments µU on nodes and edges in U , and the

decomposition of RV \U is due to U being a cutset of G.

6.3 Example: Ising Model on N ×N Grid

In this section we consider RCC in the specific example of a homogeneous Ising

model on an N ×N grid graph, either 4 pt. or 8 pt. The graph is either the 4 pt. or
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(a) (b)

Figure 6.5: (a) Typical image xGS on 4 pt. graph, θ = .5; (b) Coding rates: RU

(crosses), RV \U (squares), total rate R (circles), JBIG (solid line).

8 pt. grid. The cutset U consists of every Mth row of the graph, and the components

of G \ U are therefore (M − 1) × N rectangular strips. For the conditional coding,

we can use the cluster method, grouping the columns of a strip into clusters. Or, we

can use the Local Conditioning based method, for example, with the checkerboard

loop cutset and one of the unwrapped graphs discussed in Section 4.4. Thus, the line

spacing M should be chosen to have a moderate value, say, 10 or less.

Figure 6.6: Plot of encoding rate for cutset of lines vs. θc used for the coding distri-
bution.

We test the method on a sample image xGS generated by the Gibbs Sampler.

The lines of the cutset are encoded independently using a homogeneous distribu-

tion induced by an exponential coordinate θ
∗
. This is an approximation to the true

moment-matching distribution based on the assumption that the grid graph is a fi-
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nite portion of an infinite graph, in which case the distributions, hence the moments,

would be stationary on the edges. We determine θ
∗

by using Arithmetic Encoding to

losslessly compress the subgraph induced by the cutset of lines using different values

for the uniform exponential coordinate on the edges. Figure 6.6 shows a plot of the

bit rate for different values of θ. Once the lines are encoded, these nodes are fixed

to their observed values. Then the strips are encoded one at a time, conditioning on

the lines above and below the strip. By the properties of the Gibbs Sampler [21], the

image xGS is typical for the respective Ising model; hence the empirical rate RV \U of

encoding the strips of xGS should be very close to the rate specified in Theorem VI.11,

while the observed rate RU should actually be very close to a quantity slightly higher

than that indicated in Theorem VI.11, due to the fact that the coding distribution

is an approximation to the moment-matching reduced MRF distribution. Figure 6.5

(a) shows a typical image for the 4 pt. graph with coupling parameter θ = .5. In

(b) we show plots for the rates, in bits per pixel, for the lines of the cutset using the

reduced MRF coding distribution and the optimal conditional coding of the strips.

We show the overall coding rate of RCC for the image.

(a) (b)

Figure 6.7: (a) Typical image xGS on 4 pt. graph and θ = .4; (c) Coding rates: RU

(crosses), RV \U (squares), total rate R (circles), JBIG (solid line).

We see that the rate RU for the lines is essentially constant. This is because

the same coding distribution is used for each line and because the lines are roughly
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stationary. In addition, as the line spacing increases, the strip coding rate RV \U

increases because the ineriors of the strips have decreasing dependence on XU . Note

further that RCC achieves nearly its least rate with line spacing two, in which case

the cutset consists of every other row, which leads to a very simple encoding of the

single-row strips.

For any line spacing, the normalized encoding rate of the strips, RV \U , is a lower

bound to the entropy of the Ising MRF, and the total encoding rate is an upper

bound. From Figure 6.5 (b), we see that these are close and become closer as line

spacing increases, which indicates that the coding is very nearly optimal. In Figure

6.7 (a) we show a typical image for the 4 pt. model with parameter θ = .4 and (b)

shows the rate performance of RCC. In Figure 6.8 (a) and (b) we show, respectively,

a typical image on the 8 pt. graph with parameter θ = .28 and the corresponding

rate performance of RCC.

(a) (b)

Figure 6.8: (a) Typical image xGS on 8 pt. graph and θ = .28; (c) Coding rates: RU

(crosses), RV \U (squares), total rate R (circles), JBIG (solid line).

For comparison, we encoded xGS using JBIG, a state-of-the-art bilevel image

compression method [27, 45], and found that RCC outperforms JBIG. This is not

surprising in that RCC is essentially optimal for the MRF, whereas JBIG was not at

all designed for MRFs. Moreover, RCC with line spacing two is essentially optimal.

However, as seen in Figures 6.5, 6.7, and 6.8 (a), the xGS is a relatively simple image
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with large homogenous regions so the that perhaps it is not so surprising that JBIG

works as well as it does. We also applied RCC and JBIG to images generated by

values of θ ranging from 0.1 to 1, and found similar results. For example, we found

line spacing two was essentially as good as any other line spacing.

The order of complexity for RCC in this example is determined by the complexity

of encoding the strips. For strip height M , the complexity is exponential in M . Since

the performance of RCC was nearly as good for strips of height 1, using this strip

height is both efficient and close to optimal. Moreover, the same routines used to

encode the cutset of lines can be used to encode the remaining strips.

6.4 Example: RCC on Real-World Image

In this section we apply the RCC method presented in the last section to a real-

world image. Essentially, we are modeling “blobby” bilevel images such as the one in

Figure 6.9 (a) as instantiations of an Ising model on either the 4 pt. or 8 pt. topologies.

We note that since we demonstrated in the last section that RCC is nearly optimal

for the 4 pt. and 8 pt. models, the success of this approach to compressing images as

in Figure 6.9 (a) depends on how faithful the model is in capturing the dependencies

of the image. Figure 6.9 (b) shows results for encoding (a) with RCC modeled as an

Ising model on the 4 pt. graph with θ = .6. We found this θ value by searching for

the one that gave the best overall coding performance. We can see that the overall

coding rate achieved by RCC is slightly higher than that for JBIG.
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(a) (b)

Figure 6.9: (a) Bilevel image to be encoded; (b) Coding performance of RCC using 4
pt. graph and θ = .6 and JBIG.
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6.5 Proofs

6.5.1 Proof of Theorem VI.1

Proof. Let 1, . . . , |V | be a lineal scan of the nodes. It follows that

pi|∗(xi) =
p(xi−1, xi)

p(xi−1)

=
Z{i−1,i}(xi−1, xi)

Zi−1(xi−1)

=

Φπ(i)(xπ(i))Ψiπ(i)(xi, xπ(i))Φi(xi)
∏
k∈σi

mk→i(xi)
∏

j∈∂π(i)\i
mj→π(i)(xπ(i))∑

x′i

Φπ(i)(xπ(i))Ψiπ(i)(x′i, xπ(i))Φi(x′i)
∏
k∈σi

mk→i(x′i)
∏

j∈∂π(i)\i
mj→π(i)(xπ(i))

=

Φπ(i)(xπ(i))Ψiπ(i)(xi, xπ(i))Φi(xi)
∏
k∈σi

mk→i(xi)
∏

j∈∂π(i)\i
mj→π(i)(xπ(i))

Φπ(i)(xπ(i))
∏

j∈∂π(i)\i
mj→π(i)(xπ(i))

∑
x′i

Ψiπ(i)(x′i, xπ(i))Φi(x′i)
∏
k∈σi

mk→i(x′i)

=

Ψiπ(i)(xi, xπ(i))Φi(xi)
∏
k∈σi

mk→i(xi)∑
x′i

Ψiπ(i)(x′i, xπ(i))Φi(x′i)
∏
k∈σi

mk→i(x′i)
,

where the second equality follows from the Markov property and the third equality

from [30].
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6.5.2 Proof of Proposition VI.4

Proof. Let 1, 2, . . . , |V | be a scan of nodes in G such that for each i the set Ai is

connected. Furthermore, let G be an unwrapping of G based on a loop cutset L. By

construction, there is a one-to-one correspondence between edges of G and edges of G.

Now suppose k and j are in Ai for some i. Since we assume Ai to be connected, there

is a sequence of nodes p1, p2, . . . , pM ∈ Ai such that {k, p1}, {p1, p2}, . . . , {pM , j} are

edges in E. Let p0 = k and pM+1 = j. Thus, by construction, there exists unique edges

{p0, p1, }, {p1, p2}, . . . , {pM , pM+1} in E such that ρ(pi) = pi for i = 0, 1, . . . ,M + 1.

Suppose that for some i = 0, 1, . . . ,M + 1, pi is a loop cutset node. Then the

copy of pi chosen to be in Ai is the unique node pi indicated above. Thus if Ai is

connected, then one can choose a corresponding Ai that is connected. That is, one

can find a lineal sub-scan of G.

6.5.3 Proof of Proposition VI.5

Proof. Let G be a cyclic graph and G a connected unwrapping based on a loop cutset

L. Let Ai = {1, . . . , i} be the set of the first i encoded nodes in G and Ai be the

corresponding lineal sub-scan in G. Furthermore, as in the proof of Lemma II.6 we

use the shorthand

ΦĀ(xA) =
∏
ī∈A

Φī(xī)
∏
{̄i,j̄}⊂A

Ψī,j̄(xī, xj̄).

for the product of the potentials on nodes and edges contained within the subset.

We suppress the arguments for space and clarity, though these should of course be

apparent from the subscripts on the potentials and messages. The optimal coding
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distribution for a node i of the original graph is computed as

pi|∗(xi) =
ZAi(xAi)

ZAi−1
(xAi−1

)

=

∑
xL\Ai

ZL∪Ai(xAi , xL\Ai)∑
xL\Ai−1

ZL∪Ai−1
(xAi−1

, xL\Ai−1
)

=

∑
xL\Ai

Z
(xL)

Ai
(xAi)∑

xL\Ai−1

Z
(xL)

Ai−1
(xAi−1

)

=

∑
xL\Ai

∏
j̄∈Ai

Φj̄

∏
{j̄,k̄}⊂Ai

Ψj̄,k̄

∏
k̄∈δAi

m
(xL)

k̄→Ai∑
xL\Ai−1

∏
j̄∈Ai−1

Φj̄

∏
{j̄,k̄}⊂Ai−1

Ψj̄,k̄

∏
k̄∈δAi−1

m
(xL)

k̄→Ai−1

(6.17)

=

ΦīΨī,π(̄i)ΦAi−1

∑
xL\Ai

∏
k̄∈∂Ai−1\̄i

m
(xL)

k̄→j̄k̄

∏
k̄∈σī

m
(xL)

k̄→ī

ΦAi−1

∑
xL\Ai−1

∏
k̄∈∂Ai−1\̄i

m
(xL)

k̄→j̄k̄
m

(xL)

ī→π(̄i)

(6.18)

=

ΦīΨī,π(̄i)

∑
xL\Ai

∏
k̄∈∂Ai−1\̄i

m
(xL)

k̄→j̄k̄

∏
k̄∈σī

m
(xL)

k̄→ī∑
xL\Ai−1

∏
k̄∈∂Ai−1\̄i

m
(xL)

k̄→j̄k̄
m

(xL)

ī→π(̄i)

=

ΦīΨī,π(̄i)

∑
xL\Ai

∏
k̄∈∂Ai−1\̄i

m
(xL)

k̄→j̄k̄

∏
k̄∈σī

m
(xL)

k̄→ī∑
xL\Ai−1

∏
k̄∈∂Ai−1\̄i

m
(xL)

k̄→j̄k̄

∑
x′′
ī

ΦīΨī,π(̄i)

∏
k̄∈σī

m
(xL)

k̄→ī

, (6.19)

where (6.17) follows from (4.14); (6.18) from the fact that configuration on Ai and

Ai−1 are constant for different values on xL\Ai and xL\Ai−1
, respectively; and (6.19)

by substituting for the message m
(xL)

ī→π(̄i)
.

At this point we have made the basic substitutions in order to compute the desired

ratio of beliefs in the original graph G, and the expression in (6.19) can be carried

out with Global Conditioning. Moreover, the above holds whether or not i is a loop
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cutset node. To complete the proof we now take into account the topology of the

unwrapping G. In particular, we recognize that the summations in the numerator and

denominator of (6.19) can be distributed through the products of messages, because

a number of the loop cutset nodes in L\Ai or L\Ai−1 will be summable with respect

to the appropriate messages incoming to Ai.

We define

Lσ(A)\A =
⋃

k̄∈σ(A)

Lk̄\j̄k̄ (6.20)

The set of loop cutset nodes can therefore be expressed as

L =
(
RA, Lσ(A)\A

)
(6.21)

Recall that for distinct k̄1, k̄2 ∈ ∂A, the sets Lk̄1\̄i and Lk̄2\̄i are disjoint. In

addition, we need to subtract out the loop cutset nodes that are also in Ai. This “set

complementing” is implicit in the sets of loop cutset nodes that follow. In the lines

that follow we consider the case that i /∈ L. Note that under this assumption, the

sets L \ Ai and L \ Li−1 are equal. Therefore, resuming with line (6.19),
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pi|∗(xi) =

ΦīΨī,π(̄i)

∑
xL\Ai

∏
k̄∈∂Ai−1\̄i

m
(xL)

k̄→j̄k̄

∏
k̄∈σī

m
(xL)

k̄→ī∑
xL\Ai−1

∏
k̄∈∂Ai−1\̄i

m
(xL)

k̄→j̄k̄

∑
x′′
ī

ΦīΨī,π(̄i)

∏
k̄∈σī

m
(xL)

k̄→ī

=

ΦīΨī,π(̄i)

∑
xL\Ai

∏
k̄∈∂Ai−1\̄i

m
(xL)

k̄→j̄k̄

∏
k̄∈σī

m
(xL)

k̄→ī∑
xL\Ai

∏
k̄∈∂Ai−1\̄i

m
(xL)

k̄→j̄k̄

∑
x′′
ī

ΦīΨī,π(̄i)

∏
k̄∈σī

m
(xL)

k̄→ī

(6.22)

=

ΦīΨī,π(̄i)

∑
xR

Ai

∑
xL

σ(Ai)\Ai

∏
k̄∈∂Ai−1\̄i

m
(xL)

k̄→j̄k̄

∏
k̄∈σī

m
(xL)

k̄→ī∑
x′′
ī

ΦīΨī,π(̄i)

∑
xR

Ai

∑
xL

σ(Ai)\Ai

∏
k̄∈∂Ai−1\̄i

m
(xL)

k̄→j̄k̄

∏
k̄∈σī

m
(xL)

k̄→ī

(6.23)

=

ΦīΨī,π(̄i)

∑
xR

Ai

∑
xLσ(̄i)\ī

∏
k̄∈σī

m
(xL)

k̄→ī
∏

k̄∈∂Ai−1\̄i

∑
xLk̄\j̄k̄

m
(xL)

k̄→j̄k̄∑
x′′
ī

ΦīΨī,π(̄i)

∑
xR

Ai

∑
xLσ(̄i)\ī

∏
k̄∈σī

m
(xL)

k̄→ī
∏

k̄∈∂Ai−1\̄i

∑
xLk̄\j̄k̄

m
(xL)

k̄→j̄k̄

(6.24)

=

ΦīΨī,π(̄i)

∑
xR

Ai

∑
xLσ(̄i)\ī

∏
k̄∈σī

m
(xL)

k̄→ī
∏

k̄∈∂Ai−1\̄i
m̂

(xRk̄j̄k̄
)

k̄→j̄k̄

∑
x′′
ī

ΦīΨī,π(̄i)

∑
xR

Ai

∑
xLσ(̄i)\ī

∏
k̄∈σī

m
(xL)

k̄→ī
∏

k̄∈∂Ai−1\̄i
m̂

(xRk̄j̄k̄
)

k̄→j̄k̄

(6.25)

=

ΦīΨī,π(̄i)

∑
xR

Ai

∏
k̄∈∂Ai−1\̄i

m̂
(xRk̄j̄k̄

)

k̄→j̄k̄

∑
xLσ(̄i)\ī

∏
k̄∈σī

m
(xL)

k̄→ī

∑
x′′
ī

ΦīΨī,π(̄i)

∑
xR

Ai

∏
k̄∈∂Ai−1\̄i

m̂
(xRk̄j̄k̄

)

k̄→j̄k̄

∑
xLσ(̄i)\ī

∏
k̄∈σī

m
(xL)

k̄→ī

=

ΦīΨī,π(̄i)

∑
xR

Ai

∏
k̄∈∂Ai−1\̄i

m̂
(xRk̄j̄k̄

)

k̄→j̄k̄

∏
k̄∈σī

∑
xLk̄\ī

m
(xL)

k̄→ī

∑
x′′
ī

ΦīΨī,π(̄i)

∑
xR

Ai

∏
k̄∈∂Ai−1\̄i

m̂
(xRk̄j̄k̄

)

k̄→j̄k̄

∏
k̄∈σī

∑
xLk̄\ī

m
(xL)

k̄→ī

(6.26)

=

ΦīΨī,π(̄i)

∑
xR

Ai

∏
k̄∈∂Ai−1\̄i

m̂
(xRk̄j̄k̄

)

k̄→j̄k̄

∏
k̄∈σī

m̂
(xRk̄ī

)

k̄→ī

∑
x′′
ī

ΦīΨī,π(̄i)

∑
xR

Ai

∏
k̄∈∂Ai−1\̄i

m̂
(xRk̄j̄k̄

)

k̄→j̄k̄

∏
k̄∈σī

m̂
(xRk̄ī

)

k̄→ī

, (6.27)

where (6.22) follows from the assumption that i /∈ L; (6.23) from the partitioning of
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the loop cutset nodes; (6.24) from distributing the summation of loop cutset nodes

that are children of Ai; (6.25) follows from (IV.14); and (6.26) and (6.27) follow for

the same reasons as (6.24) and (6.25).

Now, if i ∈ L, we can obviously express the summation
∑

xL\Ai−1
as
∑

i

∑
xL\Ai

.

In other words, everything will be the same as above except that in the denominators

there will be a
∑

i at the far left. So, for i ∈ L, the optimal coding distribution is

pi|∗(xi) =

ΦīΨī,π(̄i)

∑
xL\Ai

∏
k̄∈∂Ai−1\̄i

m
(xL)

k̄→j̄k̄

∏
k̄∈σī

m
(xL)

k̄→ī∑
xL\Ai−1

∏
k̄∈∂Ai−1\̄i

m
(xL)

k̄→j̄k̄

∑
x′′
ī

ΦīΨī,π(̄i)

∏
k̄∈σī

m
(xL)

k̄→ī

=

ΦīΨī,π(̄i)

∑
xL\Ai

∏
k̄∈∂Ai−1\̄i

m
(xL)

k̄→j̄k̄

∏
k̄∈σī

m
(xL)

k̄→ī∑
xi

∑
xL\Ai−1

∏
k̄∈∂Ai−1\̄i

m
(xL)

k̄→j̄k̄

∑
x′′
ī

ΦīΨī,π(̄i)

∏
k̄∈σī

m
(xL)

k̄→ī

(6.28)

=

ΦīΨī,π(̄i)

∑
xR

Ai

∏
k̄∈∂Ai−1\̄i

m̂
(xRk̄j̄k̄

)

k̄→j̄k̄

∏
k̄∈σī

m̂
(xRk̄ī

)

k̄→ī

∑
xi

∑
x′′
ī

ΦīΨī,π(̄i)

∑
xR

Ai

∏
k̄∈∂Ai−1\̄i

m̂
(xRk̄j̄k̄

)

k̄→j̄k̄

∏
k̄∈σī

m̂
(xRk̄ī

)

k̄→ī

, (6.29)

where the sequence of steps between (6.28) and (6.29) are the same as those between

(6.22) and (6.27) in the case where i /∈ L.
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CHAPTER VII

Concluding Remarks

This thesis began by motivating the source coding or compression problem of

observing an image x, encoding x into a string of bits to be stored on a computer, then

recovering a reconstruction x̂ of the original image from the stored sequence of 1s and

0s. We introduced both lossless and lossy compression, in which the reconstruction

x̂ is, respectively, identical and (in general) not identical to the original image x.

Furthermore, we stated that the primary goal was to develop a framework for the

source coding problem when the image x is drawn from a Markov random field (MRF)

distribution X defined on a graph G = (V,E), but that along the way we would

encounter problems that are of interest in their own right.

There are two reasons for focusing on MRFs in this thesis. The first and most

basic is that methods for compression of MRFs had not been pursued before in

the literature. The second and more important is that MRFs are an increasingly

significant class of probability distributions, finding manifold application and having

been studied extensively in many of the areas that appear in the analytical and

algorithmic aspects of the source coding problem. In this thesis we succeeded in

providing a foundation for studying the compression of MRFs, and indeed, many of

the contributions in this thesis apply to areas of MRF research that extend beyond

source coding.
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In the following sections we discuss the contributions of this thesis, suggest ar-

eas where the results in this thesis can be pursued further and mention possible

approaches, and discuss connections to other areas.

7.1 Contributions

From a high-level perspective, the principal contribution of this thesis is the de-

velopment of a framework for compressing a Markov random field distribution. This

was a topic that had not been taken up in the literature. Although groups had looked

at existential limits of lossy source coding of MRFs under different scenarios, no one

had looked at definite approaches to doing so. The key feature of our method, the use

of a cutset to simplify processing, has been used in other contexts [31], and indeed,

is likely the most natural one to consider in view of the underlying graphical struc-

ture associated with an MRF and the accompanying Markov property. In particular,

we presented either general rules or examples of the three key aspects of the cutset

based coding method: lossless compression of the cutset; processing the remainder

conditioned on the cutset; analysis of the approximation. Moreover, as components

of the lossless and processing stages, we develop an exact inference algorithm for

cyclic graphs. And while the emphasis is on cutset based coding methods, the author

strongly suspects that the tools presented in this thesis will be useful in other (non

cutset based) source coding techniques for MRFs.

We focused on Arithmetic Encoding (AC) as the means of compressing an MRF,

and this requires an inference algorithm to compute the required coding distributions.

For acyclic MRFs, the standard Belief Propagation (BP) algorithm is used to com-

pute the optimal AC coding distributions in a two-step process. The acyclic encoding

algorithm is the basis for the two optimal AC encoding algorithms for EASY cyclic

MRFs presented. The two such methods discussed in this thesis are based on con-

verting the original cyclic graph into a new graph that does not contain any cycles.
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In the first, a well-known clustering algorithm is used to form an acyclic graph of

supernodes and then the acyclic encoding algorithm is used. In the second, the LC

algorithm is used to compute the optimal coding distributions, essentially a matter

of running the acyclic encoding algorithm on an unwrapped graph. For a HARD

cyclic MRF, a cutset is chosen such that the subgraphs induced by the cutset and

the remaining components are EASY; the cutset is losslessly AC encoded; then the

remaining components are losslessly AC encoded conditioned on the cutset. In this

way our approach to lossless encoding of an MRF is hierarchical, with the acyclic

encoding algorithm as the starting point.

For cyclic graphs we rigorously developed the Local Conditioning (LC) inference

algorithm through a solid presentation of the basic Global Conditioning algorithm.

The principles of the LC algorithm presented in this thesis are essentially the same as

those in LC algorithm previously established for Bayesian networks [38, 46, 16, 14, 20].

One of the main differences is that MRFs are defined on undirected graphs, whereas

Bayesian networks are defined on graphs with directed edges, and it is the lack of

direction on the edges that makes the analysis more straightforward. Our analysis

and resulting formulas allow us to compare different unwrappings for a given loop

cutset on a particular graph. Moreover, the author believes that the analysis afforded

by considering undirected graph makes the underlying principles of splitting nodes

more accessible. While we presented LC in the context of the Sum-Product algorithm,

it holds equally well for Max-Product, and indeed applies to any problem that can be

cast in the framework of the Generalized Distributive Law [1]. As MRFs are used to

model systems that are necessarily distributed, Local Conditioning is a much more

natural exact inference algorithm to employ than a clustering algorithm, as grouping

nodes together may not be practical or even make sense in some cases.

For lossy compression, the idea proposed is to again losslessly compress a cutset

of sites, but instead of encoding the remaining components we estimate them condi-
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tioned on their boundaries. In this thesis we considered the homogeneous Ising model.

We gave analytical solutions for the MAP reconstruction of a block conditioned on

its boundary under the more commonly occurring special cases of two or fewer runs

of black (white) pixels. We did this for both the 4 pt. and 8 pt. grid graphs. In

addition to the potential application of these reconstruction results to other sampling

problems, they were used in this thesis to demonstrate the optimality of Max-Product

LBP as a tool for interpolating from the boundary. When one considers that the per-

formance of LBP is generally unknown, this is significant because it might be used not

only to show LBP’s performance in this particular problem, but also to gain insight

into the algorithm in general. In addition, we touched on the relationship between

cutset based coding and erasure entropy [51, 52] and how the latter may be used to

analyze the former.

In both the (general) lossless and lossy coding methods discussed in this thesis, a

cutset of sites is initially encoded. In the lossless RCC algorithm we explicitly stated

that we wanted to encode the cutset using a reduced MRF coding distribution, but

this can also be done in the lossy case. Encoding the cutset in this way necessitates

an analysis of the approximation between the marginal distribution of the cutset and

the reduced MRF coding distribution. The key tool used in analyzing these approxi-

mations is the exponential family representation of an MRF, which has proven to be

quite useful in dealing with MRFs [53]. We established a number of useful results for

situations where a thinned MRF is used, and in particular, a reduced MRF model is

used as an approximation to the marginal distribution for a given subset of nodes.

We gave the first results of which the author is aware for the monotonicity of entropy,

which was later used to show a reduced MRF entropy inequality. We also showed

that in order to preserve the moments on a reduced MRF, the corresponding exponen-

tial coordinates are component-wise greater than those in the original specification.

We likewise showed monotonicity of divergence and pythagorean decomposition for
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reduced MRF compared to marginal distribution. We stated conjectures about the

monotonicity of mutual information and the assymmetry of divergence. The analyt-

ical methods, in particular the Pythagorean decomposition, was used in optimizing

the suboptimal efficient method, Reduced Cutset Coding, for lossless compression of

HARD cyclic MRFs. Furthermore, the theoretical guarantees allow us estimate upper

and lower bounds to the entropy of the MRF being compressed. In addition, the gap

between these estimates gives us an estimate to the divergence between the marginal

distribution on the cutset and the reduced MRF used to encode it.

In addition to establishing the algorithmic and analytical theory behind cutset

based compression of MRFs, we also demonstrated the performance of our techniques

on simulated Ising images. As the Ising model is the oldest MRF studied and the

simplest example, exhibiting the performance of our method on the Ising model gives

our presentation a completeness that is important in laying the groundwork for future

study of the compression of MRFs. From the theoretical guarantees of Section 5.3.2

and application of the RCC method, we obtained estimates of upper and lower bounds

to the entropy of an Ising model, and observed empirically the these bounds are very

close, giving an estimate to the entropy of the Ising model, a quantity that has great

information-theoretic significance but due to computational difficulty has eluded MRF

researchers up to this point. In addition, we demonstrated the applicability of the

lossy cutset coding method to real-world images and showed that its performance was

competitive compared to other lossy bilevel coding methods. In particular, the grid

cutset preserves edges from the original image so that this technique of keeping grid

lines appears as though it may be useful in encoding non-binary images. We also

demonstrated a simple adaptive method for losslessly encoding the grid cutset of a

general binary image.
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7.2 Suggestions for Future Work

While the author views this thesis as successful in laying a foundation for the

compression of Markov random fields, more questions were raised in the process than

specific answers provided. And perhaps this is as it should be. This is a very exciting

time in the research of MRFs in general, with many groups around the world inves-

tigating model selection, erasure entropy and related quantities, inference algorithms

for MRFs and more. This thesis has added source coding to the list of areas in which

MRF research is being conducted. And as many of the specific results within this

thesis concern general MRF-related problems, we feel that there is much to be gained

by pursuing some of the results in this thesis further.

7.2.1 Grid Cutset Encoding

In the lossy cutset coding method presented for the Ising model there are many

things that are of practical and theoretical interest that can be explored further.

7.2.1.1 Lossless Grid Compression with RCC

Another area of further exploration is to apply the lossless coding method pre-

sented in Section 6.2 to the grid cutset. This can be done by first noting that the

subgraph induced by the grid is homeomorphic to the 4 pt. grid. Stated simply,

we can obtain the 4 pt. grid graph from the grid cutset induced graph by removing

nodes of degree two, which in the context of MRFs corresponds to summing out or

marginalizing the random variables associated with these nodes. By marginalizing or

deleting nodes of degree two from the original grid induced subgraph, we will have a

4 pt. grid graph, the nodes of which will correspond to those nodes of the original

grid that are contained in both a row and a column of the grid. For convenience we

will refer to these nodes as intersection nodes.

This means that we can model the subset of intersection nodes as an MRF on

199



the 4 pt. grid graph, and then apply the RCC encoding method described in Section

6.2 to this model. Then, once the intersection nodes are encoded, the remaining

grid cutset nodes can be encoded conditioned on the intersection nodes. The overall

redundancy can be decomposed as the redundancy for encoding the intersection nodes

and the redundancy for encoding the remaining grid cutset nodes. The redundancy

on the intersection nodes is the divergence between the marginal distribution on

the intersection nodes and the MRF on the 4 pt. grid used to encode them. The

redundancy on the remaining grid cutset nodes is the divergence between the true

conditional distribution of the remaining grid cutset nodes given the intersection

nodes and the conditional distribution of said nodes in the reduced MRF on the grid

cutset induced graph.

7.2.1.2 Rate Distortion Analysis

We discussed briefly in Section 3.6 that the concept of erasure entropy can be used

to analyze the rate of lossy cutset coding by noting that the entropy of, say, an Ising

model, is the entropy of the grid plus the conditional entropies of the remaining blocks

conditioned on the grid. A straightforward thing that one can do is to use the Gibbs

Sampler to obtain a very close estimate to the conditional entropy of a block given

its boundary. Combining this with estimates for the entropy of the model, obtained

via the lossless RCC method of Section 6.2, we get an estimate for the entropy of the

grid cutset, and comparing this to the encoding rates using either the simple adaptive

method presented in Section or the RCC method applied to the grid.

Another thing that would be interesting is to apply the concept of erasure rate

distortion to determine, at least approximately, the erasure rate distortion function

[51, 52] for encoding a block from its boundary. At one extreme is the case of lossless

encoding of a block given its boundary and at the other is the situation presently

pursued, sending no extra information and simply estimating. One benefit from such
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analysis is that it could possibly be used to quantify the suboptimality in cutset based

lossy coding by comparing against bounds to the rate distortion function for the Ising

model [36].

7.2.1.3 Lossy Compression of Grid

Instead of reconstructing the cutset perfectly at the decoder, we can allow some

distortion between the original and decoded grids. This could give more rate-distortion

tradeoff, perhaps allowing the basic cutset based coding method to approach opti-

mal lossy performance. Another potential benefit is that it could further reduce the

required bit rate without substantial loss in the quality of the reconstruction. For

instance, in the lossy coding of the homogeneous Ising model the only parameter that

matters in the estimation is the number of odd bonds. Therefore, one can imagine al-

lowing the values on the grid to be altered slightly in a way that optimizing the block

interiors with respect to the new grid results in reconstructions that are structurally

very similar to the reconstructions that are possible through MAP reconstructing the

interiors from the original grid. Moreover, as we see in the reconstructions in Figure

3.11, if the original image is rather noisy1, then there will be perceptible distortion

between the MAP reconstruction of the entire image and the original. This is be-

cause the MAP reconstruction algorithm produces smooth block interiors, while the

noise on the original will be preserved, creating a discontinuity. If the grid were lossy

encoded/decoded in a way that, for example, resulted in a smoother grid, then the

resulting MAP estimated of the remainder would be more “compatible”.

7.2.1.4 Hierarchical Grid Encoding

The lossy cutset coding method presented in Chapter III uses a fixed size grid,

where the block size is an algorithm parameter that can be chosen according to rate-

1By this we mean simply that there are regions of the image in which there are many odd bonds.
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distortion performance requirements. One could also use an adaptive grid with a given

fixed starting size. Then, at the encoder, if a block is observed to have more than

two boundary runs2, the encoder would subdivide the block, encoding the column

and row required to bisect the original block. The additional bits produced by the

encoder for subdividing blocks would be stored in a separate bit array. The decoder,

likewise observing that the block boundary has more than two runs, will access the

additional rows and column bits from the appropriate bit string and reconstruct the

subdivided block.

7.2.2 Max-Product BP for Ising Interpolation

In Section 3.3 we discussed the use of Max-Product BP to do the interpolation

of the block interiors from the block boundaries. We showed empirically, using the

results of Section 3.2, that for block boundaries consisting of the common boundary

configurations having two or fewer runs, Max-Product BP converged and did so to

the correct values. A very interesting problem directly motivated by these results

is a proof of the correctness of Max-Product BP, for either the limited boundary

configuration cases mentioned above, or as stated in Conjecture III.11, for arbitrary

boundary configurations. A line of attack that may prove fruitful is the unwrapped

graph3 introduced in [58] as a means of analyzing the iterates of LBP. Using the un-

wrapped graph approach, the beliefs at a given site i at iteration n are known to equal

the beliefs computed at the root of the depth n tree unwrapped at node i. Because

the Max-Product beliefs converge after a finite number of iterations, it is clear that

after some number of iterations, the addition of subtrees to the unwrapped graph has

no effect on the beliefs computed at the root. Moreover, because the converged be-

liefs are correct, the leaves of some depth n′ unwrapped graph capture the boundary

information required to exactly determine the beliefs. But the analytical solutions

2Or meet some other performance-based criterion for that matter.
3The unwrapped graph in [58] is different from that discussed in Chapter IV.
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derived in Section 3.3 looked at the boundary as a whole, or rather the pattern of

runs on the boundary. Therefore, it seems a viable proof of LBP’s correctness will

arise through demonstration that the leaves of a particular unwrapped graph capture

this run information sufficiently. The author feels strongly that such a proof is pos-

sible. Once an understanding of the LBP dynamics in the homogenous interpolation

problem is obtained, further steps would be the cases where uniform self potentials

and non-uniform edge potentials are incorporated into the model specification.

7.2.3 Optimal Loop Cutsets for 4 pt. Grid Graph

In Section 4.4 used the results of Theorem VI.8 to compare the complexity of

performing LC on a 4 pt. grid graph using the checkerboard loop cutset with three

different unwrappings. An interesting problem to consider is finding an optimal pair

of loop cutset and unwrapped graph based on the loop cutset for the 4 pt. grid graph.

For instance, one can consider the family of (infinite) subgrids defined by

Λk = {(i2k + 1, j2k + 1) : i, j ≥ 0}. (7.1)

Letting In = {1, . . . , n}2, we can express the checkerboard loop cutset as

L1 = In ∩ (Λ1 ∪ (Λ1 + (1, 1))) . (7.2)

A second loop cutset L2 can be defined similarly as

L2 = In ∪ (Λ1 ∪ (Λ2 + (1, 1)) ∪ (Λ2 + (3, 3))) , (7.3)

and in this way we can define a family of loop cutsets for the 4 pt. grid graph, based

on the subgrid Λi. Continuing in this fashion, we can see that subsequent loop cutsets

will be sparser.
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7.2.4 Monotonicity

Some very interesting monotonicity results for MRFs remain to be shown. Con-

jecture V.11, which states that the asymmetry of the divergence between two MRFs

follows a monotonic relationship, remains to be shown. This would be a very useful

result as it would shed light on the general asymmetry of divergence between two

probability distributions. The line of attack that seems most apparent to the author

would be to use the log-partition function and first order Taylor series expansion.

Another conjecture that was made that requires a proof is that the Mutual Infor-

mation between two mutually exclusive and collectively exhaustive subsets of nodes

U,W ⊂ V is monotone increasing in the exponential parameters. This question can

be approached in a couple of different ways, by considering the increased exponential

parameter to weight an edge contained within one of the subsets or connecting a node

in one to a node in the other. If the MRF is positively correlated and the edge weights

are nonnegative, then monotonicity likely holds in either case. It would be an inter-

esting additional exercise to demonstrate that the increase in Mutual Information is

greater if the increased exponential parameter connects a node in one subset to a

node in the other. In addition to these conjectures, one could also try and show that

the marginal entropy of a subset of nodes is monotone in the exponential parameters.
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