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Abstract 

The design of highly-sophisticated systems such as electric vehicle (EV) powertrains 

often requires knowledge from several engineering disciplines, making it increasingly 

advantageous to implement formal, decomposition-based optimization strategies to 

facilitate design decisions.  In techniques such as Analytical Target Cascading (ATC), 

this requires systems to be represented as a hierarchy of interacting subsystems.  Such 

behavior is formally captured through coupling variables which ensure that the subsystem 

design solutions are consistent, or in agreement, with one another.  Many times the 

coupling variables exchanged among the subsystems are few in number and scalar-

valued, which readily enables the use of ATC.  However, other times the coupling 

variables may consist of highly-discretized functional data, such as motor performance 

curves in EV powertrain design.  Because each element within these vector-valued 

coupling variables is treated as a decision variable in ATC, the design problem can 

become prohibitively large for optimization.  Therefore, it becomes necessary to 

implement reduced dimension representations of the functional data that enable efficient, 

practical design optimization while maintaining reasonable accuracy. 

Based on a literature review and some recent work, a method known as proper 

orthogonal decomposition (POD) has emerged as a leading candidate for the reduced 

representation of coupled, functional data within decomposition-based design 

optimization.  However, the full capability of this method in terms of dimensionality 

reduction and its impact on decomposition-based optimization strategies has never been 

explored.  This dissertation therefore presents a case study which modifies the tuning 

parameter within POD from its nominal value associated with high accuracy and low 

dimensionality reduction to progressively lower values and observes its impact on ATC 

design solution accuracy and optimization efficiency (runtime).  Since the high-fidelity 

POD representation yielded the best design solution in terms of accuracy and 
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optimization efficiency, it is concluded that such POD representations are most 

appropriate for coupled, functional data within ATC.  In particular, it is found that high-

fidelity POD representations possess good accuracy, reasonable dimensionality reduction, 

and enhance the functional data consistency among ATC subproblems through additional 

degrees of freedom (reduced representation variables) compared to low-fidelity POD 

representations, thus leading to fewer ATC iterations and faster runtimes.  

Since consistency measures ultimately impact the convergence of ATC, it is 

critical to implement an appropriate measure for the coupled, functional data.  Because 

the literature has not revealed any well-established functional data consistency measure 

for decomposition-based design optimization, this dissertation explores the Accuracy and 

Validity Algorithm for SIMulation (AVASIM) as an alternative to the “standard” root-

mean-square error (RMSE) metric.  After demonstrating the flexibility of AVASIM in 

allocating the importance of local versus global functional data accuracy through a 

newly-developed generalized formulation, a comparative study is conducted examining 

the impact of the RMSE, AVASIM, and generalized AVASIM consistency measures on 

ATC performance.  The results indicate that the generalized AVASIM consistency 

measure is ideal for functional data as it provides a clear indication of consistency and led 

to the most accurate design solution in the least amount of time in the case study.  

Specifically, the emphasis on the stable global measure within generalized AVASIM 

enables it to provide more accurate design solutions using fewer function evaluations. 

Finally, it is noted that the reduced representation variables often lack physical 

meaning, making the determination of their applicability boundary beyond simple bound 

constraints very difficult.  This can lead to ill-behaved analysis and optimization, and so 

it is necessary to implement an appropriate constraint management technique for the 

reduced representation variables.  Since the existing penalty value-based heuristic is 

inefficient, this dissertation presents an alternative that augments the former approach 

with support vector domain description (SVDD) and compares the impact of each 

technique on ATC performance.  The results indicate that the SVDD augmentation is the 

best constraint management approach since it yielded the best design solution in terms of 

accuracy and efficiency (including SVDD modeling time).  In particular, this method 
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forces the optimizer to perform more function evaluations in the feasible domain, thus 

leading to a higher probability of convergence to the optimal design solution with fewer 

overall function evaluations (and hence less runtime) instead of convergence to any 

feasible (yet suboptimal) solution. 
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Chapter 1  
 

Introduction 

Complex design problems are often addressed through a decomposition and collaboration 

process.  In the development of an electric vehicle (EV) powertrain, for example, 

engineers may focus on significant design components such as the battery, electric 

traction motors, and belt-drive/gearbox transmission systems.  These subsystem designs 

may be evaluated on several system-level criteria, including energy efficiency, 

performance, range, power availability, and battery packaging space.  It is evident, 

therefore, that the design and evaluation of each powertrain component can be a 

challenging task to address simultaneously.  This may motivate engineers to split the 

powertrain design process between two teams: a high-level, system design team that is 

responsible for the battery and belt-drive/gearbox transmission systems along with the 

selection of motor performance curves such that maximum energy efficiency is achieved, 

and a low-level, detailed design team that is responsible for ensuring that the specific 

motors selected meet the performance prescribed at the system level.  Hence, although 

such division of labor may expedite the design process, collaboration is still required in 

order to provide a single, realizable design solution that satisfies all criteria. 

The implementation of this design process on a practical level can often be 

challenging as it requires an iterative communication and decision-making process 

between both teams to ensure a feasible, optimal design.  One tool that can facilitate this 

process is design optimization.  Design optimization is the process by which evaluative 

criteria and requirements, known as objectives and constraints, are represented through 

analytical or simulation-based models and subjected to mathematical programming 



techniques to identify an optimal design solution [Papalambros and Wilde (2000)].  This 

can be formally written as: 

 

                  (1.1) 
0xh0xg

x
x

=≤ )(,)(

)(min

tosubject

f

 

In the above, x is the vector of design (or decision) variables, f is the objective function, g 

is the vector of inequality constraints, and h is the vector of equality constraints.  

Formulations of Equation (1.1) that depict the decomposition and collaboration process 

involved for design problems such as the EV powertrain are known as decomposition-

based design optimization strategies.  These approaches partition system design problems 

into subproblems that are decoupled [Tosserams et al. (2006)] and solved individually, 

but include additional constraints to ensure that information coupled among the 

subproblems (such as the motor performance curves in this example) is consistent, or in 

agreement, with one another.  Among the most effective decomposition-based 

optimization strategies is Analytical Target Cascading (ATC) [Kim (2001); Kim et al. 

(2003)], which uses a hierarchical overlapping coordination strategy.  As with other 

decomposition-based optimization strategies, ATC performs reasonably well when the 

coupled information among subproblems is limited to a few, scalar-valued terms.  

However, when this coupled information consists of functional data, such as motor 

performance curves, these strategies can experience major issues including excessively 

long runtimes and/or limited convergence.  This dissertation specifically addresses these 

issues by investigating efficient representation methods and consistency measures for 

coupled, functional data within a decomposition-based optimization framework, such as 

ATC. 

1.1 Optimization with Functional Data 

Optimization with respect to functional data can occur in many applications of 

simulation-based design, including automotive, aerospace, and controls-related problems.  

In general, functional data are infinite-dimensional design variables that must be 
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represented in some finite form to enable numerical optimization.  Because these 

functional data are generated by computer simulations, discretization is often used as a 

representation technique, transforming the functional data into finite-dimensional design 

variables.  This can be represented in vector form as 

 

             (1.2) ),],,,[,],,,([)( 2121 yyyyzzzFyfz T
q

T
q LL≈=

 

where y is the independent variable, z is the dependent variable, q is the number of 

discretized points, and F is some type of interpolation function, such as a lookup table. 

The problem with this representation is that it usually requires a large number of 

discretized points to ensure a sufficiently accurate representation of the functional data.  

In particular, the dimensionality (given by q) of these vector-valued variables can become 

prohibitively large for design optimization since each discretized point is treated as a 

decision variable.  This issue is further compounded when these variables exist as 

coupled information in decomposition-based design optimization strategies because of 

the additional computational overhead already required for such implementations.  

Therefore, the functional data discretizations, termed vector-valued coupling variables 

(VVCVs) in decomposition-based optimization strategies, must be approximated with 

reduced dimension representations that improve optimization efficiency while preserving 

reasonable accuracy.  The variables that are used within these low-dimensional 

representations are referred to as reduced representation variables [Alexander (2008); 

Alexander et al. (2009)]. 

1.2 Reduced Representations of VVCVs 

Reduced representation techniques used in decomposition-based optimization strategies 

can be broadly categorized according to the manner in which dimensionality reduction is 

achieved.  The two major classifications are metamodeling and curve-fitting approaches.  

Metamodeling approaches achieve dimensionality reduction by developing a surrogate 

model of the analysis function that relates a low-dimensional input vector of physical 

design variables to the VVCV.  For example, rather than using a fine discretization of a 
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motor map in design optimization, it may be preferable to create a metamodel of the 

simulation that produces this map and use its input variables as design variables instead.  

This is only effective, however, if the dimensionality of the input vector is less than that 

of the VVCV.  It should also be noted that such a reduced representation could be 

achieved by directly using the analysis function; however, this would contradict the 

motivation for decomposition-based design optimization, and so the metamodel should 

be used instead. 

 Conversely, curve-fitting approaches achieve dimensionality reduction by 

establishing a functional representation form and varying a small set of parameters to 

approximate the VVCV.  An example of this would be the use of polynomial coefficients 

in the representation of a dynamic time response history instead of the original, 

discretized signal.  Like metamodeling approaches, this is only effective if the number of 

parameters is less than the dimensionality of the VVCV.  Observe that with these 

definitions, some reduced representation techniques can be classified as both 

metamodeling and curve-fitting approaches.  The decision regarding which method to 

implement, however, is ultimately dictated by the approach that uses the minimum 

number of reduced representation variables. 

1.2.1 Prior Work 

The published literature on reduced representations of VVCVs in decomposition-based 

optimization strategies is fairly limited.  Sobieski and Kroo [Sobieski and Kroo (1996)] 

experienced reasonable success using Fourier coefficients to represent a lift distribution 

generated by an aerodynamics subproblem in the design of an aircraft within a 

collaborative optimization (CO) framework.  However, there was no clear indication why 

this method was sufficient as the paper was primarily focused on demonstrating the 

capability of CO.  Meade and Kokkolaras [Meade and Kokkolaras (1996)] addressed this 

issue from the broader perspective of multidisciplinary analysis in the solution of a 

viscous-inviscid-interaction airfoil analysis code.  In this case, linear combinations of 

quadratic polynomials were used to approximate transpiration velocity vectors exchanged 

between underlying coupled analysis functions that were solved iteratively.  

Nevertheless, because the dimensionality reduction problem was not the primary focus of 
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the paper, there was limited information regarding the motivation for the selection of the 

method.  Delagrammatikas [Delagrammatikas (2001)] represented engine torque curves 

exchanged between subproblems in a specialized decomposition-based design 

optimization strategy for advanced powertrains through a coarse, four-point 

discretization.  Such an approach was satisfactory but not robust for this study since the 

unstable accuracy of the reduced representation had the potential to lead to infeasible or 

suboptimal engine designs.  Finally, LeGresley and Alonso [LeGresley and Alonso 

(2004)] used proper orthogonal decomposition (POD) to represent surface pressure and 

structural displacement distributions generated by aerodynamics and structural 

subproblems in the optimization of a low-fidelity aeroelastic model within a bi-level 

integrated system synthesis (BLISS) optimization framework.  Although the authors 

produced promising results, they also acknowledged the need to demonstrate the 

effectiveness of POD in a more compelling problem that contained higher-fidelity 

models. 

 The motivating design application for this dissertation was the optimization of a 

hybrid-electric vehicle (HEV) powertrain system using ATC optimization.  In early 

unpublished work, it was necessary to reduce the dimensionality of VVCVs associated 

with maximum and minimum motor torque curves and power loss maps.  Polynomial 

response surface approximation [Box and Hunter (1957); Box and Draper (1987); 

George and Ogot (2006)] was initially implemented, with the polynomial coefficients 

serving as reduced representation variables.  However, this was ineffective since many 

coefficients were required to produce approximations of reasonable accuracy.  A more 

heuristic approach involved the use of weight coefficients as reduced representation 

variables in the linear interpolation of two distinct “baseline” functions to approximate 

the VVCVs.  While this technique significantly reduced the dimensionality of the 

VVCVs, the accuracy of the new representations was severely compromised.  Weight 

coefficients were also used as reduced representation variables in the linear combination 

of orthogonal functions [Sansone and Hille (2004); Bretscher (2005)] to approximate the 

VVCVs.  Although orthogonality conditions could not be strictly enforced, this method 

demonstrated high capability due to its similarity to POD.  Image warping [Glasbey and 
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Mardia (1998); Stegmann (2001)], which used warping parameters as reduced 

representation variables, also demonstrated some capability but possessed challenges in 

determining appropriate transformations for the VVCVs.  In the end, it was found that 

using low-dimensional input vectors to radial-basis function (RBF) artificial neural 

networks (ANNs) [Chen et al. (1991); Demuth et al. (2009)] as reduced representations 

according to Kokkolaras et al. [Kokkolaras et al. (2004)] was a reasonable approach due 

to its high accuracy. 

1.2.2 Recent Work 

Because RBF ANNs were an established reduced representation method for VVCVs in 

HEV powertrain design and POD demonstrated high potential based on the literature 

review, a new study [Alexander et al. (2010a)] was conducted that compared the two 

techniques.  Specifically, RBF ANNs and POD were used as reduced representations for 

VVCVs associated with maximum/minimum motor torque curves and power loss maps 

in the ATC optimization of an EV powertrain.  RBF ANNs served as the baseline method 

in the investigation since it was previously implemented in two similar studies.  Based on 

the results, it was found that POD was the better reduced representation technique in this 

application.  The most significant reason for this assessment was that implementing RBF 

ANNs, which is a metamodeling approach, violated the necessary condition of additive-

separability [Wagner and Papalambros (1993)] for decomposition-based optimization 

strategies.  This requires that functions, including objectives and constraints, in a system 

design problem be expressed as a sum of terms, with each term dependent on disjoint 

subsets of design variables.  The violation of this property implied that an all-in-one 

(AiO) optimization problem formulation should have been used, which was not the goal 

of the study.  Conversely, POD, which is a curve-fitting approach, easily satisfied 

additive-separability within ATC as it used reduced representation variables (POD 

coefficients) that were distinct from all other system design variables.  In the rare event 

that RBF ANNs did satisfy additive-separability, the dimensionality of the reduced 

representation would not be guaranteed to be less than the dimensionality of the original 

VVCV for every application.  POD, however, would always generate reduced 

representations with lower dimensionality than the original VVCV by virtue of its 
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method.  A final limitation of RBF ANNs (assuming additive-separability and 

dimensionality reduction were satisfied) was its lack of flexibility in dimensionality 

reduction.  Regardless of the desired accuracy, the number of reduced representation 

variables for RBF ANNs would always be equal to the number of inputs to the network.  

The number of reduced representation variables for POD, however, is directly related to a 

tuning parameter that trades off accuracy and dimensionality reduction, which would 

enable tremendous flexibility. 

 Although it was acknowledged that the limitations of RBF ANNs could exist for 

any reduced representation, it was also observed that metamodeling approaches generally 

experience these issues more frequently as they use variables that may not reduce 

problem dimensionality and may violate additive-separability.  Curve-fitting approaches 

were identified as more suitable because they use variables that reduce problem 

dimensionality more consistently and are unlikely to violate additive-separability.  Of 

these latter approaches, POD emerged as one of the most attractive since it utilized data 

samples exclusively to determine a functional form of its approximation model, made 

limited assumptions regarding the number of reduced representation variables, and used a 

relatively limited number of such variables for approximation. 

Despite these advantages, there are still two key issues that must be addressed 

when implementing POD as a reduced representation.  First, more insight is required 

regarding the impact of the tuning parameter within POD on the performance of ATC.  

As indicated earlier, this parameter balances accuracy with dimensionality reduction of 

the POD representation, which enables tremendous flexibility for the reduced 

representation of VVCVs.  Although it was set to a “nominal” value in this study that 

favored accuracy, such an approach may not be appropriate in general as it may limit the 

full capability of POD in terms of reduced representation and hence optimization 

efficiency.  It is posited that as the tuning parameter is adjusted to favor dimensionality 

reduction, additional computational savings will be observed via fewer reduced 

representation variables; however, this has yet to be demonstrated.  Furthermore, while 

such an adjustment would reduce the accuracy of the POD representation, it is uncertain 

whether this would translate into an inaccurate or suboptimal design solution as ATC 
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enforces some degree of accuracy through its updated, weighted penalty function.  Since 

the literature does not currently address this issue for any decomposition-based 

optimization strategy, it is necessary that the work in this dissertation resolves this issue.   

Another problem that must be resolved is the effective constraint management of 

the POD reduced representation variables.  Initial optimization runs using POD failed 

during this study due to powertrain simulation crashes, and closer inspection revealed 

that the POD approximation of the motor maps was inaccurate (Figure 1.1).  This in turn 

was caused by the optimizer selecting reduced representation variables that were outside 

the POD model validity region as shown in Figure 1.2.  Hence, the original assumption 

that the POD model validity region was defined by simple bound constraints was 

incorrect; instead, nonlinear constraints characterized the decision space, which is only 

partially seen in Figure 1.2.  Because these reduced representation variables lacked 

physical meaning, it was challenging to formulate explicit constraints defining the model 

validity region.  This issue was temporarily resolved by assigning large penalty values to 

objective and constraint function outputs that depended on the reduced representation 

variables when simulation failure occurred.  Such a penalty value-based heuristic was 

effective for the non-gradient-based optimizer used in this study as it forced the selection 

of reduced representation variables that were within the model validity region.  However, 

this heuristic was not efficient; it required many ATC iterations that ultimately led to an 

ill-conditioned optimization problem and an extensive runtime.  The study indicated that 

the POD model validity region should ideally be constrained using a more direct 

approach that produces explicit constraints in the optimization formulation.  This would 

facilitate the efficient performance of the optimizer and lead to fewer ATC iterations and 

faster runtimes. 

Some common methods in the literature, such as probability density-based models 

[Tarassenko et al. (1995)] and convex hulling algorithms like Quickhull [Barber et al. 

(1996)], were considered as potential direct constraint management approaches but had 

significant limitations [Malak (2008)].  The probability density-based models, for 

example, generally require large datasets for a good boundary definition; however, the 

availability of such data may not always be possible [Malak (2008)].  In the case of 



convex hulling, many of these algorithms were not intended for the high-dimensional 

datasets that may still be present after using reduced representations such as POD.  

Moreover, such datasets are usually non-convex, and so the use of a convex hulling 

algorithm could generate boundary definitions that are ill-defined as in Figure 1.2.  

However, a method that utilizes support vector domain description [Tax and Duin 

(1999a); Tax and Duin (1999b)] and initially explored as part of this dissertation work 

[Alexander et al. (2010b)] was suggested as a promising solution to this problem.  

Because the work by Alexander et al. was in its preliminary phases, this dissertation must 

examine the implications of this approach in a more complete fashion. 
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Figure 1.1 POD-Approximated Motor Map at Failed Design Point 

 

9 

 



-300 -200 -100 0 100 200 300 400 500 600 700
-500

-400

-300

-200

-100

0

100

200

300

zr,max1

zr
,m

ax
2

 

 

Attainable
Designs

Failed Design Point
(Not Attainable)

Assumed POD Domain

 

Figure 1.2 POD Model Validity Region for Two Components 

1.2.3 Selection Criteria for Reduced Representations 

The insights gained from both the prior and current work on reduced representations in 

decomposition-based optimization strategies have facilitated the development of slightly 

more formal selection criteria than dimensionality reduction and accuracy preservation.  

In particular, techniques considered for reduced representation should satisfy the 

following criteria: 

1. The method should not violate additive-separability in decomposition-based 

optimization strategies. 

2. The method should require minimal assumptions regarding the functional form of 

approximation. 

3. The method should require minimal assumptions regarding the number of reduced 

representation variables to be used. 

Another property that is ideal, but not necessary, is that the reduced representation should 

minimize the VVCV dimensionality such that it does not exceed the local design vector 

dimensionality in a given subproblem within decomposition-based optimization.  As 

mentioned earlier, most of these strategies perform well when the number of coupling 
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variables is limited, and so the satisfaction of this property would facilitate a well-

conditioned decomposition-based optimization problem.  For example, if an ATC 

strategy included a subproblem with a 5-dimensional local design vector and a 40-

dimensional VVCV, the reduced representation should contain no more than 5 variables.  

Such a condition is problem-dependent, however, and may not always be capable of 

being satisfied.  Therefore, this property is not strictly enforced in current research. 

 Upon reviewing the criteria listed above, it becomes evident why POD is among 

the leading methods for reduced representation.  Additive-separability is rarely satisfied 

by metamodeling methods, and so this encourages the exploration of curve-fitting 

methods.  Common approaches, such as polynomial response surfaces, are eliminated as 

they require strong assumptions about the functional form of the approximation (linear, 

quadratic, etc.) that are challenging to make when there is significant variation in the 

form of the functional data, which is often the case for these design problems.  Other 

techniques, such as Fourier approximations and image warping, require many 

assumptions regarding the number of fitting parameters, or reduced representation 

variables, to use, which can add significant offline development time before optimization.  

However, as previously indicated, POD constructs unique functional forms (orthogonal 

basis functions) for a given problem based on functional data samples and uses only a 

single parameter to determine the number of reduced representation variables (POD 

coefficients).  It is acknowledged, however, that POD may not be the best reduced 

representation for every problem application in general.  Before this can be reasonably 

determined, other important issues, such as the impact of the tuning parameter within 

POD and the constraint management of the reduced representation variables, must be 

addressed.  It is especially critical to note that the latter issue is not limited to POD, but is 

relevant to any alternative curve-fitting approach that uses reduced representation 

variables that are abstract quantities.  Therefore, an appropriate solution to this latter 

problem would have broad implications. 
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1.3 Accuracy Assessment of Reduced Representations 

Another important aspect of reduced representations is their ability to maintain 

reasonable accuracy.  Although the reduced representation variables are used as decision 

variables in optimization, they still must compute approximations of the relevant 

functional data that can be utilized to solve the problem accurately.  In the case of the EV 

powertrain design problem mentioned in this work, this includes motor torque curves, 

which are one-dimensional (1D) functional data, and motor power loss maps, which are 

two-dimensional (2D) functional data.  Error metrics such as the mean-square error 

(MSE) or the root-mean-square error (RMSE) have been routinely used to validate these 

functional data approximations in the past [Meckesheimer et al. (2001); Mullur and 

Messac (2005); Wang and Shan (2007)].  However, the majority of these metrics were 

developed for 1D functional data accuracy assessment, and as such, perform well for this 

type of data.  The suitability and performance of these metrics for higher dimensional 

functional data, such as 2D functional data, have been largely unexplored until recent 

work undertaken as part of this dissertation effort [Alexander and Papalambros (2010)].  

Because the assumptions regarding the functional form and the number of variables for 

reduced representations are contingent upon accuracy assessment, the resolution of such 

an issue is critical.  Moreover, decomposition-based design optimization strategies 

require effective consistency measures to assess the discrepancy between coupled 

quantities, including functional data, from different subproblems to facilitate 

convergence.  These consistency measures are based on some type of error metric which 

should determine any discrepancy among the coupled quantities in a meaningful and 

accurate way.  Currently, no well-established consistency measure exists for coupled 

functional data within decomposition-based optimization strategies in the literature, and 

so the standard practice [Alexander (2008); Alexander et al. (2009); Alexander et al. 

(2010a); Alexander et al. (2010b); Alexander et al. (2010c)] has been to use a RMSE 

consistency measure.  Although this error metric has facilitated the use of decomposition-

based optimization strategies such as ATC in the past, it may not be appropriate for 

higher dimensional functional data (such as motor power loss maps) and lacks a clear 

definition of consistency among coupled functional data.  It is therefore necessary to 
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identify a suitable error metric that can validate higher dimensional functional data 

approximations generated by reduced representations and support the convergence of 

decomposition-based optimization strategies with coupled functional data through a 

meaningful consistency measure. 

The literature on 1D functional data accuracy assessment through error metrics is 

vast.  Sarin provides a comprehensive list and description of these methods, along with 

key error measures such as magnitude, phase, and shape [Sarin (2008)].  Since this 

application deals with the validation of functional data approximations against functional 

data from high-fidelity simulations, the phase error measure is not as significant.  Instead, 

error metrics that are robust and primarily address magnitude and shape error measures 

are considered.  Vector norms, for example, form the basis of many error metrics, such as 

MSE and RMSE, and are relatively simple to use [Sarin (2008)].  Average residuals and 

their standard deviations are also straightforward in their implementation, but have the 

disadvantage of cancellation for comparisons containing positive and negative residuals 

[Sarin (2008)].  The coefficient of correlation and 0th-2nd order relative difference of 

moments are slightly more advanced than vector norms and, in the absence of significant 

phase error, possess effective measures of magnitude error [Sarin (2008)].  Sprague and 

Geers’ error metric [Geers (1984); Sprague and Geers (2004); Schwer (2005)] and the 

similar Russell’s error metric [Russell (1997a); Russell (1997b)] possess a measure that 

specifically addresses magnitude error; however, neither of these metrics can address 

shape error.  Conversely, the normalized integrated square error [Jacob et al. (2000)] 

does possess measures of magnitude and shape error, but cannot account for the shape 

error in the overall metric.  Dynamic time warping [Keogh and Pazzani (1999); Liu et al. 

(2002); Ratanamahatana and Keogh (2004); Fang et al. (2005); Faundez-Zanuy (2007)] 

and the Error Assessment of Response Time Histories metric or EARTH [Sarin (2008)] 

are advanced methods that effectively measure the magnitude and shape errors, but have 

the disadvantage of extensive computational time as they both require the solution of a 

dynamic programming problem.  Although any of the aforementioned techniques could 

be selected for the initial inclusion of 2D functional data accuracy assessment, it is 

preferable to start with the simplest meaningful approach to gain some understanding.  Of 
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particular interest are error metrics that systematically, objectively and efficiently provide 

a clear indication of local and global functional data accuracy with respect to preset 

thresholds [Sohns et al. (2006)].  With these goals in mind, the metric selected for all 

functional data accuracy assessment in this dissertation was the Accuracy and Validity 

Algorithm for SIMulation, or AVASIM [Sendur et al. (2002)].  This metric is also 

investigated in this dissertation as an alternative for functional data consistency 

measurement within decomposition-based design optimization. 

1.4 Summary and Overview 

This chapter introduced the main research problem in this dissertation, which deals with 

the efficient and accurate representation of functional data that are (coupled) decision 

variables in a decomposition-based design optimization problem.  It also presented the 

relevant problem application that will be focused on in this dissertation, which is EV 

powertrain design.  In addition, reduced representation techniques were discussed, along 

with their appropriate selection criteria.  This information was used to demonstrate the 

motivation for the exclusive use of POD in this work.  Finally, the importance of an 

effective accuracy assessment tool was explained, and the literature review indicated the 

appropriateness of AVASIM as an error metric for functional data. 

 The remainder of the dissertation will delve deeper into the issues surrounding the 

management of VVCVs in ATC.  Specifically, three key research questions that will 

serve as significant contributions to the research community will be addressed: 

1. What effect do assumptions regarding the number of reduced representation 

variables have on the performance, including computational efficiency and 

accuracy, of ATC? 

2. What are effective consistency measures for functional data that are coupled 

between design subproblems in ATC?  

3. What are effective constraint management methods for reduced representation 

variables in ATC? 

The first research question is based on an earlier discussion in this chapter regarding the 

net impact of the tuning parameter within POD on the performance of ATC.  To address 
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this issue, a study will be conducted that varies this tuning parameter from its “nominal” 

value, which favors accuracy, to progressively lower values that favor dimensionality 

reduction (fewer reduced representation variables) while observing the ATC optimization 

results.  The second research question deals with the issue of assessing the discrepancy 

between coupled functional data from various subproblems within ATC in an accurate 

and meaningful way as mentioned earlier in this chapter.  A comparative study between 

an existing consistency measure (RMSE) and AVASIM will be conducted to resolve this 

problem.  Finally, the third research question addresses the problem of properly 

constraining abstract reduced representation variables in an ATC framework as 

previously discussed in this chapter.  Specifically, a comparative study between an 

existing constraint management method (penalty value-based heuristic) and an alternative 

that utilizes support vector domain description will be conducted to resolve this issue. 

 The dissertation is organized as follows: Chapter 2 provides background 

information on ATC, POD, and AVASIM; Chapter 3 discusses the EV powertrain 

models that will be used in the case studies, which include a small, commercial EV 

powertrain and a military light-tactical EV powertrain; Chapters 4, 5, and 6 investigate 

the first, second and third research questions, respectively, using the commercial EV 

model as a design application; Chapter 7 applies the understanding gained from 

addressing the research questions to the more challenging military EV design problem; 

and Chapter 8 offers conclusions regarding the original research problem. 
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Chapter 2  
 

Background 

The preference for ATC, POD, and AVASIM as tools that support EV powertrain design 

was discussed in the previous chapter.  The details of these methods are provided in this 

chapter to facilitate the understanding of relevant case studies later in the dissertation.  

ATC is discussed first along with important information regarding the problem structure, 

formulation, and coordination strategy.  POD is presented next, including the description 

of two solution methods based on the number of data samples.  Finally, the details of 

AVASIM are provided for both 1D and 2D functional data accuracy assessment. 

2.1 Analytical Target Cascading 

In design optimization, methods that partition complex system design problems into 

subproblems and optimize the subsystems while ensuring consistency among their 

solutions are known as decomposition-based design optimization strategies.  Several 

hierarchical strategies, including Sobieski’s framework [Sobieszczanski-Sobieski et al. 

(1985)], Cramer’s formulations [Cramer et al. (1994)], and collaborative optimization 

(CO) [Braun (1996)], have been developed in earlier work.  Among the most effective 

decomposition-based optimization strategies is Analytical Target Cascading (ATC).  This 

method [Kim (2001); Kim et al. (2003)] has attracted much attention due to the intuitive 

nature of its hierarchical decomposition and coordination strategy.  Furthermore, unlike 

its widely-used predecessor (CO), ATC possesses a proven convergence theorem 

[Michelena et al. (2003)] which states that its design solution is identical to that of the 

corresponding all-in-one (AiO) optimization problem when the consistency among linked 

subproblems is satisfied exactly.  From a high-level perspective, ATC simultaneously 



minimizes performance-related objectives and deviations between design targets 

cascaded from upper levels and their realizable responses at lower levels.  Optimality is 

achieved when the targets and responses are within an acceptable tolerance of one 

another. 

ATC begins by first decomposing the system into design subproblems, where 

typically the top level is referred to as the system level and lower levels are referred to as 

subsystem levels (Figure 2.1).  Note that a subproblem linked above a given element of 

interest is called a parent, and subproblems linked below a given element of interest are 

called children.  The general ATC subproblem Pij for the ith level and the jth element is 

defined as [Tosserams et al. (2006)]: 
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In the above, xij is the vector of local design variables, tij is the vector of target linking 

variables passed from the element’s parent at level (i - 1), rij is the vector of response 

linking variables passed to the element’s parent at level (i - 1), cij = tij – rij is the vector of 

consistency constraints between target and response linking variables, fij is the local 

objective function, π is a penalty function, gij is the vector of inequality constraints, hij is 
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Figure 2.1 ATC Hierarchical Decomposition [Tosserams et al. (2006)] 
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the vector of equality constraints, N is the number of levels, and M is the total number of 

elements.  Although tij and rij can include both coupling and shared variables, only 

coupling variables are present in the examples in this dissertation.  Also, observe that the 

consistency constraints, which should be zero for an exact system solution, are relaxed 

through π(c) such that ||c(Κ) – c(Κ-1)||∞ is within some small tolerance before the algorithm 

is terminated, where Κ denotes the iteration number.  Among the most effective choices 

for π is the augmented-Lagrangian (AL) function, which results in the following general 

ATC-AL subproblem formulation for the ith level and the jth element [Tosserams et al. 

(2006)]: 
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Note that the linear and quadratic terms in the AL penalty function are weighted by the 

vectors v and w, respectively. 

 Figure 2.2 illustrates the information flow for the general ATC-AL subproblem 

formulation.  The linking variable vectors tij and r(i+1)k are passed as inputs from the 

subproblem’s parent and children, respectively.  They are treated as fixed parameters, 

while the linking variable vectors rij and t(i+1)k are treated as decision variables, along 

with xij.  After the subproblem is solved, rij and t(i+1)k are passed back to the subproblem’s 

parent and children, respectively, as an indication of the consistency between adjacent 

subproblems.  With this process defined, the complete algorithm for ATC-AL, which is 

known as the “method of multipliers” is as follows [Tosserams et al. (2006)]: 

0. (Initialize): Define decomposed problem and initial solutions x(0), r(0), t(0); set κ = 

0; define outer loop termination criterion, ε, where ε is a small, positive number.  

Define v(1) and  w(1). 

1. (Inner loop/solve ATC): Set κ = κ+1.  Solve decomposed problem with v(κ), w(κ) 

to obtain new estimates x(κ), r(κ), t(κ). 
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2. (Convergence check): If outer loop converges (||c(κ)-c(κ-1)||∞ < ε), set κ = Κ and 

stop.  Otherwise, proceed to Step 3. 

3. (Outer loop/update penalty): Update penalty parameters to v(κ+1) and w(κ+1) with 

respective linear updating schemes using Step 1 results: 
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Return to Step 1. 

This algorithm converges assuming that the problem is convex (which is enforced by β ≥ 

1) and that the sequence of quadratic weight vectors w is non-decreasing. 
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Figure 2.2 ATC Information Flow [Tosserams et al. (2006)] 

 The computational efficiency of ATC is often improved by using an inner loop 

coordination strategy known as the “alternating direction method” [Tosserams et al. 

(2006)], or AD.  While earlier coordination strategies required ATC subproblems to be 

solved iteratively [Michelena et al. (2003)], this approach requires each subproblem to be 

solved only once in the inner loop.  The simplest implementation of the ATC-AL-AD 

algorithm is to solve each subproblem sequentially starting at the top of the hierarchy and 

ending at the bottom.  Such an approach enables the efficient solution of a 
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decomposition-based design optimization problem while maintaining reasonable 

accuracy [Tosserams et al. (2006)]. 

2.2 Proper Orthogonal Decomposition 

Proper orthogonal decomposition (POD) is often used in engineering applications as a 

model reduction technique to facilitate the analysis, design, and optimization of dynamic, 

linear systems.  In broader applications, POD is also referred to as principal component 

analysis [Ahmed and Goldstein (1975)] or Karhunen-Loeve expansion [Loeve (1945); 

Karhunen (1946)].  Mathematically, all of these terms refer to the same linear 

transformation method, but with a particular meaning in various fields.  POD, in 

particular, reduces the state-space representation of dynamic systems according to 

[Wilcox (2005)]: 

 

      )()()( ttt rp zzΦz +≈         (2.4) 

 

Here, z(t) is the original state vector of dimension q, zr(t) is the reduced state vector of 

dimension p << q, and Φp is a matrix of the p most energetic basis functions ϕ used to 

construct the approximation of the original state vector.  The final term z̄(t) is the sample 

mean vector of dimension q and is used to center the data for the approximation.  This 

transformation can be applied to the functional data variables in this dissertation by 

treating them as state vectors, thus modifying (2.4) by 

 

zzΦz +≈ rp          (2.5) 

 

where z is the original q-dimensional functional data variable, zr is the p-dimensional 

reduced representation, and Φp and z̄ have the same meaning as in the state vector 

context but applied to the functional data variables.  POD ultimately involves the 

construction of the full basis function matrix Φ based on m samples zi = [z1, z2,…, zq]T 

and its reduction by examining the magnitude of its associated eigenvalues.  This is 

20 

 



accomplished by using either the direct method or the “method of snapshots” [Sirovich 

(1987)]. 

The most efficient approach when q ≤ m is the direct method [Burkhardt et al. 

(2003)], which begins by forming the covariance matrix R: 
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In the above, Z is a (q x m) matrix containing all the samples of the original functional 

data variables and Z�  is a (q x m) matrix of the sample mean vector repeated m times.  

Next, a (q x q) eigenvalue problem on R is used to construct Φ, 

 

   ΦΛRΦ =          (2.7) 

 

where Λ is the diagonal matrix of eigenvalues.  Assuming that the basis functions in Φ 

are arranged according to the magnitude of their associated eigenvalues, 
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this matrix is reduced to Φp based on the cumulative percentage variation (CPV).  The 

CPV is a measure of the relative importance of each basis function in Φ [Toal et al. 

(2008)]: 
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Observe that CPVgoal is assigned based on the desired amount of information to be 

captured through POD, which is usually 99% [Bui-Thanh et al. (2004)]. 
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When q > m, the most efficient solution technique [Burkhardt et al. (2003); Lucia 

et al. (2003); Wilcox (2005)] is the “method of snapshots” [Sirovich (1987)].  This time, a 

correlation matrix R is generated: 
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From here, the associated (m x m) eigenvalue problem is solved, 

 

   VΛRV =        (2.11) 

 

where V represents the matrix of eigenvectors.  The (q x m) orthogonal basis function 

matrix is constructed from: 
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The above equations demonstrate why this procedure is referred to as the “method of 

snapshots”: each basis function is a linear combination of the m sample vectors, or 

“snapshots”, of original data [Sirovich (1987)].  Finally, Φp is determined using the same 

procedure outlined in Equations (2.8)-(2.9) with q replaced by m. 

2.3 Accuracy and Validity Algorithm for Simulation 

The Accuracy and Validity Algorithm for SIMulation, or AVASIM [Sendur et al. 

(2002)], is an accuracy assessment tool that characterizes the local and global error 

between baseline and approximation functional data through l1-norms and residual sums.  

Using these measures, error indices are constructed such that nonnegative values denote 

valid functional data approximations with accuracy levels between 0 and 1, and all 

negative values generally denote invalid functional data approximations.  Validity is 

defined by functional data approximations that lie within some predetermined threshold 

value; therefore, a value of 0 indicates that a functional data approximation is at the 
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threshold and valid, whereas a value of 1 indicates that a functional data approximation is 

completely accurate. 

2.3.1 Algorithm 

The algorithm begins by selecting points of interest, known as target points [Sohns et al. 

(2006)], from the baseline functional data.  These target points are used to calculate the 

local error index between the baseline and approximation functional data through an l1-

norm indirectly.  In addition, a percentage error tolerance toli must be assigned to each 

target point based on its desired accuracy level.  The local error index between the 

baseline and approximation functional data for a single target point is therefore 
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−=       (2.13) 

 

where yi and ŷi denote target point values from the baseline and approximation functional 

data, respectively.  Observe that the above formulation degrades when yi ≤  0 as this 

would either lead to division by zero or index values greater than 1.  On a practical level, 

the division-by-zero issue may be resolved by setting yi = δ, where δ is a small, positive 

number.  The index value issue can be alleviated by simply taking the absolute value of 

the denominator in Equation (2.13).  With these problems addressed, an overall measure 

of the local error can be found by averaging Elocal,i for all np target points: 
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In the next phase, it is necessary to calculate the residual sum between the baseline and 

approximation functional data [Sohns et al. (2006)].  This value is used in conjunction 

with another residual sum between the baseline functional data and some threshold 

functional data to compute the global error index.  The first residual sum is given by 
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where y(x) and ŷ(x) represent the complete baseline and approximation functional data 

respectively and X is the domain over which the functional data are defined.  Similarly, 

the second residual sum is given by 
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X
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where ythresh(x) represents the complete threshold functional data.  It is this residual sum 

that sets a maximum acceptable value for the global error.  Note that the amplitude 

threshold coefficient a and the phase threshold coefficient b help set this value based on 

toli: 
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With this definition, the global error index between the baseline and approximation 

functional data is given by 

 

        
thresh

app
global RS

RS
E −= 1       (2.18) 

 

The combined error index Ecomb is found by simply calculating the arithmetic mean of the 

results of Equations (2.14) and (2.18).  Typically, Ecomb is used to gain a sense not only of 

the overall error between the functional data but also of whether an approximation is even 

valid with respect to the preset tolerances.  Such a condition is referred to as a liberal 

validity criterion [Sohns et al. (2006)] as it only requires Ecomb to be nonnegative for valid 

curve approximations.  Conversely, if it is required that Elocal and Eglobal (and hence Ecomb) 
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be nonnegative, then this condition is known as a conservative validity criterion [Sohns et 

al. (2006)]. 

Alexander and Papalambros [Alexander and Papalambros (2010)] used the 

previous equations to extend AVASIM for the accuracy assessment of 2D functional data 

by simply modifying the residual sums with double integration.  Let z(x,y) and ẑ(x,y) 

represent the baseline and approximation functional data, respectively.  Then the residual 

sum between the baseline and approximation functional data is 
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D
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where D is the domain over which the functional data are defined.  Likewise, the residual 

sum between the baseline and threshold functional data is 
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where a is still the amplitude threshold coefficient and b and c are phase threshold 

coefficients for x and y respectively.  Note that b and c are determined by: 

 

    ( ) ( )base
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The rest of the algorithm remains the same, including the meaning of the validity criteria. 

2.3.2 Demonstration of AVASIM Capability 

In an effort to demonstrate the capability of AVASIM for both 1D and 2D functional 

data, the algorithm was applied to the motor maps used in the EV powertrain design 

problem.  Specifically, approximations for the maximum and minimum torque curves and 

power loss maps were validated against their high-fidelity versions using the 1D and 2D 

AVASIM formulations, respectively.  Since the target points selected in both cases were 

merely mesh points describing the functional data, a uniform tolerance of toli = 0.10 was 
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assigned for all points.  For similar reasons, the phase threshold coefficients were set to 

zero, as in Sohns [Sohns et al. (2006)], as opposed to the methodology described in 

Equations (2.17) and (2.21).  Additionally, division-by-zero errors were avoided by 

setting δ = 10-4 for the torque curves and δ = 1 for the power loss map based on 

experience.  Finally, note that the number of target points for the power loss map was not 

known a priori but rather determined by a subroutine that only included points that were 

within the torque curve boundaries.  A similar subroutine was used to define numerically 

the domain of integration D for the power loss map, which is also within the torque curve 

boundaries.  The results from AVASIM are shown in Table 2.1, and Figures 2.3 and 2.4 

illustrate the accuracy of these functional data approximations visually. 

Upon reviewing these results, it is fairly evident that AVASIM reasonably 

describes the local and global accuracy of the functional data approximations.  

Specifically, it is seen that the conservative validity criterion is satisfied for all 

approximations and that the combined error indices for the torque curves and power loss 

map estimate accuracies of 76.5%, 96.6%, and 58.4%, respectively.  Note that the global 

error indices indicate high global accuracies and are consistent with what is seen visually; 

however, the local error indices vary significantly and in some cases (e.g., maximum 

torque curve and power loss map) suggest lower local accuracies than what is seen 

visually.  The relative instability of the Elocal measure is likely due to issues associated 

with division by near-zero target points and as such is problem-dependent.  However, the 

Eglobal measure is much more stable, and since global accuracy is often sufficient and 

desirable in many engineering applications, this can be of benefit.  In particular, one can 

leverage this knowledge and modify the AVASIM formulations such that Ecomb is not an 

arithmetic mean of Elocal and Eglobal, but rather a weighted sum, 

 

          globalgloballocallocalcomb EwEwE +=      (2.22) 

 

where wlocal and wglobal are nonnegative weights whose sum must always equal 1.  This 

new formulation is referred to as generalized AVASIM [Alexander and Papalambros 

(2010)] since it enables users to allocate the importance of each accuracy component 
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when computing the combined error index.  The work in later chapters will demonstrate 

how such flexibility could have important implications when using AVASIM as a 

consistency measure within an ATC framework. 

Table 2.1 AVASIM Results for Functional Data Approximations 

Index Max-Torque Min-Torque Power Loss 
Elocal 0.588 0.969 0.319 
Eglobal 0.942 0.963 0.849 
Ecomb 0.765 0.966 0.584 
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Figure 2.3 Torque Curve Comparison 
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Figure 2.4 Power Loss Map Relative Error 

2.4 Summary 

This chapter discussed the details of ATC, POD, and AVASIM that are necessary to 

comprehend the procedures and results for the case studies in Chapters 4-7.  In particular, 

a deeper explanation was provided for the selection of ATC as a decomposition-based 

optimization strategy, along with its partitioning and coordination approach; two solution 

strategies for POD based on the number of samples were discussed; and three 

formulations of AVASIM were reviewed, with the capability of the first two formulations 

demonstrated through a relevant example.  The theory presented in this chapter will be 

routinely referred to when conducting studies exploring the use of functional data as 

decision variables in a decomposition-based optimization framework. 
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Chapter 3  
 

Electric Vehicle Powertrain Models 

Electric vehicles (EVs) are increasingly being considered as a viable alternative to 

conventional vehicles with internal combustion engines in order to reduce the 

consumption of non-renewable energy resources and emissions of greenhouse gases.  For 

example, by the end of 2010, Nissan will introduce the first large-scale produced EV, the 

LEAF, in Japan, the United States, and Europe [Nissan Zero Emission Website (2010)].  

The fact that EVs have existed for decades (albeit in a limited capacity) and that mass-

production of such vehicles are emerging as of late only highlights the limited design 

experience in this domain.  Such disparity of sufficient EV design knowledge makes the 

use of simulation-based design software attractive.  These tools enable the exploration of 

preliminary system design through the proper integration of powertrain components that 

meet overall vehicle design targets effectively.  Therefore, this chapter describes the 

models used to explore the EV powertrain design problem in both commercial and 

military vehicle applications. 

3.1 Commercial Electric Vehicle Powertrain Model 

The commercial electric vehicle powertrain model treated in this dissertation was initially 

developed by Allison [Allison (2008)] in a MATLAB®/Simulink® environment.  A general 

plan view of the vehicle configuration can be seen in Figure 3.1.  The model is for a two-

passenger, mini-compact vehicle designed primarily for urban driving with some 

highway speed capability.  This classification is evident by the vehicle’s overall 

dimensions, which includes a wheelbase of L = 1.80 m and a track width of W = 1.27 m.  

The vehicle is powered by a lithium-ion battery energy storage system, which can vary in 



length, width, and longitudinal location relative to the front end of the battery 

compartment such that it lies within the dashed region defined by bl,max = 1.05 m and 

width bw,max = 1.20 m.  Two electric traction motors drive the rear wheels through a 

synchronous belt drive system and are mounted at the pivots on the rear suspension 

trailing arms in an effort to minimize the unsprung mass in the system.  A MacPherson 

strut configuration is used for the front suspension, and finally, low rolling resistance 

P145/70R12 tires are used to minimize energy consumption. 

 

 

Figure 3.1 General Plan View of Commercial EV [Allison (2008)] 

Because the case studies in this dissertation explore powertrain design 

exclusively, several modifications [Alexander (2008)] were made to the original analysis 

models within this simulation-based environment.  The structural analysis model, for 

example, was held constant and thus excluded from the subsequent design problem.  The 

original powertrain analysis model was decomposed into three separate entities: an 

electric traction motor analysis model, a battery size analysis model, and a vehicle-level 
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analysis model.  Any remaining input/output variables from the original powertrain 

analysis model (e.g., suspension variables) that were unaccounted for during 

decomposition were treated as parameters for a nominal vehicle design.  Finally, a new 

analysis model was developed [Alexander et al. (2010c)] to account for motor mass 

property changes during design studies.  The current analysis models are defined as: 
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Here, the functions fmotor, fmotorMass, fbattSize, fevMass, and fv correspond to the electric traction 

motor, motor mass, battery size, EV mass, and vehicle-level analysis models, 

respectively.  The input/output variables for fmotor include the stack length ls, the rotor 

radius rm, the number of turns per stator coil nc, the rotor resistance Rr, the VVCVs 

representing the maximum torque curve zmax, minimum torque curve zmin, and power loss 

map zpLoss, the maximum motor speed ωmax, and the rotor moment of inertia Jr.  The input 

variables to fmotorMass are shared with fmotor, while the output variables include the motor 

mass mm, the motor pitch inertia Iym, the motor yaw inertia Izm, and the lateral center of 

mass location of the motor ym.  Note that fmotorMass could be combined with fmotor; 

however, it is also desired to keep the model parameters of fmotor independent of the 

vehicle configuration, and so fmotorMass is made distinct from fmotor since ym is vehicle-

dependent.  The input/output variables for fbattSize are the battery electrode insertion scale 
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BI, the battery cell width scale BW, the number of cell windings BL, the battery length bl, 

the battery width bw, and the battery mass mbatt.  With the exception of the battery 

compartment clearance xbatt, all of the input variables to fevMass are coupled with the 

output variables of fbattSize and fmotorMass.  The output variables from fevMass are the sprung 

mass ms, the sprung mass pitch inertia Iy, the sprung mass yaw inertia Iz, the longitudinal 

center of mass location of the sprung mass l1, the vertical center of mass location of the 

sprung mass h, and the battery width and length packaging constraint violations bw,V and 

bl,V, respectively.  Similarly, all of the input variables to fv are either shared with fbattSize or 

coupled with fmotor, fbattSize, and fevMass with the exception of the belt drive ratio pr.  The 

output variables from fv include the gasoline-equivalent fuel economy mpge, the 0-60 

mph time t60, the motor torque and speed constraint violations τV and ωV, the vehicle 

range R, the battery power constraint violation PV, and the battery capacity Cb, which 

indirectly constrains battery cost.  Figure 3.2 illustrates the relationships among the 

analysis models.  Observe that the dashed boxes in the figure indicate the problem 

decomposition for ATC design optimization. 

 

 

Figure 3.2 Commercial EV Analysis Model Relationships/Problem Decomposition 

 The remainder of this section presents the details of these analysis models, 

including the manner in which the input quantities are used to compute the output 

fmotorMass fmotor 

fbattSize fevMass fv 

Motor Subproblem (Subsystem) 

Vehicle Subproblem (System) 



quantities.  As with any optimization problem, a thorough understanding of the modeled 

system is essential in order to reasonably interpret results from the design study. 

3.1.1 Electric Traction Motor Analysis Model  

Electric motors are devices that transform electrical power into rotational mechanical 

power through the interaction of their stator and rotor magnetic fields. Because the 

current application involves vehicle propulsion, these motors are specifically referred to 

as electric traction motors.  The main components of electric traction motors are the 

stator, the rotor, and the output shaft connected to the rotor (Figure 3.3).  The stator 

encloses both the rotor and a portion of the output shaft and is usually supplied with 

three-phase AC power that corresponds to its three-phase windings [Bose (2002)].  A 

rotating magnetic field is generated by the stator when the power is supplied, and this in 

turn interacts with the magnetic field of the rotor, causing it to spin.  In this work, an AC 

induction motor (IM) model is selected, which uses a rotor comprised of stacked iron 

sheets inserted with bars of conductive material that are parallel to the output shaft 

(Figure 3.3).  The electric traction motors are just part of the complete drive system, 

which includes a power inverter and a controller.  However, these latter elements are 

excluded from the model for the sake of simplicity. 

 

 

Figure 3.3 Diagram of Electric Traction (Induction) Motor [Allison (2008)] 
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3.1.1.1 Equivalent Electrical Circuit Model 

The behavior of a single phase of the electric traction motor is characterized by the 

equivalent electrical circuit model in Figure 3.4 [Bose (2002)].  Here, Vs is the AC power 

source in terms of root-mean-square (RMS) voltage, Lm is the mutual inductance between 

the stator and rotor, Rs is the winding resistance of the stator, Lls and Llr are the leakage 

inductances of the stator and rotor respectively, and Rr is the variable electric resistance 

through the conductive bars in the rotor.  The electromagnetic interaction between the 

stator and rotor is modeled by dividing the slip s into Rr.  Slip, as defined in this model, is 

the difference between the rotation of the stator and rotor magnetic fields relative to the 

rotation of the stator magnetic field [Bose (2002)]: 

 

 
e

rotes
ω

ωω −
=          (3.6) 

 

In the above, ωe denotes the stator supply frequency that determines the rotational speed 

of the stator’s magnetic field, and ωrot denotes the rotor electrical speed that determines 

the rotational speed of the rotor’s magnetic field.  It should be observed that slip induces 

torque [Bose (2002)].  Therefore, when s = 0, the motor produces no torque and achieves 

synchronous (no-load) speed, and when s = 1, the motor becomes completely stalled.  For 

0 < s < 1, the output torque increases until it reaches the breakdown torque, after which it 

gradually decreases to the stalled condition. 

 

 

Figure 3.4 Equivalent Circuit Model of IM, Single Phase [Bose (2002)] 
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3.1.1.2 Determination of Induction Motor Properties 

The input variables to the electric traction motor analysis model (ls, rm, nc, Rr) along with 

the parameters listed in Table 3.1 are used to calculate important properties of the IM.  

The rotor mass, for example, is given by 

 

                     (3.7) fesmr rm ρπ l2=

 

and is used to compute the rotor moment of inertia, which is one of the outputs of the 

analysis model: 
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The torque loss on the output shaft due to friction in the bearings is 

 

           mmrloss cJ ωτ =)(         (3.9) 

 

where cm is the viscous friction coefficient and ωm is the rotational speed of the output 

shaft in radians per second.  The friction coefficient is a function of Jr as given by the 

following empirical relation [Allison (2008)]: 
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The output shaft speed is computed using ωrot, which in turn is found by rearranging 

Equation (3.6) in terms of ωe and s: 

 

           )1( serot −= ωω       (3.11) 
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Next, the number of stator slots Ns, the stator windings per phase W1, and the effective air 

gap δg (accounting for geometry and slot effects) are found using the following 

equations: 

 

 112 qmpN s =        (3.13) 
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In the above, p1 is the number of pole pairs in the stator, which is half of the number of 

stator poles p.  Using these values, the mutual inductance can be calculated as [Amin 

(2001)]: 
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The stator leakage inductance is estimated using the following empirical relationship 

derived by Allison [Allison (2008)]: 
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It is assumed that the rotor leakage inductance is equal to the stator leakage inductance, 

which results in a total leakage inductance of: 

 

        lslrlsl LLLL 2=+=       (3.18) 
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From here, the winding radius of the stator is calculated, assuming that the outer stator 

radius rs is proportional to the rotor radius by a factor ts [Allison (2008)]: 
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The total winding length is: 
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Using these latter two properties, the stator winding resistance can be expressed as: 
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Finally, the maximum stator current Ism of the IM has been fit to the following quadratic 

model [Allison (2008)]: 

        

         (3.22) 2
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Observe that in the above expression, dw represents the winding diameter of the stator in 

millimeters and is given by dw = 2000rw . 
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Table 3.1 Estimated Values of IM Parameters for Commercial EV [Allison (2008)] 

Parameter Description Value 
Vsm Maximum stator voltage 460 V 
p No. of stator poles 4 
q No. of slots per phase per pole 3 

m1 No. of motor phases 3 
σYr Rotor yield stress 300 MPa 
ν Rotor Poisson ratio 0.30 

SF Rotor safety factor 4 
ωinv Maximum inverter frequency 1510 rad/s 
ρfe Iron density 7870 kg/m3 
Cm1 1st cm parameter 0.062 
Cm2 2nd cm parameter 0.998 
Cm3 3rd cm parameter 0.94 
Cm4 4th cm parameter 0.0513 
na Slot volume ratio 0.8 
np Wire packaging ratio 0.5 
ts Stator radius proportionality factor 0.3 
ke End effect ratio 1.5 
ρcu Copper resistivity 1.72 x 10-8 Ω-m 
CI1 Constant Ism parameter 0.0564 
CI2 Linear Ism parameter -0.0237 
CI3 Quadratic Ism parameter 2.21 

 

3.1.1.3 Development of Induction Motor Performance Curves 

The IM performance curves include maximum and minimum torque curves and a power 

loss map that are initially generated by calculating the breakdown torque and power 

requirements at non-uniformly-spaced points in a torque-speed coordinate system.  These 

calculated values are then used to interpolate the final performance curves as denoted by 

zmax, zmin, and zpLoss over a prescribed, evenly-spaced mesh [Allison (2008)].  Because the 

torque curves set physical boundaries on the operating conditions of the motor, they must 

be generated first.  Figure 3.5 illustrates some typical characteristics of these curves as 

well as the motor behavior within their specified boundaries.  Note that the developed 

torque τe does not include mechanical losses; therefore, the stator supply frequency ωe, 



also known as the stator electrical speed, is shown in the figure instead of the output shaft 

speed ωm.  The region between the maximum torque curve τem and the ωe-axis denotes 

the forward motoring operating condition, whereas the region between the minimum 

torque curve τemR and the ωe-axis denotes the forward regeneration operating condition 

[Bose (2002)].  During forward motoring, the IM functions as a true motor, with ωrot 

lagging ωe to produce positive slip.  Conversely, during forward regeneration, the IM 

functions as a generator, with ωe lagging ωrot to produce negative slip.  The reverse 

motoring and reverse regeneration operating conditions are excluded since only forward 

drive cycles are used in the design studies. 

 

τe 
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Figure 3.5 Typical IM Maximum/Minimum Torque Curves [Allison (2008)] 

The maximum and minimum torque curves are generated by calculating their 

respective breakdown torques τem and τemR at all mesh points corresponding to ωe: 
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Although the above equations do not include mechanical losses, the net breakdown 

torques τem,net = τem - τloss and τemR,net = τemR - τloss do account for these losses and are 

reflected in zmax and zmin.  Since it is known that the stator magnetic flux is proportional to 

the ratio Vs/ωe [Bose (2002)], the torque curves can be divided into a constant flux sub-

region and a flux weakening sub-region (Figure 3.5).  In the constant flux sub-region, the 

ratio Vs/ωe is given by a constant C1, which yields nearly constant net breakdown torque.  

Such a condition is limited only by the relatively small frictional losses that increase with 

speed as indicated in Equation (3.9).  However, in the flux weakening sub-region, the IM 

operates at maximum stator voltage Vsm and the ratio Vs/ωe decreases as ωe increases 

(since Vs = Vsm).  This results in decreasing breakdown torque during forward motoring 

and increasing breakdown torque during forward regeneration. 

 The speed at which these two sub-regions are divided is known as the base speed 

ωb.  Physically, this corresponds to the speed at which the stator current Is attains its 

maximum value Ism (as given by Equation (3.22)) when Vs = Vsm.  It is also used to 

compute the flux constant C1 and to obtain a linear relation for Vs in the constant flux 

sub-region such that the net torque remains constant.  The base speed is determined 

numerically through a root-finding procedure (ωb = {ωe | f (ωe) = Is(ωe) – Ism = 0}) that 

requires the calculation of the stator current.  This is determined through circuit analysis 

of Figure 3.4, which in turn requires the calculation of total circuit impedance.  First, the 

impedance of Lm is given by 

 

  emjLZ ω=1        (3.25) 

 

where j = 1−  denotes the  imaginary number.  The equivalent impedance of Rs, Lls, Llr, 

and Rr/s in series is: 
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Because Z1 and Z2 are in parallel, the total circuit impedance ZT is calculated as: 
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Finally, the stator current is calculated by taking the magnitude of ZT and dividing it into 

the stator voltage: 
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Therefore, the base speed can be obtained by solving ωb = {ωe | f (ωe) = Is(ωe) – Ism = 0} 

for Vs = Vsm in Equation (3.28) and s = sm in Equation (3.26), which is the slip at 

breakdown torque: 
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Observe that Equation (3.29) applies for forward motoring; for forward regeneration, a 

negative sign would need to be included.  The base speed enables the direct computation 

of the flux constant C1 [Bose (2002)]: 

 

 bsmVC ω/1 =        (3.30) 

 

Additionally, ωb is used in the development of a linear relation for Vs in the constant flux 

sub-region, 
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where Vadj is a voltage adjustment coefficient that is determined numerically through a 

root-finding procedure.  In particular, Equation (3.31) is substituted into Equation (3.23) 

for the breakdown torque τem at a fixed ωe < ωb, which must be matched to the net 

breakdown torque τem,net at ωe = ωb and Vs = Vsm to ensure constant net torque in the 

constant flux sub-region.  The voltage adjustment coefficient V0 for the maximum torque 

curve is then defined as V0 = {Vadj | f (Vadj) = τem(Vadj) – τem,net = 0}.  A similar procedure 

is followed for the voltage adjustment coefficient V0R for the minimum torque curve. 

After constructing the torque curves through their net breakdown torques, the 

power loss map can finally be constructed.  This requires intermediate calculations of the 

total circuit impedance, stator voltage, and stator current as described in Equations (3.26-

3.28) and Equation (3.31) for the constant flux sub-region: 

 

           (3.30) )(0,0 motoringforwardss mbe ≤≤≤≤ ++ ωω

 

       (3.31) )(0,0 onregeneratiforwardss mbe −≥≥≤≤ −+ ωω

 

Note that the superscript plus and minus signs indicate values slightly above and below 

zero, respectively, to avoid numerical issues.  The power losses are computed as power 

input requirements to the IM [Bose (2002)]: 

 

     ( )Tssin ZVImP ∠= cos1       (3.32) 

 

In this equation, the cosine of the angle of ZT denotes the power factor, which accounts 

for the effects of the inductive elements on power consumption.  For forward 

regeneration, observe that Pin is negative and denotes power output capabilities.  The 

power losses are calculated in a similar fashion for the flux weakening sub-region 
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        (3.33) )(0,, motoringforwardss mmaxeeb ≤≤≤< +ωωω

 

)(0,, onregeneratiforwardss mmaxeeb −≥≥≤< −ωωω     (3.34) 

 

with the exception that the stator voltage is a constant Vs = Vsm and hence does not need 

to be computed.  Note that the upper bound on the electrical speed ωe,max is “sufficiently 

large” [Allison (2008)] and is determined empirically.  Figure 3.6 shows a sample motor 

map, complete with torque curves and power loss isocontours, for the IM. 
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Figure 3.6 Sample Motor Map for IM 

The final output from the electric traction motor analysis model is the maximum 

motor speed ωmax.  For a given motor design, ωmax is determined by one of the following 

three criteria: 

 

}0)(|{ , == mnetemmmax1 ωτωω       (3.35) 
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          pinvmax3 /2ωω =       (3.37) 

 

The first criterion ωmax1 indicates that ωmax is limited by motor viscous drag and 

corresponds to the speed at which the maximum torque curve intersects the ωm-axis.  The 

second criterion ωmax2 indicates that ωmax is the speed beyond which the structural 

integrity of the motor would diminish.  The last criterion ωmax3 indicates that ωmax is the 

speed beyond which the power inverter would be incapable of supplying a higher 

electrical frequency.  Therefore, ωmax is selected as the minimum of these three criteria 

[Bose (2002)]. 

Another quantity of interest that is generated by the electric traction motor 

analysis model but is not used in this work is the efficiency map.  In the forward 

motoring operating condition, the efficiency map is constructed by calculating the motor 

power output Pout over the speed and slip domains given by Equations (3.30) and (3.33) 

and dividing it by Pin: 

 

  inout PP /=η        (3.38) 

 

The same procedure is performed in the forward regeneration operating condition over 

the speed and slip domains given by Equations (3.31) and (3.34), with the exception that 

the numerator and denominator in Equation (3.38) are switched.  The power output is 

simply the product of the net developed torque τe,net = τe – τloss and ωm, which involves an 

intermediate calculation of the developed torque: 
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Hence, the efficiency map can be generated with the power loss map concurrently. 

3.1.2 Motor Mass Analysis Model  

The motor mass analysis model is based in part on a model by Cuenca, Gains, and Vyas 

[Cuenca et al. (1999)] and was updated using scaled estimates for a similar motor type at 

Raser Technologies, Inc.’s corporate website [Raser Technologies, Inc. (2010)].  This 

was necessary in order to properly reflect current mass-reducing technologies.  Because 

the updated model indicates that the ratio between the rotor mass mr and the total mass 

mm is approximately 0.90, the motor mass can be computed simply by dividing this ratio 

into the rotor mass as given in Equation (3.7): 

 

           90.0/rm mm =        (3.40) 

 

Continuing with the assumption that the motor can be approximated geometrically as a 

solid cylinder, the motor pitch inertia Iym and the motor yaw inertia Izm can be calculated 

as 
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where the y-axis is parallel to the output shaft, the z-axis is perpendicular to the output 

shaft, and rM and lM refer to the overall motor radius and length, respectively.  These 

intermediate quantities are estimated as the following: 

 

   mM rr 9.1=        (3.43) 
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    sM ll 2=        (3.44) 

 

Finally, the lateral center of mass location of the motor ym (accounting for the clearance 

between the motor and the tire) is calculated as 

 

    ⎟
⎠
⎞

⎜
⎝
⎛ +−= 1524.0

22
M

m
Wy l       (3.45) 

 

where W = 1.27 m is the track width of the vehicle. 

3.1.3 Battery Size Analysis Model  

The battery size analysis model is part of a simulation-based battery model for a lithium-

ion battery chemistry that represents the energy storage system (ESS) for the EV.  

Specifically, this ESS harnesses electrical energy through a chemical reaction process and 

uses it for vehicle propulsion.  Critical auxiliary functions, such as power steering and air 

conditioning, are also powered through the ESS [Allison (2008)].  The complete battery 

model has been developed by Han [Han (2008)] based on the work of Doyle, Fuller, and 

Newman [Doyle et al. (1993); Fuller et al. (1994)] and is dynamic to account for changes 

in the state of charge (SOC) as well as charging and discharging limits during simulation.  

In this section, only the physical characteristics of the battery, such as the length, width, 

and mass, are addressed; the performance-related characteristics will be discussed later in 

the vehicle-level analysis model as they directly impact its output quantities.  All 

characteristics, however, are determined by battery design variables that are geometric 

scaling factors of battery cell components. 

3.1.3.1 Battery Model: Physical Characteristics 
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The battery model consists of two battery pack pairs, with each pair containing battery 

packs placed in series.  The battery pack pairs themselves are placed in parallel.  Each 

pack consists of four battery modules placed in series, and each module consists of 

twelve battery cells placed in series [Allison (2008)].  Within these cells, a chemical 

reaction between the positive and negative electrodes occurs, which yields electrical 



energy [Scrosati (1992)].  Figure 3.7 shows a typical cell cross-section as well as its 

overall dimensions qualitatively. 

 

 
 

Figure 3.7 Typical Flat-Wound Lithium-Ion Battery Cell [Han (2008)] 

It should be observed that the rate of the chemical reaction in the separator is 

significantly affected by the material composition of the battery and the cell geometry.  

Assuming that the material composition in this model is fixed, it is possible to 

characterize changes in the battery’s electrochemical process as well as its physical size 

through scaling factors of cell geometric-related variables [Allison (2008)].  The battery 

electrode insertion scale BI, for example, determines the thickness of the electrodes and 

the separator.  The battery cell width scale BW determines the electrode and cell width as 

defined by Figure 3.7.  Because the battery is mounted transversely in the EV, this 

variable ultimately affects the overall battery length bl.  The final input variable BL 

determines the number of windings, or folds, within the cell.  This variable, along with 
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BI, affects the overall battery width bw.  Only the cell height remains constant, which 

ultimately translates to a fixed overall battery height of 11 cm [Allison (2008)]. 

3.1.3.2 Overall Battery Size and Mass 

In an effort to minimize computational expense, three RBF ANNs based on a hybrid 

pulse power characterization (HPPC) test [PNGV Battery Test Manual Revision 3 (2001)] 

within the complete battery model have been developed and used to evaluate the battery 

pack width, length, and mass as a function of the input variables BI, BW, and BL.  After 

these quantities have been obtained for a single battery pack, the overall battery length, 

width, and mass can be determined as [Allison (2008)] 

 

  ),,(2 LWIpackWidth BBBfb =l       (3.46) 

 

 ),,(2 LWIpackLengthw BBBfb =       (3.47) 

 

),,(4 LWIpackMassbatt BBBfm =       (3.48) 

 

where fpackWidth, fpackLength, and fpackMass are the RBF ANNs associated with the battery pack 

width, length, and mass.  The coefficients in the above equations are based on the fact 

that the length of the battery is equivalent to the width of two battery packs, the width of 

the battery is equivalent to the length of two battery packs, and the mass of the battery is 

equivalent to the total number of battery packs, which is four [Allison (2008)]. 

3.1.4 EV Mass Analysis Model  

The vehicle configuration in Figure 3.1 along with the model parameters listed in Table 

3.2 provide the basis for the EV mass analysis model.  In particular, the model parameters 

are estimated using a comparable size commercial vehicle known as the Smart Fortwo 

[Smart USA (2010)].  Note that some of the entries in Table 3.2 are termed “baseline” 

parameters, which indicates that they correspond to a Smart Fortwo vehicle that excludes 

the mass of the (conventional) powertrain, fuel tank, chassis, and frame.  Therefore, the 
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overall EV mass and related properties are computed using these baseline parameters 

along with the remaining model parameters and input variables that account for the mass 

of the EV powertrain (battery and motors) as well as its frame.  Finally, observe that all 

longitudinal positions in the model are measured relative to the front axle, all vertical 

positions are measured relative to the ground, and all lateral positions are measured 

relative to the vehicle centerline. 

Table 3.2 Estimated Values of Commercial EV Mass Analysis Model Parameters 

Parameter Description Value 
mb Baseline vehicle mass 423 kg 
lb Baseline vehicle longitudinal com location 0.935 m 
hb Baseline vehicle vertical com location 0.610 m 
Iyb Baseline vehicle pitch inertia 268 kg-m2 
Izb Baseline vehicle yaw inertia 829 kg-m2 
mfr EV frame mass 295 kg 
lfr EV frame longitudinal com location 0.886 m 
hfr EV frame vertical com location 0.632 m 
Iyfr EV frame pitch inertia 392 kg-m2 
Izfr EV frame yaw inertia 447 kg-m2 

bl,max Maximum allowable battery length 1.05 m 
bw,max Maximum allowable battery width 1.20 m 

bh Battery height 0.11 m 
lbattc Distance to front of battery compartment 0.49 m 
hbatt Battery vertical com location 0.355 m 
lm Motor longitudinal com location 1.50 m 
hm Motor longitudinal com location 0.45 m 

 

The mass of the EV supported by its suspension, also known as its sprung mass 

ms, is simply the sum of the baseline, frame, battery, and motor masses: 

 

 mbattfrbs mmmmm 2+++=       (3.49) 

 

The associated longitudinal and vertical center of mass locations are 
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where the battery longitudinal center of mass location lbatt is determined from: 

 

    2/lll bxbattbattcbatt ++=       (3.52) 

 

Using the results from Equations (3.50)-(3.51), the EV pitch and yaw moments of inertia 

can be obtained by computing the corresponding moments of inertia of the baseline 

vehicle, frame, battery, and motors about the EV center of mass and adding them 

together.  This is accomplished through the well-known parallel-axis theorem [Cook and 

Young (1999)].  Therefore, the pitch and yaw moments of inertia of the baseline vehicle 

about the center of mass are: 

 

     ( ) ( )( )22
1, hhmII bbbybcomyb −+−+= ll      (3.53) 

 

   ( )2
1, ll −+= bbzbcomzb mII       (3.54) 

 

Similarly, the pitch and yaw moments of inertia of the frame about the center of mass are: 

 

   ( ) ( )( )22
1, hhmII frfrfryfrcomyfr −+−+= ll      (3.55) 

 

  ( )2
1, ll −+= frfrzfrcomzfr mII       (3.56) 

 

An intermediate step involving the estimation of the pitch and yaw moments of inertia of 

the battery about its own center of mass is necessary before performing similar 
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calculations about the EV center of mass.  Due to its rectangular geometry, these 

moments of inertia are computed as: 

 

     ( )22

12
1

hbattybatt bbmI += l       (3.57) 

 

     ( )22

12
1

wbattzbatt bbmI += l       (3.58) 

 

The pitch and yaw moments of inertia of the battery about the EV center of mass are: 

 

           ( ) ( )( )22
1, hhmII battbattbattybattcomybatt −+−+= ll     (3.59) 

 

          ( )2
1, ll −+= battbattzbattcomzbatt mII      (3.60) 

 

Likewise, the pitch and yaw moments of inertia of each motor about the center of mass 

are: 

 

    ( ) ( )( )22
1, hhmII mmmymcomym −+−+= ll      (3.61) 

 

         ( )( )22
1, mmmzmcomzm ymII +−+= ll      (3.62) 

 

Finally, the EV pitch and yaw moments of inertia can be calculated as: 

 

    comymcomybattcomyfrcomyby IIIII ,,,, 2+++=      (3.63) 

 

     comzmcomzbattcomzfrcomzbz IIIII ,,,, 2+++=      (3.64) 

 

51 

 



The last two outputs of the EV mass analysis model are the battery packaging constraint 

violations bw,V and bl,V, which are given by [Allison (2008)]: 

 

          maxwwVw bbb ,, −=       (3.65) 

 

      maxbattV bbxb l,ll −+=.       (3.66) 

3.1.5 Vehicle-Level Analysis Model  

The vehicle-level analysis model uses two powertrain simulations followed by two 

battery simulations to estimate vehicle range, acceleration performance, and energy 

efficiency for the EV [Allison (2008)].  Additionally, these simulations facilitate the 

computation of constraints related to motor torque and speed capability as well as battery 

power capability and cost.  Because there is no feedback between the powertrain and 

battery simulations, they can be executed independently.  This model simplification 

allows for significant computational efficiency [Allison (2008)].  Because several 

modifications to the powertrain simulations have been made since the first version of this 

model, these simulations are described in detail in this dissertation.  The battery 

simulations, however, are discussed from a high-level perspective but can be reviewed in 

more detail in Han [Han (2008)]. 

3.1.5.1 Powertrain Models 

The powertrain simulations have been developed in Simulink® and consist of several 

submodels that are linked together in both backward-looking and forward-looking 

models, respectively.  The backward-looking model uses a prescribed drive cycle along 

with analysis model input variables and parameters to predict motor torque, speed, and 

power requirements at each simulation time step.  Motor constraint violations can then be 

evaluated using these requirements: 

 

 )},()(),(),(max{ ,, mmmnetemRmnetemmmV tt ωτωτωτωττ −−=     (3.67) 
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         maxmV t ωωω −= )(       (3.68) 

 

The motor power requirements, however, are passed as inputs to a battery simulation that 

facilitates the vehicle range estimation.  The forward-looking model uses the same 

submodels, input variables, and parameters but instead predicts the 0-60 mph acceleration 

time t60 by linearly increasing the velocity of the vehicle from zero at t = 0 to 60 mph 

(26.8 m/s). 

Figure 3.8 shows a block diagram of the backward-looking powertrain model, 

which includes the input drive cycle.  The drive cycle selected for the commercial EV 

powertrain design studies is the simplified federal urban drive schedule (SFUDS), which 

is a shortened version of the federal urban drive schedule (FUDS) [Larminie and Lowry 

(2003)].  Despite the differences in duration time (360 seconds for SFUDS, 1500 seconds 

for FUDS), both drive cycles possess the same average speed and maximum 

acceleration/braking values.  A depiction of the SFUDS profile is shown in Figure 3.9. 
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Figure 3.8 Block Diagram of Powertrain Simulation Submodels for Commercial EV 
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Figure 3.9 SFUDS Profile 

Because the same submodels are used in the forward-looking powertrain model, 

the block diagram of this simulation is excluded.  However, both simulations use the 

same model parameters as listed in Table 3.3.  The remainder of this section describes 

each submodel for both simulations along with any associated assumptions. 
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Table 3.3 Estimated Values of Powertrain Model Parameters for Commercial EV 

Parameter Description Value 
mus Unsprung mass 154 kg 
cs Suspension damping per wheel 800 N-s/m 
ks Suspension stiffness per wheel 16000 N/m 
L Wheelbase 1.80 m 
Cd Drag coefficient 0.30 
Af Frontal area 1.70 m2 
ρa Air density 1.20 kg/m3 
rw Pulley radius, wheel side 0.16 m 
Iyt Tire/wheel assembly spin inertia per axle 0.72 kg-m2 
Cr Tire rolling resistance 0.0069 
Ct1 Constant rt parameter 0.240 
Ct2 Linear rt parameter 2.57 x 10-7 
Ct3 Quadratic rt parameter 2.55 x 10-6 
Pacc Accessory power load 750 W 

 

3.1.5.1.1 Aerodynamic Drag Submodel 

The aerodynamic drag force that the vehicle must overcome is proportional to the square 

of its speed and is given by: 

 

     2)(
2
1)( tvACtF fada ρ=       (3.69) 

3.1.5.1.2 Tractive Force Submodel 

The tractive force of the vehicle is the total effort required to move the vehicle at any 

given instant during the drive cycle.  It also represents the total force that the motors must 

provide (through torque relationships) to achieve vehicle propulsion.  Because it is 

assumed that the vehicle can be characterized through a lumped parameter model, the 

tractive force of the EV is simply the sum of its inertial force as well as its aerodynamic 

and tire drag forces: 

 

            )()()()( tFtFtvmtF atTrm ++= &      (3.70) 
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In this equation, mT denotes the total vehicle mass, which is the sum of the ms and mus, 

and Ft(t) denotes the total tire drag force, which includes rolling resistance and inertial 

effects [Larminie and Lowry (2003)].  The latter term is the sum of its front and rear 

components Fft(t) and Frt(t) as indicated in Figure 3.8. 

3.1.5.1.3 Drive Torque Submodel 

Using the result from Equation (3.70), the total drive torque can be calculated as 

 

       ))(()()( tvrtFt trmr =τ       (3.71) 

 

where rt(v(t)) is the dynamically-loaded tire radius.  This quantity is estimated 

empirically through a second-order polynomial model based on a fictitious, low rolling 

resistance tire that is appropriate for this type of vehicle [Allison (2008)]:  

 

               (3.72) 2)()())(( tvCtvCCtvr t3t2t1t ++=

3.1.5.1.4 Net Rear Longitudinal Force Submodel 

The net longitudinal force on the rear tires is required as an input to the vehicle pitch and 

rear tire drag submodels.  This quantity is simply found by applying force balance on the 

rear tires: 

 

     )()()( tFtFtF rtrmrx −=       (3.73) 

3.1.5.1.5 Vehicle Pitch Submodel 
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Since the vehicle pitch motion is dynamically coupled with several intermediate 

quantities used in the powertrain simulation, a submodel has been included to capture this 

behavior [Allison (2008)].  Figure 3.10 shows the two degree-of-freedom (DOF) model 

that provides the basis for the vehicle pitch submodel.  Specifically, the vehicle pitch 

motion is characterized by its vertical displacement z(t) from the static, vertical center of 

mass location h and its pitch angle θp(t).  The key intermediate quantities that are 



necessary for other submodels are the front and rear suspension forces Ffz(t) and Frz(t).  

These forces account for both stiffness and damping effects in the suspension.  Finally, 

note that l2 = L - l1 is the longitudinal distance from the center of mass location to the rear 

axle. 

 

Figure 3.10 Two DOF Vehicle Pitch Model [Allison (2008)] 

 Four linearized equations of motion are used to define the dynamic behavior of 

this system.  These equations have been put into state space form, where the states 

include z(t), θ(t), , and : )(tz& )(tθ&
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In the above, kf = 2ks and kr = 2ks are the front and rear suspension stiffness coefficients, 

while cf = 2cs and cr = 2cs are the front and rear suspension damping coefficients.  The net 

rear longitudinal force is the input to the vehicle pitch submodel by way of the 

normalized pitch moment Mp(t)/Iy: 
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( ) yrxyp ItzhtFItM /)()(/)( +=      (3.75) 

 

Note that the above equation produces an algebraic loop in the state space model as the 

full description of the system input (Mp(t)/Iy) is a function of the state variable z(t).  

Finally, the outputs of interest, Ffz(t) and Frz(t), are obtained by [Allison (2008)]: 

 

        ( ) ( )( )11 )()()()(2)( ll ttzcttzktF pfpffz θθ && +++−=     (3.76) 

 

         ( ) ( )( )22 )()()()(2)( ll ttzcttzktF prprrz θθ && −+−−=     (3.77) 

3.1.5.1.6 Tire Drag Submodel 

The tire drag forces account for rolling resistance and inertial forces that must be 

overcome for vehicle propulsion.  In an effort to eliminate an additional algebraic loop, it 

is assumed that the angular velocity and acceleration of the front and rear tire/wheel 

assemblies are equal.  This implies that the inertial forces, termed spin inertias, can be 

expressed in terms of the linear velocity v(t).  Therefore, the front and rear tire drag 

forces can be computed as  
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where the rolling resistance and spin inertia are given by the first and second terms, 

respectively, in each equation. 

3.1.5.1.7 Rear Tire Slip Submodel 

The rear tire slip submodel accounts for differences between the rear tire angular velocity 

ωr(t) and the ratio v(t)/rt(v(t)) so that the motor speed requirements ωm(t) can be properly 
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determined in the belt drive submodel.  In particular, these differences are characterized 

through the tire slip i, which varies from zero when v(t) = ωr(t)rt(v(t)) to 1 when v(t) = 0 

[Wong (2001)]: 
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Note that the above definition poses challenges for determining the slip under braking 

conditions.  Therefore, a linearized, inverted model based on Equation (3.80) is 

constructed such that i is zero when ωr(t) = v(t)/rt(v(t)) and -1 when ωr(t) = 0 [Allison 

(2008)]: 

 

         ( )
( ))(

1)()(
tvr

itvt
t

r
+

=ω       (3.81) 

 

This model is more useful as it directly predicts ωr(t) as a function of i.  However, i must 

be known in advance, and this is accomplished through a lookup table based on empirical 

tire data that uses Frx(t) and Frz(t) as inputs.  Figure 3.11 displays the relationship 

between these forces and slip for the tires used on this vehicle. 
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Figure 3.11 Tire Slip Data for Commercial EV [Allison (2008)] 

3.1.5.1.8 Belt Drive Submodels 

The net motor torque and speed requirements are determined through the belt drive 

submodels.  It is assumed here that grooved H pulleys are used within the synchronous 

belt drive system and that the belt compliance is negligible [Allison (2008)].  

Additionally, power transmission is idealized to be 100%, yielding the following belt 

drive relationships:  
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In the above, rpo is the driven pulley radius, rpi is the drive pulley radius, and τm,net(t) is 

the net motor torque requirement (i.e., for two motors).  Therefore, rearranging the 

expressions in Equation (3.82) yields the following net torque and speed requirements: 

 

        rrnetm ptt /)()(, ττ =       (3.83) 
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           rrm ptt )()( ωω =       (3.84) 

3.1.5.1.9 Motor Inertia Submodel 

After passing τm,net(t) through a gain of 1/2, the torque requirement for a single motor 

τm(t) is finally determined in the motor inertia submodel.  It should be observed that τm(t) 

is needed instead of τm,net(t) because the data used to determine the power requirement 

P(t) (zpLoss) is based on a single motor.  The motor torque requirement accounts for both 

the drive torque and the motor inertial torque that must be overcome to achieve vehicle 

propulsion: 
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This quantity is used in conjunction with ωm(t) to interpolate P(t) from zpLoss, and P(t) is 

doubled to obtain the net motor power requirements. 

3.1.5.2 Battery Model: Performance Characteristics 

The performance aspects of the lithium-ion battery model are captured through the 

following equation, which predicts the net battery voltage vnet
bt for a single battery pack 

[Doyle et al. (1993); Fuller et al. (1994)]: 

 

         (3.86) bt
pp

bt
l

btbt
net IRIREv −−= 0

 

Here, Ebt is the battery open circuit voltage, R0 is the cell internal ohmic resistance, Rp is 

the polarization resistance, Il
bt is the cell load current, and Ip

bt is the polarization current.  

The open circuit voltage is estimated as  

 

             (3.87) 193170575574193 234 +⋅−⋅+⋅−⋅= SOCSOCSOCSOCE bt
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where the state of charge (SOC) varies from a maximum of SOCmax = 0.95 to a minimum 

of SOCmin = 0.30 during the simulations.  The cell load and polarization currents are 

determined by solving the following differential equation, 
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=       (3.88) 

 

where τp is the polarization time constant [Allison (2008)].  This parameter, along with 

R0, Rp, and the battery pack capacity Cb,pack (Cb,pack =1/4Cb) is obtained through a hybrid 

pulse power characterization (HPPC) test.  Based on the HPPC test, it is seen that all of 

these parameters except Cb,pack are dependent on SOC.  However, closer inspection 

reveals that τp and Rp are relatively flat with respect to SOC; therefore, only a single, 

scalar value is needed to represent these parameters during the battery simulations.  

Because R0 also varies based on charging conditions (discharge/charge), the HPPC test is 

performed for each condition to obtain their respective functional data representations 

R0,d and R0,c (ohmic resistance-SOC curves).  Note that the HPPC test, which is 

computationally expensive, is performed for each iteration of the battery design variables 

(BI, BW, BL); therefore, RBF ANNs have been developed to facilitate the calculation of 

these parameters during design optimization: 
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3.1.5.3 Vehicle Range, Battery Power Constraint Violations, and Fuel Economy 

With the powertrain simulations and battery model performance characteristics defined, 

the remaining vehicle-level analysis model outputs (R, PV, mpge) can be calculated.  This 

first requires the execution of the battery simulations, which have been developed in 

Simulink® [Han (2008)].  As discussed earlier, these simulations can be performed after 

the powertrain simulations since there is no feedback between them.  The battery power 

demand simulation takes the power requirements P(t) from the powertrain simulations 

along with the accessory power load Pacc as inputs and satisfies the total system power 

requirements PT(t) = P(t) + Pacc as necessary.  It should be observed that this simulation is 

performed separately for the power requirements obtained from the backward-looking 

and forward-looking powertrain models. 

When using the power requirements from the backward-looking powertrain 

model, the power demand cycle is repeated until the battery reaches either its discharge 

limit or SOCmin.  The vehicle range R, therefore, is simply the distance d traveled during a 

single power demand cycle (which is the distance traveled during the drive cycle) 

multiplied by the number of power demand cycles ncyc completed during the simulation: 

 

             (3.94) dnR cyc
410x21.6 −=

 

In the above, the coefficient represents a distance conversion factor from meters to miles.  

Because the number of cycles completed is a discrete value that may slightly 

underestimate R, this equation is augmented with an interpolation of the distance traveled 

over the period of time between the last completed cycle and the end of the battery 

simulation, 

 

            (3.95) ),,(10x21.6 4 dFdnR cyccyccyc dt+= −

 

where F is an interpolation function.  Figure 3.12 illustrates the behavior of this battery 

simulation when using the power demand cycle from the backward-looking powertrain 

model.  Note that PT(t) must always lie between the battery discharge and charge limits 
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Pu(t) and Pl(t), respectively, which can be used to define the battery power constraint 

violation PV: 

 

      )}()(),()(max{ tPtPtPtPP TuTV −−= l      (3.96) 

 

However, this constraint is not enforced when using the power demand cycle from the 

backward-looking powertrain model since it is dominated by a similar constraint for the 

power demand cycle from the forward-looking powertrain model.  In addition, it is 

assumed that overcharging (PT(t) < Pl(t)) is accounted for through a heat-dissipative 

resistor since this behavior is minimal and only occurs at high SOC [Allison (2008)].  

Therefore, PV is only enforced for the discharging limit in the battery simulation when 

using the power demand cycle from the forward-looking powertrain model, which is only 

executed once. 
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Figure 3.12 Battery Power Demand/Capability during Simulation 
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 Finally, after completing the battery power demand simulations, the battery 

charging simulation is performed, which enables the fuel economy of the vehicle to be 

determined.  This simulation takes the final SOC from the battery power demand 

simulation in which R was calculated and is executed until the battery reaches SOCmax at 

the beginning of the battery power demand simulation.  The power demand required from 

the electrical grid to recharge the battery Pc(t) is recorded, which enables the energy 

requirement to be determined as 

 

∫=
rt

cc dttPE
0

)(        (3.97) 

 

where tr is the recharge time.  Observe that Ec is also equivalent to the energy consumed 

during the vehicle range calculation.  Therefore, the gasoline-equivalent fuel economy 

mpge can be approximated as 

 

     
c

e E
Rmpg 810x317.1=       (3.98) 

 

where the coefficient is an energy conversion factor from Joules to equivalent energy in 

gallons of gasoline. 

3.2 Military Electric Vehicle Powertrain Model 

The military electric vehicle was also developed in a MATLAB®/Simulink® environment 

and is a light-tactical vehicle (LTV) based on the High Mobility Multipurpose Wheeled 

Vehicle (HMMWV) platform.  In this dissertation, however, the military electric vehicle 

will be referred to as a LTV instead of a HMMWV since it is well-known that the U.S. 

Army will be replacing the HMMWV with a new generation LTV within the next five 

years [Hodge (2010)].  This new generation LTV is expected to be more fuel-efficient, 

mobile, and survivable than the current design.  Specifically, this vehicle should achieve 

significant range, maneuver well under significant payload and armor, and minimize 
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visual/acoustic signatures in the battlefield as well as warfighter injuries from underbody 

blast.  However, because detailed specifications for such a vehicle are not available, 

comparable specifications for the HMMWV M1025A2 have been used to facilitate the 

design studies in this work [AM General LLC (2009)].  A general plan view of the 

vehicle configuration can be seen in Figure 3.13.  The model is for a four-passenger LTV 

that is designed to eventually support convoy escort and urban assault missions; however, 

it is recognized that with the current state of EV technology that this vehicle might be 

best suited for non-tactical missions, such as base operation.  With a wheelbase of L = 

3.30 m and an overall width of Wo = 2.18 m, this electric LTV still possesses the same 

overall dimensions as the HMMWV.  Similar to the commercial vehicle, the electric LTV 

is powered by a lithium-ion battery ESS which can vary in length, width, and longitudinal 

location relative to the front end of the battery compartment such that it lies within the 

dashed region defined by bl,max = 1.5 m and width bw,max = 1.82 m.  Four electric traction 

motors drive each of the wheels through shaft-mounted gearboxes, and design freedom is 

enabled such that the front motors and gearboxes can be distinct from the rear motors and 

gearboxes.  Finally, each gearbox is connected to a geared hub with a ratio of gh = 1.92, 

and 37 x 12.5 R16.5 LT load range “D” radial tires with low-profile runflat capability are 

used. 
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Figure 3.13 General Plan View of Military EV 

Because much of the military electric vehicle model is a scaled-up version of the 

commercial electric vehicle model, most of the underlying analysis models remain the 

same with respect to their input/output variables.  The exceptions to this are the vehicle 

mass and vehicle-level analysis models, which are redefined as 
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where fltvMass and fltv correspond to the electric LTV mass and LTV-level analysis models, 

respectively.  With the exception of the front and rear gearbox ratios gb,f and gb,r, all of 

the input/output variables for fltvMass are either identical to those for fevMass or have the 
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same meaning as those for fevMass but applied to the front/rear drive systems as 
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Figure 3.14 Military EV Analysis Model Relationships/Problem Decomposition 

 Th rameters 

3.2.1 Electric Traction Motor Analysis Model  

rmediate and output variables 

appropriate.  The same is true when comparing the majority of the input/output variables 

for fltv with those for fv.  The exceptions to this are gb,f and gb,r, the 0-50 mph time t50, the 

battery power constraint violations for the backward-looking and forward-looking 

powertrain models PV and PV50, the vehicle directional stability ds, and the probability of 

failing to meet an underbody blast injury threshold Pfail.  Note that ds and Pfail are 

included in the electric LTV model to address design concerns regarding mobility under 

increased mass and survivability from improvised explosive devices (IEDs).  Figure 3.14 

illustrates the relationships among the analysis models as well as the problem 

decomposition for ATC design optimization. 

 

e remainder of this section highlights the modifications of the pa

within all of the analysis models and describes the more detailed changes within fltvMass 

and fltv. 

All of the parameters and equations for determining the inte

within the electric traction motor analysis model remain the same for the military vehicle 

application with the exception of the stator radius proportionality factor ts.  Because the 

fmotorMass fmotor 

fbattSize fltvMass fltv 

Front Motor Subproblem 

(Subsystem 1) 

Vehicle Subproblem (System) 

fmotorMass fmotor 

Rear Motor Subproblem 

(Subsystem 2) 



motor design is expected to have a larger rotor radius rm, it is also reasonable to expect a 

larger stator radius.  Therefore, the stator radius proportionality factor is increased to ts = 

0.5. 
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3.2.2 Motor Mass Analysis Model  

d equations for determining the intermediate 

        

Similarly, the majority of the parameters an

and output variables within the motor mass analysis model remain the same with the 

exception of the motor lateral center of mass location ym.  This is redefined based on 

vehicle configuration changes as 

 

⎟
⎠
⎞
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22 bwo
Mo

m g
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y l    (3.101) 

 

here Wo = 2.18 m is the overall width of the vehicle and gbwo = 0.1651 m is the outer 

3.2.3 Battery Size Analysis Model  

itary vehicle application remains exactly the 

3.2.4 Electric LTV Mass Analysis Model  

the model parameters listed in Table 

w

width of the gearbox.  Observe that in this calculation, clearances between the motor and 

gearbox and the gearbox and tire are accounted for as well as the tire width.  

The battery size analysis model for the mil

same as in the commercial vehicle application. 

The vehicle configuration in Figure 3.13 along with 

3.4 provide the basis for the electric LTV mass analysis model.  In particular, the model 

parameters are estimated using the HMMWV M1025A2 platform.  Like the EV mass 

analysis model, some of the entries in Table 3.4 are termed “baseline” parameters, which 

indicate that they correspond to a HMMWV M1025A2 vehicle that excludes the mass of 

the (conventional) powertrain and fuel tank.  Therefore, the overall electric LTV mass 

and related properties are computed using these baseline parameters along with the 

remaining model parameters and input variables that account for the mass of the electric 

LTV powertrain (battery, motors, and gearboxes) as well as two occupants (warfighters).  
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ry EV Mass Analysis Model Parameters 

Parameter Description Value 

The inclusion of occupant mass is necessary as the output Pfail from the coupled analysis 

model fltv is most relevant when considering passengers in the vehicle.  Finally, observe 

that all longitudinal positions in the model are measured relative to the front axle, all 

vertical positions are measured relative to the ground, and all lateral positions are 

measured relative to the vehicle centerline. 

Table 3.4 Estimated Values of Milita

mb Bas ss 1930 kg eline LTV ma
lb Baseline L  location 

4 2 

b  Max gth 

b  
l  Distance to front of battery compartment

Gearbox output idler gear radius 

Titaniu ensity 4  

Occupant fore/aft length 

Occupant sitting height 
Occup ation 

W Overall vehicle width 

TV longitudinal com 1.83 m 
hb Baseline LTV vertical com location 0.840 m 
Iyb Baseline LTV pitch inertia 644 kg-m
Izb Baseline LTV yaw inertia 5346 kg-m2 
l,max imum allowable battery len 1.5 m 

bw,max Maximum allowable battery width 1.82 m 
h Battery height 0.11 m 

battc 0.66 m 
hbatt Battery vertical com location 0.485 m 
rgo Gearbox output gear radius 0.0508 m 
rgo,i 0.0254 m 
rgi,i Gearbox input idler gear radius 0.0762 m 
gfw Gear face width 0.0381 m 

3wTi m alloy weight d 4300 N/m
mocc Occupant mass 100 kg 
ol 0.635 m 
ow Occupant width 0.457 m 
oh 1.30 m 
locc ant longitudinal com loc 1.55 m 
yocc Occupant lateral com location 0.67 m 
L Wheelbase 3.30 m 

o 2.18 m 
 

 order to determine the sprung mass ms of the electric LTV, the mass of the 

gearbox

In

es must first be computed.  Figure 3.15 shows a diagram of the gearbox design, 

which is loosely based on a similar, parallel shaft design by Rexnord [Rexnord (2010)].  



Using the information in this figure along with the input variables gb,f and gb,r, the front 

and rear gearbox input gear radii rgi,f and rgi,r can be calculated as: 

 

           fbigifgi grr ,,, /=     (3.102) 

 

           rbigirgi grr ,,, /=      (3.103) 

 

The inner lengths of the front and rear gearboxes gbli,f and gbli,r are therefore 

 

   0254.022 ,,,, ++++= fgiigiigogofib rrrrg l    (3.104) 

 

    0254.022 ,,,, ++++= rgiigiigogorib rrrrg l    (3.105) 

 

where the final term in each equation accounts for clearances between the inside of the 

gearbox and the input/output gears within each gearbox.  The outer lengths of the front 

and rear gearboxes gblo,f and gblo,r are simply  

 

      0127.0,, += fibfob gg ll     (3.106) 

 

      0127.0,, += ribrob gg ll     (3.107) 

 

where the final term in each equation accounts for the thickness of the gearbox frame in 

the longitudinal direction.  Since the gear face width is the same for all gears, the inner 

width of the gearboxes gbwi is 

 

       0381.02 += fwbwi gg     (3.108) 
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where the coefficient for gfw accounts for the idler gear assembly and the last term 

accounts for clearances between the inside of the gearbox and the gears.  The outer width 

of the gearbox gbwo is 

 

       0508.0+= bwibwo gg     (3.109) 

 

where the final term accounts for the thickness of the gearbox frame in the lateral 

direction.  Note that the thickness of the gearbox in this direction is made significantly 

larger in order to address the requirements for shaft-mounting.  Also, observe that the 

value of gbwo in Equation (3.109) is consistent with what is used in the motor mass 

analysis model.  Because the inner heights of the front and rear gearboxes gbhi,f and gbhi,r 

depend on how large rgi,i is relative to the input gear radii, the following expressions are 

used: 

 

        0254.0},max{2 ,,, += fgiigifbhi rrg    (3.110) 

 

         0254.0},max{2 ,,, += rgiigirbhi rrg    (3.111) 

 

Again, the final term in each equation accounts for clearances between the inside of the 

gearboxes and either rgi,i or the input gear radius.  The outer heights of the front and rear 

gearboxes gbho,f and gbho,r are 

 

     0127.0,, += fbhifbho gg     (3.112) 

 

      0127.0,, += rbhirbho gg     (3.113) 

 

where the final term in each equation denotes the thickness of the gearbox frame in the 

vertical direction.  Finally, the mass of front and rear gearboxes mgb,f and mgb,r (assuming 

negligible shaft mass) are computed as 
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where ag = 9.81 is the gravitational acceleration in m/s2. 
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Figure 3.15 Diagram of Parallel Shaft Gearbox 

Using these results, the sprung mass ms of the electric LTV can be expressed as 

the sum of the baseline, battery, motor, gearbox, and occupant masses: 

 

    )(2 ,,,, occrgbfgbrmfmbattbs mmmmmmmm ++++++=   (3.116) 

 

The longitudinal center of mass location l1 associated with ms is 
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where the respective longitudinal center of mass locations for the battery, front/rear 

motors, and front/rear gearboxes are determined from the following: 

 

    2/lll bxbattbattcbatt ++=     (3.118) 

 

  fgiigiigogofm rrrr ,,,, +++=l     (3.119) 

 

         )( ,,,, rgiigiigogorm rrrrL +++−=l    (3.120) 
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Similarly, the vertical center of mass location h associated with ms is 
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where the respective vertical center of mass locations for the front/rear motors, front/rear 

gearboxes, and occupants are determined from the following: 
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         43.02/ += hocc oh     (3.126) 

 

In Equations (3.124)-(3.125), observe that the vertical center of mass locations are 

dependent on the relative sizes of the motors and gearboxes.  Also, note that the final 

term in each of the above equations accounts for ground clearance. 

 The electric LTV pitch and yaw moments of inertia are calculated in the same 

manner as those in the EV mass analysis model.  In particular, the corresponding 

moments of inertia are computed for the baseline LTV, battery, motors, gearboxes, and 

occupants about the electric LTV center of mass and then combined together to obtain 

aggregate pitch and yaw moments of inertia.  Therefore, Iyb,com, Izb,com, Iybatt,com, and 

Izbatt,com are determined exactly as given in Equations (3.53)-(3.54) and Equations (3.57)-

(3.60), while Iym,f,com, Iym,r,com, Izm,f,com, and Izm,r,com are determined by applying Equations 

(3.61)-(3.62) to the front and rear motors as appropriate.  The only new moments of 

inertia are for the gearboxes and occupants, which require intermediate calculations of 

their moments of inertia about their own respective centers of mass.  Because the 

gearboxes are rectangular, the pitch and yaw moments of inertia for the front and rear 

gearboxes are given by: 

 

           ( )22
,, 12

1
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This leads to the following moments of inertia for the front and rear gearboxes about the 

electric LTV center of mass: 

 

        ( ) ( )( )2
,

2
1,,,,, hhmII fgbfgbfgbfygbcomfygb −+−+= ll   (3.131) 

 

         ( ) ( )( )2
,

2
1,,,,, hhmII rgbrgbrgbrygbcomrygb −+−+= ll   (3.132) 

 

 ( )( )22
1,,,,, gbfgbfgbfzgbcomfzgb ymII +−+= ll    (3.133) 

 

  ( )( )22
1,,,,, gbrgbrgbrzgbcomrzgb ymII +−+= ll    (3.134) 

 

The yaw moments of inertia for the gearboxes about the electric LTV center of mass 

require knowledge of their lateral center of mass location ygb, which is computed as 
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where the last term accounts for the tire width and the clearance between the tire and 

gearbox due to the half-shaft.  Similarly, it is assumed that the occupants can be 

approximated through rectangular geometry when seated in the vehicle.  Therefore, the 

pitch and yaw moments of inertia for the occupants are: 

 

     ( )22

12
1

hoccyocc oomI += l     (3.136) 

 

     ( )22

12
1

wocczocc oomI += l     (3.137) 

 

77 

 



Applying the parallel-axis theorem, the pitch and yaw moments of inertia for the 

occupants about the electric LTV center of mass are: 

 

( ) ( )( )22
1, hhmII occoccoccyocccomyocc −+−+= ll   (3.138) 

 

     ( )( )22
1, occoccocczocccomzocc ymII +−+= ll    (3.139) 

 

Finally, the electric LTV pitch and yaw moments of inertia can be computed as: 

 

)(2 ,,,,,,,,,,, comyocccomrygbcomfygbcomrymcomfymcomybattcomyby IIIIIIII ++++++=  (3.140) 

 

)(2 ,,,,,,,,,,, comzocccomrzgbcomfzgbcomrzmcomfzmcomzbattcomzbz IIIIIIII ++++++=  (3.141) 

 

The last two outputs of the electric LTV mass analysis model are the battery packaging 

constraint violations bw,V and bl,V, which are already given by Equations (3.65)-(3.66). 

3.2.5 LTV-Level Analysis Model  

The LTV-level analysis model is very similar to the vehicle-level analysis model for the 

commercial vehicle application in that it uses two powertrain simulations followed by 

two battery simulations to estimate vehicle range, acceleration performance, and energy 

efficiency for the LTV.  However, in addition to facilitating the calculation of constraints 

related to motor torque and speed capability along with battery power capability and cost, 

the model also enables the computation of constraints related to directional stability and 

the probability of failing to meet an underbody blast injury threshold.  Although many of 

the powertrain simulation modifications from the commercial vehicle application are 

merely size related, several configuration changes have been made for the military 

vehicle.  These adjustments are discussed in detail in the following subsections, along 

with the calculations for new analysis model outputs ds and Pfail.  Since the battery 
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simulations remain exactly the same, they are excluded from the discussion in these 

subsections. 

3.2.5.1 Powertrain Models 

The powertrain simulations have been developed in Simulink® again and consist of 

several submodels that are linked together in both backward-looking and forward-looking 

models, respectively.  Recall that the backward-looking model uses a prescribed drive 

cycle along with analysis model input variables and parameters to predict motor torque, 

speed, and power requirements at each simulation time step.  Front and rear motor 

constraint violations can then be evaluated by using these requirements and applying 

Equations (3.67)-(3.68) as appropriate.  The combined motor power requirements, 

however, are passed as inputs to the battery power demand simulation to facilitate the 

vehicle range estimation.  The forward-looking model uses the same submodels, input 

variables, and parameters but instead predicts the 0-50 mph acceleration time t50 by 

linearly increasing the velocity of the vehicle from zero at t = 0 to 50 mph (22.2 m/s). 

Figure 3.16 shows a block diagram of the backward-looking powertrain model, 

which includes the input drive cycle.  The drive cycle selected for the military EV 

powertrain design studies is a standard, convoy escort cycle that the HMMWV is tested 

on currently.  Because of the sensitive nature of this information, the drive cycle is not 

shown in this dissertation; however, it is noted that it covers a range of 42 miles (67.2 

km) in approximately 1.14 hours (4100 seconds) with an average speed of 37 mph (16.4 

m/s). 

Since the same submodels are used in the forward-looking powertrain model, the 

block diagram of this simulation is excluded.  However, both simulations use the same 

model parameters as listed in Table 3.5.  The remainder of this section describes each 

submodel for both simulations along with any associated assumptions. 
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Figure 3.16 Block Diagram of Powertrain Simulation Submodels for Military EV 
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Table 3.5 Estimated Values of Powertrain Model Parameters for Military EV 

Parameter Description Value 
mus Unsprung mass 440 kg 
ζ Damping ratio per wheel 83500 N-s/m 
ks Suspension stiffness per wheel 16000 N/m 
L Wheelbase 3.30 m 
Cd Drag coefficient 0.70 
Af Frontal area 3.58 m2 
ρa Air density 1.10 kg/m3 
gh Geared hub ratio 1.92 
rgo Gearbox output gear radius 0.0508 m 
rgo,i Gearbox output idler gear radius 0.0254 m 
rgi,i Gearbox input idler gear radius 0.0762 m 
Iyt Tire/wheel assembly spin inertia per axle 14.22 kg-m2 
Cr Tire rolling resistance 0.01 
rt Tire radius 0.470 m 

Pacc Accessory power load 11200 W 
 

3.2.5.1.1 Aerodynamic Drag Submodel 

The aerodynamic drag force on the electric LTV is given by the same equation (Equation 

(3.69)) that was used for the commercial EV. 

3.2.5.1.2 Tractive Force Submodel 

The tractive force of the electric LTV, which is now denoted as Fm(t), is also given by the 

same equation (Equation (3.70)) that was used for the commercial EV.  Note that the 

difference in the use of notation is to reflect the fact that the tractive force must be 

provided by all motors, not just the rear motors. 

3.2.5.1.3 Front/Rear Drive Torque Submodel 

Assuming the tractive force is split evenly among the front and rear motors, the drive 

torque for the front or rear motors can be calculated by modifying Equation (3.71) as: 
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Observe that for the electric LTV model, rt is assumed to be constant as there is no 

readily available data for the development of a dynamically-loaded tire radius model.  

This simplification is expected to have a minor impact on the quality of the powertrain 

models. 

3.2.5.1.4 Net Longitudinal Force Submodels 

Similarly, the net longitudinal forces on both the front and rear tires is found by slightly 

modifying Equation (3.73) and applying it as appropriate: 
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These quantities are used as inputs to the front and rear tire slip models, respectively. 

3.2.5.1.5 Vehicle Pitch Submodel 

With the exception of the normalized pitch moment Mp(t)/Iy, the vehicle pitch submodel 

remains exactly the same as in the commercial EV model.  This quantity is modified as: 

 

   ( )( ) yrxfxyp ItzhtFtFItM /)()()(/)( ++=    (3.145) 

 

Also, because the suspension damping coefficient cs could not determined directly, it was 

assumed that the suspension was lightly-damped and that its damping coefficient could 

be obtained using basic dynamic systems analysis: 

 

            sss mkc ς2=     (3.146) 

 

82 

 



3.2.5.1.6 Tire Drag Submodel 

The tire drag forces are calculated in the same manner as in Equations (3.78)-(3.79) with 

the exception that rt is constant. 

3.2.5.1.7 Tire Slip Submodels 

The front and rear tire slip submodels apply Equation (3.81) as appropriate to predict the 

front and rear tire angular velocities as a function of the tire slip.  Since the tires used for 

the electric LTV are different than those used for the commercial EV, a new slip lookup 

table has been developed for these submodels.  Figure 3.17 displays the data for this 

lookup table, which is based on an analytical model cited in [Ersal et al. (2009)].  

Because of the properties of this model, only slip data between -0.25 and 0.25 could be 

recorded, which is sufficient for the design studies in this dissertation. 
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Figure 3.17 Tire Slip Data for Military EV 
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3.2.5.1.8 Gearbox Submodels 

After passing τ(t), ωf(t), and ωr(t) through the geared hubs, the net torque and speed 

requirements for the front and rear motors are determined through the gearbox 

submodels.  These submodels, which have been discussed in the electric LTV mass 

analysis model, are similar to the belt drive submodels for the commercial EV in that 

power transmission is idealized to be 100%.  Therefore, net torque and speed 

requirements for the front and rear motors are given by: 
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3.2.5.1.9 Motor Inertia Submodels 

Finally, Equation (3.85) is reapplied to the front and rear motors as appropriate to 

determine the torque requirements for a single front and rear motor.  Like the powertrain 

simulations for the commercial EV, these torque requirements along with ωm,f(t) and 

ωm,r(t) are used to interpolate the motor power requirements Pf(t) and Pr(t) from zpLoss,f 

and zpLoss,r. 

3.2.5.2 Vehicle Range, Battery Power Constraint Violations, and Fuel Economy 

84 

 

The vehicle range, battery power constraint violations, and fuel economy for the electric 

LTV are computed in nearly the same manner as described by Equations (3.95)-(3.98) for 



the commercial EV.  Specifically, the battery power demand simulation takes the total 

system power requirements PT(t) = Pf(t) + Pr(t) + Pacc from the backward-looking 

powertrain model and determines the vehicle range R through the number of times this 

power demand cycle can be repeated until reaching either the battery discharge limit Pu(t) 

or SOCmin.  However, unlike the commercial EV, a battery power constraint violation PV 

for the backward-looking powertrain model is calculated as the battery often risks 

significant overcharging during the repeated power demand cycles.  To account for the 

high SOC at the beginning of this simulation, the violation of the battery charge limit 

Pl(t) is relaxed with the assumption that the excess energy is absorbed by a heat-

dissipative resistor.  The battery power constraint violation for the backward-looking 

powertrain model is therefore 

 

         )}()10000)((),()(max{ tPtPtPtPP TuTV −−−= l   (3.151) 

 

The same battery simulation is performed again using PT(t) from the forward-looking 

powertrain model to calculate the associated battery power constraint violation PV50 as 

given by Equation (3.96).  Note that this simulation is only executed for a single power 

demand cycle since no vehicle range calculations are associated with the forward-looking 

powertrain model.  Finally, the battery charging simulation uses the final SOC from the 

battery power demand simulation for the backward-looking powertrain model to 

determine the energy consumption Ec over R.  The gasoline-equivalent fuel economy 

mpge is then computed according to Equation (3.98). 

3.2.5.3 Vehicle Directional Stability and Probability of Injury Threshold Failure 

The vehicle directional stability ds is actually calculated through an analysis submodel 

within the LTV-level analysis model.  Given prescribed loading conditions, tire stiffness 

properties, and a desired, maximum stable vehicle speed, this analysis submodel predicts 

whether the vehicle would remain directionally stable (i.e., not risk spinning out) at the 

desired maximum stable speed.  Although ds could be evaluated as a separate entity in 

some cases, it is intentionally incorporated within fltv because it is a vehicle-level quantity 
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and some of its critical parameters are a function of Ffz(t) and Frz(t) from the backward-

looking powertrain model.  The electric LTV directional stability analysis submodel fdsLTV 

takes the sprung mass ms, longitudinal center of mass location l1, and the average front 

and rear tire normal forces Ffz,avg and Frz,avg and computes ds based on a model in [Wong 

(2001)]: 

 

         ),,,( ,,1 avgrzavgfzsdsLTVs FFmfd l=    (3.152) 

 

The first step is to calculate the weight of the vehicle wv and its distribution on the front 

and rear tires wv,f and wv,r: 
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In the above, ag = 9.81 is the gravitational acceleration constant in m/s2.  From here, the 

front and rear tire cornering stiffnesses Cα,f and Cα,r are evaluated based on a lateral tire 

slip model for a similar application cited in [Ersal et al. (2009)]: 
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Note that αn = 0.5 is the saturation condition for lateral tire slip and that Cα,f and Cα,r are 

expressed in N/rad.  This enables the understeer coefficient Kus to be computed, which 

indirectly determines the stability of the vehicle: 
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Finally, the directional stability of the vehicle is given by 
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where vmax = 70 mph (31.3 m/s) is the desired maximum stable speed of the electric LTV 

based on the maximum speed of the HMMWV.  Observe that directional stability of the 

electric LTV is guaranteed as long as ds ≥ 0.  This always occurs when Kus ≥ 0 regardless 

of the vehicle speed.  In particular, when Kus > 0, the electric LTV is understeer, which 

means that the steering system response is less than the steering input.  This is the 

condition under which most vehicles are designed.  When Kus = 0, the electric LTV is 

neutral steer, which means that the steering system response matches the steering input 

exactly.  When Kus < 0, the electric LTV is oversteer, which means that the steering 

system response is greater than the steering input.  This often occurs in larger vehicles 

that transport heavy loads such as trucks and tractor-trailers.  Under this condition, 

directional stability is speed-dependent, with the limit being vmax when ds = 0. 

 The final output of the LTV-level analysis model is the probability of failure to 

meet injury thresholds for underbody blast due to IEDs.  This is a critical quantity to 

design for as one of the leading causes of death for U.S. warfighters is from IEDs while 

operating LTVs.  Even when such explosions are not fatal, they often leave warfighters 

severely injured or maimed.  Therefore, the U.S. Army has set design targets that require 

current LTVs to protect against a 10% chance of severe injury on the abbreviated injury 

scale (AIS) for the neck, lumbar/spine, and tibia of occupants.  These thresholds are 
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usually met for heavy vehicles such as up-armored HMMWVs, but the weight of these 

vehicles can also significantly limit their mobility in terms of range and acceleration 

performance.  Conversely, lighter vehicles such as the electric LTV in this dissertation 

are more mobile but run a greater risk of failing to satisfy the injury thresholds.  A metric 

has therefore been developed to address this tradeoff between the probability of failing to 

satisfy the injury thresholds and mobility: 
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Note that mobility is reflected in this equation through the total vehicle mass mT = ms + 

mus, which is ultimately dependent on ms. 

3.3 Summary 

This chapter went into exhaustive detail describing two electric vehicle models for 

commercial and military applications, respectively.  Specifically, the manner in which the 

input/output variables are calculated for each of the underlying analysis models in both 

applications was discussed in depth.  Such detail is necessary for a thorough 

understanding of the design studies that will be performed later in this dissertation.  

Although the initial commercial EV model was developed by Allison, several corrections 

and modifications were made to improve the quality of the model as well as its relevance 

to the current design studies.  These improvements facilitated the development of the 

military EV model, which is largely a scaled-up version of the commercial EV model.  

Both models will provide the basis for the design studies in Chapters 4-7 that make use of 

POD, AVASIM, and constraint management approaches for the coupled, functional data 

in decomposition-based design optimization. 
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Chapter 4  
 

Commercial Electric Vehicle Design Optimization 

In Chapter 1, it was mentioned that recent work involving the decomposition-based 

design optimization of an EV powertrain identified POD as an attractive reduced 

representation method for coupled, functional data variables.  This was because it utilized 

data samples exclusively to generate a functional form of its approximation model, 

required limited assumptions regarding the number of reduced representation variables 

(POD coefficients), and used a relatively small number of such variables for 

approximations [Alexander et al. (2010a)].  However, it was also acknowledged that 

there was a need to further explore the effect of the cumulative percentage variation 

(CPV) on the resulting performance of the ATC optimization strategy. 

Recall that the CPV is a tuning parameter within POD that controls both the 

amount of information captured by the approximation as well as the number of POD 

coefficients necessary for the reduced representation.  It is well known that as the CPV is 

reduced, less information (or accuracy) is required for the approximation and hence fewer 

POD coefficients are needed for the model.  Nevertheless, it is uncertain how these 

adjustments would affect a decomposition-based optimization strategy like ATC.  While 

it is hypothesized that reducing the CPV would accelerate ATC convergence via fewer 

decision variables, it is not clear whether this would provide an inaccurate or suboptimal 

design solution given the fact that ATC would enforce some degree of accuracy on the 

VVCVs via an updated, weighted penalty function.  The current literature, including the 

closely-related work by LeGresley and Alonso [LeGresley and Alonso (2004)], does not 

explore this problem for any decomposition-based optimization strategy.  This chapter, 

therefore, investigates this issue by constructing POD representations for three CPV 



values, implementing them in ATC, and observing their impact on the optimal design 

solutions.  Also, to facilitate comparisons among the three sets of POD representations, 

an all-in-one (AiO) optimization problem formulation and solution for the commercial 

EV powertrain model is introduced at the beginning of this chapter. 

4.1 AiO Problem Formulation and Solution 

The AiO problem formulation uses the same analysis models as those described in 

Equations (3.1)-(3.5) for the commercial EV with the exception that the electric traction 

motor analysis model fmotor is integrated as a sub-analysis model within the vehicle-level 

analysis model fv.  This was necessary because in the AiO problem, the motor design is 

not considered separately; instead, all of the key design components of the EV 

powertrain—the battery, belt-drive system, and motors—are considered simultaneously.  

Therefore, Equation (3.5) is modified as  

 

        ),,,,,,,,,,,,(],,,,,,[ 160 rcmsrysbattLWIvbVVVe RnrphImmBBBCPRtmpg llf=ωτ   (4.1) 

 

where the input variables to fmotor are now shared with fv.  Figure 4.1 illustrates the 

relationships among the remaining analysis models that were described in Chapter 3 for 

the commercial EV powertrain, with the dashed box indicating that all analysis models 

are integrated into a single optimization problem formulation. 
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AiO Optimization Problem 

fevMass fv fbattSize 

fmotorMass 

 

Figure 4.1 Analysis Model Relationships for Commercial EV AiO Problem 

 The objective of the AiO problem formulation is to maximize the gasoline-

equivalent fuel economy of the commercial EV while satisfying constraints related to 

battery packaging, performance, motor feasibility, vehicle range, power availability, and 

battery capacity: 
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In the above, g1 and g2 are battery packaging constraints, g3 is a performance (0-60 mph 

acceleration time) constraint, g4 and g5 are motor feasibility constraints, g6 is a vehicle 

range constraint, g7 is a power availability constraint, and g8 is a battery capacity 

constraint.  Note that appropriate bound constraints are included for the decision 

variables in x.  Due to the presence of non-smoothness in the optimization problem, a 
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derivative-free optimization software package known as NOMADm [Abramson (2007)] 
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 from the AiO problem formulation are shown in Table 4.1.  It should 

BI BW BL xbatt pr ls rm nc Rr 

was used to solve the problem.  This optimizer is based on mesh-adaptive search 

algorithms and was developed and implemented in a MATLAB® environment.  Finally, in 

solving the AiO optimization problem, observe that the default settings for NOMADm 

were appropriate. 

 The results

be noted that the only active constraints in this problem were the lower bound on BI, the 

performance constraint g3, and the vehicle range constraint g6; these were limited to BI = 

0.70, t60max = 10 s, and Rmin = 100 miles, respectively.  Such behavior is expected given 

the objective of energy efficiency for the commercial EV.  Specifically, maximizing the 

gasoline-equivalent fuel economy of the vehicle compromises its ability to achieve 

superior performance and range capability.  Additionally, the aggressive power 

requirements for a reasonable 0-60 mph acceleration time are related to the battery 

design, which requires large electrode surface areas and a thin separator for high-power 

applications.  Finally, observe that the design solution suggests the use of 43 kW motors 

(Figure 4.2) to propel a 1080 kg vehicle, with approximately 11.9% (128 kg) of the mass 

associated with the battery.  These design conditions indicate that the commercial EV 

could achieve a gasoline-equivalent fuel economy of nearly mpge = 195 mpg. 

Table 4.1 Optimal Decision Vector for Commercial EV AiO Problem 

0.70 1.10 19.75 2 0.096 0.124 20.85 0.052 0.10 .91
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Figure 4.2 Optimal Motor Map, Commercial EV AiO Problem 

4.2 POD Representations and Accuracy Assessment 

In preparation for the ATC problem formulation, POD representations were developed a 

priori to approximate the VVCVs associated with the maximum and minimum motor 

torque curves and power loss map: 

 

        maxmaxrmaxpmax zzΦz +≈ ,,         (4.3) 

 

         minminrminpmin zzΦz +≈ ,,         (4.4) 

 

    pLosspLossrpLossppLoss zzΦz +≈ ,,        (4.5) 

 

From the discussion on POD in Chapter 2, it is known that the reduced basis function 

matrices Φp,max, Φp,min, and Φp,pLoss were constructed using column-wise functional data 

samples in Zmax, Zmin, and ZpLoss, respectively.  The functional data samples themselves 

were generated through a Latin hypercube sample (LHS) design of experiments 
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consisting of m = 500 motor map samples from fmotor.  An intermediate, yet critical, part 

of the sampling process was the interpolation of all sampled motor maps onto a 

prescribed, standard torque-speed mesh.  This was necessary as the motor maps produced 

by fmotor use different torque-speed meshes for different values of the input variables to 

fmotor.  The use of a standard mesh would facilitate both ATC consistency evaluations and 

POD accuracy assessment through error metrics such as RMSE and/or AVASIM.  

Additionally, a standard mesh would eliminate the need to develop POD representations 

for the independent variables associated with the functional data discretizations since the 

mesh region would be the same for all motor maps regardless of their corresponding 

motor design. 

 Because the primary motivation for establishing a standard mesh was effective 

ATC consistency evaluations, the torque-speed mesh region was loosely based on the 

motor maps at the initial decision vector  and the optimal decision vector  from 

the AiO optimization problem.  It is recognized that such a heuristic for setting the 

standard mesh region would either truncate or extrapolate the functional data for some of 

the sampled motor maps; however, these samples capture the entire motor design space, 

and it is more important to accurately capture the motor maps along the expected search 

direction of the optimizer since this would directly impact solution accuracy.  Therefore, 

it was reasonable to set the standard mesh region using this heuristic given the fact that 

the ATC problem formulation begins at  and is expected to converge to  as c 

converges to 0.  Finally, the number of torque and speed mesh points np,τ and np,ω 

specified for the standard mesh were identical to the number of torque and speed mesh 

points used for the original motor maps produced by fmotor.  Hence, the standard mesh 

used for the sampled motor maps was defined as  

AiO
0x

AiO
0x

AiO
∗x

AiO
∗x

 

     ( ) 811,1
1

730315
,

L=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
+−= ii

n p

mesh
i

τ

τ        (4.6) 

 

            ( ) 411,1
1

800

,

L=−
−

= ii
n p

mesh
i

ω

ω        (4.7) 

94 

 



95 

 

 

where np,τ = 81 and np,ω = 41. 

 Based on the definition of the standard mesh, the number of discretized points in 

zmax, zmin, and zpLoss were qmax = 41, qmin = 41, and qpLoss = 3321, respectively.  Since qmax 

= qmin << m, the direct method outlined in Equations (2.6)-(2.9) was used to develop the 

POD representations for the maximum and minimum motor torque curves.  Conversely, 

the method of snapshots described in Equations (2.10)-(2.12) was used to develop the 

POD representation for the motor power loss map since qpLoss >> m.  Table 4.2 lists the 

number of POD coefficients (and hence reduced representation variables) required for 

three distinct values of CPVgoal: 99.99%, 99.95%, and 99.85%.  These values were 

selected partially based on the literature, which suggests that CPVgoal ≥ 99% [Bui-Thanh 

et al. (2004)], and partially based on the development of a meaningful study that would 

demonstrate significant differences in the number of POD coefficients for each case 

while satisfying accuracy requirements per the liberal validity criterion in AVASIM for 

an independent (non-sample) set of motor maps.  In each case, it is evident that the 

combined dimensionality Q of the VVCVs was dramatically reduced from Q = qmax + 

qmin + qpLoss = 3403 to Q = pmax + pmin + ppLoss = 116, Q = 77, and Q = 58, respectively 

[Alexander et al. (2010c)].  Note that although different values of CPVgoal were used, the 

computational effort (excluding motor map sample generation) remained nearly the same 

(approximately 0.97 s) in constructing each model. 

Table 4.2 Number of POD Coefficients for Distinct CPVgoal Values 

POD Coefficient Vector
CPVgoal 

99.99% 99.95% 99.85% 
zr,max 14 9 7 
zr,min 13 9 7 

zr,pLoss 89 59 44 
  

 The accuracy of the POD representations for each value of CPVgoal was quantified 

through AVASIM.  In particular, both 1D and 2D formulations were applied as 

appropriate using a uniform tolerance of toli = 0.10 to assess the accuracy of the torque 
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curves and power loss map produced by the POD representations against the optimal 

torque curves and power loss map produced by fmotor from the AiO optimization problem.  

Note that like the demonstration in Chapter 2, all phase threshold coefficients were set to 

zero, and division-by-zero errors were avoided by setting δ = 10-4 for the torque curves 

and δ = 1 for the power loss map based on experience.  Also, observe that selecting the 

AiO optimal motor map as the basis for comparison was reasonable given the fact that it 

is most desirable to have high motor map accuracy at the design solution.  Finally, Tables 

4.3-4.5 show the results from AVASIM, which are supplemented by visual comparisons 

in Figures 4.3-4.8.  Using this information, it is evident that the most accurate POD 

representation for this work occurs at CPVgoal = 99.99% [Alexander et al. (2010c)]. 

Table 4.3 AVASIM Results for POD, CPVgoal = 99.99% 

Index Max-Torque Min-Torque Power Loss 
Elocal 0.951 0.979 0.686 
Eglobal 0.976 0.979 0.932 
Ecomb 0.964 0.979 0.809 

 

Table 4.4 AVASIM Results for POD, CPVgoal = 99.95% 

Index Max-Torque Min-Torque Power Loss 
Elocal 0.920 0.967 0.399 
Eglobal 0.940 0.958 0.862 
Ecomb 0.930 0.963 0.630 

 
Table 4.5 AVASIM Results for POD, CPVgoal = 99.85% 

Index Max-Torque Min-Torque Power Loss 
Elocal 0.772 0.934 0.039 
Eglobal 0.899 0.928 0.830 
Ecomb 0.836 0.931 0.435 
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Figure 4.3 Torque Curve Comparison at CPVgoal = 99.99% 
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Figure 4.4 Power Loss Map Relative Error at CPVgoal = 99.99% 
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Figure 4.5 Torque Curve Comparison at CPVgoal = 99.95% 
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Figure 4.6 Power Loss Map Relative Error at CPVgoal = 99.95% 
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Figure 4.7 Torque Curve Comparison at CPVgoal = 99.85% 
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Figure 4.8 Power Loss Map Relative Error at CPVgoal = 99.85% 

99 

 



4.3 ATC Problem Formulation and Solutions 

The ATC problem formulation for the commercial EV consists of a two-level hierarchical 

decomposition based on Figure 3.2.  In this study, the objective of the vehicle 

subproblem is to maximize the gasoline-equivalent fuel economy while minimizing the 

AL penalty function, whereas the objective of the motor subproblem is to minimize the 

AL penalty function exclusively.  Recall that these penalty functions ensure consistency, 

or agreement, among the coupled quantities from the vehicle and motor subproblems.  

Although both subproblems are subject to decision variable bound constraints, only the 

vehicle subproblem contains additional constraints based on battery packaging, 

performance, motor feasibility, vehicle range, power availability, and battery capacity. 

 Applying Equation (2.2) directly, the vehicle subproblem P11, excluding decision 

variable bound constraints, is formulated as 
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where the constraints g11,1-g11,8 are identical to the constraints g1-g8 from the AiO 

problem formulation.  The vectors zcomb = [zmax, zmin, zpLoss] and zr,comb = [zr,max, zr,min, 

zr,pLoss] refer to the combined vector of original VVCVs and the combined vector of 

reduced representation variables, which are POD coefficients.  Additionally, the vectors 

t22 and r22 include six scalar-valued coupling variables: ωmax, m
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m, Jr, Iym, Izm, and ym.  

Finally, the superscripts T and R denote target and response versions of the same 



coupling variable, respectively.  The motor subproblem P22, excluding decision variable 

bound constraints, is formulated in a similar manner as: 
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 Recent work [Alexander et al. (2010a)] indicated that the assumption that only 

bound constraints were necessary for the reduced representation variables was incorrect; 

instead, the model validity region (and hence decision space) defined by these variables 

was highly-nonlinear.  As mentioned in Chapter 1, such an erroneous assumption initially 

resulted in powertrain simulation failures at decision vectors selected outside the model 

validity region.  Because it was challenging to formulate explicit constraints for these 

abstract variables, a penalty value-based heuristic [Alexander et al. (2010a); Alexander et 

al. (2010b)] was developed through a MATLAB® “try-catch” statement to help keep the 

optimizer within the model validity region.  NOMADm was selected as the optimizer 

again in order to facilitate consistent results with the AiO problem formulation and to 

effectively implement the penalty value-based heuristic.  In the P11 subproblem, the 

default settings for NOMADm were adjusted such that only a Latin hypercube search 

was performed and 1,000 function evaluations were permitted.  This was necessary to 

alleviate computational issues associated with memory availability.  However, in the P22 

subproblem, the default settings for NOMADm were appropriate.  Finally, in the ATC 

coordination strategy, the weight update parameter was set to β = 2.75, the initial weight 

vectors were set to v = 0 and w = 1, and the tolerance on ||c(Κ) - c(Κ−1)||∞ for outer loop 

convergence was set to 10-2.  Note that all computational work was performed on a 3 

GHz, 4 MB RAM, Intel® CoreTM 2 Duo CPU. 
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4.3.1 ATC-AL-POD at CPVgoal = 99.99% 

In Tables 4.6-4.8, the ATC optimization results using the POD representations at CPVgoal 

= 99.99% are shown.  The algorithm converged after 12 ATC iterations with a runtime of 

approximately 10.72 hours and resulted in a system solution that was reasonably 

consistent between both subproblems.  The only active constraints were the upper bound 

on ωmax
T, the performance constraint g11,3, and the battery capacity constraint g11,8 in the 

P11 subproblem; these were limited to ωmax
T = 755 rad/s, t60max = 10 s, and Cbmax = 200 

Ah, respectively.  Note that the battery capacity limit is meaningful as it is used indirectly 

to avoid excessive battery cost.  The optimal values of the POD coefficients are not listed 

here as they are too numerous and not physically meaningful; however, the optimal motor 

map computed by these reduced representation variables is shown in Figure 4.9.  Finally, 

the total mass of the vehicle was 1111 kg, with approximately 14.3% (158 kg) of the 

mass associated with the battery.  Under these design conditions, the commercial EV is 

expected to have a gasoline-equivalent fuel economy of mpge = 184 mpg and a range of R 

= 134 miles. 

Table 4.6 Optimal Decision Vector for P11 Subproblem, CPVgoal = 99.99% 

BI BW BL xbatt pr ωmax
T mm

T Jr
T Iym

T Izm
T ym

T 
0.74 1.43 19.75 0.25 3.13 755 40.39 0.28 1.12 1.20 0.39 

 
Table 4.7 Optimal Decision Vector for P22 Subproblem, CPVgoal = 99.99% 

ls rm nc Rr 
0.098 0.123 17.62 0.053
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Table 4.8 Optimal Consistency Constraint Vector/Weights, CPVgoal = 99.99% 

Consistency Constraint copt vopt wopt 
cz,max 0.45 6.37 x 108 6.80 x 104 
cz,min 0.41 5.82 x 108 6.80 x 104 

cz,pLoss 0.73 1.01 x 109 6.80 x 104 
cωmax 0 0 6.80 x 104 
cmm -0.46 -6.53 x 108 6.80 x 104 
cJr 0 1.51 x 106 6.80 x 104 
cIym 0 5.93 x 106 6.80 x 104 
cIzm -0.02 -3.21 x 107 6.80 x 104 
cym 0 3.67 x 106 6.80 x 104 

 

 

Figure 4.9 Optimal Motor Map, CPVgoal = 99.99% 

4.3.2 ATC-AL-POD at CPVgoal = 99.95% 

Similarly, in Tables 4.9-4.11, the ATC optimization results using the POD 

representations at CPVgoal = 99.95% are shown.  The algorithm converged after 18 ATC 

iterations with a runtime of approximately 16.81 hours and resulted in a system solution 

that was reasonably consistent between both subproblems.  Again, the only active 

constraints were the upper bound on ωmax
T , the performance constraint g11,3, and the 
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11 , CPVgoal = 99.95% 

BI BW L batt r

battery capacity constraint g11,8 in the P11 subproblem; these were limited to ωmax
T = 755 

rad/s, t60max = 10 s, and Cbmax = 200 Ah, respectively.  The optimal motor map computed 

by the POD coefficients is shown in Figure 4.10.  Finally, the total mass of the vehicle 

was 1111 kg, with approximately 14.3% (158 kg) of the mass associated with the battery.  

Under these design conditions, the EV is expected to have a gasoline-equivalent fuel 

economy of mpge = 180 mpg and a range of R = 132 miles. 

Table 4.9 Optimal Decision Vector for P  Subproblem

 B  x  p  ωmax
T mm

T Jr
T Iym

T Izm
T ym

T 
0  1  3.13 55 4 0.28 1.12 1.20 0.39 .74 1.43 9.75 0.05 7  0.39

 
Table 4.10 Optimal Decision Vector for P22 Subproblem, CPVgoal = 99.95% 

s m c rl  r  n  R  
0.104 0.121 17.08 0.057

 

Table 4.11 Optimal Consistency Constraint Vector/Weights, CPVgoal = 99.95% 

opt opt optConsistency Constraint c  v  w  
cz,max 0.76 3.09 x 1014 2.94 x 107 
cz,min 0.74 3.17 x 1014 

14
2.94 x 107 

7c

-1.42 -2.95 x 101  

-

z,pLoss 1.59 4.49 x 10  2.94 x 10  
7cωmax 

 
0 0 

4
2.94 x 10  

cmm 2.94 x 107 
7cJr 0 

0.01 
1.35 x 1012 

1
2.94 x 10  

7cIym 5.37 x 10 2 
13

2.94 x 10  
7cIzm -0.07 1.54 x 10  

12
2.94 x 10  

7cym 0.01 1.92 x 10  2.94 x 10  
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Figure 4.10 Optimal Motor Map, CPVgoal = 99.95% 

4.3.3 ATC-AL-POD at CPVgoal = 99.85% 

Finally, in Tables 4.12-4.14, the ATC optimization results using the POD representations 

at CPVgoal = 99.85% are shown.  The algorithm converged after 66 ATC iterations with a 

runtime of approximately 59.41 hours and resulted in a system solution that was 

reasonably consistent between both subproblems.  Once again, the only active constraints 

were the upper bound on ωmax
T, the performance constraint g11,3, and the battery capacity 

constraint g11,8 in the P11 subproblem; these were limited to ωmax
T = 755 rad/s, t60max = 10 

s, and Cbmax = 200 Ah, respectively.  The optimal motor map computed by the POD 

coefficients is shown in Figure 4.11.  Finally, the total mass of the vehicle was 1124 kg, 

with approximately 14.1% (158 kg) of the mass associated with the battery.  Under these 

design conditions, the EV is expected to have a gasoline-equivalent fuel economy of 

mpge = 181 mpg and a range of R = 132 miles. 

Table 4.12 Optimal Decision Vector for P11 Subproblem, CPVgoal = 99.85% 

BI BW BL xbatt pr ωmax
T mm

T Jr
T Iym

T Izm
T ym

T 
0.74 1.43 19.75 0.25 3.13 755 46.79 0.28 1.12 1.20 0.39 
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Table 4.13 Optimal Decision Vector for P22 Subproblem, CPVgoal = 99.85% 

ls rm nc Rr 
0.121 0.116 15.67 0.095

 

Table 4.14 Optimal Consistency Constraint Vector/Weights, CPVgoal = 99.85% 

Consistency Constraint copt vopt wopt 
cz,max 1.11 4.42 x 1056 3.60 x 1028 
cz,min 0.95 3.85 x 1056 3.60 x 1028 

cz,pLoss 1.59 2.50 x 1056 3.60 x 1028 
cωmax 0 0 3.60 x 1028 
cmm 1.91 7.55 x 1056 3.60 x 1028 
cJr 0.01 2.34 x 1054 3.60 x 1028 
cIym 0.02 9.34 x 1054 3.60 x 1028 
cIzm -0.05 -1.84 x 1055 3.60 x 1028 
cym 0.03 9.89 x 1054 3.60 x 1028 

 

 

Figure 4.11 Optimal Motor Map, CPVgoal = 99.85% 
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4.3.4 Summary of ATC Results 

It is evident from the optimization results that a relaxation in CPVgoal leads to a reduction 

in the accuracy of the ATC design solutions, which are given by 

.  In particular, it is seen that the errors 

between the expected design solution (AiO) and the ATC design solutions are 

],,,,,,[ rcmsrbattLWI
ATC Rnr  p x B ,B ,B l=∗x

113.0
2

2 =
−

∗

∗∗

AiO

ATCAiO

x

xx
, 131.0

2
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∗

∗∗
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ATCAiO
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xx
, and 180.0

2

2 =
−

∗

∗∗

AiO

ATCAiO

x

xx
 for CPVgoal 

= 99.99%, CPVgoal = 99.95%, and CPVgoal = 99.85%, respectively.  Note that this 

measure for solution accuracy is preferred for ATC instead of 
||

||
AiO

ATCAiO

f
ff

∗

∗∗ −  since it 

does not require exact system consistency (c = 0) and it assesses the error in the design, 

which can be directly modified, rather than the error in the prediction, which cannot be 

directly modified and is dependent on the fidelity of the analysis models.  Moreover, 

similar measures have been used in well-established literature [Tosserams et al. (2006)] 

when comparing multiple ATC solutions.  Hence, using this measure, it can be seen that 

the loss of accuracy in the ATC design solutions is linked to the loss of accuracy in the 

POD representations as indicated by the AVASIM results. 

An interesting outcome from this study is that a reduction in CPVgoal does not 

necessarily accelerate ATC convergence; instead, the optimization strategy may become 

more inefficient.  This is clearly observed through the ATC runtimes, which were 10.72 

hours, 16.81 hours, and 59.41 hours for CPVgoal = 99.99%, CPVgoal = 99.95%, and 

CPVgoal = 99.85%, respectively.  However, the average ATC convergence rate for each 

case, which is the total number of ATC iterations divided by the runtime, suggests that 

the longer runtimes for lower CPV values were caused by an increase in the number of 

ATC iterations.  In particular, the average ATC convergence rates were 1.12 iterations/hr, 

1.07 iterations/hr, and 1.11 iterations/hr for CPVgoal = 99.99%, CPVgoal = 99.95%, and 

CPVgoal = 99.85%, respectively.  Since these convergence rates were relatively constant 

for each case (within 5% of each other at worst), it can be reasonably concluded that the 

cause of the longer runtimes was in fact the increased number of ATC iterations. 
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Recall that the number of ATC iterations is driven by ||c(Κ) - c(Κ−1)||∞, which must 

be less than 10-2 for outer loop convergence in these studies.  Closer inspection of the 

consistency values and associated penalty weights in Tables 4.8, 4.11, and 4.14 reveals 

that the outer loop convergence (and hence the number of ATC iterations) was ultimately 

dictated by the consistency of zmax, zmin, zpLoss, and mm.  These variables had the largest 

consistency values and weights in terms of magnitude for each case.  Also, note that the 

consistency values for these variables were on the order of at least 10-1, which implies 

that the reductions in these values during an ATC iteration could have been as large as 

10-1.  Such behavior would inhibit outer loop convergence and hence require more ATC 

iterations.  However, this behavior alone does not explain the counterintuitive results with 

respect to optimization efficiency when using lower fidelity POD representations.  This 

instead can be traced back to the available degrees of freedom for achieving consistency 

of zmax, zmin, zpLoss, and mm in both subproblems as well as the relationship among the 

local design variables that compute them in the motor subproblem.  In the P11 

subproblem, zmax, zmin, and zpLoss are functions of the decision variables zr,max, zr,min, and 

zr,pLoss, whereas mm is treated as an independent decision variable.  However, in the P22 

subproblem, zmax, zmin, and zpLoss are functions of the local design variables ls, rm, nc, and 

Rr, whereas the mm is a function the local design variables ls and rm.  This means that 

there are (pmax + pmin + ppLoss + 4) degrees of freedom to achieve consistency for the motor 

map ([zmax, zmin, zpLoss]) and 3 degrees of freedom to achieve consistency for the motor 

mass.  Using this information, it becomes clear why the lower fidelity POD 

representations required more ATC iterations: these approximations had fewer degrees of 

freedom to match the high-fidelity motor maps generated by the P22 subproblem, and the 

optimizer had to balance the requirements for achieving consistency for both the motor 

map and motor mass.  Specifically, as the number of reduced representation variables 

decreased in the P11 subproblem, the sensitivity of the motor map and motor mass 

consistencies increased with respect to ls and rm in the P22 subproblem.  It is believed that 

this behavior led to large, frequent fluctuations in ||c(Κ) - c(Κ−1)||∞ and thus resulted in more 

ATC iterations and longer runtimes. 
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4.4 Conclusions 

Based on the accuracy of the ATC solutions and their corresponding runtimes, it can be 

concluded that the best POD representation within ATC for this study is associated with 

CPVgoal = 99.99% [Alexander et al. (2010c)].  This case had both the highest accuracy 

and the fastest runtime.  From a broader perspective, it can be reasonably concluded that 

high-fidelity POD representations are generally more appropriate for reduced 

representation of VVCVs in ATC.  This is because low-fidelity POD representations will 

usually lead to less accurate design solutions and will frequently lead to longer runtimes 

via more outer loop iterations.  The exceptions to this might be for design problems in 

which there is less interaction among the VVCVs and other coupling variables, or for 

design problems in which extremely low-fidelity POD representations (CPVgoal << 99%) 

are used.  For example, in the former case, if the motor mass would have been eliminated 

as a coupling variable, then perhaps the runtimes for the low-fidelity POD representations 

would have been nearly the same or even slightly faster than the high-fidelity POD 

representation.  In the latter case, using extremely low-fidelity POD representations 

might decrease the runtime directly through significantly faster approximations per ATC 

iteration.  However, in both cases, the design solution accuracy would still be 

compromised, and one would have to assess whether this would be worth any additional 

computational savings.  Hence, in the future, this work can be made more comprehensive 

by experimenting with these design scenarios and examining other optimization metrics, 

like the problem condition, as a function of CPVgoal.  Additionally, from a design 

perspective, this study can be enhanced by developing an explicit cost model that 

explores tradeoffs between extended range/improved performance and battery cost. 

4.5 Summary 

This chapter explored the design optimization of a commercial EV powertrain.  

Specifically, an AiO problem formulation was introduced and solved as well as an ATC 

problem formulation that used POD for the reduced representation of motor map 

functional data.  In an effort to identify the effect of the POD representation accuracy on 

the ATC solution accuracy, the latter problem formulation was solved three times using 
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different sets of POD representations based on the CPV.  It was hypothesized that as the 

CPV (and hence POD representation accuracy) was reduced, the ATC solution time 

would significantly decrease due to the use of fewer reduced representation variables 

(POD coefficients).  However, it was discovered that as the CPV was reduced, the ATC 

solution time was significantly compromised as well as the design solution accuracy.  

This led to the conclusion that high-fidelity POD representations would be most 

appropriate for the reduced representation of VVCVs in ATC because of their good 

accuracy and enhanced capability of achieving functional data consistency through 

additional degrees of freedom (reduced representation variables).  The next chapter will 

build off of these results by examining how different measures of consistency will impact 

the ATC solution with respect to the interpretation of functional data consistency and 

overall solution accuracy. 
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Chapter 5  
 

Consistency Measures for Functional Data in Analytical Target 

Cascading 

The importance of identifying appropriate error metrics for the validation of functional 

data approximations against their high-fidelity counterparts was discussed in Chapter 1.  

Specifically, it was mentioned that many of the existing error metrics were developed for 

1D applications and that their performance and suitability for higher dimensional 

functional data was largely unexplored.  In recent work [Alexander and Papalambros 

(2010)], this problem was addressed by extending an error metric known as AVASIM to 

2D applications as this algorithm systematically, objectively and efficiently provides a 

clear indication of local and global functional data accuracy with respect to preset 

thresholds [Sohns et al. (2006)].  The results from this work as presented in Chapter 2 

demonstrated that both the 1D and 2D AVASIM formulations provide reasonable 

predictions of local and global functional data accuracy.  However, the primary 

motivation for exploring the capability of AVASIM for higher dimensional functional 

data is its potential impact on decomposition-based design optimization strategies 

containing coupled, functional data.  Since ATC convergence, for example, is ultimately 

based on the discrepancy between coupled quantities from distinct subproblems, it is 

necessary to implement accurate and meaningful consistency measures for functional 

data that lead to physically realizable optimal design solutions.  As mentioned earlier, no 

well-established consistency measure exists for coupled functional data within 

decomposition-based optimization strategies in the literature, and so previous work has 

somewhat arbitrarily used a RMSE consistency measure [Alexander (2008); Alexander et 

al. (2009); Alexander et al. (2010a); Alexander et al. (2010b); Alexander et al. (2010c)].  



Nevertheless, such a measure may not be appropriate for higher dimensional functional 

data (such as 2D motor power loss maps) and lacks a clear definition of consistency 

among coupled functional data.  The current chapter therefore explores this issue by 

implementing RMSE, AVASIM, and a generalized version of AVASIM independently in 

an ATC problem formulation for the commercial EV powertrain model and comparing 

their respective design solutions. 

5.1 Consistency Measures 

As originally developed, the definition for the relaxed consistency constraints in ATC (cij 

= tij - rij) is only applicable for scalar-valued coupling variables; when these terms consist 

of functional data, the definition must be modified based on the error metric desired for 

measuring consistency.  For example, in the previous chapter and in other related work 

[Alexander (2008); Alexander et al. (2009); Alexander et al. (2010a); Alexander et al. 

(2010b); Alexander et al. (2010c)], the consistency between functional data was 

measured through RMSE as 
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for the lth-component of cij, where Q denotes the number of discretized points defining 

the functional data.  Because functional data consistency in this study will also be 

measured through AVASIM and generalized AVASIM, an alternative definition 

[Alexander and Papalambros (2010)] for the relaxed consistency constraints is 

 

                lcomblij Ec ,, 1−=         (5.2) 

 

where Ecomb,l is computed through Equations (2.13)-(2.22) with tij,m and rij,m substituted 

for yi and ŷi and wlocal and wglobal set as appropriate.  Observe that for both RMSE and the 

AVASIM approaches, the definition of consistency is similar to that of the scalar-valued 

case; that is, when cij,l = 0, the coupling variables match exactly, whereas if cij,l ≠ 0, some 
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discrepancy exists between the coupling variables.  However, using AVASIM or 

generalized AVASIM enhances the meaning of consistency since cij,l = 1 indicates that 

the functional data are consistent and at the threshold, and cij,l > 1 indicates that the 

functional data are inconsistent [Alexander and Papalambros (2010)]. 

5.2 ATC Problem Formulation and Solutions 

The ATC problem formulation for the commercial EV powertrain model shown in 

Equations (4.8)-(4.9) provides the basis for this study.  Because the problem structure 

requires reduced representations for VVCVs associated with the motor torque curves and 

power loss map, the POD representations developed at CPVgoal = 99.99% were used.  

Like the previous chapter, the design problem for each consistency measure was solved 

using NOMADm.  The default settings of this optimizer were modified for the P11 

subproblem such that only a Latin hypercube search was performed and 1,000 function 

evaluations were permitted.  This was necessary to alleviate computational issues 

associated with memory availability.  However, for the P22 subproblem, the default 

settings were sufficient.  In the ATC coordination strategy, the weight update parameter 

was set to β = 2.75, and the initial weight vectors for both subproblems were set to v = 0 

and w = 1.  Since the RMSE consistency measure served as the baseline in this study, its 

associated tolerance on ||c(Κ) - c(Κ−1)||∞ for outer loop convergence was set to 10-2; for the 

other consistency measures, the coordination strategy was repeated until the number of 

ATC iterations was identical to the RMSE case.  Such a modification was necessary for 

an equitable comparison of the optimization results [Alexander and Papalambros 

(2010)].  Once again, all computational work was performed on a 3GHz, 4 MB RAM, 

Intel® CoreTM 2 Duo CPU. 

5.2.1 RMSE Consistency Measure in ATC 

The ATC optimization results using RMSE as a consistency measure for the functional 

data are shown in Tables 5.1-5.3.  Note that these results are identical to those in Chapter 

4 for POD at CPVgoal = 99.99% but are repeated here to facilitate comparisons with the 

other consistency measures.  Also, to avoid ill-performance of the RMSE consistency 
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measure due to the vast difference in magnitudes between the torque curves and power 

loss map, Equation (5.1) was modified for the power loss map such that (tij,m – rij,m) was 

normalized by its associated baseline power loss value before being squared when the 

baseline power loss value exceeded 1 W in magnitude.  Convergence was achieved after 

12 ATC iterations with a runtime of approximately 10.72 hours and resulted in a system 

solution that was reasonably consistent between both subproblems.  Recall that the only 

active constraints were the upper bound on ωmax
T, the performance constraint g11,3, and 

the battery capacity constraint g11,8 in the P11 subproblem; these were limited to ωmax
T = 

755 rad/s, t60max = 10 s, and Cbmax = 200 Ah, respectively.  The optimal motor map 

computed by the POD coefficients is shown in Figure 5.1.  Finally, the total mass of the 

vehicle was 1111 kg, with approximately 14.3% (158 kg) of the mass associated with the 

battery.  With such a design, the EV could achieve a gasoline-equivalent fuel economy of 

mpge = 184 mpg and a range of R = 134 miles. 

Table 5.1 Optimal Decision Vector for P11 Subproblem, RMSE Consistency 

BI BW BL xbatt pr ωmax
T mm

T Jr
T Iym

T Izm
T ym

T 
0.74 1.43 19.75 0.25 3.13 755 40.39 0.28 1.12 1.20 0.39 

 
Table 5.2 Optimal Decision Vector for P22 Subproblem, RMSE Consistency 

ls rm nc Rr 
0.098 0.123 17.62 0.053
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Table 5.3 Optimal Consistency Constraint Vector/Weights, RMSE Consistency 

Consistency Constraint copt vopt wopt 
cz,max 0.45 6.37 x 108 6.80 x 104 
cz,min 0.41 5.82 x 108 6.80 x 104 

cz,pLoss 0.73 1.01 x 109 6.80 x 104 
cωmax 0 0 6.80 x 104 
cmm -0.46 -6.53 x 108 6.80 x 104 
cJr 0 1.51 x 106 6.80 x 104 
cIym 0 5.93 x 106 6.80 x 104 
cIzm -0.02 -3.21 x 107 6.80 x 104 
cym 0 3.67 x 106 6.80 x 104 

 

 

Figure 5.1 Optimal Motor Map, RMSE Consistency 

5.2.2 AVASIM Consistency Measure in ATC 

Similarly, the ATC optimization results using AVASIM as a consistency measure for the 

functional data are shown in Tables 5.4-5.6.  As indicated earlier, the coordination 

strategy was repeated until the number of ATC iterations was identical to that of the 

RMSE case.  The runtime for this case was 9.36 hours and also resulted in a system 

solution that was reasonably consistent between both subproblems.  This time, the active 
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constraints included the upper bound on ωmax
T and the vehicle range constraint g11,6 in the 

P11 subproblem, which were limited to ωmax
T = 755 rad/s and Rmin = 100 miles, 

respectively.  The optimal motor map computed by the POD coefficients is shown in 

Figure 5.2.  Finally, the total mass of the vehicle was 1078 kg, with approximately 11.6% 

(125 kg) of the mass associated with the battery.  With such a design, the EV is predicted 

to have a gasoline-equivalent fuel economy of mpge = 190 mpg and a 0-60 mph 

acceleration time of t60 = 9.29 s. 

Table 5.4 Optimal Decision Vector for P11 Subproblem, AVASIM Consistency 

BI BW BL xbatt pr ωmax
T mm

T Jr
T Iym

T Izm
T ym

T 
0.74 1.03 19.75 0.25 3.13 755 40.39 0.28 1.12 1.20 0.39 

 
Table 5.5 Optimal Decision Vector for P22 Subproblem, AVASIM Consistency 

ls rm nc Rr 
0.105 0.119 17.59 0.054

 

Table 5.6 Optimal Consistency Constraint Vector/Weights, AVASIM Consistency 

Consistency Constraint copt vopt wopt 
cz,max 0.66 9.25 x 108 6.80 x 104 
cz,min 0.56 7.90 x 108 6.80 x 104 

cz,pLoss 0.49 6.89 x 109 6.80 x 104 
cωmax 0 0 6.80 x 104 
cmm -0.69 -9.70 x 108 6.80 x 104 
cJr 0.02 2.43 x 107 6.80 x 104 
cIym 0.07 9.72 x 107 6.80 x 104 
cIzm -0.04 -6.11 x 107 6.80 x 104 
cym 0.01 1.38 x 107 6.80 x 104 
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Figure 5.2 Optimal Motor Map, AVASIM Consistency 

5.2.3 Generalized AVASIM Consistency Measure in ATC 

Finally, the ATC optimization results using generalized AVASIM as a consistency 

measure for the functional data are shown in Tables 5.7-5.9.  Because the results from 

using the AVASIM consistency measure appeared to indicate that the global accuracy of 

the functional data was more important, the weights for generalized AVASIM were set to 

wlocal = 1/3 and wglobal = 2/3, respectively.  The runtime for this case was approximately 

8.61 hours and resulted in a system solution that was reasonably consistent between both 

subproblems.  Like the RMSE case, the only active constraints were the upper bound on 

ωmax
T, the performance constraint g11,3, and the battery capacity constraint g11,8 in the P11 

subproblem; these were limited to ωmax
T = 755 rad/s, t60max = 10 s, and Cbmax = 200 Ah, 

respectively.  The optimal motor map produced by the POD coefficients is illustrated in 

Figure 5.3.  Additionally, the total mass of the vehicle was 1111 kg, with approximately 

14.3% (158 kg) of the mass associated with the battery.  With such a design, the EV 

could achieve a gasoline-equivalent fuel economy of mpge = 185 mpg and a range of R = 

135 miles. 
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Table 5.7 Optimal Decision Vector for P11 Subproblem, G-AVASIM Consistency 

BI BW BL xbatt pr ωmax
T mm

T Jr
T Iym

T Izm
T ym

T 
0.74 1.03 19.75 0.15 3.13 755 40.39 0.28 1.12 1.20 0.39 

 
Table 5.8 Optimal Decision Vector for P22 Subproblem, G-AVASIM Consistency 

ls rm nc Rr 
0.0978 0.123 17.77 0.055

 

Table 5.9 Optimal Consistency Constraint Vector/Weights, G-AVASIM Consistency 

Consistency Constraint copt vopt wopt 
cz,max 0.16 2.36 x 108 6.80 x 104 
cz,min 0.16 2.28 x 108 6.80 x 104 

cz,pLoss 0.62 6.70 x 108 6.80 x 104 
cωmax 0 0 6.80 x 104 
cmm 0 8.42 x 106 6.80 x 104 
cJr 0.01 8.73 x 106 6.80 x 104 
cIym 0.02 3.49 x 107 6.80 x 104 
cIzm 0 -2.58 x 106 6.80 x 104 
cym 0 3.04 x 106 6.80 x 104 
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Figure 5.3 Optimal Motor Map, G-AVASIM Consistency 

5.2.4 Summary of ATC Results 

Using the same definitions for  and that were presented in Chapter 4, it is seen 

that the errors between the AiO and ATC design solutions are 

AiO
∗x ATC

∗x
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, and 108.0

2
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−
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∗∗

AiO

ATCAiO

x

xx
 for the RMSE, AVASIM, and 

generalized AVASIM consistency measures, respectively.  Hence, the results clearly 

show that implementing the generalized AVASIM consistency measure provides the 

most accurate design solution in this work.  The most reasonable explanation for this 

outcome is that the emphasis on global functional data accuracy within generalized 

AVASIM improved the functional data consistency between the ATC subproblems, 

which in turn reduced the inconsistencies of the remaining scalar-valued coupling 

variables and improved the accuracy of the design solution.  Conversely, RMSE only 

addresses local functional data accuracy, which limits its ability to capture the global 
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characteristics of functional data unless the number of discretized points is extremely 
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 are 

affecte

large.  Such a limitation may have ultimately reduced the functional data consistency 

between the ATC subproblems, which in turn would have reduced the consistencies of 

the remaining scalar-valued coupling variables and limited the accuracy of the design 

solution.  The fact that implementing the AVASIM consistency measure did not yield an 

improvement over the RMSE consistency measure is surprising since it addresses both 

local and global functional data accuracy; however, it is posited that this may have been 

due to the instability of the Elocal measure within AVASIM, which can be filtered out with 

generalized AVASIM by allocating more weight to global functional data accuracy.  

Note that the consistency values of the scalar-valued coupling variables

d by this new consistency measure since all of the coupling variables are related 

through at least a subset of the local design variables (ls, rm, nc, Rr) in the P22 subproblem.  

The relationship between improved consistency and improved design solution accuracy 

can be seen by calculating 
2optc  for each solution, which is 1.06, 1.21, and 0.66 for the 

RMSE, AVASIM, and generalized AVASIM consistency measures, respectively.  

Observe that this vector norm is only used for comparison purposes as it is not physically 

meaningful on an independent basis.  Since the trend in 
2optc  nearly follows that of 

2

2
AiO

ATCAiO − xx

 In addition, an interesting 

∗

∗∗

x
, the explanation provided for the improvement in design solution 

accuracy is adequately supported. 

trend that is seen in this study is that the use of the 

AVASIM and generalized AVASIM consistency measures improved the efficiency of 

ATC.  Indeed, the runtimes while using the RMSE, AVASIM, and generalized AVASIM 

consistency measures were 10.72 hours, 9.36 hours, and 8.61 hours, respectively.  This 

result was somewhat unexpected given the fact that the computational effort required by 

the AVASIM and generalized AVASIM consistency measures was greater than that of 

the RMSE consistency measure.  Since all aspects of the design problem, including the 

number of ATC iterations, was identical for each case, the only reasonable explanation 

for the reduced runtimes is that fewer function evaluations were required for each of the 

subproblems per ATC iteration.  In turn, the reduced number of function evaluations was 
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5.3 Conclusions 

 results that the generalized AVASIM consistency measure (with 

likely due to the greater overall stability of the AVASIM and generalized AVASIM 

consistency measures.  Recall that the RMSE consistency measure only addresses local 

functional data accuracy, which in general may fluctuate much than global functional 

data accuracy over the course of design optimization.  The AVASIM and generalized 

AVASIM consistency measures both address global functional data accuracy, with the 

latter measure having the most flexibility to emphasize global functional data accuracy.  

Because this functional data accuracy component is more likely to be stable during 

design optimization, it is believed that this led to fewer function evaluations and thus 

contributed to faster runtimes. 

It is evident based on the

an emphasis on global accuracy) is the best choice for this work as it predicted the most 

accurate design solution in the least amount of time.  This is true for most ATC problems 

since the global measure is usually more important and stable than the local measure 

within generalized AVASIM and will generally provide more accurate designs solutions 

using fewer function evaluations.  Moreover, unlike RMSE, generalized AVASIM (as 

well as AVASIM) can provide meaningful information regarding the consistency of 

functional data in a decomposition-based optimization strategy.  For example, in Table 

5.9, the generalized AVASIM consistency measure indicates that the consistencies of the 

maximum/minimum motor torque curves and the power loss map exchanged between the 

subproblems are (1 – 0.16) x 100% = 84%, (1 – 0.16) x 100% = 84%, and (1 – 0.62) x 

100% = 38%, respectively.  The values associated with the RMSE consistency measure 

in Table 5.3 for the same functional data are incapable of providing such information.  

However, despite the success of the generalized AVASIM consistency measure for this 

design problem, a couple of items should be investigated in future work.  First, it should 

be determined if a systematic approach can be developed to assign values to wlocal and 

wglobal.  This clearly had a significant impact on both the accuracy and efficiency of the 

ATC solution, and it is unknown whether a different weighting could further improve the 

optimization strategy.  While it was sufficient in this study to rely on extensive 
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5.4 Summary 

 the use of three different error metrics as consistency measures for 

representation variables within an ATC framework. 

experience with the model and design problem to set values for these weights, such an 

approach may not be appropriate or efficient in more general problem applications.  

Second, other error metrics should continue to be explored in terms of their ability to 

support decomposition-based optimization strategies through the accuracy assessment of 

1D and higher dimensional functional data.  Such exploration may reveal other 

competitive alternatives and could help to specify the conditions under which generalized 

AVASIM is a suitable consistency measure more precisely.  Nevertheless, the present 

study is the first formal attempt to explore the capability of any functional data error 

metric as a consistency measure within a decomposition-based optimization strategy 

[Alexander and Papalambros (2010)] and provides compelling evidence for the 

superiority of generalized AVASIM. 

This chapter explored

coupled, functional data in an ATC problem formulation.  After applying RMSE, 

AVASIM, and generalized AVASIM as consistency measures in the ATC optimization 

of a commercial EV powertrain, it was found that the generalized AVASIM consistency 

measure (with an emphasis on global accuracy) was superior as it provided the most 

accurate design solution in the least amount of time.  Furthermore, it was stated that this 

would be the most appropriate consistency measure in the majority of ATC design 

problems since the global measure is usually more important and stable than the local 

measure within generalized AVASIM and would provide more accurate design solutions 

using fewer function evaluations.  Moreover, unlike RMSE, generalized AVASIM (as 

well as AVASIM) can provide clear definitions of functional data consistency among 

ATC subproblems.  Nevertheless, since this study is the first of its kind, more work must 

be completed regarding the weighting strategy of generalized AVASIM as well as the 

investigation of competitive alternatives before more specific conditions can be cited for 

its general application.  The next chapter will investigate the final research question of 

this dissertation, which deals with the effective constraint management of reduced 
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Chapter 6  
 

Constraint Management of Reduced Representation Variables 

As mentioned in Chapter 1, the approximations of the motor performance curves via 

POD are valid only within the sampling domain of the original representations.  This is 

true not only for POD, but for the majority of similar applications; that is, data 

approximation models are usually effective for interpolation, but rarely, if ever, for 

extrapolation.  In the context of design optimization, one can ensure that such data 

extrapolation, and hence ill-behaved analysis and optimization, does not occur by 

introducing appropriate constraints on the approximation models.  In some cases, simply 

identifying the maximum and minimum attainable values for the parameters within these 

models is sufficient; however, in general, one cannot assume that the parameter space is a 

hypercube constrained by simple upper and lower bounds.  Rather, the parameter space 

can, in many cases, be highly-nonlinear, resulting in a generalized volume in hyperspace.  

The fact that these parameters often lack physical meaning further complicates this 

situation, since it is often impossible to practically construct constraints that define the 

validity domain of high-dimensional, non-convex, abstract quantities [Alexander et al. 

(2010b)].  This is evident in the ATC problem formulation for the commercial EV 

powertrain, where the parameters are POD coefficients serving as reduced representation 

variables. 

Recall that in recent work, a penalty-value based heuristic was implemented as a 

temporary solution to this problem and led to reasonable results.  However, it also 

produced an ill-conditioned ATC problem which led to many ATC iterations and 

extensive runtimes.  Although more direct approaches such as probability density-based 

models [Tarassenko et al. (1995)] and convex hulling algorithms [Barber et al. (1996)] 
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were considered, each of these methods had significant shortcomings that made them 

unsuitable as strong, alternative solutions.  Nevertheless, a technique known as support 

vector domain description (SVDD) [Tax and Duin (1999a); Tax and Duin (1999b)] did 

emerge from the literature as a viabl as initially explored as part of this 

dissertation work.  This chapter completes this work by comparing the penalty value-

based heuristic to an alternative that uses SVDD as a potential constraint management 

m

6.1 Penalty Value-Based Heuristic 

ywords “try” and “catch”, and in most cases will return 

the resu

e candidate and w

ethod for the model validity region of the reduced representation variables. 

The penalty value-based heuristic constrains the model validity region indirectly by 

assigning large penalty values to objective function and constraint function outputs that 

depend on reduced representation variables outside the parameter space.  It is expected 

that this would force the optimizer to select reduced representation variables that lie 

within the parameter space or model validity region.  A key assumption for the successful 

implementation of this method is that a non-gradient-based optimizer will be used instead 

of a gradient-based optimizer [Alexander et al. (2010b)].  This is because penalizing 

outputs such as the objective function with large values in gradient-based optimizers can 

result in ill-conditioned optimization problems due to large gradients. 

 One way the penalty value-based heuristic can be executed is through a 

conditional statement that attempts to compute all quantities that depend on the reduced 

representation variables and, if unable to perform the computation, returns penalty values 

for the appropriate quantities and continues solving the optimization problem.  When 

programming in MATLAB®, a reasonable approach would be to use a “try-catch” 

statement [MATLAB® Function Reference].  In this technique, MATLAB® attempts to 

execute the code between the ke

lts between these keywords.  However, if the code between “try” and “catch” fails 

and produces an error, then MATLAB® can execute an alternative code between the 

keywords “catch” and “end”.  Therefore, in the context of the penalty value-based 

heuristic, an attempt can be made to compute all quantities that depend on the reduced 

representation variables between “try” and “catch” and, if the computations cannot be 
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in optimization, SVDD can be used to augment the penalty value-based heuristic through 

performed, penalty values can be assigned to the appropriate quantities between “catch” 

and “end”.  Figure 6.1 shows an excerpt from the MATLAB® code for the commercial EV 

powertrain model in which an attempt can be made to perform the powertrain simulations 

and, upon failing, will return infinite values as appropriate for mpge, t60, R, and PV. 

 

 

Figure 6.1 Penalty Value-Based Heuristic: MATLAB® Try-Catch Statement 

6.2 Support Vector Domain Description 

SVDD [Tax and Duin (1999a); Tax and Duin (1999b); Malak and Paredis (2009)] is a 

classification method that uses a machine learning algorithm to approximate the 

boundary of a set of data points and to identify whether new data points lie inside the 

boundary description.  In particular, SVDD can be used to represent data set boundaries 

that are nonlinear, non-convex, and even disconnected without adding much complexity 

or computational burden.  It is also distinct from other machine learning algorithms in 

that it requires only one class of data for classification since it aims to identify the 

minimum radius hypersphere enclosing the data.  This feature is advantageous for 

classification problems in which a second class of data is either unknown or difficult to 

generate, as is the case for the reduced representation variables. 

 In the context of constraint management for the reduced representation variables 

try 
    % If simulation works, set error message to zero 
    sim(‘pt’,[],options) 
    pterr = 0; 
    varargout{1} = pterr; 
catch 
    % Set simulation outputs to penalty values 
    mpge = -inf; 
    t60 = inf; 
    R = -inf; 
    PV = inf; 
    return 
end 
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ailure 

f the underlying analysis models.  However, it is expected that the boundary definitions 

ze the possibility of 

analysis mo  satisfy these 

constraints. 

6.2.1 Theory

Because it i aracterized by a 

ization problem [Tax 

and Duin (19  (2009)]: 

 

the inclusion of explicit constraints representing the boundary of the model validity 

region.  Note that the penalty value-based heuristic is still necessary as the majority of 

optimizers enable the selection of decision vectors that may periodically violate 

constraints during optimization; in the case of the current problem, this can lead to f

o

(and hence constraints) generated by SVDD would directly minimi

del f  to

s a ly ch

hypersphere, the objective is to solve the following primal optim

99a in (1999b); Malak (2008); Malak and Paredis

ailure since all feasible decision vectors would have

 

ssumed that the data space can be effective

); Tax and Du
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ersphere radius slack variable, 

ξ
ξa

   

Here, Rhyp denotes the hypersphere radius, ξ denotes a hyp

Cp denotes the slack variable penalty constant, zr denotes a data sample (which is a p-

dimensional vector of reduced representation variables in this application), a denotes the 

hypersphere center, and m denotes the number of samples.  The second term in the 

objective function of Equation (6.1) relaxes the optimization problem and permits the 

inclusion of outliers.  In practice, this optimization problem is never solved for reasons 

given in [Vapnik (1995)]; instead, its dual is formulated by constructing the Lagrangian 
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with nonnegative Lagrange multipliers Bi and μi.  Applying Karush-Kuhn-Tucker (KKT) 

conditions to Equation (6.2) yields the following constraints [Malak (2008)]: 
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olfe dual optimization problem is then stated as [Malak (2008)] 

  

 

The new W

 

∑∑∑ −
i j

jr
T

irji
i

ir
T

iriB
BBB

i

)()(max ,,,, zzzz

∑ =

=≤≤

i
i

pi

B                 

mi     CB   to subject

1

1,0 L        (6.6) 

 

where each μi is eliminated through the bound constraints on each Bi.  The dual solutions 

are categorized according to three conditions: B  = 0, 0 < B  < C , and B  = C .  The first 

r,i

Using the dual variables and Equation (6.4), the squared distance R2
dist from a to 

itrary data point y is calculated as 

i i p i p

condition (Bi = 0) is satisfied by the majority of the dual variables for large m [Malak 

(2008)] and implies that the associated data sample zr,i lies within the hypersphere.  The 

second condition (0 < Bi < Cp) implies that the associated data sample zr,i lies at the 

boundary of hypersphere and is essential to its description; these samples are termed 

support vectors [Tax and Duin (1999a); Tax and Duin (1999b); Malak (2008); Malak and 

Paredis (2009)].  The third condition (Bi = Cp) implies that the associated data sample z  

lies outside the hypersphere and is an outlier. 

any arb
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where the indices i and j run over  support

multipliers.  With this definition, Rhyp can be calculated by setting y = zr,i for any data 

mple that is a support vector, and in turn this information can be used to determine 

whether an arbitrary data point lies inside the boundary d c iption

 

         (6.8) 

 

uch a condition can be added to the ATC problem formulation for the commercial EV 

powert

A key limitation in the nominal SVDD problem formulation is that it assumes a 

hyperspherical data space.  Since this is rarely the case, one must usually map the data 

into some higher-dim sional “feature space” through a nonlinear transformatio

the hyperspherical domain assumption is more appropriate [Malak (2008)].  Because 

these nonlinear transformations can be difficult to develop explicitly, Mercer kernel 

nctions [Scholkopf and Smola (2002)] are used to represent the dot product between 

the  vectors and their associated Lagrange 

sa

es r : 

22 )( hypdist RR ≤y

S

rain to constrain the POD model directly. 

en n where 

fu

any two nonlinear transformations.  Although several kernel functions exist, the most 

preferred in the literature is the Gaussian kernel function 
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where q0 is the kernel width parameter.  Equation (6.9) can then be substituted for the dot 

product terms in Equations (6.6)-(6.7), yielding the following dual optimization problem 

and squared distance formulations: 
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The parameters q0 and Cp in Equations (6.10)-(6.11) must be tuned to construct an 

appropriate SVDD.  In practice, however, modifications to Cp have a minimal impact on 

the solution [Tax and Duin (1999b); Malak (2008)], leaving only 

  (6.11) 

q0 to be tuned.  This 

arameter is adjusted such that overfitting of the data is minimized.  Here, overfitting is 

defined as the rejection of an arbitrary data point y that is in

domain.  Although overfitting can be monitored visually [Malak (2008)] by examining 

ontour plots, this is normally insufficient for most applications and impossible for high-

ropriate.  This method essentially states 

that the

p

 fact within the data sample 

c

dimensional (p > 3) data sets.  A more formal approach that makes use of the leave-one-

out method [Vapnik (1995)] is usually more app

 probability of overfitting, which is also known as the error of the first kind [Tax 

and Duin (1999a); Tax and Duin (1999b)], can be estimated by determining the 

proportion of data samples that are support vectors [Tax and Duin (1999a); Tax and Duin 

(1999b)]: 

 

            
m

n
errorPE SV=)]([       (6.12) 

 

Note that in the above, nSV refers to the number of support vectors.   Hence, q0 can be 

determined by setting an acceptable target for overfitting target and minimizing

orm on the difference between this target and the estimated performance of the SVDD: 

P  the l2-

n

 

           

0

min
2

− P
n

etargt
SV

0

20

<− qtosubject
mq       (6.13) 

 

The optimal SVDD therefore requires the solution of Equation (6.13), which in turn 

requires the solution of Equation (6.10) to determine nSV for a given q0

underfitting, or error of the second kind, cannot be addressed for SVDD as this requires 

.  Observe that 
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ata samples outside the target domain and hence directly violates the assumption of a 

single data class for SVDD. 

6.2.2 

d

Application 

Three SVDD models were developed to approximate the boundaries of the POD model 

validity regions associated with the maximum and minimum motor torque curves and 

power loss map in the ATC problem formulation for the commercial EV powertrain 

model.  This first required the generation of data sample vectors, which were identical to 

those used for the POD representations but mapped appropriately into POD-space: 

 

    )(, maxmax
T

maxpmaxr, ZZΦZ −=       (6.14) 

 

     )(, minmin
T

minpminr, ZZΦZ −=       (6.15) 

 

  )(, pLosspLoss
T

pLossppLossr, ZZΦZ −=               (6.16) 

he da  samp  vect s in Z Zr,min, and Zr,pLoss

MATLAB® function mapminmax [MATLAB® Function Reference] prior to constructing the 

odels.  Such data sample preprocessing is typical of most machine learning algorithms 

 

n experience for each SVDD problem formulation.  Note that such bounds for q0 were 

necessary to satisfy the problem structure required by the optimizer.  In an effort to obtain 

e glo al optimum f r the  problem in Equati

optimizer NOMADm was selected again.  However, because of the convexity of the 

VDD optimization problem in Equation (6.10), the MATLAB® gradient-based optimizer 

 

T ta le or r,max,  were then normalized through the 

m

as this helps to improve the performance of their associated models.  From here, the slack 

variable penalty constants were set to Cp = 0.5, the overfitting targets were set to Ptarget = 

0.10, and the kernel width parameter bounds were set to q0,min = 10-6 and q0,max = 10 based

o

th b o tuning on (6.13), the non-gradient-based 

S

fmincon [MATLAB® Function Reference] was selected.  In both cases, the default settings 

were appropriate for the optimizers.  Figures 6.2-6.4 illustrate portions of the optimal 



131 

 

loss map. 

 

SVDD boundaries for two dimensions of the POD model validity regions associated with 

the torque curves and power 
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Figure 6.2 Partial SVDD Boundary, Max-Torque POD Model Validity Region 
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Figure 6.3 Partial SVDD Boundary, Min-Torque POD Model Validity Region 
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Figure 6.4 Partial SVDD Boundary, Power Loss POD Model Validity Region 
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6.3 ATC Problem Formulation and Solutions 

Once again, the ATC problem formulation for the commercial EV powertrain model 

shown in Equations (4.8)-(4.9) provides the basis for the first part of this study, which 

implements the penalty value-based heuristic.  The second part of this study, which 

implements both the penalty value-based heuristic as well as SVDD, augments the ATC 

problem formulation through the following constraints in the P11 subproblem: 

 

            0)( 2
,11

2
,9,11 ≤−= maxhypmaxdist RRg x      (6.17) 

 

            0)( 2
,11

2
,10,11 ≤−= minhypmindist RRg x      (6.18) 

 

          0)( 2
,11

2
,11,11 ≤−= pLosshyppLossdist RRg x      (6.19) 

Note that nally, the 

OD representations developed at CPVgoal = 99.99% were used to approximate the 

VVCVs associated with the motor torque curves and power loss map.  In an effort to 

observe the accuracy and/or optimization efficiency contributions of the constraint 

management approaches exclusively, the “standard” RMSE consistency measure that was 

used in Chapter 4 is implemented here.  The design problem for each constraint 

management method was solved using NOMADm.  As in previous chapters, the default 

settings of this optimizer were modified for the P11 subproblem such that only a Latin 

hypercube search was performed and 1,000 function evaluations were permitted.  This 

was necessary to alleviate computational issues associated with memory availability.  

However, for the P22 subproblem, the default settings were sufficient.  Finally, in the 

ATC coordination strategy, the weight update parameter was set to β = 2.75, the initial 

weight vectors for both subproblems were set to v = 0 and w = 1, and the tolerance on 

||c(Κ) - c(Κ−1)||∞ for outer loop convergence was set to 10-2.  Like the other studies, all 

computational work was performed on a 3GHz, 4 MB RAM, Intel® CoreTM 2 Duo CPU. 

these constraints were derived by applying Equation (6.8).  Additio

P
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d Heuristic 

 SVDD).  

onvergence was achieved after 12 ATC iterations with a runtime of approximately 

0.72 h urs a  resu  a system solution that was re

blems.  Recall that the only active constraints were the upper bound on ωmax
T, 

the performance constraint g11,3, and the battery capacity constraint g  in the P  

subproblem; these were limited to ωmax
T = 755 rad/s, t60max = 10 s, and Cbmax = 200 Ah, 

spectively.  As usual, the optimal motor map computed by the POD coefficients is 

hown n Fig re 6.5 inally, the total mass of the ve

6.3.1 Constraint Management via Penalty Value-Base

Tables 6.1-6.3 show the ATC optimization results when implementing the penalty value-

based heuristic as a constraint management technique for the reduced representation 

variables.  Once again, note that these results are identical to those in Chapter 4 for POD 

at CPVgoal = 99.99% but are repeated here to facilitate comparisons with the augmented 

constraint management technique (penalty value-based heuristic plus

C

1 o nd lted in asonably consistent between 

both subpro

11,8 11

re

s i u .  F hicle was 1111 kg, with 

approximately 14.3% (158 kg) of the mass associated with the battery.  These design 

conditions indicated that the EV could achieve a gasoline-equivalent fuel economy of 

mpge = 184 mpg and a range of R = 134 miles. 

Table 6.1 Optimal Decision Vector for P11 Subproblem, PVBH  

BI BW BL xbatt pr ωmax
T mm

T Jr
T Iym

T Izm
T ym

T 
0.74 1.43 19.75 0.25 3.13 755 40.39 0.28 1.12 1.20 0.39 

 
Table 6.2 Optimal Decision Vector for P22 Subproblem, PVBH 

ls rm nc Rr 
0.098 0.123 17.62 0.053
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Table 6.3 Optimal Consistency Constraint Vector/Weights, PVBH 

Consistency Constraint copt vopt wopt 
cz,max 0.45 6.37 x 108 6.80 x 104 
cz,min 0.41 5.82 x 108 6.80 x 104 

cz,pLoss 0.73 1.01 x 109 6.80 x 104 
cωmax 0 0 6.80 x 104 
cmm -0.46 -6.53 x 108 6.80 x 104 
cJr 0 1.51 x 106 6.80 x 104 
cIym 0 5.93 x 106 6.80 x 104 
cIzm -0.02 -3.21 x 107 6.80 x 104 
cym 0 3.67 x 106 6.80 x 104 

 

 

Fig  O  M a H 

6.3.2 Constraint Management via SVDD Augmentation 

Similarly, Tables 6.4-6.6 show the ATC optimization results when augmenting the 

penalty value-based heuristic with SVDD as a constraint management technique for the 

reduced representation variables.  The probl  converged after 5 ATC iterations with a 

runtime of approximately 3.95 hours and resulted in a system solution that was 

reasonably consistent between both subproblems.  The only meaningful active constraints 
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included the up 11,8 in the P11 

subproblem, w x
T = 755 rad/s and Cbmax = 200 Ah, respectively.  

Although the SVDD constraints g11,9-g11, re el  insignificant 

from a design perspectiv  only releva the In the activity of 

the SVDD constraints indicated that the o l r esentation variables were at 

the boundary of their respective POD m alidity regions.  The optimal motor map 

computed by the POD coefficients is shown in Figure 6.6.  Finally, the total mass of the 

vehicle was 1111 kg, with approximately 14.3% ( he iated with the 

battery.  With such a d i , the EV is dic  a quivalent fuel 

conomy of mpge = 149 mpg, a 0-60 mph acceleration time of t60 = 8.05 s, and a range of 

R = 109 miles. 

Table 6.4 Optimal Decision Vector for P11 Subproblem, SVDD Augmentation  

BI BW BL xbatt pr 

per bound on ωmax
T and the battery capacity constraint g

hich were limited to ωma

11 we active as w l, they were

e and nt ma matically.   particular, 

pt aim educe  reprd

odel v

158 kg) of t  mass assoc

es gn pre ted to have  gasoline-e

e

ωmax
T mm

T Jr
T Iym

T Izm
T ym

T 
0.74 1.43 19.75 0.25 3.93 755 40.39 0.28 1.12 1.20 0.39 

 
Table 6.5 Optimal Decision Vector for P22 Subproblem, SVDD Augmentation 

ls rm nc Rr 
0.096 0.124 17.87 0.065

 

Table 6.6 Optimal Consistency Constraint Vector/Weights, SVDD Augmentation 

Consistency Constraint copt vopt wopt 
cz,max 0.45 449 57.2 
cz,min 0.42 416 57.2 

cz,pLoss 57.2 

 

 0.29 297 
cωmax 0 0 57.2 
cmm 0 -0.45 57.2
cJr 0 0.019 57.2 
cIym 0 -0.031 57.2 
cIzm 0 0.035 57.2 
cym 0 0.025 57.2 
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ur pt  M ap D A ent

.3.3 Summary of ATC Results 

Using the  it is seen 

that the errors between the Ai A t e

Fig e 6.6 O imal otor M , SVD ugm ation 

6

same definitions for AiO
∗x  and ATC

∗x that were presented in Chapter 4,

O and TC design solu ions ar  113.0
2

2 =
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x

xx
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110.0
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xx
 when i ementing the penalty value-based heuristic and the 

SVDD augmentation as constraint manag t methods for the reduced representation 

variables, respectively. t fro e resul t the constraint 

management of the reduced representa entation 

provides the most accura sign solution in this study.  The most plausible explanation 

for this result is that the D-related con aints f he opti to perform more 

function evaluations in the feasible decis  spac h incl the POD model 

validity regions.  Becaus et of  design  optimizer had a 

igher probability of identifying the optimal design solution instead of converging to any 

feasible (yet suboptimal) design.  The penalty value-based heuristic, however, did not 

mpl

emen

  Hence, it is eviden m th ts tha

tion variables via the SVDD augm
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directly constrain the POD model validity regions and hence enabled the optimizer to 

perform function evaluations in a broader decision space which included many infeasible 

designs.  Since this limited the set of feasible designs, the optimizer had a higher 

probability of converging to any feasible (yet suboptimal) design instead of identifying 

the optimal design solution.  Of course, it is always possible that the SVDD augmentation 

could truncate a portion of the feasible decision space where the optimal solution exists 

and lead to an inferior result when compared to the penalty value-based heuristic; 

however, the probability of this event is ultimately related to the value prescribed for 

Ptarget in the SVDD models.  

It is also evident from the results that the SVDD augmentation improves the 

efficiency of ATC compared to the penalty value-based heuristic.  Indeed, the runtimes 

associated with the penalty value-based heuristic and the SVDD augmentation were 

10.72 hours and 3.95 hours, respectively.  The explanation for this outcome is directly 

related to the explan y; that is, since the 

nts on the POD model validity regions, the 

evaluations) exploring designs outside the 

ltho

computational time during optimization, it still requires significant modeling time offline.  

nally efficient const

management approach only if its total computational effort (modeling time plus runtime) 

is less than the runtime

times required to construct the optimal SVDDs for the POD model validity regions of the 

ation for the improvement in the solution accurac

SVDD augmentation imposed explicit constrai

optimizer spent less time (i.e., fewer function 

feasible decision space.  Nevertheless, a ugh the SVDD augmentation reduces the 

Therefore, the SVDD augmentation is a more computatio raint 

 associated with the penalty value-based heuristic.  The modeling 

maximum and minimum motor torque curves and power loss map were 0.94 hours, 1.13 

hours, and 0.27 hours, respectively.  Because the total computational effort (6.29 hours) 

associated with the SVDD augmentation was less than the runtime associated with the 

penalty value-based heuristic, it is clear that the SVDD augmentation is a more 

computationally efficient constraint management approach. 
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tion of a region within the feasible decision space that 

 evaluations in the feasible 

decision space, thus leading to a higher probability of convergence to the optimal design 

solution with fewer overall function evaluations (and hence less runtime) instead of 

convergence to any feasible (yet suboptimal) solution.  However, it was recognized that 

further exploration with respect to the performance target in SVDD and its impact on 

6.4 Conclusions 

Based on the results, it is evident that the best constraint management method for the 

reduced representation variables in this study is the SVDD augmentation.  This approach 

produced the most accurate design solution with the least overall computational effort.  

While this conclusion holds for most optimization problems, including AiO problems, it 

may not be true for every case as the design solution accuracy could exhibit significant 

tradeoffs with the overfitting target Ptarget in the SVDD models.  For example, as this 

parameter is increased, the probability of overfitting is also increased, and this may 

ultimately lead to the trunca

contains the optimal design solution.  Conversely, as this parameter is decreased, the 

probability of overfitting is decreased, but the optimizer may converge to any feasible 

(yet suboptimal) design due to the abundance of infeasible designs.  Hence, there is a 

need to balance the limitation of SVDD (overfitting) with the limitation of the optimizer 

(convergence to any feasible design) when setting Ptarget in these studies.  The exploration 

of this issue is proposed as a topic for future work. 

6.5 Summary 

This chapter investigated the use of appropriate constraint management methods for 

reduced representation variables in an ATC framework.  Specifically, a penalty value-

based heuristic was introduced and compared to an alternative method that augmented 

this heuristic with SVDD.  The results from this study indicated that the SVDD 

augmentation was the best constraint management technique as it yielded the most 

accurate design solution with the least computational effort.  Moreover, it was indicated 

that this would be the most promising constraint management method in the majority of 

optimization problems (both decomposition-based and AiO) since the SVDD-related 

constraints forced the optimizer to perform more function
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 would be necessary before completely assessing its suitability in design solution accuracy

broader problem applications.  The next chapter will finally apply the knowledge gained 

from addressing the key dissertation research questions over the past three chapters to a 

military EV design optimization study. 
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hapter 7  
 

Military Electric Vehicle Design Optimization 

The work throughout this dissertation thus far has addressed some of the challenges 

involved when using formal, decomposition-based optimization strategies to solve 

complex, simulation-based design problems in applications such as commercial EV 

powertrain design.  In particular, when the problem decomposition yields decision 

variables that are coupled, functional data such as motor maps, it has been demonstrated 

that the implementation of appropriate reduced representations, consistency measures, 

and constraint management techniques for reduced representation variables are critical 

for the success of these optimization strategies. 

Although success can be assessed in a variety of ways, the key measures that have 

been used in this dissertation are design solution accuracy and overall computational 

effort.  These measures have suggested that the best design solutions will occur when 

using the most accurate POD reduced representations, implementing generalized 

AVASIM as a functional data consistency measure, and implementing a penalty value-

based heuristic in conjunction with SVDD as a constraint management method for 

reduced representation variables.  However, all of these findings have been based on a 

small, commercial vehicle application, and it would be both interesting and relevant to 

apply this knowledge to a larger scale design problem with slightly different decision 

criteria and requirements.  This chapter, therefore, examines the aggregate contributions 

of the core research findings in the design optimization of a military EV in an ATC 

framework.  Like the commercial EV application, an AiO optimization problem 

formulation and solution for the military EV powertrain model is introduced at the 

beginning of this chapter to facilitate comparisons among the design solutions. 

C
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7.1 AiO Problem Formulation and Solution 

The AiO problem formulation uses the same analysis models as those described in 

Equations (3.1)-(3.3) and Equations ( r the military EV with the exception 

that the electric traction motor analy  integrated as a sub-analysis model 

for the front and rear motors within the LTV-level analysis model fltv.  This was 

necessary be separately; 

instead, all of the key design components of the EV powertrain—the battery, gearboxes, 

and motors—are considered simultaneously.  Therefore, Equation (3.100) is modified as  

3.99)-(3.100) fo

sis model fmotor is

cause in the AiO problem, the motor designs are not considered 
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 (7.1) 

 

where the input variables to fmotor are now shared with fltv.  Figure 7.1 illustrates the 

relationships among the remaining analysis models that were described in Chapter 3 for 

the military EV powertrain, with the dashed box indicating that all analysis models are 

integrated into a single optimization problem formulation. 

 

 

Figure 7.1 Analysis Model Relationships for Military EV AiO Problem 

fmotorMass 
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esign criterion is vehicle 

     (7.2) 

 the above, g1 and g2 are battery packaging constraints, g3 is a performance (0-50 mph 

acceleration time) constraint, g4-g7 are motor feasibility constraints, g8-g9 are power 

availability constraints, g10 is a battery capacity constraint, g11 is a mobility (vehicle 

directional stability) constraint, and g12 is an occupant safety (probability of exceeding 

underbody blast injury threshold) constraint.  Note that appropriate bound constraints are 

included for the decision variables in x.  As with the other case studies in this 

dissertation, the derivative-free optimization software package known as NOMADm 

[Abramson (2007)] was used to solve the problem.  However, the settings for this 

optimizer were modified such that only a Latin hypercube search was performed.  This 

was necessary to alleviate computational issues associated with an underlying kriging 

metamodel of the design problem that the optimizer constructs by default. 

 The results from the AiO problem form

be noted that the only active constraints in this problem were the motor torque feasibility 

 In military vehicle applications, a more meaningful d

range as opposed to energy efficiency since it is critical for these vehicles to travel long 

distances in hostile environments without needing to refuel.  Therefore, the objective of 

the AiO problem formulation is to maximize the vehicle range of the electric LTV while 

satisfying constraints related to battery packaging, performance, motor feasibility, power 

availability, battery capacity, mobility, and occupant safety: 
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ulation are shown in Table 7.1.  It should 
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ted by the minimum torque 

urves, was not expected; it is believed that this behavior was caused by the aggressive 

braking within the convoy escort drive cycle.  This in turn might have led to motor 

designs that possessed excessively high maximum torque curves which, when used in the 

forward-looking powertrain model, predicted an uncharacteristically fast 0-50 mph 

acceleration time (t50 = 5.56 s).  Since this also places a significant power demand on the 

attery, it is believed that the aggressive 0-50 mph acceleration time led to the ac

the performance-related power availability constraint. 

Finally, observe that the design solution suggests the use of 77 kW front motors 

(Figure 7.2) and 130 kW (Figure 7.3) rear motors to propel a 3116 kg vehicle, with 

approximately 8.5% (264 kg) of the mass associated with the battery.  These design 

conditions indicate that the electric LTV could achieve a range of R = 79 miles while 

maining directionally stable up to its maximum speed (70 mph) and limiting the 

constraints g4-g5, the performance-related power availability constraint g9, and the battery 

capacity constraint g10, which was limited to Cbmax = 500 Ah.  The activity of the battery 

capacity constraint was expected given the objective of vehicle range for the electric 

LTV.  Specifically, maximizing the range of the vehicle requires the battery to be as large 

as possible, which in this case is limited indirectly by cost.  However, the activity of the 

motor torque feasibility constraints, which were both limi

c

b tivity of 

re

probability of occupant injury to 12%. 

Table 7.1 Optimal Decision Vector for Military EV AiO Problem 

BI BW BL xbatt gb,f gb,r ls,f rm,f nc,f Rr,f ls,r rm,r nc,r Rr,r 
1.22 2.01 21.00 0.05 0.86 1.13 0.122 0.118 19.30 0.275 0.07 0.131 13.90 0.075 
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Figure 7.3 Optimal Rear Motor Map, Military EV AiO Problem 

Figure 7.2 Optimal Front Motor Map, Military EV AiO Problem 
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7.2 
a 

priori at mum and 

minimu

 

POD Representations and Accuracy Assessmen  

In preparation for the ATC problem formulation, POD representations were developed 

 CPVgoal = 99.99% to approximate the VVCVs associated with the maxi

m torque curves and power loss map of the front and rear motors: 

           

t

fmax,fmax,rfmax,pfmax, zzΦz +≈ ,,        (7.3) 

 

fmin,fmin,rfmin,pfmin, zzΦz +≈ ,,     

       

    (7.4) 

 

fpLoss,fpLoss,rfpLoss,pfpLoss, zzΦz +≈ ,,        (7.5) 

 

rmax,rmax,rrmax,prmax, zzΦz ≈ ,, +         (7.6) 

 

 rmin,rmin,rrmin,prmin, zzΦz +≈ ,,         (7.7) 

 

         rpLoss,rpLoss,rrpLoss,prpLoss, zzΦz +≈ ,,        (7.8) 

 

The functional data samples used to construct these reduced representations were 

generated separately for the front and rear motors through a LHS design of experiments 

consisting of m = 750 motor map samples each from fmotor.  During the sampling process, 

both functional data sample sets were interpolated onto prescribed, standard torque-speed 

meshes according to the same procedure described in Chapter 4.  These meshes were 

defined as  
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r the front and rear motors respectively, where np,τ,,f = np,τ,,r = 81 and np,ω,,f = np,ω,,r = 41. 

 Based on the definitions of the standard meshes, the numb  of di retize

 zmax, zmin, and zpLoss for the front and rear motor maps were qmax = 41, qmin = 41, and 

qpLoss = 3321, respectively.  Since qmax = qmin << m, the direct method outlined in 

quations (2.6)-(2.9) was used to develop the POD representations for the maximum and 

minimum motor torq rves.  Conversely, the method of snapshots descr

Equations (2.10)-(2.12) was used to develop the POD representations for the motor 

aps since q  >> m.  Table 7.2 lists the number of POD coefficients (and 

ample generation) was 1.53 s and 2.30 s. 

Table 7.2 Number of POD Coefficients for Front/Rear Motor Maps 

Motor Map zr,max zr,min zr,pLoss

fo

er sc d points 

in

E

ue cu ibed in 

power loss m pLoss

hence reduced representation variables) required for both the front and rear motor maps.  

In each case, it is evident that the combined dimensionality Q of the VVCVs was 

dramatically reduced from Q = qmax + qmin + qpLoss = 3403 to Q = pmax + pmin + ppLoss = 107 

and Q = 97, respectively.  Finally, note that the computational effort required for the 

development of the POD representations for the front and rear motor maps (excluding 

motor map s

Front 12 12 83 
Rear 11 11 75 
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 The accuracy of the POD representations for the front and rear m

quantified through AVASIM.  In particular, both 1D and 2D formulations were applied 

s appropriate using a uniform tolerance of toli = 0.10 to assess the accuracy of the torque 

s and power loss maps produced by the POD representations against the optimal 

rque curves and power loss maps produced by fmotor from the AiO optimization 

problem.  Note that like the demonstration in Chapter 2, all phase threshold coefficients 

were set to zero, and division-by-zero errors were avoided by setting δ 0-4 for t

rque curves and δ = 1 for the power loss maps based on experience.  Tables 7.3-7.4 

show the results from AVASIM, which are supplemented by visual comparisons in 

Figures 7.4-7.7.  Using this information, it can be reasonably assum

presentations for this study are accurate. 

In

otors was 

a

curve

to

 = 1 he 

to

ed that the POD 

re

Table 7.3 AVASIM Results for POD, Front Motor Map 

dex Max-Torque Min-Torque Power Loss 
Elocal 0.565 0.965 0.612 
Eglobal 0.980 0.986 0.883 
Ecomb 0.772 0.976 0.748 

 
Table 7.4 AVASIM Results for POD, Rear Motor Map 

Index Max-Torque Min-Torque Power Loss 
Elocal -0.332 0.894 0.436 
Eglobal 0.899 0.922 0.869 
Ecomb 0.284 0.908 0.652 
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Figure 7.4 Torque Cur e Comparison, ront Motors 
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Figure 7.5 Power Loss Map Relative Error, Front Motors 
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Figure 7.6 Torque Curve Comparison, Rear Motors 
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Figure 7.7 Power Loss Map Relative Error, Rear Motors 

150 

 



151 

 

7.3 SVDD for POD Model Validity Regions 

Since the SVDD augmentation was identified as the best constraint management 

approach for a similar case study in Chapter 6, the same method was implemented for the 

military EV powertrain design problem.  In particular, six SVDD models were developed 

to approximate the boundaries of the POD model validity regions associated with the 

maximum and minimum torque curves and power loss maps of the front and rear motors.  

The data sample vectors upon which the SVDD models were based were identical to 

those used for the POD representations but mapped appropriately into POD-space as 

indicated in Equations (6.14)-(6.16) for each set of motors.  Based on standard practice, 

these data sample vectors were subsequently normalized through the MATLAB® function 

mapminmax in order to improve the performance of their associated models.  From here, 

the slack variable penalty constants were set to Cp = 0.5, the overfitting targets were set to 

Ptarget = 0.10, and the  = 10-6 and q0,max = 

10 based on experience for each SVDD problem formulation.  In an effort to obtain the 

lobal optimum for the tuning problem in Equation (6.13), the non-gradient-based 

optimizer NOMADm was selected again.  However, because of the convexity of the 

SVDD optimization problem in Equation (6.10), the MATLAB® gradient-based optimizer 

fmincon [MATLAB® Function Reference] was selected.  In both cases, the default settings 

were appropriate for the optimizers.  Figures 7.8-7.13 illustrate portions of the optimal 

SVDD boundaries for two dimensions of the POD model validity regions associated with 

the torque curves and power loss map for the front and rear motors.  Finally, note that the 

total computational effort required for the development of the SVDD models for the front 

and rear motor maps was 5.76 hours and 5.36 hours, respectively. 

 kernel width parameter bounds were set to q0,min

g
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Figure 7.8 Partial SVDD Boundary, Front Max-Torque POD Model Validity Region 
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Figure 7.9 Partial SVDD Boundary, Front Min-Torque POD Model Validity Region 
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Figure 7.10 Partial SVDD Boundary, Front Power Loss POD Model Validity Region 
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Figure 7.11 Partial SVDD Boundary, Rear Max-Torque POD Model Validity Region 
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Figure 7.12 Partial SVDD Boundary, Rear Min-Torque POD Model Validity Region 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

zr,pLoss1

zr
,p

Lo
ss

2

SVDD: 75 Support Vectors, q0 = 0.14

 

 
support vectors
data samples

 

Figure 7.13 Partial SVDD Boundary, Rear Power Loss POD Model Validity Region 
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7.4 ATC Problem Formulation and Solutions 

The ATC problem formulation for the electric LTV consists of a two-level hierarchical 

decomposition based on Figure 3.14.  In this study, the objective of the vehicle 

subproblem is to maximize the range while minimizing the AL penalty function, whereas 

the objective of both motor subproblems is to minimize the AL penalty function 

exclusively.  Recall that these penalty functions ensure consistency, or agreement, among 

the coupled quantities from the vehicle and motor subproblems.  Although all of the 

subproblems are subject to decision variable bound constraints, only the vehicle 

subproblem contains additional constraints based on battery packaging, performance, 

motor feasibility, power availability, battery capacity, mobility, and occupant safety. 

 Applying Equation (2.2) directly, the vehicle subproblem P11, excluding decision 

variable bound constraints, is formulated as 
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g1-g12 from the AiO 

ilar 

anner

         

where the constraints g11,1-g11,12 are identical to the constraints 

problem formulation.  The vectors zcomb,f = [zmax,f, zmin,f, zpLoss,f] and zcomb,r = [zmax,r, zmin,r, 

zpLoss,r] refer to the combined vector of original VVCVs for the front and rear motors, 

respectively.  Likewise, the vectors zr,comb,f = [zr,max,f, zr,min,f, zr,pLoss,f] and zr,comb,r = [zr,max,r, 

zr,min,r, zr,pLoss,r] refer to the combined vector of reduced representation variables, which 

are POD coefficients.  Additionally, the vectors t22 and r22 include six scalar-valued 

coupling variables: ωmax,f, mm,f, Jr,f, Iym,f, Izm,f, and ym,f.  The vectors t23 and r23 also include 

similar scalar-valued coupling variables: ωmax,r, mm,r, Jr,r, Iym,r, Izm,r, and ym,r.  Finally, note 

that the superscripts T and R indicate target and response versions of the same coupling 

variable.  The front and rear motor subproblems P22 and P23 are formulated in a sim

m  as: 
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 Because the goal of this study was to observe the aggregate contributions of the 

best consistency measure and the best constraint management method in an ATC 

framework, the problem formulation in Equations (7.13)-(7.15) was solved using both the 

“standard” and alternative approach.  For the purposes of this study, the “standard” 

approach includes the RMSE consistency measure and the penalty-value based heuristic 

anagement, whereas the alternative approach refers to the generalized 

AVASIM consistency measure and the SVDD augmentation for constraint management.  

for constraint m



Note that the latter solution methodology requires weights to be prescribed within 

AVASIM, which were set to wlocal = 1/3 and wglobal = 2/3 based on experience.  It also 

introduces six SVDD-related constraints in the P11 subproblem: 
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,15,11 −= fpLoss,hypfpLoss,dist RRg x      (7.18) 
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,16,11 ≤−= rmax,hyprmax,dist RRg x      (7.19) 

 

           0)( 2
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2
,17,11 ≤−= rmin,hyprmin,dist RRg x      (7.20) 

 

         0)( 2
,11

2
,18,11 ≤−= rpLoss,hyprpLoss,dist RRg x      (7.21) 

Once again, NOMADm was selected as the optimizer in order to facilitate consistent 

results with the AiO problem formulation.  In the P11 subproblem, the default settings of 

were adjusted such that only a Latin hypercube search was p rform

1,000 function evaluations were permitted.  This was necessary to alleviate 

putational issues associated with memory availability.  However, in the P22 and P23 

 

this optimizer e ed and 

com

subproblems, the default settings for NOMADm were appropriate.  Finally, in the ATC 

coordination strategy, the weight update parameter was set to β = 2.75, the initial weight 

vectors were set to v = 0 and w = 1, and the tolerance on ||c(Κ) - c(Κ−1)||∞ for outer loop 

convergence was set to 10-2.  Due to the complexity of this design problem, all 

computational work was performed on a 2.8 GHz, 8 GB RAM, Intel® CoreTM i7 CPU.  

The solutions are part of ongoing work as it was seen that more experimentation with the 

overfitting targets within SVDD would be necessary to produce SVDD-related 
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.5 Summary 

his ch pter explored esign optimization of a military EV

n AiO problem formulation was introduced and solved and an ATC problem 

rmulation w s con ted.  The solutions of this la

formulation, which will be based on a “standard” (RMSE consistency measure and 

tic) and alternative (generalized AVASIM consistency 

easure and SVDD augmentation) approach, are part of o

omplexities of constructing effective SVDD-related constraints that enable convergence 

nd th  facilitate a lete comparative study.  It is ex

lternative approach will have significant benefits with respect to design solution 

ccurac  and verall utational effort based on indepen

Chapters 5-6. 

constraints that enable the convergence of the ATC formulation and thus facilitate a 

complete comparative study. 
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T a  the d  powertrain.  In particular, 
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fo a struc tter optimization problem 

penalty value-based heuris
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Chapter 8  

les that serve as a vital link for ensuring that the subsystem design 

solutions are consistent, or in agreement, with one another. 

Many times the coupling variables exchanged among the subsystems are few in 

number and scalar-valued, which readily enables the use of decomposition-based 

optimization strategies.  However, this dissertation presented other situations in which the 

coupling variables may be highly-discretized functional data, which lead to high-

dimensional, vector-valued quantities.  Because each element within these VVCVs is a 

decision variable in the ATC framework, the design problem can become prohibitively 

large for optimization.  While it is recognized that optimization with respect to highly-

discretized functional data may occur in AiO problem formulations as well, this issue is 

particularly acute in decomposition-based optimization strategies due to the additional 

computational overhead required for such approaches.  Therefore, it was necessary to 

identify and implement reduced representations of the VVCVs that enabled efficient, 

practical design optimization while maintaining reasonable accuracy. 

 

Conclusions 

With the advent of highly-sophisticated systems such as electric vehicles that require 

design knowledge from a variety of engineering disciplines, it becomes increasingly 

advantageous to implement formal, decomposition-based optimization strategies to 

facilitate design decisions.  In techniques such as ATC, this requires systems to be 

represented as a hierarchical composition of subsystems that interact with one another 

through the mutual exchange of information.  Such behavior is formally captured through 

coupling variab



160 

 

8.1 Summary 

In Chapters 1-2, POD was introduced as a promising reduced representation method 

since it utilized data samples exclusiv rmine the functional form of its 

approximation model, required min ns about the number of reduced 

representation variables (POD coefficients),  generated a relatively small number of 

such variables for approximation [ 2010a)].  Chapter 4 explored the 

capability of POD as a reduced representation method within ATC further by 

experimenting with a tuning parameter known as the CPV and observing its overall 

 enhanced the capability of 

achievi

ce error metric) for 

these functional data.  Since the literature did not indicate any well-established functional 

data consistency measure for decomposition-based design optimization, Chapter 1 

ely to dete

imal assumptio

 and

Alexander et al. (

impact on design solution accuracy and optimization efficiency.  This parameter, which 

balances dimensionality reduction (and hence the number of reduced representation 

variables) with model accuracy, was set to its “nominal” value (CPVgoal = 99.99%) as 

well as two other values (CPVgoal = 99.95% and CPVgoal = 99.85%) and yielded the best 

design solution in terms of accuracy and efficiency (minimal runtime) at CPVgoal = 

99.99%.  While the link between model accuracy and design solution accuracy was 

straightforward, the behavior with respect to optimization efficiency was not anticipated.  

It was reasoned that the high-fidelity POD representation

ng functional data consistency in ATC through additional degrees of freedom 

(POD coefficients), thus leading to fewer ATC iterations and a faster runtime.  Hence, it 

was concluded that high-fidelity POD representations would be most appropriate for the 

reduced representation of VVCVs in ATC. 

 Although the reduced representation variables served as decision variables during 

optimization, they still had to compute approximations of the corresponding functional 

data since these were needed in the underlying analysis models.  Moreover, since the 

functional data existed as coupled information in a decomposition-based optimization 

strategy, it was most meaningful to use the functional data directly to assess their 

discrepancies among similar information from other subproblems.  Because these 

discrepancies ultimately impact the convergence of the optimization strategy, it was 

necessary to implement an appropriate consistency measure (and hen
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 as an alternative to the “standard” RMSE metric since it could 

r the reduced representation variables.  

hile re

 

introduced AVASIM

systematically, objectively and efficiently provide a clear indication of local and global 

functional data accuracy with respect to preset thresholds [Sohns et al. (2006)].  The 

offline capability of AVASIM was demonstrated in Chapter 2 for both 1D and 2D 

applications, and its flexibility in allocating the importance of local versus global 

functional data accuracy through a generalized formulation was also highlighted.  

Chapter 5 then leveraged this capability to formally investigate AVASIM and generalized 

AVASIM as potential alternatives for measuring functional data consistency.  Based on 

the results, it was found that the generalized AVASIM consistency measure (with an 

emphasis on global accuracy) was ideal for functional data as it provided a clear 

indication of consistency and led to the most accurate design solution in the least amount 

of time.  In particular, the global measure was more stable than the local measure within 

generalized AVASIM and thus provided more accurate design solutions using fewer 

function evaluations. 

 Another issue that was highlighted in Chapter 1 was the inability to properly 

constrain the reduced representation variables.  Because many times these variables are 

abstract quantities, it can be challenging to identify their decision space (and hence model 

validity region) beyond simple variable bounds.  This assumption, however, could lead to 

ill-behaved analysis and optimization; therefore, it was necessary to implement an 

effective constraint management technique fo

W cent work demonstrated that a penalty value-based heuristic was effective, it also 

indicated that this approach was inefficient as it led to many optimization iterations and 

extensive runtimes.  Furthermore, more direct approaches such as probability density-

based models and convex hulling algorithms had significant shortcomings that made 

them unsuitable as competitive alternative solutions.  To address this issue, Chapter 6 

presented an alternative approach which augmented the penalty value-based heuristic 

with explicit constraints through SVDD.  The results from this study indicated that the 

SVDD augmentation was the best constraint management technique since it yielded the 

best design solution in terms of accuracy and efficiency (minimal computational effort). 

Moreover, it was indicated that this would be the most promising constraint management 
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ting SVDD-related constraints that enable convergence.  However, 

method for abstract decision variables in the majority of optimization problems (both 

decomposition-based and AiO) since the SVDD-related constraints forced the optimizer 

to perform more function evaluations in the feasible decision space, thus leading to a 

higher probability of convergence to the optimal design solution with fewer overall 

function evaluations (and hence less runtime) instead of convergence to any feasible (yet 

suboptimal) solution. 

 Finally, in an effort to examine the aggregate contributions of using the most 

promising POD representations, consistency measure, and constraint management 

technique in a single decomposition-based optimization framework, Chapter 7 proposed 

an ATC problem formulation for the larger-scale military EV powertrain model.  The 

complete comparative study between the “standard” (RMSE consistency and penalty 

value-based heuristic) and the alternative (generalized AVASIM consistency measure 

and SVDD augmenetation) solution approach is part of ongoing work due to the 

challenges in construc

it is expected that the alternative approach will yield significant contributions with 

respect to design solution accuracy and overall computational effort based on the 

independent results in Chapters 5-6. 

8.2 Relevance of Work 

Although all of the work in this dissertation is relevant to decomposition-based 

optimization strategies, two out of the three core research elements can be applied to any 

design optimization strategy in general, including single, AiO problem formulations.  In 

particular, the selection and constraint management of decision variables that serve as 

efficient alternatives to functional data in simulation-based design is critical in many 

problem domains.  For example, in controls-related problems, it is often desired to 

identify the optimal input signal to a dynamic system that can satisfy some prescribed 

output behavior.  This signal may be nominally represented through an extensive 

discretization with respect to its states which could lead to a prohibitively large number 

of decision variables in an optimization framework.  A reduced representation would be 

necessary to facilitate design optimization, and POD would be particularly appropriate 
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ptimization strategies only, the error metric upon which it is based 

n in such problems is typically a series of Bezier 

curves or B-splines, which are constructed from a set of control points in space.  For 

l points is usually small, but for more 

since it is a well-established dimensionality reduction technique for linear, time-invariant, 

state-space systems.  Furthermore, to ensure that the problem is well-posed with respect 

to the reduced representation variables, a constraint management approach such as the 

SVDD augmentation would be appropriate. 

 While the importance of a suitable consistency measure is relevant in 

decomposition-based o

can be implemented in a variety of situations.  In the context of design optimization, one 

could use the combined error index Ecomb within a generalized AVASIM formulation as 

the objective function for a curve-fitting problem similar to [Sohns et al. (2006)].  Such 

an approach would significantly enhance the meaning of the curve-fitting accuracy at the 

optimal solution compared to the RMSE measure.  The same can be said of AVASIM for 

offline (i.e., non-optimization) accuracy assessment applications.  Moreover, unlike many 

other error metrics, the proven capability of AVASIM for both 1D and 2D functional data 

demonstrates its potential for higher dimensional applications as well. 

 Finally, the ideas presented in this dissertation can be applied to simulation-based 

design problems involving computational geometry, as in Toal et al. [Toal et al. (2008)].  

The nominal geometric representatio

simple rectangular shapes, the set of contro

complex, freeform shapes, it can increase dramatically.  Furthermore, the number of 

control points can expand rapidly as the geometric design problem transitions from 2D to 

3D applications.  Such a geometric representation would make a formal design 

optimization study intractable since the control points would serve as decision variables.  

Therefore, an appropriate reduced representation along with a constraint management 

technique for its associated variables would be necessary for efficient, practical 

optimization.  Likewise, an accuracy assessment tool such as AVASIM would facilitate 

any comparisons between a full, computational geometric representation and its 

approximation.  This includes comparisons between 3D shapes since the 2D AVASIM 

formulation is designed to measure errors between surfaces. 
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ber of reduced representation variables 

 

ents 

8.3 Contributions 

This dissertation directly addressed the three research questions that were presented in 

Chapter 1.  To that end, the significant contributions to the research community are: 

1. The identification of the impact of the num

on the computational efficiency and accuracy of ATC.  This was done for POD 

only, and it was found that the highest model fidelity (and hence largest number 

of reduced representation variables) for POD yielded the best ATC design 

solution with respect to efficiency and accuracy. 

2.  The identification of a suitable consistency measure for coupled, functional data 

within an ATC framework.  In particular, it was found that the generalized 

AVASIM metric was an appropriate functional data consistency measure within 

ATC. 

3. The identification of an effective constraint management method for reduced 

representation variables in an optimization framework.  Specifically, it was

demonstrated that a penalty value-based heuristic coupled with SVDD was an 

appropriate constraint management approach for the reduced representation 

variables.  Note that the primary factor for the success of this method was SVDD.  

Also, although the original research question was addressed in an ATC 

framework, the general approach is applicable to almost any optimization 

problem with abstract decision variables.  Therefore, this research contribution 

has the broadest implications of any in this dissertation. 

In addition to these research contributions, the following practical contributions were 

made: 

4. The enhancement of a detailed, commercial EV powertrain model that was 

originally developed by Allison [Allison (2008)].  The most significant of these 

improvements was the inclusion of a motor mass analysis model to account for 

energy efficiency and vehicle range tradeoffs. 

5. The development of a large-scale, reconfigured version of the commercial EV 

powertrain model for a military vehicle application.  The new developm
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counting for power transmission (gearbox) design and a four-

is does not indicate that POD 

n introduced a better functional data consistency measure and 

oblem condition.  As 

y problem-dependent it would be ideal to 

rnative consistency measures based 

as well as its demonstrated capability for  higher dimensional (e.g., 2D) functional data. 

included a model ac

wheel drive version of the powertrain simulations. 

8.4 Future Work 

The most significant consideration that would enhance this work is the exploration of 

alternative reduced representation methods.  As it was stated in Chapter 1, POD is a very 

promising approach since it satisfies the selection criteria for a reduced representation 

better than many of the “classical” techniques.  However, th

is always the best technique; indeed, for many problems, it still requires more reduced 

representation variables than desired, which, for decomposition-based optimization 

strategies, would be equivalent to the number of local design variables in a subproblem.  

Because this dissertatio

constraint management method to support decomposition-based design optimization, 

comparative studies between POD and competitive alternatives such as wavelet 

decomposition would be easily facilitated.  Such studies should include, but not be 

limited to, the investigation of the impact of tuning parameters within the reduced 

representation models on the condition of the optimization problem. 

 Another aspect of this work that should be further investigated is a more complete 

assessment of the generalized AVASIM consistency measure.  This includes, but is not 

limited to, the improvement of the local error measure, the methodology for assigning 

weights to the local and global error indices, and their impact on pr

discussed in Chapter 2, the local error index can be rather unstable for target points near 

zero, and although this behavior is largel

identify general countermeasures beyond minimal weight allocation.  Chapter 5 

explained further that these weights were set based on experience and that such an 

approach may not be appropriate for other types of problems.  After completing newer 

studies, one may even consider the exploration of alte

on other error metrics; however, such an investigation would be a challenging task given 

the clarity in identifying functional data consistency provided by generalized AVASIM 
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mization solution.  Recall from 

Chapter 6 that it is almost always likely that the SVDD augmentation will improve the 

it imposes explicit constraints that restrict the search of the 

portant motor mass 

nalysi

 Another research question that should be explored in future work is the effect of 

the SVDD overfitting target on the accuracy of design opti

optimization runtime as 

optimizer to the feasible decision space.  However, it was also mentioned that an 

aggressive overfitting target increases the probability of overfitting error, which 

essentially means that some decision vectors, including the optimal decision vector, could 

be erroneously rejected from the feasible decision space.  This behavior has already been 

seen when attempting to solve the ATC problem formulation for the military EV 

powertrain model in Chapter 7.  In general, the extent to which this could occur is 

partially dependent on the sensitivity of the SVDD boundaries to changes in the 

overfitting target.  Therefore, such a study could provide greater insight into the strengths 

and limitations of SVDD for the constraint management of reduced representation 

variables. 

 Finally, from a design perspective, this work could be improved by the addition of 

more detailed EV powertrain analysis models and simulations.  The case studies in this 

dissertation have already shown how the inclusion of a simple, yet im

a s model can enhance the meaning of design tradeoffs such as energy efficiency 

and vehicle range.  The addition of other components such as explicit battery cost and 

thermal management models, power inverter models, improved motor models, and heavy 

duty transmission models would further capture the extensive tradeoffs for such a 

multidisciplinary design problem.  Moreover, a more detailed, comprehensive set of 

models could better demonstrate the utility of the research contributions discussed in this 

dissertation.
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