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Abstract

The design of highly-sophisticated systems such as electric vehicle (EV) powertrains
often requires knowledge from several engineering disciplines, making it increasingly
advantageous to implement formal, decomposition-based optimization strategies to
facilitate design decisions. In techniques such as Analytical Target Cascading (ATC),
this requires systems to be represented as a hierarchy of interacting subsystems. Such
behavior is formally captured through coupling variables which ensure that the subsystem
design solutions are consistent, or in agreement, with one another. Many times the
coupling variables exchanged among the subsystems are few in number and scalar-
valued, which readily enables the use of ATC. However, other times the coupling
variables may consist of highly-discretized functional data, such as motor performance
curves in EV powertrain design. Because each element within these vector-valued
coupling variables is treated as a decision variable in ATC, the design problem can
become prohibitively large for optimization. Therefore, it becomes necessary to
implement reduced dimension representations of the functional data that enable efficient,
practical design optimization while maintaining reasonable accuracy.

Based on a literature review and some recent work, a method known as proper
orthogonal decomposition (POD) has emerged as a leading candidate for the reduced
representation of coupled, functional data within decomposition-based design
optimization. However, the full capability of this method in terms of dimensionality
reduction and its impact on decomposition-based optimization strategies has never been
explored. This dissertation therefore presents a case study which modifies the tuning
parameter within POD from its nominal value associated with high accuracy and low
dimensionality reduction to progressively lower values and observes its impact on ATC
design solution accuracy and optimization efficiency (runtime). Since the high-fidelity

POD representation yielded the best design solution in terms of accuracy and
Xiv



optimization efficiency, it is concluded that such POD representations are most
appropriate for coupled, functional data within ATC. In particular, it is found that high-
fidelity POD representations possess good accuracy, reasonable dimensionality reduction,
and enhance the functional data consistency among ATC subproblems through additional
degrees of freedom (reduced representation variables) compared to low-fidelity POD
representations, thus leading to fewer ATC iterations and faster runtimes.

Since consistency measures ultimately impact the convergence of ATC, it is
critical to implement an appropriate measure for the coupled, functional data. Because
the literature has not revealed any well-established functional data consistency measure
for decomposition-based design optimization, this dissertation explores the Accuracy and
Validity Algorithm for SIMulation (AVASIM) as an alternative to the “standard” root-
mean-square error (RMSE) metric. After demonstrating the flexibility of AVASIM in
allocating the importance of local versus global functional data accuracy through a
newly-developed generalized formulation, a comparative study is conducted examining
the impact of the RMSE, AVASIM, and generalized AVASIM consistency measures on
ATC performance. The results indicate that the generalized AVASIM consistency
measure is ideal for functional data as it provides a clear indication of consistency and led
to the most accurate design solution in the least amount of time in the case study.
Specifically, the emphasis on the stable global measure within generalized AVASIM
enables it to provide more accurate design solutions using fewer function evaluations.

Finally, it is noted that the reduced representation variables often lack physical
meaning, making the determination of their applicability boundary beyond simple bound
constraints very difficult. This can lead to ill-behaved analysis and optimization, and so
it is necessary to implement an appropriate constraint management technique for the
reduced representation variables. Since the existing penalty value-based heuristic is
inefficient, this dissertation presents an alternative that augments the former approach
with support vector domain description (SVDD) and compares the impact of each
technique on ATC performance. The results indicate that the SVDD augmentation is the
best constraint management approach since it yielded the best design solution in terms of

accuracy and efficiency (including SVDD modeling time). In particular, this method

XV



forces the optimizer to perform more function evaluations in the feasible domain, thus
leading to a higher probability of convergence to the optimal design solution with fewer
overall function evaluations (and hence less runtime) instead of convergence to any

feasible (yet suboptimal) solution.
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Chapter 1

Introduction

Complex design problems are often addressed through a decomposition and collaboration
process. In the development of an electric vehicle (EV) powertrain, for example,
engineers may focus on significant design components such as the battery, electric
traction motors, and belt-drive/gearbox transmission systems. These subsystem designs
may be evaluated on several system-level criteria, including energy -efficiency,
performance, range, power availability, and battery packaging space. It is evident,
therefore, that the design and evaluation of each powertrain component can be a
challenging task to address simultaneously. This may motivate engineers to split the
powertrain design process between two teams: a high-level, system design team that is
responsible for the battery and belt-drive/gearbox transmission systems along with the
selection of motor performance curves such that maximum energy efficiency is achieved,
and a low-level, detailed design team that is responsible for ensuring that the specific
motors selected meet the performance prescribed at the system level. Hence, although
such division of labor may expedite the design process, collaboration is still required in
order to provide a single, realizable design solution that satisfies all criteria.

The implementation of this design process on a practical level can often be
challenging as it requires an iterative communication and decision-making process
between both teams to ensure a feasible, optimal design. One tool that can facilitate this
process is design optimization. Design optimization is the process by which evaluative
criteria and requirements, known as objectives and constraints, are represented through

analytical or simulation-based models and subjected to mathematical programming



techniques to identify an optimal design solution [Papalambros and Wilde (2000)]. This

can be formally written as:

min f(x)
subject to  g(x)<0, h(x)=0

(1.1)

In the above, x is the vector of design (or decision) variables, f'is the objective function, g
is the vector of inequality constraints, and h is the vector of equality constraints.
Formulations of Equation (1.1) that depict the decomposition and collaboration process
involved for design problems such as the EV powertrain are known as decomposition-
based design optimization strategies. These approaches partition system design problems
into subproblems that are decoupled [Tosserams et al. (2006)] and solved individually,
but include additional constraints to ensure that information coupled among the
subproblems (such as the motor performance curves in this example) is consistent, or in
agreement, with one another. Among the most effective decomposition-based
optimization strategies is Analytical Target Cascading (ATC) [Kim (2001); Kim et al.
(2003)], which uses a hierarchical overlapping coordination strategy. As with other
decomposition-based optimization strategies, ATC performs reasonably well when the
coupled information among subproblems is limited to a few, scalar-valued terms.
However, when this coupled information consists of functional data, such as motor
performance curves, these strategies can experience major issues including excessively
long runtimes and/or limited convergence. This dissertation specifically addresses these
issues by investigating efficient representation methods and consistency measures for
coupled, functional data within a decomposition-based optimization framework, such as

ATC.

1.1 Optimization with Functional Data

Optimization with respect to functional data can occur in many applications of
simulation-based design, including automotive, aerospace, and controls-related problems.

In general, functional data are infinite-dimensional design variables that must be

2



represented in some finite form to enable numerical optimization. Because these
functional data are generated by computer simulations, discretization is often used as a
representation technique, transforming the functional data into finite-dimensional design

variables. This can be represented in vector form as

z=fWM=F(z), 25, 2,100 v 2,100 9) (1.2)

where y is the independent variable, z is the dependent variable, ¢ is the number of
discretized points, and F' is some type of interpolation function, such as a lookup table.
The problem with this representation is that it usually requires a large number of
discretized points to ensure a sufficiently accurate representation of the functional data.
In particular, the dimensionality (given by ¢) of these vector-valued variables can become
prohibitively large for design optimization since each discretized point is treated as a
decision variable. This issue is further compounded when these variables exist as
coupled information in decomposition-based design optimization strategies because of
the additional computational overhead already required for such implementations.
Therefore, the functional data discretizations, termed vector-valued coupling variables
(VVCVs) in decomposition-based optimization strategies, must be approximated with
reduced dimension representations that improve optimization efficiency while preserving
reasonable accuracy. The variables that are used within these low-dimensional
representations are referred to as reduced representation variables [Alexander (2008);

Alexander et al. (2009)].

1.2 Reduced Representations of VVCVs

Reduced representation techniques used in decomposition-based optimization strategies
can be broadly categorized according to the manner in which dimensionality reduction is
achieved. The two major classifications are metamodeling and curve-fitting approaches.
Metamodeling approaches achieve dimensionality reduction by developing a surrogate
model of the analysis function that relates a low-dimensional input vector of physical

design variables to the VVCV. For example, rather than using a fine discretization of a
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motor map in design optimization, it may be preferable to create a metamodel of the
simulation that produces this map and use its input variables as design variables instead.
This is only effective, however, if the dimensionality of the input vector is less than that
of the VVCV. It should also be noted that such a reduced representation could be
achieved by directly using the analysis function; however, this would contradict the
motivation for decomposition-based design optimization, and so the metamodel should
be used instead.

Conversely, curve-fitting approaches achieve dimensionality reduction by
establishing a functional representation form and varying a small set of parameters to
approximate the VVCV. An example of this would be the use of polynomial coefficients
in the representation of a dynamic time response history instead of the original,
discretized signal. Like metamodeling approaches, this is only effective if the number of
parameters is less than the dimensionality of the VVCV. Observe that with these
definitions, some reduced representation techniques can be classified as both
metamodeling and curve-fitting approaches. The decision regarding which method to
implement, however, is ultimately dictated by the approach that uses the minimum

number of reduced representation variables.

1.2.1 Prior Work

The published literature on reduced representations of VVCVs in decomposition-based
optimization strategies is fairly limited. Sobieski and Kroo [Sobieski and Kroo (1996)]
experienced reasonable success using Fourier coefficients to represent a lift distribution
generated by an aerodynamics subproblem in the design of an aircraft within a
collaborative optimization (CO) framework. However, there was no clear indication why
this method was sufficient as the paper was primarily focused on demonstrating the
capability of CO. Meade and Kokkolaras [Meade and Kokkolaras (1996)] addressed this
issue from the broader perspective of multidisciplinary analysis in the solution of a
viscous-inviscid-interaction airfoil analysis code. In this case, linear combinations of
quadratic polynomials were used to approximate transpiration velocity vectors exchanged
between underlying coupled analysis functions that were solved iteratively.

Nevertheless, because the dimensionality reduction problem was not the primary focus of
4



the paper, there was limited information regarding the motivation for the selection of the
method. Delagrammatikas [Delagrammatikas (2001)] represented engine torque curves
exchanged between subproblems in a specialized decomposition-based design
optimization strategy for advanced powertrains through a coarse, four-point
discretization. Such an approach was satisfactory but not robust for this study since the
unstable accuracy of the reduced representation had the potential to lead to infeasible or
suboptimal engine designs. Finally, LeGresley and Alonso [LeGresley and Alonso
(2004)] used proper orthogonal decomposition (POD) to represent surface pressure and
structural displacement distributions generated by aerodynamics and structural
subproblems in the optimization of a low-fidelity aeroelastic model within a bi-level
integrated system synthesis (BLISS) optimization framework. Although the authors
produced promising results, they also acknowledged the need to demonstrate the
effectiveness of POD in a more compelling problem that contained higher-fidelity
models.

The motivating design application for this dissertation was the optimization of a
hybrid-electric vehicle (HEV) powertrain system using ATC optimization. In early
unpublished work, it was necessary to reduce the dimensionality of VVCVs associated
with maximum and minimum motor torque curves and power loss maps. Polynomial
response surface approximation [Box and Hunter (1957); Box and Draper (1987);
George and Ogot (2006)] was initially implemented, with the polynomial coefficients
serving as reduced representation variables. However, this was ineffective since many
coefficients were required to produce approximations of reasonable accuracy. A more
heuristic approach involved the use of weight coefficients as reduced representation
variables in the linear interpolation of two distinct “baseline” functions to approximate
the VVCVs. While this technique significantly reduced the dimensionality of the
VVCVs, the accuracy of the new representations was severely compromised. Weight
coefficients were also used as reduced representation variables in the linear combination
of orthogonal functions [Sansone and Hille (2004); Bretscher (2005)] to approximate the
VVCVs. Although orthogonality conditions could not be strictly enforced, this method
demonstrated high capability due to its similarity to POD. Image warping [Glasbey and



Mardia (1998); Stegmann (2001)], which used warping parameters as reduced
representation variables, also demonstrated some capability but possessed challenges in
determining appropriate transformations for the VVCVs. In the end, it was found that
using low-dimensional input vectors to radial-basis function (RBF) artificial neural
networks (ANNSs) [Chen et al. (1991); Demuth et al. (2009)] as reduced representations
according to Kokkolaras et al. [Kokkolaras et al. (2004)] was a reasonable approach due

to its high accuracy.

1.2.2 Recent Work

Because RBF ANNs were an established reduced representation method for VVCVs in
HEV powertrain design and POD demonstrated high potential based on the literature
review, a new study [4lexander et al. (2010a)] was conducted that compared the two
techniques. Specifically, RBF ANNs and POD were used as reduced representations for
VVCVs associated with maximum/minimum motor torque curves and power loss maps
in the ATC optimization of an EV powertrain. RBF ANNSs served as the baseline method
in the investigation since it was previously implemented in two similar studies. Based on
the results, it was found that POD was the better reduced representation technique in this
application. The most significant reason for this assessment was that implementing RBF
ANNSs, which is a metamodeling approach, violated the necessary condition of additive-
separability [Wagner and Papalambros (1993)] for decomposition-based optimization
strategies. This requires that functions, including objectives and constraints, in a system
design problem be expressed as a sum of terms, with each term dependent on disjoint
subsets of design variables. The violation of this property implied that an all-in-one
(AiO) optimization problem formulation should have been used, which was not the goal
of the study. Conversely, POD, which is a curve-fitting approach, easily satisfied
additive-separability within ATC as it used reduced representation variables (POD
coefficients) that were distinct from all other system design variables. In the rare event
that RBF ANNs did satisfy additive-separability, the dimensionality of the reduced
representation would not be guaranteed to be less than the dimensionality of the original
VVCV for every application. POD, however, would always generate reduced

representations with lower dimensionality than the original VVCV by virtue of its
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method. A final limitation of RBF ANNs (assuming additive-separability and
dimensionality reduction were satisfied) was its lack of flexibility in dimensionality
reduction. Regardless of the desired accuracy, the number of reduced representation
variables for RBF ANNs would always be equal to the number of inputs to the network.
The number of reduced representation variables for POD, however, is directly related to a
tuning parameter that trades off accuracy and dimensionality reduction, which would
enable tremendous flexibility.

Although it was acknowledged that the limitations of RBF ANNs could exist for
any reduced representation, it was also observed that metamodeling approaches generally
experience these issues more frequently as they use variables that may not reduce
problem dimensionality and may violate additive-separability. Curve-fitting approaches
were identified as more suitable because they use variables that reduce problem
dimensionality more consistently and are unlikely to violate additive-separability. Of
these latter approaches, POD emerged as one of the most attractive since it utilized data
samples exclusively to determine a functional form of its approximation model, made
limited assumptions regarding the number of reduced representation variables, and used a
relatively limited number of such variables for approximation.

Despite these advantages, there are still two key issues that must be addressed
when implementing POD as a reduced representation. First, more insight is required
regarding the impact of the tuning parameter within POD on the performance of ATC.
As indicated earlier, this parameter balances accuracy with dimensionality reduction of
the POD representation, which enables tremendous flexibility for the reduced
representation of VVCVs. Although it was set to a “nominal” value in this study that
favored accuracy, such an approach may not be appropriate in general as it may limit the
full capability of POD in terms of reduced representation and hence optimization
efficiency. It is posited that as the tuning parameter is adjusted to favor dimensionality
reduction, additional computational savings will be observed via fewer reduced
representation variables; however, this has yet to be demonstrated. Furthermore, while
such an adjustment would reduce the accuracy of the POD representation, it is uncertain

whether this would translate into an inaccurate or suboptimal design solution as ATC



enforces some degree of accuracy through its updated, weighted penalty function. Since
the literature does not currently address this issue for any decomposition-based
optimization strategy, it is necessary that the work in this dissertation resolves this issue.

Another problem that must be resolved is the effective constraint management of
the POD reduced representation variables. Initial optimization runs using POD failed
during this study due to powertrain simulation crashes, and closer inspection revealed
that the POD approximation of the motor maps was inaccurate (Figure 1.1). This in turn
was caused by the optimizer selecting reduced representation variables that were outside
the POD model validity region as shown in Figure 1.2. Hence, the original assumption
that the POD model validity region was defined by simple bound constraints was
incorrect; instead, nonlinear constraints characterized the decision space, which is only
partially seen in Figure 1.2. Because these reduced representation variables lacked
physical meaning, it was challenging to formulate explicit constraints defining the model
validity region. This issue was temporarily resolved by assigning large penalty values to
objective and constraint function outputs that depended on the reduced representation
variables when simulation failure occurred. Such a penalty value-based heuristic was
effective for the non-gradient-based optimizer used in this study as it forced the selection
of reduced representation variables that were within the model validity region. However,
this heuristic was not efficient; it required many ATC iterations that ultimately led to an
ill-conditioned optimization problem and an extensive runtime. The study indicated that
the POD model validity region should ideally be constrained using a more direct
approach that produces explicit constraints in the optimization formulation. This would
facilitate the efficient performance of the optimizer and lead to fewer ATC iterations and
faster runtimes.

Some common methods in the literature, such as probability density-based models
[Tarassenko et al. (1995)] and convex hulling algorithms like Quickhull [Barber et al.
(1996)], were considered as potential direct constraint management approaches but had
significant limitations [Malak (2008)]. The probability density-based models, for
example, generally require large datasets for a good boundary definition; however, the

availability of such data may not always be possible [Malak (2008)]. In the case of



convex hulling, many of these algorithms were not intended for the high-dimensional
datasets that may still be present after using reduced representations such as POD.
Moreover, such datasets are usually non-convex, and so the use of a convex hulling
algorithm could generate boundary definitions that are ill-defined as in Figure 1.2.
However, a method that utilizes support vector domain description [7ax and Duin
(1999a); Tax and Duin (1999b)] and initially explored as part of this dissertation work
[Alexander et al. (2010b)] was suggested as a promising solution to this problem.
Because the work by Alexander et al. was in its preliminary phases, this dissertation must

examine the implications of this approach in a more complete fashion.

150 | & ploss map
—max torque
100 - — Min torque
........... zero torque
50 -
B
z 0
; [0 T e T P PP P S P LT PP TLLLI
g
5 0
= 501
]
§ =50000
2100 L -50000
-150 -
-50000
-200 -
| | | | | | | |
0 100 200 300 400 500 600 700 800 900

Motor Speed (rad/s)

Figure 1.1 POD-Approximated Motor Map at Failed Design Point



Aésuméd POD‘ Domai‘n

300

200

100

-100

zr,max2

-200

LY} °®
° ®e & ®e% ¢ 3
=300 - > .,-:. ..'0.‘ ] o o o |
o 00 o3 o ° °
. o o . ® °en®S o { o ®
-400 - — L] ®p.  o° ° ° ° ° d —
Failed Design Point s oo
Not Attainable) % o ° o°
B e ettt it eIl s Lt St e et e O
-300 -200 -100 0 100 200 300 400 500 600 70
zr,max1

Figure 1.2 POD Model Validity Region for Two Components

1.2.3 Selection Criteria for Reduced Representations

The insights gained from both the prior and current work on reduced representations in
decomposition-based optimization strategies have facilitated the development of slightly
more formal selection criteria than dimensionality reduction and accuracy preservation.
In particular, techniques considered for reduced representation should satisfy the
following criteria:
1. The method should not violate additive-separability in decomposition-based
optimization strategies.
2. The method should require minimal assumptions regarding the functional form of
approximation.
3. The method should require minimal assumptions regarding the number of reduced
representation variables to be used.
Another property that is ideal, but not necessary, is that the reduced representation should
minimize the VVCV dimensionality such that it does not exceed the local design vector
dimensionality in a given subproblem within decomposition-based optimization. As

mentioned earlier, most of these strategies perform well when the number of coupling
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variables is limited, and so the satisfaction of this property would facilitate a well-
conditioned decomposition-based optimization problem. For example, if an ATC
strategy included a subproblem with a 5-dimensional local design vector and a 40-
dimensional VVCV, the reduced representation should contain no more than 5 variables.
Such a condition is problem-dependent, however, and may not always be capable of
being satisfied. Therefore, this property is not strictly enforced in current research.

Upon reviewing the criteria listed above, it becomes evident why POD is among
the leading methods for reduced representation. Additive-separability is rarely satisfied
by metamodeling methods, and so this encourages the exploration of curve-fitting
methods. Common approaches, such as polynomial response surfaces, are eliminated as
they require strong assumptions about the functional form of the approximation (linear,
quadratic, etc.) that are challenging to make when there is significant variation in the
form of the functional data, which is often the case for these design problems. Other
techniques, such as Fourier approximations and image warping, require many
assumptions regarding the number of fitting parameters, or reduced representation
variables, to use, which can add significant offline development time before optimization.
However, as previously indicated, POD constructs unique functional forms (orthogonal
basis functions) for a given problem based on functional data samples and uses only a
single parameter to determine the number of reduced representation variables (POD
coefficients). It is acknowledged, however, that POD may not be the best reduced
representation for every problem application in general. Before this can be reasonably
determined, other important issues, such as the impact of the tuning parameter within
POD and the constraint management of the reduced representation variables, must be
addressed. It is especially critical to note that the latter issue is not limited to POD, but is
relevant to any alternative curve-fitting approach that uses reduced representation
variables that are abstract quantities. Therefore, an appropriate solution to this latter

problem would have broad implications.
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1.3 Accuracy Assessment of Reduced Representations

Another important aspect of reduced representations is their ability to maintain
reasonable accuracy. Although the reduced representation variables are used as decision
variables in optimization, they still must compute approximations of the relevant
functional data that can be utilized to solve the problem accurately. In the case of the EV
powertrain design problem mentioned in this work, this includes motor torque curves,
which are one-dimensional (1D) functional data, and motor power loss maps, which are
two-dimensional (2D) functional data. Error metrics such as the mean-square error
(MSE) or the root-mean-square error (RMSE) have been routinely used to validate these
functional data approximations in the past [Meckesheimer et al. (2001); Mullur and
Messac (2005); Wang and Shan (2007)]. However, the majority of these metrics were
developed for 1D functional data accuracy assessment, and as such, perform well for this
type of data. The suitability and performance of these metrics for higher dimensional
functional data, such as 2D functional data, have been largely unexplored until recent
work undertaken as part of this dissertation effort [Alexander and Papalambros (2010)].
Because the assumptions regarding the functional form and the number of variables for
reduced representations are contingent upon accuracy assessment, the resolution of such
an issue is critical. Moreover, decomposition-based design optimization strategies
require effective consistency measures to assess the discrepancy between coupled
quantities, including functional data, from different subproblems to facilitate
convergence. These consistency measures are based on some type of error metric which
should determine any discrepancy among the coupled quantities in a meaningful and
accurate way. Currently, no well-established consistency measure exists for coupled
functional data within decomposition-based optimization strategies in the literature, and
so the standard practice [Alexander (2008); Alexander et al. (2009); Alexander et al.
(2010a); Alexander et al. (2010b); Alexander et al. (2010c)] has been to use a RMSE
consistency measure. Although this error metric has facilitated the use of decomposition-
based optimization strategies such as ATC in the past, it may not be appropriate for
higher dimensional functional data (such as motor power loss maps) and lacks a clear

definition of consistency among coupled functional data. It is therefore necessary to
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identify a suitable error metric that can validate higher dimensional functional data
approximations generated by reduced representations and support the convergence of
decomposition-based optimization strategies with coupled functional data through a
meaningful consistency measure.

The literature on 1D functional data accuracy assessment through error metrics is
vast. Sarin provides a comprehensive list and description of these methods, along with
key error measures such as magnitude, phase, and shape [Sarin (2008)]. Since this
application deals with the validation of functional data approximations against functional
data from high-fidelity simulations, the phase error measure is not as significant. Instead,
error metrics that are robust and primarily address magnitude and shape error measures
are considered. Vector norms, for example, form the basis of many error metrics, such as
MSE and RMSE, and are relatively simple to use [Sarin (2008)]. Average residuals and
their standard deviations are also straightforward in their implementation, but have the
disadvantage of cancellation for comparisons containing positive and negative residuals
[Sarin (2008)]. The coefficient of correlation and 0™-2"¢ order relative difference of
moments are slightly more advanced than vector norms and, in the absence of significant
phase error, possess effective measures of magnitude error [Sarin (2008)]. Sprague and
Geers’ error metric [Geers (1984); Sprague and Geers (2004); Schwer (2005)] and the
similar Russell’s error metric [Russell (1997a); Russell (1997b)] possess a measure that
specifically addresses magnitude error; however, neither of these metrics can address
shape error. Conversely, the normalized integrated square error [Jacob et al. (2000)]
does possess measures of magnitude and shape error, but cannot account for the shape
error in the overall metric. Dynamic time warping [Keogh and Pazzani (1999); Liu et al.
(2002); Ratanamahatana and Keogh (2004); Fang et al. (2005); Faundez-Zanuy (2007)]
and the Error Assessment of Response Time Histories metric or EARTH [Sarin (2008)]
are advanced methods that effectively measure the magnitude and shape errors, but have
the disadvantage of extensive computational time as they both require the solution of a
dynamic programming problem. Although any of the aforementioned techniques could
be selected for the initial inclusion of 2D functional data accuracy assessment, it is

preferable to start with the simplest meaningful approach to gain some understanding. Of
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particular interest are error metrics that systematically, objectively and efficiently provide
a clear indication of local and global functional data accuracy with respect to preset
thresholds [Sohns et al. (2006)]. With these goals in mind, the metric selected for all
functional data accuracy assessment in this dissertation was the Accuracy and Validity
Algorithm for SIMulation, or AVASIM [Sendur et al. (2002)]. This metric is also
investigated in this dissertation as an alternative for functional data consistency

measurement within decomposition-based design optimization.

1.4 Summary and Overview

This chapter introduced the main research problem in this dissertation, which deals with
the efficient and accurate representation of functional data that are (coupled) decision
variables in a decomposition-based design optimization problem. It also presented the
relevant problem application that will be focused on in this dissertation, which is EV
powertrain design. In addition, reduced representation techniques were discussed, along
with their appropriate selection criteria. This information was used to demonstrate the
motivation for the exclusive use of POD in this work. Finally, the importance of an
effective accuracy assessment tool was explained, and the literature review indicated the
appropriateness of AVASIM as an error metric for functional data.

The remainder of the dissertation will delve deeper into the issues surrounding the
management of VVCVs in ATC. Specifically, three key research questions that will
serve as significant contributions to the research community will be addressed:

1. What effect do assumptions regarding the number of reduced representation
variables have on the performance, including computational efficiency and
accuracy, of ATC?

2. What are effective consistency measures for functional data that are coupled
between design subproblems in ATC?

3. What are effective constraint management methods for reduced representation
variables in ATC?

The first research question is based on an earlier discussion in this chapter regarding the

net impact of the tuning parameter within POD on the performance of ATC. To address
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this issue, a study will be conducted that varies this tuning parameter from its “nominal”
value, which favors accuracy, to progressively lower values that favor dimensionality
reduction (fewer reduced representation variables) while observing the ATC optimization
results. The second research question deals with the issue of assessing the discrepancy
between coupled functional data from various subproblems within ATC in an accurate
and meaningful way as mentioned earlier in this chapter. A comparative study between
an existing consistency measure (RMSE) and AVASIM will be conducted to resolve this
problem. Finally, the third research question addresses the problem of properly
constraining abstract reduced representation variables in an ATC framework as
previously discussed in this chapter. Specifically, a comparative study between an
existing constraint management method (penalty value-based heuristic) and an alternative
that utilizes support vector domain description will be conducted to resolve this issue.

The dissertation is organized as follows: Chapter 2 provides background
information on ATC, POD, and AVASIM; Chapter 3 discusses the EV powertrain
models that will be used in the case studies, which include a small, commercial EV
powertrain and a military light-tactical EV powertrain; Chapters 4, 5, and 6 investigate
the first, second and third research questions, respectively, using the commercial EV
model as a design application; Chapter 7 applies the understanding gained from
addressing the research questions to the more challenging military EV design problem;

and Chapter 8 offers conclusions regarding the original research problem.
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Chapter 2

Background

The preference for ATC, POD, and AVASIM as tools that support EV powertrain design
was discussed in the previous chapter. The details of these methods are provided in this
chapter to facilitate the understanding of relevant case studies later in the dissertation.
ATC is discussed first along with important information regarding the problem structure,
formulation, and coordination strategy. POD is presented next, including the description
of two solution methods based on the number of data samples. Finally, the details of

AVASIM are provided for both 1D and 2D functional data accuracy assessment.

2.1 Analytical Target Cascading

In design optimization, methods that partition complex system design problems into
subproblems and optimize the subsystems while ensuring consistency among their
solutions are known as decomposition-based design optimization strategies. Several
hierarchical strategies, including Sobieski’s framework [Sobieszczanski-Sobieski et al.
(1985)], Cramer’s formulations [Cramer et al. (1994)], and collaborative optimization
(CO) [Braun (1996)], have been developed in earlier work. Among the most effective
decomposition-based optimization strategies is Analytical Target Cascading (ATC). This
method [Kim (2001); Kim et al. (2003)] has attracted much attention due to the intuitive
nature of its hierarchical decomposition and coordination strategy. Furthermore, unlike
its widely-used predecessor (CO), ATC possesses a proven convergence theorem
[Michelena et al. (2003)] which states that its design solution is identical to that of the
corresponding all-in-one (AiO) optimization problem when the consistency among linked

subproblems 1is satisfied exactly. From a high-level perspective, ATC simultaneously
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minimizes performance-related objectives and deviations between design targets
cascaded from upper levels and their realizable responses at lower levels. Optimality is
achieved when the targets and responses are within an acceptable tolerance of one
another.

ATC begins by first decomposing the system into design subproblems, where
typically the top level is referred to as the system level and lower levels are referred to as
subsystem levels (Figure 2.1). Note that a subproblem linked above a given element of
interest is called a parent, and subproblems linked below a given element of interest are
called children. The general ATC subproblem P; for the ith level and the jth element is
defined as [Tosserams et al. (2006)]:

n%inf;j(ig‘j)—’_ﬂ.(c(illa""iNM ))
subjectto g,(X;)<0, h;(X;)=0 2.1)
where Xy =[X;, s L, b € =€ €]

In the above, x;; is the vector of local design variables, t; is the vector of target linking
variables passed from the element’s parent at level (i - 1), r; is the vector of response
linking variables passed to the element’s parent at level (i - 1), ¢;; = t; — r;; is the vector of
consistency constraints between target and response linking variables, f; is the local

objective function, 7 is a penalty function, g; is the vector of inequality constraints, h; is

System Level, i = 1

Subsystem Level, i =2

Subsystem Level, i = 3 j=4 J=5 Jj=6

Figure 2.1 ATC Hierarchical Decomposition [Tosserams et al. (2006)]
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the vector of equality constraints, NV is the number of levels, and M is the total number of
elements. Although t; and r; can include both coupling and shared variables, only
coupling variables are present in the examples in this dissertation. Also, observe that the
consistency constraints, which should be zero for an exact system solution, are relaxed
through 7(c) such that ||[¢® — ¢*)|,, is within some small tolerance before the algorithm
is terminated, where K denotes the iteration number. Among the most effective choices
for ris the augmented-Lagrangian (AL) function, which results in the following general
ATC-AL subproblem formulation for the ith level and the jth element [Tosserams et al.

(2006)]:

min £, (%;) = Vir; + 2 Vation +sz7 o(t; -1y )H2 + ZHWU' © (Eae ~ T )H2
v keCy keCy

subject to g, (X;)<0, h,(x;)=0 (2.2)

where i,-j =[x, T, LTIV t(i+1)k(,/ ]

VRN '

Note that the linear and quadratic terms in the AL penalty function are weighted by the
vectors v and w, respectively.

Figure 2.2 illustrates the information flow for the general ATC-AL subproblem
formulation. The linking variable vectors t; and r(+1y are passed as inputs from the
subproblem’s parent and children, respectively. They are treated as fixed parameters,
while the linking variable vectors r; and t; .y are treated as decision variables, along
with x;;. After the subproblem is solved, r;; and t+1y; are passed back to the subproblem’s
parent and children, respectively, as an indication of the consistency between adjacent
subproblems. With this process defined, the complete algorithm for ATC-AL, which is
known as the “method of multipliers” is as follows [Tosserams et al. (2006)]:

0 0 ).

0. (Initialize): Define decomposed problem and initial solutions x set K=

0; define outer loop termination criterion, &, where € is a small, positive number.

Define vV and w'V.

1. (Inner loop/solve ATC): Set k= x+1. Solve decomposed problem with v**, w®
to obtain new estimates x*, ¥, t®,

18



2. (Convergence check): If outer loop converges (|lc™-¢*V||,, < €), set ¥= K and

stop. Otherwise, proceed to Step 3.

3. (Outer loop/update penalty): Update penalty parameters to v\*™" and w**" with
respective linear updating schemes using Step 1 results:
VED Z g LK) LK) LK)
2.3)

wE D = pw™ ywhere f>1
Return to Step 1.
This algorithm converges assuming that the problem is convex (which is enforced by >

1) and that the sequence of quadratic weight vectors w is non-decreasing.

Inputs (Parameters) Outputs (Variables)

From Parent: Targets t; l | T r; To Parent: Responses
1
I
]

Subproblem P;
x;: Local Variables
J;i Local Objective

g;,h;: Local Constraints

From Children: Responses (i1 T it(,-ﬂ)k To Children: Targets

Figure 2.2 ATC Information Flow [Tosserams et al. (20006)]

The computational efficiency of ATC is often improved by using an inner loop
coordination strategy known as the “alternating direction method” [Tosserams et al.
(2006)], or AD. While earlier coordination strategies required ATC subproblems to be
solved iteratively [Michelena et al. (2003)], this approach requires each subproblem to be
solved only once in the inner loop. The simplest implementation of the ATC-AL-AD
algorithm is to solve each subproblem sequentially starting at the top of the hierarchy and

ending at the bottom. Such an approach enables the efficient solution of a
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decomposition-based design optimization problem while maintaining reasonable

accuracy [Tosserams et al. (2006)].

2.2 Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) is often used in engineering applications as a
model reduction technique to facilitate the analysis, design, and optimization of dynamic,
linear systems. In broader applications, POD is also referred to as principal component
analysis [Ahmed and Goldstein (1975)] or Karhunen-Loeve expansion [Loeve (1945);
Karhunen (1946)]. Mathematically, all of these terms refer to the same linear
transformation method, but with a particular meaning in various fields. POD, in
particular, reduces the state-space representation of dynamic systems according to

[Wilcox (2005)]:

z()~®,z, (1) +7z(1) (2.4)

Here, z(?) is the original state vector of dimension ¢, z(¢) is the reduced state vector of
dimension p << ¢, and ®, is a matrix of the p most energetic basis functions ¢ used to
construct the approximation of the original state vector. The final term z(¢) is the sample
mean vector of dimension ¢ and is used to center the data for the approximation. This
transformation can be applied to the functional data variables in this dissertation by

treating them as state vectors, thus modifying (2.4) by
2~® 7z +7 (2.5)

where z is the original g-dimensional functional data variable, z, is the p-dimensional
reduced representation, and ®, and z have the same meaning as in the state vector
context but applied to the functional data variables. POD ultimately involves the
construction of the full basis function matrix ® based on m samples z; = [z;, z,,..., zq]T

and its reduction by examining the magnitude of its associated eigenvalues. This is
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accomplished by using either the direct method or the “method of snapshots™ [Sirovich
(1987)].
The most efficient approach when ¢ < m is the direct method [Burkhardt et al.

(2003)], which begins by forming the covariance matrix R:

(z-Z)z-zY
m—1

R= (2.6)

In the above, Z is a (¢ x m) matrix containing all the samples of the original functional
data variables and Z is a (¢ x m) matrix of the sample mean vector repeated m times.

Next, a (¢ x g) eigenvalue problem on R is used to construct @,
R® = ®A (2.7)

where A is the diagonal matrix of eigenvalues. Assuming that the basis functions in ®

are arranged according to the magnitude of their associated eigenvalues,
o=lp, ¢, - o 4>4>>4 (2.8)

this matrix is reduced to @, based on the cumulative percentage variation (CPV). The

CPV is a measure of the relative importance of each basis function in ® [Toal et al.

(2008)]:

2k
£ 100> cpy,

goal

(2.9)

=171

Observe that CPV,,, is assigned based on the desired amount of information to be

captured through POD, which is usually 99% [Bui-Thanh et al. (2004)].
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When g > m, the most efficient solution technique [Burkhardt et al. (2003); Lucia
et al. (2003); Wilcox (2005)] is the “method of snapshots™ [Sirovich (1987)]. This time, a

correlation matrix R is generated:

— T —
R=(Z_Z) (z-7) (2.10)
m
From here, the associated (m x m) eigenvalue problem is solved,
RV =VA (2.11)

where V represents the matrix of eigenvectors. The (¢ x m) orthogonal basis function

matrix is constructed from:

®=2v, v, =/fmi ), (2.12)

The above equations demonstrate why this procedure is referred to as the “method of
snapshots”: each basis function is a linear combination of the m sample vectors, or
“snapshots”, of original data [Sirovich (1987)]. Finally, ®, is determined using the same

procedure outlined in Equations (2.8)-(2.9) with g replaced by m.

2.3 Accuracy and Validity Algorithm for Simulation

The Accuracy and Validity Algorithm for SIMulation, or AVASIM [Sendur et al.
(2002)], is an accuracy assessment tool that characterizes the local and global error
between baseline and approximation functional data through 4-norms and residual sums.
Using these measures, error indices are constructed such that nonnegative values denote
valid functional data approximations with accuracy levels between 0 and 1, and all
negative values generally denote invalid functional data approximations. Validity is
defined by functional data approximations that lie within some predetermined threshold
value; therefore, a value of 0 indicates that a functional data approximation is at the
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threshold and valid, whereas a value of 1 indicates that a functional data approximation is

completely accurate.

2.3.1 Algorithm

The algorithm begins by selecting points of interest, known as target points [Sohns et al.
(2006)], from the baseline functional data. These target points are used to calculate the
local error index between the baseline and approximation functional data through an 4-
norm indirectly. In addition, a percentage error tolerance fol; must be assigned to each
target point based on its desired accuracy level. The local error index between the

baseline and approximation functional data for a single target point is therefore

Elocali = 1_ |yl _yi (213)
’ y;tol;

where y; and y; denote target point values from the baseline and approximation functional
data, respectively. Observe that the above formulation degrades when y; < 0 as this
would either lead to division by zero or index values greater than 1. On a practical level,
the division-by-zero issue may be resolved by setting y; = o, where J is a small, positive
number. The index value issue can be alleviated by simply taking the absolute value of
the denominator in Equation (2.13). With these problems addressed, an overall measure

of the local error can be found by averaging Ej,..; for all n, target points:

1 &
Elocal = z Elocal,i (2 14)

n, iz

In the next phase, it is necessary to calculate the residual sum between the baseline and
approximation functional data [Sohns et al. (2006)]. This value is used in conjunction
with another residual sum between the baseline functional data and some threshold

functional data to compute the global error index. The first residual sum is given by
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RS, = [[y(x) = 3(x)|dx (2.15)

where y(x) and y(x) represent the complete baseline and approximation functional data
respectively and X is the domain over which the functional data are defined. Similarly,

the second residual sum is given by

RS =

thresh

|y(x) - ythresh ()C)|dx, ythresh (x) = ay(‘x + b) (2 16)

St

where y.sn(x) represents the complete threshold functional data. It is this residual sum
that sets a maximum acceptable value for the global error. Note that the amplitude
threshold coefficient a and the phase threshold coefficient b help set this value based on

l‘Ol,'Z

base
i

) 2.17)

a=1+min(tol;), b= mitholix

With this definition, the global error index between the baseline and approximation

functional data is given by

wp (2.18)

Egl()bal _1 RSthresh

The combined error index E., is found by simply calculating the arithmetic mean of the
results of Equations (2.14) and (2.18). Typically, E..m» 1s used to gain a sense not only of
the overall error between the functional data but also of whether an approximation is even
valid with respect to the preset tolerances. Such a condition is referred to as a liberal
validity criterion [Sohns et al. (2006)] as it only requires E.,.,» to be nonnegative for valid

curve approximations. Conversely, if it is required that £j,c.; and Egopa (and hence Ecomp)
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be nonnegative, then this condition is known as a conservative validity criterion [Sohns et
al. (2006)].

Alexander and Papalambros [Alexander and Papalambros (2010)] used the
previous equations to extend AVASIM for the accuracy assessment of 2D functional data
by simply modifying the residual sums with double integration. Let z(x,y) and 2(x,y)
represent the baseline and approximation functional data, respectively. Then the residual

sum between the baseline and approximation functional data is

RS,,, = [[|z(x, )~ 2(x, y)|dxdy (2.19)

where D is the domain over which the functional data are defined. Likewise, the residual

sum between the baseline and threshold functional data is

RS, = ”|Z(x, V)= Z gres (X, y)|dxdy, Z e (6, V) =az(x+b,y+c)  (2.20)
D

where a is still the amplitude threshold coefficient and » and ¢ are phase threshold

coefficients for x and y respectively. Note that b and ¢ are determined by:

base
i

base
i

) 2.21)

), c= mitholiy

b =min(rol,x

The rest of the algorithm remains the same, including the meaning of the validity criteria.

2.3.2 Demonstration of AVASIM Capability

In an effort to demonstrate the capability of AVASIM for both 1D and 2D functional
data, the algorithm was applied to the motor maps used in the EV powertrain design
problem. Specifically, approximations for the maximum and minimum torque curves and
power loss maps were validated against their high-fidelity versions using the 1D and 2D
AVASIM formulations, respectively. Since the target points selected in both cases were

merely mesh points describing the functional data, a uniform tolerance of to/; = 0.10 was
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assigned for all points. For similar reasons, the phase threshold coefficients were set to
zero, as in Sohns [Sohns et al. (2006)], as opposed to the methodology described in
Equations (2.17) and (2.21). Additionally, division-by-zero errors were avoided by
setting § = 10™ for the torque curves and & = 1 for the power loss map based on
experience. Finally, note that the number of target points for the power loss map was not
known a priori but rather determined by a subroutine that only included points that were
within the torque curve boundaries. A similar subroutine was used to define numerically
the domain of integration D for the power loss map, which is also within the torque curve
boundaries. The results from AVASIM are shown in Table 2.1, and Figures 2.3 and 2.4
illustrate the accuracy of these functional data approximations visually.

Upon reviewing these results, it is fairly evident that AVASIM reasonably
describes the local and global accuracy of the functional data approximations.
Specifically, it is seen that the conservative validity criterion is satisfied for all
approximations and that the combined error indices for the torque curves and power loss
map estimate accuracies of 76.5%, 96.6%, and 58.4%, respectively. Note that the global
error indices indicate high global accuracies and are consistent with what is seen visually;
however, the local error indices vary significantly and in some cases (e.g., maximum
torque curve and power loss map) suggest lower local accuracies than what is seen
visually. The relative instability of the Ej,., measure is likely due to issues associated
with division by near-zero target points and as such is problem-dependent. However, the
Egiopa1 measure is much more stable, and since global accuracy is often sufficient and
desirable in many engineering applications, this can be of benefit. In particular, one can
leverage this knowledge and modify the AVASIM formulations such that E,,,; is not an
arithmetic mean of Ej,cqs and Egjopq, but rather a weighted sum,

E E (2.22)

= WlocalE i +w

comb loca global ™ global
where Wioear and wyiopa are nonnegative weights whose sum must always equal 1. This
new formulation is referred to as generalized AVASIM [Alexander and Papalambros

(2010)] since it enables users to allocate the importance of each accuracy component
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when computing the combined error index. The work in later chapters will demonstrate

how such flexibility could have important implications when using AVASIM as a

consistency measure within an ATC framework.

Table 2.1 AVASIM Results for Functional Data Approximations

Index Max-Torque Min-Torque Power Loss

Eipcar 0.588 0.969 0.319
Egiopal 0.942 0.963 0.849
Ecomp 0.765 0.966 0.584
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Figure 2.3 Torque Curve Comparison
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Motor Power Loss, Relative Error
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Motor Torque (N-m) 0 Motor Speed (rad/s)

Figure 2.4 Power Loss Map Relative Error

2.4 Summary

This chapter discussed the details of ATC, POD, and AVASIM that are necessary to
comprehend the procedures and results for the case studies in Chapters 4-7. In particular,
a deeper explanation was provided for the selection of ATC as a decomposition-based
optimization strategy, along with its partitioning and coordination approach; two solution
strategies for POD based on the number of samples were discussed; and three
formulations of AVASIM were reviewed, with the capability of the first two formulations
demonstrated through a relevant example. The theory presented in this chapter will be
routinely referred to when conducting studies exploring the use of functional data as

decision variables in a decomposition-based optimization framework.
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Chapter 3

Electric Vehicle Powertrain Models

Electric vehicles (EVs) are increasingly being considered as a viable alternative to
conventional vehicles with internal combustion engines in order to reduce the
consumption of non-renewable energy resources and emissions of greenhouse gases. For
example, by the end of 2010, Nissan will introduce the first large-scale produced EV, the
LEAF, in Japan, the United States, and Europe [Nissan Zero Emission Website (2010)].
The fact that EVs have existed for decades (albeit in a limited capacity) and that mass-
production of such vehicles are emerging as of late only highlights the limited design
experience in this domain. Such disparity of sufficient EV design knowledge makes the
use of simulation-based design software attractive. These tools enable the exploration of
preliminary system design through the proper integration of powertrain components that
meet overall vehicle design targets effectively. Therefore, this chapter describes the
models used to explore the EV powertrain design problem in both commercial and

military vehicle applications.

3.1 Commercial Electric Vehicle Powertrain Model

The commercial electric vehicle powertrain model treated in this dissertation was initially
developed by Allison [A/lison (2008)] in a MATLAB®/Simulink® environment. A general
plan view of the vehicle configuration can be seen in Figure 3.1. The model is for a two-
passenger, mini-compact vehicle designed primarily for urban driving with some
highway speed capability. This classification is evident by the vehicle’s overall
dimensions, which includes a wheelbase of L = 1.80 m and a track width of W= 1.27 m.

The vehicle is powered by a lithium-ion battery energy storage system, which can vary in
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length, width, and longitudinal location relative to the front end of the battery
compartment such that it lies within the dashed region defined by beu. = 1.05 m and
width by, e = 1.20 m. Two electric traction motors drive the rear wheels through a
synchronous belt drive system and are mounted at the pivots on the rear suspension
trailing arms in an effort to minimize the unsprung mass in the system. A MacPherson
strut configuration is used for the front suspension, and finally, low rolling resistance

P145/70R12 tires are used to minimize energy consumption.

available battery space
traction motor

front 1am pulley drive system

Tear tralling arm

e

forward
-#——— direction £ £y
of travel

Figure 3.1 General Plan View of Commercial EV [Allison (2008)]

Because the case studies in this dissertation explore powertrain design
exclusively, several modifications [4lexander (2008)] were made to the original analysis
models within this simulation-based environment. The structural analysis model, for
example, was held constant and thus excluded from the subsequent design problem. The
original powertrain analysis model was decomposed into three separate entities: an

electric traction motor analysis model, a battery size analysis model, and a vehicle-level
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analysis model. Any remaining input/output variables from the original powertrain
analysis model (e.g., suspension variables) that were unaccounted for during
decomposition were treated as parameters for a nominal vehicle design. Finally, a new
analysis model was developed [4lexander et al. (2010c)] to account for motor mass

property changes during design studies. The current analysis models are defined as:

[Zmax’zmin’ZpLoss’ a)max"]r]:fmotor ([s’ m? C’Rr) (31)
[mm9 Iym’ Izm’ ym] = motorMass ([s’ m) (32)
[bl ’ bw ’ mbatt] battStze (BI ’ BW ’ B ) (33)

[m ] I e h bw Vo b ] = fevMasx (xbatt s be H bw s mbatt > M I ]zm H ym ) (34)

m?> = ym?

[mpge’t60’TV’wV’R’PV’Cb]:fv(BI’BW’BL’mbatt’ms’Iyi‘el"”
(3.5)
h,p, .z z Z, @ ,J)

max > “~ min> ™ pLoss * max® < r

Here, the functions f,0/0r, frorormasss Trassizes Levitass, and £, correspond to the electric traction
motor, motor mass, battery size, EV mass, and vehicle-level analysis models,
respectively. The input/output variables for f,,,, include the stack length £, the rotor
radius r,, the number of turns per stator coil n., the rotor resistance R,, the VVCVs
representing the maximum torque curve z,,,,, minimum torque curve z,;,, and power loss
map Zpr.ss, the maximum motor speed @y, and the rotor moment of inertia J,. The input
variables to f,/0r114ss are shared with f,,,.,,, while the output variables include the motor
mass m,,, the motor pitch inertia /,,,, the motor yaw inertia /.,,, and the lateral center of
mass location of the motor y,. Note that f,,muss could be combined with 003
however, it is also desired to keep the model parameters of f,,,, independent of the
vehicle configuration, and so fomuss 18 made distinct from f,,,,, since y,, is vehicle-

dependent. The input/output variables for fj,.si-. are the battery electrode insertion scale
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By, the battery cell width scale By, the number of cell windings B;, the battery length b,
the battery width b,, and the battery mass my,,. With the exception of the battery
compartment clearance xp.y, all of the input variables to f.,u,s are coupled with the
output variables of fyuusize and f,0/0r014ss.  The output variables from f,,y,s are the sprung
mass mj, the sprung mass pitch inertia /,, the sprung mass yaw inertia /., the longitudinal
center of mass location of the sprung mass ¢, the vertical center of mass location of the
sprung mass /4, and the battery width and length packaging constraint violations b,,  and
be,y, respectively. Similarly, all of the input variables to f, are either shared with f5,si.. or
coupled with 510, frausize, and fopuss With the exception of the belt drive ratio p,. The
output variables from f, include the gasoline-equivalent fuel economy mpg,, the 0-60
mph time 74, the motor torque and speed constraint violations 7 and wy, the vehicle
range R, the battery power constraint violation Py, and the battery capacity Cp,, which
indirectly constrains battery cost. Figure 3.2 illustrates the relationships among the
analysis models. Observe that the dashed boxes in the figure indicate the problem

decomposition for ATC design optimization.

Vehicle Subproblem (System)

fevMass

fbattSize

fmotorMass fmoz‘or

Motor Subproblem (Subsystem)

Figure 3.2 Commercial EV Analysis Model Relationships/Problem Decomposition

The remainder of this section presents the details of these analysis models,

including the manner in which the input quantities are used to compute the output
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quantities. As with any optimization problem, a thorough understanding of the modeled

system is essential in order to reasonably interpret results from the design study.

3.1.1 Electric Traction Motor Analysis Model

Electric motors are devices that transform electrical power into rotational mechanical
power through the interaction of their stator and rotor magnetic fields. Because the
current application involves vehicle propulsion, these motors are specifically referred to
as electric traction motors. The main components of electric traction motors are the
stator, the rotor, and the output shaft connected to the rotor (Figure 3.3). The stator
encloses both the rotor and a portion of the output shaft and is usually supplied with
three-phase AC power that corresponds to its three-phase windings [Bose (2002)]. A
rotating magnetic field is generated by the stator when the power is supplied, and this in
turn interacts with the magnetic field of the rotor, causing it to spin. In this work, an AC
induction motor (IM) model is selected, which uses a rotor comprised of stacked iron
sheets inserted with bars of conductive material that are parallel to the output shaft
(Figure 3.3). The electric traction motors are just part of the complete drive system,
which includes a power inverter and a controller. However, these latter elements are

excluded from the model for the sake of simplicity.

stator

output shaft

Figure 3.3 Diagram of Electric Traction (Induction) Motor [Allison (2008)]

33



3.1.1.1 Equivalent Electrical Circuit Model

The behavior of a single phase of the electric traction motor is characterized by the
equivalent electrical circuit model in Figure 3.4 [Bose (2002)]. Here, V; is the AC power
source in terms of root-mean-square (RMS) voltage, L,, is the mutual inductance between
the stator and rotor, R; is the winding resistance of the stator, L;; and L, are the leakage
inductances of the stator and rotor respectively, and R, is the variable electric resistance
through the conductive bars in the rotor. The electromagnetic interaction between the
stator and rotor is modeled by dividing the slip s into R,. Slip, as defined in this model, is
the difference between the rotation of the stator and rotor magnetic fields relative to the

rotation of the stator magnetic field [Bose (2002)]:

5= et (3.6)

In the above, @, denotes the stator supply frequency that determines the rotational speed
of the stator’s magnetic field, and @, denotes the rotor electrical speed that determines
the rotational speed of the rotor’s magnetic field. It should be observed that slip induces
torque [Bose (2002)]. Therefore, when s = 0, the motor produces no torque and achieves
synchronous (no-load) speed, and when s = 1, the motor becomes completely stalled. For
0 <s <1, the output torque increases until it reaches the breakdown torque, after which it

gradually decreases to the stalled condition.

Vi Ly, R,/s _§_

Figure 3.4 Equivalent Circuit Model of IM, Single Phase [Bose (2002)]
34




3.1.1.2 Determination of Induction Motor Properties

The input variables to the electric traction motor analysis model (&, 7, 1., R,) along with
the parameters listed in Table 3.1 are used to calculate important properties of the IM.

The rotor mass, for example, is given by
mr = ﬂ-rri[spfe (3'7)

and is used to compute the rotor moment of inertia, which is one of the outputs of the

analysis model:
J =—"" (3.8)

The torque loss on the output shaft due to friction in the bearings is

z-loss (Jr) = Cm a)m (39)

where ¢, 1s the viscous friction coefficient and @, is the rotational speed of the output
shaft in radians per second. The friction coefficient is a function of J, as given by the

following empirical relation [Allison (2008)]:

. le(l— f";; j+Cm4JV (3.10)

m

The output shaft speed is computed using @, which in turn is found by rearranging

Equation (3.6) in terms of @, and s:

@,y = 0,(1-5) (3.11)
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0, =20,1p (3.12)

Next, the number of stator slots N, the stator windings per phase ;, and the effective air
gap J; (accounting for geometry and slot effects) are found using the following

equations:

N, =2p,qm, (3.13)
Wy =2pgn. (3.14)
8, =0.06r, —0.0025 (3.15)

In the above, p; is the number of pole pairs in the stator, which is half of the number of
stator poles p. Using these values, the mutual inductance can be calculated as [Amin

(2001)]:

6u,Wr, [
= (3.16)
Tp,o

g

Lm

The stator leakage inductance is estimated using the following empirical relationship

derived by Allison [A4/lison (2008)]:

0.05
L, :Lm(0.07——1+e(5_0_[s/rm)/2] (3.17)

It is assumed that the rotor leakage inductance is equal to the stator leakage inductance,

which results in a total leakage inductance of:

L =L +L, =2L, (3.18)
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From here, the winding radius of the stator is calculated, assuming that the outer stator

radius ryis proportional to the rotor radius by a factor ¢, [A/lison (2008)]:

nn \r’—r non (¢ +1) -1
Vw a“p\s m :rm a p(( K ) ) (319)
wWim, wim,
The total winding length is:
[, =2LW, (3.20)

Using these latter two properties, the stator winding resistance can be expressed as:

R — kepcu[w (321)

s 2
r,

Finally, the maximum stator current /;, of the IM has been fit to the following quadratic

model [4llison (2008)]:
I, =C,+C,d, +C,d: (3.22)

Observe that in the above expression, d,, represents the winding diameter of the stator in

millimeters and is given by d,, = 20007, .
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Table 3.1 Estimated Values of IM Parameters for Commercial EV [Allison (2008)]

Parameter Description Value
Vem Maximum stator voltage 460 V
)% No. of stator poles 4
q No. of slots per phase per pole 3
my No. of motor phases 3
Ovr Rotor yield stress 300 MPa

v Rotor Poisson ratio 0.30
SF Rotor safety factor 4
Winy Maximum inverter frequency 1510 rad/s
Pre Iron density 7870 kg/m’
Coni 1** ¢,, parameter 0.062
Coo e parameter 0.998
Chs 3" ¢,, parameter 0.94
Cona 4™ ¢, parameter 0.0513
Ny Slot volume ratio 0.8

n, Wire packaging ratio 0.5

t Stator radius proportionality factor 0.3

k. End effect ratio 1.5
DPeu Copper resistivity 1.72 x 10® O-m
Cu Constant /;,, parameter 0.0564
Cp Linear [, parameter -0.0237
Cp Quadratic I, parameter 2.21

3.1.1.3 Development of Induction Motor Performance Curves

The IM performance curves include maximum and minimum torque curves and a power
loss map that are initially generated by calculating the breakdown torque and power
requirements at non-uniformly-spaced points in a torque-speed coordinate system. These
calculated values are then used to interpolate the final performance curves as denoted by
Zmaxs Zmin, A0d Z,1 05 OVer a prescribed, evenly-spaced mesh [Allison (2008)]. Because the
torque curves set physical boundaries on the operating conditions of the motor, they must
be generated first. Figure 3.5 illustrates some typical characteristics of these curves as
well as the motor behavior within their specified boundaries. Note that the developed

torque 7, does not include mechanical losses; therefore, the stator supply frequency .,
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also known as the stator electrical speed, is shown in the figure instead of the output shaft
speed @,. The region between the maximum torque curve 7., and the @.-axis denotes
the forward motoring operating condition, whereas the region between the minimum
torque curve 7.,z and the w,-axis denotes the forward regeneration operating condition
[Bose (2002)]. During forward motoring, the IM functions as a true motor, with @,
lagging @, to produce positive slip. Conversely, during forward regeneration, the IM
functions as a generator, with @, lagging @, to produce negative slip. The reverse
motoring and reverse regeneration operating conditions are excluded since only forward

drive cycles are used in the design studies.

. A . . .
“ T Constant flux region Flux weakening region

<
L]

v

l
Tem

Forward Motoring

Increasing s
Constant Vy/ @,

v

. o,
Decreasing s ‘

Constant Vy/ w,

Forward Regeneration

TemR

Figure 3.5 Typical IM Maximum/Minimum Torque Curves [Allison (2008)]

The maximum and minimum torque curves are generated by calculating their

respective breakdown torques 7., and 7.,z at all mesh points corresponding to ,:

2
r =3P Ve (3.23)

" b, VR +@’L; +R,
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2
;=3P /s (3.24)

emR
4o, R’ +w’L} —R,

Although the above equations do not include mechanical losses, the net breakdown
torques Temper = Tem - Toss ANA Temrnet = Temk - Tioss A0 account for these losses and are
reflected in z,,,, and z,,;,. Since it is known that the stator magnetic flux is proportional to
the ratio Vy/ @, [Bose (2002)], the torque curves can be divided into a constant flux sub-
region and a flux weakening sub-region (Figure 3.5). In the constant flux sub-region, the
ratio Vi/w, is given by a constant C;, which yields nearly constant net breakdown torque.
Such a condition is limited only by the relatively small frictional losses that increase with
speed as indicated in Equation (3.9). However, in the flux weakening sub-region, the IM
operates at maximum stator voltage V, and the ratio Vy/w, decreases as @, increases
(since Vs = V). This results in decreasing breakdown torque during forward motoring
and increasing breakdown torque during forward regeneration.

The speed at which these two sub-regions are divided is known as the base speed
p. Physically, this corresponds to the speed at which the stator current /; attains its
maximum value [, (as given by Equation (3.22)) when Vs = V,. It is also used to
compute the flux constant C; and to obtain a linear relation for Vs in the constant flux
sub-region such that the net torque remains constant. The base speed is determined
numerically through a root-finding procedure (@, = {@. | f (®.) = I(@.) — I, = 0}) that
requires the calculation of the stator current. This is determined through circuit analysis
of Figure 3.4, which in turn requires the calculation of total circuit impedance. First, the

impedance of L,, is given by

Z =JjL,o, (3.25)

where j =+4/—1 denotes the imaginary number. The equivalent impedance of Ry, L, Le,

and R,/s in series is:
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Z,=(R,+R,/s)+ jo,(L, +L,) (3.26)
Because Z; and Z; are in parallel, the total circuit impedance Zr is calculated as:

_ ZIZZ
Z,+7Z,

(3.27)

T

Finally, the stator current is calculated by taking the magnitude of Z; and dividing it into

the stator voltage:

I = (3.28)

Therefore, the base speed can be obtained by solving @, = {@. | f (@) = I @) — Lyn = 0}
for Vs = Vs, in Equation (3.28) and s = s, in Equation (3.26), which is the slip at

breakdown torque:

o =B (3.29)

m 2 272
VR + o) L

Observe that Equation (3.29) applies for forward motoring; for forward regeneration, a
negative sign would need to be included. The base speed enables the direct computation

of the flux constant C; [Bose (2002)]:
C =V, o (3.30)

Additionally, @ is used in the development of a linear relation for V in the constant flux

sub-region,
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o \V, =V
VS: e( sm adj +Vadj
y,

(3.31)

where V4 is a voltage adjustment coefficient that is determined numerically through a
root-finding procedure. In particular, Equation (3.31) is substituted into Equation (3.23)
for the breakdown torque 7., at a fixed @, < @y, which must be matched to the net
breakdown torque 7., at @w. = @y and Vi = Vg, to ensure constant net torque in the
constant flux sub-region. The voltage adjustment coefficient V) for the maximum torque
curve is then defined as Vy = (Vg | f (Vad) = Tem(Vagj) — Temner = 0}. A similar procedure
is followed for the voltage adjustment coefficient Vz for the minimum torque curve.
After constructing the torque curves through their net breakdown torques, the
power loss map can finally be constructed. This requires intermediate calculations of the
total circuit impedance, stator voltage, and stator current as described in Equations (3.26-

3.28) and Equation (3.31) for the constant flux sub-region:

0"<w,<w,, 0" <s<s, (forward motoring) (3.30)

0" <w,<w,, 0 >s>-s,  (forward regeneration) (3.31)

m

Note that the superscript plus and minus signs indicate values slightly above and below
zero, respectively, to avoid numerical issues. The power losses are computed as power

input requirements to the IM [Bose (2002)]:

P, =mIV, cos(£Z,) (3.32)

m

In this equation, the cosine of the angle of Z; denotes the power factor, which accounts
for the effects of the inductive elements on power consumption. For forward
regeneration, observe that P;, is negative and denotes power output capabilities. The

power losses are calculated in a similar fashion for the flux weakening sub-region
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N .
0, <0, L0,,,., 0 <s<s  (forward motoring)

0, <0, <0,,., 0 2s>-s,  (forward regeneration)

(3.33)

(3.34)

with the exception that the stator voltage is a constant V; = V,, and hence does not need

to be computed. Note that the upper bound on the electrical speed @, mqx 1s “sufficiently

large” [Allison (2008)] and is determined empirically. Figure 3.6 shows a sample motor

map, complete with torque curves and power loss isocontours, for the IM.

< T&ED ploss map
100 - 40000 max torque
min torque
........... zero torque
20000
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B 10000
z
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S 0 0
S -10000
S so} +10000 -20000
-20000
-100 -
-40000
-150 = —
1 1 1 | 1 1 L
0 100 200 300 400 500 600 700 800

Motor Speed (rad/s)

Figure 3.6 Sample Motor Map for IM

The final output from the electric traction motor analysis model is the maximum

motor speed @y,y. For a given motor design, @, is determined by one of the following

three criteria:

a)max] = {a)m | Tem,net (a)m) = O}
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8oy,
w = z 3.36
e \/SF rnf P (3 + V) ( )

wmax.? = 2a)inv /p (337)

The first criterion @pgy; indicates that @, is limited by motor viscous drag and
corresponds to the speed at which the maximum torque curve intersects the @,-axis. The
second criterion @y, indicates that @, 1s the speed beyond which the structural
integrity of the motor would diminish. The last criterion @, indicates that @, is the
speed beyond which the power inverter would be incapable of supplying a higher
electrical frequency. Therefore, @, is selected as the minimum of these three criteria
[Bose (2002)].

Another quantity of interest that is generated by the electric traction motor
analysis model but is not used in this work is the efficiency map. In the forward
motoring operating condition, the efficiency map is constructed by calculating the motor
power output P,,, over the speed and slip domains given by Equations (3.30) and (3.33)
and dividing it by P,

n=~P_ /P (3.38)

out in

The same procedure is performed in the forward regeneration operating condition over
the speed and slip domains given by Equations (3.31) and (3.34), with the exception that
the numerator and denominator in Equation (3.38) are switched. The power output is
simply the product of the net developed torque 7, ,.r = 7. — 7sss and @,,, which involves an

intermediate calculation of the developed torque:

3pR v?
7 =P - (3.39)
25w, (R, +R. /s) +w’L
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Hence, the efficiency map can be generated with the power loss map concurrently.

3.1.2 Motor Mass Analysis Model

The motor mass analysis model is based in part on a model by Cuenca, Gains, and Vyas
[Cuenca et al. (1999)] and was updated using scaled estimates for a similar motor type at
Raser Technologies, Inc.’s corporate website [Raser Technologies, Inc. (2010)]. This
was necessary in order to properly reflect current mass-reducing technologies. Because
the updated model indicates that the ratio between the rotor mass m, and the total mass
my, 1s approximately 0.90, the motor mass can be computed simply by dividing this ratio

into the rotor mass as given in Equation (3.7):
m, =m,/0.90 (3.40)

Continuing with the assumption that the motor can be approximated geometrically as a
solid cylinder, the motor pitch inertia /,,, and the motor yaw inertia I.,, can be calculated

as
[ = m (3.41)

:mm(3r]\24 +[A24) (3.42)
12 '

where the y-axis is parallel to the output shaft, the z-axis is perpendicular to the output
shaft, and r), and {4, refer to the overall motor radius and length, respectively. These

intermediate quantities are estimated as the following:

ry, =1.9r, (3.43)
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[, =2L, (3.44)

Finally, the lateral center of mass location of the motor y,, (accounting for the clearance

between the motor and the tire) is calculated as
[
V. = % _ [7M ; 0.1524] (3.45)

where W = 1.27 m is the track width of the vehicle.

3.1.3 Battery Size Analysis Model

The battery size analysis model is part of a simulation-based battery model for a lithium-
ion battery chemistry that represents the energy storage system (ESS) for the EV.
Specifically, this ESS harnesses electrical energy through a chemical reaction process and
uses it for vehicle propulsion. Critical auxiliary functions, such as power steering and air
conditioning, are also powered through the ESS [A4/lison (2008)]. The complete battery
model has been developed by Han [Han (2008)] based on the work of Doyle, Fuller, and
Newman [Doyle et al. (1993); Fuller et al. (1994)] and is dynamic to account for changes
in the state of charge (SOC) as well as charging and discharging limits during simulation.
In this section, only the physical characteristics of the battery, such as the length, width,
and mass, are addressed; the performance-related characteristics will be discussed later in
the vehicle-level analysis model as they directly impact its output quantities. All
characteristics, however, are determined by battery design variables that are geometric

scaling factors of battery cell components.

3.1.3.1 Battery Model: Physical Characteristics

The battery model consists of two battery pack pairs, with each pair containing battery
packs placed in series. The battery pack pairs themselves are placed in parallel. Each
pack consists of four battery modules placed in series, and each module consists of
twelve battery cells placed in series [Allison (2008)]. Within these cells, a chemical

reaction between the positive and negative electrodes occurs, which yields electrical
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energy [Scrosati (1992)]. Figure 3.7 shows a typical cell cross-section as well as its

overall dimensions qualitatively.
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Figure 3.7 Typical Flat-Wound Lithium-Ion Battery Cell [Han (2008)]

It should be observed that the rate of the chemical reaction in the separator is
significantly affected by the material composition of the battery and the cell geometry.
Assuming that the material composition in this model is fixed, it is possible to
characterize changes in the battery’s electrochemical process as well as its physical size
through scaling factors of cell geometric-related variables [Allison (2008)]. The battery
electrode insertion scale Bj, for example, determines the thickness of the electrodes and
the separator. The battery cell width scale By determines the electrode and cell width as
defined by Figure 3.7. Because the battery is mounted transversely in the EV, this
variable ultimately affects the overall battery length be. The final input variable B,

determines the number of windings, or folds, within the cell. This variable, along with
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By, affects the overall battery width b,,. Only the cell height remains constant, which
ultimately translates to a fixed overall battery height of 11 cm [A4/lison (2008)].

3.1.3.2 Overall Battery Size and Mass

In an effort to minimize computational expense, three RBF ANNs based on a hybrid
pulse power characterization (HPPC) test [PNGV Battery Test Manual Revision 3 (2001)]
within the complete battery model have been developed and used to evaluate the battery
pack width, length, and mass as a function of the input variables B;, By, and B;. After
these quantities have been obtained for a single battery pack, the overall battery length,
width, and mass can be determined as [A4/lison (2008)]

be = 2fpackWidth (BI’BW’BL) (3.46)
bw = 2fpackLength (Bl > BW > BL ) (347)
mbatt = 4fpackMass (BI ’ BW 2 BL) (348)

where foackwidn, fpackLengih, a0 frackmass are the RBF ANNs associated with the battery pack
width, length, and mass. The coefficients in the above equations are based on the fact
that the length of the battery is equivalent to the width of two battery packs, the width of
the battery is equivalent to the length of two battery packs, and the mass of the battery is
equivalent to the total number of battery packs, which is four [4llison (2008)].

3.1.4 EV Mass Analysis Model

The vehicle configuration in Figure 3.1 along with the model parameters listed in Table
3.2 provide the basis for the EV mass analysis model. In particular, the model parameters
are estimated using a comparable size commercial vehicle known as the Smart Fortwo
[Smart USA (2010)]. Note that some of the entries in Table 3.2 are termed “baseline”
parameters, which indicates that they correspond to a Smart Fortwo vehicle that excludes

the mass of the (conventional) powertrain, fuel tank, chassis, and frame. Therefore, the
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overall EV mass and related properties are computed using these baseline parameters
along with the remaining model parameters and input variables that account for the mass
of the EV powertrain (battery and motors) as well as its frame. Finally, observe that all
longitudinal positions in the model are measured relative to the front axle, all vertical
positions are measured relative to the ground, and all lateral positions are measured

relative to the vehicle centerline.

Table 3.2 Estimated Values of Commercial EV Mass Analysis Model Parameters

Parameter Description Value
mp Baseline vehicle mass 423 kg
t, Baseline vehicle longitudinal com location  0.935 m
hy Baseline vehicle vertical com location 0.610 m
Ly Baseline vehicle pitch inertia 268 kg-m’
Ly Baseline vehicle yaw inertia 829 kg-m2
mp; EV frame mass 295 kg
(7 EV frame longitudinal com location 0.886 m
hy EV frame vertical com location 0.632 m
Ly EV frame pitch inertia 392 kg-m’
L EV frame yaw inertia 447 kg-m2

bt max Maximum allowable battery length 1.05m
by, max Maximum allowable battery width 1.20m
by Battery height 0.11m
Coarte Distance to front of battery compartment 0.49 m
Rbar Battery vertical com location 0.355m
[/ Motor longitudinal com location 1.50 m
o, Motor longitudinal com location 045 m

The mass of the EV supported by its suspension, also known as its sprung mass

my, 1s simply the sum of the baseline, frame, battery, and motor masses:

mg=m, +mg, +m,, + 2m,, (3.49)

The associated longitudinal and vertical center of mass locations are
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el :mi(mbeb +mfrejr +mbattebatt +2mmem) (350)

s

+2m,h,) (3.51)

batt

I R
- |

where the battery longitudinal center of mass location &, is determined from:

¢

batt

=

battc

+x,,, +b,/2 (3.52)

Using the results from Equations (3.50)-(3.51), the EV pitch and yaw moments of inertia
can be obtained by computing the corresponding moments of inertia of the baseline
vehicle, frame, battery, and motors about the EV center of mass and adding them
together. This is accomplished through the well-known parallel-axis theorem [Cook and
Young (1999)]. Therefore, the pitch and yaw moments of inertia of the baseline vehicle

about the center of mass are:
Ly =1, +m, (6, —€) +(, 1)) (3.53)
Lo =Ly +m, (6~ 6 ) (3.54)
Similarly, the pitch and yaw moments of inertia of the frame about the center of mass are:
L ijpcom =1Lyt ((efr _’3)2 + (hfr _h)z) (3.55)

L pcom =1 101, (eﬁ- -6 )2 (3.56)

An intermediate step involving the estimation of the pitch and yaw moments of inertia of

the battery about its own center of mass is necessary before performing similar
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calculations about the EV center of mass. Due to its rectangular geometry, these

moments of inertia are computed as:

1

ybatt = Embatt (blz + bZ ) (357)
1 2 2

zhatt E mbatt (bﬁ + bw) (358)

The pitch and yaw moments of inertia of the battery about the EV center of mass are:

beatt,com = [ybatt + mbatt ((ebatt - el )2 + (hbatt - h)z) (359)

2
Izbatt,com = Izbatt + mbatt (ebatt - el ) (360)

Likewise, the pitch and yaw moments of inertia of each motor about the center of mass

arc:
Iym,com :Iym +mm((em _el)2 +(hm _h)z) (361)

[zm,com = [zm + mlﬂ ((em - el )2 + yj’l) (3'62)
Finally, the EV pitch and yaw moments of inertia can be calculated as:

I =1

¥y yb,com

+1 +1 +21 (3.63)

yfir,com ybatt,com ym,com

I =1 +7 +7

z zb,com zfir,com

+21 (3.64)

zbatt ,com zm,com
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The last two outputs of the EV mass analysis model are the battery packaging constraint

violations b,, y and by, which are given by [Allison (2008)]:

=b, b, (3.65)

b, =x,,, +b, —b (3.66)

¢,max

3.1.5 Vehicle-Level Analysis Model

The vehicle-level analysis model uses two powertrain simulations followed by two
battery simulations to estimate vehicle range, acceleration performance, and energy
efficiency for the EV [Allison (2008)]. Additionally, these simulations facilitate the
computation of constraints related to motor torque and speed capability as well as battery
power capability and cost. Because there is no feedback between the powertrain and
battery simulations, they can be executed independently. This model simplification
allows for significant computational efficiency [Allison (2008)]. Because several
modifications to the powertrain simulations have been made since the first version of this
model, these simulations are described in detail in this dissertation. The battery
simulations, however, are discussed from a high-level perspective but can be reviewed in

more detail in Han [Han (2008)].

3.1.5.1 Powertrain Models

The powertrain simulations have been developed in Simulink® and consist of several
submodels that are linked together in both backward-looking and forward-looking
models, respectively. The backward-looking model uses a prescribed drive cycle along
with analysis model input variables and parameters to predict motor torque, speed, and
power requirements at each simulation time step. Motor constraint violations can then be

evaluated using these requirements:

z-V = max {Tm (t’ a)m ) - z-em,net (a)m )’ 2-emR,net (a)m ) - Tm (t’ a)m )} (367)
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0, =0,(1)-0,, (3.68)

The motor power requirements, however, are passed as inputs to a battery simulation that
facilitates the vehicle range estimation. The forward-looking model uses the same
submodels, input variables, and parameters but instead predicts the 0-60 mph acceleration
time 750 by linearly increasing the velocity of the vehicle from zero at # = 0 to 60 mph
(26.8 m/s).

Figure 3.8 shows a block diagram of the backward-looking powertrain model,
which includes the input drive cycle. The drive cycle selected for the commercial EV
powertrain design studies is the simplified federal urban drive schedule (SFUDS), which
is a shortened version of the federal urban drive schedule (FUDS) [Larminie and Lowry
(2003)]. Despite the differences in duration time (360 seconds for SFUDS, 1500 seconds
for FUDS), both drive cycles possess the same average speed and maximum

acceleration/braking values. A depiction of the SFUDS profile is shown in Figure 3.9.
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Figure 3.8 Block Diagram of Powertrain Simulation Submodels for Commercial EV
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Figure 3.9 SFUDS Profile

Because the same submodels are used in the forward-looking powertrain model,
the block diagram of this simulation is excluded. However, both simulations use the
same model parameters as listed in Table 3.3. The remainder of this section describes

each submodel for both simulations along with any associated assumptions.
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Table 3.3 Estimated Values of Powertrain Model Parameters for Commercial EV

Parameter Description Value
Mys Unsprung mass 154 kg
Cs Suspension damping per wheel 800 N-s/m
ks Suspension stiffness per wheel 16000 N/m
L Wheelbase 1.80 m
Cq Drag coefficient 0.30
Ar Frontal area 1.70 m*
o Air density 1.20 kg/m’
P Pulley radius, wheel side 0.16 m
L Tire/wheel assembly spin inertia per axle 0.72 kg-m”
C, Tire rolling resistance 0.0069
Cu Constant 7, parameter 0.240
Ci Linear r, parameter 2.57x 107
Ci Quadratic r; parameter 2.55x%x10°
P Accessory power load 750 W

3.1.5.1.1 Aerodynamic Drag Submodel

The aerodynamic drag force that the vehicle must overcome is proportional to the square

of its speed and is given by:

F,(0)=3Cop A, (1)’ (3.69)

3.1.5.1.2 Tractive Force Submodel

The tractive force of the vehicle is the total effort required to move the vehicle at any
given instant during the drive cycle. It also represents the total force that the motors must
provide (through torque relationships) to achieve vehicle propulsion. Because it is
assumed that the vehicle can be characterized through a lumped parameter model, the
tractive force of the EV is simply the sum of its inertial force as well as its aerodynamic

and tire drag forces:

F,,(t) = mv(t) + F, () + F, (¢) (3.70)
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In this equation, my denotes the total vehicle mass, which is the sum of the m, and m,;,
and F(t) denotes the total tire drag force, which includes rolling resistance and inertial
effects [Larminie and Lowry (2003)]. The latter term is the sum of its front and rear

components Fy(¢) and F,(¢) as indicated in Figure 3.8.

3.1.5.1.3 Drive Torque Submodel

Using the result from Equation (3.70), the total drive torque can be calculated as

7,(t) = F,, (O)r,(v(1) (3.71)

where r(v(f)) is the dynamically-loaded tire radius. This quantity is estimated
empirically through a second-order polynomial model based on a fictitious, low rolling

resistance tire that is appropriate for this type of vehicle [4/lison (2008)]:

() =C, + Cpy(t) + Cpv(t)° (3.72)

3.1.5.1.4 Net Rear Longitudinal Force Submodel

The net longitudinal force on the rear tires is required as an input to the vehicle pitch and
rear tire drag submodels. This quantity is simply found by applying force balance on the

rear tires:

E. () =F,O-F, ) (3.73)

3.1.5.1.5 Vehicle Pitch Submodel

Since the vehicle pitch motion is dynamically coupled with several intermediate
quantities used in the powertrain simulation, a submodel has been included to capture this
behavior [Allison (2008)]. Figure 3.10 shows the two degree-of-freedom (DOF) model
that provides the basis for the vehicle pitch submodel. Specifically, the vehicle pitch
motion is characterized by its vertical displacement z(¢) from the static, vertical center of

mass location /# and its pitch angle 6,(f). The key intermediate quantities that are
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necessary for other submodels are the front and rear suspension forces Fy(¢) and F.(?).
These forces account for both stiffness and damping effects in the suspension. Finally,
note that ¢, = L - {; is the longitudinal distance from the center of mass location to the rear

axle.

static height of

mass center

F‘i"}':-
Figure 3.10 Two DOF Vehicle Pitch Model [Allison (2008)]

Four linearized equations of motion are used to define the dynamic behavior of

this system. These equations have been put into state space form, where the states

include z(¢), A7), (¢), and 6(¢):

0 0 1 0 ] -
20 k f0+ ko bk, ’ 4, o /.O+ e b, ! be, () 0
oo\ - - - Ol 0 | 3.4
%(t) " 2 & 2 s 2 & 2 Z..(t) M,®
o(t) bk, —bk, B bk +6k, Ge, —be, B be +bcs | o0 /
L ]}’ Iy 1," Iy J - b

In the above, kr = 2k, and k. = 2k are the front and rear suspension stiffness coefficients,
while ¢,= 2¢, and ¢, = 2¢; are the front and rear suspension damping coefficients. The net
rear longitudinal force is the input to the vehicle pitch submodel by way of the

normalized pitch moment M,(¢)/1,:

58



M, ()1, =F, t)h+z0)/1, (3.75)

Note that the above equation produces an algebraic loop in the state space model as the
full description of the system input (M,(¢)/],) is a function of the state variable z(%).
Finally, the outputs of interest, F(¢) and F,.(¢), are obtained by [A4//ison (2008)]:

F.(t)==2k, (z0)+6,0)¢ )+ ¢, (2 +6,0)¢)) (3.76)

()= -2k, (z()- 6,008, )+ ¢, ()-8, ()e,) (3.77)

3.1.5.1.6 Tire Drag Submodel

The tire drag forces account for rolling resistance and inertial forces that must be
overcome for vehicle propulsion. In an effort to eliminate an additional algebraic loop, it
is assumed that the angular velocity and acceleration of the front and rear tire/wheel
assemblies are equal. This implies that the inertial forces, termed spin inertias, can be
expressed in terms of the linear velocity v(f). Therefore, the front and rear tire drag

forces can be computed as

I,
F, C, + 3.78
7 (O =F.() OO () (3.78)

1,
F_()C +——— 3.79
E,0)=F.@) - () v(?) (3.79)

where the rolling resistance and spin inertia are given by the first and second terms,

respectively, in each equation.

3.1.5.1.7 Rear Tire Slip Submodel
The rear tire slip submodel accounts for differences between the rear tire angular velocity

@,(t) and the ratio v(¢)/r(v(f)) so that the motor speed requirements @,,(t) can be properly
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determined in the belt drive submodel. In particular, these differences are characterized
through the tire slip 7, which varies from zero when v(¢) = @.()r{(v(¢)) to 1 when v(¢) = 0

[Wong (2001)]:

W(?)
=1l-— 3.80
o, (O)r, (1)) (350

Note that the above definition poses challenges for determining the slip under braking
conditions. Therefore, a linearized, inverted model based on Equation (3.80) is
constructed such that i is zero when w.(¢) = v(¢)/r(v(¢)) and -1 when w.(¢) = 0 [Allison

(2008)]:

()i +1)
ahg)__ZEXBT_ (3.81)

This model is more useful as it directly predicts @,.(¢) as a function of i. However, i must
be known in advance, and this is accomplished through a lookup table based on empirical
tire data that uses F.(f) and F,.(f) as inputs. Figure 3.11 displays the relationship

between these forces and slip for the tires used on this vehicle.
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Figure 3.11 Tire Slip Data for Commercial EV [Allison (2008)]

3.1.5.1.8 Belt Drive Submodels

The net motor torque and speed requirements are determined through the belt drive
submodels. It is assumed here that grooved H pulleys are used within the synchronous
belt drive system and that the belt compliance is negligible [Allison (2008)].
Additionally, power transmission is idealized to be 100%, yielding the following belt

drive relationships:

o _ 7,0 0,0

rpi 2-m,net (t) a)r (t)

P, (3.82)

In the above, r,, is the driven pulley radius, 7,; is the drive pulley radius, and z,,,.(?) is
the net motor torque requirement (i.e., for two motors). Therefore, rearranging the

expressions in Equation (3.82) yields the following net torque and speed requirements:

Tpna () =7,()/ P, (3.83)
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w,()=o,()p, (3.84)

3.1.5.1.9 Motor Inertia Submodel

After passing 7,,..(f) through a gain of 1/2, the torque requirement for a single motor
7,(?) 1s finally determined in the motor inertia submodel. It should be observed that z,(¢)
is needed instead of 7,,,.(f) because the data used to determine the power requirement
P(t) (Zp10s5) 1s based on a single motor. The motor torque requirement accounts for both
the drive torque and the motor inertial torque that must be overcome to achieve vehicle

propulsion:

do, (1)

- (3.85)

2-m (t) = %Tm,net (t) + Jr

This quantity is used in conjunction with @,(?) to interpolate P(¢) from z,;,s, and P(f) is

doubled to obtain the net motor power requirements.

3.1.5.2 Battery Model: Performance Characteristics

The performance aspects of the lithium-ion battery model are captured through the
following equation, which predicts the net battery voltage v, for a single battery pack
[Doyle et al. (1993); Fuller et al. (1994)]:

Vo =E" =R =R, I (3.86)

net
Here, E” is the battery open circuit voltage, Ry is the cell internal ohmic resistance, R, 1s
the polarization resistance, 1" is the cell load current, and Ipbt is the polarization current.

The open circuit voltage is estimated as

E" =193-50C* —=574-SOC’ +575-SOC?* —170-SOC +193 (3.87)
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where the state of charge (SOC) varies from a maximum of SOC,,,, = 0.95 to a minimum
of SOCy» = 0.30 during the simulations. The cell load and polarization currents are

determined by solving the following differential equation,

d]bl‘ Ibl‘ _]bt
d;’ =(’ - ) (3.88)

p

where 7, is the polarization time constant [4//ison (2008)]. This parameter, along with
Ro, R,, and the battery pack capacity Cppack (Cppack =1/4Cp) is obtained through a hybrid
pulse power characterization (HPPC) test. Based on the HPPC test, it is seen that all of
these parameters except Cpp.x are dependent on SOC. However, closer inspection
reveals that 7, and R, are relatively flat with respect to SOC; therefore, only a single,
scalar value is needed to represent these parameters during the battery simulations.
Because Ry also varies based on charging conditions (discharge/charge), the HPPC test is
performed for each condition to obtain their respective functional data representations
Ry, and Ry, (ohmic resistance-SOC curves). Note that the HPPC test, which is
computationally expensive, is performed for each iteration of the battery design variables
(B1, Bw, Br); therefore, RBF ANNs have been developed to facilitate the calculation of

these parameters during design optimization:

v, =f. (B,.By.B,) (3.89)
Ry, =1 ,(B,.By.B,) (3.90)

R, =f, (B,.B,.B,) (3.91)

R, = f; (B,.By.B,) (3.92)
C,=4C, i =4/, (B,.By,B,) (3.93)
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3.1.5.3 Vehicle Range, Battery Power Constraint Violations, and Fuel Economy

With the powertrain simulations and battery model performance characteristics defined,
the remaining vehicle-level analysis model outputs (R, Py, mpg.) can be calculated. This
first requires the execution of the battery simulations, which have been developed in
Simulink® [Han (2008)]. As discussed earlier, these simulations can be performed after
the powertrain simulations since there is no feedback between them. The battery power
demand simulation takes the power requirements P(¢) from the powertrain simulations
along with the accessory power load P,.. as inputs and satisfies the total system power
requirements Pr(t) = P(f) + P,.. as necessary. It should be observed that this simulation is
performed separately for the power requirements obtained from the backward-looking
and forward-looking powertrain models.

When using the power requirements from the backward-looking powertrain
model, the power demand cycle is repeated until the battery reaches either its discharge
limit or SOC,,;,. The vehicle range R, therefore, is simply the distance d traveled during a
single power demand cycle (which is the distance traveled during the drive cycle)

multiplied by the number of power demand cycles n,,. completed during the simulation:
R= 6.21x10‘4ncycd (3.94)

In the above, the coefficient represents a distance conversion factor from meters to miles.
Because the number of cycles completed is a discrete value that may slightly
underestimate R, this equation is augmented with an interpolation of the distance traveled
over the period of time between the last completed cycle and the end of the battery
simulation,

R=621x10"n.d + F(t,,.d,..d) (3.95)

cye?

where F'is an interpolation function. Figure 3.12 illustrates the behavior of this battery
simulation when using the power demand cycle from the backward-looking powertrain

model. Note that Pr(f) must always lie between the battery discharge and charge limits
64



P,(f) and P(t), respectively, which can be used to define the battery power constraint

violation Py:

B, =max{F.(t) = F,(t), F, (1) = B (1)} (3.96)

However, this constraint is not enforced when using the power demand cycle from the
backward-looking powertrain model since it is dominated by a similar constraint for the
power demand cycle from the forward-looking powertrain model. In addition, it is
assumed that overcharging (Pr(t) < P«(t)) is accounted for through a heat-dissipative
resistor since this behavior is minimal and only occurs at high SOC [A/lison (2008)].
Therefore, Py is only enforced for the discharging limit in the battery simulation when
using the power demand cycle from the forward-looking powertrain model, which is only

executed once.
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Figure 3.12 Battery Power Demand/Capability during Simulation
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Finally, after completing the battery power demand simulations, the battery
charging simulation is performed, which enables the fuel economy of the vehicle to be
determined. This simulation takes the final SOC from the battery power demand
simulation in which R was calculated and is executed until the battery reaches SOC,,,, at
the beginning of the battery power demand simulation. The power demand required from
the electrical grid to recharge the battery P.(¢) is recorded, which enables the energy

requirement to be determined as
t,
E = Iﬂ(t)dt (3.97)
0

where 7, is the recharge time. Observe that E. is also equivalent to the energy consumed
during the vehicle range calculation. Therefore, the gasoline-equivalent fuel economy

mpg. can be approximated as

mpg, =1.317x108E£ (3.98)

c

where the coefficient is an energy conversion factor from Joules to equivalent energy in

gallons of gasoline.

3.2 Military Electric Vehicle Powertrain Model

The military electric vehicle was also developed in a MATLAB®/Simulink”™ environment
and is a light-tactical vehicle (LTV) based on the High Mobility Multipurpose Wheeled
Vehicle (HMMWYV) platform. In this dissertation, however, the military electric vehicle
will be referred to as a LTV instead of a HMMWYV since it is well-known that the U.S.
Army will be replacing the HMMWYV with a new generation LTV within the next five
years [Hodge (2010)]. This new generation LTV is expected to be more fuel-efficient,
mobile, and survivable than the current design. Specifically, this vehicle should achieve

significant range, maneuver well under significant payload and armor, and minimize
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visual/acoustic signatures in the battlefield as well as warfighter injuries from underbody
blast. However, because detailed specifications for such a vehicle are not available,
comparable specifications for the HMMWYV M1025A2 have been used to facilitate the
design studies in this work [AM General LLC (2009)]. A general plan view of the
vehicle configuration can be seen in Figure 3.13. The model is for a four-passenger LTV
that is designed to eventually support convoy escort and urban assault missions; however,
it is recognized that with the current state of EV technology that this vehicle might be
best suited for non-tactical missions, such as base operation. With a wheelbase of L =
3.30 m and an overall width of W, = 2.18 m, this electric LTV still possesses the same
overall dimensions as the HMMWYV. Similar to the commercial vehicle, the electric LTV
is powered by a lithium-ion battery ESS which can vary in length, width, and longitudinal
location relative to the front end of the battery compartment such that it lies within the
dashed region defined by b ey = 1.5 m and width by, ey = 1.82 m. Four electric traction
motors drive each of the wheels through shaft-mounted gearboxes, and design freedom is
enabled such that the front motors and gearboxes can be distinct from the rear motors and
gearboxes. Finally, each gearbox is connected to a geared hub with a ratio of g, = 1.92,
and 37 x 12.5 R16.5 LT load range “D” radial tires with low-profile runflat capability are

used.
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Figure 3.13 General Plan View of Military EV

Because much of the military electric vehicle model is a scaled-up version of the
commercial electric vehicle model, most of the underlying analysis models remain the
same with respect to their input/output variables. The exceptions to this are the vehicle

mass and vehicle-level analysis models, which are redefined as

[ms’ Iy’ Iz’ e[’ h’ bw,V’ bZ,V] = fltvMass (xbatt’ bl’ bw’mbatt’ mmf’ m I

mr 2

R / Y
! o (399)
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Zmax,r > Zmin,r ’ ZpLoss,r > a)max,f ’ a)max,r >

where /155 and £y, correspond to the electric LTV mass and LTV-level analysis models,
respectively. With the exception of the front and rear gearbox ratios g5 and g, all of

the input/output variables for fi,,,s are either identical to those for f,,u,s or have the

same meaning as those for f.uus but applied to the front/rear drive systems as
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appropriate. The same is true when comparing the majority of the input/output variables
for ), with those for f,. The exceptions to this are g, rand g, the 0-50 mph time s, the
battery power constraint violations for the backward-looking and forward-looking
powertrain models Py and Pyso, the vehicle directional stability d;, and the probability of
failing to meet an underbody blast injury threshold Pg;. Note that dy and P are
included in the electric LTV model to address design concerns regarding mobility under
increased mass and survivability from improvised explosive devices (IEDs). Figure 3.14
illustrates the relationships among the analysis models as well as the problem

decomposition for ATC design optimization.

Vehicle Subproblem (System)

fbattSize

Front Motor Subproblem Rear Motor Subproblem

(Subsystem 1) (Subsystem 2)

Figure 3.14 Military EV Analysis Model Relationships/Problem Decomposition

The remainder of this section highlights the modifications of the parameters
within all of the analysis models and describes the more detailed changes within fi,/ss

and f,,.

3.2.1 Electric Traction Motor Analysis Model

All of the parameters and equations for determining the intermediate and output variables
within the electric traction motor analysis model remain the same for the military vehicle

application with the exception of the stator radius proportionality factor #. Because the
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motor design is expected to have a larger rotor radius 7, it is also reasonable to expect a
larger stator radius. Therefore, the stator radius proportionality factor is increased to #;, =

0.5.

3.2.2 Motor Mass Analysis Model

Similarly, the majority of the parameters and equations for determining the intermediate
and output variables within the motor mass analysis model remain the same with the
exception of the motor lateral center of mass location y,. This is redefined based on

vehicle configuration changes as

Yu = —[%ﬂu g, +0.6223j (3.101)

where W, = 2.18 m is the overall width of the vehicle and g, = 0.1651 m is the outer
width of the gearbox. Observe that in this calculation, clearances between the motor and

gearbox and the gearbox and tire are accounted for as well as the tire width.

3.2.3 Battery Size Analysis Model

The battery size analysis model for the military vehicle application remains exactly the

same as in the commercial vehicle application.

3.2.4 Electric LTV Mass Analysis Model

The vehicle configuration in Figure 3.13 along with the model parameters listed in Table
3.4 provide the basis for the electric LTV mass analysis model. In particular, the model
parameters are estimated using the HMMWYV M1025A2 platform. Like the EV mass
analysis model, some of the entries in Table 3.4 are termed “baseline” parameters, which
indicate that they correspond to a HMMWYV M1025A2 vehicle that excludes the mass of
the (conventional) powertrain and fuel tank. Therefore, the overall electric LTV mass
and related properties are computed using these baseline parameters along with the
remaining model parameters and input variables that account for the mass of the electric

LTV powertrain (battery, motors, and gearboxes) as well as two occupants (warfighters).
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The inclusion of occupant mass is necessary as the output Py,; from the coupled analysis
model fj, is most relevant when considering passengers in the vehicle. Finally, observe
that all longitudinal positions in the model are measured relative to the front axle, all
vertical positions are measured relative to the ground, and all lateral positions are

measured relative to the vehicle centerline.

Table 3.4 Estimated Values of Military EV Mass Analysis Model Parameters

Parameter Description Value
mp Baseline LTV mass 1930 kg
(3 Baseline LTV longitudinal com location 1.83 m
hy, Baseline LTV vertical com location 0.840 m
Ly Baseline LTV pitch inertia 4644 kg-m’
Ly Baseline LTV yaw inertia 5346 kg-m®

bt max Maximum allowable battery length I.5m
by, max Maximum allowable battery width 1.82 m
by Battery height 0.11m
Coante Distance to front of battery compartment 0.66 m
Rbar Battery vertical com location 0.485 m
Y20 Gearbox output gear radius 0.0508 m
T'g0,i Gearbox output idler gear radius 0.0254 m
Vgii Gearbox input idler gear radius 0.0762 m
Zhn Gear face width 0.0381 m
Wri Titanium alloy weight density 44300 N/m’
Moce Occupant mass 100 kg
o Occupant fore/aft length 0.635m
Ow Occupant width 0.457 m
o Occupant sitting height 1.30 m
Coce Occupant longitudinal com location 1.55m
Voce Occupant lateral com location 0.67 m
L Wheelbase 330m
W, Overall vehicle width 2.18 m

In order to determine the sprung mass m; of the electric LTV, the mass of the
gearboxes must first be computed. Figure 3.15 shows a diagram of the gearbox design,

which is loosely based on a similar, parallel shaft design by Rexnord [Rexnord (2010)].
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Using the information in this figure along with the input variables g, rand g5, the front

and rear gearbox input gear radii 74 rand rg;, can be calculated as:

Taiy =Ti! &ny (3.102)
Foir =Veii! 8o, (3.103)

The inner lengths of the front and rear gearboxes g rand gy are therefore

Sty =2y Ty t 7y, 21, +0.0254 (3.104)

Qo = 2y Ty T Ty 20, +0.0254 (3.105)

where the final term in each equation accounts for clearances between the inside of the
gearbox and the input/output gears within each gearbox. The outer lengths of the front

and rear gearboxes gy, rand gpe, - are simply

ooy = &uwiy T0.0127 (3.106)

8rtor = &uiy +0.0127 (3.107)

where the final term in each equation accounts for the thickness of the gearbox frame in
the longitudinal direction. Since the gear face width is the same for all gears, the inner

width of the gearboxes gp, 1s

Sy =285, +0.0381 (3.108)
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where the coefficient for gs, accounts for the idler gear assembly and the last term
accounts for clearances between the inside of the gearbox and the gears. The outer width

of the gearbox gp,, 1S

Gy = Gy +0.0508 (3.109)

where the final term accounts for the thickness of the gearbox frame in the lateral
direction. Note that the thickness of the gearbox in this direction is made significantly
larger in order to address the requirements for shaft-mounting. Also, observe that the
value of gy, in Equation (3.109) is consistent with what is used in the motor mass
analysis model. Because the inner heights of the front and rear gearboxes gy r and gppi
depend on how large r;; is relative to the input gear radii, the following expressions are

used:

Gony = 2MaX{r,,, 7y} +0.0254 (3.110)

Qo, = 2MaX{r,,, 1y} +0.0254 (3.111)

Again, the final term in each equation accounts for clearances between the inside of the
gearboxes and either r,;; or the input gear radius. The outer heights of the front and rear

gearboxes gpno s and gy, are

Cohor = &y +0.0127 (3.112)

Zohor = i +0.0127 (3.113)

where the final term in each equation denotes the thickness of the gearbox frame in the
vertical direction. Finally, the mass of front and rear gearboxes my;, rand mgy, - (assuming

negligible shaft mass) are computed as
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Wr 2 2 2 2 ) )
My, r = P l (ﬂng(rga T Vg0 Tlaii T iy +(gbeo,fgbwogbho,f)_(gbu,fgbwigbhi,f) (3.114)

g

Wr; 2 2 2 2 ) )
Mepr = p : (ﬂgfw (rgo T Vo0 Tl T g, )T (gblb,rgbwogbho,r )_ (gbéi,rgbwigbhi,r ) (3.115)

g

where a, = 9.81 is the gravitational acceleration in m/s’.

7 3
(&

N\ =

Figure 3.15 Diagram of Parallel Shaft Gearbox

Using these results, the sprung mass m; of the electric LTV can be expressed as

the sum of the baseline, battery, motor, gearbox, and occupant masses:
ms = mb + mbatt + 2(mm,f + mm,r +m

gb.f + mgb,r + mocc) (3.1 16)

The longitudinal center of mass location ¢; associated with m; is

1
ZI B m_ (mbeb - Mpar eb‘m + 2(mm,fem,f + m”hremar + mgb,f egb:f + mgh,r egb,r + mocceocc )) (31 17)
s
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where the respective longitudinal center of mass locations for the battery, front/rear

motors, and front/rear gearboxes are determined from the following:

ebatt = ebattc + xbatt + bl /2 (31 18)

em,f = rgo + rgo,i + rgi,i + rg[,f (31 19)

. =L—(ry +7p; 7y +7y,) (3.120)

€, =250 (1 10.0127) (3.121)
gb.f 2 go : :

¢ :L—(g"”"” ~(r +00127)] (3.122)
gb,r 2 go . .

Similarly, the vertical center of mass location / associated with m; is

h=i(mbhb+m,,m,h +2(mm,fhm,f+m b, +mgy hy  +my, h, +m,.h )) (3.123)
m

batt m,r' m,r gb,r"“gb,r occ' Yoce
s

where the respective vertical center of mass locations for the front/rear motors, front/rear

gearboxes, and occupants are determined from the following:

1 27, ;

Bp =Py =25 MaXS i +0.43 (3.124)
mm,f
1 2Iym r

hm,r = hgb,r = Emax gbho,r ’ m : +0.43 (3125)
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h,. =o0,/2+043 (3.126)

In Equations (3.124)-(3.125), observe that the vertical center of mass locations are
dependent on the relative sizes of the motors and gearboxes. Also, note that the final
term in each of the above equations accounts for ground clearance.

The electric LTV pitch and yaw moments of inertia are calculated in the same
manner as those in the EV mass analysis model. In particular, the corresponding
moments of inertia are computed for the baseline LTV, battery, motors, gearboxes, and
occupants about the electric LTV center of mass and then combined together to obtain
aggregate pitch and yaw moments of inertia. Therefore, Lpcom, Lbcoms Lypattcom, and
Lpancom are determined exactly as given in Equations (3.53)-(3.54) and Equations (3.57)-
(3.60), while L rcoms Lymr.coms Lomfcoms and Ly com are determined by applying Equations
(3.61)-(3.62) to the front and rear motors as appropriate. The only new moments of
inertia are for the gearboxes and occupants, which require intermediate calculations of
their moments of inertia about their own respective centers of mass. Because the
gearboxes are rectangular, the pitch and yaw moments of inertia for the front and rear

gearboxes are given by:

Ly =5 (8 + 2 (3.127)
Ly, = %mgb,,. (g2, + 820 ) (3.128)
L =25 (s + 1) (3.129)
Ly =3 (6, + 3 (3.130)
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This leads to the following moments of inertia for the front and rear gearboxes about the

electric LTV center of mass:

Liseon = Lanr + 1 (€ =6 F + (b, ~ 1)) (3.131)
Lo =L + 0, (€, =6 + s, — 1)) (3.132)
Lisopim =Lans 1 (€, =6 +53) (3.133)
Ly = Lpp +my (€, ~ 6 +52) (3.134)

The yaw moments of inertia for the gearboxes about the electric LTV center of mass

require knowledge of their lateral center of mass location y,,, which is computed as

w
Vo= —(%+0.6223} (3.135)

where the last term accounts for the tire width and the clearance between the tire and
gearbox due to the half-shaft. Similarly, it is assumed that the occupants can be
approximated through rectangular geometry when seated in the vehicle. Therefore, the

pitch and yaw moments of inertia for the occupants are:

Ly =me(0§ +0?) (3.136)
12
Lo = %m (OZ + 02) (3.137)
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Applying the parallel-axis theorem, the pitch and yaw moments of inertia for the

occupants about the electric LTV center of mass are:

I}’OCC,COWL = Iy()CC + mOCC ((eOCC - el )2 + (hOCC - h)z ) (3' 138)

IZOCC,C0”1 = IZOCC + mOCC ((eocc - el )2 + ijC) (3'139)
Finally, the electric LTV pitch and yaw moments of inertia can be computed as:

I =1 +1/

v =1 com +2(1 +17 +1 +1 ) (3.140)

ybatt ,com ym, f ,com ym,r,com ygb, f,com + ]ygb,r,com yoce,com

I =1 +17

z zb,com

+2(1,,, eom T1 +1 +1

zm,r,com zgb, f,com

+1. ) (3.141)

zbatt ,com zgh,r,com zocc,com
The last two outputs of the electric LTV mass analysis model are the battery packaging

constraint violations b, and by, which are already given by Equations (3.65)-(3.66).

3.2.5 LTV-Level Analysis Model

The LTV-level analysis model is very similar to the vehicle-level analysis model for the
commercial vehicle application in that it uses two powertrain simulations followed by
two battery simulations to estimate vehicle range, acceleration performance, and energy
efficiency for the LTV. However, in addition to facilitating the calculation of constraints
related to motor torque and speed capability along with battery power capability and cost,
the model also enables the computation of constraints related to directional stability and
the probability of failing to meet an underbody blast injury threshold. Although many of
the powertrain simulation modifications from the commercial vehicle application are
merely size related, several configuration changes have been made for the military
vehicle. These adjustments are discussed in detail in the following subsections, along

with the calculations for new analysis model outputs dy and Py;. Since the battery
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simulations remain exactly the same, they are excluded from the discussion in these

subsections.

3.2.5.1 Powertrain Models

The powertrain simulations have been developed in Simulink® again and consist of
several submodels that are linked together in both backward-looking and forward-looking
models, respectively. Recall that the backward-looking model uses a prescribed drive
cycle along with analysis model input variables and parameters to predict motor torque,
speed, and power requirements at each simulation time step. Front and rear motor
constraint violations can then be evaluated by using these requirements and applying
Equations (3.67)-(3.68) as appropriate. The combined motor power requirements,
however, are passed as inputs to the battery power demand simulation to facilitate the
vehicle range estimation. The forward-looking model uses the same submodels, input
variables, and parameters but instead predicts the 0-50 mph acceleration time #59 by
linearly increasing the velocity of the vehicle from zero at 1 = 0 to 50 mph (22.2 m/s).

Figure 3.16 shows a block diagram of the backward-looking powertrain model,
which includes the input drive cycle. The drive cycle selected for the military EV
powertrain design studies is a standard, convoy escort cycle that the HMMWYV is tested
on currently. Because of the sensitive nature of this information, the drive cycle is not
shown in this dissertation; however, it is noted that it covers a range of 42 miles (67.2
km) in approximately 1.14 hours (4100 seconds) with an average speed of 37 mph (16.4
m/s).

Since the same submodels are used in the forward-looking powertrain model, the
block diagram of this simulation is excluded. However, both simulations use the same
model parameters as listed in Table 3.5. The remainder of this section describes each

submodel for both simulations along with any associated assumptions.
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Figure 3.16 Block Diagram of Powertrain Simulation Submodels for Military EV
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Table 3.5 Estimated Values of Powertrain Model Parameters for Military EV

Parameter Description Value
Mys Unsprung mass 440 kg
4 Damping ratio per wheel 83500 N-s/m
ks Suspension stiffness per wheel 16000 N/m
L Wheelbase 3.30m
Cq Drag coefficient 0.70
Ar Frontal area 3.58 m’
Du Air density 1.10 kg/m’
an Geared hub ratio 1.92
Vg0 Gearbox output gear radius 0.0508 m
Vgo,i Gearbox output idler gear radius 0.0254 m
Vgii Gearbox input idler gear radius 0.0762 m
I, Tire/wheel assembly spin inertia per axle 14.22 kg-m’
C, Tire rolling resistance 0.01
7 Tire radius 0.470 m
P, Accessory power load 11200 W

3.2.5.1.1 Aerodynamic Drag Submodel
The aerodynamic drag force on the electric LTV is given by the same equation (Equation

(3.69)) that was used for the commercial EV.

3.2.5.1.2 Tractive Force Submodel

The tractive force of the electric LTV, which is now denoted as F,(;), is also given by the
same equation (Equation (3.70)) that was used for the commercial EV. Note that the

difference in the use of notation is to reflect the fact that the tractive force must be

provided by all motors, not just the rear motors.

3.2.5.1.3 Front/Rear Drive Torque Submodel

Assuming the tractive force is split evenly among the front and rear motors, the drive

torque for the front or rear motors can be calculated by modifying Equation (3.71) as:

)=1,(0)=7,(0)= %Fm ®)r, (3.142)
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Observe that for the electric LTV model, 7; is assumed to be constant as there is no
readily available data for the development of a dynamically-loaded tire radius model.
This simplification is expected to have a minor impact on the quality of the powertrain

models.

3.2.5.1.4 Net Longitudinal Force Submodels

Similarly, the net longitudinal forces on both the front and rear tires is found by slightly

modifying Equation (3.73) and applying it as appropriate:

F (1) = %Fm (t) = F, () (3.143)

F.(1)= %Fm (O—-F, (1) (3.144)

These quantities are used as inputs to the front and rear tire slip models, respectively.

3.2.5.1.5 Vehicle Pitch Submodel

With the exception of the normalized pitch moment M,(#)/1,, the vehicle pitch submodel

remains exactly the same as in the commercial EV model. This quantity is modified as:
M, ()1, =(F.(0)+ F.()\h+z())/1, (3.145)

Also, because the suspension damping coefficient ¢, could not determined directly, it was
assumed that the suspension was lightly-damped and that its damping coefficient could

be obtained using basic dynamic systems analysis:

¢, =26 k,m, (3.146)
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3.2.5.1.6 Tire Drag Submodel

The tire drag forces are calculated in the same manner as in Equations (3.78)-(3.79) with

the exception that 7, is constant.

3.2.5.1.7 Tire Slip Submodels

The front and rear tire slip submodels apply Equation (3.81) as appropriate to predict the
front and rear tire angular velocities as a function of the tire slip. Since the tires used for
the electric LTV are different than those used for the commercial EV, a new slip lookup
table has been developed for these submodels. Figure 3.17 displays the data for this
lookup table, which is based on an analytical model cited in [Ersal et al. (2009)].
Because of the properties of this model, only slip data between -0.25 and 0.25 could be

recorded, which is sufficient for the design studies in this dissertation.
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Figure 3.17 Tire Slip Data for Military EV
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3.2.5.1.8 Gearbox Submodels

After passing n(t), w(t), and w(f) through the geared hubs, the net torque and speed
requirements for the front and rear motors are determined through the gearbox
submodels. These submodels, which have been discussed in the electric LTV mass
analysis model, are similar to the belt drive submodels for the commercial EV in that
power transmission is idealized to be 100%. Therefore, net torque and speed

requirements for the front and rear motors are given by:

1
T foner (t)=it) & (3.147)
‘ gn \Te8b.s
.
Tm,r,m(t)zﬂ —— (3.148)
gh rgogb,r
T8,
a)m,f(z)=a)f(t)g{ - = J (3.149)
go,i
r
w,,(t) =0, (t)gh( g“g””] (3.150)
rgo,i

3.2.5.1.9 Motor Inertia Submodels

Finally, Equation (3.85) is reapplied to the front and rear motors as appropriate to
determine the torque requirements for a single front and rear motor. Like the powertrain
simulations for the commercial EV, these torque requirements along with @, (f) and
@ At) are used to interpolate the motor power requirements P(¢) and P.(f) from z,;,

and ZpLoss,r-

3.2.5.2 Vehicle Range, Battery Power Constraint Violations, and Fuel Economy

The vehicle range, battery power constraint violations, and fuel economy for the electric

LTV are computed in nearly the same manner as described by Equations (3.95)-(3.98) for
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the commercial EV. Specifically, the battery power demand simulation takes the total
system power requirements P(f) = PAf) + PAf) + Pa. from the backward-looking
powertrain model and determines the vehicle range R through the number of times this
power demand cycle can be repeated until reaching either the battery discharge limit P,(7)
or SOC,,;,. However, unlike the commercial EV, a battery power constraint violation Py
for the backward-looking powertrain model is calculated as the battery often risks
significant overcharging during the repeated power demand cycles. To account for the
high SOC at the beginning of this simulation, the violation of the battery charge limit
Py(t) is relaxed with the assumption that the excess energy is absorbed by a heat-
dissipative resistor. The battery power constraint violation for the backward-looking

powertrain model is therefore

P, =max{P,(t)— P.(t), (P,(t)—10000) — P, (1)} (3.151)

The same battery simulation is performed again using P(¢) from the forward-looking
powertrain model to calculate the associated battery power constraint violation Pysy as
given by Equation (3.96). Note that this simulation is only executed for a single power
demand cycle since no vehicle range calculations are associated with the forward-looking
powertrain model. Finally, the battery charging simulation uses the final SOC from the
battery power demand simulation for the backward-looking powertrain model to
determine the energy consumption E. over R. The gasoline-equivalent fuel economy

mpg. is then computed according to Equation (3.98).

3.2.5.3 Vehicle Directional Stability and Probability of Injury Threshold Failure

The vehicle directional stability d; is actually calculated through an analysis submodel
within the LTV-level analysis model. Given prescribed loading conditions, tire stiffness
properties, and a desired, maximum stable vehicle speed, this analysis submodel predicts
whether the vehicle would remain directionally stable (i.e., not risk spinning out) at the
desired maximum stable speed. Although d; could be evaluated as a separate entity in

some cases, it is intentionally incorporated within f;, because it is a vehicle-level quantity

85



and some of its critical parameters are a function of Fx(¢) and F.(f) from the backward-
looking powertrain model. The electric LTV directional stability analysis submodel £y 71
takes the sprung mass m;, longitudinal center of mass location ¢;, and the average front

and rear tire normal forces F 4, and F}- 4., and computes d, based on a model in [Wong

(2001)]:

ds = deLTV (ms H elﬁ Ffz,avg s Frz,avg) (3152)

The first step is to calculate the weight of the vehicle w, and its distribution on the front

and rear tires w, rand w,,

w, =(m,+m,)a, (3.153)
W, =W, [%) (3.154)
w,, = WV(ZKI_LJ (3.155)

In the above, a, = 9.81 is the gravitational acceleration constant in m/s’>. From here, the
front and rear tire cornering stiffnesses C,rand C,, are evaluated based on a lateral tire

slip model for a similar application cited in [Ersal et al. (2009)]:

2.5

Ca,f = [_JFﬁ,avg (3156)
an

Ca,r = [EJFrz,avg (3157)
a}'l
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Note that ¢, = 0.5 is the saturation condition for lateral tire slip and that C,rand C,, are
expressed in N/rad. This enables the understeer coefficient K,; to be computed, which

indirectly determines the stability of the vehicle:

K, =—l (3.158)

Finally, the directional stability of the vehicle is given by

2

d =L+K, “ne (3.159)

e

where v, = 70 mph (31.3 m/s) is the desired maximum stable speed of the electric LTV
based on the maximum speed of the HMMWYV. Observe that directional stability of the
electric LTV is guaranteed as long as d; > 0. This always occurs when K,,; > 0 regardless
of the vehicle speed. In particular, when K, > 0, the electric LTV is understeer, which
means that the steering system response is less than the steering input. This is the
condition under which most vehicles are designed. When K, = 0, the electric LTV is
neutral steer, which means that the steering system response matches the steering input
exactly. When K, < 0, the electric LTV is oversteer, which means that the steering
system response is greater than the steering input. This often occurs in larger vehicles
that transport heavy loads such as trucks and tractor-trailers. Under this condition,
directional stability is speed-dependent, with the limit being v, when d; = 0.

The final output of the LTV-level analysis model is the probability of failure to
meet injury thresholds for underbody blast due to IEDs. This is a critical quantity to
design for as one of the leading causes of death for U.S. warfighters is from IEDs while
operating LTVs. Even when such explosions are not fatal, they often leave warfighters
severely injured or maimed. Therefore, the U.S. Army has set design targets that require
current LTVs to protect against a 10% chance of severe injury on the abbreviated injury

scale (AIS) for the neck, lumbar/spine, and tibia of occupants. These thresholds are
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usually met for heavy vehicles such as up-armored HMMW Vs, but the weight of these
vehicles can also significantly limit their mobility in terms of range and acceleration
performance. Conversely, lighter vehicles such as the electric LTV in this dissertation
are more mobile but run a greater risk of failing to satisfy the injury thresholds. A metric
has therefore been developed to address this tradeoff between the probability of failing to
satisfy the injury thresholds and mobility:

6
[1757 - 4)(1102)
1 my

=l——|1+erf
2 2x10° )
2 1.04
my

Note that mobility is reflected in this equation through the total vehicle mass mr = m; +

P fail

(3.160)

m,s, which is ultimately dependent on m.

3.3 Summary

This chapter went into exhaustive detail describing two electric vehicle models for
commercial and military applications, respectively. Specifically, the manner in which the
input/output variables are calculated for each of the underlying analysis models in both
applications was discussed in depth. Such detail is necessary for a thorough
understanding of the design studies that will be performed later in this dissertation.
Although the initial commercial EV model was developed by Allison, several corrections
and modifications were made to improve the quality of the model as well as its relevance
to the current design studies. These improvements facilitated the development of the
military EV model, which is largely a scaled-up version of the commercial EV model.
Both models will provide the basis for the design studies in Chapters 4-7 that make use of
POD, AVASIM, and constraint management approaches for the coupled, functional data

in decomposition-based design optimization.
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Chapter 4

Commercial Electric Vehicle Design Optimization

In Chapter 1, it was mentioned that recent work involving the decomposition-based
design optimization of an EV powertrain identified POD as an attractive reduced
representation method for coupled, functional data variables. This was because it utilized
data samples exclusively to generate a functional form of its approximation model,
required limited assumptions regarding the number of reduced representation variables
(POD coefficients), and used a relatively small number of such variables for
approximations [Alexander et al. (2010a)]. However, it was also acknowledged that
there was a need to further explore the effect of the cumulative percentage variation
(CPV) on the resulting performance of the ATC optimization strategy.

Recall that the CPV is a tuning parameter within POD that controls both the
amount of information captured by the approximation as well as the number of POD
coefficients necessary for the reduced representation. It is well known that as the CPV is
reduced, less information (or accuracy) is required for the approximation and hence fewer
POD coefficients are needed for the model. Nevertheless, it is uncertain how these
adjustments would affect a decomposition-based optimization strategy like ATC. While
it is hypothesized that reducing the CPV would accelerate ATC convergence via fewer
decision variables, it is not clear whether this would provide an inaccurate or suboptimal
design solution given the fact that ATC would enforce some degree of accuracy on the
VVCVs via an updated, weighted penalty function. The current literature, including the
closely-related work by LeGresley and Alonso [LeGresley and Alonso (2004)], does not
explore this problem for any decomposition-based optimization strategy. This chapter,
therefore, investigates this issue by constructing POD representations for three CPV
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values, implementing them in ATC, and observing their impact on the optimal design
solutions. Also, to facilitate comparisons among the three sets of POD representations,
an all-in-one (AiO) optimization problem formulation and solution for the commercial

EV powertrain model is introduced at the beginning of this chapter.

4.1 AiO Problem Formulation and Solution

The AiO problem formulation uses the same analysis models as those described in
Equations (3.1)-(3.5) for the commercial EV with the exception that the electric traction
motor analysis model f,,,, is integrated as a sub-analysis model within the vehicle-level
analysis model f,. This was necessary because in the AiO problem, the motor design is
not considered separately; instead, all of the key design components of the EV
powertrain—the battery, belt-drive system, and motors—are considered simultaneously.
Therefore, Equation (3.5) is modified as

[mpg, .t Ty> @, R, P, C1=1(B,, By, B, ,my,.,m, 1,6, hp.,l.r,.n,R) (4.1)
where the input variables to f,,,, are now shared with f,. Figure 4.1 illustrates the
relationships among the remaining analysis models that were described in Chapter 3 for

the commercial EV powertrain, with the dashed box indicating that all analysis models

are integrated into a single optimization problem formulation.
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AiO Optimization Problem

fbattSize fevMass

Figure 4.1 Analysis Model Relationships for Commercial EV AiO Problem

The objective of the AiO problem formulation is to maximize the gasoline-
equivalent fuel economy of the commercial EV while satisfying constraints related to
battery packaging, performance, motor feasibility, vehicle range, power availability, and

battery capacity:

min — mpg,(X)

subject to
g =>b,,(x)<0 g, =m,(x)<0
8, = be,V (x)<0 gs=R,, —R(x)<0 (4.2)
83 =te(X) —lgpe <0 g, =F,(x)<0
g,=7,(x)<0 g =C,x-C,,,.(x)<0
where

X:[BI’BW’BL’xhatt’pr’[s’rm’nc’Rr]

In the above, g; and g, are battery packaging constraints, g3 is a performance (0-60 mph
acceleration time) constraint, g4 and gs are motor feasibility constraints, g is a vehicle
range constraint, g7 is a power availability constraint, and gg is a battery capacity
constraint. Note that appropriate bound constraints are included for the decision
variables in x. Due to the presence of non-smoothness in the optimization problem, a

derivative-free optimization software package known as NOMADm [Abramson (2007)]
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was used to solve the problem. This optimizer is based on mesh-adaptive search
algorithms and was developed and implemented in a MATLAB® environment. Finally, in
solving the AiO optimization problem, observe that the default settings for NOMADm
were appropriate.

The results from the AiO problem formulation are shown in Table 4.1. It should
be noted that the only active constraints in this problem were the lower bound on B, the
performance constraint gs;, and the vehicle range constraint g; these were limited to B; =
0.70, t6omax = 10 s, and R, = 100 miles, respectively. Such behavior is expected given
the objective of energy efficiency for the commercial EV. Specifically, maximizing the
gasoline-equivalent fuel economy of the vehicle compromises its ability to achieve
superior performance and range capability.  Additionally, the aggressive power
requirements for a reasonable 0-60 mph acceleration time are related to the battery
design, which requires large electrode surface areas and a thin separator for high-power
applications. Finally, observe that the design solution suggests the use of 43 kW motors
(Figure 4.2) to propel a 1080 kg vehicle, with approximately 11.9% (128 kg) of the mass
associated with the battery. These design conditions indicate that the commercial EV

could achieve a gasoline-equivalent fuel economy of nearly mpg, = 195 mpg.

Table 4.1 Optimal Decision Vector for Commercial EV AiO Problem

B[ BW BL Xbatt Pr l; Im ne Rr
070 1.10 19.75 0.10 2.91 0.096 0.124 20.85 0.052
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Figure 4.2 Optimal Motor Map, Commercial EV AiO Problem

4.2 POD Representations and Accuracy Assessment

In preparation for the ATC problem formulation, POD representations were developed a

priori to approximate the VVCVs associated with the maximum and minimum motor

torque curves and power loss map:

Zmax ~ (I)p,maxzr,max + Zmax (43)
Zmin ~ (I)p,minzr,mm + me (44)
z pLoss ~ (I) p,pLoss z r,pLoss +z pLoss (45)

From the discussion on POD in Chapter 2, it is known that the reduced basis function
matrices ®, nax, ®pmin, and D, 105 Were constructed using column-wise functional data
samples in Zyax, Zimin, and Zy1,, respectively. The functional data samples themselves

were generated through a Latin hypercube sample (LHS) design of experiments
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consisting of m = 500 motor map samples from f,,,,. An intermediate, yet critical, part
of the sampling process was the interpolation of all sampled motor maps onto a
prescribed, standard torque-speed mesh. This was necessary as the motor maps produced
by f.00r use different torque-speed meshes for different values of the input variables to
f0i0- The use of a standard mesh would facilitate both ATC consistency evaluations and
POD accuracy assessment through error metrics such as RMSE and/or AVASIM.
Additionally, a standard mesh would eliminate the need to develop POD representations
for the independent variables associated with the functional data discretizations since the
mesh region would be the same for all motor maps regardless of their corresponding
motor design.

Because the primary motivation for establishing a standard mesh was effective

ATC consistency evaluations, the torque-speed mesh region was loosely based on the

o

motor maps at the initial decision vector x;'” and the optimal decision vector x** from

the AiO optimization problem. It is recognized that such a heuristic for setting the
standard mesh region would either truncate or extrapolate the functional data for some of
the sampled motor maps; however, these samples capture the entire motor design space,
and it is more important to accurately capture the motor maps along the expected search
direction of the optimizer since this would directly impact solution accuracy. Therefore,
it was reasonable to set the standard mesh region using this heuristic given the fact that

AiO

the ATC problem formulation begins at x{"” and is expected to converge to x.

*

as ¢

converges to 0. Finally, the number of torque and speed mesh points n, . and n,,
specified for the standard mesh were identical to the number of torque and speed mesh
points used for the original motor maps produced by f,,.. Hence, the standard mesh

used for the sampled motor maps was defined as

Timesh =_315+( 730 (l—l)], l=181 (46)
n _
p.T
a)imesh — 800 (l _ 1)’ l = 1 . 41 (47)
n,,—1



where n, .= 81 and n,, , = 41.

Based on the definition of the standard mesh, the number of discretized points in
Zmaxs Zmin, AN ZpLogs WETE Guar = 41, @min = 41, and gproe = 3321, respectively. Since gpax
= @min << m, the direct method outlined in Equations (2.6)-(2.9) was used to develop the
POD representations for the maximum and minimum motor torque curves. Conversely,
the method of snapshots described in Equations (2.10)-(2.12) was used to develop the
POD representation for the motor power loss map since g,zoss >> m. Table 4.2 lists the
number of POD coefficients (and hence reduced representation variables) required for
three distinct values of CPVgou: 99.99%, 99.95%, and 99.85%. These values were
selected partially based on the literature, which suggests that CPVg,0 > 99% [Bui-Thanh
et al. (2004)], and partially based on the development of a meaningful study that would
demonstrate significant differences in the number of POD coefficients for each case
while satisfying accuracy requirements per the liberal validity criterion in AVASIM for
an independent (non-sample) set of motor maps. In each case, it is evident that the
combined dimensionality QO of the VVCVs was dramatically reduced from Q = gpax +
Gmin + Gpross = 3403 t0 O = Pax T Pmin T Ppross = 116, QO = 77, and Q = 58, respectively
[Alexander et al. (2010c)]. Note that although different values of CPV,, were used, the
computational effort (excluding motor map sample generation) remained nearly the same

(approximately 0.97 s) in constructing each model.

Table 4.2 Number of POD Coefficients for Distinct CPV,,, Values

POD Coefficient Vector CPVgou
99.99% 99.95% 99.85%
Zr.max 14 9 7
Zrmin 13 9 7
Zy pLoss 89 59 44

The accuracy of the POD representations for each value of CPVg,, was quantified
through AVASIM. In particular, both 1D and 2D formulations were applied as

appropriate using a uniform tolerance of fo/; = 0.10 to assess the accuracy of the torque
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curves and power loss map produced by the POD representations against the optimal
torque curves and power loss map produced by f,,.. from the AiO optimization problem.
Note that like the demonstration in Chapter 2, all phase threshold coefficients were set to
zero, and division-by-zero errors were avoided by setting 5= 10" for the torque curves
and 0 =1 for the power loss map based on experience. Also, observe that selecting the
AiO optimal motor map as the basis for comparison was reasonable given the fact that it
is most desirable to have high motor map accuracy at the design solution. Finally, Tables
4.3-4.5 show the results from AVASIM, which are supplemented by visual comparisons
in Figures 4.3-4.8. Using this information, it is evident that the most accurate POD

representation for this work occurs at CPVg,u = 99.99% [Alexander et al. (2010c)].

Table 4.3 AVASIM Results for POD, CPV,,,; = 99.99%

Index Max-Torque Min-Torque Power Loss

Elocar 0.951 0.979 0.686
Egiopal 0.976 0.979 0.932
Ecomb 0.964 0.979 0.809

Table 4.4 AVASIM Results for POD, CPV,,,; = 99.95%

Index Max-Torque Min-Torque Power Loss

Elocar 0.920 0.967 0.399
Egiopal 0.940 0.958 0.862
Ecomb 0.930 0.963 0.630

Table 4.5 AVASIM Results for POD, CPV,, = 99.85%

Index Max-Torque Min-Torque Power Loss

Elocal 0.772 0.934 0.039
Egiobal 0.899 0.928 0.830
Ecomp 0.836 0.931 0.435
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4.3 ATC Problem Formulation and Solutions

The ATC problem formulation for the commercial EV consists of a two-level hierarchical
decomposition based on Figure 3.2. In this study, the objective of the vehicle
subproblem is to maximize the gasoline-equivalent fuel economy while minimizing the
AL penalty function, whereas the objective of the motor subproblem is to minimize the
AL penalty function exclusively. Recall that these penalty functions ensure consistency,
or agreement, among the coupled quantities from the vehicle and motor subproblems.
Although both subproblems are subject to decision variable bound constraints, only the
vehicle subproblem contains additional constraints based on battery packaging,
performance, motor feasibility, vehicle range, power availability, and battery capacity.
Applying Equation (2.2) directly, the vehicle subproblem P;;, excluding decision

variable bound constraints, is formulated as

) _ 2
min —mpg,(X,,) + ng (t, —1‘22)+||W22 o(t,, _rzz)”2

Xj1

subject to
gy =b,,(X,)<0 gns =0y (X)) <0
8z = by (X)) <0 e = Ry —R(X;) <0
8113 =lteo (X)) ~Lgomar <0 817 =P, (x,,)<0 (4.8)
gia =7y (X)) <0 8y =Gy (X)) = Cpn (X)) <0
where

T T
[BI’BW’BL’xbatt’pr’ rcomb’a)max7m J ]ym7lzm5ym]
T T _
t2 [Zcomb’ a)max’m J ]ym’lzm’ym] comb f(Zr comb)
— R R
[Z a)max’mm"] ]vm’[zm7ym]

comb >

where the constraints gj;1-g11 s are identical to the constraints gj-gs from the AiO
problem formulation. The vectors Zcomp = [Zmax, Zmin, Zpross] ANA Zycomb = [Zrmaxs Zr.min,
ZrplLoss] refer to the combined vector of original VVCVs and the combined vector of
reduced representation variables, which are POD coefficients. Additionally, the vectors
t; and ry include six scalar-valued coupling variables: @uax, Mm, Jry Limy Lm, and yp.

Finally, the superscripts 7 and R denote target and response versions of the same
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coupling variable, respectively. The motor subproblem P,,, excluding decision variable

bound constraints, is formulated in a similar manner as:

. T 2
n;lln V22 (t22 - r22) + ||w22 © (t22 - r22 )”2
22

where X,, =[[,r,,n.,R,]

(4.9)

r22:[ZR a)R mrljoJrR:IR ]zjin’yrlri]:f(iﬂ)

comb® “max > ym?

_ T T T T T T T
t22_[Zcomb’a) mm’Jr 7‘[ym’]zm’ym]

Recent work [Alexander et al. (2010a)] indicated that the assumption that only
bound constraints were necessary for the reduced representation variables was incorrect;
instead, the model validity region (and hence decision space) defined by these variables
was highly-nonlinear. As mentioned in Chapter 1, such an erroneous assumption initially
resulted in powertrain simulation failures at decision vectors selected outside the model
validity region. Because it was challenging to formulate explicit constraints for these
abstract variables, a penalty value-based heuristic [4lexander et al. (2010a); Alexander et

al. (2010b)] was developed through a MATLAB®

try-catch” statement to help keep the
optimizer within the model validity region. NOMADm was selected as the optimizer
again in order to facilitate consistent results with the AiO problem formulation and to
effectively implement the penalty value-based heuristic. In the P;; subproblem, the
default settings for NOMADm were adjusted such that only a Latin hypercube search
was performed and 1,000 function evaluations were permitted. This was necessary to
alleviate computational issues associated with memory availability. However, in the P,
subproblem, the default settings for NOMADmM were appropriate. Finally, in the ATC
coordination strategy, the weight update parameter was set to = 2.75, the initial weight

K_
c( 1)”00

vectors were set to v =0 and w = 1, and the tolerance on ||c® - for outer loop

convergence was set to 107, Note that all computational work was performed on a 3

GHz, 4 MB RAM, Intel® Core™ 2 Duo CPU.
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4.3.1 ATC-AL-POD at CPV,u=99.99%

In Tables 4.6-4.8, the ATC optimization results using the POD representations at CP Vg,
=99.99% are shown. The algorithm converged after 12 ATC iterations with a runtime of
approximately 10.72 hours and resulted in a system solution that was reasonably
consistent between both subproblems. The only active constraints were the upper bound
on M., the performance constraint gy, 3, and the battery capacity constraint g, g in the
Py, subproblem; these were limited to Omar. = 755 rad/s, teomax = 10 s, and Cppax = 200
Ah, respectively. Note that the battery capacity limit is meaningful as it is used indirectly
to avoid excessive battery cost. The optimal values of the POD coefficients are not listed
here as they are too numerous and not physically meaningful; however, the optimal motor
map computed by these reduced representation variables is shown in Figure 4.9. Finally,
the total mass of the vehicle was 1111 kg, with approximately 14.3% (158 kg) of the
mass associated with the battery. Under these design conditions, the commercial EV is
expected to have a gasoline-equivalent fuel economy of mpg, = 184 mpg and a range of R

= 134 miles.

Table 4.6 Optimal Decision Vector for P;; Subproblem, CPV,,,; = 99.99%

T T T T T
BI BW BL Xbatt Pr WOmax My Jr Iym Izm Vm

0.74 143 19.75 0.25 3.13 755 4039 028 1.12 120 0.39

T

Table 4.7 Optimal Decision Vector for P, Subproblem, CPV,,,; = 99.99%

A Fm ne R,
0.098 0.123 17.62 0.053
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Table 4.8 Optimal Consistency Constraint Vector/Weights, CPV,,,; = 99.99%

Consistency Constraint Copt Vopi Wopt
Comax 045 637x10° 6.80x 10°
Cemin 041 582x10° 6.80x 10"
CzpLoss 0.73 1.01x10° 6.80x 10*
Coma 0 0 6.80 x 10*
Conm -0.46 -6.53x10° 6.80x 10
chr 0 1.51x10°  6.80x 10*
Civm 0  593x10° 6.80x10°
Clom -0.02 -321x10" 6.80x 10
Com 0 3.67x10° 6.80x10*
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Figure 4.9 Optimal Motor Map, CPV,,,; = 99.99%

4.3.2 ATC-AL-POD at CPV,pu = 99.95%

Similarly, in Tables 4.9-4.11, the ATC optimization results using the POD
representations at CPVoq = 99.95% are shown. The algorithm converged after 18 ATC
iterations with a runtime of approximately 16.81 hours and resulted in a system solution
that was reasonably consistent between both subproblems. Again, the only active

constraints were the upper bound on Omarx. , the performance constraint g;;3, and the
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battery capacity constraint g;; g in the P;; subproblem; these were limited to Omax. = 755
rad/s, feomax = 10 s, and Cppee = 200 Ah, respectively. The optimal motor map computed
by the POD coefficients is shown in Figure 4.10. Finally, the total mass of the vehicle
was 1111 kg, with approximately 14.3% (158 kg) of the mass associated with the battery.
Under these design conditions, the EV is expected to have a gasoline-equivalent fuel

economy of mpg. = 180 mpg and a range of R = 132 miles.

Table 4.9 Optimal Decision Vector for Py; Subproblem, CPV,,, = 99.95%

T T
my, J,

4039 0.28

By
0.74

By
1.43

T
Ly

1.12

La'  yu'

1.20  0.39

Omax
755

BL Xbatt DPr
19.75 0.05 3.13

Table 4.10 Optimal Decision Vector for P,, Subproblem, CPV,,, = 99.95%

A Tm e R,
0.104 0.121 17.08 0.057

Table 4.11 Optimal Consistency Constraint Vector/Weights, CPVy,,; = 99.95%

Consistency Constraint Copt Vopt Wopt
Cemax 076 3.09x 10" 2.94x 10’
Cemin 0.74 3.17x10" 2.94x10’
CopLoss 1.59  4.49x10" 294x10
Coma 0 0 2.94x 10
Com 142 -295x 10" 2.94x 10’
o 0 1.35x 10  2.94x 10’
Civm 0.01 537x107% 2.94x10
Clem -0.07 -1.54x10"  294x10
Com 0.01  1.92x107% 2.94x10’

104



Motor Torque (N-m)

100

50

-50

-100

-150

& ploss map
40000 — Max torque
—min torque
20000 CUNC | e zero torque
10000
10000
0
0 10000
-10000 10000
-10000 -20000
-20000
-40
| | | | | | /\
100 200 300 400 500 600 700 800

Motor Speed (rad/s)

Figure 4.10 Optimal Motor Map, CPV,,, = 99.95%

4.3.3 ATC-AL-POD at CPV,, = 99.85%

Finally, in Tables 4.12-4.14, the ATC optimization results using the POD representations
at CPVgou = 99.85% are shown. The algorithm converged after 66 ATC iterations with a
runtime of approximately 59.41 hours and resulted in a system solution that was
reasonably consistent between both subproblems. Once again, the only active constraints
were the upper bound on @, the performance constraint g, 3, and the battery capacity
constraint gy g in the P;; subproblem; these were limited to Omax’ = 755 1ad/s, teomar = 10
s, and Cpuae = 200 Ah, respectively. The optimal motor map computed by the POD
coefficients is shown in Figure 4.11. Finally, the total mass of the vehicle was 1124 kg,
with approximately 14.1% (158 kg) of the mass associated with the battery. Under these

design conditions, the EV is expected to have a gasoline-equivalent fuel economy of

mpg. = 181 mpg and a range of R = 132 miles.

Table 4.12 Optimal Decision Vector for P;; Subproblem, CPV,,, = 99.85%

B

By

By

Xbatt

T T T T
pr a)maxT my, ']I Iym Izm

T
Ym

0.74

1.43

19.75 025 3.13 755 46.79 028 1.12 1.20

0.39
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Table 4.13 Optimal Decision Vector for P,, Subproblem, CPV,,, = 99.85%

Table 4.14 Optimal Consistency Constraint Vector/Weights, CPV,,, = 99.85%

A Tm

R,

0.121 0.116 15.67 0.095

Consistency Constraint Copt Vopt Wopt
Cemax 1.11  442x10° 3.60x 10™
Comin 095 3.85x10° 3.60x10™
CopLoss 159  250x10°  3.60x 10*®
Comax 0 0 3.60 x 10%®
Conm 191  755x10°  3.60x 107
Cor 001 234x10>* 3.60x 10
Com 0.02 9.34x10* 3.60x10*
Clam -0.05 -1.84x10° 3.60x10%®
Com 0.03  9.89x10°* 3.60x 10*
& ploss map
— ax torque
100 - —min torque
S U zero torque
50 -
€ 10000
£
S 0 e 010090 ................................
° 0
s ~10000
g _50 I -10000 _20000
-20000
-100
150 - 40000
0 1 60 260 360 460 560 660 760 800
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Figure 4.11 Optimal Motor Map, CPV ., = 99.85%
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4.3.4 Summary of ATC Results

It is evident from the optimization results that a relaxation in CPV,,, leads to a reduction
in the accuracy of the ATC design solutions, which are given by
x/" =[B,,B,,B,,X,> D,»L,»7,n.,R,]. In particular, it is seen that the errors

between the expected design solution (AiO) and the ATC design solutions are

X

AiO ATC
l _X H

4i0 ATC
: e —xt]

: x
AiO
X. Hz

4i0 ATC
* l - X H

2 =0.113, 2 =0.131, and 2 =0.180 for CPVyou

XAiO H
2

*

XAiO H
2

= 99.99%, CPVgou = 99.95%, and CPVgou = 99.85%, respectively. Note that this

|fAi0 _fATC |
* *
|f;AiO |

does not require exact system consistency (¢ = 0) and it assesses the error in the design,

measure for solution accuracy is preferred for ATC instead of since it

which can be directly modified, rather than the error in the prediction, which cannot be
directly modified and is dependent on the fidelity of the analysis models. Moreover,
similar measures have been used in well-established literature [Tosserams et al. (2006)]
when comparing multiple ATC solutions. Hence, using this measure, it can be seen that
the loss of accuracy in the ATC design solutions is linked to the loss of accuracy in the
POD representations as indicated by the AVASIM results.

An interesting outcome from this study is that a reduction in CPVg,y does not
necessarily accelerate ATC convergence; instead, the optimization strategy may become
more inefficient. This is clearly observed through the ATC runtimes, which were 10.72
hours, 16.81 hours, and 59.41 hours for CPVgu = 99.99%, CPVgu = 99.95%, and
CPVgour = 99.85%, respectively. However, the average ATC convergence rate for each
case, which is the total number of ATC iterations divided by the runtime, suggests that
the longer runtimes for lower CPV values were caused by an increase in the number of
ATC iterations. In particular, the average ATC convergence rates were 1.12 iterations/hr,
1.07 iterations/hr, and 1.11 iterations/hr for CPVyour = 99.99%, CPVgour = 99.95%, and
CPVgou = 99.85%, respectively. Since these convergence rates were relatively constant
for each case (within 5% of each other at worst), it can be reasonably concluded that the

cause of the longer runtimes was in fact the increased number of ATC iterations.
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Recall that the number of ATC iterations is driven by [|c® - ¢7/)|.,, which must
be less than 107 for outer loop convergence in these studies. Closer inspection of the
consistency values and associated penalty weights in Tables 4.8, 4.11, and 4.14 reveals
that the outer loop convergence (and hence the number of ATC iterations) was ultimately
dictated by the consistency of Zuux, Zmin, Zyross, and m,,. These variables had the largest
consistency values and weights in terms of magnitude for each case. Also, note that the
consistency values for these variables were on the order of at least 10™, which implies
that the reductions in these values during an ATC iteration could have been as large as
10". Such behavior would inhibit outer loop convergence and hence require more ATC
iterations. However, this behavior alone does not explain the counterintuitive results with
respect to optimization efficiency when using lower fidelity POD representations. This
instead can be traced back to the available degrees of freedom for achieving consistency
Of Zmaxs Zmin, Zpross, and m,, in both subproblems as well as the relationship among the
local design variables that compute them in the motor subproblem. In the Py
subproblem, Z,qy, Zmin, and z,;, are functions of the decision variables z; uqy, Zymin, and
Z,pLoss, Whereas m,, is treated as an independent decision variable. However, in the P»,
subproblem, Zz,ax, Znin, and z,704 are functions of the local design variables £, 7, n., and
R,, whereas the m,, is a function the local design variables £ and 7,. This means that
there are (Pmax + Pmin T Ppross +4) degrees of freedom to achieve consistency for the motor
map ([Zmax, Zmin,» Zpross]) and 3 degrees of freedom to achieve consistency for the motor
mass.  Using this information, it becomes clear why the lower fidelity POD
representations required more ATC iterations: these approximations had fewer degrees of
freedom to match the high-fidelity motor maps generated by the P,, subproblem, and the
optimizer had to balance the requirements for achieving consistency for both the motor
map and motor mass. Specifically, as the number of reduced representation variables
decreased in the P;; subproblem, the sensitivity of the motor map and motor mass
consistencies increased with respect to £ and r,, in the P,, subproblem. It is believed that

K—1
c( )HOO

this behavior led to large, frequent fluctuations in [|¢'© - and thus resulted in more

ATC iterations and longer runtimes.
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4.4 Conclusions

Based on the accuracy of the ATC solutions and their corresponding runtimes, it can be
concluded that the best POD representation within ATC for this study is associated with
CPVgour = 99.99% [Alexander et al. (2010c)]. This case had both the highest accuracy
and the fastest runtime. From a broader perspective, it can be reasonably concluded that
high-fidelity POD representations are generally more appropriate for reduced
representation of VVCVs in ATC. This is because low-fidelity POD representations will
usually lead to less accurate design solutions and will frequently lead to longer runtimes
via more outer loop iterations. The exceptions to this might be for design problems in
which there is less interaction among the VVCVs and other coupling variables, or for
design problems in which extremely low-fidelity POD representations (CPVgou << 99%)
are used. For example, in the former case, if the motor mass would have been eliminated
as a coupling variable, then perhaps the runtimes for the low-fidelity POD representations
would have been nearly the same or even slightly faster than the high-fidelity POD
representation. In the latter case, using extremely low-fidelity POD representations
might decrease the runtime directly through significantly faster approximations per ATC
iteration. However, in both cases, the design solution accuracy would still be
compromised, and one would have to assess whether this would be worth any additional
computational savings. Hence, in the future, this work can be made more comprehensive
by experimenting with these design scenarios and examining other optimization metrics,
like the problem condition, as a function of CPVy.. Additionally, from a design
perspective, this study can be enhanced by developing an explicit cost model that

explores tradeoffs between extended range/improved performance and battery cost.

4.5 Summary

This chapter explored the design optimization of a commercial EV powertrain.
Specifically, an AiO problem formulation was introduced and solved as well as an ATC
problem formulation that used POD for the reduced representation of motor map
functional data. In an effort to identify the effect of the POD representation accuracy on
the ATC solution accuracy, the latter problem formulation was solved three times using

109



different sets of POD representations based on the CPV. It was hypothesized that as the
CPV (and hence POD representation accuracy) was reduced, the ATC solution time
would significantly decrease due to the use of fewer reduced representation variables
(POD coefficients). However, it was discovered that as the CPV was reduced, the ATC
solution time was significantly compromised as well as the design solution accuracy.
This led to the conclusion that high-fidelity POD representations would be most
appropriate for the reduced representation of VVCVs in ATC because of their good
accuracy and enhanced capability of achieving functional data consistency through
additional degrees of freedom (reduced representation variables). The next chapter will
build off of these results by examining how different measures of consistency will impact
the ATC solution with respect to the interpretation of functional data consistency and

overall solution accuracy.
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Chapter 5

Consistency Measures for Functional Data in Analytical Target

Cascading

The importance of identifying appropriate error metrics for the validation of functional
data approximations against their high-fidelity counterparts was discussed in Chapter 1.
Specifically, it was mentioned that many of the existing error metrics were developed for
1D applications and that their performance and suitability for higher dimensional
functional data was largely unexplored. In recent work [Alexander and Papalambros
(2010)], this problem was addressed by extending an error metric known as AVASIM to
2D applications as this algorithm systematically, objectively and efficiently provides a
clear indication of local and global functional data accuracy with respect to preset
thresholds [Sohns et al. (2006)]. The results from this work as presented in Chapter 2
demonstrated that both the 1D and 2D AVASIM formulations provide reasonable
predictions of local and global functional data accuracy. However, the primary
motivation for exploring the capability of AVASIM for higher dimensional functional
data is its potential impact on decomposition-based design optimization strategies
containing coupled, functional data. Since ATC convergence, for example, is ultimately
based on the discrepancy between coupled quantities from distinct subproblems, it is
necessary to implement accurate and meaningful consistency measures for functional
data that lead to physically realizable optimal design solutions. As mentioned earlier, no
well-established consistency measure exists for coupled functional data within
decomposition-based optimization strategies in the literature, and so previous work has
somewhat arbitrarily used a RMSE consistency measure [4lexander (2008); Alexander et

al. (2009); Alexander et al. (2010a); Alexander et al. (2010b); Alexander et al. (2010c)].
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Nevertheless, such a measure may not be appropriate for higher dimensional functional
data (such as 2D motor power loss maps) and lacks a clear definition of consistency
among coupled functional data. The current chapter therefore explores this issue by
implementing RMSE, AVASIM, and a generalized version of AVASIM independently in
an ATC problem formulation for the commercial EV powertrain model and comparing

their respective design solutions.

5.1 Consistency Measures

As originally developed, the definition for the relaxed consistency constraints in ATC (¢;
=t; - r;j) is only applicable for scalar-valued coupling variables; when these terms consist
of functional data, the definition must be modified based on the error metric desired for
measuring consistency. For example, in the previous chapter and in other related work
[Alexander (2008); Alexander et al. (2009); Alexander et al. (2010a); Alexander et al.
(2010b); Alexander et al. (2010c)], the consistency between functional data was
measured through RMSE as

(5.1)

Cija

\/Zi—l (tz'/',m ~Vim )2
0

for the /"-component of c;, where O denotes the number of discretized points defining
the functional data. Because functional data consistency in this study will also be
measured through AVASIM and generalized AVASIM, an alternative definition
[Alexander and Papalambros (2010)] for the relaxed consistency constraints is

=1-E

C

ij,l comb,l (52)
where Ecomp; 1s computed through Equations (2.13)-(2.22) with #;,, and r;;,, substituted
for y; and y; and wi,ca and wgiopar set as appropriate. Observe that for both RMSE and the

AVASIM approaches, the definition of consistency is similar to that of the scalar-valued

case; that is, when ¢;;; = 0, the coupling variables match exactly, whereas if ¢;;; # 0, some
112



discrepancy exists between the coupling variables. However, using AVASIM or
generalized AVASIM enhances the meaning of consistency since c¢;;; = 1 indicates that
the functional data are consistent and at the threshold, and c¢;;; > 1 indicates that the

functional data are inconsistent [A/exander and Papalambros (2010)].

5.2 ATC Problem Formulation and Solutions

The ATC problem formulation for the commercial EV powertrain model shown in
Equations (4.8)-(4.9) provides the basis for this study. Because the problem structure
requires reduced representations for VVCVs associated with the motor torque curves and
power loss map, the POD representations developed at CPVy,u = 99.99% were used.
Like the previous chapter, the design problem for each consistency measure was solved
using NOMADm. The default settings of this optimizer were modified for the P;;
subproblem such that only a Latin hypercube search was performed and 1,000 function
evaluations were permitted. This was necessary to alleviate computational issues
associated with memory availability. However, for the P,, subproblem, the default
settings were sufficient. In the ATC coordination strategy, the weight update parameter
was set to = 2.75, and the initial weight vectors for both subproblems were set to v =0
and w = 1. Since the RMSE consistency measure served as the baseline in this study, its

¢ |, for outer loop convergence was set to 107 for the

associated tolerance on [|c® -
other consistency measures, the coordination strategy was repeated until the number of
ATC iterations was identical to the RMSE case. Such a modification was necessary for
an equitable comparison of the optimization results [Alexander and Papalambros
(2010)]. Once again, all computational work was performed on a 3GHz, 4 MB RAM,

Intel® Core™ 2 Duo CPU.

5.2.1 RMSE Consistency Measure in ATC

The ATC optimization results using RMSE as a consistency measure for the functional
data are shown in Tables 5.1-5.3. Note that these results are identical to those in Chapter
4 for POD at CPVyou = 99.99% but are repeated here to facilitate comparisons with the

other consistency measures. Also, to avoid ill-performance of the RMSE consistency
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measure due to the vast difference in magnitudes between the torque curves and power
loss map, Equation (5.1) was modified for the power loss map such that (¢;,, — r;,,) was
normalized by its associated baseline power loss value before being squared when the
baseline power loss value exceeded 1 W in magnitude. Convergence was achieved after
12 ATC iterations with a runtime of approximately 10.72 hours and resulted in a system
solution that was reasonably consistent between both subproblems. Recall that the only
active constraints were the upper bound on a)maxT, the performance constraint g;; 3, and
the battery capacity constraint g, in the P; subproblem; these were limited to @y =
755 rad/s, teomax = 10 s, and Cppay = 200 Ah, respectively. The optimal motor map
computed by the POD coefficients is shown in Figure 5.1. Finally, the total mass of the
vehicle was 1111 kg, with approximately 14.3% (158 kg) of the mass associated with the
battery. With such a design, the EV could achieve a gasoline-equivalent fuel economy of

mpg. = 184 mpg and a range of R = 134 miles.

Table 5.1 Optimal Decision Vector for P;; Subproblem, RMSE Consistency

BI BW BL Xbatt Pr a)maxT mmT JrT [ymT IzmT ymT
074 143 19.75 025 3.13 755 4039 028 1.12 120 0.39

Table 5.2 Optimal Decision Vector for P, Subproblem, RMSE Consistency

A Fm e R,
0.098 0.123 17.62 0.053
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Table 5.3 Optimal Consistency Constraint Vector/Weights, RMSE Consistency

Consistency Constraint Copt Vopi Wopt
Comax 045 637x10° 6.80x 10°
Cemin 041 582x10° 6.80x 10"
CzpLoss 0.73 1.01x10° 6.80x 10*
Coma 0 0 6.80 x 10*
Conm -0.46 -6.53x10° 6.80x 10
chr 0 1.51x10°  6.80x 10*
Civm 0  593x10° 6.80x10°
Clom -0.02 -321x10" 6.80x 10
Com 0 3.67x10° 6.80x10*
70000 @ ploss map
100 L — MaXx torque
— Min torque
20000 ........... zZero torque
50 +
€ 10000
z
7.3? O beeerenasssererearseseseenasassseseseasaseneseesesssseeeeeasanenseen: 101010 T
g 0 0
s -10000
2 50l 10000
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-100 | ~40000
-150 = ~
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Motor Speed (rad/s)
Figure 5.1 Optimal Motor Map, RMSE Consistency

5.2.2 AVASIM Consistency Measure in ATC

Similarly, the ATC optimization results using AVASIM as a consistency measure for the
functional data are shown in Tables 5.4-5.6. As indicated earlier, the coordination
strategy was repeated until the number of ATC iterations was identical to that of the
RMSE case. The runtime for this case was 9.36 hours and also resulted in a system

solution that was reasonably consistent between both subproblems. This time, the active
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constraints included the upper bound on Omax. and the vehicle range constraint g ¢ in the
Py, subproblem, which were limited to Onar. = 755 rad/s and Ry, = 100 miles,
respectively. The optimal motor map computed by the POD coefficients is shown in
Figure 5.2. Finally, the total mass of the vehicle was 1078 kg, with approximately 11.6%
(125 kg) of the mass associated with the battery. With such a design, the EV is predicted
to have a gasoline-equivalent fuel economy of mpg. = 190 mpg and a 0-60 mph

acceleration time of 750 = 9.29 s.

Table 5.4 Optimal Decision Vector for P;; Subproblem, AVASIM Consistency

La'  yu'

.20 0.39

T T
my, J,

4039 0.28

T
Ly

1.12

Omax
755

B[ BW BL
0.74 1.03

Xbatt DPr
19.75 0.25 3.13

Table 5.5 Optimal Decision Vector for P, Subproblem, AVASIM Consistency

A Fm ne R,
0.105 0.119 17.59 0.054

Table 5.6 Optimal Consistency Constraint Vector/Weights, AVASIM Consistency

Consistency Constraint Copt Vopt Wopt
Cemax 0.66 9.25x10° 6.80x 10°*
Cemin 0.56 7.90x10° 6.80x 10"
CzpLoss 049 6.89x10° 6.80x 10
Coma 0 0 6.80 x 10*
Com 0.69 -9.70x 10° 6.80x 10*
Cr 0.02 243x10" 6.80x 10"
Civm 0.07 9.72x10" 6.80x 10*
Ciem 0.04 -6.11x10" 6.80x 10
Com 0.01 1.38x10" 6.80x 10
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Figure 5.2 Optimal Motor Map, AVASIM Consistency

5.2.3 Generalized AVASIM Consistency Measure in ATC

Finally, the ATC optimization results using generalized AVASIM as a consistency
measure for the functional data are shown in Tables 5.7-5.9. Because the results from
using the AVASIM consistency measure appeared to indicate that the global accuracy of
the functional data was more important, the weights for generalized AVASIM were set to
Wioear = 1/3 and wyiopar = 2/3, respectively. The runtime for this case was approximately
8.61 hours and resulted in a system solution that was reasonably consistent between both
subproblems. Like the RMSE case, the only active constraints were the upper bound on
a)maxT, the performance constraint gy 3, and the battery capacity constraint g;; g in the Py,
subproblem; these were limited to Omar. = 755 rad/s, teomax = 10 s, and Cpuar = 200 Ah,
respectively. The optimal motor map produced by the POD coefficients is illustrated in
Figure 5.3. Additionally, the total mass of the vehicle was 1111 kg, with approximately
14.3% (158 kg) of the mass associated with the battery. With such a design, the EV
could achieve a gasoline-equivalent fuel economy of mpg, = 185 mpg and a range of R =

135 miles.
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Table 5.7 Optimal Decision Vector for P;; Subproblem, G-AVASIM Consistency

T T T T T
B By B Xbatt Dr a)maxT my, J; Iym Ly, Ym

0.74 1.03 19.75 0.15 3.13 755 4039 028 1.12 120 0.39

Table 5.8 Optimal Decision Vector for P, Subproblem, G-AVASIM Consistency

A Fm e R,
0.0978 0.123 17.77 0.055

Table 5.9 Optimal Consistency Constraint Vector/Weights, G-AVASIM Consistency

Consistency Constraint Copt Vopt Wopt
Cemax 0.16 236x10° 6.80x 10°
Cemin 0.16 228x10° 6.80x 10*
CzpLoss 0.62 6.70x10° 6.80x 10
Comax 0 0 6.80 x 10*
Com 0 8.42x10° 6.80x 10"
Cr 0.01 8.73x10° 6.80x 10*
Cim 0.02 3.49x10" 6.80x 10
Com 0 -258x10° 6.80x 10"
Com 0  3.04x10° 6.80x 10*
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5.2.4 Summary of ATC Results

Using the same definitions for x/” and x!’ that were presented in Chapter 4, it is seen

‘XAI‘O _xAre “
that the errors between the AiO and ATC design solutions are - — ~ 2 _0.113 ,
=1,
‘X:u'o —XfTCH foio —xfTC“
, 2 =0.113, and , 2 =0.108 for the RMSE, AVASIM, and
=1, =,

generalized AVASIM consistency measures, respectively. Hence, the results clearly
show that implementing the generalized AVASIM consistency measure provides the
most accurate design solution in this work. The most reasonable explanation for this
outcome is that the emphasis on global functional data accuracy within generalized
AVASIM improved the functional data consistency between the ATC subproblems,
which in turn reduced the inconsistencies of the remaining scalar-valued coupling
variables and improved the accuracy of the design solution. Conversely, RMSE only
addresses local functional data accuracy, which limits its ability to capture the global

characteristics of functional data unless the number of discretized points is extremely
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large. Such a limitation may have ultimately reduced the functional data consistency
between the ATC subproblems, which in turn would have reduced the consistencies of
the remaining scalar-valued coupling variables and limited the accuracy of the design
solution. The fact that implementing the AVASIM consistency measure did not yield an
improvement over the RMSE consistency measure is surprising since it addresses both
local and global functional data accuracy; however, it is posited that this may have been
due to the instability of the £),.,; measure within AVASIM, which can be filtered out with
generalized AVASIM by allocating more weight to global functional data accuracy.

Note that the consistency values of the scalar-valued coupling variables are
affected by this new consistency measure since all of the coupling variables are related
through at least a subset of the local design variables (&, 7, ., R,) in the P,; subproblem.

The relationship between improved consistency and improved design solution accuracy

can be seen by calculating

, for each solution, which is 1.06, 1.21, and 0.66 for the

c opt

RMSE, AVASIM, and generalized AVASIM consistency measures, respectively.

Observe that this vector norm is only used for comparison purposes as it is not physically

meaningful on an independent basis. Since the trend in |c,, , nearly follows that of
x40 _ g ATC H
2, the explanation provided for the improvement in design solution

XAiO‘

*

2
accuracy is adequately supported.

In addition, an interesting trend that is seen in this study is that the use of the
AVASIM and generalized AVASIM consistency measures improved the efficiency of
ATC. Indeed, the runtimes while using the RMSE, AVASIM, and generalized AVASIM
consistency measures were 10.72 hours, 9.36 hours, and 8.61 hours, respectively. This
result was somewhat unexpected given the fact that the computational effort required by
the AVASIM and generalized AVASIM consistency measures was greater than that of
the RMSE consistency measure. Since all aspects of the design problem, including the
number of ATC iterations, was identical for each case, the only reasonable explanation
for the reduced runtimes is that fewer function evaluations were required for each of the

subproblems per ATC iteration. In turn, the reduced number of function evaluations was
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likely due to the greater overall stability of the AVASIM and generalized AVASIM
consistency measures. Recall that the RMSE consistency measure only addresses local
functional data accuracy, which in general may fluctuate much than global functional
data accuracy over the course of design optimization. The AVASIM and generalized
AVASIM consistency measures both address global functional data accuracy, with the
latter measure having the most flexibility to emphasize global functional data accuracy.
Because this functional data accuracy component is more likely to be stable during
design optimization, it is believed that this led to fewer function evaluations and thus

contributed to faster runtimes.

5.3 Conclusions

It is evident based on the results that the generalized AVASIM consistency measure (with
an emphasis on global accuracy) is the best choice for this work as it predicted the most
accurate design solution in the least amount of time. This is true for most ATC problems
since the global measure is usually more important and stable than the local measure
within generalized AVASIM and will generally provide more accurate designs solutions
using fewer function evaluations. Moreover, unlike RMSE, generalized AVASIM (as
well as AVASIM) can provide meaningful information regarding the consistency of
functional data in a decomposition-based optimization strategy. For example, in Table
5.9, the generalized AVASIM consistency measure indicates that the consistencies of the
maximum/minimum motor torque curves and the power loss map exchanged between the
subproblems are (1 — 0.16) x 100% = 84%, (1 — 0.16) x 100% = 84%, and (1 — 0.62) x
100% = 38%, respectively. The values associated with the RMSE consistency measure
in Table 5.3 for the same functional data are incapable of providing such information.
However, despite the success of the generalized AVASIM consistency measure for this
design problem, a couple of items should be investigated in future work. First, it should
be determined if a systematic approach can be developed to assign values to wy; and
Weioba- This clearly had a significant impact on both the accuracy and efficiency of the
ATC solution, and it is unknown whether a different weighting could further improve the

optimization strategy. While it was sufficient in this study to rely on extensive
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experience with the model and design problem to set values for these weights, such an
approach may not be appropriate or efficient in more general problem applications.
Second, other error metrics should continue to be explored in terms of their ability to
support decomposition-based optimization strategies through the accuracy assessment of
ID and higher dimensional functional data. Such exploration may reveal other
competitive alternatives and could help to specify the conditions under which generalized
AVASIM is a suitable consistency measure more precisely. Nevertheless, the present
study is the first formal attempt to explore the capability of any functional data error
metric as a consistency measure within a decomposition-based optimization strategy
[Alexander and Papalambros (2010)] and provides compelling evidence for the

superiority of generalized AVASIM.

5.4 Summary

This chapter explored the use of three different error metrics as consistency measures for
coupled, functional data in an ATC problem formulation. After applying RMSE,
AVASIM, and generalized AVASIM as consistency measures in the ATC optimization
of a commercial EV powertrain, it was found that the generalized AVASIM consistency
measure (with an emphasis on global accuracy) was superior as it provided the most
accurate design solution in the least amount of time. Furthermore, it was stated that this
would be the most appropriate consistency measure in the majority of ATC design
problems since the global measure is usually more important and stable than the local
measure within generalized AVASIM and would provide more accurate design solutions
using fewer function evaluations. Moreover, unlike RMSE, generalized AVASIM (as
well as AVASIM) can provide clear definitions of functional data consistency among
ATC subproblems. Nevertheless, since this study is the first of its kind, more work must
be completed regarding the weighting strategy of generalized AVASIM as well as the
investigation of competitive alternatives before more specific conditions can be cited for
its general application. The next chapter will investigate the final research question of
this dissertation, which deals with the effective constraint management of reduced

representation variables within an ATC framework.
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Chapter 6

Constraint Management of Reduced Representation Variables

As mentioned in Chapter 1, the approximations of the motor performance curves via
POD are valid only within the sampling domain of the original representations. This is
true not only for POD, but for the majority of similar applications; that is, data
approximation models are usually effective for interpolation, but rarely, if ever, for
extrapolation. In the context of design optimization, one can ensure that such data
extrapolation, and hence ill-behaved analysis and optimization, does not occur by
introducing appropriate constraints on the approximation models. In some cases, simply
identifying the maximum and minimum attainable values for the parameters within these
models is sufficient; however, in general, one cannot assume that the parameter space is a
hypercube constrained by simple upper and lower bounds. Rather, the parameter space
can, in many cases, be highly-nonlinear, resulting in a generalized volume in hyperspace.
The fact that these parameters often lack physical meaning further complicates this
situation, since it is often impossible to practically construct constraints that define the
validity domain of high-dimensional, non-convex, abstract quantities [Alexander et al.
(2010b)]. This is evident in the ATC problem formulation for the commercial EV
powertrain, where the parameters are POD coefficients serving as reduced representation
variables.

Recall that in recent work, a penalty-value based heuristic was implemented as a
temporary solution to this problem and led to reasonable results. However, it also
produced an ill-conditioned ATC problem which led to many ATC iterations and
extensive runtimes. Although more direct approaches such as probability density-based
models [Tarassenko et al. (1995)] and convex hulling algorithms [Barber et al. (1996)]
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were considered, each of these methods had significant shortcomings that made them
unsuitable as strong, alternative solutions. Nevertheless, a technique known as support
vector domain description (SVDD) [Tax and Duin (1999a); Tax and Duin (1999b)] did
emerge from the literature as a viable candidate and was initially explored as part of this
dissertation work. This chapter completes this work by comparing the penalty value-
based heuristic to an alternative that uses SVDD as a potential constraint management

method for the model validity region of the reduced representation variables.

6.1 Penalty Value-Based Heuristic

The penalty value-based heuristic constrains the model validity region indirectly by
assigning large penalty values to objective function and constraint function outputs that
depend on reduced representation variables outside the parameter space. It is expected
that this would force the optimizer to select reduced representation variables that lie
within the parameter space or model validity region. A key assumption for the successful
implementation of this method is that a non-gradient-based optimizer will be used instead
of a gradient-based optimizer [Alexander et al. (2010b)]. This is because penalizing
outputs such as the objective function with large values in gradient-based optimizers can
result in ill-conditioned optimization problems due to large gradients.

One way the penalty value-based heuristic can be executed is through a
conditional statement that attempts to compute all quantities that depend on the reduced
representation variables and, if unable to perform the computation, returns penalty values
for the appropriate quantities and continues solving the optimization problem. When
programming in MATLAB®, a reasonable approach would be to use a “try-catch”
statement [MATLAB® Function Reference]. In this technique, MATLAB® attempts to
execute the code between the keywords “try” and “catch”, and in most cases will return
the results between these keywords. However, if the code between “try” and “catch” fails
and produces an error, then MATLAB® can execute an alternative code between the
keywords “catch” and “end”. Therefore, in the context of the penalty value-based
heuristic, an attempt can be made to compute all quantities that depend on the reduced

representation variables between “try” and “catch” and, if the computations cannot be
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performed, penalty values can be assigned to the appropriate quantities between ‘“catch”
and “end”. Figure 6.1 shows an excerpt from the MATLAB® code for the commercial EV
powertrain model in which an attempt can be made to perform the powertrain simulations

and, upon failing, will return infinite values as appropriate for mpg., f¢, R, and Py.

try
% If simulation works, set error message to zero
sim(‘pt’,[],options)
pterr = 0;
varargout{1} = pterr;
catch

% Set simulation outputs to penalty values
mpge = -inf;
t60 = inf;
R = -inf;
PV = inf;
return
end

Figure 6.1 Penalty Value-Based Heuristic: MATLAB® Try-Catch Statement

6.2 Support Vector Domain Description

SVDD [Tax and Duin (1999a); Tax and Duin (1999b); Malak and Paredis (2009)] is a
classification method that uses a machine learning algorithm to approximate the
boundary of a set of data points and to identify whether new data points lie inside the
boundary description. In particular, SVDD can be used to represent data set boundaries
that are nonlinear, non-convex, and even disconnected without adding much complexity
or computational burden. It is also distinct from other machine learning algorithms in
that it requires only one class of data for classification since it aims to identify the
minimum radius hypersphere enclosing the data. This feature is advantageous for
classification problems in which a second class of data is either unknown or difficult to
generate, as is the case for the reduced representation variables.

In the context of constraint management for the reduced representation variables

in optimization, SVDD can be used to augment the penalty value-based heuristic through
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the inclusion of explicit constraints representing the boundary of the model validity
region. Note that the penalty value-based heuristic is still necessary as the majority of
optimizers enable the selection of decision vectors that may periodically violate
constraints during optimization; in the case of the current problem, this can lead to failure
of the underlying analysis models. However, it is expected that the boundary definitions
(and hence constraints) generated by SVDD would directly minimize the possibility of
analysis model failure since all feasible decision vectors would have to satisfy these

constraints.

6.2.1 Theory

Because it is assumed that the data space can be effectively characterized by a
hypersphere, the objective is to solve the following primal optimization problem [7Tax

and Duin (1999a); Tax and Duin (1999b); Malak (2008); Malak and Paredis (2009)]:

min R;,, +C, D¢
e ,. (6.1)

. 2 2 .
subject to |z, —a”2 <R, +¢&, i=l-m

Here, Ry, denotes the hypersphere radius, & denotes a hypersphere radius slack variable,
C, denotes the slack variable penalty constant, z. denotes a data sample (which is a p-
dimensional vector of reduced representation variables in this application), a denotes the
hypersphere center, and m denotes the number of samples. The second term in the
objective function of Equation (6.1) relaxes the optimization problem and permits the
inclusion of outliers. In practice, this optimization problem is never solved for reasons

given in [Vapnik (1995)]; instead, its dual is formulated by constructing the Lagrangian

L(R,,.8,B,,&, 1) =R}, +C, > &= B, (R;yp +¢& |z, —a”i)—z,uifi (6.2)

with nonnegative Lagrange multipliers B; and z;. Applying Karush-Kuhn-Tucker (KKT)

conditions to Equation (6.2) yields the following constraints [Malak (2008)]:
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> B = (6.3)

Bz, B (6.4)
a=" " = Z .
B

C,—-B,—u,=0, i=1-m (6.5)

The new Wolfe dual optimization problem is then stated as [Malak (2008)]

maxZB (z],z,,)- ZZBB (z”z,j
subjectto 0<B, <C,, i=1--m (6.6)

> B, =1

where each g; is eliminated through the bound constraints on each B;. The dual solutions
are categorized according to three conditions: B; =0, 0 < B; < C,, and B; = C,. The first
condition (B; = 0) is satisfied by the majority of the dual variables for large m [Malak
(2008)] and implies that the associated data sample z,; lies within the hypersphere. The
second condition (0 < B; < C,) implies that the associated data sample z,; lies at the
boundary of hypersphere and is essential to its description; these samples are termed
support vectors [Tax and Duin (1999a); Tax and Duin (1999b); Malak (2008); Malak and
Paredis (2009)]. The third condition (B; = C,) implies that the associated data sample z,.;
lies outside the hypersphere and is an outlier.

Using the dual variables and Equation (6.4), the squared distance R’y from a to

any arbitrary data point y is calculated as

R =|y-a]. =y"y-2>B.(y"2,)+> > BB (2] z,,) (6.7)
i i
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where the indices i and j run over the support vectors and their associated Lagrange
multipliers. With this definition, Ry, can be calculated by setting y = z,; for any data
sample that is a support vector, and in turn this information can be used to determine

whether an arbitrary data point lies inside the boundary description:

Ry, (Y)<R; (6.8)

hyp

Such a condition can be added to the ATC problem formulation for the commercial EV
powertrain to constrain the POD model directly.

A key limitation in the nominal SVDD problem formulation is that it assumes a
hyperspherical data space. Since this is rarely the case, one must usually map the data
into some higher-dimensional “feature space” through a nonlinear transformation where
the hyperspherical domain assumption is more appropriate [Malak (2008)]. Because
these nonlinear transformations can be difficult to develop explicitly, Mercer kernel
functions [Scholkopf and Smola (2002)] are used to represent the dot product between
any two nonlinear transformations. Although several kernel functions exist, the most

preferred in the literature is the Gaussian kernel function

2
Ky(z,,.z, )= "k (6.9)

where ¢ is the kernel width parameter. Equation (6.9) can then be substituted for the dot
product terms in Equations (6.6)-(6.7), yielding the following dual optimization problem

and squared distance formulations:

rnBEilXZBiKG(Zr,i’Zr,i)_Z;BiBjKG(Zr,i’Zr,j)
subjectto 0<B, <C,, i=1l--m (6.10)

> B =1
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Ry, (¥)=Ks(y,Y)-2D BK;(y.z,,))+D.> BB K;(z,,.2,,) (6.11)
i i J

The parameters gy and C, in Equations (6.10)-(6.11) must be tuned to construct an
appropriate SVDD. In practice, however, modifications to C, have a minimal impact on
the solution [Tax and Duin (1999b); Malak (2008)], leaving only ¢, to be tuned. This
parameter is adjusted such that overfitting of the data is minimized. Here, overfitting is
defined as the rejection of an arbitrary data point y that is in fact within the data sample
domain. Although overfitting can be monitored visually [Malak (2008)] by examining
contour plots, this is normally insufficient for most applications and impossible for high-
dimensional (p > 3) data sets. A more formal approach that makes use of the leave-one-
out method [Vapnik (1995)] is usually more appropriate. This method essentially states
that the probability of overfitting, which is also known as the error of the first kind [7ax
and Duin (1999a); Tax and Duin (1999b)], can be estimated by determining the
proportion of data samples that are support vectors [Tax and Duin (1999a); Tax and Duin
(1999b)]:

E[P(error)] = My (6.12)
m

Note that in the above, ngy refers to the number of support vectors. Hence, gy can be
determined by setting an acceptable target for overfitting P4, and minimizing the b-

norm on the difference between this target and the estimated performance of the SVDD:

n
: N4
min - R‘arget
90 m

(6.13)

2
subjectto —¢q,<0

The optimal SVDD therefore requires the solution of Equation (6.13), which in turn
requires the solution of Equation (6.10) to determine ngy for a given gy. Observe that

underfitting, or error of the second kind, cannot be addressed for SVDD as this requires
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data samples outside the target domain and hence directly violates the assumption of a

single data class for SVDD.

6.2.2 Application

Three SVDD models were developed to approximate the boundaries of the POD model
validity regions associated with the maximum and minimum motor torque curves and
power loss map in the ATC problem formulation for the commercial EV powertrain
model. This first required the generation of data sample vectors, which were identical to

those used for the POD representations but mapped appropriately into POD-space:

T —
Zr,max = (I)p,max (Zmax - Zmax) (614)
T —
Zr,min = (D p,min (me - me ) (6 1 5)
Z r,pLoss = (I) g, pLoss ( pLoss - z pLoss ) (6 16)

The data sample vectors in Z, ax, Zymin, and Z, 15 Were then normalized through the
MATLAB® function mapminmax [MATLAB® Function Reference] prior to constructing the
models. Such data sample preprocessing is typical of most machine learning algorithms
as this helps to improve the performance of their associated models. From here, the slack
variable penalty constants were set to C, = 0.5, the overfitting targets were set to Pyrger =
0.10, and the kernel width parameter bounds were set to g mi» = 10 and qo.max = 10 based
on experience for each SVDD problem formulation. Note that such bounds for gy were
necessary to satisfy the problem structure required by the optimizer. In an effort to obtain
the global optimum for the tuning problem in Equation (6.13), the non-gradient-based
optimizer NOMADmM was selected again. However, because of the convexity of the
SVDD optimization problem in Equation (6.10), the MATLAB® gradient-based optimizer
fmincon [MATLAB® Function Reference] was selected. In both cases, the default settings

were appropriate for the optimizers. Figures 6.2-6.4 illustrate portions of the optimal
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SVDD boundaries for two dimensions of the POD model validity regions associated with

the torque curves and power loss map.
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Figure 6.2 Partial SVDD Boundary, Max-Torque POD Model Validity Region
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SVDD: 51 Support Vectors, g0 = 0.%4
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Figure 6.3 Partial SVDD Boundary, Min-Torque POD Model Validity Region
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6.3 ATC Problem Formulation and Solutions

Once again, the ATC problem formulation for the commercial EV powertrain model
shown in Equations (4.8)-(4.9) provides the basis for the first part of this study, which
implements the penalty value-based heuristic. The second part of this study, which
implements both the penalty value-based heuristic as well as SVDD, augments the ATC

problem formulation through the following constraints in the P;; subproblem:

gll,9 = Rjist,max (ill ) - R/fyp,max < 0 (617)
gll,lO = Razh‘st,min (ill) - RZyp,min < 0 (6 1 8)
gll,ll = Razﬁst,pLoss (ill ) - leyp,pLoss < 0 (619)

Note that these constraints were derived by applying Equation (6.8). Additionally, the
POD representations developed at CPVg = 99.99% were used to approximate the
VVCVs associated with the motor torque curves and power loss map. In an effort to
observe the accuracy and/or optimization efficiency contributions of the constraint
management approaches exclusively, the “standard” RMSE consistency measure that was
used in Chapter 4 is implemented here. The design problem for each constraint
management method was solved using NOMADm. As in previous chapters, the default
settings of this optimizer were modified for the P;; subproblem such that only a Latin
hypercube search was performed and 1,000 function evaluations were permitted. This
was necessary to alleviate computational issues associated with memory availability.
However, for the P, subproblem, the default settings were sufficient. Finally, in the
ATC coordination strategy, the weight update parameter was set to = 2.75, the initial
weight vectors for both subproblems were set to v =0 and w = 1, and the tolerance on
1¢® - ¢®)|,, for outer loop convergence was set to 102 Like the other studies, all

computational work was performed on a 3GHz, 4 MB RAM, Intel® Core™ 2 Duo CPU.
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6.3.1 Constraint Management via Penalty Value-Based Heuristic

Tables 6.1-6.3 show the ATC optimization results when implementing the penalty value-
based heuristic as a constraint management technique for the reduced representation
variables. Once again, note that these results are identical to those in Chapter 4 for POD
at CPVgou = 99.99% but are repeated here to facilitate comparisons with the augmented
constraint management technique (penalty value-based heuristic plus SVDD).
Convergence was achieved after 12 ATC iterations with a runtime of approximately
10.72 hours and resulted in a system solution that was reasonably consistent between
both subproblems. Recall that the only active constraints were the upper bound on @',
the performance constraint g;;3, and the battery capacity constraint g;;5 in the Py,
subproblem; these were limited to Omar. = 755 rad/s, teomax = 10 s, and Cpar = 200 Ah,
respectively. As usual, the optimal motor map computed by the POD coefficients is
shown in Figure 6.5. Finally, the total mass of the vehicle was 1111 kg, with
approximately 14.3% (158 kg) of the mass associated with the battery. These design
conditions indicated that the EV could achieve a gasoline-equivalent fuel economy of

mpg. = 184 mpg and a range of R = 134 miles.

Table 6.1 Optimal Decision Vector for P;; Subproblem, PVBH

BI BW BL Xbatt Pr a)maxT mmT JrT IymT IzmT ymT
074 143 19.75 025 3.13 755 4039 028 1.12 120 0.39

Table 6.2 Optimal Decision Vector for P, Subproblem, PVBH

A P e R,
0.098 0.123 17.62 0.053
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Table 6.3 Optimal Consistency Constraint Vector/Weights, PVBH

Consistency Constraint Copt Vopi Wopt
Comax 045 637x10° 6.80x 10°
Cemin 041 582x10° 6.80x 10"
Cz pLoss 0.73 1.01x10° 6.80x 10
Coma 0 0 6.80 x 10*
Com -0.46 -6.53x10° 6.80x 10
cr 0 1.51x10°  6.80x 10*
Civm 0  593x10° 6.80x10°
Clom -0.02 -321x10" 6.80x 10
Com 0 3.67x10° 6.80x10*
70000 @ ploss map
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Figure 6.5 Optimal Motor Map, PVBH

6.3.2 Constraint Management via SVDD Augmentation

Similarly, Tables 6.4-6.6 show the ATC optimization results when augmenting the
penalty value-based heuristic with SVDD as a constraint management technique for the
reduced representation variables. The problem converged after 5 ATC iterations with a
runtime of approximately 3.95 hours and resulted in a system solution that was

reasonably consistent between both subproblems. The only meaningful active constraints
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included the upper bound on Omar. and the battery capacity constraint g;; s in the Py,
subproblem, which were limited to Omar. = 755 rad/s and Cypar = 200 Ah, respectively.
Although the SVDD constraints g119-g11,11 were active as well, they were insignificant
from a design perspective and only relevant mathematically. In particular, the activity of
the SVDD constraints indicated that the optimal reduced representation variables were at
the boundary of their respective POD model validity regions. The optimal motor map
computed by the POD coefficients is shown in Figure 6.6. Finally, the total mass of the
vehicle was 1111 kg, with approximately 14.3% (158 kg) of the mass associated with the
battery. With such a design, the EV is predicted to have a gasoline-equivalent fuel
economy of mpg, = 149 mpg, a 0-60 mph acceleration time of 50 = 8.05 s, and a range of

R =109 miles.

Table 6.4 Optimal Decision Vector for P;; Subproblem, SVDD Augmentation

BI BW BL Xbatt Pr a)maxT mmT JrT IymT IzmT ymT
074 143 19.75 025 393 755 4039 028 1.12 120 0.39

Table 6.5 Optimal Decision Vector for P, Subproblem, SVDD Augmentation

A Fm Ne R,
0.096 0.124 17.87 0.065

Table 6.6 Optimal Consistency Constraint Vector/Weights, SVDD Augmentation

Consistency Constraint Copt Vopi Wopt
Czmax 0.45 449 57.2

Cz.min 0.42 416 57.2

C:z pLoss 0.29 297 57.2

Coma 0 0 57.2

Crnm 0 -0.45 57.2

Crr 0 0.019 57.2

Chym 0 -0.031 57.2

Clzm 0 0.035 57.2

Cym 0 0.025 57.2
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Figure 6.6 Optimal Motor Map, SVDD Augmentation

6.3.3 Summary of ATC Results

AiO

%

ATC

%

Using the same definitions for x; and x; " that were presented in Chapter 4, it is seen

Ai0 ATC
X, —x
that the errors between the AiO and ATC design solutions are ‘ — HZ =0.113 and
‘X* Hz
AiO ATC

S

‘ ‘ A'OH H2 =0.110 when implementing the penalty value-based heuristic and the

X,

2

SVDD augmentation as constraint management methods for the reduced representation
variables, respectively. Hence, it is evident from the results that the constraint
management of the reduced representation variables via the SVDD augmentation
provides the most accurate design solution in this study. The most plausible explanation
for this result is that the SVDD-related constraints forced the optimizer to perform more
function evaluations in the feasible decision space, which included the POD model
validity regions. Because this increased the set of feasible designs, the optimizer had a
higher probability of identifying the optimal design solution instead of converging to any

feasible (yet suboptimal) design. The penalty value-based heuristic, however, did not
137



directly constrain the POD model validity regions and hence enabled the optimizer to
perform function evaluations in a broader decision space which included many infeasible
designs. Since this limited the set of feasible designs, the optimizer had a higher
probability of converging to any feasible (yet suboptimal) design instead of identifying
the optimal design solution. Of course, it is always possible that the SVDD augmentation
could truncate a portion of the feasible decision space where the optimal solution exists
and lead to an inferior result when compared to the penalty value-based heuristic;
however, the probability of this event is ultimately related to the value prescribed for
Prarger in the SVDD models.

It is also evident from the results that the SVDD augmentation improves the
efficiency of ATC compared to the penalty value-based heuristic. Indeed, the runtimes
associated with the penalty value-based heuristic and the SVDD augmentation were
10.72 hours and 3.95 hours, respectively. The explanation for this outcome is directly
related to the explanation for the improvement in the solution accuracy; that is, since the
SVDD augmentation imposed explicit constraints on the POD model validity regions, the
optimizer spent less time (i.e., fewer function evaluations) exploring designs outside the
feasible decision space. Nevertheless, although the SVDD augmentation reduces the
computational time during optimization, it still requires significant modeling time offline.
Therefore, the SVDD augmentation is a more computationally efficient constraint
management approach only if its total computational effort (modeling time plus runtime)
is less than the runtime associated with the penalty value-based heuristic. The modeling
times required to construct the optimal SVDDs for the POD model validity regions of the
maximum and minimum motor torque curves and power loss map were 0.94 hours, 1.13
hours, and 0.27 hours, respectively. Because the total computational effort (6.29 hours)
associated with the SVDD augmentation was less than the runtime associated with the
penalty value-based heuristic, it is clear that the SVDD augmentation is a more

computationally efficient constraint management approach.
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6.4 Conclusions

Based on the results, it is evident that the best constraint management method for the
reduced representation variables in this study is the SVDD augmentation. This approach
produced the most accurate design solution with the least overall computational effort.
While this conclusion holds for most optimization problems, including AiO problems, it
may not be true for every case as the design solution accuracy could exhibit significant
tradeoffs with the overfitting target Pj,.q.; in the SVDD models. For example, as this
parameter is increased, the probability of overfitting is also increased, and this may
ultimately lead to the truncation of a region within the feasible decision space that
contains the optimal design solution. Conversely, as this parameter is decreased, the
probability of overfitting is decreased, but the optimizer may converge to any feasible
(yet suboptimal) design due to the abundance of infeasible designs. Hence, there is a
need to balance the limitation of SVDD (overfitting) with the limitation of the optimizer
(convergence to any feasible design) when setting Pj,.¢.; in these studies. The exploration

of this issue is proposed as a topic for future work.

6.5 Summary

This chapter investigated the use of appropriate constraint management methods for
reduced representation variables in an ATC framework. Specifically, a penalty value-
based heuristic was introduced and compared to an alternative method that augmented
this heuristic with SVDD. The results from this study indicated that the SVDD
augmentation was the best constraint management technique as it yielded the most
accurate design solution with the least computational effort. Moreover, it was indicated
that this would be the most promising constraint management method in the majority of
optimization problems (both decomposition-based and AiO) since the SVDD-related
constraints forced the optimizer to perform more function evaluations in the feasible
decision space, thus leading to a higher probability of convergence to the optimal design
solution with fewer overall function evaluations (and hence less runtime) instead of
convergence to any feasible (yet suboptimal) solution. However, it was recognized that
further exploration with respect to the performance target in SVDD and its impact on
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design solution accuracy would be necessary before completely assessing its suitability in
broader problem applications. The next chapter will finally apply the knowledge gained
from addressing the key dissertation research questions over the past three chapters to a

military EV design optimization study.
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Chapter 7

Military Electric Vehicle Design Optimization

The work throughout this dissertation thus far has addressed some of the challenges
involved when using formal, decomposition-based optimization strategies to solve
complex, simulation-based design problems in applications such as commercial EV
powertrain design. In particular, when the problem decomposition yields decision
variables that are coupled, functional data such as motor maps, it has been demonstrated
that the implementation of appropriate reduced representations, consistency measures,
and constraint management techniques for reduced representation variables are critical
for the success of these optimization strategies.

Although success can be assessed in a variety of ways, the key measures that have
been used in this dissertation are design solution accuracy and overall computational
effort. These measures have suggested that the best design solutions will occur when
using the most accurate POD reduced representations, implementing generalized
AVASIM as a functional data consistency measure, and implementing a penalty value-
based heuristic in conjunction with SVDD as a constraint management method for
reduced representation variables. However, all of these findings have been based on a
small, commercial vehicle application, and it would be both interesting and relevant to
apply this knowledge to a larger scale design problem with slightly different decision
criteria and requirements. This chapter, therefore, examines the aggregate contributions
of the core research findings in the design optimization of a military EV in an ATC
framework. Like the commercial EV application, an AiO optimization problem
formulation and solution for the military EV powertrain model is introduced at the
beginning of this chapter to facilitate comparisons among the design solutions.
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7.1 AiO Problem Formulation and Solution

The AiO problem formulation uses the same analysis models as those described in
Equations (3.1)-(3.3) and Equations (3.99)-(3.100) for the military EV with the exception
that the electric traction motor analysis model f,,,,, is integrated as a sub-analysis model
for the front and rear motors within the LTV-level analysis model fj,. This was
necessary because in the AiO problem, the motor designs are not considered separately;
instead, all of the key design components of the EV powertrain—the battery, gearboxes,
and motors—are considered simultaneously. Therefore, Equation (3.100) is modified as

[mpg,,tso, Ty ps Ty s @y s Oy s R, Py By, Cpod, Pry 1=1,(B), By, By,

Itv
mbatt H ms b ]y b e] H h’ gb,f > gb,r > [S,f b rm,_/' > nc,f H Rr,f LA (7 1)
[ r nc,r 2 Rr,r)

s,r2 Tmyr?

where the input variables to f,.,, are now shared with f;,. Figure 7.1 illustrates the
relationships among the remaining analysis models that were described in Chapter 3 for
the military EV powertrain, with the dashed box indicating that all analysis models are

integrated into a single optimization problem formulation.

AiO Optimization Problem

fbattSz'ze fltvMass

Front Motor Mass fmotorMass fmotorMass Rear Motor Mass

Figure 7.1 Analysis Model Relationships for Military EV AiO Problem
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In military vehicle applications, a more meaningful design criterion is vehicle
range as opposed to energy efficiency since it is critical for these vehicles to travel long
distances in hostile environments without needing to refuel. Therefore, the objective of
the AiO problem formulation is to maximize the vehicle range of the electric LTV while
satisfying constraints related to battery packaging, performance, motor feasibility, power

availability, battery capacity, mobility, and occupant safety:

min — R(X)
subject to
g =b,,(x)=<0 g; =y, (x)<0
g, =b, (x)<0 g =h(x)<0
g1 = 1500 ~lx0,, €O 8, = Frsy(0 <0 72
g, =17y ,(x)<0 g =C,(x)-C,,, (x)<0
gs=7,,(x)<0 g,=-d,(x)<0
8¢ =Wy s (x)<0 g = Pfail (x)— Pfailmax <0
where

X:[BI’BW’BL’xbatt’gb,f’gb,r)[s,f’rm,f’nc,f’R LorsTmrite,s R,

rof? s, tmr e T

In the above, g; and g, are battery packaging constraints, gs is a performance (0-50 mph
acceleration time) constraint, g4-g7 are motor feasibility constraints, gs-g¢ are power
availability constraints, g is a battery capacity constraint, g;; is a mobility (vehicle
directional stability) constraint, and g;, is an occupant safety (probability of exceeding
underbody blast injury threshold) constraint. Note that appropriate bound constraints are
included for the decision variables in x. As with the other case studies in this
dissertation, the derivative-free optimization software package known as NOMADm
[Abramson (2007)] was used to solve the problem. However, the settings for this
optimizer were modified such that only a Latin hypercube search was performed. This
was necessary to alleviate computational issues associated with an underlying kriging
metamodel of the design problem that the optimizer constructs by default.

The results from the AiO problem formulation are shown in Table 7.1. It should

be noted that the only active constraints in this problem were the motor torque feasibility
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constraints g4-gs, the performance-related power availability constraint go, and the battery
capacity constraint g9, which was limited to Cp.c = 500 Ah. The activity of the battery
capacity constraint was expected given the objective of vehicle range for the electric
LTV. Specifically, maximizing the range of the vehicle requires the battery to be as large
as possible, which in this case is limited indirectly by cost. However, the activity of the
motor torque feasibility constraints, which were both limited by the minimum torque
curves, was not expected; it is believed that this behavior was caused by the aggressive
braking within the convoy escort drive cycle. This in turn might have led to motor
designs that possessed excessively high maximum torque curves which, when used in the
forward-looking powertrain model, predicted an uncharacteristically fast 0-50 mph
acceleration time (#so = 5.56 s). Since this also places a significant power demand on the
battery, it is believed that the aggressive 0-50 mph acceleration time led to the activity of
the performance-related power availability constraint.

Finally, observe that the design solution suggests the use of 77 kW front motors
(Figure 7.2) and 130 kW (Figure 7.3) rear motors to propel a 3116 kg vehicle, with
approximately 8.5% (264 kg) of the mass associated with the battery. These design
conditions indicate that the electric LTV could achieve a range of R = 79 miles while
remaining directionally stable up to its maximum speed (70 mph) and limiting the

probability of occupant injury to 12%.

Table 7.1 Optimal Decision Vector for Military EV AiO Problem

B[ BW BL Xbatt &b &b,r l;j’ Vm,f ner erf l;,r Fm,r Her Rr,r

1.22 2.01 21.00 0.05 086 1.13 0.122 0.118 19.30 0.275 0.07 0.131 13.90 0.075
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7.2 POD Representations and Accuracy Assessment

In preparation for the ATC problem formulation, POD representations were developed a
priori at CPVg,u = 99.99% to approximate the VVCVs associated with the maximum and

minimum torque curves and power loss map of the front and rear motors:

s ¥ (I)p’max,fzr,max’f +Z0 s (7.3)
Zoins P i i Zyins t Ly (7.4)

z pLoss, f ~ (I) p,pLoss,_/'Zr,pLass,f + ipL()ss,f (75)
mavr = P pmaxrLrmarr + Lonasy (7.6)
Ziny R P i Zroming + Loiny (7.7
Zprossr R P, rossrZr prossr T Z prossr (7.8)

The functional data samples used to construct these reduced representations were
generated separately for the front and rear motors through a LHS design of experiments
consisting of m = 750 motor map samples each from £, During the sampling process,
both functional data sample sets were interpolated onto prescribed, standard torque-speed
meshes according to the same procedure described in Chapter 4. These meshes were

defined as

1

z_'mesh,f =-1600 +[ 3200 . (l _ I)J, i=1---81 (79)
n

p.T.f
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e _ 800 (i-1), i=1--41 (7.10)

Mpo.r -1

and
z_imesh,r — _7004_(&(1_1)}’ i=1---81 (711)
n -1

p,T,r

ks _ 1200 (i—l), i=1---41 (7.12)
n

p,0.r

for the front and rear motors respectively, where n, ;. r=n, . .= 81 and n, 4, /= np o, = 41.

Based on the definitions of the standard meshes, the number of discretized points
N Zyax, Zmin, a0d Zp1 4 for the front and rear motor maps were Gpax = 41, gmin = 41, and
Gpross = 3321, respectively. Since gmax = Gmin << m, the direct method outlined in
Equations (2.6)-(2.9) was used to develop the POD representations for the maximum and
minimum motor torque curves. Conversely, the method of snapshots described in
Equations (2.10)-(2.12) was used to develop the POD representations for the motor
power loss maps since gpross >> m. Table 7.2 lists the number of POD coefficients (and
hence reduced representation variables) required for both the front and rear motor maps.
In each case, it is evident that the combined dimensionality O of the VVCVs was
dramatically reduced from Q = Guax + Gmin T Gpross = 3403 t0 O = Piax + Pmin + Ppross = 107
and Q = 97, respectively. Finally, note that the computational effort required for the
development of the POD representations for the front and rear motor maps (excluding

motor map sample generation) was 1.53 s and 2.30 s.

Table 7.2 Number of POD Coefficients for Front/Rear Motor Maps

Motor Map Zymax  Zrmin  ZrpLoss
Front 12 12 83
Rear 11 11 75
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The accuracy of the POD representations for the front and rear motors was
quantified through AVASIM. In particular, both 1D and 2D formulations were applied
as appropriate using a uniform tolerance of to/; = 0.10 to assess the accuracy of the torque
curves and power loss maps produced by the POD representations against the optimal
torque curves and power loss maps produced by f,., from the AiO optimization
problem. Note that like the demonstration in Chapter 2, all phase threshold coefficients
were set to zero, and division-by-zero errors were avoided by setting & = 10™ for the
torque curves and o = 1 for the power loss maps based on experience. Tables 7.3-7.4
show the results from AVASIM, which are supplemented by visual comparisons in
Figures 7.4-7.7. Using this information, it can be reasonably assumed that the POD

representations for this study are accurate.

Table 7.3 AVASIM Results for POD, Front Motor Map

Index Max-Torque Min-Torque Power Loss

Elocal 0.565 0.965 0.612
Egiopal 0.980 0.986 0.883
Ecomb 0.772 0.976 0.748

Table 7.4 AVASIM Results for POD, Rear Motor Map

Index Max-Torque Min-Torque Power Loss

Elocal -0.332 0.894 0.436
Egiobal 0.899 0.922 0.869
Ecomp 0.284 0.908 0.652
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7.3 SVDD for POD Model Validity Regions

Since the SVDD augmentation was identified as the best constraint management
approach for a similar case study in Chapter 6, the same method was implemented for the
military EV powertrain design problem. In particular, six SVDD models were developed
to approximate the boundaries of the POD model validity regions associated with the
maximum and minimum torque curves and power loss maps of the front and rear motors.
The data sample vectors upon which the SVDD models were based were identical to
those used for the POD representations but mapped appropriately into POD-space as
indicated in Equations (6.14)-(6.16) for each set of motors. Based on standard practice,
these data sample vectors were subsequently normalized through the MATLAB® function
mapminmax in order to improve the performance of their associated models. From here,
the slack variable penalty constants were set to C, = 0.5, the overfitting targets were set to
Piarger = 0.10, and the kernel width parameter bounds were set to gg min = 10 and q0.max =
10 based on experience for each SVDD problem formulation. In an effort to obtain the
global optimum for the tuning problem in Equation (6.13), the non-gradient-based
optimizer NOMADmMmM was selected again. However, because of the convexity of the
SVDD optimization problem in Equation (6.10), the MATLAB® gradient-based optimizer
fmincon [MATLAB® Function Reference] was selected. In both cases, the default settings
were appropriate for the optimizers. Figures 7.8-7.13 illustrate portions of the optimal
SVDD boundaries for two dimensions of the POD model validity regions associated with
the torque curves and power loss map for the front and rear motors. Finally, note that the
total computational effort required for the development of the SVDD models for the front

and rear motor maps was 5.76 hours and 5.36 hours, respectively.
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7.4 ATC Problem Formulation and Solutions

The ATC problem formulation for the electric LTV consists of a two-level hierarchical
decomposition based on Figure 3.14. In this study, the objective of the vehicle
subproblem is to maximize the range while minimizing the AL penalty function, whereas
the objective of both motor subproblems is to minimize the AL penalty function
exclusively. Recall that these penalty functions ensure consistency, or agreement, among
the coupled quantities from the vehicle and motor subproblems. Although all of the
subproblems are subject to decision variable bound constraints, only the vehicle
subproblem contains additional constraints based on battery packaging, performance,
motor feasibility, power availability, battery capacity, mobility, and occupant safety.
Applying Equation (2.2) directly, the vehicle subproblem P;;, excluding decision

variable bound constraints, is formulated as

min — R(X,,) + ng (t,, —1y) +V§3 (ty; _r23)+”W22 o (ty, —Iy )”i +||W23 o(ty _rzs)”j

X1

subject to

gy = b,y (X,) <0 gy =@y, (%) <0

g = by (%) <0 gus =B (%,)<0

81z = s (X)) = Lsomar <O 8119 = Frsg (X)) <0

s =7y, (X,)<0 o = G (X)) = () <0

s =7, (%) <0 g =—d,(X;;)<0

i =Wy s (x,,))<0 S = fazl (x,) - fazlmax <0
where

= _ T T T T
X11 - [BI’B ’BL’xbatt’ gb f"gbr’zr combf’Zr combr’a)maxf’ a)max,r’

T T T
mmf’ mr"]; f"]ri’lymf’Iymi’lsz’Izm;’.ymf’ymi]

= [Zcombf 5 a)nz;ax,/ 5 m/ ) JrTf aI}Tm/ aIsz/ aym,f]a anmb,f = f(Zf,comb,f)
r22:[zfomb,f’a)/5axj’ mf"]:ef"[;;nf’]zljnj yﬁf’]

tos =[Zlomrs D s Mo I s Lo Lo Vi bs Ziomny =K (2] ) (7.13)

_[Zcombl’a)lfax,r’ mr’Jar[}Rmr’]zmr’ymr]
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where the constraints gj1;-g11,12 are identical to the constraints gj-gi, from the AiO
problem formulation. The vectors Zcoms s = [Zmaxfs Zminfs ZpLosss] A0 Zeomp,r = [Zmax.rs Zmin,r»
ZpLoss,r] refer to the combined vector of original VVCVs for the front and rear motors,
respectively. Likewise, the vectors z,.coms = [Zrmaxfs Zrminfs Zrprosss] A0 Zy comb r = [Zrmax,r»
Zrminr» ZrpLossr] Tefer to the combined vector of reduced representation variables, which
are POD coefficients. Additionally, the vectors t;; and ry; include six scalar-valued
coupling variables: @yaxs Mmfs Jrfy Lymps Lmy, and yu . The vectors tr3 and 13 also include
similar scalar-valued coupling variables: @masxr, Mm,r, Jrrs Lymrs Lom,r, a0d yi, . Finally, note
that the superscripts 7 and R indicate target and response versions of the same coupling
variable. The front and rear motor subproblems P,; and P,3; are formulated in a similar

manner as:

. T 2
Hilmvzz(tzz _r22)+||w22 °(ty —r22)||2
»
where i22 :[[v /"rmf’nc /"Rff] (714)
T T T T T
_[Zwmbfﬁa)maxjﬁ m,f > Jrf’lymf’lsz’ym:f]

R R R R R R R =
r22 = [Zcomb,f ’ a)max,f ’ mm,f ’ ']r,f ’ Iym,f > Izm,f > ymf] = f(XZZ)

minv§3(t23 —1'23)+||W23 o(ty —r23)||§

where X, =[[ R, .1

s,r? mi’ cr’

(7.15)

oy = (20> Oy s T L 22 9]
_[Zcombr’a)/ﬁax,r’ m,, . JrRra[ymeIzmmymr =f(Xy)

Because the goal of this study was to observe the aggregate contributions of the
best consistency measure and the best constraint management method in an ATC
framework, the problem formulation in Equations (7.13)-(7.15) was solved using both the
“standard” and alternative approach. For the purposes of this study, the “standard”
approach includes the RMSE consistency measure and the penalty-value based heuristic
for constraint management, whereas the alternative approach refers to the generalized

AVASIM consistency measure and the SVDD augmentation for constraint management.
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Note that the latter solution methodology requires weights to be prescribed within
AVASIM, which were set to Wicw = 1/3 and wgipa = 2/3 based on experience. It also

introduces six SVDD-related constraints in the P;; subproblem:

gt = Risrmar s %10) = Ripy ey <0 (7.16)
s = Royyins X)) =Ry S0 (7.17)
Ciits = Riptossr X1) = Ry sy SO (7.18)
81116 = Risemarr K1) = Riyp sy <O (7.19)
117 = Riseminr X11) = Ry iy <0 (7.20)
iuts = Rasr prossr K1) = Ry prons, 0 (7.21)

Once again, NOMADm was selected as the optimizer in order to facilitate consistent
results with the AiO problem formulation. In the P;; subproblem, the default settings of
this optimizer were adjusted such that only a Latin hypercube search was performed and
1,000 function evaluations were permitted.  This was necessary to alleviate
computational issues associated with memory availability. However, in the P,; and P;3
subproblems, the default settings for NOMADm were appropriate. Finally, in the ATC
coordination strategy, the weight update parameter was set to = 2.75, the initial weight
vectors were set to v =0 and w = 1, and the tolerance on ||c© - ¢™)|,, for outer loop
convergence was set to 102 Due to the complexity of this design problem, all
computational work was performed on a 2.8 GHz, 8 GB RAM, Intel® Core™ i7 CPU.
The solutions are part of ongoing work as it was seen that more experimentation with the

overfitting targets within SVDD would be necessary to produce SVDD-related
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constraints that enable the convergence of the ATC formulation and thus facilitate a

complete comparative study.

7.5 Summary

This chapter explored the design optimization of a military EV powertrain. In particular,
an AiO problem formulation was introduced and solved and an ATC problem
formulation was constructed. The solutions of this latter optimization problem
formulation, which will be based on a “standard” (RMSE consistency measure and
penalty value-based heuristic) and alternative (generalized AVASIM consistency
measure and SVDD augmentation) approach, are part of ongoing work due to the
complexities of constructing effective SVDD-related constraints that enable convergence
and thus facilitate a complete comparative study. It is expected, however, that the
alternative approach will have significant benefits with respect to design solution
accuracy and overall computational effort based on independent studies performed in

Chapters 5-6.
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Chapter 8

Conclusions

With the advent of highly-sophisticated systems such as electric vehicles that require
design knowledge from a variety of engineering disciplines, it becomes increasingly
advantageous to implement formal, decomposition-based optimization strategies to
facilitate design decisions. In techniques such as ATC, this requires systems to be
represented as a hierarchical composition of subsystems that interact with one another
through the mutual exchange of information. Such behavior is formally captured through
coupling variables that serve as a vital link for ensuring that the subsystem design
solutions are consistent, or in agreement, with one another.

Many times the coupling variables exchanged among the subsystems are few in
number and scalar-valued, which readily enables the use of decomposition-based
optimization strategies. However, this dissertation presented other situations in which the
coupling variables may be highly-discretized functional data, which lead to high-
dimensional, vector-valued quantities. Because each element within these VVCVs is a
decision variable in the ATC framework, the design problem can become prohibitively
large for optimization. While it is recognized that optimization with respect to highly-
discretized functional data may occur in AiO problem formulations as well, this issue is
particularly acute in decomposition-based optimization strategies due to the additional
computational overhead required for such approaches. Therefore, it was necessary to
identify and implement reduced representations of the VVCVs that enabled efficient,

practical design optimization while maintaining reasonable accuracy.
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8.1 Summary

In Chapters 1-2, POD was introduced as a promising reduced representation method
since it utilized data samples exclusively to determine the functional form of its
approximation model, required minimal assumptions about the number of reduced
representation variables (POD coefficients), and generated a relatively small number of
such variables for approximation [Alexander et al. (2010a)]. Chapter 4 explored the
capability of POD as a reduced representation method within ATC further by
experimenting with a tuning parameter known as the CPV and observing its overall
impact on design solution accuracy and optimization efficiency. This parameter, which
balances dimensionality reduction (and hence the number of reduced representation
variables) with model accuracy, was set to its “nominal” value (CPVgu = 99.99%) as
well as two other values (CPVgou = 99.95% and CPVyou = 99.85%) and yielded the best
design solution in terms of accuracy and efficiency (minimal runtime) at CPVgou =
99.99%. While the link between model accuracy and design solution accuracy was
straightforward, the behavior with respect to optimization efficiency was not anticipated.
It was reasoned that the high-fidelity POD representation enhanced the capability of
achieving functional data consistency in ATC through additional degrees of freedom
(POD coefficients), thus leading to fewer ATC iterations and a faster runtime. Hence, it
was concluded that high-fidelity POD representations would be most appropriate for the
reduced representation of VVCVs in ATC.

Although the reduced representation variables served as decision variables during
optimization, they still had to compute approximations of the corresponding functional
data since these were needed in the underlying analysis models. Moreover, since the
functional data existed as coupled information in a decomposition-based optimization
strategy, it was most meaningful to use the functional data directly to assess their
discrepancies among similar information from other subproblems. Because these
discrepancies ultimately impact the convergence of the optimization strategy, it was
necessary to implement an appropriate consistency measure (and hence error metric) for
these functional data. Since the literature did not indicate any well-established functional
data consistency measure for decomposition-based design optimization, Chapter 1
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introduced AVASIM as an alternative to the “standard” RMSE metric since it could
systematically, objectively and efficiently provide a clear indication of local and global
functional data accuracy with respect to preset thresholds [Sohns et al. (2006)]. The
offline capability of AVASIM was demonstrated in Chapter 2 for both 1D and 2D
applications, and its flexibility in allocating the importance of local versus global
functional data accuracy through a generalized formulation was also highlighted.
Chapter 5 then leveraged this capability to formally investigate AVASIM and generalized
AVASIM as potential alternatives for measuring functional data consistency. Based on
the results, it was found that the generalized AVASIM consistency measure (with an
emphasis on global accuracy) was ideal for functional data as it provided a clear
indication of consistency and led to the most accurate design solution in the least amount
of time. In particular, the global measure was more stable than the local measure within
generalized AVASIM and thus provided more accurate design solutions using fewer
function evaluations.

Another issue that was highlighted in Chapter 1 was the inability to properly
constrain the reduced representation variables. Because many times these variables are
abstract quantities, it can be challenging to identify their decision space (and hence model
validity region) beyond simple variable bounds. This assumption, however, could lead to
ill-behaved analysis and optimization; therefore, it was necessary to implement an
effective constraint management technique for the reduced representation variables.
While recent work demonstrated that a penalty value-based heuristic was effective, it also
indicated that this approach was inefficient as it led to many optimization iterations and
extensive runtimes. Furthermore, more direct approaches such as probability density-
based models and convex hulling algorithms had significant shortcomings that made
them unsuitable as competitive alternative solutions. To address this issue, Chapter 6
presented an alternative approach which augmented the penalty value-based heuristic
with explicit constraints through SVDD. The results from this study indicated that the
SVDD augmentation was the best constraint management technique since it yielded the
best design solution in terms of accuracy and efficiency (minimal computational effort).

Moreover, it was indicated that this would be the most promising constraint management
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method for abstract decision variables in the majority of optimization problems (both
decomposition-based and AiO) since the SVDD-related constraints forced the optimizer
to perform more function evaluations in the feasible decision space, thus leading to a
higher probability of convergence to the optimal design solution with fewer overall
function evaluations (and hence less runtime) instead of convergence to any feasible (yet
suboptimal) solution.

Finally, in an effort to examine the aggregate contributions of using the most
promising POD representations, consistency measure, and constraint management
technique in a single decomposition-based optimization framework, Chapter 7 proposed
an ATC problem formulation for the larger-scale military EV powertrain model. The
complete comparative study between the “standard” (RMSE consistency and penalty
value-based heuristic) and the alternative (generalized AVASIM consistency measure
and SVDD augmenetation) solution approach is part of ongoing work due to the
challenges in constructing SVDD-related constraints that enable convergence. However,
it is expected that the alternative approach will yield significant contributions with
respect to design solution accuracy and overall computational effort based on the

independent results in Chapters 5-6.

8.2 Relevance of Work

Although all of the work in this dissertation is relevant to decomposition-based
optimization strategies, two out of the three core research elements can be applied to any
design optimization strategy in general, including single, AiO problem formulations. In
particular, the selection and constraint management of decision variables that serve as
efficient alternatives to functional data in simulation-based design is critical in many
problem domains. For example, in controls-related problems, it is often desired to
identify the optimal input signal to a dynamic system that can satisfy some prescribed
output behavior. This signal may be nominally represented through an extensive
discretization with respect to its states which could lead to a prohibitively large number
of decision variables in an optimization framework. A reduced representation would be

necessary to facilitate design optimization, and POD would be particularly appropriate
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since it is a well-established dimensionality reduction technique for linear, time-invariant,
state-space systems. Furthermore, to ensure that the problem is well-posed with respect
to the reduced representation variables, a constraint management approach such as the
SVDD augmentation would be appropriate.

While the importance of a suitable consistency measure is relevant in
decomposition-based optimization strategies only, the error metric upon which it is based
can be implemented in a variety of situations. In the context of design optimization, one
could use the combined error index E.,n» Within a generalized AVASIM formulation as
the objective function for a curve-fitting problem similar to [Sohns et al. (2006)]. Such
an approach would significantly enhance the meaning of the curve-fitting accuracy at the
optimal solution compared to the RMSE measure. The same can be said of AVASIM for
offline (i.e., non-optimization) accuracy assessment applications. Moreover, unlike many
other error metrics, the proven capability of AVASIM for both 1D and 2D functional data
demonstrates its potential for higher dimensional applications as well.

Finally, the ideas presented in this dissertation can be applied to simulation-based
design problems involving computational geometry, as in Toal et al. [Toal et al. (2008)].
The nominal geometric representation in such problems is typically a series of Bezier
curves or B-splines, which are constructed from a set of control points in space. For
simple rectangular shapes, the set of control points is usually small, but for more
complex, freeform shapes, it can increase dramatically. Furthermore, the number of
control points can expand rapidly as the geometric design problem transitions from 2D to
3D applications. Such a geometric representation would make a formal design
optimization study intractable since the control points would serve as decision variables.
Therefore, an appropriate reduced representation along with a constraint management
technique for its associated variables would be necessary for efficient, practical
optimization. Likewise, an accuracy assessment tool such as AVASIM would facilitate
any comparisons between a full, computational geometric representation and its
approximation. This includes comparisons between 3D shapes since the 2D AVASIM

formulation is designed to measure errors between surfaces.
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8.3 Contributions

This dissertation directly addressed the three research questions that were presented in

Chapter 1. To that end, the significant contributions to the research community are:

1.

The identification of the impact of the number of reduced representation variables
on the computational efficiency and accuracy of ATC. This was done for POD
only, and it was found that the highest model fidelity (and hence largest number
of reduced representation variables) for POD yielded the best ATC design
solution with respect to efficiency and accuracy.

The identification of a suitable consistency measure for coupled, functional data
within an ATC framework. In particular, it was found that the generalized
AVASIM metric was an appropriate functional data consistency measure within
ATC.

The identification of an effective constraint management method for reduced
representation variables in an optimization framework. Specifically, it was
demonstrated that a penalty value-based heuristic coupled with SVDD was an
appropriate constraint management approach for the reduced representation
variables. Note that the primary factor for the success of this method was SVDD.
Also, although the original research question was addressed in an ATC
framework, the general approach is applicable to almost any optimization
problem with abstract decision variables. Therefore, this research contribution

has the broadest implications of any in this dissertation.

In addition to these research contributions, the following practical contributions were

made:

4. The enhancement of a detailed, commercial EV powertrain model that was

originally developed by Allison [Allison (2008)]. The most significant of these
improvements was the inclusion of a motor mass analysis model to account for
energy efficiency and vehicle range tradeoffs.

The development of a large-scale, reconfigured version of the commercial EV

powertrain model for a military vehicle application. The new developments
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included a model accounting for power transmission (gearbox) design and a four-

wheel drive version of the powertrain simulations.

8.4 Future Work

The most significant consideration that would enhance this work is the exploration of
alternative reduced representation methods. As it was stated in Chapter 1, POD is a very
promising approach since it satisfies the selection criteria for a reduced representation
better than many of the “classical” techniques. However, this does not indicate that POD
is always the best technique; indeed, for many problems, it still requires more reduced
representation variables than desired, which, for decomposition-based optimization
strategies, would be equivalent to the number of local design variables in a subproblem.
Because this dissertation introduced a better functional data consistency measure and
constraint management method to support decomposition-based design optimization,
comparative studies between POD and competitive alternatives such as wavelet
decomposition would be easily facilitated. Such studies should include, but not be
limited to, the investigation of the impact of tuning parameters within the reduced
representation models on the condition of the optimization problem.

Another aspect of this work that should be further investigated is a more complete
assessment of the generalized AVASIM consistency measure. This includes, but is not
limited to, the improvement of the local error measure, the methodology for assigning
weights to the local and global error indices, and their impact on problem condition. As
discussed in Chapter 2, the local error index can be rather unstable for target points near
zero, and although this behavior is largely problem-dependent it would be ideal to
identify general countermeasures beyond minimal weight allocation. Chapter 5
explained further that these weights were set based on experience and that such an
approach may not be appropriate for other types of problems. After completing newer
studies, one may even consider the exploration of alternative consistency measures based
on other error metrics; however, such an investigation would be a challenging task given
the clarity in identifying functional data consistency provided by generalized AVASIM

as well as its demonstrated capability for higher dimensional (e.g., 2D) functional data.
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Another research question that should be explored in future work is the effect of
the SVDD overfitting target on the accuracy of design optimization solution. Recall from
Chapter 6 that it is almost always likely that the SVDD augmentation will improve the
optimization runtime as it imposes explicit constraints that restrict the search of the
optimizer to the feasible decision space. However, it was also mentioned that an
aggressive overfitting target increases the probability of overfitting error, which
essentially means that some decision vectors, including the optimal decision vector, could
be erroneously rejected from the feasible decision space. This behavior has already been
seen when attempting to solve the ATC problem formulation for the military EV
powertrain model in Chapter 7. In general, the extent to which this could occur is
partially dependent on the sensitivity of the SVDD boundaries to changes in the
overfitting target. Therefore, such a study could provide greater insight into the strengths
and limitations of SVDD for the constraint management of reduced representation
variables.

Finally, from a design perspective, this work could be improved by the addition of
more detailed EV powertrain analysis models and simulations. The case studies in this
dissertation have already shown how the inclusion of a simple, yet important motor mass
analysis model can enhance the meaning of design tradeoffs such as energy efficiency
and vehicle range. The addition of other components such as explicit battery cost and
thermal management models, power inverter models, improved motor models, and heavy
duty transmission models would further capture the extensive tradeoffs for such a
multidisciplinary design problem. Moreover, a more detailed, comprehensive set of
models could better demonstrate the utility of the research contributions discussed in this

dissertation.
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