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ABSTRACT 

Vehicle active safety systems stabilize the vehicle by controlling tire forces. They 

work well only when the tire force command computed by the safety systems is within 

the friction limit. Therefore, knowledge of the tire/road friction coefficient is important to 

improve their performance. The objective of this dissertation is to develop a robust 

friction coefficient estimation algorithm for vehicle active safety systems. The algorithm 

should be operational in a wide range of vehicle states, robust to plant uncertainties, and 

use information from sensors that are readily available on typical passenger vehicles.  

This study presents two methods of estimating the friction coefficient: a lateral 

dynamics based method and a longitudinal dynamics based method. These two methods 

are then integrated to improve the working range and robustness of the estimator. The 

first method is a nonlinear observer based on vehicle lateral/yaw dynamics and the Brush 

tire model, whereas the second method is a recursive least squares method based on the 

relationship between tire longitudinal slip and traction force. The two methods are 

complementary to each other because they rely on different excitation conditions. 

Therefore, they can be integrated by a switching method where the switching signal 

depends on the level and kind of excitation. 

The performance of the estimation algorithm was verified using simulations and 

test data under a wide range of friction and speed conditions. The test was performed on 

three different road surfaces: concrete, snow, and ice. The algorithm is able to estimate 

the friction coefficient of these three surfaces, including during abrupt surface changes 

and tracks the friction coefficient variance. It exhibits reasonable performance under 

various driving conditions based on the basic sensors used in vehicle stability control 

systems. The overall results from simulations and the experiments demonstrate that the 

proposed approach has the potential for practical applicability to vehicle active safety 

control.  
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

The safety of ground vehicles relies heavily on road friction. The risk of traffic 

accidents increases significantly on slippery surfaces [1].  Tire-road friction influences 

the ability of tires to generate steering, traction and braking forces, which in turn affect 

vehicle motions. Knowledge of the road friction coefficient is thus important for the 

design and analysis of active safety systems [2]. Examples of vehicle control systems that 

can benefit from the knowledge of tire-road friction include anti-lock braking systems 

(ABS), electronic stability control (ESC), adaptive cruise control, and collision warning 

or collision avoidance systems.  The quality of traffic management and road maintenance 

work (e.g., salt application and snow plowing) can also be improved if the estimated 

friction value is communicated to the traffic and highway authorities. 

With the rapid growth in hybrid vehicle sales, EPAS (Electric Power Assisted 

Steering) and AFS (Active Front Steering), both of which greatly enhance the overall X-

by-wire implementation of future vehicles, are becoming more widely available. These 

advanced chassis control systems, similar to ESC, function well only when the road 

friction coefficient is known. When the road friction coefficient is unknown, the control 

design is usually conservative, resulting in reduced performance.  

The penetration rate of electronic safety controllers has been increasing over the 

past decade. For example, a regulation of the U.S National Highway Traffic System 

Authority (NHTSA) requires all new vehicles lighter than 10,000lb to have ESC by 2011 

[3]. TRW [4] forecasts that by 2010, 50% of all cars produced worldwide will incorporate 

some form of electrical assistance in their steering systems. These two systems (ESC and 

electric power steering) deploy sensors that provide useful information for the estimation 

of friction coefficient. 
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1.2 Problem Description 

The tire-road friction coefficient, frequently referred as µ in the automotive 

engineering field, defines the ratio of the maximum horizontal force to the vertical forces 

acting between the vehicle’s tires and the road. In other words, the friction coefficient 

quantifies the potential friction force that can be generated by vehicle tires. The 

horizontal tire forces, consisting of longitudinal and lateral components, are generated by 

braking, acceleration, and steering actions but are also affected by vehicle handling states. 

The vehicle performance in the horizontal plane is thus limited by the friction coefficient. 

This limitation can be represented by a friction circle, where the radius of the circle is the 

friction coefficient, as shown in Figure 1.1. 

 

 

Figure 1.1 Friction circle of a tire [2] 
 

Braking and traction torques induce longitudinal forces between the tire and road 

while steering produces lateral forces. The direction of the force generated when steering 

is combined with braking or acceleration is determined by magnitudes of the longitudinal 

and lateral tire relative deflections. Tire forces are generated by relative deflections 

between the tire contact patch and the road, referred to as tire slip, which is a major factor 

affecting tire forces. Furthermore, the friction coefficient affects not only the maximum 

magnitude of horizontal forces but also the sensitivity of tire force to the tire slip. An 

example of the relationship between tire force, friction coefficient, and tire slip is 

depicted in Figure 1.2.  
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Figure 1.2 Tire force/moment characteristics [5] 

 

Under normal driving conditions, excitations (steering or traction/braking) are 

small and it is difficult to calculate or infer the friction coefficient using the generated 

force and tire behavior models.  This difficulty is due to the fact that uncontrolled factors 

(camber, vertical vibration, load transfer) or model uncertainties inject significant 

disturbances and thus the computed results may contain significant errors. Although it 

becomes easier to estimate the friction coefficient when excitations exceed the tire force 

limit, driving under these sliding or near-sliding conditions is risky as we are on the verge 

of losing grip, or have already lost grip. In addition, these conditions rarely occur in daily 

driving and cannot be introduced deliberately. Therefore, driving scenarios with “large 

enough” excitations are more useful for the purpose of friction coefficient estimation.  In 

other words, while we will develop algorithms for estimating the road friction coefficient 

under small and extremely large excitations, it is the medium excitation results that are 

the most useful. 

1.3 Literature Review 

Many approaches to estimating tire-road friction have been proposed in the 

literature, with different requirements for sensors and levels of excitations. The 

estimation methods can be categorized into “cause-based” and “effect-based” approaches 

according to the fundamental phenomena.  These approaches are depicted in Figure 1.3 

and are reviewed in the following sub-sections. 
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Figure 1.3 Classification of friction coefficient estimation algorithms 

 

1.3.1 Vision/Temperature Based Methods 

Holzmann [6] analyzed the texture of road images taken by camera to classify 

possible road types. The basic concept of Holzmann’s work is that the image of a rough 

surface has a wider distribution of pixel luminance levels than the image of a smooth 

surface. His method provides six levels of predicted friction of the road ahead. However, 

the reliability of the texture analysis deteriorates when the image is blurred by vehicle 

speed and vibration. Sato [7] and Yamada [8] measured road wetness by detecting 

reflected light using optical sensors. These optical methods are effective in detecting road 

conditions, but are seriously affected by the intensity and direction of light.  

Generally, vision information alone is not sufficient to estimate road conditions 

because many factors affect the road conditions which may not be easily discerned 

through this information exclusively. Therefore, when other pieces of information, such 

as temperature, are fused with vision information a more accurate estimate is obtained. 

Sato [7] fused three types of information: texture, reflected light, and temperature, using a 

fuzzy logic algorithm. He was able to differentiate between snow covered asphalt and 

snow covered ice using the fused algorithm. 

These methods are called cause-based methods because they detect the factors 

affecting the tire-road friction. There are two potential advantages of these methods, 
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especially optical based methods: i) the friction coefficient of the road surface ahead of 

the vehicle may be detected, which enables preview and preemptive actions; and ii) 

estimation is possible without physical excitation, and could work well even when the 

vehicle is not being driven.  These methods, however, only detect one aspect of road 

conditions.  Therefore, other factors that affect tire force generation, such as tire types 

and wear/pressure, hydroplaning and change in normal load on driven wheels, are not 

taken into account.  In other words, while these algorithms might have the potential to 

provide reliable and accurate estimation, they also have fundamental and inherent 

limitations due to their choice of detected phenomena. 

1.3.2 Tire Tread Based Methods 

Eichhorn [9] inserted strain sensors into tire treads to measure tire deformation 

and estimates the road friction coefficient by comparing the deformation at the center and 

edge of the contact patch. While the basic concept of Eichhorn’work is sound and has 

potential, this method, as the authors pointed out, is not a real-time algorithm and the 

verification was only done at low speeds. Tuononen [10, 11] estimated tire forces using 

tire carcass displacements measured by an LED sensor module. The measured signals 

were transmitted from the tires to the chassis through a wireless network. The 

displacement information was then processed and converted to tire force information that 

was being broadcasted through a CAN-bus. It is difficult to use these methods for 

production vehicles because of both the costs involved and technical challenges in 

embedding strain sensors and related power, signal conditioning and communication 

devices in tires.   

1.3.3 Wheel Dynamics Based Methods 

Ito [12] and Gustafsson [13] presented a road friction estimation method using 

wheel rotational behavior. When traction forces are applied to wheels, the resulting wheel 

speed difference between driven and non-driven wheels varies by road surface conditions. 

Consequently, road friction can be estimated. The same concept can also be applied 

during braking.  However, it is well known that road friction estimation based on 

ABS/TCS excitations is generally inadequate due to controller intervention. Liu and Peng 



 

 6

[14] applied the special structure of the Brush tire model and used wheel speed signal to 

estimate the road friction coefficient and the cornering stiffness. Umeno [15] proposed a 

method based on frequency characteristics of wheel speed vibrations, which exhibit 

different resonance characteristics under different road conditions. Wheel dynamics 

based methods usually use wheel speed signals and tire traction/braking forces provided 

by a power train controller or electronic brake controller. Therefore, these methods do not 

require additional sensors and are easier to implement. However, the existing ABS/TCS 

sensors might not provide adequate accuracy, and, therefore, wheel-based estimation 

might require an upgrade of these sensors in order for the friction estimation methods to 

become feasible to use. 

1.3.4 Vehicle Dynamics Based Methods 

As indicated in the studies described below, vehicle dynamics based methods 

have advantages in robustness to disturbances.  Andersson [2] presented an estimation 

method based on lateral excitation. He installed sensors in the steering system and in the 

front wheels to measure the tire self-aligning moment and he estimated the friction 

coefficient based on a Brush tire model. Using an input data set of tire lateral forces and 

the self-aligning moment measured using several force sensors installed at the suspension 

structures, Pasterkamp [16] proposed a neural network estimation algorithm based on a 

Brush tire model. Pal [17] applied the neural network based identification technique to 

predict the road friction coefficient based on steady-state vehicle response signals. Hahn 

[18] used lateral dynamics to estimate the friction coefficient, formulating an algorithm 

that specifically relied on GPS-based vehicle lateral speed. Sierra [19] utilized lateral 

dynamics, including lateral speed and yaw angular acceleration, to detect cornering 

stiffness, which is closely related to the friction coefficient. Yi [20] suggested an 

estimation algorithm based on vehicle longitudinal dynamics. He estimated tire traction 

forces using a power train model and detected the friction levels using the slip-traction 

force relationship.  

These vehicle dynamics based methods are robust to high frequency disturbances 

due to the low bandwidth of the dynamics therefore these methods are preferable in case 

of using noisy sensors. An increasing penetration rate of active safety controllers along 
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with the availability of satellite-based position signals enable access to many vehicle 

dynamic states. Consequently, friction estimation based on vehicle dynamics has drawn 

increasing interest in recent years. 

1.3.5 Tire Self-Aligning Moment Based Methods 

Thanks to the introduction of electric power steering systems into passenger 

vehicles, access to the information of front tires’ self-aligning moment is possible. The 

studies below incorporate the self-aligning moment in their methodology. Recently, 

Toyota published a series of papers [21-24] based on methods that involved either 

measuring the self-aligning moment or lateral compliance of the rotational shaft. The 

experimental results presented by Umeno [21] showed excellent estimation results (less 

than 5% error of forces up to 2500N) for both lateral force and the self-aligning moment 

by using the measurements from a resolver mechanism. Ono [24] used estimated tire 

forces and the self-aligning moment to calculate the ‘tire grip margin’, which indicates 

the remaining tire lateral force potential. He proposed an algorithm estimating the friction 

coefficient using the estimated ‘tire grip margin’. Hsu [25] introduced an algorithm to 

estimate the friction coefficient using nonlinear least squares based on the self-aligning 

moment and GPS-based sideslip measurements. He also presented a nonlinear observer 

using the self-aligning moment and lateral acceleration in [26].  

1.3.6 Summary 

Table 1.1 shows a summary of the approaches reviewed in this section. Vision/ 

temperature based methods are typically not robust under environmental uncertainties. 

Tire tread based methods are impractical in today’s environment because of the 

requirement for specially engineered strain sensors and power systems, both of which are 

costly and difficult to implement. Wheel dynamics based methods are inherently 

susceptible to high frequency disturbances, such as road roughness and ABS/TCS 

operations. However, if higher-precision wheel speed sensors are available and the effect 

of tire vertical motion can be eliminated, wheel-based methods have the advantage of fast 

response and may become a good choice.  Lateral dynamics based methods with GPS are 

promising because GPS can provide several vehicle states, such as a vehicle side slip 
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angle that had previously been very difficult to obtain. The GPS used for the study of the 

literature is expensive, however, and the GPS signals require line-of-sight and are 

vulnerable to multi-path induced errors.  Yet, notwithstanding these disadvantages, these 

methods deserve a second look in light of continued cost reduction and growing rates of 

GPS installation for vehicle navigation along with the prospect of having new European 

GPS system (Galileo) become available in a few years.  Lateral dynamics based-methods 

using inertial sensors, which are reliable and cost effective, are already available in many 

active safety systems, such as ESC and ABS.   Therefore, from a practical viewpoint, 

these methods appear to represent a good choice.  

 

Table 1.1 Comparison of several estimation approaches 

Category 
Special 
sensors 

Sensor 
reliability 

Vulnerability Cost References 

Vision/ 
temperature  

Optical/Temp
erature sensor 

Need clear 
vision 

Snow, ice High [6], [7], [8], [9] 

Tire tread strain sensor - Sensor noise High [9], [10], [11] 

Wheel 
dynamics 

- - 
High 

frequency 
disturbances 

Low [12], [13], [14], [15] 

Vehicle 
dynamics 

D-GPS 
Need line of 

sight 
- Medium [18] 

Inertial - - Low [2], [16], [17], [19], [20] 

Tire aligning 
moment 

- - 
- 
 

Low [21], [24], [25], [26] 

 

1.4 Objective, Approaches, and Scope of Study 

The main objective of this research is to develop a robust and cost effective road 

friction estimation algorithm with a wide range of operation.  Having adequate and rich 

excitations is crucial for the estimation algorithms.  In ground vehicle applications, we do 

not have the luxury of choosing the level and type of excitations; the nature of excitations 

are typically dependent on the discretion of the driver, in response to road and traffic 
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conditions. Since we cannot actively impose excitations on the vehicle, it is expected that 

a single estimation approach would not be able to achieve reliable performance for all 

situations. For example, daily driving involves a lot of driving on straight roads, with 

only longitudinal excitations, and at very low excitation levels most of the time.  In such 

situations, a road friction estimation method based on longitudinal dynamics and wheel 

dynamics [20] may be a viable choice, whereas a lateral dynamic based method will not 

be very useful.  On the other hand, when adequate lateral excitations exist, a method 

based on vehicle lateral and steering system dynamics does become appropriate, as will 

be explained later in this study.  Furthermore, under conditions involving extreme 

maneuvering of the vehicle (plowing out or spinning out), the algorithms based on 

normal maneuvers may not work appropriately. Therefore, it is necessary to develop and 

combine different approaches to form a comprehensive estimation strategy that works 

under a wide range of maneuvers.  

The methods we aim to develop need to work under actual driving, and we plan to 

fully validate their performance using experimental data. The estimation algorithm will 

have to be robust against measurement noise and system uncertainties.  Using both 

simulations and test results, we will study the achievable performance of the developed 

estimation algorithms, the proper fusion of different methods under different driving 

conditions, and the evaluation of the algorithm with respect to sensor accuracy, 

sensitivity to vehicle parameters and states, and excitation levels using both simulations 

and test results. 

1.5 Contributions 

Although knowledge of the frictional coefficient between tire and road is 

important for vehicle active safety systems, measuring or estimating the coefficient is 

challenging because it is a property of extreme phenomenon such as the skidding of tires. 

This dissertation focuses on the development of a friction coefficient estimation 

algorithm based on vehicle dynamics. Its major parts include a study of the physics 

relevant to the tire contact patch, mathematical derivation of a robust nonlinear observer, 
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and integration and implementation of the estimators. The main contributions of this 

work are summarized as follows: 

 This research analyzes the physics related to the friction coefficient by using a tire 

model and a vehicle model. In particular, this work shows that the internal slip in 

the contact patch causes inconsistency between the physical tire models and 

experimental results in small longitudinal slip cases. The advantages and 

limitations of using tire physics and vehicle dynamics for parameter estimation 

are analyzed, and the inherent difficulty of using them for friction estimation is 

explained. 

 A design methodology for parameter/state estimation of a class of nonlinear 

systems is proposed. The estimator is based on an adaptive observer to estimate 

states and parameters concurrently and guarantees local stability. Furthermore, an 

index for stability and robustness is suggested for the observer design process. 

Lyapunov stability conditions are numerically evaluated and the results are used 

as an index of stability and robustness. An optimal stable and robust observer is 

designed by optimizing the index. This design methodology can be used to 

determine estimator parameters such as observer gain for dynamic observers.  

 In terms of contributions for applications, estimation algorithms for the friction 

coefficient will be formulated and divided into two groups based on the types of 

excitation they use: the first type of estimator is based on lateral excitation and 

involves a nonlinear least squares method and a nonlinear observer are designed; 

the second type of estimator is based on longitudinal excitation, and utilizes the 

relationship between the tire longitudinal stiffness and the friction coefficient at a 

small slip range. In addition, an integrated estimator will be formulated, 

combining the estimators from both types. This integrated estimator can work in 

combined slip cases as well as pure slip cases. Because the integrated estimator 

inherits the characteristics of the individual estimators, it works for both small and 

large excitations and has a wider operation range than single excitation based 

methods.  
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CHAPTER 2 

SYSTEM MODELS 

This chapter discusses the system models required for estimation. As discussed in 

the previous chapter, no single approach is likely to cover the wide range of vehicle 

maneuvers. Accordingly, combination of several different approaches will be used as the 

basis for the overall estimation method. In particular, when sufficient excitations exist in 

the lateral direction, vehicle lateral dynamics and the tire self-aligning moment will be 

used as the basis of estimation because of their robustness and the availability of related 

sensors.  The ‘low’ excitation case is based on a vehicle longitudinal motion based 

algorithm. Four models will be introduced in this chapter: a vehicle lateral dynamic 

model, a vehicle longitudinal dynamic model, a tire force/moment model, and a steering 

system model. 

2.1 Vehicle Lateral Dynamics Model  

This section presents dynamic models to show vehicle excitation and response in 

the lateral and yawing directions.  Models on both a level road and on a banked road are 

considered in the following sections. Tire vertical forces vary as the vehicle is in 

accelerated motion known as load transfer. A simple load transfer model will be 

described in Chapter 2.1.3 subsequent to the following introduction of vehicle models 

without load transfer. 

2.1.1 Vehicle Model on a Level Road  

The centerpiece of our estimation method is the vehicle bicycle model, which 

describes the vehicle lateral and yaw dynamics of a two-axle, one-rigid body ground 

vehicle, represented in Figure 2.1. Derivation of the equations of motion for the bicycle 

model follows from the force and moment balance: 
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where vx is the vehicle forward speed, vy is the vehicle lateral speed, r is the yaw rate, m 

is the vehicle mass, and Iz is the yaw moment of inertia. Fyf and Fyr are the lateral forces 

at the front and rear axle, respectively, δ is the front wheel steering angle, and a and b are 

the distances from the vehicle’s center of gravity to front and rear axles. Using small 

angle approximations, the slip angles αf and αr of the front and rear tires in terms of vx, vy, 

and r are 

 

(2.2) 
 
 

,

.

f y x

r y x

v ar v

v br v

 



  

 
 

 
 

Figure 2.1 Vehicle bicycle model 
 

This vehicle model is simple yet effective in representing vehicle lateral dynamics. 

This model has two degrees of freedom, one being lateral speed and the other yaw rate. 

The external forces to the model are from the front and rear tires. This means that if we 

know how the vehicle motions are changing, then we can know the tire forces. For 

example, from the vehicle lateral acceleration measured from an accelerometer, we can 

calculate the sum of the front and rear tire forces. Ignoring suspension roll, the sum of tire 

lateral force can be calculated by using the vehicle lateral acceleration measured at the 

center of mass as follows: 
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(2.3) , ,yf yr y mF F ma   

 
where ay,m is the measured lateral acceleration. 

2.1.2 Vehicle Model on a Banked Road 

Road bank angle is a common disturbance to vehicle lateral dynamics. This 

disturbance can be taken into account by using a road bank model as shown in Figure 2.2. 

 

(2.4) 
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Figure 2.2 Vehicle on a banked road 

 

In this case, the sum of the tire lateral forces is not the sole source for lateral 

acceleration because the accelerometer output is also affected by gravity, bank angle (φr), 

and vehicle roll angle (φv).  The lateral acceleration at the center of mass located in the 

sprung mass is  

 

(2.5)  , cos( ) sin( ).y m y x v r va v v r g       

 
The relationship between the sum of lateral tire forces and measured lateral 

acceleration can then be derived from (2.4) and (2.5): 
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(2.6)  , sin( ) / cos( ) sin( ).yf yr y m r v v rF F m a mg mg         

 
Note that (2.6) is the same as (2.3) if the road bank angle and vehicle roll angle 

are ignored. This equation demonstrates that if a vehicle is experiencing road bank or 

excessive roll motion, measuring lateral acceleration alone is not sufficient to determine 

tire lateral forces. Estimation or measurement of bank and roll is a challenging topic in 

research on vehicle dynamics.  However, Tseng [27] successfully estimated road bank 

angle by decoupling the lateral dynamics and road bank disturbances. In addition, Ryu 

[28] estimated both the vehicle roll angle and the road bank angle using GPS sensors. 

Acknowledging both the importance of calculating these disturbances for real 

applications, and the difficulties of measuring them,  we here assume, for the purposes of 

this research study, that these disturbances resulting from road bank angle and roll angle  

have been measured or estimated. 

2.1.3 Load Transfer Model 

Vertical loads exerted on vehicle tires vary as the vehicle experiences lateral and 

longitudinal acceleration. If we ignore vertical movement of vehicle mass, the vertical 

loads exerted on the tires can be calculated using longitudinal and lateral acceleration. 
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where Kf is the roll stiffness of front suspension, and Kr is the roll stiffness of rear 

suspension. Lateral acceleration (ay) in the equations is easily measured. However 

measurement of longitudinal acceleration (ax) is not available in production vehicles. 

Thus, the longitudinal acceleration should be estimated using other available sensor 
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signals, such as the transmission output shaft speed, wheel speed of each tire, or GPS 

signals.  

 

 
Figure 2.3 Load transfer model 

 

2.2 Vehicle Longitudinal Dynamics Model 

When a vehicle is under longitudinal forces such as straight driving on a highway, 

the vehicle dynamics are different from those explained in the previous chapter. The 

equation of motion can be derived by force equilibrium as shown in Figure 2.4 and the 

resulting equation is 

 

(2.8) sin ,x xf xr xf xr Ama F F mg R R D       

 
where ax is the longitudinal acceleration, Fxf and Fxr are the total tractive forces on the 

front and rear tires respectively, Θ is a road inclined angle, Rxf and Rxr are the rolling 

resistance of the front and rear tires respectively, and DA is the aerodynamic drag force. 

The rolling resistance of a tire is usually determined by coast down tests. The 

aerodynamic drag force is proportional to velocity squared as follows: 
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where Cd is the drag coefficient and can be determined experimentally, A is the cross-

sectional area of the vehicle, and ρ is the air density.  

 

 

Figure 2.4 Forces related to vehicle longitudinal dynamics 
 

The vehicle model above shows that if the rolling resistance is given and the 

vehicle is moving on a level surface, we can compute the total tractive force of the 

vehicle by measuring the longitudinal acceleration and velocity. 

2.3 Tire Model 

A tire model describes the relationship between tire parameters, tire dynamic 

states, and tire forces. Therefore, given tire forces, a tire model serves as the basis to 

estimate parameters, i.e. the friction coefficient. A linear tire model is commonly used for 

the vehicle bicycle model because it provides a good representation of tire behavior when 

the tire slip angle is small and the road frictional coefficient is high. Furthermore, with a 

linear tire model, the combined vehicle-tire bicycle model has a linear state space form. 

However, the linear tire model does not reflect the effect of friction variations. Many 

other tire models, such as the Magic Formula model [29] and the Brush model [5], have 

parameters that can capture this effect. Among the possible choices of existing models, 

we select the Brush model because it has fewer parameters compared  to many other tire 

models [29-32] and it captures the effect of friction as well as nonlinearity when the tire 

slip angle increases.  

The basic concept of the Brush model is that a tire consists of a row of elastic 

bristles which touch the road plane and can deflect in a direction that is parallel to the 

road surface. As a result, a tire can be modeled as a thin disk with brushes along the 

circumference that represent the tire treads, as shown in Figure 2.5. Treads in the contact 
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patch are compressed and experience vertical stresses. The distribution of vertical stress 

is assumed to be parabolic as shown in Figure 2.6. The parabolic distribution can be 

derived as follows: 

 

(2.10) 
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where Fz is the vertical tire load, l is half of the contact patch length, and x is the distance 

from the leading edge. 

 

 

Figure 2.5 Tire and Brush model 
 

 

 

Figure 2.6 Pressure distribution in the contact patch of the Brush model 
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When slip exists in a tire due to acceleration or turning, forces exist between the 

tire/road interface. Under pure-slip conditions, the longitudinal force, lateral force, or 

self-aligning moment are caused by the deformation of tire treads. A simplified 

explanation of the forces and moment generation mechanism is shown in Figure 2.7, 

where the brushes are deformed by the longitudinal velocity difference (longitudinal slip) 

or the angle difference between tire heading direction and moving direction (lateral slip).  

 

Figure 2.7 Forces and moment generation mechanism in the Brush model 
 

 

 

Figure 2.8 Brush deformation when the friction limit is applied to the lateral slip case 
 

Once the tip of a brush contacts the ground, it will not move until it is raised at the 

trailing edge if the friction force is enough to resist the stress caused by the brush 

deformation. However, if the stress of a brush exceeds the friction force limit, then the 
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brush will slide. The distribution of friction force limit is parabolic because friction force 

limit is determined by the friction coefficient and the vertical stresses. Therefore, brushes 

start to slide once their deformation reaches the deformation limit as shown in Figure 2.8 

where the black dashed line represents the deformation limit due to the friction limit. 

The generated forces or moment can be computed by integrating the stress of all 

brushes in the contact patch. The detailed computation methods are provided by Pacejka 

[5]. In a pure longitudinal slip case, the tire longitudinal force, fx, can be represented as 

follows:  
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In a pure lateral slip case, the tire lateral force,  fy, and tire aligning moment, τa, 

can be represented as follows: 
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The force and moment curves are plotted for several friction coefficients in Figure 

2.9 below. Initially, the longitudinal and lateral forces increase linearly with slip and 

eventually the forces reach saturation values due to the limited friction potential. The tire 

aligning moment also shows a linear relationship to tire slip angle when the slip angle is 

small. It then reaches a peak and goes down to zero as the tire slip angle increases, 

because the pneumatic trail decreases, whereas tire lateral force increases as the tire slip 

angle increases.  

 

Figure 2.9 Forces and moment curves of the Brush model 
 

The force and moment equations in combined slip cases are similar to the 

equations for pure slip cases. If both lateral slip and longitudinal slip exist, the treads are 

deformed in the direction determined by the magnitudes of both slips. The Brush model 

for the combined slip case is shown in the following equation: 
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These simple equations and the plot in Figure 2.9 illustrate the basic concept of 

the tire model estimation methods as well as their limitations. When we measure a 

friction coefficient between two surfaces in contact with each other, a relative tendency 

for movement of the two contacting surfaces needs to exist. Then, the friction coefficient 

is easily obtained by measuring the horizontal force (Fh) and the vertical (Fz) force during 

the movement and using the simple relation, Fz=μFz. This simple method can be applied 

to vehicle motion. If we measure acceleration when the vehicle is completely sliding, 

then we can calculate the friction coefficient between the tire and the road. However, this 

approach is valid only when the vehicle is in excessive acceleration that might lead the 

vehicle to be unstable. Fortunately, we can estimate the friction coefficient even when the 

vehicle is not sliding because the tire is not a rigid body. In fact, tire lateral force and 

aligning moment gradually build up as the treads deform. This tendency of tire force and 

moment to build up (gradient) is different under different friction conditions. Using this 

phenomenon, we can differentiate the friction coefficient from the tire force and moment 

measurements. 

An examination of Figure 2.9 shows that the curves are close to each other when 

the slip angle is small and that the curves are approximately linear functions of the slip 
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angle. Therefore, it is hard to differentiate the friction coefficient, but easy to differentiate 

the slip. This means that the estimation of slip angle is much easier than the estimation of 

the friction coefficient when the slip angle is small. On the contrary, when the slip angle 

is larger than the saturation point, we can differentiate the friction coefficient, but not the 

slip angle. This observation can be illustrated by examining the sensitivity of tire 

force/moment to slip angle and friction coefficient. The sensitivity when friction 

coefficient is 1.0 is shown in Figure 2.10. Tire force/moment sensitivities to slip angle 

(∂Fy/∂α and ∂τy/∂α) are zero when the slip angle is larger than 0.2, and tire force/moment 

sensitivity to friction coefficient (∂Fy/∂μ and ∂τy/∂μ) are zero when the slip angle is 0. 

This is why we need sufficient excitation (large slip angle) to estimate the friction 

coefficient. 

 

Figure 2.10 Tire force/moment sensitivity with respect to slip angle and friction 
coefficient 

2.4 Steering System Model 

Although the tire aligning moment is typically not measured in production 

vehicles, electrically powered steering systems provide signals, fortunately, enabling us 

to estimate the aligning moment of front tires. The aligning moment of front tires are 
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dynamically balanced by the sum of the driver’s steering moment, the assist-motor’s 

moment, and the frictional moment of the steering system. These moments and related 

signals are measured through the power steering assist system. Therefore, the aligning 

moment of front tires can be estimated using steering system dynamics and the measured 

signals.  

 

 
Figure 2.11 Steering system dynamics 

 

The steering system shown in Figure 2.11 is described by the following 

differential equation: 

 

(2.15) ,eff eff a s m fJ b k              

 
where Jeff is the effective moment of inertia, beff is the effective damping of the steering 

system with respect to the road wheels, and k is the jack up moment coefficient.1 τa, τs, τm, 

and τf, represent the self-aligning moment, steering wheel torque, motor torque, and 

friction torque with respect to the road wheel, respectively. We can measure τs with a 

torque sensor installed on the steering column and can predetermine τf from a Coulomb 

friction model. The motor torque, τm, is expressed as the following equation:  

 

(2.16) ,m m effK i   

 
where Km is the motor constant and ieff is the effective motor current considering the gear 

ratio and the motor efficiency. 

                                                 
1 The jack up moment is another source of self-aligning moment caused by the tendency of the lifted 
vehicle body to return to the lower position when the steering wheel is steered. 
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2.4.1 Tire Self-Aligning Moment Observer 

The tire self-aligning moment can be obtained by using a disturbance observer. 

Equation (2.15) can be expressed as a state space form as shown in (2.18) if we assume 

that the self-aligning moment is slowly changing [26]. The states of the system are the 

steering angle, the steering angle speed, and the tire aligning moment, and the 

measurement is the steering wheel angle. The inputs include effective motor current (ieff) 

and the effective torque input (τs  τf). The slowly changing self-aligning moment can be 

assumed as follows: 

 

(2.17) 0a   

 
and an augmented linear system model is 
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We constructed a Luenberger observer to estimate the tire self-aligning moment 

and the steering wheel speed.  By selecting an appropriate observer gain L, we aim to 

ensure asymptotic convergence of the estimation error. 
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Figure 2.12 shows an example of the estimation of self-aligning moment signals, where 

measurement noises are not included. If these noises are a matter of concern, optimal 

filter theories [33] can be used to design the gain L for the observer of a linear time 

invariant system. 



 

 25

 

 

Figure 2.12 Performance evaluation of the self-aligning moment observer. “τa 
simulation” comes from the vehicle model because this is a simulation evaluation. The 
data was obtained from vehicle dynamics software, Carsim. 

 

The system parameters can be obtained from design specification of the steering 

system or experimental results. In our case, the parameters are identified through 

experiments and the identification process will be further discussed in CHAPTER 6. 
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CHAPTER 3 

LATERAL DYNAMICS BASED ESTIMATION 

3.1 Estimation Algorithm for Large Lateral Excitation  

Road friction affects not only the maximum tire force at very large slip, but also 

the tire force at small slip. The maximum tire force and maximum self-aligning moment 

were found to be directly proportional to the friction coefficient. In this chapter, we aim 

to explore the fundamental relations between road friction and tire force and aligning 

moment generation in order to estimate the friction coefficient. 

3.1.1 Maximum Self-Aligning Moment Detection 

When the tire-road friction coefficient changes, the self-aligning moment 

characteristic, as well as its peak value varies; this variation can be used as the basis for 

friction estimation. The relationship between the friction coefficient (µ) and the peak 

value is found from the extremum of the aligning moment curve.  Assuming the Brush 

tire model is a good representation of tire aligning moment behavior, the maximum value 

of the aligning moment can be found through the following equations 
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where τa is in (2.13). Equation (3.1) is satisfied when σy =1/(4θy) or σy =1/ θy. The 

aligning moment curve reaches its peak value in the first case and returns to the zero in 

the second case. At the true extremum point, we have two equations: 
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These two equations show that if we know either the tire slip angle or the aligning 

moment when the self-aligning moment reaches its peak value, then we can calculate the 

friction coefficient. In addition, the two equations also indicate that the friction 

coefficient is linearly related to the peak slip angle, and the peak aligning moment.  

Equation (3.3) is typically more useful than (3.2) because tire slip angle is harder to 

acquire.  

To use (3.3) for friction estimation, we can use the maximum value of the 

aligning moment within a past time window.  The problem with this method is that the 

estimation result is accurate only when (i) lateral excitation is strong enough, and (ii) the 

window of data observation is large—which may have the drawback of resulting in a 

slow response to sudden friction change. This method is still valuable, however, in that a 

lower bound of the friction coefficient can be calculated from the maximum aligning 

moment data in the window: 
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This direct calculation algorithm only provides an estimated lower bound of the 

true friction coefficient and it may be far below the true value if the excitation is small. 

Therefore, this algorithm is useful only when lateral excitation is large enough. An 

algorithm that works for less demanding excitation condition is proposed in Chapter 3.2. 

3.1.2 Simulation Results 

The estimation performance is evaluated in this section using the commercial 

software Carsim. The target vehicle is a compact sedan modeled as a multi-body-object 
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with 27 degrees of freedom, and the tire model used is the Magic Formula model. The 

vehicle and tire parameters are listed in Table 3.1 and these parameters will be used for 

all simulation hereafter. 

Table 3.1 Vehicle and tire parameters used in the simulations 

Parameter Value Unit Description 

m 1412 kg Vehicle mass 

Iz 1523 kg·m2 Moment of inertia 

a 1.016 m Distance from the front axle to the center of mass 

b 1.562 m Distance from the  rear axle to the center of mass 

l 0.178 m Half of the tire contact length 

cp 7.9×105 N/m2 Tread stiffness in unit length 

 

The maximum self-aligning moment  method was evaluated under several 

conditions. In the following simulations shown in Figure 3.1, the vehicle speed is 60 

km/h and the steering input is 0.25Hz sine wave with a magnitude of 0.04 radians, 

equivalent to 50 degrees at the steering wheel. The tire-road friction coefficients are set at 

four levels: 1.0, 0.5, 0.2, and a time varying value. The estimation results, shown in 

Figure 3.1, demonstrate that the maximum moment method performs poorly in estimating 

friction coefficient and does not estimate slip angle accurately, but works well when the 

front tire slip angle is large enough. However, as mentioned earlier, the friction 

coefficient estimated by the maximum aligning moment method is a lower bound of the 

real friction coefficient and can be useful if used in the appropriate context. Indeed, it was 

confirmed that the coefficient estimated by this method  is always smaller than the actual 

value, as shown in  Figure 3.1. Even though the maximum moment method is not always 

accurate, it can nevertheless provide a lower limit for the friction coefficient for other 

estimators if tire model matches to the actual tire. In fact, some other methods considered 

in this paper use this underestimated friction coefficient as a lower bound.    
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Figure 3.1 Simulation results of the maximum self-aligning moment detection method 
with sinusoidal steering input and vx=60km/h 

 

3.2 Estimation Algorithm for Medium Lateral Excitation 

The maximum self-aligning moment detection method is useful only when the 

lateral excitation level is sufficiently large. Actually, there are two measurements (lateral 

acceleration and front tire aligning moment) characterized by two independent variables 

(slip angle and friction coefficients) affecting not only the peak value of the two 

measurements but also the overall distribution of the measurements. This means that we 

can estimate road friction (and as a side product, the slip angle) through a series of the 

measured signals even when at small excitations. In this chapter, parameter estimation 

algorithms based on a least squares process and a nonlinear observer design will be 

described. 
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3.2.1 Nonlinear Least Squares Method   

3.2.1.1 Basic Equations  

The least squares method is useful for solving over-determined nonlinear 

problems. It can also be seen as a method for the identification of parameters through 

determining the best fit between modeled and observed data. Hsu [25] used nonlinear 

least squares to identify the friction coefficient, which he identified as a parameter of the 

self-aligning moment equations. Tire slip angles, an important but hard-to-estimate 

variable, are provided from a GPS-based sideslip measurement system. In this section, 

we introduce a nonlinear least squares method based on lateral acceleration measured 

with an accelerometer and the front tires’ self-aligning moment, which is obtained using 

the tire aligning moment observer described in the previous chapter. The sum of the 

lateral tire forces can be determined using measured vehicle lateral acceleration, as 

described in (2.3) and (2.6).  

 

(3.5) ( , ) cos ( , ),yf yr y f y rF F f f        

 
where,  fy is the tire lateral force, a function of tire slip angle and the friction coefficient 

when the tire normal force is estimated using the load transfer model described in (2.7). 

The rear tire slip angle αr is determined by (2.2) if front tire slip angle αf is known and u, 

r, δ are measured. As a result, the left side of (3.5) is determined by measurement and the 

right side is a function of αf and µ. This equation relates the measurement and the two 

unknowns (αf and µ).  Obviously, this equation alone is not enough to estimate both 

unknown parameters unless we have batch data.  

The tire self-aligning moment is also a function of αf and µ, and it can be 

monitored by the aligning moment observer developed in Section 2.4.1. Tire normal 

forces can be estimated using (2.7). Therefore, we have the second relationship:  

 

(3.6) , ( , ),a obs a f     

 
where τa,obs is the observed tire self-aligning moment.  Ultimately, we have two 

unknowns, αf and µ, and two equations, (3.5) and (3.6), so that theoretically we are able 
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to determine two unknowns. Nevertheless, the two equations are nonlinear and thus the 

invertibility of these equations depends on the linearized Jacobian matrix, which may be 

close to singular under certain conditions. For example, it is clear that when the slip angle 

αf is small, the aligning moment and lateral force are both small as well, and thus it 

becomes difficult to estimate the road friction.  The larger the value of singularity, the 

less invertible the matrix becomes.  
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The singularity of a matrix J is defined as the condition number, κ, as follows: 
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where σmax(J) and σmin(J) are the maximum and minimum singular values of J, 

respectively. 

Figure 3.2 shows the singularity of the Jacobian matrix. The x and y axes are 

normalized where ±1 mean that the tire force starts to saturate. The Jacobian matrix is not 

always invertible: when the front tire slip angle is small, it is hard to invert and, 

consequently, parameter estimation may not be accurate. In this case, estimating the 

friction coefficient is difficult because ∂Fy/∂μ and ∂τa/∂μ are almost zero as shown in 

Figure 2.10. If the front tire slip angle is very large, the normalized value is larger than 1 

or smaller than 1, which makes it impossible to estimate the slip angle because ∂Fy/∂α 

and ∂τa/∂α are zero, as shown in Figure 2.10. Thus, neither small tire slip angles nor large 

tire slip angles are desirable for estimation. Assuming the excitation level is neither too 

large nor too small, the nonlinear least squares method can be used to find the unknowns. 
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Figure 3.2 Singularity of the Jacobian matrix; The larger the value of singularity, the 
closer the matrix is to a singular matrix, the x and y axis are normalized and μ=1.0. 

 

3.2.1.2 Formulation of a Nonlinear Least Squares Problem 

We can solve the two nonlinear equations, (3.5) and (3.6), with a single datum. 

However, the result will be vulnerable to measurement noise or observer error in ay and 

τa,obs. In order to achieve results that are robust against noise and model uncertainties, we 

use the nonlinear least squares method with n sets of the measurement data. The 

formulation of the nonlinear least squares problem is 
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                       ( )j : an estimated or measured property at time step j. 

 

In the above least squares problem, we assume the friction coefficient is constant 

throughout the n-step horizon, whereas the slip angles are assumed to vary with time. As 

a result, we have n+1 unknowns (n slip angles and one friction coefficient) and 2n 

equations (n force equations and n torque equations). These nonlinear equations are over-

determined and the least-squares solution is obtained numerically. 

3.2.1.3 Initial Values for the Nonlinear Least Squares Method 

A nonlinear least squares method starts from an initial guess and searches for 

better results iteratively. Therefore, the quality of the solution depends on the initial 

guess. The choice of an appropriate initial guess of αf and µ at each time step is thus 

important. The solution obtained at the previous time step is generally a good initial 

guess. A better initial guess can reduce iteration time and improve convergence. 

Furthermore, if there are several local minima in the cost function, offering a plausible 

initial value may be helpful. The most plausible candidates for the parameters of a 

subsequent time step can be projected from the parameters of the preceding time step 

based on their dynamics. We can obtain the dynamics of αf from (2.1) and (2.2) where all 

model parameters are assumed to be constant. 
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where ( , ) cos( )yf yf fF f     is the lateral force at the front axle and ( , )yr yr rF f    is 

the lateral force at the rear axle. The plausible initial value can be set as follows: 
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where αf0 and μ0 are the initial values at t+Δt, α*
0 and μ*

0 are the optimal values obtained 

at t, and ( )f t  is the slip angle dynamics at t as presented in (3.10). 

3.2.1.4 Simulation Results 

The estimation error and the convergence of the nonlinear least square method are 

evaluated by also using Carsim. The nonlinear least squares method is tested under 

several conditions. In the following simulations, the vehicle speed is 60 km/h and the 

steering input is 0.25Hz sine wave with a magnitude of 0.04 radians, equivalent to 50 

degrees at the steering wheel. The tire-road friction coefficients are set at four levels: 1.0, 

0.5, 0.2, and a time varying value. The estimation results are shown in Figure 3.3.    

 

Figure 3.3 Simulation results of the nonlinear least squares method with sinusoidal 
steering input and vx=60km/h 

 

The nonlinear least squares method achieves acceptable estimation results when 

the real friction coefficient is low (0.5 and 0.2).  However, when µ =1.0, the friction 

coefficient is overestimated.  The Brush tire model used in the estimation algorithm is 
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different from the Magic Formula tire model used in Carsim, as shown in Figure 3.4.  

These two models show similar behaviors when the vertical tire force is 3000N; however, 

as the vertical force increases, the behaviors, especially aligning moment curves, deviate 

from each other. In addition, our simple tire and vehicle models do not capture the 

complex behavior, such as suspension, roll and pitch motions, tire normal force variation, 

and camber. In the Brush tire model, the normalized peak value of the lateral force is 

constant as the vertical tire force changes, whereas, in the Magic Formula tire model, the 

normalized peak values of lateral forces vary with the tire normal forces, as shown in 

Figure 3.5. The model error becomes apparent as the friction coefficient increases, which 

is a major reason for overestimation at high friction surfaces. Because of these inevitable 

model differences, the estimation is never precise. For example, if the estimated 

coefficient is 1.0, the real coefficient may  be between 0.9 and 1.1. Therefore, the model 

errors and the estimation errors should be considered when the estimated result is used 

for control purposes. 

 

 

Figure 3.4 Comparison between the Brush model and the Magic Formula model 
 

When the friction coefficient is time-varying, the nonlinear least squares method 

presents a slow response. The assumption of a constant friction coefficient and size of 

batch window (0.8 second) are the main reasons for  this slow response. In addition, the 

fact that the initial guess uses the previous identified solution also favors remaining at the 
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previous local minimum rather than quickly following the plant variation to the new 

minimum.  It can be seen that the estimated values of both slip angle and friction 

coefficient are incorrect at 20~21 second interval. The slip angle is underestimated, and 

the friction coefficient overestimated, because the initial values for the nonlinear least 

squares algorithm differ greatly from the true values. Abrupt changes of road surface 

condition, for example, μ=0.7 to 0.2, result in a large difference between the actual 

friction coefficient and the initial value. This large difference requires a long computation 

time and sometimes this process fails to reach to the true optimal values. The estimation 

algorithm limits the computation time to satisfy the real time requirement; therefore, 

when a large initial error exists, it may take several iteration cycles before convergence to 

the true optimal value takes place.    

 

 

Figure 3.5 Lateral force characteristics of the Brush model and the Magic Formula 
model 

 

The second simulation is designed to verify the performance of our algorithms at 

different vehicle speeds. All other simulation conditions remain the same. The actual 

friction coefficient is 0.5 and the steering inputs are 50 degree-magnitude-sinusoidal.  

The vehicle speeds are set to be constant, at 20 km/h, 40 km/h, 60 km/h, and 80 km/h. 

The four simulation results are shown in Figure 3.6. Estimation results with respect to 

speed, such as 20km/h and 40km/h, show large estimation errors or slow convergence 

because of low excitations. A necessary condition for good estimation results is large slip 

angle, as was explained in Chapter 2.2. The tire force and moment curves in Figure 2.9 

show that differentiating the tire force and moment curves under different friction 

coefficients is difficult when the slip angle is small.  Another reason for the poor 
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estimation in low speed cases is the small magnitudes of measurement signals. A small 

signal to noise ratio negatively affects the estimation accuracy which will be an important 

factor when the algorithm is implemented on a vehicle. Therefore, adequately large slip 

angles are required for stable and accurate estimation. 

 

Figure 3.6 Simulation results of the nonlinear least squares method with different vehicle 
speeds and μ=0.5 

 

The third simulation is designed to study the effects of different steering 

magnitudes. The vehicle speed is kept at a constant speed, 60 km/h, the friction 

coefficient is 0.5, and the steering inputs are sinusoidal inputs having the same frequency 

but four different magnitudes. The four simulation results are plotted in Figure 3.7, 

showing that small steering input does not guarantee the convergence. Of course, if the 

vehicle speed or road conditions are different, the required steering excitation for 

convergence may also be different. This discussion is related to the concept of persistent 

excitation and to the sensitivity of the tire force/moment with respect to the tire slip angle.  
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Figure 3.7 Simulation results of the nonlinear least squares method with various 
magnitudes of steering input, μ=0.5, and vx=60km/h 

 

Figure 3.8 Simulation results of the nonlinear least squares method with step steering 
input and vx=60km/h 
 

The steering magnitude as well as the richness of the steering content will affect 

performance. Therefore, the fourth set of simulations is designed to verify the effect of 

steering “content”. The vehicle speed is set to a constant speed, 60 km/h, and the friction 

coefficient is 0.5. The steering inputs are set, first as a step input and then, at a ramp 
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steering input up to roughly 100 degrees. Figure 3.8 shows the simulation results with the 

step inputs and Figure 3.9 shows the result with the ramp input. Before the steering inputs 

are adequately large, the estimated results have significant errors. Once the steering 

inputs become large enough, the estimated friction coefficient quickly converges to the 

true values. However, when the steering input is excessively large, the slip angle 

estimation starts to diverge. This phenomenon can be illustrated by using the Brush tire 

model behavior shown in Chapter 2.2. The observability for slip angle is lost after force 

saturation.  

 

Figure 3.9 Simulation results of the nonlinear least squares method with ramp steering  
input and vx=60km/h 
 

Figure 3.10 Simulation results of the nonlinear least squares method with different initial 
values 
 

The last set of simulations is designed to study the effect of initial conditions. The 

best possible selection of the initial value is important in order to get the optimal solution 

in nonlinear optimization problems with multiple local minima. In the simulations, when 
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the initial friction coefficient estimation error is 0.3 (left plot of Figure 3.10) it takes 4 

seconds to converge, and, only 2 seconds when the initial error is 0.05 (right plot of 

Figure 3.10). The combination of a large initial error and small excitation results in slow 

convergence.  

From the simulation results above, we conclude that large slip angle is, in general, 

beneficial for friction estimation.  However, when the slip angle is too large, we will have 

poor slip angle estimation, in which case the peak moment method should be used.  In 

addition, a small initial error is required to achieve fast convergence and accurate 

estimation. The quantitative criteria for vehicle speed, steering input size, and steering 

input richness were not identified, but such effort may not be particularly useful because 

of the nonlinear and numerical nature of the algorithm. Nevertheless, these simulations 

provide useful qualitative guidelines for the performance of the proposed algorithm.  

3.2.2 Dynamic Approach 

The algebraic approach presented in the previous chapter is based on input/output 

signals.  The algebraic approach used knowledge related to the tire force/moment 

generation mechanisms but did not use the dynamic model.  Using a vehicle model is 

beneficial because the dynamics are slow such as few Hz and thus less vulnerable to 

measurement noises. Dakhlallah [34] and Baffet [35] used an extended Kalman filter 

based on a vehicle/tire model to estimate vehicle states and tire forces. Kalman filters 

generally perform well if a reasonably accurate model is available and the system can be 

approximated by a linear model. However, if the error dynamics are not well 

approximated by linearized transformations, the performance of an extended Kalman 

filter is degraded or, worse yet, the estimate may diverge. Hsu [26] proposed a nonlinear 

observer with a gain based on the Jacobian matrix of the system, but did not address the 

stability issue. In this chapter, we propose a nonlinear observer for a certain class of 

systems and a design methodology for the observer. The convergence and robustness of 

the observer will be analyzed using the Lyapunov theorem. 

3.2.2.1 Design Synthesis of Nonlinear Observer 

We first start with a general problem formulation. Consider the following 

nonlinear dynamic system and nonlinear measurement: 
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where x is the state of the system, y is the measurement, u is the control input, and θ is a 

vector of constant parameters to be estimated. When we assume that we have access to x, 

a possible parameter estimation algorithm is 
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If we assume that h is continuous, differentiable, and satisfies the following condition: 
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Then (3.13) becomes 
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and the error dynamics of the parameter estimation are 

 

(3.16) , 0,
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where ˆ    . If the matrix K is strictly positive i.e., K is not singular at all times 

(persistent excitation) then, 0   or ̂   as t  .  

This result means that if we have access to system states, the measurement 

equations are continuous and differentiable, and excitation is persistent, then the 

parameter estimated by (3.13) converges to the actual value. This algorithm may be 

applied to the estimation of the friction coefficient using the measurement equations (3.5) 

and (3.6). However, the tire slip angle αf, a state of the system, is not usually accessible, 

and we therefore need an algorithm to estimate parameters and states concurrently.  
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If the states of the system are not directly measureable, the algorithm proposed in 

the previous section is not applicable. In such situations, the following parameter and 

state estimation algorithm [36] for the system shown in (3.12) can be applied:  

 

(3.17) 
 

 
1

2

ˆ ˆˆ ˆ ˆ ˆ( , , ) ( , , ) ,

ˆ ˆˆ ˆ( , , ) ,

x f x u L x u y y

L x u y y

 

 

  

 



  

 

where ˆˆ ˆ( , , ).y h x u   If both the state and parameter are scalar and the vector y consists of 

two measurements, the following augmented form of the system  and  estimator  can be 

obtained 

 

(3.18)  
( , ),

ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , ) ,

z F z u

z F z u L z u H z u H z u



  


  

 
where 

          
ˆˆˆ [ , ] ,Tz x     

          

ˆˆ( , , )
ˆ( , ) ,

0

f x u
F z u

 
  
     

          

1

2

ˆˆ( , , )
ˆ( , ) ,

ˆˆ( , , )

L x u
L z u

L x u





 
  
      

          

1

2

( , , )
( , ) ( , , ) ,

( , , )

h x u
H z u h x u

h x u





 

   
     

          

1

2

ˆˆ( , , )ˆˆˆ( , ) ( , , ) .
ˆˆ( , , )

h x u
H z u h x u

h x u






 
   

      

       
This estimator has the structure of a general Luenberger observer with a state 

dependent observer gain matrix. Raghavan [37] suggested design methodologies for this 

type of observers for certain classes of nonlinear systems. However, the condition he 

suggested is very conservative, and requires the output function h to be linear and the 

nonlinearity of the system is globally Lipschitz, which are not the case in our system. 
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Therefore, the methods in [37] cannot be used. We will present a design methodology 

that is less restrictive in the following. 

For the observer (3.18), the choice of the gain matrix affects stability and 

robustness of the observer. The error dynamics of the observer are shown in (3.19) and 

reorganized into two parts, a linearized term and a residual term.  

 

(3.19) 

 
 

 
1 2

1 2

ˆ ˆ ˆ( , ) ( , ) ( , ) ( , ) ( , )

ˆ( , ) ( , , ) ( , ) ( , ) ( , , )

ˆ ˆ( , ) ( , ) ( , ) ( , , ) ( , ) ( , , ) ,
residual termlinear term

e F z u F z u L z u H z u H z u

A z u e r z e u L z u C z u e r z e u

A z u L z u C z u e r z e u L z u r z e u

   

   

   





 

 
where 

             

1

2

ˆ,

( , )
( , ) ,

( , )
( , ) ,

ˆ( , , ) ( , ) ( , ) ( , ) ,

ˆ( , , ) ( , ) ( , ) ( , ) .

e z z

F z u
A z u

z
H z u

C z u
z

r z e u F z u F z u A z u e

r z e u H z u H z u C z u e

 









  
  

 

             
Now, consider a Lyapunov candidate function, ( , , )V z e u =eTPe, where P =PT is a 

positive definite matrix. Then, we obtain ( , , )V z e u  eTQe+(r1Lr2)
TPe+eTP(r1Lr2), 

where Q=  [(ALC)TP+P(ALC)]. The sufficient condition for asymptotic stability of 

the observer  is then 

 

(3.20) 1 2 1 2( , , ) ( ) ( ) 0, 0.T T TV z e u e Qe r Lr Pe e P r Lr for e          

 
The local stability of the observer can be determined as follows. If F(z, u) and H(x, 

u) are continuous and differentiable in z, the lowest order of the polynomial terms 

containing the error e in r1(z, e, u) Lr2(z, e, u) is two because it is the residual part of  the 

error dynamics (3.19),  represented by a first order Taylor’s series expansion.  Therefore, 

the following holds: 

 (3.21) 
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1 2

0

( , , ) ( , , )
lim 0.
e

r z u e Lr z u e

e


  

 
Consequently,  

 

(3.22) 

 

21 2
min

0 0

2

min
0

( )
lim ( , , ) lim ( ) 2

lim ( ) .

e e

e

r Lr
V z e u Q P e

e

Q e





 



 
    

 

 


 

 
In other words, if F(z, u) and H(z, u) are continuous and differentiable in z, and if L and P 

exist such that Q=[(ALC)TP+P(ALC)] is positive definite for all z and u, then the 

observer with the selected observer gain L is locally stable at the equilibrium point e=0 

for all z and u. 

A sufficient condition that guarantees global stability of the error dynamics for 

any z and u is   

 

(3.23) 
min

,

0, ( ) 2 ,

( ) inf ( , , ) ,
z u

L such that Q Q P for z and u and

W e V z e u is positive

     


 

 
where λmin(Q) is the minimum eigen-value of Q and γ is the Lipschitz  constant of 

1 2r Lr  with respect to  e. The second condition, W(e)>0, is for the stability of the time 

varying nonlinear system, because this observer is non-autonomous and depends on z and 

u. The proof of the first condition is 

 

(3.24) 

 

1 2 1 2

2

min 1 2

2 2

min

2

min

( , , ) ( ) ( )

( ) 2 ( )

( ) 2

( ) 2 .

T T TV z e u e Qe r Lr Pe e P r Lr

Q e r Lr P e

Q e P e

Q P e



 

 

     

   

  

  



 

 
If this condition is satisfied for all e, independent of z and u, the observer is 

globally (with respect to e) stable for any z and u.  In other words, if satisfaction of the 

stability condition depends on z and u, then a stable observer is available only for a 

certain range of z and u. The stability condition (3.23) is very conservative and only 
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applies to a small set of nonlinear systems. Furthermore, this analysis does not provide 

any synthesis method in the selection of P and L. 

There may or may not exist P and L that satisfy the stability conditions for all z 

and u, as illustrated in (3.23). An important requirement for such P and L is that they 

must result in a positive definite Q, which is a necessary condition for local stability. 

Therefore, choosing P and L that satisfy Q>0 provides a good starting point for the gain 

selection.  

In the following, we suggest one pair of P and L, albeit clearly not the only 

possible choice that satisfies the required condition for local stability. If we choose P and 

L as follows: 

 

(3.25) 

1 2

3 4

1 21
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ˆ ˆˆ ˆ, ,
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3 4
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1 0
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P I

l l
L

l l

h hhf
l k l k

x xx x

h h
l k l k

   

    

   

   

 
   

 
 

  
 

              

            

 

 
and if k is positive, then Q is positive definite. This proof is shown in Appendix A. 

By applying (3.25) to the system expressed in (3.12), we can build a locally stable 

observer that estimates state and parameter concurrently. The size of the region of 

attraction in e-domain depends on z and u. The observer with the gain (3.25) may not 

guarantee global stability. Global stability depends on the nature of the system 

nonlinearity. As a simple example, if the system has r1−Lr2 ≠0 meaning γ>0, and the 

output functions behave such that l3=0 and l4=0 at some states, then  λmin(Q) = 0 at those 

states because the last row of matrix A is 0 and thus the last row of 

Q=[(ALC)TP+P(ALC)] is also 0. Therefore, the condition λmin(Q)≥ γ||P|| is violated 

and we cannot use the sufficient condition to judge the global stability of this example 

system. However, the condition l3=0 and l4=0 at some states means that the 
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measurements have zero sensitivity to parameter changes at those states, and thus 

estimation of the parameter using the measurement is not possible. 

We have assumed that the plant has no uncertainties and the observer has the 

same dynamics as the real plant. However, in fact plant uncertainties cannot be 

completely avoided and frequently cannot be parameterized. For example, vehicle mass 

and mass center position could change. Furthermore, tire characteristics are affected by 

the environment, which cannot be easily parameterized.  

In this chapter, the robustness property that we focus on is the robust stability 

against plant uncertainties. The system is assumed to have uncertainties, ΔF and ΔH, as 

shown in (3.26).  If the observer (3.18) is stable for the family of uncertainties under 

consideration, then it is said to be robust-stable. 

 

(3.26) 
0

0

( , ) ( , ),

( , ) ( , ).

z F z u F z u

y H z u H z u

  
  


 

 
Let us consider the following nominal representation of the true system (3.12): 

 

(3.27) 
0

0

( , ),

( , ).

z F z u

y H z u






 

 
Then, after the same “state augmentation” process shown in Section Error! Reference 

source not found., the observer is 

 

(3.28)  0 0ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , ) ,z F z u L z u H z u H z u    

 
and the error dynamics are 

 

(3.29) 
 

 
0 0

0 0 1 2

ˆ ˆ ˆ( , ) ( , ) ( , ) ( , ) ( , )

( ) ( ),

e F z u F z u L z u H z u H z u

A LC e r Lr F L H

   
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
 

 
where 
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

 



 


   
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The error dynamics of the observer having uncertainties consist of an error term of a 

nominal part, (A0LC0)e+(r1Lr2) and an uncertainty part, ΔFLΔH. 

Sufficient conditions for robust stability are well studied. For example, Khalil 

[38] has a comprehensive treatment of the conditions for stability of perturbed systems. 

To check robust stability of our observer, we follow Khalil’s treatment. If  we assume 

that the uncertain part in the error dynamics (3.29) vanishes when x=0, i.e. ΔF(0,0) 

L(0,0)ΔH(0,0)=0, then there should be some positive constants c1, c2, c3, and c4 and a 

Lyapunov function V(z, e, u)  that satisfy the following: 

 

(3.30)   

2 2

1 2

2

0 0 1 2 3

2

4

( , , ) ,

( ) ,

,

c e V z e u c e

V V
A LC e r Lr c e

t z
V

c e
z

 

 
     

 





 

 
for all ( , )z u D U  , where nD R  and mU R  are domains that contain the origin (z, 

u)=(0, 0),  and the perturbation term must satisfy the linear growth bound, 

 

(3.31) ˆ( ( , , ) ( , ) ( , , )) , , , ,F z e u L z u H z e u e z D u U e          

 
where γ < c3/c4 is a nonnegative constant. If (3.30) and (3.31) are satisfied then e=0 is an 

exponentially stable equilibrium point of the error dynamics having uncertainties (3.29).  

This stability condition is found to be quite conservative and it may not be easy to 

find P and L satisfying the conditions because the uncertainty term in (3.31) is close to 

singular when (z, u) is close to the origin, which results in infinite γ. Therefore, it can be 

said that robust stability depends on observer states and inputs, which means we need to 
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determine when the observer is robust-stable in the (z, u) domain. One example where 

Khalil’s results cannot be applied due to its conservativeness is shown in Chapter 3.2.2.2. 

Let us define state dependent robust stability, which is less conservative than 

Khalil’s conditions. In the following, we provide two definitions related to robustness: 

the stability region domain and the robust stability region in the state-input domain. 

Stability region in the state-input domain, S(ε), is defined as follow: 

 

(3.32) ( ) {( , ) | ( , , ) 0, ( )},S z u V z e u for e B      

 
where 2( ) { | }TB e e Pe    is a region of attraction whose upper bound is determined 

by ε. S(ε) quantifies the stability of the observer under a given region of attraction when 

the plant is perfect.  

Robust stable region in the state-input domain, RS(d, ε1, ε2), is defined as follows: 

 

(3.33) 1 2

1 2

( , , ) {( , ) | ( , , ) ,

( , ), , },

RS d z u V z e u d

for e D F H

 
 

  
     


 

 
where d is a design parameter for fast convergence, Ψ is the union of all possible 

uncertainties in F, Θ is the union of all possible uncertainties in H, and 

2 2
1 2 1 2( , ) { | }TD e e Pe      . D(ε1, ε2) is the region of attraction allowing a steady 

state error referred by ε1 (more details about D(ε1, ε2) can be found in Figure 3.16). RS(d, 

ε1, ε2) quantifies the  stability of the observer under a given region of attraction and a 

bound of steady state error when the plant has uncertainties. S(ε) and RS(d, ε1, ε2) can be 

determined numerically by computing  ( , , )V z e u  for all e B(ε) or D(ε1, ε2), F Ψ, 

and for H Θ, where B(ε), D(ε1, ε2), Ψ, and Θ are numerically given. For many 

nonlinear systems, numerical assessment of robust stability is the only viable method 

because no analytical solutions exist, and, in the rare cases where they do, the analytical 

solutions are typically too conservative to be useful for real applications. The one 

example that the analytical approach cannot handle is described in Chapter 3.2.2.2. 

The size of region RS(d, ε1, ε2) is dependent on P and L when d, ε1, ε2,  , and   

are given. Therefore, the observer design problem can be viewed as a robust stability 

design problem.  The goal is to obtain optimal P* and L*: 
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(3.34) 
 

 
1 2

* *
, 1 2

1 2

( , , )

( , ) arg max ( , , ) ,

( , , ) 1 ,

P L

RS d

P L size of RS d

size of RS d dzdu
 

 

 



   

 
where d, ε1, and ε2 is given as an observer requirement and the design for P and L shown 

in (3.25) can be relaxed to allow “observer gain selections” as follows: 

 

(3.35) 
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  
    
   

                 

            

 

 
where p1, k1, k2, k3, and k4 are positive real numbers. This relaxed P and L may lose local 

stability for some z and u because the local stability of the observer is demonstrated with 

the gain (3.25) where k1=k2=k3=k4=1 and p1=1. However, the optimized P and L may 

increase the size of RS(d, ε1, ε2). 

To summarize, the numerical design process of the robust state and parameter 

observer is: 

1) Construct the augmented form of observer, Eq.(3.28). 

2) Derive partial derivatives of the nonlinear system equations to build P and L as 

shown in (3.35). 

3) Determine d, ε1 and ε2 considering observer requirement, where d determines 

convergence rate, ε1 is related to a steady state error and ε2 is related to the 

maximum allowable initial estimation error. 

4) Determine the range of possible plant uncertainties, Ψ, and Θ. 

5) Perform the optimization problem by numerically computing the size of RS(d, 

ε1, ε2) in the state space and determine p1, k1, k2, k3, and k4. 

3.2.2.2 Application: Slip Angle and Friction Coefficient Observer 

Applying the developed design methodology for our friction estimation problem, 

the dynamics of front tire slip angle are derived from (2.1) and (2.2) as follows: 
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(3.36) 
21 1

,f yf yr
x z x x z x

a ab
F F r

mv I v mv I v
 

   
        
   

  

 
where Fyf = 2fy(αf, μ)cosδ, Fyf = 2fy(αr, μ), and αr = αf   L/vx + δ. The system state and 

parameter to be estimated are αf and μ. The augmented system matrices for the nominal 

system are: 

 

(3.37) 
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

 

 
where ( , )a a f     is the aligning moment presented in (2.13).  Then, the observer 

model is as follows: 
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Therefore, the augmented matrices of the actual system with plant uncertainties are 
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and the error dynamics of the observer are then 

 

(3.40) 
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An exemplary stability region of the observer is shown in Figure 3.11. The 

stability region is evaluated in the reduced state space and the observer gain is determined 

by (3.25) where k=1. This observer gain is selected for local stability assuming no plant 

uncertainties. 
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The dimension of the state space is reduced for efficient gain selection. In the 

error dynamics (3.40), it can be seen that (z, u) is characterized by αf, r, δ, vx, and μ. 

Assuming constant vx and small change of cos(δ), limited by geometric constraints of the 

steering system, the major variables affecting the status of error dynamics (3.40)  are 

reduced to [αf, r, μ]. Furthermore, using the relationship of αf and αr, (2.2), and 

normalization to αfsl or αrsl, the variables that affect the dynamics, [αf, r, μ] are 

transformed into [αf /αfsl, αr /αrsl], where αfsl and αrsl are the front and rear tire slip angle 

when the tire saturates. Therefore, we only consider the range, |αf | ≤ αfsl  and 0 < μ ≤ μmax 

=1, as the range of the states and for the same reason, we restrict the range of error to |e1| 

≤ αfsl and |e2| ≤ μmax. We also define emax=[αfsl, μmax]
T and εmax=(emax

TPemax)
1/2.  
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In the stability region plot, Figure 3.11, the area in red indicate regions where the 

observer is unstable with some initial errors contained in B(0.1emax). In these areas, the 

system nonlinearity has convex or concave points resulting in opposite dynamic trends 

around the points. As this observer is designed considering a perfect plant model and 

small region of attraction, stability may not be preserved when there are plant 

uncertainties. 

 

 

Figure 3.11 Stability region, S(0.1εmax), without plant uncertainties 
 

To design an observer that is robust against plant uncertainties, we need to 

optimize the observer gain through the process suggested in Chapter 3.2.2.1.  In order to 

follow the optimization process, we need to first define the set of plant uncertainties, Ψ 

and Θ. These plant uncertainties are defined using the following assumptions: the most 

important and common plant uncertainties originate from variations in vehicle mass and 

tire characteristics. While a vehicle is being driven, the vehicle mass changes slowly, the 

effect of which can be estimated using vehicle longitudinal dynamics.  There are many 

vehicle mass estimation algorithms reported in the literature [39-42].  We can also lump 

the effect of mass uncertainty into the tire uncertainties, in which case, tire uncertainty 

becomes the single most important plant uncertainty. The tire uncertainties used in this 

evaluation are defined by the upper and lower bound curves, as shown in Figure 3.12. 
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Figure 3.12 Tire uncertainties expressed in tire force curves 
 

In the optimization search, the range of ε1 and ε2 are set at the level of 0.15εmax 

and 0.5εmax, and d is set at 0.01||P||. Using these conditions along with the initial estimate 

(3.42) obtained by trial and error, we obtained the optimal parameters for P and L as 

(3.43). 
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Two robust stable regions, RS(d, ε1, ε2), with the un-optimized gains and with the 

optimized gains, are shown in Figure 3.13. The robust stability region of the observer 

using the optimized gains is much wider than that with the un-optimized gains. Even 

though the gains are optimized, the observer is still unstable when the front tire slip angle 

is small; in other words, if vehicle lateral excitation is small, then the estimation result is 

not reliable. This is understandable given the significant plant uncertainties. Furthermore, 

excessive front tire slip angle also induces an unstable estimation. A medium-sized 

excitation is thus preferable for the operation of the observer. This observation can be 

explained using tire force curves. In Figure 2.9, tire curves with different μ are not 

differentiable as the tire slip angle goes to zero. When the slip angle is large, lateral tire 

force curves with different μ are differentiable while aligning moment curves are not. 
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Large slip angles with tire uncertainties thus deteriorate the observability of the system.  

The latter problem is not an issue, however, because the robust observer developed in this 

chapter is only meant for medium excitation conditions. When the slip angle is high, we 

can use the maximum aligning moment method described in Chapter 3.1.1 for friction 

estimation. 

 

Figure 3.13 Robust stability region with the un-optimized gains and the optimized gains, 

when ε1=0.15εmax and ε2=0.5εmax 

 

We noted earlier that Khalil’s robust stability theory can be applied only to a 

restrictive set of systems and the results could be quite conservative. In this chapter, we 

will apply Khalil’s method to our observer. According to his theorem, to ensure robust 

stability, there needs to exist positive constants c1, c2, c3, and c4 and a Lyapunov function 

V(z, e, u) = eTPe  must satisfy the following [38]: 
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The constants c1, c1, and c4 are easily determined using the following inequalities: 
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Next, the following inequalities are deduced: 
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where P is selected to be the same as the optimized value identified in the previous 

chapter. 

 

 

Figure 3.14 Calculation of Lipchitz constant of the perturbation part. The Lipchitz 

constant is achieved near the origin. 

 
If there exists c3 that satisfies c3> γc4, then the robust stability is guaranteed 

according to Khalil’s theorem. If we consider the predefined bounded e, 

 max
| 0.01T Te e Pe e Pe  , then the Lipchitz constant γ can be plotted as shown in 

Figure 3.14. If we ignore the small slip angle region, |αf|<0.1αfsl, then γ ≥ 4×1010, which 

results in c3≥γc4= 4.2×1012. Therefore, robust stability is guaranteed if the following is 

satisfied for all e. 
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This inequality is not satisfied for almost all e. For example, the left part of the 

above inequality is evaluated with the error bounds  max
| 0.01T Te e Pe e Pe   and 

plotted in Figure 3.15, where the smallest value is 5×105, which means that the 

inequality (3.44) is satisfied only with |e|<1·10-3, meaning that local stability is 

guaranteed in a very small region. This example confirms that Khalil’s theorem, while 

theoretically rigorous, cannot be applied to prove robust stability for our estimation 

problem and it provides no guidance in the selection of observer gains. Therefore, the 

numerical method proposed in the previous chapter is utilized for our problem.  

 

 

Figure 3.15 The time derivative of the Lyapunov function of the nominal system 

 
In this chapter, robust gains were found through numerical optimizations. 

However, we used the region of attraction D(ε1, ε2) with fixed ε1 and ε2 as one of the 

optimization conditions. Therefore, we can interpret the results shown in Figure 3.13 as 
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follows: first, the observer may not provide a good estimation if the vehicle states are in 

the unstable (red-colored) region, even if the initial estimation error is small.  Second, the 

observer will provide good estimation if the initial estimation error is small and if the 

vehicle states are in the stable (blue-colored) region. 

The size of the region of attraction depends on the vehicle states. For example, 

evaluation of V  at ( f , r ) = (0.4 fsl , 0.3 rsl ) for all possible e = {(e1, e2) | αfsl≤ e1≤ 

αfsl, μmax≤ e2 ≤ μmax } is shown in Figure 3.16. Two concentric circles show the 

trajectories of constant V. We can interpret the evaluation results as follows: if the initial 

error is inside the outer circle, the estimation error will decrease as long as it remains 

outside of the inner circle, where V become positive, as shown in the red-colored area in 

Figure 3.16. In other words, the observer of the plant that has uncertainties provides a 

stable estimation within a permissible initial error range, and the estimation will converge 

to the neighborhood of the true value, but may not reach the true value. The radius of the 

inner circle indicates the expected value of the “steady-state” estimation error.  

Furthermore, the radii of the two circles at every vehicle state are different, meaning that 

permissible initial error and the steady-state estimation errors are dependent on vehicle 

states. The two radii, ε1 and ε2, can be obtained for all vehicle states. Selected cases are 

illustrated in Figure 3.17.   

 

 

Figure 3.16 Region of attraction under the plant uncertainties depicted in Figure 3.12 
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Figure 3.17 Selected cases of region of attraction; estimated vehicle state ( f , r ) is (0, 

0) in plot (a) , (0.4 fsl , 0.3 rsl ) in plot (b) , and  (0.4 fsl , 0.3 rsl ) in plot (c). 

 

No region of attraction in the strict sense of the term exists in case (a), and the 

observer might be unstable for some initial errors. There is a sizable region of attraction 

with locally unstable origin in case (b). There is a very small unstable region in case (c) 

where the observer is almost always stable for any initial error except when the error is 

close to the origin. These three cases illustrate the definitions of ε1 and ε2, which 

represent the stability and estimation accuracy of the observer at selected estimated 

vehicle states. The two values ε1 and ε2 for all vehicle states are shown in Figure 3.18.  

 

 

Figure 3.18 Steady state error ε1 and radius of region of attraction ε2  
 

From these two plots, we can conclude the following: first, the observer stability 

is largely dependent on αf and has a much weaker relationship with αr; second, when 

excitation is medium (αf is not too large and not too small), the observer is very stable 
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(large ε2) and accurate (small ε1); and third, when the excitation is very small or very 

large (vehicle is moving straight or vehicle has a large tire slip), the observer is unstable.    

We verified the performance of the estimator (3.38) with the gains (3.43) using 

the Carsim simulation software. The vehicle speed is 60 km/h and the steering input is a 

0.25Hz sinusoidal signal with a magnitude of 0.04 rad. The simulation results are shown 

in Figure 3.19. The observer is stable for all four friction levels. On a low friction road, 

the observer fluctuates when αf is around zero. This result is consistent with the stability 

analysis performed in the previous section, i.e., the observer might be unstable when αf is 

very small or very large. The biased estimation error when µ=1.0 is due to the tire model 

error, as explained in Chapter 3.2.1.4. The model errors results in an unstable region 

inside the region of attraction, which causes a “steady-state” estimation error.  

 

Figure 3.19 Simulation results of the nonlinear observer 
 

On a high friction surface, the estimate of αf is quite accurate, whereas µ is 

overestimated. However, on a low friction road, such as when the friction coefficient is 

0.5 or 0.2, estimation of µ is more accurate while the estimate of αf becomes poor. One of 
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the reasons for this difference in estimation accuracy is the loss of observability of the 

tire slip angle when slip angle is large. In Figure 1.2, if the tire slip angle is larger than 

0.05 radian and if the friction coefficient is 0.2, it becomes very difficult to differentiate 

different tire slip angles. A vehicle has a larger slip angle on a low friction road than on a 

high friction road with the same steering input, and, therefore, the slip angle estimate on a 

slippery road is not as accurate as the estimate of the friction coefficient. More 

specifically, the tire characteristic curves diverge more when the friction coefficient is 

small, whereas, the curves aggregate densely if the friction coefficient is large, as shown 

in Figure 3.20. In other words, tire characteristic curves are insensitive to slip angle 

changes, but are sensitive to friction coefficient changes as the friction coefficient 

becomes smaller.   

 

 

Figure 3.20 Effect of friction coefficient on tire characteristics 
 

3.2.2.3 Extended Nonlinear Observers 

3.2.2.3.1 Estimator Using Combined Algebraic and Dynamic Approaches 

We previously discussed two different state and parameter estimators: the first is a 

nonlinear least squares estimator and the second is an adaptive nonlinear observer. The 

first estimator has the advantage of an estimated friction coefficient that is robust to noisy 

measurements because the estimator uses past data to estimate the friction coefficient. 

Because of this, however, the estimation response is slow, and in addition, getting the 
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best estimate of friction coefficient and slip angle is not guaranteed due to singularities in 

the relationship between measurement and the unknown parameters. The second 

estimator has the advantages of more accurate slip angle estimation and faster response to 

road surface change compared to the first estimator, yet is disadvantageous because it 

shows unstable estimation when αf or ay are small and convergence of estimation is not 

guaranteed when the excitation is not rich enough. In contrast, the least squares estimator 

based on a moving data window may avoid the divergence of parameter estimation if 

excitation is rich within the moving data window. These conclusions are supported by the 

simulation results shown in Figure 3.21. We, therefore, suggest a combined estimator that 

integrates the observer and the nonlinear least squares to mitigate the disadvantages of 

both.  

 

Figure 3.21 Comparison of the algebraic approach and the dynamic approach 
 

The basic idea of the combined estimator is that the nonlinear observer estimates 

the front tire slip angle and the nonlinear least squares estimator identifies the friction 

coefficient. The overall structure of the combined estimator is shown in Figure 3.22. 
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Figure 3.22 Structure of the combined estimator 
 

The nonlinear observer is shown in (3.45), which is the same as (3.38), but we do 

not take the friction coefficient estimated by the observer as the final output of the 

combined estimator. The nonlinear observer only provides the estimated front tire slip 

angle to the nonlinear least squares estimator.   
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The nonlinear least squares estimator shown in Figure 3.22 is different from the 

nonlinear least squares estimator described in Chapter 3.2.1 because we no longer need to 

estimate the tire slip angle. The slip angles are estimated by the nonlinear observer 

embedded in the combined estimator. Therefore, a nonlinear least squares problem for 

this case is 
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Figure 3.23 Comparison of the three estimators 
 

This nonlinear least squares problem has fewer parameters to estimate than those 

discussed in Chapter 3.1 so the computational load decreases. We verify the performance 

of the estimator using the Carsim simulation software. The vehicle speed is 60 km/h and 

the steering input is 0.25Hz sinusoidal signal with a magnitude of 0.04 rad. The results 



 

 64

are shown in Figure 3.23.  The slip angle estimated by the nonlinear observer and the slip 

angle estimated by the combined estimator are the same so that the two lines are overlap. 

In plots (c) and (d), the combined estimator shows more accurate slip angle estimation 

than the nonlinear least squares estimator and also has faster responses to surface changes 

than the nonlinear least squares estimator. Furthermore, the simulation results on the low-

μ-surfaces have less fluctuation than the nonlinear observer when the slip angle is small. 

In summary, the combined estimator has the following advantages: i) it is less 

computationally intensive; ii) it has faster responses; iii) it provides a  more accurate slip 

angle estimation than the nonlinear least square estimator; and iv) it is more stable in 

friction estimation than the nonlinear observer when the slip angle is small. 

3.2.2.3.2 Observer with Switching-Gains  

Friction levels of a road can change abruptly, whereas vehicle lateral dynamics 

states, such as yaw rate or body slip angle, usually continuously vary. For example, a car 

being driven in winter can experience abrupt surface change from asphalt to ice. In this 

case, the estimator must detect the surface change quickly and estimate the friction 

coefficient accurately. However, it did not track the surface change fast enough in Figure 

3.19 (d) and Figure 3.24. This slow tracking is due to the fact that the difference between 

the true friction coefficient and estimated friction coefficient is large and it, therefore, 

takes time to converge to the true value even when the excitation is rich.  

 

Figure 3.24 Estimation results of the nonlinear observer on surfaces with step change in 
road friction 
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Driving on the so-called μ-jump surface can be approximated as a hybrid dynamic 

system with discrete parameters. The observers for this hybrid system can be modeled as 

a continuous observer with an event detector [43]. The concept is simple: there is an 

estimation supervisor that detects a parameter change and controls the flow of estimation, 

as shown in Figure 3.25. If the estimation supervisor detects a parameter change, then the 

supervisor switches to one of the continuous observers corresponding to the current 

parameter. This type of observer is referred to a switching observer for a switching 

system. 

 

 

Figure 3.25 Conceptual plot of the estimation process of a switching-gain observer 
 

Unfortunately, we cannot directly apply this approach to our case, because we do 

not know the exact value of the friction coefficient, and the friction coefficient is not a 

discrete parameter. It is hard to detect the current parameter right after a discrete change 

happens, but it is possible to detect whether a change has occurred from the abrupt 

change of vehicle dynamic states. Therefore, we only switch the observer gains and not 

the observer itself when a change occurs. This switching gain method does not detect the 

current parameter like a switching system, but it can reduce the convergence time by 
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using proper gains. The structure of the hybrid observer and the estimation process 

concept are shown in Figure 3.26 and Figure 3.27, respectively. 

 

 

Figure 3.26 Switching-gain observer 
 

 

Figure 3.27 Estimation process of switching-gain observer 
 

The detection on abrupt parameter and which set of gains to use is made by 

comparing the error between the measurement and observer outputs as follows: 

 (3.47) 
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where σ is a weighting factor. By comparing the errors, we can choose the estimated 

states from the observer with a set of gains that result in the smallest error. Furthermore, 

we introduce accumulated errors with a forgetting factor for decision-making to avoid 

frequent switching. The accumulated error with a forgetting factor  is as follows: 

 

(3.48) _ ( ) ( ) _ ( 1).acc k k acc k        

 
The evaluation of this observer is shown with experimental data on μ-jump 

surfaces in Figure 3.28. The switching gain observer shows faster tracking in the case of 

an abrupt surface change. 

 

Figure 3.28 Comparison between the nominal observer and switching-gain observer 

3.3 Summary 

Two estimators based on lateral dynamics were developed. The nonlinear least 

squares estimator recursively solves a nonlinear optimization problem to estimate the 

friction coefficient and slip angles. The nonlinear observer uses vehicle lateral dynamics 

as the basis for the input/output relationships. Because the two approaches share the same 

estimation basis, the characteristics of estimation, such as the required excitation levels 
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and estimation limitations, are similar. However, the computational requirements, which 

are important for real time implementation, are quite different.  The estimator based on 

nonlinear least squares shows generally stable estimation results, but does not always 

guarantee stability and it is difficult to quantify the stability and convergence. 

Furthermore, a critical drawback of the least squares method is large computation load. If 

we use a low-speed microprocessor, such as one that is commonly used for automotive 

applications, it may not sustain the same level of performance. Therefore, the nonlinear 

observer is appropriate for implementation. To take advantage of the benefits of both 

approaches, the two methods are combined to have smaller fluctuations in the friction 

coefficient estimation with smooth slip angle estimation. Also, to cope with abrupt 

surface changes, a switching gain method is adopted for the nonlinear observer. The 

nonlinear observer with a switching gain will be used as friction estimator for medium 

excitations because it is less computationally demanding and is responsive to surface 

changes. 



 

 69

CHAPTER 4 

LONGITUDINAL DYNAMICS BASED ESTIMATION 

The relationship between longitudinal slip and longitudinal tire force is frequently 

used as a basis of friction estimation because the related signals are easily available from 

wheel speed sensors. The relationship involves the traction force generation characteristic 

of the tire and many tire model models have been developed to describe these 

characteristics. With respect to the small slip range, linear models [44-46] can be used 

because one can observe the proportional relationship between the longitudinal tire forces 

and slip ratio from experiments, but the linear relationship is valid only in the small slip 

range (0~2%) because the tire force generation becomes nonlinear as the slip ratio 

increases. For the larger slip range, extensive nonlinear longitudinal force models [29, 

31] are used but they have more parameters than the linear models. These multiple 

parameters may cause a convergence issue and sometimes the parameters do not have 

physical meaning. Some studies used a nonlinear model that has fewer numbers of 

parameters or they reduced the number of parameters to estimate by using additional 

assumptions. For example, Liu [14] used the Brush tire model with an adaptive estimator 

to estimate the friction coefficient. Once the tire properties are given, the longitudinal 

force curves are determined only by a parameter, . Canudas-de-Wit [47] used the LuGre  

model [48] that has two parameters, S and C, which can be used to adjust the force 

curve shape, once tire properties are given. In order to avoid multiple parameter 

estimation, he assumed that the two parameters are proportional to each other and 

introduced a scaling parameter  to set the two parameters S and C as constants.  

By using a force generation model that has a single parameter, estimation of the 

friction coefficient can be handled over a large range of slip ratio with less concern of 

convergence issues until the model is valid. However, the model uncertainties caused by 

the factors not being considered, such as the vehicle dynamic states, tire wear of the tire, 

temperature, and the inflation pressure, cannot be represented by the single parameter. 
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Also, the simple nonlinear models do not have differentiability between force curves with 

different friction coefficients at a small slip range (0-2%), as shown in Figure 4.1. Test 

results [20, 45, 49, 50], though, shows that the differentiation at the small slip range is 

possible and many papers on friction estimation [44-46] have used this property.  

 

 

Figure 4.1 Longitudinal tire force curves used for friction coefficient estimation by Liu 
(left) and by Canuda de Wit (right) 
 
 

 

Figure 4.2 Longitudinal tire force generation in three ranges 
 

As shown in Figure 4.2, there are three distinct ranges of force generation:  linear, 

transient and saturation ranges.  In the linear range, the force generation curves can be 

modeled as a linear function and the gradient of the linear function is believed to be 

dependent on the friction coefficient, which is shown in Figure 4.6 and Figure 4.22. In 

the saturation range, the force generation becomes insensitive to the slip ratio and is 
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mostly dependent on the friction coefficient and the tire normal force, which is shown in 

Figure 4.3 and Figure 4.4. In the transient range, the force curves are affected by not only 

the friction coefficient but also vehicle dynamic states and road surface materials which 

are not represented only by the friction coefficient.  

 

 

Figure 4.3 Tire longitudinal force versus wheel slip ratio for three surfaces [51]; the left 
plot is on concrete, the middle plot is on snow, and the right plot is on ice. The 
longitudinal tire force at large slip ratio is insensitive to slip ratio and dependent on 
surface conditions. 
 
 

 

Figure 4.4 Tire longitudinal force versus wheel rotational speeds for several vertical 
loads plotted using tire test data [51]; The tire longitudinal force becomes insensitive to 
wheel speed as the tire force saturates. 
 

Therefore, it is not effective to use a single nonlinear model having a parameter to 

represent the tire behaviors in the three ranges. With respect to representing the force 

generation at the transient range in particular, we may need a multiple parameter model, 



 

 72

which causes a multiple parameter estimation problem. Furthermore, in the transient 

range, electric slip control systems, such as ABS and TCS, will be activated and, 

therefore, the force/slip relationship is affected by the operation of the control system. In 

this range, other approaches using the internal information of the electric slip control 

systems can be used to estimate the friction coefficient. For example, Capra [52] utilized 

a look-up table to relate the kind of braking, wheel deceleration, and brake pressure to 

estimate the friction coefficient. The estimation algorithm is activated only during a short 

period from when the brake pedal is pressed until the ABS intervention starts. Sui [53] 

modeled wheel force and torque models for ABS operation and designed an estimator for 

the friction coefficient. In the algorithm, the excitation for the estimation is pulsed 

braking torque generated by the ABS operation, with the braking torque computed from 

the pressure signals of the ABS unit. Estimation of the friction coefficient during ABS 

operation requires the internal signals of ABS and modification of the ABS control 

algorithm. The following sections will focus on only the linear region (0~2%) and the 

saturation region (30~100%). 

4.1 Phenomena in the Tire Contact Patch 

4.1.1 Tire Longitudinal Force in the Linear Range 

In daily driving, passenger cars usually undergo small lateral acceleration most of 

the time. Thus, friction estimation algorithms requiring medium lateral excitations may 

not be effective.  In addition, when the cars are being driven on straight roads, most of the 

time the longitudinal acceleration level is also low. The only available excitation is the 

traction torque, which is at low levels maintaining vehicle speed.  

Small longitudinal excitation, i.e. near-constant torque and small longitudinal slip 

is challenging for detecting the friction coefficient of a road surface. In traditional tire 

models, tire longitudinal force curves under different friction levels overlap with each 

other in the linear range, which implies that it is difficult to differentiate the force-slip 

curves at different friction levels. For example, longitudinal force curves of the Brush tire 

model shown in Figure 4.5 are very close to each other in the low slip ratio range of 

0~0.02. This is because when tire slip is low, the tire force generation depends more on 
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the tread stiffness, than on the friction coefficient. However, some of the experimental 

data in the literature [20, 45, 54, 55] have shown that the friction coefficient greatly 

affects force generation even in the small slip range. Test data from one such study is 

plotted in Figure 4.6. Furthermore, several papers [20, 45, 54, 55] have been published 

using small longitudinal excitations to estimate road surface friction levels. Most of them 

rely on the hypothesis that tire longitudinal force increases as the road friction coefficient 

increases at the same slip ratio, which is not explained by physical tire models such as the 

Brush model. While some papers [49, 54] explain the discrepancy between observed 

phenomenon and the physical models, the reason for friction dependent force generation 

in the linear range is not well explained in them. 

 

 

Figure 4.5 Tire longitudinal force curves of the Brush tire model 
 
 

 

Figure 4.6 Tire longitudinal force curves from experiment [49] 
 



 

 74

In this section, we will investigate several phenomena in the tire contact patch that 

affect the tire force generation mechanism.  Subsequently, a longitudinal tire force model 

is proposed that is consistent with experimental results. Finally, a friction estimation 

algorithm based on the longitudinal tire force model will be introduced. 

4.1.2 Phenomena in the Tire Contact Patch  

Tire forces in three directions, i.e. longitudinal, lateral, and vertical, are generated 

through the contact surface between the tire and the road ‒ the so-called contact patch. 

The stresses due to the tire tread deformation in the contact patch determine the overall 

tire forces. The tire tread deformation in the horizontal direction is determined mainly by 

tire slip and the position of the tread in the contact patch. Three-dimensional stress 

distributions will be investigated in the following sections to understand and to model the 

longitudinal tire force generation phenomenon. 

4.1.2.1 Vertical Stress Distribution 

Clark [56] measured the distribution of tire vertical stresses, as shown in Figure 

4.7, which shows a convex pressure distribution along the motion direction. This convex 

distribution is formed mainly by tire vertical deformation determined by the shapes of the 

tire and the contact surfaces. When the tire accelerates or decelerates, tire treads at the 

leading edge or the trailing edge deform more than the free rolling cases because of the 

longitudinal forces exerted on the contact patch. The changes of stress distribution due to 

acceleration and deceleration are quite small compared to the magnitude of stress 

distribution, thus, they can be ignored. 

 

 

Figure 4.7 Vertical stress distribution across the length of the tire contact patch [56] 
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Figure 4.8 shows vertical stress distribution along the width of the contact patch. 

The vertical stress is not evenly distributed along the width because of the tire structure: 

pressure at the ends of the contact patch is higher than the pressure in the middle. Clark 

[56] mentioned that higher pressure at the two ends is due to the bending stiffness of the 

tire carcass.  

 

 

Figure 4.8 Vertical stress distribution across the width of the tire contact patch [56] 
 

4.1.2.2 Horizontal Stress Distribution 

Longitudinal stress distribution is significantly affected by acceleration and 

deceleration. Figure 4.9 shows longitudinal stress distribution of a free rolling tire. 

Longitudinal stresses exist in the contact patch of a free rolling tire even though no 

longitudinal force is exerted. Typically, positive stress is generated in the front half of the 

contact patch and negative stress in the rear half. A diagram explaining this process is 

shown later in this chapter in Figure 4.13. 

  

 

Figure 4.9 Longitudinal stress distribution in the contact patch of a free rolling tire [56] 
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Figure 4.10 shows the longitudinal stress distribution of a tire when it is under 

acceleration or deceleration. The magnitude of the stress depends on the position of the 

tread and the magnitude of the acceleration or deceleration. Generally, in the case of 

acceleration, the stress increases at locations far away from the leading edge and also as 

the acceleration increases, whereas, in the case of deceleration, overall behavior is 

opposite to that of the case of acceleration. Usually the magnitude of stress is believed to 

linearly increase with the position and acceleration or deceleration until it reaches the 

friction limit. However, the tire test results in Figure 4.10 show that the longitudinal 

stress distributions are not linear to the position, which is because the stress existing in a 

free rolling tire, as shown in Figure 4.9,  and the stress due to acceleration or deceleration 

are combined.  

 

 

Figure 4.10 Longitudinal stress distribution in the contact patch under acceleration or 
deceleration [56] 

 

The lateral stress component in the contact patch is very similar to that of the 

longitudinal case. When a tire rolls freely, the lateral stress distribution due to the lateral 

geometric deformations is similar to the longitudinal stress distribution caused by 

longitudinal geometric deformation. But the curvature of the tire along the lateral 

direction is very small except at the tire shoulders and thus, the lateral stress due to the 

lateral geometric deformation can be ignored. When lateral slip exists, the stress of a 

tread depends on the location of the tire tread and the magnitude of the lateral force. 

4.1.2.3 Rolling Resistance 

Another interesting and important phenomenon is rolling resistance. Rolling 

resistance of tires on hard surfaces is primarily caused by the hysteresis in tire materials 
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due to the deflection of the carcass while rolling [57]. Figure 4.11 shows a variation of 

the rolling resistance coefficient of radial-ply and bias-ply car tires with vehicle forward 

speed on a smooth and flat road surface. The coefficient of rolling resistance of radial 

tires is approximately 0.015. This rolling resistance slows down tire rolling or vehicle 

forward speed if there are no other forces. 

 

 

 
Figure 4.11 Variation of rolling resistance coefficient [57] 

 

4.1.3 Modeling of Stress/Deformation Distribution in the Contact Patch 

4.1.3.1 Model of Parabolic Vertical Stress Distribution along the Length 

If a tire is modeled as a thin disk with elastic treads, then vertical deformation of 

tire treads caused by force Fz can be approximated by a parabolic distribution, as shown 

in Figure 2.6. The vertical stress induced by the vertical deformation is also parabolic for 

linear stress-strain relations. Since the integration of the vertical stresses along the 

longitudinal direction should be equal to the vertical force Fz, based on the parabolic 

stress distribution assumption, the following equation is obtained: 

 

(4.1) 
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 The vertical stress is zero at the leading edge and the trailing edge; it reaches its 

maximum at the center of the contact patch. Therefore, properties that linearly depend on 
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vertical forces, such as the friction force limit of the tire tread, will have parabolic 

distribution. 

4.1.3.2 Rolling Resistance Model 

Rolling resistance affects vertical stress. The vertical stress distribution caused by 

the rolling resistance creates a resisting moment against tire rolling. The energy loss due 

to the deflection of the tire carcass can be modeled as a damping loss due to the tire 

carcass vertical deformation. If we assume the energy loss is only due to the damping loss 

and the coefficient of rolling resistance is constant at 0.015, then the following equation 

for vertical stress can be derived: 
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where δz(x)=σz(x)/ cstiff, cstiff is the stiffness coefficient, cd is the damping coefficient, and v 

is the tire translational speed. To determine the value of cd, we use the fact that this 

vertical stress contributes to all the effects of rolling resistance as follows: 
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where croll is the coefficient of rolling resistance.  

Figure 4.12 shows vertical stress distributions. The vertical stress due to damping 

occurs when the tire rolls and the distribution is asymmetric. Therefore, the center of 

overall vertical force moves forward and creates a resistance moment against the rolling 

motion. 
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Figure 4.12 Vertical stress distribution due to rolling resistance for a free rolling Brush 
model 

 

4.1.3.3 Longitudinal Stress Distribution Model 

The longitudinal stress of a free rolling tire can be modeled by the Brush model, 

which is a thin disk with several brushes along the circumference of the disk where the 

brushes approximates the tire treads. The source of longitudinal stress in a free rolling tire 

is the velocity difference in the contact patch. Given that assumption that a tire rolls 

freely on a frictionless surface without slipping, which means that the translational 

velocity of the tire v is the same as reω, where re is the equivalent rolling radius of the tire 

and ω is the rotational velocity of the tire, then, the treads contacting the road surface 

have vertical deformation only and no restriction in horizontal movement. Therefore, the 

relative travel-distance of a tread to the wheel center is determined by the elapsed time t 

after the tread passes through the leading edge and the rotational velocity of the wheel ω. 

The contacting points in this case are marked with inverted triangles in Figure 4.13. 

When there is friction between the tire and the surface, the relative travel-distance is 

determined by the elapsed time t and the translational velocity of the tire v, because the 

tread sticks to the road surface due to friction. In this case, the contacting points are 

marked with small solid circles in Figure 4.13. The inverted triangles and solid circles are 

not collocated, which means the treads have longitudinal deformations and stresses.   
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Figure 4.13 Longitudinal tread deformation of a free rolling Brush model  
 

Before moving on to the derivation of the deformation, we will explore how to 

calculate the equivalent rolling radius of a tire, Re. The time intervals from the leading 

edge to the trailing edge along the line of the contact patch and along the wheel 

circumference should be the same. Thus, the following equations hold: 
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where, the equivalent rolling radius re is always larger than the loaded tire radius RL and 

smaller than the unloaded tire radius R. 

 

 

Figure 4.14 Longitudinal tread deformation of a free rolling Brush model tire 
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The longitudinal deformation due to the velocity difference can be derived as the 

following equations: 
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where θ0=cos-1(RL/R). The longitudinal deformation equations are plotted in Figure 4.14, 

which shows the same pattern as Figure 4.9. Corresponding stress distributions can be 

achieved by multiplying the deformation equations with the coefficient of the tread 

stiffness. 

 

 

Figure 4.15 Tread deformation distribution under driving condition  
 

When longitudinal slip exists due to acceleration or deceleration, tire deformation 

increases linearly with the tread-travel distance as shown in Figure 4.15 and the equation 

for tread deformation is as follows: 
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where, κ=(rωv)/ rω is the slip ratio.  
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The two sources of longitudinal deformation discussed above are cumulative so 

that the total deformation is the combined effect of (4.5) and (4.6). However, the total 

deformation is not simply the summation of the three terms. The total deformation dx(x) 

should be saturated by the deformation limit as follows: 
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The deformation limit dlim(x) is determined by the friction coefficient, the stiffness 

coefficient, and the vertical stress, ignoring the rolling resistance in this case. An example 

of the deformation distribution is shown in Figure 4.16, where the slip ratio is 0.2 and the 

friction coefficient is 0.5. 

 

 

Figure 4.16 Longitudinal deformation of the tire tread using the Brush model under non-
zero slip 
 

4.1.4 Factors Affecting Longitudinal Force Generation  

The tire longitudinal force model introduced in Chapter 2.2 is not consistent with 

the test results for small slip. This might be because the original Brush model ignores the 

phenomena discussed in section 4.1.2. In this chapter, we will see how the phenomena 

affect the longitudinal force curves.  
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4.1.4.1 Effect of Rolling Resistance 

The first factor we did not consider in the original Brush model is rolling 

resistance. The vertical stress consists of the stresses due to the rolling resistance caused 

by vertical deformation and damping. The equations of the Brush model with rolling 

resistance are as follows: 
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The effect of rolling resistance is shown in Figure 4.17, where longitudinal force 

curves move downward due to the longitudinal resistance. The rolling resistance reduces 

the longitudinal forces but does not significantly change the initial gradients of force 

curves at small slip ratios, as observed in experimental results.   

 

 

Figure 4.17 Effect of rolling resistance on longitudinal force of the Brush model 
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4.1.4.2 Effect of Stress Existing in a Free Rolling Tire 

The second factor ignored in the original Brush model is the stresses due to the 

longitudinal deformation caused by local velocity differences in a free rolling tire, as 

shown in Figure 4.9 and Figure 4.16. The force curves can be computed using (4.8) with 

the following strain and normal stress distribution. 
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where δ(x) is derived in (4.5) and the rolling resistance effect is ignored in this case. The 

longitudinal force curves with the internal stress are shown in Figure 4.18, which 

compares the force curve plots with and without internal stress. The stress existing in a 

free rolling tire results in force curves that are more separated in the small slip ratio 

region. This is because the stress existing in a free rolling tire reduces the overall stress at 

part of the contact patch. The force curves in the negative slip region are more separated 

than in the positive slip region, because of the asymmetric distribution of the stress 

existing in a free rolling tire. 

 

 

Figure 4.18 Effect of longitudinal internal stress on the Brush model 
 

Figure 4.19 and Figure 4.20 show examples of stress distribution in the contact 

patch, where the friction coefficient is fixed at 0.15 for both cases, and the slip ratios are 

0.01 and 0.01, respectively. The left plots are the stress distribution when the stress 
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existing in a free rolling tire is ignored, i.e. the original Brush model.  The right plots are 

the stress distribution when the stress existing in a free rolling tire is considered. The 

representation of llongitudinal force can be achieved by integrating the red dot lines 

along the contact patch. The stress level increases due to the internal stress at the front 

half of the contact patch, but it decreases in the rear half of the contact patch, which 

results in a smaller longitudinal force than that of the original Brush model in the 

negative slip case. In the positive slip case, reduction in longitudinal force happens only 

in the small slip range and on low friction surfaces. Therefore, the force curves are not 

symmetrical when internal stress is considered.  

 

 

Figure 4.19 Stress distribution in contact patch at positive slip ratio 0.01 
 
 

 

Figure 4.20 Stress distribution in the contact patch under negative slip ratio -0.01 
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4.1.4.3 Effect of Equivalent Tire-Road Surface Stiffness 

Another possible factor for friction-sensitive longitudinal stiffness is the existence 

of soft material between the tire and the road surface. Deur [49] pointed out that snow or 

wet ice may reduce tire-road stiffness. He introduced an equivalent tire-road stiffness 

model that is a function of the friction coefficient and illustrated the influence of 

equivalent tire-road stiffness in longitudinal tire force generation, as shown in Figure 4.21. 

The effect of this equivalent stiffness concept can explain friction-level-dependent 

longitudinal force generation on snow and wet ice surfaces; however, it is not clear that 

the property and amount of the soft material are independent of the friction coefficient of 

the surface. This concept can explain the different tire longitudinal stiffness on different 

surfaces without bringing additional parameters, but the existence of soft material 

between a tire and a road results in a more complex friction model that has multiple 

parameters, and, therefore, may not be good for friction estimation. 

 

Figure 4.21 Longitudinal tire force for small-slip range and different road conditions as 
envisioned in the “ equivalent tire-road stiffness” concept [49]  

4.2 Estimation of Friction Coefficient in the Linear Range (0-2%) 

4.2.1 Algorithm 

4.2.1.1 Model for Tire Longitudinal Force in the Linear Range 

The longitudinal force distribution extracted from our test result is plotted in 

Figure 4.22. In the small-slip range, the longitudinal force increases proportional to the 
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slip and the gradient of the force-slip curve is defined as the longitudinal force stiffness. 

Thus, the longitudinal force model in the small-slip range can be expressed as follows:  

 

(4.10) ( ) ( ) , 0.02,xF k for       

 
The longitudinal stiffness k(μ) changes as friction level μ changes and is also 

dependent on the tire characteristic. The friction coefficients and longitudinal stiffness 

between a tire (Pirelli 255/50R-17 installed on the Jaguar S-type test vehicle used in this 

study)  and three surfaces are listed in Table 4.1. 

 

 

Figure 4.22 Longitudinal tire force in the small-slip region under different road 
conditions 

 
Generally, the friction coefficient and longitudinal stiffness have a positive 

correlation and the relationship can be simplified as a curve obtained through 

interpolation of Table 4.1. 

Table 4.1 Friction coefficient and longitudinal stiffness of our test tire on several surfaces 

Surfaces Friction Coefficient Longitudinal Stiffness 

Concrete  0.85~1.0 16.0×104 

Snow 0.35~0.4 6.6×104 

Ice 0.15~2 1.8×104 
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4.2.1.2 Recursive Least Squares (RLS) 

The equation (4.10) can be rewritten into a standard parameter identification form 

as follows: 

 

(4.11) ( ) ( ) ( ),Ty t t t   

 
where y(t)=Fx is the system output, θ(t)=k(μ), is the unknown parameter, and φ(t)=κ is the 

measured slip ratio. The unknown parameter θ(t) can be identified in real-time using 

parameter identification approach. Once the stiffness k(μ) is identified, the friction 

coefficient μ can be classified using Table 4.1. 

The recursive least squares algorithm [58] provides a method to iteratively update 

the unknown parameter at each sampling time to minimize the sum of the squares of the 

modeling error using the past data contained within the regression vector, φ(t). The 

procedures for solving the RLS problem is as follows: 

 

Step 0: Initialize the unknown parameter θ(0) and the covariance matrix P(0); set 

the forgetting factor λ. 

Step 1: Measure the system output y(t) and compute the regression vector φ(t). 

Step 2: Calculate the identification error e(t): 
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Step 3: Calculate the gain K(t): 
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Step 4: Calculate the covariance matrix: 
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Step 5: Update the unknown parameter: 

 (4.15) 
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( ) ( 1) ( ) ( ).t t K t e t     

 
Step 6: Repeat Steps 1~5 for each time step. 

4.2.1.3 Stiffness Identification and Friction Coefficient Estimation 

We derived an equation for vehicle longitudinal motion in (2.8). If we assume the 

road inclination angle is given for a rear-wheel-drive car, the standard form of parameter 

identification can be derived using the following equation. 
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where m is the vehicle weight, and ax is the vehicle longitudinal acceleration. Using the 

linear tire force model shown in (4.10), (4.16) can be rewritten as follows: 
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Each term on the left hand side can be measured, calculated, and predetermined. 

Then, we can identify the stiffness K(μ) if we configure the problem as follows:  
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The corresponding friction coefficient is calculated using a mapping function 

from the stiffness to the friction coefficient as shown in Table 4.1.  

4.2.2 Simulations 

The algorithm is evaluated with simulation where the road surface is designed to 

have sudden friction coefficient changes, a so called mu-jump surface and the vehicle 

maneuver is straight driving with intermittent gas pedal presses. The road surface 

condition and vehicle states are plotted in Figure 4.23. The estimated result is shown in 
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Figure 4.24 where the algorithm is activated only when longitudinal slip exists. 

Comparing the slip ratio in Figure 4.23 to the activation signal in Figure 4.24, the time 

duration of estimation is relatively smaller on the low friction surface than on the high 

friction surface. This is because the slip ratio quickly increases on slippery surfaces. The 

estimator encounters two sudden surface changes at 5 seconds and at 11.5 seconds. The 

estimator shows delayed estimation at the first change due to lack of excitation at that 

time. Once excitation occurs at 5.5 seconds, the estimator updates the friction coefficient. 

At the time of the second surface change, the excitation duration is coincident with the 

change so that the estimated friction coefficient tracks the actual value immediately. 

However, this algorithm does not provide slip angle estimation and the accuracy of 

estimation will deteriorate if combined slip exists. 

 

 

Figure 4.23 Road surface condition and the vehicle states of the simulation to evaluate 
the small longitudinal slip based algorithm 
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Figure 4.24 Friction estimation result and corresponding activation signal when the 
small longitudinal slip based algorithm is used 

 

4.3 Estimation of Friction Coefficient in the Saturation Range (30~100%) 

4.3.1 Algorithm 

The friction estimation algorithm based on tire stiffness identification does not 

work if a wheel is spinning because the estimation algorithm using tire stiffness is valid 

only at a linear range.  When a wheel is spinning, the tire longitudinal force saturates and 

it becomes insensitive to the slip ratio and wheel speed. The tire longitudinal force is 

dependent on the friction coefficient and the tire vertical force when the wheel is spinning, 

as shown in Figure 4.3 and Figure 4.4, which situation results in a simple longitudinal tire 

force model, as shown in (2.11). If the wheel is spinning, |κ|>κsl, the longitudinal force 

can be easily determined using the friction coefficient and the normal tire, as follows: 

 

(4.19) ( , ) ( ).x zf F sign      

 
When a car is experiencing acceleration close to the friction limit, the driving tires 

are saturated, which provides information about the friction level. For the rear-wheel-

drive vehicle shown in Figure 4.25, the traction force is computed from: 

 

(4.20) .xr zr

a
F F mg

a b
  


 

 



 

 92

Therefore, the friction coefficient is easily computed as follows 
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Even though we can calculate the friction coefficient directly from the longitudinal 

acceleration, we use RLS for a smoother estimation as follows: 
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By comparing (4.11) and (4.22), we can configure a RLS problem as follows:  
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Figure 4.25 Force distribution when the rear wheels are spinning; the traction force is 
independent of slip ratio and a function of the friction coefficient and the normal force. 
 

This estimation algorithm is valid only when the slip ratio is higher than 30%. In 

the case where only one driving wheel is spinning, (4.20) still holds because the 

differential of the drive train keeps the torques of both driving wheels equal. Therefore, 

this estimation algorithm is still applicable when only one driving wheel is spinning. 
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4.3.2 Simulations 

The evaluation of the algorithm is performed with the same conditions used for 

the small slip based algorithm except for excitation level. The throttle input is increased 

to generate a large slip ratio as shown in Figure 4.26. The slip ratio on the low friction 

surface increases up to 0.5, which is in the saturation range, thereby activating the large 

slip based algorithm. 

 

 

Figure 4.26 Road surface condition and the vehicle states of the simulation to evaluate 
the large longitudinal slip based algorithm 

 

Figure 4.27 shows the estimation result. As the estimation algorithm is activated 

only for large slip cases, the estimated friction coefficient is updated only on slippery 

surfaces. During the time intervals of 0~2.5 seconds and 10~15 seconds, no update 

occurs even if the gas pedal of the vehicle is pressed several times because the resulting 

slip is small. These small excitation cases can be dealt with by using the small 

longitudinal slip based algorithm. 
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Figure 4.27 Friction estimation result and corresponding activation signal when the large 
longitudinal slip based algorithm is used 
  

To use both small and large excitations, we applied both of the longitudinal slip 

based algorithms for the simulation data and the estimation results are shown in Figure 

4.28. We have more chances to update the friction coefficient by using two algorithms 

and, therefore, the friction estimation is available in the time period 0~2.5 seconds and 

10~15 seconds, which was previously noted to be the time period that the estimation is 

not available with the large longitudinal slip based algorithm. It is worthwhile to note that 

integrating the estimators that require different excitation conditions improves the 

estimation quality. Therefore, the integration of all the proposed algorithms ‒ the lateral 

excitation based algorithms and the longitudinal excitation based algorithms ‒ will be 

discussed in the next chapter. 

 

 

Figure 4.28 Friction estimation result and corresponding activation signal when both of 
the small and the large longitudinal slip based algorithms are used 
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4.4 Summary 

There are two reasons why longitudinal dynamics friction estimation is important; 

availability of required sensors, and the fact that vehicles frequently operate in regions 

with only longitudinal excitations. We divide the longitudinal slip range into three 

ranges: the linear range, the transient range and the saturation ranges. The tire force 

generation shows simple relations between the tire slip ratio and tire normal force and 

friction coefficient in the linear and saturation ranges. However, in the transient range, 

the tire force generation is affected by many factors so that the nonlinear models having a 

single parameter are not valid when the factors are uncertain. We developed two 

algorithms for the linear and the saturation ranges using simple force generation 

equations. In the case of the transient range, we assume ABS/TCS systems can provide 

friction coefficient information estimated using internal signals of the systems. 

For the linear range case, the algorithm is based on the observation that 

longitudinal tire stiffness is dependent on the friction coefficient, which is not explained 

well by physics based tire models such as the Brush model. The phenomena in the tire 

contact patch are explored to explain the friction coefficient dependent longitudinal tire 

stiffness and it is found that the stress existing in a free rolling tire can explain such 

property of tire stiffness. For the saturation range case, the algorithm is based on the fact 

that the generated longitudinal force is insensitive to the slip ratio and only dependent on 

the friction coefficient and normal force.  

These algorithms work well only for pure longitudinal excitation. Accuracy is not 

guaranteed when lateral excitation coexists with longitudinal excitation. In this case, the 

friction coefficient can be estimated by a lateral dynamics based method, which will be 

described in the next chapter.  
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CHAPTER 5 

INTEGRATED FRICTION ESTIMATION ALGORITHM 

The algorithms presented in CHAPTER 3 and CHAPTER 4 were developed 

based on certain assumptions of the type/level of excitations.  These assumptions need to 

be kept in mind because the algorithms are likely to behave satisfactorily only under 

these excitations. For example, the maximum aligning moment method is based on the 

assumption that large lateral excitations exist, and the nonlinear observer is based on 

medium lateral excitations, whereas, the longitudinal dynamics based method requires 

less than about 2% of longitudinal slip for the linear range method and 30%~100% of 

longitudinal slip for the saturation range method. 

 

Figure 5.1 Coverage of the presented estimation methods in the friction circle 
 

In Figure 5.1, the two longitudinal excitation based methods cover only a small 

range of pure longitudinal excitations, whereas, the two lateral excitation based methods 

cover almost all of the range of pure lateral excitations except around zero excitation and 
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just below the maximum excitation. However, all four methods were developed based on 

the pure-slip assumption and might not handle combined slip cases well. Therefore, in 

this chapter, we are going to discuss ways to increase the coverage, mainly by switching 

between different estimators. 

5.1 Increasing Coverage of the Lateral Dynamics Based Methods 

The nonlinear observer derived in (3.38) uses a Brush model and assumes pure 

lateral slip. Therefore, if the vehicle is cornering and accelerating/decelerating at the 

same time, the estimation algorithm might not produce an accurate road friction estimate. 

Furthermore, asymmetric longitudinal force distribution on the left and right tires causes 

an additional yaw moment. In this case, the observer performance will degrade, or even 

worse, the estimation output might diverge, as shown in Figure 5.2, where large (about 

30%) longitudinal slip (at around 6 second) causes observer instability.  

 

Figure 5.2 Performance of the lateral dynamics based method in a combined slip 
simulation 
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To avoid this problem, we have to use a Brush model for combined slip cases and 

a four-wheel vehicle model. A Brush model for combined slip is derived in (2.14) and a 

four wheel vehicle model is shown in Figure 5.3 and the corresponding vehicle dynamics 

are as follows: 

 

(5.1) 
  ,

.
2 2

y x yf yr

z yf yr xr xl

m v v r F F

w w
I r aF bF F F
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
 

 
Note that there are two new terms from longitudinal forces in the moment balance 

equation. 

 

 

Figure 5.3 Four wheel bicycle model 
 
Based on the four-wheel bicycle model, the new observer equations are: 
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where ˆ
yfF  and ˆ

yrF  are calculated by the combined slip Brush model (2.14) using the 

estimated slip angle and measured slip ratio. 

The estimation results with observer (5.2) are shown in Figure 5.4, where the 

observer does not diverge as before, but it is not as accurate. There are several reasons for 

this.  One reason is the un-modeled compliance steering effect due to the longitudinal and 
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lateral tire forces; another is the significant mismatch between the Brush model used for 

the observer and the Magic Formula model used for the vehicle simulations, especially 

when the longitudinal slip is large. We can compensate for the compliance steering effect 

by modeling it, but the tire model mismatch cannot be captured—and in fact the Magic 

Formula would not be the “truth” in field testing anyway, especially under large tire slips.  

So tire mismatch always exists and robustness against it must be tested.   

 

 

Figure 5.4 Improved observer performance by including combined slip in the observer 
design 
 

Because model mismatch is unavoidable, we choose to improve the observer 

performance by reducing the effect of model mismatch, rather than trying to reduce the 

model mismatch itself. One way to reduce the effect of model mismatch is to reduce the 

magnitude of the observer gains driven only by measurement error feedback because the 

state estimation is driven by its own dynamics and measurement feedback. The observer 

with adaptive gains to longitudinal slip is as follows: 
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where kslip is the gain reduction parameter. Because the measurement model consists of 

the tire model, by reducing the observer gain magnitude, we can reduce the effect of tire 

model error in the measurement. 

The gain reduction is adaptive to the magnitude of slip ratio and the level of 

reduction can be tuned heuristically.  An example of the gain reduction function is shown 

in Figure 5.5, in which case the observer gains of (5.3) are reduced to almost zero when 

the slip ratio is larger than 5%. This gain reduction function results in open loop 

estimation for the friction coefficient when model uncertainty is high. Therefore this 

method is only valid under the assumption that the current estimate of the friction 

coefficient is close to the true value. 

 

 

Figure 5.5 The proposed gain reduction function 
 
 

 

Figure 5.6 Estimation result of the observer with the gain reduction function  
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The method using the combined slip tire model increases the coverage of the 

lateral dynamics based method, as shown in Figure 5.7. In the yellow area, not covered 

by any of the algorithms we proposed, an open loop observer is used and the equations 

are as follows: 
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Figure 5.7 Increased coverage of the estimators by using the combined slip tire model 
 

The equations for estimators are summarized in Table 5.1. The nonlinear observer 

for medium lateral excitation is modified to cover combined slip excitation and the open 

loop observer is used to fill the gap between the coverage of the estimators. The 

remaining step for utilizing the four approaches is to define a logic to switch between 

estimators, which is discussed in Chapter 5.2. 
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Table 5.1 Comparison of the friction coefficient estimators for different excitation conditions 

Excitation Estimator for pure excitation Estimators for integration Remarks 
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It is valid when 
longitudinal excitation 
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friction coefficient. 
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Open loop observer is 
used for the integrated 

estimator. 
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5.2 Integration of the Estimators 

We proposed two estimation algorithms for lateral excitation in CHAPTER 3 and 

two estimation algorithms for longitudinal excitation in CHAPTER 4. In Chapter 5.1, the 

medium lateral excitation based algorithm is modified to work with combined excitation 

cases. Also, an open-loop observer is proposed to cover the cases that are not handled by 

these algorithms. The lateral dynamics based methods and longitudinal dynamics based 

methods are complementary because they rely on different excitation conditions. 

Therefore, they are integrated through switching, which is mainly based on the level and 

the type of excitations.  

The excitation index and the activation condition for the medium lateral excitation 

based method can be determined by the stability map shown in Figure 5.8 (a), which is 

the same as Figure 3.13. The estimator should be activated when the tuple of the 

normalized front tire slip angle and the normalized rear tire slip angle is in the blue region. 

The normalized slip angles, f  and r  are defined as follows:  
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To evaluate these indices, we need the slip angles and the friction coefficient, 

which are the unknowns that we are estimating. Rather than using the normalized slip 

angles, we will use the normalized lateral acceleration and the normalized angle 

difference, which are defined as follows: 
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where the two indices are still dependent on the friction coefficient but not on the slip 

angles.  For implementation, we use ̂  instead of . 

The stability map based on these two new indices can be achieved by the 

transformation of the stability map shown in Figure 5.8 (a). The transformation functions 

are from the vehicle lateral dynamics (2.1) and the kinematic angle relationship (2.2), as 

follows: 
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By mapping from the fr coordinate to the index1index2 coordinate, we 

achieve a new stability map, as shown in Figure 5.8 (b). 

 

Figure 5.8 The stability map in the fr coordinate (a), The stability map in the 

index1index2 coordinate (b)  

 
The medium lateral excitation based method should be activated when the tuple of 

index1 and index2 is in the blue region. The activation condition is a function of index1 

and index2 and is defined as follows: 

 
(5.8) ( 1, 2)blueActivate if f index index True  
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where 
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The boundary curves of the upper left blue region can be approximated by fk(-x, -y), 
because both regions are point symmetrical.  The regions consist of two curves, upper 
and bottom, named gupper and glower, which are interpolation functions of several points. 

The points of the two functions are listed in  
Table 5.2. 

 

 

Figure 5.9 The boundary curves of the stable region 

 
The maximum self-aligning moment detection method is used when a large lateral 

excitation exists. This method is valid only when longitudinal excitation does not exist 

because the method is based on a pure lateral slip tire model. This method always 

underestimates the friction coefficient if the lateral excitation is not sufficiently large, 

thus it can provide the lower bound of the friction coefficient to other estimators. 

Therefore, we do not need to turn off this method unless there is longitudinal excitation. 

The activation condition of the large lateral excitation based method is as follows: 

 
(5.9) 0.02 0.02.fl frand    
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The activation condition for the small slip ratio method is that both driving 

wheels’ slip ratio should be less than 2%, as shown in Figure 4.22. The activation 

condition for the large slip ratio method is that one of the driving wheels’ slip ratio 

should be larger than 30%, as shown in Figure 4.2. Both longitudinal based algorithms 

are valid only when the lateral excitation is small, which can be defined as follows: 

 

(5.10) 20.5 / 0.05 / .ya m s and r rad s   

 

 

Table 5.2 The points for the interpolation function of the boundary curves 

gupper glower 

No. x y No. x y No. x y No. x y 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

-0.480 

-0.433 

-0.385 

-0.337 

-0.290 

-0.265 

-0.240 

-0.215 

-0.190 

-0.143 

-0.095 

-0.047 

0.000 

-0.350 

-0.265 

-0.203 

-0.165 

-0.150 

-0.221 

-0.265 

-0.281 

-0.270 

-0.232 

-0.198 

-0.167 

-0.140 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

0.370 

0.463 

0.555 

0.648 

0.740 

0.793 

0.845 

0.898 

0.950 

0.990 

0.000 

-0.026 

-0.013 

 0.039 

 0.130 

 0.066 

 0.023 

 0.001 

 0.000 

-0.120 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

11

12

13

 0.893 

 0.795 

 0.698 

 0.600 

 0.250 

 0.230 

 0.210 

 0.190 

 0.170 

 0.143 

 0.115 

 0.088 

 0.060 

-0.146 

-0.187 

-0.246 

-0.320 

-0.540 

-0.556 

-0.589 

-0.640 

-0.710 

-0.586 

-0.501 

-0.456 

-0.450 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

0.038 

 0.015 

-0.008 

-0.030 

-0.070 

-0.110 

-0.150 

-0.190 

-0.208 

-0.225 

-0.243 

-0.260 

-0.480 

-0.437 

-0.444 

-0.472 

-0.520 

-0.501 

-0.466 

-0.416 

-0.350 

-0.352 

-0.365 

-0.387 

-0.420 

-0.350 

 

Using the excitation conditions, the overall estimation flow of the integrated 

estimator is shown in Figure 5.10. The estimators are activated based on the magnitude of 

excitation signals, and the initial values for the estimator are the last estimated results of 

the previously selected estimator. The estimation process is grouped into three categories 

based upon the magnitude and the kinds of excitation. The evaluation of this integrated 

algorithm will be performed by the simulations similarly to Chapter 5.3. 
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Figure 5.10 Estimation flow of the integrated estimator 
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5.3 Simulations 

The performance of the integrated algorithm is evaluated by simulations. The test 

maneuvers and road surfaces are designed for the vehicle to undergo various excitations. 

The load surface is designed to have sudden friction coefficient changes. The test 

maneuvers are designed using different steering inputs and gas pedal inputs. Two 

maneuvers are used. For Simulation #1, the steering input is zero until 10 second and 

sinusoidal after 10 second. The gas pedal input is intermittent until 8 second and zero 

after that. For Simulation #2, the steering input is sinusoidal and the gas pedal input is 

intermittent for the whole simulation time. 

 

 

Figure 5.11 Excitation inputs and vehicle states of Simulation #1 
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Figure 5.12 Excitation trajectory of Simulation #1 in the friction circle 

 
The inputs and coressponding vehicle states for Simulation #1 are shown in 

Figure 5.11, where only longitudinal excitations exist during the first half of the test and 

only lateral excitations during last half of the test. The correspoding excitation 

trajectories are plotted in Figure 5.12, where the left plot shows the slip trajectory 

normalized in staturation slip and the right plot shows the acceleration trajectory 

normalized by the maximum accleration. Note that the longitudinal acceleration is 

normalized  by g/2 because the vehicle is a front wheel drive car.  

 

 

Figure 5.13 Estimation results of Simulation #1 using the longitudinal excitation based 
algorithms 
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Figure 5.14 Estimation results of Simulation #1 with the lateral excitation based 
methods and the open loop observer turned on 
 
 

 

Figure 5.15 Estimation results of Simulation #1 using the integrated algorithm 
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The longitudinal excitation based algorithms only work for the first 10 seconds 

and do not estimate the friction coeffiicient after 10 seconds, as shown in Figure 5.13, 

due to the lack of sufficient longitudinal excitations. However, the lateral excitation based 

algorithms only work for the last 10 seconds, as shown in Figure 5.14. If we apply the 

integrated algorithm for the same simulation data, the algorithm effectively takes 

advantage of the both excitations, as shown in Figure 5.15. It is worthwhile to note that 

the large lateral excitation based algorithm is activated even when there is not enough 

large lateral excitation because it can provide the lower bound of the friction coefficient 

when lateral excitation is small. 

 

 

Figure 5.16 Driver’s inputs and vehicle states of Simulation #2 
 

Simulation #2 is designed to have both directional excitations at the same time.  

Figure 5.16 shows the driver’s inputs and vehicle states of the simulation. The excitation 
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trajectory plot, Figure 5.17, shows that the vehicle frequently experiences the combined 

slip.  

 

 

Figure 5.17 Excitation trajectory of Simulation #2 in the friction circle 

 
 

 

Figure 5.18 The estimation result of Simulation #2 with the small and large longitudinal 

slip based methods turned on 

 

In Simulation #2, the longitudinal excitation based algorithms have fewer chances 

of activation than in Simulation #1 due to the lack of pure longitudinal excitations.  

Therefore, the friciton coefficient is updated less frequently and the convergence is slow, 

as shown in Figure 5.18. However, the frequent lateral excitations are beneficial to the 
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lateral excitation based algorithms, which provide better accuracy and convergence than 

the longitudianl excitation based algorithms, as shown in Figure 5.19.  

 

 

Figure 5.19 The estimation result of Simulation #2 with the lateral excitation based 
methods and the open loop observer turned on 
 
 

 

Figure 5.20 The estimation result of Simulation #2 using the integrated algorithm 
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The integrated algorithm shows better performance than any longitudinal or 

lateral excitation based algorithms, as shown in Figure 5.20. At 12 seconds, the friciton 

coefficient estimated by the integrated algorithm shows faster convergence than that of 

Figure 5.19 thanks to longitudinal excitations.  

These simulation results show that the integrated algorithm works for wider range 

of excitations and shows superior performance than any single directional excitation 

based algorithms. Figure 5.21 shows the estimation errors for different excitation based 

algorithms. Due to the step change of the surface, a maximum error is not a good 

indicator of the estimation quality. The integrated alogithm shows the better estimation 

quality in the sense of RMS (Root Mean Square) error for both simulations. Note that the 

longitudinal excitation based method does not estimate slip angles. The experimental 

evaluation will be discussed in CHAPTER 6 and the results will show that the proposed 

algorithm has practical applicability to vehicle active safety control. 

 

Figure 5.21 Performance comparison between estimation algorithms 
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CHAPTER 6 

EXPERIMENTAL VALIDATION 

6.1 Experimental Vehicle  

The experimental validation of the proposed algorithms was performed on Ford 

Motor Company’s winter test track in Sault Ste. Maire, Michigan. The test vehicle used 

was a rear wheel drive Jaguar S-type, specially modified for the development of vehicle 

dynamics control algorithms. This car is equipped with several active safety systems 

including AFS (active front steering), ABS (anti-lock braking system), TCS (traction 

control system), and ESC (electronic stability control). Given the presence of these 

systems, we had access to a large set of vehicle state measurements, available from 

standard ESC sensors, such as an inertial yaw rate and lateral acceleration sensor, four 

wheel speed sensors, a steering wheel angle sensor, and a steering torque sensor. Figure 

6.1 shows the test vehicle. 

 

 

Figure 6.1 The test vehicle and GPS/INS system 
 

An additional piece of test equipment, Oxford Technology RT-2500, was used to 

provide the reference (truth) signals. It has two antenna based GPS integrated with INS 

and enables measurements of three dimensional vehicle positions and orientations as well 
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as three dimensional linear and angular velocities of the vehicle. The performance 

specification of RT-2500 is shown below in Table 6.1. 

Table 6.1 Performance specification of RT-2500 

Signal Accuracy Signal Accuracy 

Position 3.0m CEP* Angular Rate  

Velocity 0.2 km/h RMS  Bias 0.02º/s  1σ 

Acceleration   Scale Factor 0.2º/s  1σ 

 Bias 10 mm/s2 1σ  Range 100º/s 

 Linearity 0.01% 1σ Track** (at 50 km/h) 0.25º  1σ 

 Scale Factor 0.1% 1σ Slip Angle (at 50 km/h) 0.4º  1σ 

 Range 100 m/s2 Lateral Velocity 0.04% 1σ 

Roll/Pitch 0.15º  1σ Update Rate 100 Hz 

Heading 0.3º  1σ Calculation Latency 3.9 ms 

*CEP:  Circular Error Probable
**Track: Angle from the north to the velocity direction

 

Figure 6.2 Steering system geometry and the location of the force sensor 
 

For the measurement of the aligning moment of the front tires, the car, 

unfortunately,  does not have an electric steering power system that can measure the tire 

reactive moment against the road through the assisting motor current. The car has a 
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conventional hydraulic power assisting system; therefore, strain gauges are installed at 

both steering racks, as shown above in Figure 6.2.  The sensors installed in the test 

vehicle are listed below in Table 6.2 and categorized in terms of their purpose. 

Table 6.2 Sensors installed in test vehicle 

For algorithm implementation For reference signal acquisition 

Yaw rate sensor  Vehicle position (GPS) 

Lateral accelerometer Vehicle orientation (GPS) 

Longitudinal accelerometer 3-dimensional velocities (GPS) 

Wheel speed sensor 3-dimensional acceleration (GPS) 

Steering wheel angle sensor 3-dimensional angular velocities (GPS) 

Rack force sensor Vehicle slip angle (GPS) 

 Road steer angle sensor 

 

The test site has several kinds of well-maintained surfaces, such as a concrete 

road, a dry icy road, and a packed snow road. Vehicle tests were performed on several 

surfaces with several maneuvers to evaluate the performance and robustness of the 

algorithms. Figure 6.3 shows the main test track of the test site. 

 

 

Figure 6.3 Test track 
 

The tests were designed for the two purposes: parameter identification and 

algorithm verification. For parameter identification, the maneuver was carefully 

controlled to obtain clean signals on even surfaces, such as on dry ice or packed snow. 
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For the algorithm verification, three kinds of maneuvers were designed: lateral excitation 

oriented maneuvers, longitudinal excitation oriented maneuvers, and combined excitation 

oriented maneuvers. Table 6.3 lists the designed tests, their purposes, the excitations each 

involved, and the surfaces they were tested on. 

Table 6.3 The list of tests 

Test 
No. 

Major excitation Main Purpose Surface 

1 Lateral (Circular turn) Tire parameter identification Ice 

2 Lateral (Circular turn) Tire parameter identification Snow 

3 Lateral (Sinusoidal steer input) Steering parameter identification Snow 

4 Lateral (Single lane change) Model validation Snow 

5 Lateral (Sinusoidal steer input) 
Evaluation of lateral dynamics 

based algorithms 
Mixed 

6 Lateral (Single lane change) 
Evaluation of lateral dynamics 

based algorithms 
Mixed 

7 
Longitudinal 

(Acceleration/Deceleration) 
Evaluation of longitudinal 
dynamics based algorithms 

Mixed 

8 
Longitudinal + Lateral  
(Single Lane change) 

Evaluation of the integrated 
algorithms 

Mixed 

 

6.2 Model Identification and Validation 

6.2.1 Vehicle and Tire Parameter Identification 

While vehicle parameters are easily obtained from the vehicle design 

specifications,  tire parameters are usually not readily available and therefore need to be 

identified through bench tests or vehicle tests. We performed steady state turning 

maneuvers (Test 1 and Test 2) to identify the key tire parameters: stiffness of the tread 
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element and the length of contact patch. In contrast, the steering system parameters, such 

as the rotational inertia and the damping coefficient are identified through transient 

maneuvers in situations involving fast steering changes (Test 3). Finally, a transient 

maneuver (Test 4) with sinusoidal steering inputs was performed for the purpose of 

verifying the fidelity of the vehicle and tire models.  

 

Figure 6.4 Measured signals of the steady state maneuver on ice (Test 1) 
 

Figure 6.4 shows the signals of a J-turn maneuver that was designed for tire 

parameter identification. The tire parameters, contact patch length, l, and tread stiffness, 

cp, are identified from the tire force and moment versus the slip angle plot. The lateral tire 

force and king-pin moment were measured and the tire models, fy(α, μ) and τa(α, μ), are 

given as  (2.12) and (2.13). The slip angle α was measured and μ can be determined from 

extreme braking maneuvers. The signals from the identified tire model and the measured 

signals are compared in Figure 6.5, where the king-pin moment is achieved from the 

measured rack force and moment arm length Lr and the tire lateral force is extracted from 

the lateral acceleration and the yaw-rate using the following equations. Note that the time 

derivative of the yaw rate was obtained using an off-line low-pass-filter only for 

identification and verification purposes. 
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Figure 6.5 Measured tire force vs. model predicted tire force (Test 1 and Test 2) 
 

6.2.2 Steering System Parameter Identification 

The steering system parameters, including the effective inertia and damping 

coefficient of the steering system, affect the aligning moment measurement and are 

identified from the transient maneuvers that cause sufficient inertial and damping 

resistance moments for identification. The steering system with correlated force and 

moment is shown in Figure 6.6. The corresponding dynamics are: 

 

(6.2) ,eff eff a y m rack rJ b k f L f L            

 
where δ is the road steer angle, Jeff is the effective moment of inertia, beff is the effective 

damping of the steering system, and k is the jack-up moment coefficient. The parameters 

are identified using the following equations: 
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where ˆa  and ˆ
yf  can be computed using (2.12) and (2.13). 

 

 

Figure 6.6 Steering system and rack force measurement 
 

Table 6.4 Model parameters of the test vehicle  

Parameter Value Unit Description 

m 2050 kg Vehicle mass 

Iz 3344 kg·m2 Yaw moment of inertia of the vehicle 

a 1.432 m Distance from front axle to center of mass 

b 1.472 m Distance from rear axle to center of mass 

w 1.52 m Vehicle track width 

l 0.1 m Half of the tire contact length 

cp 1.65 ×106 N/m2 Tread stiffness of unit length 

Jeff 4 kg·m2 Effective rotational inertia 

beff 88 Nm/(rad/s) Effective damping coefficient 

k 362 Nm/rad Jack-up moment coefficient 
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The steering system parameters are identified through the optimization process 

and listed in Table 6.4. The comparison of the king-pin moment signals from the model 

and the measurements is shown in Figure 6.7, where the king-pin moment signal from the 

model has phase lead against the measured signal. If we ignore all the steering system 

dynamics, then the model error is within the range of 90~80 Nm. The model with the 

identified steering system parameters shows an in-phase signal match and reduced error 

whose range is 50~50 Nm. The identified vehicle and tire models are validated, as 

shown in Figure 6.8, which demonstrates good agreement with the measured results. 

 

Figure 6.7 Comparison of the kingpin moment signals 
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Figure 6.8 Validation of tire, vehicle, and steering system model 
 

6.3 Validation of the Lateral Dynamics Based Algorithm 

6.3.1 Observer with King-pin Moment Measurement 

The strain gauges installed on the steering rack measure the forces induced by the 

moment around the king-pin axis. However, the king-pin moment (τkrack pin) contains not 

only the tire aligning moment (τa) but also the moment due to the mechanical trail and 

lateral tire forces (τmech) and the resistance moment. When these moments are taken 

together, the aligning moment signals can be obtained as follows: 

 

(6.4) 
 

  ,
a king pin mech

rack r y m

J b k

f L f L J b k

     

  

    

      

 

 
 

 
where frack is a measured force at the steering rack and fy is the tire lateral force.  

However, this equation is not used to achieve the tire aligning moment because i) 

we do not have a sensor to measure tire lateral force in the test configuration, and ii) the 

aligning moment is smaller than the king-pin moment which results in smaller Signal to 
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Noise Ratio (SNR) of the aligning moment signal is lower than that of the king-pin 

moment signal.  

In the light of these two issues — absence of a sensor and the smaller SNR of 

aligning moment signals compared to the SNR of the king-pin moment signals — we use 

the king-pin moment signal as one of the measurement signals instead of using the 

aligning moment signal. This change does not have any impact on the observer synthesis 

introduced in Chapter 3.2.2 as we only need to re-optimize the observer gains. The king-

pin moment signal can be obtained using the force signal measured at the tie rod, as 

follows: 

 

(6.5) king pin rack rf L    

 
For measurement feedback into the observer, the model output of the king-pin moment is 

derived as follows: 

 

(6.6)  ˆˆ ˆking pin a y mf L J b k            

 
Then, the observer is as follows: 
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Note that the error of the aligning moment measurement in the feedback term is replaced 

by the king-pin moment error. 

6.3.2 Experimental Validation 

The test vehicle traveled around the test track on concrete, ice, snow and slippery 

concrete surfaces, as shown in Figure 6.9.  In other words, the friction levels change 

abruptly to different levels. The driver was asked to intentionally perform continuous 

sinusoidal steering to generate sufficient lateral excitation, but not to create a large 
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longitudinal slip. The front tire slip angle was calculated by using the actual vehicle slip 

angle measured through the GPS/INS box. The friction coefficient of different surfaces 

were then identified by a maximum braking acceleration test. Two test runs, with 

distinctively different levels of excitations, were chosen to evaluate the estimation 

algorithm. Figure 6.10 shows the measured signals of one of the test runs. 

 

Figure 6.9 The test surface and a vehicle trajectory 
 
The data from Test 5 was obtained with a 0.3 Hz steering input and the measured 

signals are shown in Figure 6.10. The test vehicle shows an excessively large slip angle 

on ice where the lateral acceleration and the kingpin moment are generally smaller than 

those on other surfaces. The estimation result is shown in Figure 6.11, in which 

“Observer” refers to the estimate from the nominal nonlinear observer and “Switching” 

refers to the estimate from the switching gain observer. The car experienced three abrupt 

friction level changes:  high to low at around 18 seconds, low to medium at around 41 

seconds, and medium to high at around 72 seconds. The most challenging change is the 

one that occurred at 18 seconds during which the nominal nonlinear observer loses track 

of the friction coefficient because the difference between the true and estimated friction 

coefficients is too large to stabilize the observer at the estimated vehicle states. The 

estimated friction coefficient does not converge to the true value until the estimated 

vehicle states enter into the stable region. The switching gain observer converges to the 

true value earlier than the nonlinear observer, thanks to the switching gain algorithm 

which detects the surface change. The better tracking performance of the switching gain 

observer is exhibited at 20 seconds and 41 seconds.  Between 19 and 22 seconds, the 

observer underestimates or even fails to estimate the slip angle because of the 

overestimated friction coefficient. When the vehicle slip angle is large, e.g., on the ice, 
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the slip angle estimate is not accurate because observability of the slip angle decreases 

due to tire force saturation, which occurs on low friction surfaces. 

 

Figure 6.10 Measured signals of Test 5 
 
 

 

Figure 6.11 Evaluation of the lateral dynamics based algorithm using Test 5 
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The data of Test 6 was obtained on the same test surface, but with different 

excitation patterns. The lateral excitation in Test 6 is not as rich as that of Test 5 and is 

also smaller in magnitude and intermittent as shown in Figure 6.12.  

The friction coefficient and slip angle were estimated by the same estimators and 

are plotted in Figure 6.13.  Again, the nonlinear observer shows delayed tracking of the 

friction coefficient when an abrupt change occurs and also shows loss of accuracy in 

estimating the slip angles on an icy surface. Due to the lack of sufficient excitation, 

converging to the true value does not take place until sufficient lateral excitation occurs, 

which may be the drawback of lateral dynamics based estimators given that lateral 

excitation may not be frequent or sufficiently intense in daily driving. However, when the 

excitation level is adequate, the estimators quickly produce accurate estimates. 

 

Figure 6.12 Measured signals of Test 6 
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Figure 6.13 Evaluation of the lateral dynamics based algorithm using Test 6  
 

6.4 Validation of the Longitudinal Dynamics Based Algorithm 

The longitudinal dynamics based algorithm was evaluated on the same test 

surfaces used for the evaluation of the lateral based algorithms. During Test 7, the driver 

tried to simulate daily driving patterns, such as smooth acceleration and taking the foot 

off the gas pedal while coasting, with intermittent and small steering input for single lane 

changes. Test 7’s measured signals are shown in Figure 6.14, where the vehicle lost 

stability on ice so that the driver turned the steering wheel excessively to stabilize the 

vehicle. Except for the instance of large steering that occurred on ice, this test maneuver 

represents daily driving behaviors such as slight acceleration, deceleration, and lane 

changes. 

The estimation results of Test 7 are shown in Figure 6.15. The estimated 

longitudinal tire stiffness, a comparison of the estimated friction coefficient and measured 

coefficient, and time of activation of the algorithm are shown in the first, second and 

third plot, respectively. As we can see in the update signal plot, longitudinal excitations 

occur frequently, which is the major benefit of longitudinal dynamics based algorithms. 

The estimated friction coefficient generally tracks the measured coefficient due to rich 

excitation, except on ice. The estimator does not update the friction coefficient from 20 

seconds to 32 seconds when adequate excitation does not exist. 
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Figure 6.14 Measured signals of Test 7 
 
 

 

Figure 6.15 Evaluation of the longitudinal dynamics based algorithm using Test 7 
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Figure 6.16 The signals related to longitudinal direction and measured during Test 5 
 
 

 

Figure 6.17 Evaluation of the longitudinal dynamics based algorithm using Test 5 
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In Test 7, the excitation was usually in the form of pure longitudinal acceleration. 

When combined slip occurred, such as acceleration with handling, the longitudinal tire 

force model in the linear range, introduced in (4.10) and Table 4.1, is no longer accurate . 

Therefore, use of the longitudinal dynamics based algorithm for Test 5, which has mainly 

lateral excitations, degrades the estimation accuracy, as shown in Figure 6.17. 

 

6.5 Validation of the Integrated Algorithm 

Test 8 was the main test conducted to the integrated algorithm, where both lateral 

and longitudinal excitations frequently exist but are not sufficient for either the lateral 

dynamic based algorithm or the longitudinal dynamic based algorithm. The measured 

signals of Test 8 are plotted in Figure 6.19.  

Figure 6.20 shows the estimation results, which compared the three algorithms. 

As the longitudinal dynamics based algorithm does not estimate slip angle, only two 

algorithms are compared for the slip angle estimate. First of all, the longitudinal 

dynamics based algorithm is able to estimate the true friction coefficient when pure 

longitudinal excitation exists.  If we look at the time between 20~30 seconds where only 

lateral excitations are rich, the longitudinal dynamics based algorithm does not update the 

estimated value; in this case, however, the lateral dynamics based algorithm has adequate 

excitation and its estimation is accurate. The integrated algorithm takes advantage of both 

excitations and thus has more chance to update the estimated value. 

The other test conducted for evaluation is Test 5 and the measured signals were 

plotted in Figure 6.10 and Figure 6.16.  In that test, we can see the benefit of integration 

much more clearly.  The longitudinal dynamics based algorithm exhibits a very low level 

of accuracy of estimation due to the sparse occurrence of longitudinal excitation. The 

lateral dynamics based algorithm generally tracks the true friction coefficient well except 

during abrupt surface changes. The combination of algorithms improves the tracking 

performance because the integrated algorithm works with both excitations.  
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Figure 6.18 Comparison of three estimators using the data of Test 5 

 

 

Figure 6.19 Measured signals of Test 8 
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Figure 6.20 Comparison of three estimators using the data of Test 8 
 
 

Figure 6.21 Performance of the integrated algorithm compared to the other excitation 
based algorithms, (a) and to the algorithms in literature, (b) and (c) 
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Figure 6.21 (a) shows comparisons between the integrated algorithm and the uni-

directional excitation based algorithms, which are evaluated by using the same test data 

sets. The tracking delays are identified at the moments of surface changes and the steady 

state errors are identified on even surfaces. The integrated algorithm shows smaller 

distribution than the other two algorithms due to the wide range of preferable excitations. 

For the integrated algorithm, the steady state estimation errors are within 0.2~0.3 and the 

delays are within 1~5 seconds, whereas for the other two algorithms, the steady state 

estimation errors and the delays are distributed within 0.1~0.5 and 0~15 seconds, 

respectively. Figure 6.21 (b) and (c) show the steady state error and tracking delays 

obtained from literature [2, 7, 9, 15, 18, 20, 25, 26, 55, 59, 60], whose results may not be 

directly comparable to the performance of the estimators developed in this study because 

the surface conditions, tires, vehicles, and excitation conditions are not the same. 

However, if we consider that the test results in the literature were obtained under 

favorable excitations of their estimators, while we used test data emulating daily driving 

patterns, we can conclude that the integrated algorithm developed in this study shows a 

performance that is comparable to or even better than the performance of the algorithms 

found in the literature. 
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CHAPTER 7 

CONCLUSION AND DIRECTION FOR FUTURE RESEARCH 

7.1 Conclusion 

Robust friction coefficient estimation algorithms are developed in this dissertation 

with the ultimate goal of improving the performance of vehicle active safety systems. 

These algorithms must produce accurate estimations in a wide range of vehicle states, be 

robust to plant uncertainties, and use sensors that are available on typical passenger cars. 

Two different approaches that are the main focus of this dissertation are lateral dynamics 

based algorithms and longitudinal dynamics based algorithms.  

With respect to the lateral dynamics based methods, which are more robust to 

high frequency noises, a nonlinear least squares estimator and a nonlinear observer are 

proposed. The nonlinear least squares estimator is more accurate for estimation of the 

friction coefficients than the nonlinear observer, whereas, the latter is better for 

estimation of the slip angle. To improve tracking performance of friction coefficient 

estimation, two extended nonlinear observers are formulated. Furthermore, a design 

synthesis for robust nonlinear observers is developed using numerical implementation of 

Lyapunov stability conditions. 

Regarding to the longitudinal dynamics based methods, identification of tire 

longitudinal stiffness is utilized to infer road friction. This approach is based on the 

observation that longitudinal tire stiffness is dependent on the friction coefficient, which 

is not well explained by most physics based tire models, such as the Brush model. The 

stress-strain relations in the tire contact patch are explored to explain the longitudinal tire 

stiffness, taking into account the effect of the friction coefficient leading to the finding 

that the pre-existing tire slip in the contact patch is likely to be the major reason that 

longitudinal tire stiffness is dependent on friction coefficient. The recursive least squares 

algorithm is utilized for identification of tire stiffness. 
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The original lateral and longitudinal dynamics based methods  work well only 

under pure-slip excitation conditions. To increase the working range, the two algorithms 

are extended to work with combined slip conditions and are also integrated using 

switching rules. 

The algorithms developed here are verified through extensive simulations in 

Carsim, a popular vehicle simulation software, and the use of experimental results. The 

identified friction coefficients and slip angles show reasonable accuracy.  Depending on 

the excitation level, the delay in estimation convergence can be as long as a second.  

Reducing the estimation delay might be a possible topic further improvement. 

7.2 Directions for Future Research 

There are a few issues that remain to be solved before the proposed algorithms 

can be successfully implemented on production vehicles, including the following: 

 

 Better side slip estimation using GPS 

GPS (Global Positioning System) has become a popular vehicle navigation 

system. Though GPS is usually used for localization, the vehicle speed information 

provided by GPS is actually quite accurate (cm/sec) and could be further explored. Many 

algorithms to estimate vehicle states and parameters using GPS information have been 

published [18, 61, 62]. In addition, the availability and accuracy of GPS will be 

significantly improved when the Galileo system, the GNSS (Global Navigation Satellite 

System) project of EU, is brought online [63].  In the near future, there will be about 50 

satellites instead of 24 from the EU and US GNSS system, which will improve the 

reliability of the position and speed measurements by orders of magnitude. Consequently, 

GPS will become a practical and affordable additional information sensor for vehicle 

state estimators. If we have vehicle lateral speed information, which was difficult to 

obtain and not accurately estimated with conventional methods, we can reduce one 

unknown variable in the estimation process and, in turn, the performance of the 

estimation algorithm will improve. 
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 Improvement of robustness in small excitation cases 

The longitudinal dynamics based method has many advantages, the major one 

being the fact that it works using the small traction excitations present in daily driving. 

This approach, however, also has some drawbacks. The relationship between tire slip 

slope and road conditions depends on uncontrollable factors, such as tire pressure, tire 

wear, and the tire model. Thus, we need to know how these factors affect the relationship 

and how we can measure or identify these factors. Among these factors, tire pressure and 

tire wear affect the stiffness of tire lateral and longitudinal directions. Furthermore, tire 

pressure can be inferred using TPMS (Tire Pressure Monitoring System), which is  

almost standard on all new vehicles. Therefore, by detecting tire stiffness change and 

using the TPMS signals, we may be able to obtain information on a tire wear state. Using 

those identified factors, the relationship between the slip slope and road conditions can be 

adjusted, which will result in more robust estimation results. 

 

 Verification of Performance Improvement of Active Safety Systems 

Once we have a robust algorithm for estimation of the road friction coefficient, it 

can be used for control. Vehicle active safety systems, such as ABS, TCS and ESC, 

control the horizontal tire forces, which are heavily influenced by road friction. Current 

control algorithms are usually designed to be conservative due to the lack of road friction 

information.  Knowledge of the friction coefficient can enable more sophisticated and 

precise control algorithms.  
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APPENDICES 

Appendix A 

Proof of Q>0 

Fact 1: 

0
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The linearized system and measurement matrices are 
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Set P=I and we have 
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x x x

h h h h f
q q l l l l

x x
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q l l

 

 

 

  

 

 

 

 

 
  
 

            

                

      

 

 
 
Plug  (3.25) into (7.1), then 
 

      
2 2 2 2

1 2 1 2
1 4

ˆˆ,

2 0,
x x

h h h h
q q k

x x
 

 
 

                                     
 

 
and       
 

2 2 2 2
2 2 1 1 1 2
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1 1 2 2 1 1
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2
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x
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x x x x

h h h h h h h h
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x x x x

  

   

   

                                        

                       

                         
1 1

2

1 1

2
2 1 2 1 24 0.

f h h f

x x

f h h f

x x

h h h h
k

x x

 

 

 

         

          

           

 

 
 
Therefore, from the Fact 1, 

 

1 2

2 4

0
q q

Q
q q

 
  
 

 with given L and P. Q.E.D.  
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