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ABSTRACT

The Interaction of Fast Flowing Plasma with Non-Magnetized Solar System Bodies:
A New 3D Multi-fluid MHD Model of Mars and its Applications

by

Dalal Najib

Co-Chairs: Andrew F. Nagy and Gábor Tóth

This dissertation presents numerical simulation results of the interaction of Mars

ionosphere with the solar wind plasma using our new multi-fluid model, and the

application of the model to Venus.

Our study starts with a multispecies Magnetohydrodynamics (MHD) single-fluid

model. It contains four ion species, H+, O+
2 , O+ and CO+

2 and includes an extensive

chemistry model. We modify our existing single fluid model and solve the multi-fluid

equations. This results in the ion species being decoupled, that is each one has its

own density, velocity and pressure. We use a spherical adaptive grid system to obtain

a very good altitude resolution (10km) and set the lower boundary at 100 km altitude

in order to include the ionospheric region in our simulation.

Our results show clear asymmetries in the X-Z plane due to the effect of the

electric field on the decoupled ions. These asymmetries, similar to the ones observed

by kinetic models, could not be observed by the single fluid MHD model and show us a

new distribution of the ions around the planet, a distinct magnetic field configuration

and different escape fluxes. The model results agree well with Mars Global Surveyor

xiv



(MGS) and Viking observations. We use our Mars model to study the effect of

different upstream conditions, the hot ionospheric oxygen corona and the crustal

magnetic field. These applications show a clear change in the bow shock location and

the ion distribution.

Finally, we successfully apply our multi-fluid model to Venus thus illustrating the

versatility of our model. We reproduce the physical processes (asymmetries) calcu-

lated in Mars’ case and observe, as expected, that kinetic effects are less pronounced

in Venus’ case. We use our model to study the effects of different solar wind condi-

tions and we compare our results to observations by Pioneer Venus Orbiter (PVO)

and Venus Express (VEX). Our results reproduce observed bow shock positions and

show a reasonable fit to the data.
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CHAPTER I

Introduction

1.1 General Background

The interaction of fast flowing plasma with non-magnetized solar system bodies

has been the subject of several studies during the past decades. The fast flowing

plasma is usually either the solar wind or the magnetospheric plasma of giant planets.

It decelerates when it encounters an obstacle such as a planet, a satellite, a comet or

an asteroid. However, the nature of this interaction can be very different based on the

properties of the incident plasma conditions and the planetary obstacle. The details

of these interaction processes are still subject to many uncertainties. The main reason

for these uncertainties is the lack of relevant observations as well as the limitations

of the numerical models used to study this type of processes (Ledvina et al., 2008).

The fast flowing plasma in this study is the fully ionized solar wind , composed

of hot and fast moving ionized particles. The solar wind is the extension of the

solar corona to very large heliocentric distances. Due to the changing solar cycle,

as well as the heliocentric distance, the properties of the solar wind plasma can be

highly variable. When the fast flowing plasma interacts with a planet, a bow shock

is formed and the flow is deflected around the obstacle. In the case where the planet

has an intrinsic magnetic field, like at the Earth, Mercury and the giant planets,

the interaction between the supersonic, superalfvenic, magnetized solar wind and the

1



Figure 1.1: Interaction of the solar wind with the Earth’s Magnetosphere (Ma, 2006)

intrinsic magnetic field of the Earth results in the formation of a magnetosphere. The

outer limits of the magnetosphere is called magnetopause and the region between

the magnetopause and the bow shock is referred to as the magnetosheath. Many

complex wave and particle interaction processes take place in these regions. Figure

1.1 provides a representative illustration of these interaction regions.

Some solar system bodies do not have an intrinsic magnetic field. In these cases,

many of the processes are different and the bow shock is also closer to the planet

given the absence of a strong magnetic field. In the case of Mars and Venus, the two

planets possess a substantial atmosphere, therefore, the solar wind plasma interacts

directly with the ionosphere of the planet and its upper atmosphere. Thus the focus

of this work is on interaction processes between the solar wind and planets that do

not have an intrinsic magnetic field, but still have a substantial atmosphere.

In this chapter we first give a brief introduction to Mars and Venus, the two
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non-magnetized solar system bodies we chose to focus on in this thesis, and then we

provide an overview of the previous studies that have examined the topic, in particular

previous and current numerical models.

1.1.1 Mars and Venus; Two Non-magnetic Solar System Bodies Interact-

ing with the Solar Wind

In the case of non-magnetized planetary bodies, such as Venus and Mars, the

obstacle to the supersonic solar wind flow is the ionosphere/atmosphere of the planet.

Figure 1.2 illustrates the general overall structure seen around both Venus and Mars.

A bow shock is formed a couple of planetary radii from the surface of the planet.

The general region between the bow shock and the ionosphere is usually referred

to as the magnetosheath, although there is no proper magnetosphere present. At

Venus, where the maximum ionospheric thermal pressure is in general greater than

the dynamic pressure of the upstream solar wind, there is a relatively sharp transition

between the ionosphere and magnetosheath, at a location where these pressures are

equal. This transition is called the ionopause. Most of the time a clear and sharp

ionopause is not present at Mars and the transition is more gradual (Duru et al.,

2008). Between the bowshock and the ionosphere the shocked solar wind slows down

and is deflected around the ionospheric obstacle. As the solar wind slows down, the

imbedded interplanetary magnetic field increases and a magnetic pile up region is

formed. At Venus this is usually referred to as the magnetic barrier region, while at

Mars it is referred to as the magnetic pileup barrier and region. In this region there

is an intermingling of both planetary and solar wind ions. Numerous review articles

have appeared describing our understanding of these regions (c.f. Schunk and Nagy ,

2009).

3



Figure 1.2: Sketch of the structure of the Martian environment as it interacts with
the solar wind (Schunk and Nagy , 2009)

1.1.2 Mars

Besides being the God of War in ancient Roman mythology, Mars is also the

fourth planet in the solar system and it has been dubbed for centuries as the Earth’s

“unidentical twin”. It has fascinated many generations, especially as a potential

second home. It has a radius of 3397 km, about half of that of the Earth. It is in a

near circular orbit, at 1.52 AU from the Sun. The first mission to Mars was Mariner 4

in 1965, followed by other spacecrafts and landers on Mars, including Viking 1 and 2

in 1976. The Viking landers provided us with the only in-situ measurements of Mars

upper atmosphere neutral composition and ionospheric plasma temperature. Of the

many missions to Mars the other most relevant to the studies being discussed here

are Mars Global Surveyor (MGS) and Mars Express (MEX). The next relevant and

important mission to Mars is MAVEN, planned to be launched in 2013.

As the German-born English scientist William Hershel said in 1783 “The analogy

4



340

300

260

220

180

140

100

A
lti

tu
de

 (k
m

)

102 104 106 108 1010 1012
Number Density (cm-3)

O

CO2

CO
NO O2

N2

Figure 1.3: Representative neutral gas densities at Mars (Chen et al., 1978).

between Mars and the Earth is, perhaps, by far the greatest in the whole Solar

system”. One of the main reasons is the similar inclination of the axis and the

period of rotation, in addition to the presence of seasons like in Earth’s case. Still,

Mars is very different from the Earth. The major difference rests in the atmospheric

density and composition, as well as the lack of a strong intrinsic magnetic field.

However, Mars does have a remnant crustal field. The main constituent of Mars’

atmosphere is carbon dioxide. Figure 1.3 shows the altitude profiles of the daytime,

upper atmospheric neutral densities, based on Viking observations and ion density

measurements (for the case of atomic oxygen) (Hanson et al., 1977). While CO2 is the

dominant neutral species below 200 km altitude, atomic oxygen becomes dominant

above this altitude (Figure 1.3). Mars exospheric temperatures are low and vary

between 175 K and 300K (Bougher et al., 1999, 2000). This is mainly due to the

cooling effect of CO2 15µm radiation.

The major source of daytime ionization at Mars is solar EUV radiation. The

photoionization rate peak is at an altitude of 140 km (Hanson et al., 1977). The major

neutral at this altitude is CO2, which led to believe that the major ion would be CO+
2
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as a direct consequence of the photoionization of CO2. However, CO+
2 transforms

quickly into O+
2 , which becomes the major ion near 140 km altitude. The main

chemical reactions are as follows:

CO2 + hν → CO+
2 + e−

CO+
2 +O → O+

2 + CO

→ O+ + CO2

O + hν → O+ + e−

O+ + CO2 → O+
2 + CO

O+
2 + e− → O +O

At this time the only direct information regarding the ionospheric ion composition

at Mars comes from two vertical profiles obtained by retarding potential analyzers

carried aboard Vikings 1 and 2 (Hanson et al., 1977).

Whether Mars possesses an intrinsic magnetic field or not was the subject of a

lively debate within the scientific community for many years. However, MGS (Mars

Global Surveyor) measurements, which were made deep in the ionosphere, unlike pre-

vious measurements, finally provided definitive answers to this long standing ques-

tion. These measurements showed that the intrinsic diamagnetic field is negligible

(less than 2 x 1021 G.cm3), which is due to the absence of an active dynamo in the

Martian core (Acuna et al., 1998). It also found the unexpected presence of localized,

small remnant crustal magnetic fields.
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Figure 1.4: Interaction of the solar wind with Venus (Schunk and Nagy , 2009)

1.1.3 Venus

Venus is also often thought of as another “twin of the Earth”. It is the second

closest planet to the Sun, with a radius of 6051 km, only 650 km less than that of

the Earth. It has an elliptic orbit with a semi-major axis of 0.7233 AU, orbiting the

Earth every 224.7 Earth days. Venus has a long rotation period, which results in an

effective night of about 58 Earth days. Since Mariner 2 flew by Venus in 1962, it

has been the subject of intense investigation. The two missions that provided most

of the information on the upper atmosphere and plasma environment of this planet

are Pioneer Venus [measurements from 1978 to 1992] and Venus Express [2005 to

to-date]. The data base from these missions means that we know more about the

upper atmosphere and plasma environment of Venus than any other planet besides

the Earth. Figure 1.4 describes the interaction process between Venus and the solar

wind.

The dominant neutral gas species in the atmosphere of Venus is carbon dioxide,

7



N
um

be
r D

en
sit

y 
(c

m
-3

)

Altitude (km)
100 120 140 160 180 200

NOON
EQUATOR

O

N
He

MIDNIGHT
EQUATOR

He
O

CO2

NCO

N2

Altitude (km)
100 120 140 160 180 200

1016

1012

1014

108

100
102

106

1010

104
CO2

N2

CO

CO2

1016

1012
1014

108

100

102

106

1010

104

Figure 1.5: Representative neutral gas densities in the upper atmosphere of Venus
(Hedin et al., 1983)

similar to that of Mars. It is interesting to note that the surface pressure at Venus is

more than a thousand times greater than at Mars, yet the upper atmospheric densities

are quite similar, mainly because of the differences in gravity and temperatures in

the lower atmosphere. Typical densities of the main neutral constituents are shown

in Figure 1.5.

The typical upper atmospheric neutral gas temperatures vary from an average of

about 280 K on the dayside to about 120 K on the nightside. Paradoxically, although

Venus is closer to the Sun than Earth, the upper atmospheric temperatures are lower.

As we have seen in Mars’ case, this is also due to the cooling effect of CO2 15µm

radiation, which is dominant in the altitude region between 100 and 160 km. It is

important to mention though that the Venus temperatures vary less with solar cycle

than those at Mars.

Given the very similar atmospheric composition at both Mars and Venus, the ion

chemistry and resulting densities and composition are very similar. However, the

data base for Venus is quite extensive. Typical observed and calculated ion densities

are shown in Figure 1.6.
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Figure 1.6: Measured and calculated daytime ion densities at Venus (Nagy et al.,
1980)
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Figure 1.7: Measured (solid squares and triangles) and calculated (solid lines) electron
and ion temperatures.

There is a great deal of electron and ion temperature data from Pioneer Venus,

while only one set of measurements from the two Viking landers is available for

Mars, at this time. Given the similar ion densities and composition the observed

plasma temperatures are also believed to be similar. At both planets the observed

temperatures exceed what one would expect from just solar radiation and classical

thermal conductivities. At this time there is no clear understanding for the reason

of these elevated temperatures, but it is believed to be a combination of reduced

thermal conductivity and some topside energy input. Figure 1.7 shows representative

measured and calculated electron and ion temperatures for Venus.

Venus does not have a significant intrinsic magnetic field. However, when the

solar wind dynamic pressure is high, a significant induced horizontal magnetic field

can be detected in the ionosphere. Vertical diffusion controls the altitude distribution
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of the ion/electron density near the subsolar region, while horizontal plasma flows

are dominant in larger solar zenith angles regions. Horizontal plasma velocities are

believed to increase with altitude and solar zenith angle, reaching a few km/s at the

terminator and becoming supersonic on the nightside (Knudsen et al., 1980). These

velocities are mainly driven by day-to-night pressure gradients. The result of these day

to night flows along with soft electron precipitation results in a significant nightside

ionosphere at Venus, despite the very long period of no solar radiation during the

extended nighttime.

1.1.4 Conclusion

Mars and Venus present many similarities especially with respect to ionospheric

composition and chemistry, and given the scarcity of in-situ measurements at Mars,

our understanding of the planet has greatly benefited from the analogy with Venus.

Another important similarity between the two planets are the mass loading (pick-

up) processes. Pick up ions are the result of the ionization of extended neutral

atmospheres that interact directly with the solar wind in the case of non-magnetized

planets. The ionization can be by solar radiation, charge exchange reactions and

impact ionization by the solar wind electrons. Given these similarities, it seems a

natural choice to use the numerical model to be described in this thesis for both

planets. However, one should keep in mind the existence of differences. Some of

these differences and the associated implications are highlighted in Table 1.1.

1.2 Past Modeling Efforts

1.2.1 General introduction to past models

Numerous studies have been carried out in the past using particle, hybrid and

MHD (single and multi fluid) models to simulate the interaction of fast flowing plasma
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Table 1.1: Comparison of some physical properties between Mars and Venus (Holm-
ström and Kallio, 2004)

Property Difference Implication
Planet radius and volume 1.8 and 6 times larger at Venus Larger interaction region
Solar wind flux Four times larger at Venus Larger production
Gravity Larger at Venus Different exospheres
Internal magnetic fields Crustal magnetizations at Mars Modified flow
Proton gyroradius Four times larger at Mars Kinetics effects

with non-magnetized bodies. Two of these approaches have been used extensively:

hybrid (Brecht , 1997; Kallio et al., 2006, 2008; Jarvinen et al., 2008; Kallio et al.,

2010) and MHD (Ma et al., 2002, 2004; Tanaka, 1993; Terada et al., 2009; Benna

et al., 2009) models. Both types of models have their strengths and their limitations

(e.g, Ledvina et al., 2008), thus we describe the general approach at this stage, without

going into any deep discussion of the advantages and shortcomings of every model.

Hybrid or semi-kinetic models track the ions as particles. Ion motion and fields are

solved self consistently, while electrons are treated as a massless fluid. This approach

is usually applied to a collisionless plasma and when the electron mass (and the

resulting kinetic effects) can be ignored.

MHD models treat the plasma as a charged neutral fluid. The single fluid MHD is

described by a set of fluid equations that describe the conservation of mass, momen-

tum and energy and the evolution of the magnetic field. It solves single continuity,

momentum and pressure/energy equations, therefore it is a single species and single

fluid model. However, when the plasma is composed of different species, it is more

suitable to use an improved version of this model, the multispecies single fluid model.

This model solves a separate continuity equation for every ion. This allows taking

into account the ionospheric chemistry and accounts more accurately for the mass-

loading (ion pick up) effects. It still solves only one momentum and energy/pressure

equation and therefore treats the different species as one single fluid. Pick up ions,
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as their name indicates, are picked up by the IMF and the convection electric field,

and through momentum transfer, slow down the solar wind around the planet and

therefore play an important role in the interaction process. However, some argue that

despite the improvement that the multispecies single fluid MHD model formulation

brings in the description of the existing physical phenomena, it is still limited by the

fact that one fluid velocity and one temperature are imposed on the different species,

while in reality these different species have their own dynamics and energetics. That

is one of the main motivations for developing a multi-fluid model. This model not only

solves separate continuity equations (as does the multispecies model), but also sepa-

rate momentum and pressure/energy equations. Since the multi-fluid model and its

applications are the subject of this thesis, we will provide a more accurate description

of the model later.

1.2.2 Previous Modeling Studies of Mars

There have been numerous studies investigating the solar wind interaction with

Mars. Hybrid models have been developed by Brecht (1997); Brecht and Ledvina

(2006); Modolo et al. (2006) and Simon et al. (2007). They have been successful in

describing flow patterns around the planet and the structure of the magnetic pile up

boundary. However the spatial resolution of these hybrid models is still quite limited

due to computing resources. This is not a drawback in case of some applications

such as bow shock and magnetosheath studies, but becomes more of a problem in

describing the ionosphere and the escape fluxes. The rapidly increasing computing

capabilities will allow soon significant improvements in the spatial resolution used in

these models.

Shinagawa and Bougher (1999) developed a two-dimensional MHD model of some

aspects of the solar wind interaction with Mars ionosphere. While this model de-

scribed the ionospheric electron density profiles and magnetic fields reasonably well,
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it was not sufficient to account for the 3D effects, such as the tension of the magnetic

field and some important plasma transport effects. Therefore, a 3D model became

necessary. Liu et al. (1999) developed a 2-species, 3D, MHD model of Mars by con-

sidering solar wind protons and heavy O+
2 separately. Liu et al. (2001) added a third

major ion species O+ to their model and also added a surface dipole field in order to

simulate the crustal field. This model gave reasonable agreement with available data

with respect to the bow shock location and structure. Harnett and Winglee (2003) de-

veloped a 3D, non-ideal single fluid model incorporating non-ideal MHD effects such

as the Hall effect. However, there was no information about plasma composition,

since the model did not include mass loading.

Next Ma et al. (2002, 2004) developed a multispecies MHD model for Mars using

first a Cartesian (2002) and later a spherical grid (2004) structure. They were also

able to have cell sizes as small as 10km in the ionospheric region and therefore obtain

a much improved description of this region. This model did a good job in reproducing

the observed density and magnetic field observations. The addition of the Hall effect

to the model allowed them to describe some kinetic effects that cannot be accounted

for with ideal MHD. This model has been applied extensively to Mars and Titan.

However, the single fluid model is still limited by the single momentum and pres-

sure/energy equations that fails to describe the individual dynamics and energetics

of the ion species. A new multifluid model by Harnett and Winglee (2007) showed

asymmetries that the single fluid MHD model could not show, however, it has limited

ion composition capability and a very coarse resolution to describe the ionospheric

processes appropriately.

1.2.3 Previous studies of Venus

Early model studies of Venus were based on gasdynamic calculations (e.g, Spreiter

et al., 1966). Wu (1992) used a time-asymptotic method to obtain a three dimensional
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steady state solution to describe the MHD flow past Venus. This model showed that

the magnetic pile up region resulted in the formation of a plasma depletion layer close

to the obstacle. Tanaka (1993) developed a single species, single fluid MHD model

using the newly developed finite volume total variation diminishing scheme (TVD) in

order to study the interaction of the solar wind with non-magnetized bodies (Venus

and Mars in particular). The model was able to describe several processes such as

the formation of the bow shock and the structure inside the magnetosheath. Still,

it could not describe accurately the mass loading processes. This model has been

improved into a 2 species 3D MHD model (Tanaka and Murawski , 1997), which solved

separate continuity equations for protons and for the O+ in the ionosphere. This

model succeeded in showing for the first time a nightside ionsophere, in addition to

better describing the dayside interaction, including a clear ionopause. Fox and Sung

[2001] conducted a comprehensive study modeling the low and high solar activity

thermospheres and ionospheres of Venus. Kallio et al. (2006, 2008); Barabash et al.

(2007) and Jarvinen et al. (2008) developed a hybrid model of Venus interaction

with the solar wind and successfully described the flow pattern around the planet

and the resulting kinetic effects. More recently, Terada et al. (2009) developed a

comprehensive multispecies 3D model with 10 ion species. This model describes

more accurately the ionospheric processes and mass loading and the model results

compare very well with observations. Finally, Benna et al. (2009) applied to Venus a

time dependent multi-fluid code with an adaptive mesh refined Cartesian grid.

1.3 Outline of the dissertation

In thesis, we will apply our new multifluid MHD model to Mars and Venus. This

model treats the individual ions as separate fluids by solving individual continuity

and momentum equations. This new model is the next logical step in our incremen-

tal improvement approach, as computational resources increase. This approach is
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also very useful in checking and validating these extremely complex computational

schemes.

In the next chapter, we will derive the governing equations of our multifluid MHD

model. Then, in Chapter 3, we will present the numerical model that we are using. In

Chapters 4 and 5, we will present the results of Mars and Venus simulations. Finally,

we will conclude our work by a summary and a discussion of future work.
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CHAPTER II

Multi-Fluid Equations

2.1 Transport Equations for Multi-fluid plasma

Magnetohydrodynamics (MHD) is the extension of fluid dynamics to plasmas and

includes the effects of electric and magnetic fields. MHD equations can be obtained

by combining macroscopic transport equations for the whole gas as a conducting

fluid combined with Maxwells equations. MHD models are very popular tools to

study the interaction of the solar wind with solar system bodies, both for magnetized

and non-magnetized planets and moons. There are several types of MHD models.

The single fluid single species model treats the plasma as a single, quasi-neutral and

magnetized fluid. This model solves for the total mass density, the total momentum

and the total energy. It proved to be very useful for many studies and was able to

reproduce several features, such as the bow shock location. However, in the case of a

plasma with multiple species as it is usually the case in planetary physics, this model

becomes limited since it cannot account for the individual mass densities, velocities

and pressures, thus it cannot evaluate accurately the mass loading, an important

process in the case of non-magnetized planets.

A multi-species single fluid MHD model can account more accurately for mass

loading by solving a continuity equation for each species. As a result, the model can

solve for individual mass densities. However, it still treats the plasma as a single fluid
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and solves for the total momentum and energy overlooking the separate dynamics of

the different species.

The multi-fluid MHD model solves a separate continuity, momentum and energy

equation for every ion. It is a more complex and more physically accurate model. It

became necessary to use this model despite its complexity, in order to fully describe

the interaction of the solar wind with non-magnetized bodies, Mars and Venus in

particular, including the mass loading and flow patterns due to the decoupling of the

ions.

The multi-fluid MHD model for Mars or Venus solves the separate MHD equa-

tions and includes the chemistry (ionization, recombination, charge exchange) and

the elastic and non-elastic collisions in the source and loss terms.

In order to derive the multi-fluid MHD equations, we first start from the gener-

alized transport equations, then we make assumptions and some simplifications in

order to derive the MHD equations.

2.1.1 Generalized transport equation

Kinetic theory gives us the main key elements to connect the microscopic proper-

ties of the molecules composing a gas to the macroscopic properties of this gas. Let us

consider one particle moving in a particular direction at a particular instant t. Each

particle can be represented by a single point in the six-dimensional phase space (x, y,

z, vx, vy, vz) which can be denoted as (r, v), the vectors r and v being the Eulerian

coordinates of the phase space.

We can then define for each gas species s the phase-space distribution function

Fs(rs,vs, t), which at an instant t, gives us the number of particles of species s, d6N ,

within a phase-space element r to r + ∆r and vs to vs + ∆vs.

Therefore we have:

d6N = Fs(rs,vs, t)d
3rd3v (2.1)
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Equation(2.1) shows that the phase-space distribution function, Fs(rs,vs, t) is the

density of the particles in the d3rd3v phase-space volume element around the phase-

space point (rs,vs). Therefore the number density of species ns(t, r) can be obtained

by integrating the phase space distribution function over the entire velocity space:

ns(t, r) =

∫∫∫
∞

Fs(rs,vs, t)d
3vs (2.2)

Note that the phase-space distribution function Fs(rs,vs, t) is different from the

normalized phase-space distribution function fs(rs,vs, t).

∫∫∫
∞

fs(rs,vs, t)d
3vs =

1

n(r)

∫∫∫
∞

Fs(rs,vs, t)d
3vs = 1 (2.3)

We can write ns(t, r) as ns for the sake of simplicity. Similarly, any average

quantity 〈Qs〉 be it density, flow velocity, temperature is given by

〈Qs〉 =

∫∫∫
∞

Qs(v)fs(rs,vs)d
3v (2.4)

The time evolution of each phase-distribution function Fs(rs,vs, t) is described by

the Boltzmann equation:

∂Fs(rs,vs, t)

∂t
+ vs · ∇rFs(rs,vs, t) + as(rs,vs, t) · ∇vsFs(rs,vs, t) = (

δFs(rs,vs, t)

δt
)coll

(2.5)

The right hand-side term in equation (2.5) represents the changing rate of the

phase-space distribution function due to both elastic and non-elastic collisions. Loca-

tion r, particle velocity v and time t are independent variables. The acceleration of

the particle, as, is the effect of external forces on the charged particles. In planetary

ionospheres, this term consists mainly of the Lorentz and gravitational forces (Schunk
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and Nagy , 2009):

as = G +
qs
ms

(E + vs ×B) (2.6)

It is usually assumed in kinetic theory that the acceleration of a molecule as(t, r,v)

is divergenceless in velocity space, ∇v ·as = 0. Lorentz and gravitational forces satisfy

this condition and so do most of external forces.

The bulk gas flow or average drift velocity can be defined as us = 〈vs〉. The

Boltzmann equation can also be expressed in terms of the random velocity cs, which

is the velocity of the particle with respect to us, at time t and location r:

cs = vs − us(t, r) (2.7)

If we multiply (2.5) by ms,mscs and ms
c2s
2

and integrate over the entire velocity

space we obtain the continuity, momentum and energy equations. This corresponds

to taking the zeroth, first and second velocity moments of the Boltzmann equation:

ms
∂ns
∂t

+ms∇ · (nsus) = ms
δns
δt

(2.8)

msns
∂us
∂t

+msns(us · ∇)us +∇ · Ps − nsmsG− nsqs(E + us ×B) =
δMs

δt
(2.9)

1

γ − 1

∂ps
∂t

+
1

γ − 1
(us · ∇)ps +

γ

γ − 1
ps(∇ · us) + (∇ · hs) =

δEs
δt

(2.10)

where γ is the heat ratio and it is equal to 5
3

if we assume that the particles have no

internal degree of freedom. hs in the energy equation is the heat flux and is defined as

hs = 1
2
msns〈c2svs〉 .This term can be approximated by hs = −κ∇Ts when collisions

are frequent. We will neglect hs in our calculation. Ps is the pressure tensor and is

defined as the net rate of transport of molecular momentum per unit area, that is,

the net flux of momentum across unit area due to random particle motion. Pij (t, r)

20



is given by

Pi ,j (t, r) = m

∫∫∫
∞

cicjF (t, r, c)d3c (2.11)

Ps can also be written as Ps = msns〈cscs〉 and can be expressed using the scalar

pressure ps and stress tensor τs:

Ps = psI + τs (2.12)

where ps the scalar pressure is given ps = 1
3
msns〈c2s〉. The stress tensor τs can be

neglected when collisions are important. We will assume it is the case in our work,

the diagonal elements of the pressure tensor are therefore the dominating elements

and they are generally equal; we assume that the plasma is isotropic and Ps = psI .

2.1.2 Collision Terms in Transport Equations for Multi-Fluid Plasma

As mentioned previously, the collision term in the right hand side of the transport

equation describes the rate of change of the distribution function, due to collisions.

We will consider two types of collisions:

• Elastic collisions: this type of collisions does not change the identity of the

particle

• Inelastic collisions: this type of collisions changes the identity of the particle

and can include photoionization, impact ionization, charge transfer and recom-

bination

2.1.2.1 Elastic collisions

Elastic collisions by definition do not change the identity of the particles. The rate

of change of the phase-space distribution function due to elastic collisions was de-

rived by Boltzmann (the derivation can be found in Gombosi (1994); Schunk and
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Nagy (2009) and is called the “Boltzmann collision integral”). It is a complicated

nonlinear, multidimensional integral of the distribution function. The rate of change

described by the Boltzmann collision integral drives the solution of the Boltzmann

equation towards equilibrium. Although there have been several simplified approxi-

mations to the Boltzmann collision integral, the most widely used one (and also the

simplest) is the so-called “relaxation time” approximation or BGK (Gombosi , 1994;

Schunk and Nagy , 2009). The relaxation time approximation assumes the phase-space

distribution function Fs is being gradually replaced by an equilibrium (Maxwellian)

distribution functionvF0, with a time constant τst:

δFs(rs,vs, t)

δt
= −

∑
t=all

F (t, r,v)− F0s(st)(t, r,v)

τBGK
(2.13)

where the subscript t refers to all species present in the gas mixture (including species

s ) and τst is the velocity-independent average collision time between particles s and t.

As a results of these collisions between s and t, the distribution function of particles

s asymptotically approaches F0s(st). It is important to note that F0s(st) is not only

dependent on s but also on t, therefore F0s(st) changes as the distributions of both s and

t particles change with time. The parameters of F0s(st) can be obtained by requiring

that the total mass, momentum and energy of the s and t gases be conserved:

F0s(st) = ns

( ms

2πkTs(st)

) 3
2
exp
[
− ms

2kTs(st)
(vs − ust)

2
]

(2.14)

where

ust =
mtut +msus
ms +mt

(2.15)

Ts(st) = Ts +
msmt

(ms +mt)2
[2(Tt − Ts) +

mt

3k
(ut − us)

2] (2.16)
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Similarly to what we did in order to evaluate the left hand side of the transport

equations, we calculate the zeroth, first and second velocity moment of Equation

(2.13) by multiplying it with ms,mscs and ms
c2s
2

and integrating over the entire ve-

locity space. We obtain the transfer integrals for elastic collisions:

(δns
δt

)
elastic

= 0 (2.17)(δMs

δt

)
elastic

= msns
∑
t=all

νst(ut − us) (2.18)

(δEs
δt

)
elastic

=
∑
t=all

msnsνst
ms +ms

[3k(Tt − Ts) +mt(ut − us)
2] (2.19)

where νst is the non-resonant momentum transfer collision frequency and is defined

as:

νst =
mt

ms +mt

1

τst
(2.20)

There are several types of collisions: ion-ion, ion-neutral, electron-electron, electron-

neutral and ion-electron collisions. We will give an overview of the collisions that play

a significant role in ionospheric regions.

• Ion-neutral collisions

The collision frequency νin between ion and neutral can be approximated using

the neutral polarizability γn as (Schunk and Nagy , 2009):

νin = 2.21π
nsmn

mi +mn

(γne2
µin

)
(2.21)

where µin is the reduced mass and is defined by

µin =
mimn

mi +mn

(2.22)
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and where the neutral polarizabilarity γn is given by

γn = αn × 10−24cm3 (2.23)

Therefore equation (2.21) becomes:

νin = 2.7× 10−9
nn(αnµin)1/2

mi

s−1 (2.24)

Finally, we can write νin in an even simpler form:

νin = Cnnn (2.25)

The values of Cn can be found in Schunk and Nagy (2009)

• Ion-ion collisions

Ion-ion collisions play a significant role in the lower atmosphere since they couple

the individual ions temperatures. The ion-ion frequency can be written in this

form:

νst = Bst
nt

T
3
2
t

(2.26)

whereBst is a numerical coefficient; the corresponding values are given in Schunk

and Nagy (2009)

• Electron-neutral collisions

The parameter for elastic electron-neutral collisions that is generally measured

is the velocity-dependent momentum transfer cross section Qen. We do not go

in the details of computing the value of Qen which can be found in Schunk and

Nagy (1980, 2009).
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• Electron-ion collisions

A lengthy derivation of electron-ion collisions frequency νei can be found in

Schunk and Nagy (2009) and gives us:

νei = 54.5
niZ

2
i

Te
3/2

(2.27)

where subscript e denotes electrons and subscript i denotes ions and Zi is the

particle charge number. The density ni is in cm−3 and the electron temperature

Te is in Kelvins.

2.1.2.2 Inelastic collisions

Unlike elastic collisions, inelastic collisions can change the identity of the particle.

One main assumption is that all particles have no internal degree of freedom. These

collisions are very important in the ionospheric region and therefore play a decisive

role in the interaction process between non-magnetized planets and the solar wind.

They are very closely related to the chemical processes that occur in that region. We

first give an overview of the relevant chemical reactions in the ionosphere and describe

inelastic collisions for ions and electrons separately.

A) Chemical and mass loading processes The three major mas loading pro-

cesses in the ionosphere are ionization, charge exchange and recombination (Szegö

et al., 2000).

Let us first consider ionization, which is one of the important mass loading process

in the ionosphere and contributes significantly to inelastic collisions. It can be either

photoionization by solar EUV or impact ionization by photoelectrons, energetic elec-

trons and energetic neutrals. These ionization processes create new charges from the

thermal neutral population.
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• Photoionization

Photoionization is the major source of ionization in most ionospheres and occurs

when a photon interacts with a neutral and produces and electron-ion pair.

S + hν −→ S+ + e− (2.28)

The ion S+ keeps the parent neutral velocity. Since the energy of the ionizing

photons usually exceeds the threshold ionization energy, the excess goes either

into electron kinetic energy or excitation of the resulting ion. The reason the

electrons pick up the bulk of the kinetic energy is that the ions are much more

massive than the electrons, and therefore, the ions acquire very little recoil

energy during the photoionization process.

• Impact ionization

Impact ionization can be by photoelectrons, energetic electrons and energetic

neutrals. It produces an ion electron pair as well. In the problem we consider

here, these ionizations are either small or negligible.

S +M(e, ion, neutral) −→ S+ + e− +M(e, ion, neutral) (2.29)

• Charge exchange

Let us consider two particles S and M and the respective ion species S+ and M+.

A charge exchange reaction transfers an electron from one particle to another:

S+ +M −→ S +M+ (2.30)

• Ion-atom interchange
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In this type of reactions, the nature of both reactants (the ion AB+ and the

atom C) changes and we obtain new products:

AB+ + C −→ AC+ +B (2.31)

• Recombination

Last but not least, recombination is an important inelastic collisions process.

The most straightforward recombination process is the reverse of photoioniza-

tion, radiative recombination. An ion species S+ reacts with an electron e− in

order to produce a neutral S which may be in excited state S∗.

S+ + e− −→ S∗ + hν (2.32)

However, the radiative recombination rate is small and in most cases this is a

negligibly slow process.

Another type of recombination is dissociative recombination and is the domi-

nating ionospheric chemical loss process in Mars and Venus for example. The

product atoms A and B may be in an excited state and the excess energy goes

to the kinetic energy of the products:

S+ + e− −→ A+B (2.33)

Both radiative recombination and dissociative recombination constitute sinks

for electrons and ion species s. Finally, we have three-body recombination which

is the reverse of impact ionization and is usually negligible in the ionospheric

regions.
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B) Inelastic collisions for ion species For an ion species s, photoionization and

impact ionization are both sources while recombination is a loss process.

(δFs(r,vs, t)
δt

)
ionization

= (νph,s′ + νimp,s′)ns′fs′(r,vs, t) (2.34)(δFs(r,vs, t)
δt

)
recombination

= −αR,sneFs(r,vs, t) (2.35)

where νph,s′ and νimp,s′ are respectively the photoionization and the total impact

ionization frequencies. ns′ and fs′(r,vs, t) = Fs′(r,vs, t)/ns′ are the density and

the normalized distribution function of the neutral species s′. Finally, αR,s is the

recombination rate and ne the total electron density.

As for charge exchange, it will be either a loss or source term for species s de-

pending whether the species is a reactant or a product. In most cases, in a charge

exchange reaction, each particle tends to retain its original kinetic energy. Therefore,

the phase-space distribution function due to charge exchange of particle changes with

the following rate:

(δFs(r,vs, t)
δt

)
chargeexchange

= −
∑

t′=neutrals

kst′nt′nsfs(r,vs, t)+
∑
i=ions

kis′nins′fs′(r,vs, t)

(2.36)

Equation (2.36) shows both loss and source terms. The first term describes the loss of

particles s due to charge exchange between ion species s and neutral t’ and kst′ is the

charge exchange rate. The second term is a source term and describes the creation

of ions s as a results of charge exchange between neutral s and ion i.

Adding up all the collision terms, we obtain the total rate of change of the ion

distribution function due to inelastic collisions:
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(δFs(r,vs, t)
δt

)
inelastic

=
(δFs(r,vs, t)

δt

)
ionization

+
(δFs(r,vs, t)

δt

)
recombination

+
(δFs(r,vs, t)

δt

)
chargeexchange

(2.37)(δFs(r,vs, t)
δt

)
inelastic

=
(
νph,s′ + νimp,s′ +

∑
i=ions

kis′ni

)
ns′fs′(r.vs, t)

−
(
αR,sne +

∑
t′=neutrals

kst′nt′
)
nsfs(r,vs, t) (2.38)

We can now compute the corresponding transfer integrals for inelastic collisions:

ms

(δns
δt

)
= msns′

(
νph,s′ + νimp,s′ +

∑
i=ions

kis′ni

)
−msns

(
αR,sne +

∑
t′=neutrals

kst′nt′
)

(2.39)

(δMs

δt

)
inelastic

= msns′
(
νph,s′ + νimp,s′ +

∑
i=ions

kis′ni

)
(us0 − us) (2.40)(δEs

δt

)
inelastic

=
1

γ − 1
ns′kTs0

(
νph,s′ + νimp,s′ +

∑
i=ions

kis′ni

)
+

1

2
msns′

(
νph,s′ + νimp,s′ +

∑
i=ions

kis′ni

)
(us0 − us)

2

− 1

γ − 1
nskTs

(
αR,sne +

∑
t′=neutrals

kst′nt′
)

(2.41)

where us0 and Ts0 are the bulk velocity and temperature of neutral species s’ respec-

tively. We will assume all neutral species have the same temperature Tn and move

with the same bulk velocity un. Finally, we can write the production and loss rates

of ion species s as Ss and Ls:
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Ss = msns′
(
νph,s′ + νimp,s′ +

∑
i=ions

kis′ni

)
(2.42)

Ls = msns

(
αR,sne +

∑
t′=neutrals

kst′nt′
)

(2.43)

which allows us to write the integrals for inelastic collision for ion species s in a more

simplified form:

ms

(δns
δt

)
= Ss − Ls (2.44)(δMs

δt

)
inelastic

= Ss(us0 − us) (2.45)(δEs
δt

)
inelastic

=
k

γ − 1

SsTn − LsTs
ms

+
1

2
Ss(un − us)

2 (2.46)

C) Inelastic collisions for electrons species We can apply the same reasoning

we did for ions to electrons in order to evaluate the effect of inelastic collisions on

their distribution function. While ionization and recombination affect electrons and

ions similarly, charge exchange has no effect on the electrons’ distribution function.

We then have:

(δFe(r,ve, t)
δt

)
inelastic

=
(δFe(r,ve, t)

δt

)
ionization

+
(δFe(r,ve, t)

δt

)
recombination

(2.47)

=
∑
s′

(νph,s′ + νimp,s′)ns′fs′(r,ve, t)

−
∑
s=ions

αR,snsnefe(r,ve, t) (2.48)

If we write the production and loss rates of the electrons, Se and Le, as:
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Se = me

∑
s′

(νph,s′ + νimp,s′)ns′ (2.49)

Le = mene
∑
s=ions

αR,sns (2.50)

We can write the simplified form of the integrals for inelastic collisions for electrons:

ms

(δns
δt

)
inelastic

= Se − Le (2.51)(δMs

δt

)
inelastic

= Se(un − ue) (2.52)(δEs
δt

)
inelastic

=
k

γ − 1

SeTn − LeTe
me

+
1

2
Se(un − ue)

2 (2.53)

2.1.3 Summary of the Transport Equation

We can now add up elastic and inelastic collisions for both ions and electrons and

derive the complete form of the transport equations

Transport equations for ion species Let us define the mass density ρs = msns.

We then obtain the following transport equations for ion species s:
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∂ρs
∂t

+∇ · (ρsus) = Ss − Ls (2.54)

ρs
∂us
∂t

+ ρs(us · ∇)us +∇ps − ρsG− nsqs(E + us ×B) =

ρs
∑

t=neutrals

νst(un − us) + Ss(un − us) (2.55)

1

γ − 1

∂ps
∂t

+
1

γ − 1
(us · ∇)ps +

γ

γ − 1
ps(∇ · us) + (∇ · hs) =∑

t=neutrals

ρsνst
ms +mt

[3k(Tn − Ts) +mt(un − us)
2]

+νsens[3k(Te − Ts) +me(us − ue)
2]

k

γ − 1

SsTn − LsTs
ms

+
1

2
Ss(un − us)

2 (2.56)

Transport equation for electron species We similarly obtain the transport

equations for electrons:

∂ρe
∂t

+∇ · (ρeue) = Se − Le (2.57)

ρe
∂ue
∂t

+ ρe(ue · ∇)ue +∇pe − ρeG− neqe(E + ue ×B) = (2.58)

ρe
∑

t=neutrals

νet(un − ue) + Se(un − ue)

1

γ − 1

∂pe
∂t

+
1

γ − 1
(ue · ∇)pe +

γ

γ − 1
pe(∇ · ue) + (∇ · he) =∑

t=neutrals

ρeνet
mt

[3k(Tn − Te) +mt(un − ue)
2]∑

t=ions

νet
me

mt

ne[3k(Tt − Te) +mt(ut − ue)
2]

k

γ − 1

SeTn − LeTe
me

+
1

2
Se(un − ue)

2 (2.59)

By assuming quasi-neutrality of the plasma, we can then replace the continuity

equation by:
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ne =
∑
s=ions

Zsns (2.60)

We can directly derive the electron velocity ue from the current using Ohm’s law:

ue = u+ −
j

ene
(2.61)

where u+ is the charge averaged velocity

u+ =
∑
s=ions

qsnsus
ene

(2.62)

s being the ion species and qs and ns the respective charge and number densities.

In order to solve the electron transport equations, it is then only necessary to

solve the electron energy equation:

1

γ − 1

∂pe
∂t

+
1

γ − 1
(ue · ∇)pe +

γ

γ − 1
pe(∇ · ue) + (∇ · he) =∑

t=neutrals

ρeνet
mt

[3k(Tn − Te) +mt(un − ue)
2]∑

t=ions

νet
me

mt

[3k(Tt − Te) +mt(ut − ue)
2]

k

γ − 1

SeTn − LeTe
me

+
1

2
Se(un − ue)

2 (2.63)

We assume me � ms and therefore consider electron-ion collisions contribution

negligible in the ion and electron momentum equation compared to the other terms.

The term me(ui − ue)
2 is neglected in the pressure equation in the following calcula-

tions since it has a negligible contribution.

In most previous works (Ma et al., 2004; Glocer et al., 2009), the electron pressure

is generally assumed to be a fraction of the total pressure pe = α
∑

s ps. In our

calculations, ion and electron pressures are set to be equal. The derivation of the
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electron energy equation (Equation 2.63) is still relevant as our next and imminent

step is to solve separately for ions and electrons.

2.2 Multi-Fluid MHD Equations

In this section, we derive the multi-ion equations and simplify some of the terms.

The electric field E can be expressed as a function of the current and ion velocity.

We assume that in the electron momentum equation (Equations 2.58), the terms

proportional to me are negligible compared the rest of the terms, and therefore we

obtain from the simplified electron momentum equation:

E = −∇pe
ene
− ue ×B (2.64)

We also know that ue is related to the current j through equation (2.61) and

therefore we obtain:

E = −∇pe
ene
− (u+ −

j

ene
)×B (2.65)

which can be substituted into the ion momentum equation (Equations 2.55) and

re-ordered to obtain the following form of the ion momentum equations :

∂ρsus
∂t

+∇· (ρsusus + Ips) = nsqs(us−u+)×B +
nsqs
nee

(J×B−∇pe) + Sρsus (2.66)

where Sρsus are all the momentum source terms combined. Unlike the single-fluid

multispecies case, the multi-fluid equations cannot be written in conservative form

because of the term nsqs
nee

(J×B−∇pe).

We can also replace E in the Faraday’s law

∂B

∂t
= −(∇× E) (2.67)
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in order to obtain the induction equation:

∂B

∂t
−∇× (ue ×B +

∇pe
ne

) = 0 (2.68)

In most cases, ue is replaced by u+ as it is considered dominant compared to the

Hall term j
ene

. It is then assumed that the relative motion of electrons with respect

to the averaged ion motion is much smaller than u+. This simplifies the induction

equation to:

∂B

∂t
−∇× (u+ ×B) = 0 (2.69)

However, in cases where the ion gyroradius becomes comparable to the body’s

radius, the Hall effect is not negligible and we need to include it (see Chapter 4). The

details of the implementation of the Hall effect can be found in (Ma et al., 2007; Tóth

et al., 2008)

We also neglect heat conduction for the time being for the sake of simplification.

Finally, since we are setting the ion and electron pressures to be equal, we will

not consider ion-electron and electron neutral collision terms and the electron energy

source terms will be accounted for in the individual ion energy equations.
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The final form of multi-fluid MHD equations that we are solving in our study:

∂ρs
∂t

+∇ · (ρsus) = Ss − Ls (2.70)

∂ρsus
∂t

+∇ · (ρsusus + Ips) = nsqs(us − u+)×B +
nsqs
nee

(J×B−∇pe)

+ρs
∑

t=neutrals

νst(un − us) + Ss(un − us) (2.71)

1

γ − 1

∂ps
∂t

+
1

γ − 1
(us · ∇)ps = − γ

γ − 1
ps(∇ · us)

+
∑

t=neutrals

ρsνst
ms +mt

[3k(Tn − Ts) +mt(un − us)
2]

+
k

γ − 1

SsTn − LsTs
ms

+
1

2
Ss(un − us)

2

+
ns
ne

k

γ − 1

SeTn − LeTe
me

(2.72)

∂B

∂t
−∇× (u+ ×B) = 0

(2.73)

with

Ss = msns′
(
νph,s′ + νimp,s′ +

∑
i=ions

kis′ni

)
(2.74)

Ls = msns

(
αR,sne +

∑
t′=neutrals

kst′nt′
)

(2.75)

Se = me

∑
s′

(νph,s′ + νimp,s′)ns′ (2.76)

Le = mene
∑
s=ions

αR,sns (2.77)
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CHAPTER III

Numerical Model

3.1 Introduction

The multi-fluid equations we just derived in Chapter 2 cannot be solved analyt-

ically, given their complicated nature. We therefore solve them numerically using a

modified version of the Block Adaptive Tree Solar Wind Roe-Type Upwind Scheme

(BATS-R-US). BATS-R-US has been developed since 1996 at University of Michi-

gan (Groth et al., 1999; Powell et al., 1999; Hansen, 2001; Powell et al., 2006). It

is a highly scalable, massively parallel code using a block based adaptive mesh re-

finement (Block-AMR) algorithm. The code applies a second-order Godounov-type,

finite volume upwind scheme which can solve hyperbolic problems and obtain accu-

rate solutions. This family of numerical schemes also ensures stability as well as the

absence of oscillations near sharp gradients, like shock waves. A detailed description

of the approach can be found in (Powell et al., 1999; Tóth et al., 2011). The BATS-

R-US code has been extensively and successfully used to study the environment of

various solar system bodies.

In this chapter, we will discuss important aspects of the numerical scheme used in

our simulations and address questions that are relevant to the multi-fluid calculations.
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Figure 3.1: Example of a spherical grid (Ma, 2006)

3.2 Grid structure: spherical adaptive grid

In our model, we use a block based, adaptive spherical grid. The grid is generated

by dividing the computational domain into many blocks, each of them containing the

same number of cells (anywhere between 4 × 4 × 4 and 12 × 12 × 12). The block

sizes can be different in terms of the volume of physical space they occupy. The main

advantages of having a block-based tree data structure is the ease with which the grid

can be adapted and the ease of parallelization (Powell et al., 1999).

The streched spherical coordinate system uses the natural logarithm of the radial

coordinate, r, and the two other spherical coordinates θ and φ. While a Cartesian

grid has been used for Mars in the past (Ma et al., 2002) a spherical grid has the

advantage of achieving a much better altitude resolution without exhausting compu-

tational resources by using an exhaustive number of cells. In the case of Mars and

Venus, we were able to have cell sizes as small as 10 km in the ionospheric region,

using a spherical grid.
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The use of an adaptive grid is very convenient, especially in problems where we

need a high resolution (and therefore a refined grid) in regions of interest (ionospheric

regions for example) and at the same time, we have other regions of less interest, where

a coarse grid can be used instead, to save time and computational resources.

One of the most effective techniques to use computational resources optimally is

the Adaptive Mesh Refinement (AMR) technique. It considers each grid block as a

node of the tree. The root of the tree are coarse blocks covering the entire solution

domain. In regions we want to refine, a “parent block” is divided into eight “children”

block. Each of these eight octants becomes a new block having the same number of

cells as the parent, and its cell size (∆lnr, ∆θ, ∆φ) are each halved from their value

on the “parent block”. The “children” blocks can be in turn refined and so on. At

the end, we obtain a tree of successively finer blocks until we reach the cell-size that

we want in the region of interest. In Figure 3.2, we can see a hierarchical multi-root

data structure with two refinement levels. While we have dynamic adaptive mesh

refinement as an option in our code, we decided to refine our code in spherical regions

that we set manually: one that captures the ionospheric region and one that captures

the bow shock (Figure 3.3)

A more comprehensive description of Adaptive Mesh Refinement in BATS-R-US

and the implementation of the new Block Adaptive Tree Library, BATL can be found

in Tóth et al. (2011).

3.3 Finite volume discretization

We use in our model a finite volume, total variation diminishing (TVD) type

discretization with a second order minmod limiter to solve the governing equations.

The physical domain is divided into smaller volumes where each of the variables are

calculated. This method solves the integral form of the equations and therefore allows

us to solve conservation laws for discontinuous problems (such as shocks).
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Figure 3.2: A hierarchial multi-root octree data structure (Groth et al., 1999).

Figure 3.3: The spherical grid for Mars simulations showing the two-refinement levels
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As we saw in Chapter 2, the multi-fluid MHD equations can be written in the

following form:

∂W

∂t
+ (∇ · F)T = S (3.1)

where W is the state vector of conserved quantities, F is a flux tensor and S is a

source vector, containing the terms that can not be expressed in divergence form.

These terms can be gravity, the Lorentz force or the electron pressure gradient term

in the multi-fluid momentum equations, for example.

We integrate the equations over the volume of a cell i, in the grid:

∫
celli

∂W

∂t
dV +

∫
celli

∇ · FdV =

∫
celli

SdV (3.2)

Using the divergence theorem, we can rewrite equation 3.2 as follows:

dWi

dt
+

1

Vi

∮
celli

F · n̂dA = Si (3.3)

where Vi is the cell volume, Wi is the cell-averaged conserved state and S the cell-

averaged source vector. n̂ is a unit normal vector, pointing outward from the bound-

ary of the cell i.

The surface integral in equation 3.3 can be evaluated by summing up the fluxes

at the surfaces of each finite volume considered in the calculation as in equation 3.4.

The term F · n̂ is evaluated at the center of the cell faces

dWi

dt
+

1

Vi

∑
faces

F · n̂dA = Si (3.4)

The finite volume method has many advantages. It allows us to conserve quantities

in a given volume. It also allows for unstructured meshes; in the case of a spherical

grid, this means we can still express the physical vectors, such as u and B, in Cartesian
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coordinates, since only the grid mesh positions are defined in spherical coordinates.

3.4 Linde Solver

There are several algorithms to calculate the flux at the cell interfaces in equation

3.4. It is a classic problem, the Riemann problem, where we need to find the solution

of the hyperbolic system of equations with piece-wise constant initial conditions. In

our multi-fluid model simulations, we use the Linde solver (Linde, 1998), based on

the HLL solver devised by Harten, Lax and van Leer (Harten et al., 1983). Using the

Linde solver, the numerical flux can be calculated as :

F · n̂(WL,WR) =
λR · F(WL) · n̂ + λL · F(WR) · n̂

λR − λL
+

λR · λL
λR − λL

(WR −WL) (3.5)

where λR ≥ 0 and λL ≤ 0 are respectively the eigenvalues corresponding to the fastest

right-going and fastest left going waves.

The Linde solver is directly applicable to the MHD problems and has proven to

be more efficient and robust than other solvers in solving the multi-fluid equations in

our applications.

3.5 Time-stepping

3.5.1 Local time stepping towards steady-state solution

Convergence towards steady state can be greatly accelerated by employing dif-

ferent local time steps in every grid cell. The local time-step is limited by the local

stability conditions only. By taking the maximum possible time step (in an explicit

time stepping scheme), the residual can propagate through the computational domain

in fewer iterations (Tóth et al., 2011). Formally the scheme can be written as
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Un+1
i = Un

i + ∆tiRi(U
n) (3.6)

where U is the vector of state variables, Ri is the discretized right hand side of the

partial differential equation ∂U
∂t

= R(U), and ∆ti is the time step for grid cell i. The

superscripts n and n+1 indicate the current and next time levels, respectively. When

we reach steady state, Un+1
i = Un

i , so that Ri becomes zero irrespective of the value

of ∆ti. This means that the discrete steady-state solution is consistent with the PDE.

For the MHD equations the situation is a bit more complicated. The variation of

the time step from cell-to-cell corresponds to a space dependent factor α in front of

the time derivative. The discrete induction equation is therefore consistent with the

following PDE:

α
∂B

∂t
= −∇× E (3.7)

Let us take the divergence of this equation:

∇α · ∂B

∂t
+ α

∂∇ ·B
∂t

= 0 (3.8)

It is clear that ∇ · B is not conserved if ∇α is not zero. The divergence-free

condition depends on the initial condition only, therefore, the local time stepping will

lead to a steady state solution that has non-zero ∇·B unless we do something about

it. We can introduce modifications to the induction equation so that the divergence

free condition depens on the boundary conditions and not on the initial conditions.

We will discuss this issue in section 3.6.

We used local time-stepping in our Mars and Venus simulations and it allowed us

to reach a converged solution in a reasonable time.
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3.5.2 Point-implicit scheme

The source terms in our multi-fluid equations can become stiff, which would re-

quire very small explicit time steps in order to achieve stability. BATS-R-US offers

various time-stepping algorithms that allow us to take much larger time steps: point-

implicit, semi-implicit and fully implicit time discretization schemes (Tóth et al.,

2011). We will only describe here the point implicit scheme that we are using in our

simulations. We only apply the point-implicit scheme within 5 R (Mars and Venus

radii) since we know that source terms are negligible beyond this point.

The point implicit scheme can be used when the stiff source terms in our equations

depend on the local information only (and not on the spatial derivatives). These

terms can be chemical reactions, recombination, photo-ionization, collisional terms,

and terms proportional to (us − u+) in the multi-ion MHD equations. The point-

implicit scheme allows us to address the stability problem while taking large time

steps.

Applying the point-implicit scheme occurs in two steps: first, we do an explicit

update without the stiff source terms. This can be done in one stage:

U∗ = Un + ∆tRexpl(U n) (3.9)

or two stages (which is more stable for higher CFL numbers):

Un+ 1
2 = Un +

∆t

2
Rexpl(U n) (3.10)

U∗ = Un + ∆tRexpl(U n+ 1
2 ) (3.11)

where Rexpl is the non-stiff part of the right hand side.

We add next the stiff source term Sn+1
impl to the Uimpl set of variables that are
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affected by Simpl (and Uexpl denotes the rest of the variables):

Un+1
impl = U∗impl + ∆tSimpl(U

n
expl, U

n+1
impl) (3.12)

This can be linearized around time level n:

Un+1
impl = U∗impl + ∆tSimpl(U

n) + ∆t
∂Simpl
∂Uimpl

· (Un+1
impl −Un

impl) (3.13)

Note that we have two terms in Equation 3.13 that are evaluated at time level

n+1. We can solve the equation for Un+1
impl by inverting an Nimpl×Nimpl matrix, where

Nimpl is the number of implicit variables. In our case, we solve point-implicitly for

the individual densities ρs, individual momenta ρsus and individual pressures ps. The

rest of the variables are treated explicitly (Un+1
expl = U∗expl).

As for the Jacobian matrix
∂Simpl

∂Uimpl
, it can be calculated numerically as

∂Simpl,v
∂Uimpl,w

=
Simpl,v(U

n + δwεw)− Simpl,v(Un)

εw
(3.14)

where v and w are indexes 1....Nimpl of the implicit variables, δw is an array with all

zeros except for a single one corresponding to w-th implicit variable. Finally εw is a

small perturbation for variable w:

εw = ε|Uimpl,w|+ χw (3.15)

where ε is the square root of the machine precision of real numbers and χw is a very

small positive number relative to the typical values of |Uimpl,w|, which is needed to

avoid division by zero if Uimpl,w happens to be zero in a grid cell.

We also implemented a second order in εw algorithm to compute
∂Simpl

∂Uimpl
, which

proved to be useful for the multi-fluid case:
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∂Simpl,v
∂Uimpl,w

=
Simpl,v(U

n + δwεw)− Simpl,v(Un − δwεw)

2εw
(3.16)

As we can see in equation 3.16 , the original state (at t = tn) is perturbed sym-

metrically in both directions.

3.6 Divergence of B control

When solving numerically for the MHD equations, the divergence-free constraint,

∇·B = 0 still has to be respected and imposed upon the numerically solved magnetic

field. There are several methods to address the ∇ · B = 0 issue. A possible way

is using the projection method (e.g., Ramshaw , 1983; Vignes , 1989; Tanaka, 1993).

After each time-step, B∗ is replaced by a new field B that is given as:

B = B∗ −∇φ (3.17)

∇2φ = ∇ ·B (3.18)

In our calculation, we use an alternative approach, the 8-wave scheme proposed

by Godunov (1959) and Powell (1994). In this scheme, instead of dropping the terms

including ∇ · B, because of the absence of magnetic monopole, we keep them in

the derivation and solve our MHD equations with an additional source vector term,

proportional to ∇ ·B in the induction equation.

∂B

∂t
+ (∇× E) = −u∇ ·B (3.19)

When using the local time stepping, the time step varies from cell to cell corre-

sponding to a space dependent factor α in front of the time derivative ( cf. Equation

3.7). Therefore, Equation 3.19 becomes:
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α
∂B

∂t
+ (∇× E) = −u∇ ·B (3.20)

∇α∂B

∂t
+ α

∂∇ ·B
∂t

= −∇ · (u∇ ·B) (3.21)

so that ∇ · (u∇ · B) = 0 in steady state while ∇ · B = 0 at the boundaries. This

means that the numerical zero ∇·B is propagated from the boundaries together with

the flow to the entire computational domain, so that ∇ · B = 0 will be zero to the

truncation error (Tóth et al., 2011).

In summary, the 8-wave scheme method has the advantage of being simple, inex-

pensive and robust.

3.7 Conservation

It is essential to use a conservative discretization to capture shocks correctly. Un-

fortunately, the multi-ion MHD equations cannot be written in conservative form,

therefore a conservative discretization is not possible. However, we can solve the

multi-ion energy equations conservatively in the hydrodynamic limit, when the mag-

netic energy density and ∇pe are small relative to the kinetic and thermal terms. We

therefore solve for the hydrodynamic energy density es given by es = ρsu
2
s/2+ps/(γ−

1) as

∂es
∂t

+∇ · [(es + ps)us] = us ·
[nsqs
nee

(J×B−∇pe) + nsqs(us− u+)×B
]

+ Ses (3.22)

where Ses is the energy source term. We apply the conservative discretization outside

and around the bow shock (we limit the region between non-conservative and conser-

vative regions with a parabola; in Mars’ case, the parabola is within a radius of 1.4

RM in the subsolar direction).
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3.8 Testing and code development

The major challenge that we faced while developing our code has been the ”test-

ing” part. It is easy to write lines of code, sometimes it is even easier to obtain

results that look“ok”, however, the main challenge is to understand why the code

gives certain results, in other words, understand whether these results are physically

meaningful. A way to check this is to apply the code to a simpler problem: a two-fluid

shock tube, a simple sound wave, or what we call the pseudo multi fluid problem.

These checks are essential to validate our model and in order to discover issues that

we wouldn’t be able to track in a more complex code.

3.8.1 Breaking down the problem: shocktube, sound wave, pseudo multi-

fluid

Before adding a new component to our code (extra fluid, conservative scheme,

electron pressure), we decide to apply it first to a simpler problem that would be

easier to investigate. Our strategy had been to first run a simple two-fluid shocktube

case and a two-fluid sound wave case. We also ran these cases with and without

the total MHD fluid. The variables of the MHD fluid correspond to the sum of the

variables of the individual fluid (density, momenta, pressure). These case studies

proved to be very helpful in debugging our code efficiently and rapidly. Some of the

results of our test cases are shown in Figures 3.4 and 3.5.

Another very efficient way of testing our code has been what we call the “pseudo

multi-fluid” run, where we run our multi-fluid code, but overwrite the individual ve-

locities and temperatures and set them to be equal: ui = u and Ti = T . The results

of the pseudo multi-fluid runs are expected to be identical to the single fluid multi-

species results (Ma et al., 2004). This test is based on the fact that the single fluid

multi-species MHD code has been extensively tested and has given very good results

that compare very well to observations (Ma et al., 2004). Figure 3.6 shows an exam-
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Figure 3.4: An example of a two fluid shocktube case run: hydrogen and oxygen
pressures (in nPa) as a function of distance (in km)
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Figure 3.5: An example of a two fluid sound wave case run: hydrogen and oxygen
pressures (in nPa) as a function of distance (in km)
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Figure 3.6: Mass densities of O+
2 and O+ in amu/cc for a Pseudo multi-fluid test run

ple of converged pseudo multi-fluid run while Figure 3.7 shows a direct comparison

between the pseudo multi-fluid and the single fluid cases for a short run, including the

electron pressure. In fact, the comparison between the pseudo multi-fluid and single

fluid enabled us to find a bug in the electron-neutral collision rates as they were turn-

ing negative when the temperature was too small. This was happening in particular

for hydrogen’s interaction with electrons where the collision term is proportional to

(1− 1.35× 10−4Te). This term can turn negative as soon as Te is greater than a few

thousand Kelvins, therefore we set an upper limit at Te = 5000K which allows us to

avoid the problem.

Another advantage of using the pseudo multi-fluid has been to better understand

the evolution of the “real” multi-fluid model as it is much easier to compare two mod-

els that have the same structure and the same number of variables. The difference

is that in the multi-fluid model the velocities and temperatures can evolve indepen-
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dently. Now, if for example, a quantity Xi for the fluid i is orders of magnitude higher

or lower than the same quantity for the other fluids, it is much simpler to run the

pseudo multi-fluid until convergence and restart with the real multi-fluid and observe

what causes the quantity Xi to deviate.

3.8.2 Positivity

In the case of Mars and Venus, the most important numerical challenge has been

to maintain the positivity of pressure and density of all ion fluids. In the regions

upstream of the body where the plasma consists essentially only of solar wind protons,

the ionospheric ion densities are initialized to very small values (a fraction of the total

density ∼ 10−9), while velocity and temperature are set to the same value as the total

fluid, in order to avoid zeros and associated problems. The issue of positivity also

arises when implementing a conservative scheme. The comparative runs between the

pseudo multi-fluid and the real multi-fluid showed that we may obtain negative values

for the thermal pressure when we compute it by substracting the kinetic energy from

the total hydrodynamic energy. In order to solve this problem, we check the pressures

at every time step and if it is negative we overwrite it by a very small fraction of the

total pressure.

3.8.3 Code performance

Finally, it is important to provide an idea about our code performance. Our

code uses 8000 CPU hours to converge in a steady state mode (roughly 12 hours

on 600 cores using Pleiades supercomputers, we can therefore have a converged run

overnight). It uses 12 million cells, the smallest cell size being equal to 10 km in the

radial direction. We use a Courant-Friedrichs-Lewy (CFL) number of 0.2 for the first

10000 iterations to avoid instabilities, then we switch to a 0.8 CFL number in the

later stage.
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CHAPTER IV

Multi-fluid model of Mars’ interaction with the

solar wind

Introduction

Our newly developed 3D, multi-fluid, MHD model is used to study the interaction

of the solar wind with Mars. This model is based on the BATS-R-US code, using a

spherical grid and a radial resolution equal to 10 km in the ionospheric regions. We

solve separate continuity, momentum and energy equations for each ion fluid and run

our model for both solar minimum and maximum conditions. We obtain asymmetric

densities, velocities and magnetic pile up in the X-Z plane. These asymmetries are the

result of the decoupling of the individual ions; therefore our model is able to account

for the respective dynamics of the ions and show new physical processes that could not

be observed by the single fluid model. Our results are consistent with the measured

bow shock and MPB locations and with the Viking observed ion densities. We also

compute the escape fluxes for both solar minimum and solar maximum conditions and

compare them to the single fluid results and the observed values from Mars Express.
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4.1 Physical Model and simulation details

Our previous multi-species model had continuity equations for all the ions, but

only one momentum and one energy equation. In the case of multi-fluid formulation,

we have separate mass, momentum and energy equations for the four fluids H+, O+
2 ,

O+, CO+
2 . The multi-ion MHD equations can be written in non-conservative form

only and they are as follows:

∂ρs
∂t

+∇ · (ρsus) = Sρs (4.1)

∂ρsus
∂t

+∇ · (ρsusus + Ips) = nsqs(us − u+)×B +
nsqs
nee

(J×B−∇pe) + Sρsus (4.2)

∂ps
∂t

+ (us · ∇)ps = −γps(∇ · us) + Sps (4.3)

∂B

∂t
−∇× (u+ ×B) = 0 (4.4)

where ρs, ns, qs, us and ps are respectively the individual mass density, number

density, charge, velocity and pressure of the ion s. B is the magnetic field, J is the

current density, I is the identity matrix, e is the electric charge and γ is the ratio of

specific heats (and taken to be 5
3
).

The electron number density ne can be calculated from charge neutrality as

ne =
1

e

∑
s

nsqs (4.5)

The charge averaged ion velocity u+ is:

u+ =

∑
s nsqsus
ene

(4.6)

The electron pressure gradient term in the momentum equation is taken to be

equal to the total ion pressure gradient.
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As for the source terms Sρs , the mass density source term, Sρsus , the momen-

tum source term and Sps , the pressure source term, they contain charge exchange,

photoionization, recombination, ion-neutral and ion-ion collisions:

Sρs = Ss − Ls (4.7)

Sρsus = ρsg − ρs
∑

t=neutrals

νst(un − us) + Ssun − Lsus (4.8)

Sps = (γ − 1)
(

2
∑

t=neutrals

νst
ms

ms +mt

nsk(Tn − Ts) + 2
∑
t=ions

νst
ms

ms +mt

nsk(Tt − Ts)

+
2

3

∑
t=neutrals

νst
msmt

ms +mt

ns(un − us)2 + k
SsTn − LsTs

ms

+
1

3
Ss(un − us) +

ns
ne
Spe

)
(4.9)

with Ss and Ls, the production and loss rate for ions, respectively, Ts and ms, the

temperature and ion mass, Tn and un are the neutral temperature and velocity, k is

the Boltzmann constant, νst is the collision frequency between species s and t and Spe

accounts for the contribution of the electron source terms. A complete derivation of

these equations can be found in Chapter 2.

We use a reasonably comprehensive chemical scheme; the associated reactions and

rates are presented in Table 4.1. In order to evaluate some of the reaction rates that

are temperature dependent, the individual ion temperatures are obtained from the

individual pressures, while the electron temperature is assumed to be equal to the

average ion temperature.

We choose to include the energy exchange due to ion-ion collisions since they

are not negligible in the lower ionosphere, where they contribute to the pressure

source term. We neglected the friction term resulting from ion-ion collisions since

in this region of interest, the ion velocities are small. For ion-neutral collisions,

unlike the single fluid model that used an ion-neutral collision frequency calculated
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Figure 4.1: Density profiles of the neutral species adopted for solar cycle minimum
(left) and maximum (right) conditions (Ma et al., 2004)

by multiplying a constant number (4×10−10) by the total neutral density, we calculate

ion neutral collision frequencies separately for each combination of ion and neutral

(Schunk and Nagy , 2009).

We approximate the optical depth effect by including a cosine factor for the differ-

ent solar zenith angles and by assuming average absorption coefficients of 2.6× 10−17

and 1.5× 10−17 for CO2 and O, respectively (Schunk and Nagy , 2009). On the night-

side, we set the solar flux to be 10−15 times the unattenuated solar radiation, so as

to avoid zeros. In order to permit direct comparison with the multi-species model

results, we select the neutral atmosphere to be the same as was used by Ma et al.

(2004) as shown in Figure 4.1.

We run simulations with and without crustal fields and also for the solar minimum

and maximum conditions. We use the 60 degree harmonic expansion for the crustal

magnetic field, developed by Arkani-Hamed (2001) to describe the observed fields at

Mars (Acuna et al., 1998). We can see clearly in Figure 4.2 the presence of significant

and localized fields in the southern hemisphere of Mars.

The X axis of our coordinate system points from Mars toward the Sun, the Z
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Figure 4.2: The remnant crustal magnetic field magnitude at an altitude of 200
km, calculated using the 60-order harmonic expansion of Arkani-Hamed
(2001)
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Table 4.1: List of chemical reactions and rates considered in the model

Reactions Rate coefficient References
CO2 + hν → CO+

2 + e 7.30× 10−7s−1(solarmax) Schunk and Nagy (2009)
2.47× 10−7s−1(solarmin)

O + hν → O+ + e 2.73× 10−7s−1(solarmax) Schunk and Nagy (2009)
8.89× 10−8s−1(solarmin)

H + hν → H+ + e 8.59× 10−8s−1(solarmax) Ma et al. (2004)
5.58× 10−8s−1(solarmin)

CO+
2 +O → O+

2 + CO 1.64× 10−10cm−3s−1 Schunk and Nagy (2009)
CO+

2 +O → O+ + CO2 9.60× 10−11cm−3s−1 Schunk and Nagy (2009)

O+ + CO2 → O+
2 + CO 1.1× 10−9(800

T i
)(0.39)cm−3s−1 Fox and Sung (2001)

O+ +H → H+ +O 6.4× 10−10cm−3s−1 Schunk and Nagy (2009)
H+ +O → O+ +H 5.08× 10−10cm−3s−1 Fox and Sung (2001)

O+
2 + e→ O +O 7.38× 10−8(1200

Te
)(0.56)cm−3s−1 Schunk and Nagy (2009)

CO+
2 + e→ CO +O 3.10× 10−7(300

Te
)(0.5)cm−3s−1 Schunk and Nagy (2009)

axis is normal to Mars’ orbital plane and positive toward the north celestial pole,

and Y axis completes the right-hand coordinate system. Our computational domain

is defined by −24RM ≤ X ≤ 8RM , 16RM ≤ Y, Z ≤ 16RM , where RM is the radius

of Mars (∼ 3396km). We use a non-uniform, spherical grid structure with a radial

resolution varying from 10 km at the lower boundary to 630 km at the outer boundary.

We set our lower boundary to 100 km above the surface. The O+
2 , O+ and CO+

2

densities at the inner boundary are taken to be the photochemical equilibrium values.

The electron and ion temperatures are assumed to be equal to the neutral temperature

taken to be 300 K. A reflective boundary condition is used for u, that results in

near zero velocities at the inner boundary. We ran our model for the four different

cases presented in Table 4.2. Cases 1, 2 and 3 are idealized simulations to better

understand the model. Cases 4 and 5 correspond to realistic cases (solar minimum

and maximum, respectively). The solar wind plasma temperature is set to 3.5× 105

K. The IMF (Interplanetary Magnetic Field) is assumed to be a Parker spiral in the

X-Y plane equal to (-1.677, 2.487, 0) - except for Case 1, where the IMF has only a

By component. The solar wind velocity and density are selected to be 400 km/s and
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Table 4.2: Simulation cases used in this study

Cases Solar condition Upstream B field Position of crustal field Hot O corona
Case 1 Solar minimum (0, 3 nT, 0) no crustal field yes
Case 2 Solar minimum (-1.677, 2.487, 0) no crustal field yes
Case 3 Solar minimum (-1.677, 2.487, 0) no crustal field no
Case 4 Solar minimum (-1.677, 2.487, 0) 99.4◦W 25.3◦N yes
Case 5 Solar minimum (-1.677, 2.487, 0) 180◦W 0◦N yes
Case 6 Solar maximum (-1.677, 2.487, 0) 180◦W 0◦N yes

4 cm−3, respectively for all the simulated cases.

4.2 Simulation results and discussion

4.2.1 Test case

We first look at the symmetric test case (Case 1) results for both single and multi-

fluid cases. The O+
2 ion densities in the X-Z plane are shown in Figure 4.3. These

ions are generated by photoionization and chemical reactions (see Table 4.1). While

in the single fluid case the O+
2 ion distribution is symmetric, in the multi-fluid MHD

case, O+
2 ions can move upstream and across the dominant H+ ions of the solar wind.

The density distribution is asymmetric due to the effect of the convective electric field

E (along the Z axis, pointing northward), accounted for in the multi-fluid momentum

equation, unlike the single fluid case.

In fact, the main signature of multi-fluid effects are the asymmetries due to the

Lorentz force on each ion. In the individual momentum equation, we include the

gyration of the ion with respect to the charge averaged velocity u+. It can easily be

proved that the (us − u+)×B term will lead to an asymmetry in the X-Z plane only,

as long as the magnetic field is in the X-Y plane.
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Figure 4.3: Calculated O+
2 number densities: the single-fluid (left) and multi-fluid

(right) models in a logarithmic scale from 10−8 to 104 cm−3 (Case 1).

4.2.2 Magnetic field and velocity

The asymmetries described in the previous section can be observed in solar min-

imum simulation results (Case 2). We purposely chose to consider a case without

crustal field (Case 2) to highlight the multi-fluid effect on the magnetic field, without

overlapping of the the crustal field effect.

The calculated magnetic field and velocity values are shown in Figures 4.4 and 4.6.

In both figures, we plotted the magnetic field in the X-Y and X-Z planes, respectively.

The magnetic field in the X-Z plane is clearly asymmetric (Figure 4.4). This is a very

important signature that we could not observe with ideal single fluid MHD.

In the X-Y plane, the magnetic pile up is symmetric (Figure 4.6). If we include

the crustal field (Case 4), we observe the presence of closed magnetic filed lines on the

dayside resulting from the “merging” of the crustal and IMF fields (Figure 4.7). The

presence of such minimagnetospheres has been inferred by the electron reflectometer

carried aboard the Mars Global surveyor (MGS) spacecraft (Mitchell et al., 2001).

Similarly, the velocity profiles in Figures 4.4 and 4.6 show a sharp asymmetry in
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Figure 4.4: The calculated magnetic field and average ion velocity in the equatorial
plane in the X-Z plane for solar minimum conditions. The color plots show
the magnitudes; the white lines marked with arrows indicate the vector
direction of the magnetic field and the white arrows show the direction
(not the magnitude) of the velocity (Case 2). The dashed line represents
the mean bow shock location from Vignes et al. (2000).
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Figure 4.5: Calculated charge averaged velocity u+ in the X-Z plane (Case 2).

the X-Z plane and a symmetry in the X-Y plane. The newly observed asymmetry is

again absent in the single fluid case (Ma et al., 2004). The asymmetry of the total

velocity in the X-Z plane is a result of the asymmetry of the individual velocities, since

the total momentum is the sum of the individual momenta. The flow pattern is as

expected, upward and toward the terminator on the dayside and partially downward

on the nightside, to help maintain the nightside ionosphere, as well as outward through

the tail, contributing to the escape flux. We also plotted the charge averaged velocity

u+ in the X-Z plane: as we can see in Figure 4.5, the bow shock shape for u+ is closer

to that of the magnetic field, which is a direct result of the induction equation.

Figure 4.8 shows the velocity of each species and we notice that the ionospheric

heavy species are accelerated in the upper hemisphere. In fact, the newly born O+,

O+
2 , CO+

2 are accelerated by the convective electric field. Given that the gyroradius is

proportional to the mass of the species, we can see in Figure 4.8 that the lighter ion,

O+, is accelerated closer to the body, while the heavier CO+
2 is accelerated further
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Figure 4.6: The calculated magnetic field and average ion velocity in the equatorial
plane in the X-Y plane for solar minimum conditions. The color plots
show the magnitudes; the white lines marked with arrows indicate the
vector direction of the magnetic field and the white arrows show the
direction (not the magnitude) of the velocity (Case 2). The dashed line
represents the mean bow shock location from Vignes et al. (2000).
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Figure 4.7: The calculated magnetic field the X-Z plane for Case 4 (including the
crustal field).
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out. In fact we can compute the gyroradius using the solar wind speed as the relative

speed for each species obtaining ∼ 6.5 RM for O+, ∼ 13 RM for O+
2 and ∼ 18 RM

for CO+
2 . We expect the acceleration to take place at a distance equal to twice the

gyroradius which is confirmed by our calculations (Figure 4.8). Similar kinetic effects

have been previously obtained by hybrid models in Mars (Kallio et al., 2010) as we

can see in Figures 4.9 (note the difference in scales) and they are now captured by

our multi-fluid model (Figure 4.8).

4.2.3 Density

The multi-fluid effect can also be seen in the density results. Again, while in the

single fluid case the densities are symmetric, the multi-fluid densities are strongly

asymmetric in the X-Z plane, as we can see it in Figure 4.10. Hydrogen is not

as asymmetric mainly because H+ flows with the magnetic field B. Also, it has a

much smaller gyroradius than the other species. On the other hand, the densities in

the X-Y plane are fairly symmetric since the convective electric field (and Lorentz

force) are not contained in that plane and therefore do not affect the ion density

distribution (Figure 4.11). Similarly to what we discussed previously for the velocities,

the calculated ion distribution in the multi-fluid model is similar to the hybrid models’

asymmetric density distributions (Figures 4.9). In Figure 4.12, we can see the results

of different hybrid simulations of Mars; in all of them, we recognize an asymmetric

density distribution similar our calculated densities. The“bite out” near 90◦ in the

O+ distribution in the X-Z plane (Figure 4.10) is caused by our simplified scheme to

calculate the photoionization rate. The use of the more accurate Chapman function to

calculate these rates would result in the photoionization of the atomic corona beyond

the terminator.

The O+
2 and CO+

2 contour plots are quite similar whereas O+ has a different shape

mainly due to the ionization of the neutral oxygen corona, which pushes the density
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Figure 4.8: Calculated individual velocity for H+, O+
2 , O+, CO+

2 (absolute value). We
observe an acceleration of the flow around the body for the ionospheric
species (Case 2)
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Figure 4.9: The O+
2 ions near Mars results by Kallio et al. (2010). (a-c) the ion

density, n(O+
2 ), in cm−3; (d-f) the particle flux, nU(O+

2 ), in cm−2s−1; and
(g-i) the bulk velocity, U(O+

2 ), in km. s−1 (Kallio et al., 2010).
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Figure 4.10: The calculated ion number densities in the X-Z plane for H+, O+
2 , O+,

CO+
2 . Note the use of a logarithmic scale (Case 4).
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Figure 4.11: The calculated ion number densities in cm−3 in the X-Y plane for H+,

O+
2 , O+, CO+

2 . Note the use of a logarithmic scale (Case 4).
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Figure 4.12: Model results for the Brecht, Kallio, Modolo, and Boesswetter hybrid
models, from top to bottom: two-dimensional cuts of H+ (left) and O+

(right) in the X-Z plane (Brain et al., 2010)
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Figure 4.13: The calculated ion number densities in cm−3 in the X-Z plane for H+,

O+
2 , O+, CO+

2 . Note the use of a logarithmic scale (Case 3: no hot O
corona).

jump outward. To verify this hypothesis, we did a simulation equivalent to Case 2,

but without the hot O corona this time (Case 3): as we can see in Figure 4.13, the

density distribution for O+ is now similar to O+
2 and CO+

2 . This confirms the effect

of the hot oxygen corona on the O+ density distribution.

The hydrogen draping around Mars is barely visible since we do not distinguish

between solar wind and ionospheric hydrogen. In order to observe the hydrogen

properties more clearly, we introduced an additional hydrogen fluid and separated

ionospheric and solar wind hydrogen. We observe, as expected, the formation of a
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Figure 4.14: The calculated densities of the solar wind (left) and ionospheric hydrogen

(right). Note that the ionospheric hydrogen density is in a logarithmic
scale unlike the solar wind hydrogen density.

cavity in the solar wind H+ flow close to the body as shown in Figure 4.14.

4.2.4 Temperature

Temperature plays an important role in the ionospheric region especially in de-

termining the shape of the density distributions. However, thermal conduction, the

main energy transport mechanism in the ionosphere, is not included in our MHD

equations, although we hope to add it in the near future. Still, we were able to ob-

tain a reasonable temperature profile from our results in Case 4, interpolated along

the Viking trajectory (Figure 4.15). In fact, given the simplifying assumptions we

made, our ion temperature profile is surprisingly close to observations by Hanson

et al. (1977).

It is also important to mention the role ion-ion collisions play in the low iono-

spheric region. We noticed while running our simulations that the addition of ion-ion

collisions coupled the temperatures of the individual fluids and brought them closer

to one another. While this coupling is unecessary in the single fluid model, it is im-
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Figure 4.15: The calculated total ion temperature in K , along the Viking trajectory -
Case 4- from our multi-fluid model and the observed temperature profile
by Viking 1(Hanson et al., 1977).
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portant to add it the multi-fluid case. As a result, the fit of our calculated values to

observations has considerably improved.

4.2.5 Pressure

Figure 4.16 shows the solar minimum subsolar pressure profile for Case 2. Pthermal

is the total thermal pressure, PB is the magnetic pressure, Pdynamic is the dynamic

pressure and Ptotal is the total pressure. The bow shock separates the dynamic pres-

sure and the thermal pressure dominated regions. In this case, without the remnant

crustal field, the bow shock is located at 1.53 RM . We can see the magnetic pile

up boundary (MPB) as we move from a thermal pressure to a magnetic pressure

dominated region at 1.14 RM .

Figure 4.17 shows the solar minimum pressure profile for Case 4 (crustal field

added). The bow shock is located at 1.56 RM , which is close to the MGS observations

(Vignes et al., 2002) and slightly further out than the single fluid model results (Ma

et al., 2004). We can see the magnetic pile up boundary (MPB) is at 1.17 RM . We

notice by comparing figures 4.16 and 4.17 that the presence of the crustal field pushes

the MPB outward and increases the magnetic pressure close to the body. The bow

shock is also pushed outward as a result.

We also run simulations for the solar maximum condition (Case 6) so as to see

whether the solar condition plays a role in the bow shock location as well in the

shape of the pressure profiles. The main difference between solar minimum and solar

maximum is different neutral profiles and ionization rates (not in the values of the

solar wind conditions). This results in a more extended ion plume distribution around

the body. Figure 4.18 shows the corresponding pressure profile. As observed in the

single fluid case (Ma et al., 2004), the solar maximum case has a bow shock and

MPB further out from the body than in the solar minimum case. In Figure 4.18, we

observe the bow shock at 1.67 RM and the MPB at 1.26 RM . This is consistent with
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Figure 4.16: Pressure profiles along Sun-Mars line in the dayside for solar minimum
without the crustal field (Case 2).
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Figure 4.17: Pressure profiles along Sun-Mars line in the dayside for solar minimum
(Case 4).
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Figure 4.18: Pressure profiles along Sun-Mars line in the dayside for solar maximum
(Case 6).

observations along the subsolar line (Vignes et al., 2000).

4.2.6 Comparison to measured densities and role of the Hall effect

Our new model has been validated by comparing it to the single fluid model results

and to observed values. In Figure 4.19, we compare our calculated electron density

(Case 5) to the MGS radio occultation observation. Our results show a reasonable fit

to the data.

We also compare our solar minimum results (Case 4) to the Viking observations by

running a solar minimum simulation with the subsolar location taken to be at 99.4

west longitude and 25.3 north latitude in order to closely approximate the Viking
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Figure 4.19: Comparison between MGS electron density measurements and Multi-
fluid model results (Case 6)

conditions. The results are shown in Figure 4.20.

The agreement between the calculated and observed parameters in the region of

the Viking measurements is similar to that obtained by the multispecies single-fluid

model of Ma et al. (2004) (Figure 4.23), which is not surprising given the fact that

the same chemistry scheme and neutral atmosphere parameters were used in both

set of calculations and transport processes are not very strong in the region under

consideration. The agreement between the calculated and observed molecular ion

densities is quite good. The model results for O+ are noticeably lower than the
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Figure 4.20: Comparison between Viking ion density measurements and the multi-
fluid model results (with and without the Hall effect) along the Viking
trajectory.
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Figure 4.21: Comparison between Viking ion density measurements and the single-
fluid model results along the Viking trajectory (Ma et al., 2004)

measured values. However, we need to remember that the Viking mass spectrometer

did not measure the atomic neutral density. Most of our current estimate of the O

density came from fitting the measured O+ density by adjusting the neutral O density

in 1D ionospheric models until a good fit was obtained (e.g. Hanson et al., 1977; Chen

et al., 1978). In order to compare our results with the single-fluid model results we

used the same neutral density values selected by Ma et al. (2004) and we did not

undertake a systematic study of adjusting the O density to get a best fit. However

as a test, we did double our O densities in order to establish the kind of adjustments

necessary and that gave us a very good fit to the observed O+ densities (Figure 4.22),

although the CO+
2 density now does not fit as well as before.

It is known that the transition between chemical equilibrium conditions to trans-

81



Number Density (cm-3)

Al
tit

ud
e(

km
)

100 101 102 103 104 105100

150

200

250

300

350

400

450

500

550

600

Multi-fluid results
Viking Data

Viking trajectory: (LAT: 100N-170N; LON:640W-560W)

O+

CO2
+

O2
+

Figure 4.22: Comparison between Viking ion density measurements and the Multi-
fluid model results along the Viking trajectory after doubling the oxygen
neutral density
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port takes place around 200 km. In fact, in the region above the peak and below

the region where transport dominates, the plasma decreases with a scale height that

is equal to approximately twice that of the major ionizable neutrals (cf. Schunk and

Nagy , 2009). The measured Viking CO+
2 and O+

2 scale heights are about 23 and 29

km and it is also the case for our calculated values. On the other hand, the exospheric

neutral gas temperature has been measured by Viking (Nier and McElroy , 1977) to

be about 185 K, giving a neutral scale height of about of about 10.4 and 28.5 for CO2

and O respectively, which is consistent with the observed (Viking) and calculated

(multi-fluid) data.

We also ran a case for solar cycle minimum conditions with no crustal field (Case

2) and interpolated our results along the Viking trajectory. The major difference is

that ion densities are lower in the absence of crustal field (Figure 4.23).

We also notice above 200 km, in the region where chemical control is no longer

dominant, an increase in the slope which suggests larger effective scale heights. There

has been a discussion about the role of horizontal magnetic fields and how they may

affect vertical transport in the region (Krymskii et al., 2002), but Pioneer Venus ob-

servations at Venus suggested the horizontal magnetic field explanation is improbable

(Dwivedi and Mahajan, 2003).

The issue is that previous discussions have assumed that the temperature is con-

stant with altitude, which is not the case in the ionospheric region where we have

significant temperature gradients that can reduce the effective scale height (Schunk

and Nagy , 2009).

Let us write the one-dimensional, steady state, vertical momentum equation:

∂p

∂r
= −ρg (4.10)

In equation 4.10, we can replace p by nkT to obtain (friction terms are neglected):
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Figure 4.23: Comparison between Viking ion density measurements and the multi-
fluid model results with and without crustal field along the Viking tra-
jectory
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kT
∂n

∂r
+ nk

∂T

∂r
= −nmg (4.11)

which gives, if we do not neglect the temperature gradient term:

1

n

∂n

∂r
= −mg

kT
− 1

T

∂T

∂r
(4.12)

It is clear in equation 4.12 that the term − 1
T
∂T
∂r

, which corresponds to the temper-

ature gradient, contributes to reducing the effective scale height, if it is not negligible.

Our results in that region show that in fact, that term is not negligible. Still, other

studies showed that there might be other factors in addition to significant tempera-

ture gradients that could explain the change in the effective scale height. One of the

other possible factors is plasma loss due to vertical transport as assumed by Chen

et al. (1978) and Fox (1993). On the other hand, Shinagawa and Cravens (1989) con-

structed an MHD model and obtained the best agreement with the observed densities

when they included an induced magnetic field and horizontal removal of plasma. Our

results and past studies results seems to indicate that the observed change in the

density slope is due to several factors such as temperature gradient, magnetic fields

an plasma loss due to convective transport.

4.2.7 Hall Effect

The results presented so far were obtained neglecting the Hall effect in the mag-

netic field equation to highlight the asymmetries caused by the multi-fluid effect

rather than the ones due to the decoupling of ions and electrons via the Hall effect.

However, the Hall effect is available as an option in our code (Ma et al., 2007; Tóth

et al., 2008) and has been included in some of our runs. As we can see in Figure 4.20,

the addition of the Hall term does not modify our results significantly. The pressure

profile shown in Figure 4.24 corresponds to the solar maximum case with the Hall
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Figure 4.24: Pressure profiles along Sun-Mars line in the dayside for solar maximum
with the Hall effect.

effect included; we can only see a slight outward movement of the shock. A summary

of the MPB and bow shock positions for the different cases used in our study is shown

in Table 4.3.

4.2.8 Escape fluxes

We also used our model to estimate the total escape fluxes at 6 Mars radii. Our

results, given in Table 4.4, are somewhat different from the single fluid model (Ma

et al., 2007). The main difference is the much higher O+
2 escape flux compared

to the escape rates of the other species. This might be due to the new dynamics

present in our model, in particular the existence of asymmetric plumes. Finally, our

calculated total flux values are comparable but somewhat lower than the most recent

measurement (3× 1024s−1) , from the ASPERA instrument carried by Mars Express
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Solar condition Crustal field Hall MPB location in RM Bow Shock location in RM

Solar minimum No No 1.14 1.53
Solar minimum Yes No 1.17 1.56
Solar minimum Yes Yes 1.17 1.58
Solar maximum Yes No 1.26 1.67
Solar maximum Yes Yes 1.27 1.7

Table 4.3: The calculated subsolar MPB and bow shock positions for solar minimum
and solar maximum with and without crustal field and Hall effect; the
observed subsolar bow shock and MPB locations are 1.64 ± 0.08 RM and
1.29± 0.04 RM respectively (Vignes et al., 2000)

Escape fluxes in s−1 O+ O+
2 CO+

2 Total
Case 2 2.2× 1023 1.4× 1024 2.9× 1023 1.91× 1024

Case 4 1.6× 1023 1.4× 1024 2.1× 1023 1.77× 1024

Case 5 2.0× 1023 2.9× 1024 4.1× 1023 3.51× 1024

Case 6 7.7× 1023 9.0× 1023 1.7× 1023 1.84× 1024

Table 4.4: Calculated escape fluxes for Mars using the multi-fluid model

(Lundin et al., 2008).

4.3 Summary

Our new multi-fluid MHD model of Mars gives very promising results. It succeeds

in describing new physical processes such as the density plumes and the asymmetries

due to the decoupling of the ions, which could not previously be observed with the

single fluid model. At the same time, it verifies the observed bow shock locations and

shows a reasonable fit to the data.

We observe an asymmetric magnetic pile up and velocities in the X-Z plane re-

sulting from the Lorentz force in the Z direction. We observe gyroradius effects in

the individual velocities distributions proving that our model can indeed capture ki-

netic effects that were not previously captured by the multispecies model.The Lorentz

force also affects the ion density distribution around the body in the same plane. The
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asymmetric density plume is a distinguishing feature for the heavy species (O+, O+
2 ,

CO+
2 ) and is a direct result of the decoupling of the ions as separate fluids. Our results

are similar to results previously obtained by hybrid models (e.g. Brecht , 1997; Brecht

and Ledvina, 2006; Kallio et al., 2010), in regions where the simulations overlap. This

work demonstrates that multi-fluid MHD models provide a good and credible way to

study the interaction of fast moving plasmas with non-magnetic solar wind bodies.

We ran our model for different configurations (Cases 1 to 5) and we observed that

adding a hot oxygen corona, the observed crustal field and going from solar minimum

to solar maximum conditions push the magnetic pile up boundary and the bow shock

outward. This variability of both the bow shock and the MPB has been predicted

by the multispecies single fluid model and is now confirmed by our multi-fluid model.

The Hall effect did not affect our results significantly.

Our multi-fluid model gives reasonable escape fluxes and the density results com-

pare reasonably well with the observations made by MGS and very well with Viking

data, thus validating our model.

In summary, our new multi-fluid MHD model enables us to describe accurately the

interaction of Mars’ ionosphere with the solar wind and observe physical processes

that we could not describe with the single fluid model, while efficiently using our

computational resources. This is an important contribution to the current studies on

the topic as the main challenge has been to find a compromise between accuracy and

efficiency.

Our future plans are to solve for the separate electron pressure equation and in-

clude thermal conduction in our equations. We also want to use a more realistic three

dimensional atmosphere (as opposed to the spherically symmetric neutral profile we

are currently using). For this purpose, we plan to use the three dimensional Mars

thermospheric general circulation model (Mars TGCM), which incorporates a photo-

chemical dayside ionosphere and includes seasonal, SZA and longitude variations in
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its global structure (Bougher et al., 2004).
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CHAPTER V

Multi-fluid model of Venus’ interaction with the

solar wind

5.1 Introduction

In Chapter 4, we presented the results of our new Mars multi-fluid model and

compared our results to observed values. The next step is to validate our multi-fluid

model by applying it to another solar system body; Venus comes as a natural choice

since its atmospheric composition is very similar to Mars’. We describe our Venus

physical model and present our preliminary results for Venus’ interaction with the

solar wind. We obtain asymmetric densities, magnetic pile up and velocity distribu-

tions in the X-Z plane as a result of the multi-fluid effect. We show results for both

solar maximum to solar minimum conditions and compare them to Pioneer Venus

Orbiter (PVO) and Venus Express (VEX) observations.

5.2 Physical model and simulation details

In Venus’ case, similarly to Mars, we solve separate mass, momentum and energy

equations for the four fluids H+, O+
2 , O+, CO+

2 . The equations are the same as

in Mars’ case. We use a reasonably comprehensive chemical scheme; the associated

reactions and rates are presented in Table 5.1. As we can see, most of the rates are the
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Table 5.1: List of chemical reactions and rates considered in the model

Reactions Rate coefficient References
CO2 + hν → CO+

2 + e 1.30× 10−6s−1(solarmax) Schunk and Nagy (2009)
4.27× 10−7s−1(solarmin)

O + hν → O+ + e 1.21× 10−6s−1(solarmax) Schunk and Nagy (2009)
4.67× 10−7s−1(solarmin)

CO+
2 +O → O+

2 + CO 1.64× 10−10cm−3s−1 Schunk and Nagy (2009)
CO+

2 +O → O+ + CO2 9.60× 10−11cm−3s−1 Schunk and Nagy (2009)

O+ + CO2 → O+
2 + CO 1.1× 10−9(800

T i
)(0.39)cm−3s−1 Fox and Sung (2001)

H+ +O → O+ +H 5.08× 10−10cm−3s−1 Fox and Sung (2001)

O+
2 + e→ O +O 7.38× 10−8(1200

Te
)(0.56)cm−3s−1 Schunk and Nagy (2009)

CO+
2 + e→ CO +O 3.10× 10−7(300

Te
)(0.5)cm−3s−1 Schunk and Nagy (2009)

same as Mars besides the photoionization rates. Also, note that we are considering

here fewer reactions than in Mars’ case. In order to evaluate some of the reaction

rates that are temperature dependent, the individual ion temperatures are obtained

from the individual pressures, while the electron temperature is assumed to be equal

to the average ion temperature.

We run simulations for the solar minimum and maximum condition. The X axis

of our coordinate system points from Venus toward the Sun, the Z axis is normal to

Venus’ orbital plane and positive toward the north celestial pole, and Y axis completes

the right-hand coordinate system. Our computational domain is defined by −24RV ≤

X ≤ 8RV , 16RV ≤ Y, Z ≤ 16RV , where RV is the radius of Venus (∼ 6052 km). We

use a non-uniform, spherical grid structure with a radial resolution as low as 10 km in

the ionospheric region. We set our lower boundary to 100 km above the surface. The

O+
2 , O+ and CO+

2 densities at the inner boundary are taken to be the photochemical

equilibrium values. The electron and ion temperatures are assumed to be equal to the

neutral temperature. A reflective boundary condition is used for u and B. We ran our

model for solar minimum (Case 1) and maximum (Case 2), respectively. In the solar

maximum case, the upstream solar wind plasma temperature is set to 2.5 × 105K.
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Cases Solar condition nSW (cm−3) USW (km.s−1) Upstream B field ( nT)
Case 1 Solar minimum 25 -450.0 (7.76, -5.65, 0.0 )
Case 2 Solar maximum 17 -400.0 (12.1, -8.82, 0.0 )
Case 3 Solar minimum 14 -430.0 (8.09, 0.0, -5.88 )

Table 5.2: Simulation cases used in this study and corresponding parameters.

The IMF (Interplanetary Magnetic Field) is assumed to be a Parker spiral in the X-Y

plane with an angle of 36 degrees and a magnitude of 15 nT. The solar wind velocity

and density are selected to be 400 km/s and 17 cm−3 respectively. These parameters

correspond to a dynamic pressure PD equal to 4.5 nPa and a Mach number Mf = 4.5.

We use different parameters for the solar minimum case as shown in Table 5.2. We

also run an additional case to compare to Venus Express conditions (Case 3). The

summary of the parameters used in these simulations are presented in Table 5.2. It is

important to note that for the Parker spiral cases for Venus (Cases 1 and 2), the signs

for the magnetic field B are inversed with comparison to Mars, so in Venus’ case, for

this particular configuration, the convective electric field E is pointing southward.

Figure 5.1 shows the adapted neutral atmosphere and the production rates from

Fox and Sung (2001); they are the same as the ones used by Ma et al. (2009). Unlike

in Mars’ case where we have neutral hydrogen and hot oxygen, we only consider, as

a first step in our preliminary study, neutral CO2 and O in Venus’ case.

5.3 Simulation results and discussion

5.3.1 Magnetic field and velocity

We consider our solar minimum results and examine the magnetic field and ve-

locity distribution. The calculated magnetic field and velocity values are shown in

Figures 5.2 and 5.3. In both figures, we plotted the magnetic field and velocity in

the X-Y and X-Z planes, respectively. The magnetic field in the X-Z plane is clearly
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Figure 5.1: Density profiles of the neutral species adopted for solar cycle minimum
and maximum conditions (left) and Ionization rates (right) (Fox and
Sung , 2001)

asymmetric. This is a very important signature that we could not observe with ideal

single fluid MHD and is due to the effect of the convective electric field E (along the

Z axis, pointing southward ). Please note that since the configuration of the magnetic

is of opposite sign to that of Mars, the asymmetries in Venus and Mars are opposite

to one another. In addition, since Venus radius (RV ∼ 6052 km) is about twice that

of Mars (RM ∼ 3396 km), the kinetic effects are much less pronounced. In addition,

the magnetic field in Venus’ environment (∼ 15 nT in solar maximum condition) is

up to 5 times higher than the magnetic field in Mars ( ∼ 3 nT). This results in a

much smaller gyroradius in Venus’ case and therefore even less pronounced kinetic

effects.

In the X-Y plane, the magnetic pile up is symmetric (Figure 5.3). However, the

shock position in the dawnside is closer than the shock position at the duskside. In

fact, quasi-perpendicular shocks are dominating in the duskside, while quasi-parallel

shocks dominate in the dawnside. This asymmetry of the bow shock in the X-Y plane
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Figure 5.2: The calculated magnetic field and average ion velocity in the X-Z plane
in Venus. The color show the magnitude of the vector field; the white
lines correspond to the field lines and the white arrows show the direction
(not the magnitude) of the velocity (Case 1).
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Figure 5.3: The calculated magnetic field and average ion velocity in the X-Y plane
in Venus. The color show the magnitude of the vector field; the white
lines correspond to the field lines and the white arrows show the direction
(not the magnitude) of the velocity (Case 1).
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is in agreement with observations (Zhang et al., 1991).

Figure 5.4 shows the velocity of each species and we notice that the ionospheric

heavy species are accelerated in the lower hemisphere by the convective electric field.

Given that we expect the acceleration to take place at a distance equal to twice the

gyroradius, and in the case of Venus, the gyroradius is much smaller than Mars’, the

acceleration takes place very close to the body. And the lighter the ion is, the smaller

the gyroradius is, which explains why in Figure 5.4, we cannot see the acceleration of

O+ as it is too close to the body.

5.3.2 Densities

The density distribution is also asymmetric in the X-Z plane although much less

pronounced than in Mars. Figures 5.5 shows the density distributions in the X-Z

plane. The calculated ion distribution in the multi-fluid model is very similar to the

hybrid models’ asymmetric density distributions (Kallio et al., 2006).

5.3.3 Pressure

Figure 5.6 shows the solar minimum subsolar pressure profile for Case 1. Pthermal

is the total thermal pressure, PB is the magnetic pressure. Pdynamic is the dynamic

pressure and Ptotal is the total pressure. The bow shock separates the dynamic pres-

sure and the thermal pressure dominated regions. The subsolar position of the bow

shock is at 1.31 RV . We can see the magnetic pile up boundary as we move from a

thermal pressure to a magnetic pressure dominated region at 1.10 RV . Note that un-

like in Mars case, we do not have a sharp increase in the magnetic and total pressures

close to the body. This is a result of the absence of magnetic crustal field at Venus.

We also ran simulations for solar maximum (Figure 5.7) and obtain a bow shock

position at 1.33 RV and a magnetic pile-up boundary at 1.15 RV . This is consistent

with Mars’ results where solar maximum’s condition pushed the bow shock outward.
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Figure 5.4: Calculated individual velocity for H+, O+
2 , O+, CO+

2 (absolute value). We
observe an acceleration of the flow around the body for the ionospheric
species
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Figure 5.5: The calculated ion number densities in the X-Z plane of H+, O+
2 , O+,

CO+
2 for solar minimum condition. Note the use of a logarithmic scale.
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Figure 5.6: Pressure profiles along Sun-Venus line in the dayside for solar minimum
(Case 1).
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Figure 5.7: Pressure profiles along Sun-Venus line in the dayside for solar maximum
(Case 2).
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Figure 5.8: Venus Express Spacecraft (left) and trajectory (right)

Our bow shock location is consistent with Pioneer Venus’ (PVO) observations of

a subosolar bow shock position at 1.36 RV (Slavin et al., 1980). In Figure 5.2, we can

see that the bow shock position at the terminator is around 2.1 RV which is consistent

with Venus Express observations of ∼ 2.0 RV (Martinecz et al., 2008). They are also

comparable to the bow shock positions obtained by the single fluid values (Ma et al.,

2004) although there seem to be a more significant difference between solar conditions

(1.44 RV for solar maximum and 1.33 RV for solar minimum).

5.3.4 Comparison to data

We now compare our model results to the observed values. We ran a simulation

that corresponds to Venus Express Conditions (Case 3), we compare the magnetic

field value, interpolated along Venus Express trajectory (Figure 5.8) to the observed

data (Figure 5.9). As we can see, our results fit very well the observations. In

comparison, Figure 5.10 shows hybrid model results (Kallio et al., 2008) and single

fluid model results (Ma et al., 2009) compared to VEX results.
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Figure 5.9: Calculated magnetic field for Case 3 along Venus Express (VEX) trajec-
tory, compared to VEX observations
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Figure 5.10: Calculated magnetic field by a hybrid mode (left - Kallio et al. (2008))
and a single fluid model (right - Ma et al. (2009) )along Venus Express
(VEX) trajectory, compared to VEX data
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Figure 5.11: The calculated density profile by the multi-fluid model for Case 2

In Figures 5.11, we show our ion density profile along the subsolar line for the

solar maximum case. As we can see, our preliminary results do not show the clear

ionopause given by the observations in Figure 5.12. This might be due to different

reasons: not including a hot oxygen corona and/or not including thermal conduction

in our calculations. We are still working on understanding the reasons behind these

differences.

5.4 Discussion

The application of our multi-fluid MHD model to Venus gives promising prelimi-

nary results. It succeeds in describing new physical processes such as the asymmetries
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Figure 5.12: Representative altitude profiles of three ions measures by the orbiter ion
mass spectrometer. The ionopause is marked by the sharp gradient in
O+ at 500 km (Taylor et al., 1979)
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Escape fluxes in s−1 O+ O+
2 CO+

2 Total
Case 1 1.9× 1025 2.9× 1025 1.3× 1022 4.8× 1025

Case 2 3.9× 1025 6.4× 1024 1.3× 1021 4.5× 1025

Table 5.3: Calculated escape fluxes for Venus using the multi-fluid model

due to the decoupling of the ions, which could not be previously observed with the

single fluid model. We observe an asymmetric magnetic pile up, individual velocities

and densities.These kinetic effects were shown by hybrid models (Kallio et al., 2006)

and are now reproduced by our Venus multi-fluid MHD model.

Our results fit the observed bow shock locations by Pioneer Venus Orbiter and

Venus Express, verify the expected differences between solar minimum and maximum

conditions and show a good fit to the magnetic field data by Venus Express. We

also compute the escape fluxes for both solar minimum and maximum conditions;

the results are shown in Table 5.4. We see that although the EUV flux is higher

for solar maximum condition, the total plasma escape rates for both conditions are

comparable, which is due to the higher dynamic pressure in the solar minimum case.

The results given by our model are compatible to ASPERA-4 measurements of oxgen

escape corresponding to a lower limit of 1025 s−1 (Barabash et al., 2007).

Although we can reproduce the asymmetries that we have calculated in Mars’ case

in the magnetic field, individual velocities and individual densities, these effects are

much less pronounced in Venus given the larger radius of the body and the smaller

ion gyroradius (due to the stronger interplanetary magnetic field).

We also need to better understand the differences between our subsolar density

profile and the observations in Venus case. The observations show the presence of an

ionopause in Venus which we do not observe yet. The presence of the ionopause in

Venus is an important feature especially in comparison with Mars. An outstanding

mystery is why Venus is seen to have a constant ionopause while Mars (which has a

similar ionosphere) does not. The application to Venus is also interesting in studying
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the interaction of a fully non-magnetized body with the solar wind and how the

absence (or presence) of remnant crustal field affects the results. As we saw in the

subsolar pressure profile (Figure 5.6) and in the magnetic field 2D plots (Figure 5.2),

Venus’ magnetic pressure is not as enhanced close to the body as in Mars’ case and we

do not observe mini-magnetospheres close in Venus’ magnetic pile up region (Figure

5.2). A continuation of our work on Venus would definitely lead to an insightful

comparative study of the two bodies.
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CHAPTER VI

Conclusion and future work

In this work, we use our new multi-fluid MHD model to study the interaction of

the solar wind with two non-magnetized solar system bodies: Mars and Venus. Our

model gives very good results, depicting new physical processes in the interaction

region.

Our multi-fluid model started from the multispecies single fluid MHD model pre-

viously developed in the CSEM group. To improve the existing model, we decided to

solve individual continuity, momentum and energy equations for every ion; therefore,

we take into account the dynamics of the decoupled ions. In both Mars and Venus

case, we consider four ion species H+, O+
2 , O+ and CO+

2 . Since our main interest is to

study the ionospheric region and its interaction with the solar wind, we set our lower

boundary to 100 km and our resolution to 10 km, using a spherical adaptive grid.

We first apply our model to Mars’ interaction with the solar wind. We use a

comprehensive chemical scheme and run simulations for multiple cases such as solar

minimum and maximum conditions, and with or without crustal fields and the hot

oxygen corona. We obtain asymmetric densities, velocities and magnetic pile up in

the X-Z plane. This is the plane that contains the convective electric field E, while the

X-Y plane shows symmetric results. The asymmetries in the X-Z plane are the result

of the effect of the Lorentz force on the decoupled individual ions. We also observe
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gyroradius effects in the individual velocity distributions. These processes are very

similar to those calculated by hybrid models which proves that multi-fluid MHD

models provide a good and credible way to study Mars’ interaction with the solar

wind. Our results are consistent with the measured bow shock and MPB locations.

We observe a variation of both locations based on the solar condition, the presence

and position of the crustal field and the inclusion of the hot oxygen corona.

We compare our calculated density profiles against Viking observed ion densities

and MGS total density. We also compute the escape fluxes for multiple cases and

compare them to the single fluid results and the observed values from Mars Express.

Our calculated values compare very well with the observations. The addition of the

Hall effect does not seem to affect our results significantly, nor does it improve our

fit to the data.

Another way of validating our model and showing its versatility is to apply it to

another non-magnetized solar system body: Venus. Unlike Mars, Venus does not have

a crustal magnetic field; it is also bigger in diameter and the upstream magnetic field is

much stronger than in Mars environment, resulting in a much smaller gyroradius. The

latter combined with the bigger size of the body leads to much less pronounced kinetic

effects. Still, we are able to observe similar (but less pronounced) asymmetries in the

magnetic field, velocity and density distributions in the X-Z plane. We run our Venus

multi-fluid model for solar minimum and maximum conditions and calculate MPB

and bow shock positions that fit the observations. We also compare our magnetic

field results to Venus Express data and they show a very good fit to the observations.

In summary, our preliminary Venus results are very encouraging and prove that our

multi-fluid model is versatile and can be applied to other solar system bodies besides

Mars.

Our multi-fluid MHD model succeeds in describing non-magnetized planets inter-

action with the solar wind in a more realistic and accurate manner than the single
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fluid model by showing/reproducing physical processes that so far have only been

captured by hybrid calculations. This is a very important step since MHD models

need less computer resources and can therefore achieve an excellent spatial resolu-

tion in the region of interest without exhausting the available resources. So far, the

main problem of this type of models has been their inability to capture kinetic effects

in regions where the gyroradius becomes comparable to the size of the body. The

single fluid approach was clearly a limitation in that respect. The multi-fluid MHD

approach appears as a good compromise between accuracy in depicting the physical

processes and efficiency in computer time, as long as the ion gyroradius is not too

large.

Still, our model can always be improved. We are currently working on solving for

the electron pressure equation separately. So far, in both bodies, we have assumed the

electron pressure to be equal to the ion pressure, which is a reasonable approximation.

However, by solving for the electron and ion pressures separately, we hope to account

better for the decoupling between ions and electrons and improve the accuracy of our

results.

Another important feature is thermal conduction. So far, we have neglected the

divergence of the heat flux, in the individual energy equations. However, we know that

heat conduction can be an important transport process in the ionospheric region. We

will use the following approximation of the heat flux hs = −κ∇Ts , where κ is thermal

conductivity and Ts is the individual temperature. We are planning to implement a

thermal conductivity term similar to the one used by Terada et al. (2009).

Finally, we plan to further pursue our comparative study between Mars and Venus

in order to examine key features such as the observed constant ionopause at Venus

and the intermittent one at Mars and also understand better the role of the crustal

magnetic field. We also plan to use a more realistic atmosphere from the TGCM

model (Bougher et al., 2004) that includes seasonal, SZA and longitude variations in
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its global structure. In addition, we want to broaden our study to weakly magnetized

solar system bodies interaction with the solar wind by including Mercury. The appli-

cation of our multi-fluid model to Mercury will enable us to describe and understand

better how bodies with a weak intrinsic dipole interact with the solar wind. We hope

to fully describe the parameters that control the generation, size and transport of

the flux transfer events (FTEs) observed by MESSENGER. Our multi-fluid model is

also the appropriate tool to study the asymmetric enhanced plumes of heavy ions in

Mercury and their role in the Hermean magnetosphere.
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