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CHAPTER I

Introduction

The two main topics we study in this thesis are the Azukawa metric and the pluri-

complex Green function. These two topics are closely related because the Azukawa

metric is defined in terms of the pluricomplex Green function.

The Azukawa metric is an example of a biholomorphically invariant pseudometric.

Recall that an invariant pseudometric on a domain Ω in Cn is a function FΩ(p, ξ) :

Ω× Cn → [0,∞) which satisfies

FΩ(p, λξ) = |λ|FΩ(p, ξ)

for all λ ∈ C, and under a biholomorphism Φ : Ω → Ω′ has the following behavior

FΩ(p, ξ) = FΩ(Φ(p), Φ′(p) · ξ).

Some of the most well known examples of invariant metrics are the Carathéodory,

Kobayashi and Bergman metrics. The Azukawa and Sibony metrics that we study

are most closely related to the Carathéodory and Kobayashi metrics, whereas the

Skwarczyński metric that we study is most closely related to the Bergman metric.

Invariant metrics are an important tool in Several Complex Variables, and more

recently they have also been used in Complex Dynamics. In Section 2.5 we discuss
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many examples of applications of invariant metrics.

At the end of the thesis we have a short section where we use the Skwarczyński

metric to study the Bergman space, which is the space of holomorphic L2 functions

on a domain. The Bergman space is a central class of functions and is widely studied.

The second main topic of this thesis, the pluricomplex Green function, is the

analog in Several Complex Variables of the classical Green function related to the

Laplace equation. The classical Green function is a tool used to solve the Laplace

equation. It is also closely related to harmonic and subharmonic functions, and in

particular it is a reproducing kernel for harmonic functions. The pluricomplex Green

function is closely related to the complex Monge-Ampère operator and plurisubhar-

monic functions. One way to define the pluricomplex Green function is as a solution

to the extremal problem

gΩ(z, a) = sup {u(z) : u ∈ K(Ω, a)} ,

where u ∈ K(Ω, a) if it satisfies the following three properties:

1. u is plurisubharmonic on Ω,

2. u ≤ 0 on Ω,

3. and u(z)− log ||z − a|| < c(u) in a neighborhood of a, where c(u) is a constant

depending on u.

It can also be defined as the solution to the following Monge-Ampère problem:

with Ω a domain in Cn and z ∈ Ω, does there exist a function uz(w) : Ω → [−∞, 0]

satisfying the conditions

1. (ddcuz)
n = 0 on Ω \ {z},
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2. uz(w) ∼ log ||z − w|| in a neighborhood of z,

3. uz is continuous on Ω and plurisubharmonic on Ω,

4. uz = 0 on ∂Ω.

We will study a particular generalization of the pluricomplex Green function pro-

posed by Al Taylor. In the process we study the behavior of the Monge-Ampère

operator on log ||F || near the singularities for a holomorphic function F , which is an

interesting topic in its own right.

We will now discuss the specifics of each chapter. In Chapter II we have some

background topics. First, we discuss the motivation behind generalizing the classical

Green function to the pluricomplex Green function, and we define a the further

generalized pluricomplex Green function that we will study in this thesis. Second,

we outline the background for Resolution of Singularities, which is a difficult theorem

we use in one of our proofs. Third, we discuss the basics of invariant metrics. Fourth,

we discuss some necessary background results from pluripotential theory. Finally, we

have a section listing many applications of invariant metrics.

In Chapter III we study the Azukawa and Sibony metrics. Our main theorem in

Chapter III is that the Azukawa metric is upper semicontinuous.

Theorem I.1. Let Ω ⊂ Cn be a domain, and let u(z, w) be the pluricomplex Green

function on Ω. Then u(z, w) is upper-semicontinuous.

We proved this result independently before discovering that Jarnicki and Pflug

already published it in [20], and we still include it in this thesis because it represents

work completed during the PhD. Next, we study the relationship between the closely

related Azukawa and Sibony metrics on some explicit examples. These metrics are
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known to be different, and we construct an explicit example of a domain on the

metrics are different.

Theorem I.2. The Azukawa and Sibony metrics are different on the domain Ω ⊂ C2

defined by

f(z, w) :=
1

4
log |z|+ 1

4
log |w|+ 1

4
log |z − w|+ 1

4
log |z − iw|

Ω = {(z, w) : f(z, w) < 0}

Finally, we study the hyperbolicity of the two metrics, and we construct a domain

on which pointwise hyperbolicity of the metrics is different.

Theorem I.3. There exists a pseudoconvex domain Ω ⊂ C2 that is Azukawa point-

wise hyperbolic but not Sibony pointwise hyperbolic. Define Ω to be

{
(z1, z2) ∈ C2 : |(z1, z2)| < f(z1, z2)

}
,

where f is defined as

(1.1) f(z1, z2) = f(z1/z2) =





(1 + |z1/z2|2)1/2e−v(z1/z2) z2 6= 0

1 z2 = 0

and v(λ) is defined as

v(λ) = max

{
log |λ|,

∞∑

k=2

k−2 log |λ− 1/k|
}

An interesting further direction would be to study non-pointwise hyperbolicity.
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In Chapter IV we study the regularity properties of a generalized pluricomplex

Green function. Recall that the pluricomplex Green function is the solution to an

extremal problem using plurisubharmonic functions with logarithmic singularities,

or the solution to a certain Monge-Ampère equation. There is a significant body

of research on a number of different generalized Green functions. The author is

grateful to Al Taylor for suggesting the particular generalized Green function in this

thesis, along with the question of whether it is plurisubharmonic. The main result

of Chapter IV is that this generalized Green function is plurisubharmonic when the

zeros of its related holomorphic function are isolated.

Theorem I.4. Let Ω be a domain in Cn, and let F : Ω → Cn be holomorphic with

isolated zeros. Then the generalized Green function U is plurisubharmonic.

In this section we also study a three simple cases where one can compare the

generalized Green function to the usual pluricomplex Green function. The first two

are based on the linear approximation of a holomorphic function.

Theorem I.5. Let Ω be a domain in Cn and let F : Ω → Cm be holomorphic. Then

we can compare the generalized Green function U to the usual pluricomplex Green

functions with poles at the zeros of ||F || as follows:

U(z) ≤ inf
{w:||F (w)||=0}

gΩ(z, w).

Theorem I.6. Let Ω be a domain in Cn and let F : Ω → Cm be holomorphic.

Suppose that the rank of the complex Jacobian is n at each point w with ||F (w)|| = 0.

If there is a function u satisfying u ∈ ∩{w:||F (w)||=0}K(Ω, w) then u ∈ T (Ω, F ). In

particular in the case where ||F || has a single zero, gΩ(z, w) ≤ U(z).

The third is for the case of homogeneous polynomials.
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Theorem I.7. Let Ω be a domain in Cn that includes the origin, and let F =

(f1, ..., fm) be a polynomial function where fi are all homogeneous polynomials of

the same degree, d, and which have common zero only at the origin. Then U(z) =

d · gΩ(z, 0), where gΩ(z, 0) is the usual pluricomplex Green function with pole at the

origin.

We have one other relatively simple theorem where we construct an invariant

νGL(Ω) for the behavior near the singularity.

Theorem I.8. Let Ω be a domain in Cn and let F : Ω → Cm be holomorphic. Sup-

pose there exists u ∈ ∩{w:||F (w)||=0}K(Ω, w). Suppose that the Green-Lelong numbers

exist and are positive at each point w where ||F (w)|| = 0, and that for each w there

is a number ε(w) > 0 such that there exists a function u satisfying 1
νGL

w (log ||F ||)+ε(w)
·

u(z) ∈ K(Ω, w) for each w, with u independent of w. Then u ∈ T (Ω, F ). In partic-

ular if ||F || has a single zero, then νGL(log ||F ||) · gΩ(z, w) ≤ U(z).

There is some hope that one could use generalized Green functions to define gen-

eralized Azukawa metrics. One potential application of generalized Azukawa metrics

would be to get better estimates on the boundary behavior of the Kobayashi metric,

since the Azukawa metric is a lower bound for the Kobayashi metric. The chapter is

organized into four sections: two comparing the generalized and usual Green func-

tions and two with different proofs of the main plurisubharmonicity result. Other

than constructing generalized Azukawa metrics, further directions for this research

include studying the same question where the zeros of the holomorphic function

are not isolated, studying the relationship between this generalized Green function

and the Green function with many poles in the case of isolated zeros, and checking

whether theorems known for the pluricomplex Green function will follow analogously
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for this generalized Green function now that plurisubharmonicity is known.

In Chapter V we include two examples which came up in the course of studying

the problems of Chapter III. First, we study balanced domains with holes. One

can write formulas for the Green function of balanced domains, so we extend these

formulas to balanced domains with holes.

Theorem I.9. Let Ω ⊂ Cn be a balanced pseudoconvex domain and let 0 denote the

origin in Cn. Let K ⊂⊂ Ω so that 0 /∈ K. Let D(z) = Ω ∩ {αz : α ∈ C} be the disk

through z and the origin. If D(z) ∩ K is a closed subset of D(z) which is the −∞

set for some plurisubharmonic function on D(z), then

uΩ\K(0, z) = uΩ(0, z) = log
||z||
r

,

where r is the radius of D(z). Also,

F
Ω\K
A (0, ξ) = FΩ

A (0, ξ) =
||ξ||
r

.

Fornaess and Lee recently studied the boundary behavior of various metrics on

the ring domain, which is a simple example of a balanced domain with holes, in [12].

Second, we study the boundary behavior of the pluricomplex Green function, which

came out of a larger study of the regularity of the Green function and Azukawa

metric. These were already known to not always be continuous, and we construct an

example where the Green function cannot be continuously extended to the boundary.

Theorem I.10. There exists a domain Ω ⊂⊂ C2 with (0, 0) ∈ Ω so that the pluri-

complex Green’s function with singularity at zero, uΩ,0, is not in C(Ω \ 0). The

domain Ω has the following defining function
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(1.2) log |(z, w)|+ max

{
−

∞∑
i=1

εi log
1

i
+

∞∑
i=1

εi log

∣∣∣∣
1

i
w −

(
1− 1

i

)
z

∣∣∣∣ ,−1

}

and εi are chosen so that

(1.3) −
∞∑
i=1

εi log
1

i

converges to a finite number [14, p.30].

In Chapter VI study the Skwarczyński metric, which is closely related to the

Bergman metric. Recall that the Bergman space of a domain is the space of L2

holomorphic functions on that domain, and that completeness of a metric roughly

means that boundary points are infinite distance from interior points. The main the-

orem in Chapter VI is that Skwarczyński complete domains have infinite dimensional

Bergman space.

Theorem I.11. If Ω is Skwarczyński complete, then the Bergman space, L2
h(Ω), is

infinite dimensional.

Our motivating question here is the well known problem of whether there exists

a pseudoconvex domain with finite dimensional Bergman space. Wiegerinck con-

structed an example of a non-pseudoconvex domain with finite dimensional Bergman

space in [34], but so far there are only partial results for pseudoconvex domains [21].

The main theorem in Chapter VI is joint work with Lina Lee, but I am including it in

this thesis because we don’t yet have plans to publish it elsewhere. Interesting further

directions for this research would be whether Bergman complete domains have infi-

nite dimensional Bergman space, and the related question of whether Skwarczyński

completeness implies Bergman completeness.



CHAPTER II

Background

2.1 Definition of a Generalized Pluricomplex Green Function

In this section we will discuss the pluricomplex Green function and a generalization

of it that we study in this thesis. For a detailed discussion of the pluricomplex Green

function and related problems, see [23].

The classical Green function is a tool from partial differential equations used to

solve the Laplace or Poission equations, which find harmonic functions or respec-

tively functions with prescribed Laplacians given given boundary values. This Green

function can be described either as a solution to a certain differential equation or as

the upper envelope of subharmonic functions with the given boundary values. It can

be used as a reproducing kernel to recover harmonic functions with given boundary

values, and it can also be used to give a proof of the Riemann Mapping Theorem.

Harmonic and subharmonic functions can be on open subsets of Rn, and thus

can also be defined on open subsets of Cn. However, they do not transform well

under holomorphic maps because the composition of a harmonic or subharmonic

function with a holomorphic map does not necessarily remain harmonic or subhar-

monic. Here’s a simple example: consider the function φ = |z|2− |w|2 on C2. To get

∆φ we calculate the following derivatives:

9



10

∂2

∂z∂z
φ = 1

∂2

∂w∂w
φ = −1,

so that φ is harmonic on C2. Now consider the funciton F : C2 → C2 which

sends (z, w) 7→ (zw, w). F is a biholomorphism off the line w = 0. But F ◦ φ is not

harmonic off the line w = 0. Calculating the derivatives we get:

∂2

∂z∂z
φ ◦ F = |w|2

∂2

∂w∂w
φ ◦ F = |z|2 − 1.

Thus ∆φ ◦ F = |z|2 + |w|2 − 1 so that φ ◦ F is not even subharmonic, much less

harmonic.

However, if we work in one dimesion, i.e. on a domain in C, harmonic and

subharmonic functions do transform well under holomorphic maps. In particular, if

φ is subharmonic or harmonic and F : Ω → Ω′ is holomorphic with Ω, Ω′ ⊂ C, then

φ ◦ F is subharmonic or harmonic.

To replace subharmonic and harmonic functions, in complex analysis people study

plurisubharmonic and pluriharmonic functions. These are required to be subhar-

monic or harmonic, respectively, on each complex line rather than on open sets. Like

harmonic and subharmonic functions in one dimension, these transform well under

holomorphic maps.

The analog of the classical Green function in complex analysis again has the

property of transforming well under holomorphic maps, because it is defined in terms

of plurisubharmonic functions or in terms of a Monge-Ampère equation.
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The pluricomplex Green function on a domain Ω ⊂ Cn with pole at a is defined

by

gΩ(z, a) = sup {u(z) : u ∈ K(Ω, a)} ,

where u ∈ K(Ω, a) if it satisfies the following three properties:

1. u is plurisubharmonic on Ω,

2. u ≤ 0 on Ω,

3. and u(z)− log ||z − a|| < c(u) in a neighborhood of a, where c(u) is a constant

depending on u.

It turns out that gΩ(z, a) ∈ K(Ω, a). The proof proceeds by considering the upper

semicontinuous regularization g∗Ω of gΩ, which is the smallest upper semincontinuous

function majorizing gΩ, or equivalently

g∗Ω(z, a) = lim sup
ζ→z

gΩ(ζ, a).

One shows that g∗Ω(z, a) ∈ K(Ω, a), and it follows that gΩ = g∗Ω. To show that g∗Ω

satisfies condition (1), one applies the following theorem of Lelong, see [27, p. 56]:

Theorem II.1 (Lelong). Let Ω be a domain in Cn and let (fi)i∈I be a family of

plurisubharmonic functions on Ω which is bounded above on compacts. Let F (z) =

supi∈I fi(z). Then the upper semicontinuous regularization F ∗(z) is plurisubhar-

monic on Ω.

It is clear that g∗Ω(z, a) satisfies condition (2). To show that g∗Ω satisfies condition

(3) one compares gΩ(z, a) to gBε(a)(z, a), where Bε(a) ⊂ Ω is a small ball centered

at a. On a ball, we can calculate the pluricomplex Green function by restricting
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to disks – they key point being that log ||z|| is harmonic on disks. This calculation

shows that the Green function on a ball centered at the origin is just log ||z/r||, were

r is the radius of the ball. It is easy to show that a smaller domain has a larger

Green function, so that

gΩ(z, a) ≤ gBε(a)(z, a) = log ||z − a||/ε,

whenever gΩ and gBε(a) are both defined, which is on Bε(a). Since log ||z − a||/ε

is already upper semicontinuous, we get that

g∗Ω(z, a) ≤ g∗Bε(a)(z, a) = log ||z − a||/ε,

and rearranging this equation shows that g∗Ω(z, a) satisfies condition (3).

We define a generalized pluricomplex Green function by replacing log ||z|| with

log ||F ||, where F : Ω → Cm is a holomorphic function, following a suggestion of B.

A. Taylor.

Definition II.2.

UΩ(z) = sup {u(z) : u ∈ T (Ω, F )} ,

where u ∈ T (Ω, F ) if it satisfies the following three properties:

1. u is plurisubharmonic on Ω,

2. u ≤ 0 on Ω,

3. and u(z) − log ||F (z)|| < c(u,w) in a neighborhood of each point w where

F (w) = 0, where c(u,w) is a constant depending on u and w.

Also following a suggestion of B. A. Taylor, we investigate the question of whether

UΩ ∈ T (Ω, F ). Our main result is the following:



13

Theorem II.3. Let Ω ⊂ Cn be a domain and let F : Ω → Cn be holomorphic with

isolated singularities. Then UΩ(z) ∈ T (Ω, F ).

2.2 Statement of Resolution of Singularities

In this section, we will outline the statement and definitions involved in Hironaka’s

resolution of singularities, which we will later use in our proof of Theorem II.3. Our

sources are Grauert, Peternell, and Remmert [15] and Rudin [30]. It is not necessary

for our result to use resolution of singularities in full generality, so we will refer the

interested reader to [15] for a more complete picture.

Definition II.4 (Complex Analytic Subvariety). Let Ω be an open set in Cn. A set

V ⊂ Ω is said to be an complex analytic subvariety, or subvariety, of Ω if

1. V is relatively closed in Ω

2. and every point p ∈ Ω has a neighborhood N(p) such that

V ∩N(p) = Z(f1) ∩ · · · ∩ Z(fr)

for some f1, ..., fr which are holomorphic on N(p), where Z(fi) denotes the zero

variety of fi.

Definition II.5 (Holomorphic map from a complex manifold to a complex analytic

subvariety). Let M be a complex manifold and let V be a complex analytic subvariety

in Cn. A map f : M → V is holomorphic if f is holomorphic when considered as a

map from charts in M to Cn.

Definition II.6 (Weak Resolution of Singularities). Let X be a complex analytic
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subvariety. A weak resolution of singularities of X is a proper surjective holomorphic

map f : X̃ → X such that X̃ is a complex manifold.

Hironaka proved the first major results on the existence of a resolution of singu-

larities [17], and the following statement is part of a general theorem that was proven

by Arcoa-Hironaka-Vincente [1] and Bierstone-Milman [5] [6].

Theorem II.7. Every complex analytic subvariety has a weak resolution of singu-

larities.

From now on we will abbreviate by just saying resolution of singularities. The

additional hypotheses in the full resolution of singularities hold in our case, but we

only need the hypotheses above for the proof of our theorem.

2.3 Basics of Invariant Metrics

In this section, we give discuss some of the common invariant metrics and their

properties. For more detailed discussion of the metrics, see [19].

Definition II.8. Let Ω ⊂ Cn be a domain, p ∈ Ω, and ξ = (ξ1, ..., ξn) ∈ Cn. Let ∆

be the unit disk in C, and let Bn(p, r) ⊂ Cn be the ball of radius r centered at p.

• Carathéodory pseudometric FΩ
C (p, ξ) is defined as

FΩ
C (p, ξ) = sup{|f ′(p) · ξ| : f ∈ O(Ω, ∆), f(p) = 0},

where O(Ω, ∆) is the set of holomorphic functions from Ω to ∆.

• Kobayashi pseudometric FΩ
K(p, ξ) is defined as

FΩ
K(p, ξ) = inf {|α| : f ∈ O(∆, Ω), f(0) = p,∃α > 0, αf ′(0) = ξ} ,
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where O(∆, Ω) is the set of holomorphic functions from ∆ to Ω.

• Sibony pseudometric FΩ
S (p, ξ) is defined as

FΩ
S (p, ξ) = sup



(∂∂u(p)(ξ, ξ))1/2 =

(
n∑

i,j=1

∂2u(p)

∂zi∂zj

ξiξj

)1/2

: u ∈ SΩ(p)



 ,

where SΩ(p) is the set of functions u such that u : Ω → [0, 1) vanishes at p, log u

is plurisubharmonic, and u is C2 near p.

• Azukawa pseudometric FΩ
A (p, ξ) is defined as

FΩ
A (p, ξ) = sup

{
lim sup

λ↘0

1

|λ|u(p + λξ) : u ∈ KΩ(p)

}
,

where KΩ(p) is the set of functions u such that u : Ω → [0, 1), log u is plurisub-

harmonic, and there exits M > 0, r > 0 such that Bn(p, r) ⊂ Ω and u(z) ≤

M‖z − p‖ for all z ∈ Bn(p, r).

Let KΩ be the Bergman kernel of Ω.

Definition II.9. The Bergman metric FΩ
B (p, ξ) is defined by

FΩ
B (p, ξ) =

(
n∑

ν,µ=1

∂2

∂zν∂zµ

log KΩ(z, z)ξνξµ

)1/2

provided that KΩ is nonvanishing on Ω.

A metric closely related to the Bergman metric is the Skwarczyński distance. It

is defined using the Bergman kernel as follows.

Definition II.10. The Skwarczyński distance ρΩ(z′, z′′) is defined by

ρΩ(z′, z′′) =

(
1− |KΩ(z′, z′′)|√

KΩ(z′, z′)
√

KΩ(z′′, z′′)

)1/2

.
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Except for the Bergman and Skwarczyński metrics the other four metrics are

non-increasing with respect to holomprhic mappings, that is, if Φ : Ω1 → Ω2 is

holomprhic, then FΩ1(p, ξ) ≥ FΩ2(Φ(p), Φ∗(ξ)) where FΩi is one of FΩi
C , FΩi

S , FΩi
A ,

and FΩi
K . Moreover, they satisfy the following relationship:

(2.1) FΩ
C (p, ξ) ≤ FΩ

S (p, ξ) ≤ FΩ
A (p, ξ) ≤ FΩ

K(p, ξ)

for all p and ξ. The Bergman metric behaves differently from the rest of metrics

in the sense that it does not have non-increasing property, nor does it fit in the

comparison (2.1). Between the Carathéodory and the Bergman metric the following

is known.

Theorem II.11 (K. Hahn, [16] ). In any complex manifold Ω, the Bergman metric

FΩ
B is always greater than or equal to the Carathéodory differential metric FΩ

C if M

admits them:

(2.2) FΩ
C (p, ξ) ≤ FΩ

B (p, ξ).

However, Kobayashi and Bergman metrics do not have any such relation and they

are in fact incomparable.

2.4 A Few Concepts from Pluripotential Theory

In this section we include statements of basic results from pluripotential theory

that we will use in this thesis. A more complete reference would be [23].

Maximum principles are results that say certain kinds of function must take their

maximums on the boundary. Below is the maximum principle for plurisubharmonic

functions.
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Theorem II.12 (The Maximum Principle for Plurisubharmonic Functions). Let Ω

be a bounded domain in Cn and let u ∈ PSH(Ω). Then either u is constant or for

each z ∈ Ω

u(z) < sup
w∈∂Ω

{
lim sup
y→w,y∈Ω

u(y).

}

A related concept is that of maximal plurisubharmonic functions.

Definition II.13 (Maximal Plurisubharmonic Function). Let u be a plurisubhar-

monic function on a domain Ω in Cn. We say u is maximal if for every G ⊂⊂ Ω and

for every function v which is upper semicontinuous on G and plurisubharmonic on

G and satisfies v ≤ u on ∂G, then v ≤ u on G as well.

The following theorem classifies maximal plurisubharmonic functions in terms of

the Monge-Ampère operator, see [23].

Theorem II.14. Let Ω be a domain in Cn and let u ∈ C2(Ω)∩PSH(Ω). Then u is

maximal if and only if (ddcu)n = 0 in Ω.

In parts of this thesis we will be working with hyperconvex domains, which are a

special kind of pseudoconvex domain defined by certain plurisubharmonic functions.

Definition II.15 (Hyperconvex). We say that a bounded domain Ω ⊂ Cn is hy-

perconvex if there is a continuous plurisubharmonic exhaustion function ρ : Ω →

(−infty, 0).

We also need to define the upper semicontinuous regularization of a function.

Definition II.16. Let Ω be a domain in Cn and let u : Ω → [−∞,∞) be a func-

tion that is locally bounded above near each point in Ω. Then define the upper

semicontinuous regularization u∗ of u by the formula
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u∗(x) = lim sup
y→x,y∈Ω

u(y).

The upper semicontinuous regularization is the smallest upper semicontinuous

function that majorizes the original function.

2.5 Applications of Invariant Metrics

Complex analysis in several varaibles turns out to be quite different from complex

analysis in one variable. There are many elegant tools in one complex variable that

fail catastrophically in more than one variable, and as a result there are many basic

questions still unanswered in higher dimensions. The Riemann Mapping Theorem is

an example of such a failure. The Riemann Mapping Theorem says that all simply

connected domains in C, other than C itself, are biholomorphic to the disk. Intu-

itively such domains are just the sets with no holes, so this represents quite a large

class of domains. The existence of the biholomorphism means that we can answer

all questions about such domains by answering them for the disk, and it is relatively

simple to do do complex analysis on the disk because of its symmetries. In contrast,

even the unit ball B(0, 1) and polydisk ∆(0, 1) are not biholomorphic in higher dime-

sions. Roughly, one can think of the ball as a circle and the polydisk as a square,

and they can be described precisely as:

B(0, 1) = {z ∈ Cn : ||z|| < 1}

and

∆(0, 1) = {z ∈ Cn : |z1| < 1, ..., |zn| < 1} .

The proof that there is no biholomorphism from the ball to the polydisk is not
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simple, and was quite surprising when it was first discovered. This proof relies on

invaraint metrics, which turn out to play a large role in several complex variables.

An invariant metric can be thought of as a way to measure distance that is in-

variant under biholomorphism, which means that if f is a biholomorphism from Ω1

to Ω2 then the distance between p and q in Ω1 is the same as the distance between

f(p) and f(q) in Ω2. Formally, we say that dΩ : Ω× Cn → [0,∞) is a pseudometric

if for all p ∈ Ω, λ ∈ C, and ξ ∈ Cn

dΩ(p; λξ) = |λ|dΩ(p; ξ).

A pseudometric is distance decreasing if for any f ∈ O(Ω1, Ω2) we have

dΩ2(F (p); F ′(p)ξ) ≤ dΩ1(p; ξ).

Distance decreasing metrics are an important subclass of invariant metrics, and

most of the metrics in this thesis will be distance decreasing. The above equation with

biholomorphic maps and equality would give the formal definition of biholomorphic

invariance. These pseudometrics do not directly give distances between two points,

but in most cases they can be integrated to give such distances.

Invariant metrics have many important applications in several complex variables.

One of the most obvious questions they can be used to answer is under what condi-

tions is a holomorphic map biholomorphic. There are a number of positive results

in this direction, including the following well known result of Cartan.

Theorem II.17 (Cartan [25]). Let Ω ⊂ Cn be a bounded domain, f : Ω → Ω be a

holomorphic map, and p be a fixed point. Then f is a biholomorphism if and only if

f is a Carathéodory or Kobayashi isometry at p.
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There are also more general results which give conditions for when a holomorphic

map between distinct domains is a biholomorphism [19]. One can also go the opposite

direction and get results which give necessary conditions for biholomorphisms. One

such result is the following theorem of Lempert.

Theorem II.18 (Lempert [19]). If Ω ⊂ Cn is biholomorphic to a bounded convex

domain, then the Carathéodory and Kobayashi metrics must be the same.

One of the most well known uses of invariant metrics to the problem of extend-

ing holomorphic functions to the boundary. Fefferman proved a well known result

regarding this problem using the Bergman metric.

Theorem II.19 (Fefferman, [11]). Let Ω1, Ω2 ⊂⊂ Cn be strictly pseudoconvex with

smooth boundaries and let F : Ω1 → Ω2 be a biholomorphism. Then F extends to a

diffeomorphism from Ω1 to Ω2.

Invariant metrics have also started finding applications in complex dynamics, and

in particular following result of Ueda has become a useful tool.

Theorem II.20 (Ueda [33]). Suppose f : Pk → Pk is holomorphic of degree d ≥ 2.

Then each Fatou component of f is Kobayashi hyperbolic.

An interesting result that can be proved with the Carathéodory metric is a theo-

rem of Reiffen about fixed points.

Theorem II.21 (Reiffen, [29]). Let Ω ⊂ Cn be a domain. Then a holomorphic

mapping f : Ω → Ω with f(Ω) ⊂⊂ Ω has a unique fixed point.

There has also been much research on automorphism groups using invariant met-

rics. An example of such a result is the following classification by Stanton.
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Theorem II.22 (Stanton, [32]). Let Ω be a bounded pseudoconvex domain in Cn

with smooth C1 boundary, and assume that the Carathéodory and Kobayashi metrics

are 1√
n+1

times the Bergman metric. Then Ω is biholomorphic to the ball.

This classification has a number of important consequences, including that any

strongly pseudoconvex domain is biholomorphically equivalent to the ball if and only

iff its automorphism group is not compact, and that a bounded domain with twice

differentiable boundary is biholomorphic to the ball if and only iff its automorphism

group acts transitively [19].

In addition to being useful in several complex variables, invariant metrics provide

relatively simple proofs to a number of difficult theorems from one complex variable,

including the Riemann Mapping theorem and Picard’s theorems. Also, the construc-

tion of the Carathéodory and Kobayashi metric can be viewed as a generalization of

the Schwarz lemma, and indeed one can use them to prove this lemma as well [26].



CHAPTER III

Results on the Azukawa and Sibony Pseudometrics

3.1 Upper-Semicontinuity of the Azukawa Metric and Green Function

The results from this section are results that I proved independently during my

PhD, but later found out that the results had already been proven by Jarnicki and

Pflug in [20].

In this section we study upper-semicontinuity of the Azukawa metric and the pluri-

complex Green function. Whenever the Green function u(z, w) is upper-semicontinuous,

the Azukawa metric is also upper-semicontinuous, [22], [19, p. 120]. We will prove

that the Green function is upper-semicontinuous in Theorem III.7, and the following

corollary follows from that result.

Corollary III.1. Let Ω ⊂ Cn be a domain, and let FΩ
A (z, ξ) be the Azukawa pseu-

dometric on Ω. Then FΩ
A (z, ξ) is upper-semicontinuous.

An application of Corollary III.1 is that the Azukawa metric is integrable and can

be used to define a related a pseudodistance on all domains.

A number of regularity results for the pluricomplex Green function are already

known. On bounded domains u(·, w) is locally uniformly continuous and u(z, ·) is

plurisubharmonic, c.f. [10], [27], [23]. On hyperconvex domains u is continuous,

and on pseudoconvex domains it is upper-semicontinuous, c.f. [10]. We show that

22
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u is upper semicontinuous on arbitrary domains. This answers a question asked by

Marek Jarnicki and Peter Pflug in [19].

We will provide a proof of local uniformity of u(·, w) on bounded domains for the

convenience of the reader.

Theorem III.2 (Demailly Lemma 4.13 1, [10]). Let Ω ⊂⊂ Cn be a domain and let

a ∈ Ω. Given ε > 0 and a neighborhood U of a, there exists a neighborhood U ′ of

a with U ′ ⊂⊂ U so that for all w1, w2 ∈ U ′ and for all z ∈ Ω \ {U} we have the

following inequality

(1 + ε)−1 ≤ u(z, w1)

u(z, w2)
≤ 1 + ε.

Proof. We would like to construct a candidate function c(z) for u(z, w2) based on

u(z, w1). Let B(a, α) ⊂ U with α > 0 such that B(a, α) ⊂⊂ Ω. Define

c(z) =





log ||z−w2||
R

||z − a|| < η

max
{

(1 + ε)u(z, w1), log ||z−w2||
R

}
||z − a|| > η.

where η ∈ (0, α) is yet to be determined. In order to show that c(z) is plurisubhar-

monic, we need to show that for w1, w2 in some neighborhood of a, when ||z−a|| = η

(3.1) (1 + ε)u(z, w1) ≤ log
||z − w2||

R
.

Since Ω is bounded we can find r and R ∈ (0,∞) so that for all w ∈ B(a, α)

B(r, w) ⊂ Ω ⊂ B(R,w).

1Note the hypothesis of a bounded domain is written at the beginning of section 4 in Demailly’s paper.
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Because larger domains have smaller Green functions, when w ∈ B(a, α) and

z ∈ Ω

(3.2) log

( ||z − w1||
R

)
≤ u(z, w1) ≤ log

( ||z − w1||
r

)
.

First let us work with the left hand side of equation 3.1. Using equation 3.2 we

have that when w ∈ B(a, α) and z ∈ Ω

(3.3) (1 + ε)u(z, w1) ≤ (1 + ε) log

( ||z − w1||
r

)
.

If we pick w1, w2 ∈ B(a, η/2) then for ||z − a|| = η

(3.4) η/2 < ||z − wi|| < 3η/2.

Combining equations 3.3 and 3.4 when w1 ∈ B(a, η/2) and ||z − a|| = η

(1 + ε)u(z, w1) ≤ (1 + ε) log

(
3η

2r

)
.

Now working with the right hand side of equation 3.1 and using equation 3.4 we

get when w2 ∈ B(a, η/2) and ||z − a|| = η

log
( η

2R

)
≤ log

( ||z − w2||
R

)

If we can pick η such that

(1 + ε) log

(
3η

2r

)
≤ log

( η

2R

)

then equation 3.1 will hold when w1, w2 ∈ B(a, η/2) and ||z − a|| = η. We can

algebraically rearrange this equation to find out exactly how small η must be. So
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now we have shown that c(z) is in fact plurisubharmonic for the appropriate choice

of η.

Furthermore, it is clear that c(z) < 0 on Ω and that on the neighborhood B(a, ν)

of a, c(z)− log ||z −w2|| = − log R. So c(z) is a candidate for the Green function on

Ω with singularity at w2. Thus on Ω, c(z) ≤ u(z, w2). Then when w1, w2 ∈ B(a, η/2)

and ||z − a|| > η we have

(3.5) (1 + ε)u(z, w1) ≤ u(z, w2)

We can make the same argument switching w1 and w2 to get

(3.6) (1 + ε)u(z, w2) ≤ u(z, w1)

Note that the inequality flips when we divide since the Greens functions are neg-

ative. Let U ′ = B(a, η/2). Then the two equations 3.5 and 3.6 give us the theorem.

Corollary III.3. On unbounded domains u(z, ·) is upper-semicontinuous for fixed

z.

Proof. If ∪nΩn = Ω with Ω1 ⊂ Ω2 ⊂ · · ·, then uΩn ↘ uΩ.

The following theorems are well known.

Theorem III.4. The function u(·, w) is upper-semicontinuous for fixed w on bounded

domains Ω ⊂ Cn.

Theorem III.5. Let {Ωn}n∈N be such that Ωn ⊂ Ωn+1 for all n, and let Ω = ∪n∈NΩn.

Then uΩn(z, w) ↘ uΩ(z, w).
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Now we will prove a lemma which shows that the Green function is upper-

semicontinuous on bounded domains.

Lemma III.6. Let Ω ⊂⊂ Cn be a bounded domain. Then the pluricomplex Green

function u(z, w) on Ω is upper-semicontinuous.

Proof. Let (a, b) be a point in Ω × Ω. If a = b then given a sequence (zi, wi) ∈

Ω × Ω converging to (a,a) and given ε > 0 small, we can find I1 so that for all

i > I, ||zi − wi|| < ε. Let dist(a, ∂Ω) = d. Then there exists I2 such that for all

i > I2, ||zi − a|| < d/2 so that B(zi, d/2) ⊂ Ω. Then for i > max I1, I2, u(zi, wi) <

log(2ε/d). Letting ε → 0, we see that

lim sup
(zi,wi)→(a,a)

u(zi, wi) = −∞,

giving us upper-semicontinuity on the diagonal.

So now assume that that a 6= b and let dist(a, b) = δ. Let (zi, wi) ∈ Ω × Ω such

that (zi, wi) → (a, b). We can apply Theorem III.2 with U = B(a, δ/2). We get a

neighborhood U ′ ⊂⊂ U of a, and since zi → a and wi → b we can find I such that

for all i > I, zi ∈ U ′ and wi /∈ U . We then get for i > I

(3.7) (1 + ε)−1u(a, wi) ≥ u(zi, wi) ≥ (1 + ε)u(a, wi).

Taking lim sup of both sides of the left hand inequality and applying Theorem

III.4, which says that that uw(z) is upper-semicontinuous in z, we get

lim sup
i→∞

u(zi, wi) ≤ lim sup
i→∞

(1 + ε)−1u(a, wi) ≤ (1 + ε)−1u(a, b).

Letting ε → 0 we are done.
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The main theorem of this section is the following.

Theorem III.7. Let Ω ⊂ Cn be a domain, and let u(z, w) be the pluricomplex Green

function on Ω. Then u(z, w) is upper-semicontinuous.

Proof of Theorem III.7. Let Ω ⊂ Cn be a domain, and let Ωn = Ω ∩ B(0, N).

Then Ω1 ⊂ Ω2 ⊂ · · · and Ω = ∪n∈NΩn. Therefore by Theorem III.5

uΩn(z, w) ↘ uΩ(z, w).

By Lemma III.6 uΩn(z, w) is upper-semicontinuous, and the decreasing limit of

upper-semicontinuous functions is again upper-semicontinuous.

3.2 Comparison of the Metrics

The Azukawa and Sibony metrics have similar definitions, with the Sibony metric

requiring more regularity of its candidate functions. The relationship between these

metrics was studied in [22], and it turns out that the two metrics are different in some

cases. Looking at the regularity of these metrics we see that the Azukawa metric is

upper-semicontinuous, but there is an example of a pseudoconvex domain on which

the Sibony metric is not upper-semicontinuous, c.f. [18]. Another way to see that

the two metrics are different is to look at their indicatrices, which are the unit balls

in the tangent space for a fixed point in the domain. The indicatrices for the Sibony

metric are always convex, c.f. [31], but for balanced domains the Azukawa indicatrix

at the origin is equal to the holomorphic hull of the domain, c.f. [3]. In this section

we will construct an explicit example of a domain where the two metrics are different.
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Theorem III.8. The Azukawa and Sibony metrics are different on the domain Ω ⊂

C2 defined by

f(z, w) :=
1

4
log |z|+ 1

4
log |w|+ 1

4
log |z − w|+ 1

4
log |z − iw|

Ω = {(z, w) : f(z, w) < 0}

Proof. Notice that Ω contains the complex lines L1 = {z = 0}, L2 = {w = 0}, L3 =

{z = w}, L4 = {z = iw}. So if u ∈ AΩ(0, 0), then u is bounded on Li, so constant

on Li for i between 1 and 4. Since u is constant on L1 and L2 we have that

(3.8)
∂2u

∂z∂z
(0, 0) =

∂2u

∂w∂w
(0, 0) = 0

The definition of complex partial differentiation is that for z = x + iy

∂u

∂z
=

∂u

∂x
− i

∂u

∂y

∂u

∂z
=

∂u

∂x
+ i

∂u

∂y

So for real valued u with w = s + it

∂2u

∂w∂z
=

∂

∂w

(
∂u

∂x
+ i

∂u

∂y

)

=
∂

∂s

(
∂u

∂x
+ i

∂u

∂y

)
− i

∂

∂t

(
∂u

∂x
+ i

∂u

∂y

)

=
∂2u

∂s∂x
+ i

∂2u

∂s∂y
− i

∂2u

∂t∂x
+

∂2u

∂t∂y
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∂2u

∂z∂w
=

∂

∂z

(
∂u

∂s
+ i

∂u

∂t

)

=
∂

∂x

(
∂u

∂s
+ i

∂u

∂t

)
− i

∂

∂y

(
∂u

∂s
+ i

∂u

∂t

)

=
∂2u

∂x∂s
+ i

∂2u

∂x∂t
− i

∂2u

∂y∂s
+

∂2u

∂y∂t

Since u is C2 in a neighborhood of (0, 0) we have that

(3.9)
∂2u

∂z∂w
(0, 0) =

∂2u

∂w∂z
(0, 0)

Since u is constant on L3, by taking the derivative in the direction (ξ1, ξ1) at the

point (0, 0) we get that

0 =
∂2u

∂z∂z
(0, 0)|ξ1|2 +

∂2u

∂w∂w
(0, 0)|ξ1|2

+
∂2u

∂z∂w
(0, 0)|ξ1|2 +

∂2u

∂w∂z
(0, 0)|ξ1|2

=
∂2u

∂z∂w
(0, 0)|ξ1|2 +

∂2u

∂w∂z
(0, 0)|ξ1|2

Combining this with observation 3.9 we get that

(3.10) 0 = 2Re
∂2u

∂z∂w
(0, 0)|ξ1|2

Now since u is constant on L4, by taking the derivative in the direction (iξ1, ξ1)

at the point (0, 0) we get that
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0 =
∂2u

∂z∂z
(0, 0)|ξ1|2 +

∂2u

∂w∂w
(0, 0)|ξ1|2

+ i
∂2u

∂z∂w
(0, 0)|ξ1|2 − i

∂2u

∂w∂z
(0, 0)|ξ1|2

= i
∂2u

∂z∂w
(0, 0)|ξ1|2 − i

∂2u

∂w∂z
(0, 0)|ξ1|2

Combining this with observation 3.9 we get that

(3.11) 0 = −2Im
∂2u

∂z∂w
(0, 0)|ξ1|2

Now combining observations 3.9, 3.10, and 3.11 gives us that

(3.12)
∂2u

∂z∂w
(0, 0) =

∂2u

∂w∂z
(0, 0) = 0

Since equations 3.8 and 3.12 hold for each u ∈ AΩ(0, 0), we have that FΩ
S (0, ξ) = 0

for every ξ ∈ C2.

Next, we would like to get a lower bound on the Azukawa metric that is greater

than zero in a direction ξ. We’d like to show that the definining function for Ω is

a competitor for the Green function, or in other words that f(z, w) ∈ PSΩ(0, 0).

By definition f(z, w) < 0 on Ω. It is clear that f(z, w) is plurisubharmonic on Ω.

Finally, to show that f(z, w) − log |(z, w)| is bounded above on a neighborhood of

(0, 0) we can split up log |(z, w)| to rewrite f(z, w)− log |(z, w)| as

1

4
log

|z|
|(z, w)| +

1

4
log

|w|
|(z, w)| +

1

4
log

|z − w|
|(z, w)| +

1

4
log

|z − iw|
|(z, w)|

which is bounded above on a neighborhood of (0, 0) since
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|z|
|(z, w)| ,

|w|
|(z, w)| ≤ 1

|z − w|
|(z, w)| ,

|z − iw|
|(z, w)| ≤

2 max{|z|, |w|}
|(z, w)| < 2

Thus f(z, w) ≤ gΩ,0. It follows that for ξ = (1, α)

lim sup
λ→0

ef(ξλ)

|λ| ≤ lim sup
λ→0

egΩ,0(ξλ)

|λ| = FΩ
A (ξ, 0)

Now we can simplify ef to get

ef(ξλ) = |λ||α|1/4|1− α|1/4|1− iα|1/4

Thus for α 6= 0, 1,−i,

lim sup
λ→0

ef(ξλ)

|λ| = |α|1/4|1− α|1/4|1− iα|1/4 > 0

Lemma III.9. If e2gΩ,P is C2 in a neighborhood of P , then

FΩ
S (P, ξ) =

(∑
i,j

∂2e2gΩ,P

∂zi∂zj

ξiξj

)1/2

Proof. Let ξ = (ξ1, ξ2) and let f be a competitor for the Green’s function. Now

suppose e2f(z,w) is C2 in a neighborhood of P . We will show that e2f is a competitor

for the Sibony metric. We have the four conditions

1. e2f(P ) = 0 since f(P ) = −∞

2. e2f(P ) is C2 in a neighborhood of P by assumption
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3. log e2f = 2f is plurisubharmonic since f is plurisubharmonic

4. 0 ≤ e2f ≤ 1 since f < 0

Conversely, we will show that given any u which is a competitor for the Sibony

metric, the function 1
2
log u(z, w) is a competitor for the Green’s function. We have

the three conditions

1. 1
2
log u is plurisubharmonic since log u is assumed to be plurisubharmonic for u

to be a competitor function for the Sibony metric.

2. 1
2
log u ≤ 0 on Ω since 0 ≤ u ≤ 1. Follow the argument for the pluricomplex

Green function: Suppose there is a point Q in Ω so that u(Q) = 1. Then

since u is plurisubharmonic, we can follow any path in Ω and use the maximum

principle to show that u ≡ 1. But then u(P ) 6= 0. So in fact we have that

0 ≤ u < 1, so 1
2
log u < 0.

3. We would like to show that

(3.13)
1

2
log u(z, w)− log |(z, w)| = 1

2
log

(
u(z, w)

|(z, w)|2
)

is bounded above on a deleted neighborhood of P . For small ε let

M = max
i,j

{
∂2u

∂zi∂zj

(z) : |(z1, z2)− P | < ε

}

For small ε such an M exists since u is C2 in a neighborhood of P . Note also

that u(P ) = 0 and all the first derivatives of u are zero at P because P is a

local minimum. Then for |(z, w)− P | < ε we can write
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u(z, w) = |u(z, w)| ≤ 16M |(z, w)|2

Which gives us that equation 3.13 is bounded above on a neighborhood of P

since

u(z, w)

|(z, w)|2 ≤ 16M

We now cliam that there is a bijective correspondence between competitors for

the Sibony metric (u), and competitors for the Green function (f) which are C2 in a

neighborhood of P . This is shown by the work above and the following two equations

e2 1
2

log u = u

1

2
log

(
e2f

)
= f

Now suppose that

(3.14) sup





(
n∑

i,j=1

∂2u

∂zi∂zj

(P )ξiξj

)1/2

: u ∈ AΩ(P )



 >

(∑
i,j

∂2e2gΩ,P

∂zi∂zj

ξiξj

)1/2

Note that the ≥ version of the inequality holds trivially because e2gΩ,P is assumed

to be C2 in a neighborhood of P and hence is a competitor function. So if we show

that > does not hold we will have equality. Let x, y be real vectors that span the

complex subspace generated by ξ. Then equation 3.14 is equivalent to

∂2u∗

∂2x
(P ) +

∂2u∗

∂2y
(P ) >

∂2e2gΩ,P

∂2x
(P ) +

∂2e2gΩ,P

∂2y
(P )

for some competitor for the Sibony metric u∗. Then either
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(3.15)
∂2u∗

∂2x
(P ) >

∂2e2gΩ,P

∂2x
(P )

or

(3.16)
∂2u∗

∂2y
(P ) >

∂2e2gΩ,P

∂2y
(P )

Again we note that u(P ) = e2gΩ,P (P ) = 0 and the first derivatives of each of these

are all zero. Then if either of equation 3.15 or equation 3.16 hold, u∗ > e2gΩ,P in a

neighborhood of P in either the x or the y direction. But 1
2
log u∗ is a competitor for

the Green function, so this is impossible.

Theorem III.10. There exists a bounded domain Ω ⊂ C2 on which the Sibony

and Azukawa pre-metrics are different. Let f(z, w) be as in Theorem III.8. Let

hR(z, w) = max{f(z, w), |(z, w)| −R}. Let

ΩR = {(z, w) : hR(z, w) < 0}

Then for large enough R, Ω := ΩR will work.

Proof. Notice that the disks D1 = {(0, w) : |w| < R}, D2 = {(z, 0) : |z| < R}, D3 =

{(z, z) : |z| < R/
√

2}, D4 = {(iw, w) : |w| < R/
√

2} are contained in ΩR and have

modulus R. Thus we get the inequality

gΩR,0|Di
≤ log

|(z, w)|
R

But since ΩR ⊂ BR, where BR is the ball of radius R, we get the inequality
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gΩR,0 ≥ log
|(z, w)|

R

Thus

gΩR,0|Di
= log

|(z, w)|
R

for i = 1..4. We can calculate the derivatives for e2gΩR,0 in some of these directions

to get estimates on the derivatives of u, for u in the admissible class for the Sibony

metric.

By the proof of Lemma III.9, 1
2
log u is a competitor for the Green function so

u ≤ e2gΩR,0 . Note that u(0, 0) = e2gΩR,0(0, 0) = 0. Also, u and e2gΩR,0 have a local

minimum at (0, 0), so all their first derivatives are zero at the origin. Thus

∂2u

∂2x
(0, 0) ≤ ∂2e2gΩR,0

∂2x
(0, 0)

And the same statements hold when replacing x with y, s, or t. Notice that

∂2u

∂z∂z
=

∂

∂z

(
∂u

∂x
+ i

∂u

∂y

)

=
∂

∂x

(
∂u

∂x
+ i

∂u

∂y

)
− i

∂

∂y

(
∂u

∂x
+ i

∂u

∂y

)

=
∂2u

∂2x
+ i

∂2u

∂x∂y
− i

∂2u

∂y∂x
+

∂2u

∂2y

=
∂2u

∂2x
+

∂2u

∂2y

This is a result about the mixed second derivative on D1, and the analogous result

will hold for Di with i = 2..4. So we have that for s in the direction of Di

∂2u

∂s∂s
(0, 0) ≤ ∂2e2gΩR,0

∂s∂s
(0, 0)
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By noticing that mixed second derivative on Di is 1/R2 for i = 1..4, we get that

for D1 and D2

∂2e2gΩR,0

∂z∂z
(0, 0) =

∂2e2gΩR,0

∂w∂w
(0, 0) =

1

R2

To calculuate the mixed second derivative on D3 in the direction ξ = (ξ1, ξ1)/|
√

2ξ1|,

we get that

∂2u

∂s∂s
(0, 0) =

1

2

∂2u

∂z∂z
(0, 0) +

1

2

∂2u

∂w∂w
(0, 0) +

1

2

∂2u

∂z∂w
(0, 0) +

1

2

∂2u

∂w∂z
(0, 0)

≤ 1

2R2
+

1

2R2
+

1

2

∂2u

∂z∂w
(0, 0) +

1

2

∂2u

∂w∂z
(0, 0)

Nothing that the second partial in the direction Di is also smaller than 1/R2, this

shows that

∣∣∣∣Re
∂2e2gΩR,0

∂z∂w
(0, 0)

∣∣∣∣ ≤ 2/R2

Similarly if we calculate the mixed second derivative on D4 in the direction ξ =

(iξ2, ξ2)/|
√

2ξ2|, we get that

∂2u

∂s∂s
(0, 0) =

1

2

∂2u

∂z∂z
(0, 0) +

1

2

∂2u

∂w∂w
(0, 0) + i

1

2

∂2u

∂z∂w
(0, 0)− i

1

2

∂2u

∂w∂z
(0, 0)

≤ 1

2R2
+

1

2R2
+ i

1

2

∂2u

∂z∂w
(0, 0)− i

1

2

∂2u

∂w∂z
(0, 0)

This shows that

∣∣∣∣Im
∂2u

∂z∂w
(0, 0)

∣∣∣∣ ≤ 2/R2

Thus for u a competitor for the Sibony metric we have that
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∑
i,j

∂2u

∂zi∂zj

(0, 0)ξiξj ≤ 1

R2
(|ξ1|2 + 4Reξ1ξ2 + |ξ2|2)

Which gives us that

FΩR
S (0, ξ) ≤ 1

R
(|ξ1|2 + 4Reξ1ξ2 + |ξ2|2)1/2

Next we would like to show that f(z, w) is a competitor for the Green function

on ΩR. We have the following

1. f(z, w) is clearly plurisubharmonic on ΩR.

2. f(z, w) < 0 on ΩR since by definition of ΩR both f(z, w) and |(z, w)| − R are

negative on ΩR.

3. In Theorem III.8 we showed that it is a competitor on Ω, giving us that f(z, w)−

log |(z, w)| was bounded above in a neighborhood of the origin. This carries over

to ΩR.

We can now follow the same proof as Theorem III.8 to get that in the direction

ξ∗ = (1, α)

FΩR
A (0, ξ∗) = |α|1/4|1− α|1/4|1− iα|1/4 > 0

The estimate on the Sibony metric in the direction ξ∗ would be

FΩR
S (0, ξ∗) ≤ 1

R
(1 + 4Reα + |α|2)1/2

Thus for large enough R when α 6= 0, 1, i

FΩR
S (0, ξ∗) < FΩR

A (0, ξ∗)
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Now ΩR is hyperconvex because hR(z, w)/R is a a continuous plurisubharmonic

exhaustion that takes values in [−1, 0).

1. hR(z, w)/R is clearly plurisubharmonic.

2. hR(z, w)/R is continuous because f(z, w) is countinuous outside of Di, |(z, w)|−

R is continuous everywhere, and |(z, w)| −R dominates on Di.

3. Both f(z, w) and |(z, w)|−R are always negative so their maximum is negative

on ΩR. |(z, w)| −R is larger than −R so our function takes values in [−R, 0)

4. Let S(c) = {(z, w) : hR(z, w)/R < −c}. Then S(c) = S1(c) ∩ S2(c) where

S1(c) = {(z, w) : f(z, w) < −c} and S2(c) = {(z, w) : |(z, w)| − R < −c}.

Looking at S2(c) gives us that S(c) ⊂ BR−c, so S(c) is compactly contained

away from the boundary of BR. Now notice that since f(z, w) is continuous

away from Li, so S1(c) must be compactly contained away from the boundary

of Ω. Thus S(c) is contained away from the boundary of ΩR and hR(z, w)/R is

an exhaustion.

3.3 Azukawa and Sibony Hyperbolicity

The Azukawa and Sibony metrics are closely related but different, so an interesting

question is whether Azukawa and Sibony hyperbolicity are equivalent. There are two

notions of hyperbolicity that one could study, which we define now.

Definition III.11 (Pointwise Hyperbolicity). We say that Ω ⊂ Cn is pointwise

hyperbolic with respect to a pseudometric FΩ
m(z, ξ) if for all ξ 6= 0, FΩ

m(z, ξ) > 0.

Definition III.12 (Hyperbolicity). We say that Ω ⊂ Cn is hyperbolic with respect
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to a pseudometric FΩ
m(z, ξ) if for all z ∈ Ω there exists a neighborhood U ⊂ Ω and a

constant C > 0 such that FW
m (z, ξ) ≥ C||ξ|| for all z ∈ U and ξ ∈ Cn.

Metric hyperbolicity as defined above is closely related to distance hyperbolicity.

Here distance refers to the corresponding distance given by integrating the metric,

which gives a distance between two points rather than assigning a length to each

tangent vector. Distance hyperbolicity means that any two non-equal points have

non-zero distance. For the Kobayashi metric, metric and distance hyperbolicity are

equivalent [19, p. 207]. For the Carathéodory metric, metric and distance hyperbol-

icity are equivalent for domains in C, but in higher dimensions the question is still

open [19, p. 207, p. 28]. On the other hand, pointwise hyperbolicity does not in

general imply distance hyperbolicity. Even though integrating over any given curve

results in a positive distance, the infimum over all curves may still be zero. For

an example of a domain that is pointwise hyperbolic with respect to the Kobayashi

metric but which is not Kobayashi hyperbolic, see [19, p. 98].

In order to find a relationship among hyperbolicities of various metrics, we first

look at how the metrics themselves are related. It is known that any distance de-

creasing map which agrees with the Poincare metric on the disk lies between the

Carathéodory and Kobayashi metrics [19, p. 17], so we get the following inequality

FΩ
C (z, ξ) ≤ FΩ

S (z, ξ) ≤ FΩ
A (z, ξ) ≤ FΩ

K(z, ξ).

Thus Carathéodory (pointwise) hyperbolicity ⇒ Sibony (pointwise) hyperbolicity

⇒ Azukawa (pointwise) hyperbolicity ⇒ Kobayashi (pointwise) hyperbolicity. The

domain C \ {0, 1} shows that Kobayashi (pointwise) hyperbolicity is not equivalent

to Carathéodory, Sibony, or Azukawa (pointwise) hyperbolicity in general. For hy-

perbolicity of this domain, one just notes that it is covered by the disk, c.f. [19, p.
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206]. For pointwise hyperbolicity, one can apply Landau’s theorem. A special case

of Landau’s theorem that will suffice is the following.

Theorem III.13 (Landau). Let f : D→ C \ {0, 1} be a holomorphic mapping with

expansion

f(z) = a0 + a1z + a2z
2 + · · ·,

where a1 6= 0. Let τ denote the inverse of the elliptic modular function. Then

1 ≤ 2Im (τ(a0))

|a1||τ ′(a0)|

A proof of Landau’s theorem can be found in [8, p. 196-197]. We will now use

Landau’s theorem to show that C \ {0, 1} is pointwise Kobayashi hyperbolic.

Proposition III.14. The domain C \ {0, 1} is pointwise Kobayashi hyperbolic.

Proof. Let p ∈ Ω and let f : D −→ Ω be a holomorphic mapping with f(0) = p.

Then by Theorem III.13, we have

1

|f ′(0)| ≥
|τ ′(p)|

2Im {τ(p)}

As τ is conformal, τ ′ does not vanish. Since this estimate is independent of f , the

Kobayashi metric does not vanish.

For our theorem about Azukawa and Sibony pointwise hyperbolicity we will need

the following definition.

Definition III.15. Let λ be in the unit disk. We say that Ω ⊂ Cn is a balanced

domain if z ∈ Ω ⇒ λz ∈ Ω. The Minkowski function h(z) : Cn → R of a balanced

domain Ω is given by

(3.17) h(z) = inf {t > 0 : z/t ∈ Ω} .
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Notice that Ω = {z ∈ Cn : h(z) < 1}. It is known that if Ω is a balanced domain,

then the pluricomplex Green function is given by

(3.18) u(0, w) = h(w),

and the Azukawa metric is given by

(3.19) FΩ
A (0, ξ) = h(ξ),

where h is the Minkowski function on Ω, c.f. [19, p. 119].

One might suspect that Azukawa and Sibony hyperbolicity could be equivalent

since the two metrics are so closely related. We will give an example of a pseu-

doconvex domain which is pointwise Azukawa hyperbolic but not pointwise Sibony

hyperbolic. The domain we use was constructed by Azukawa in [2].

Theorem III.16. There exists a pseudoconvex domain Ω ⊂ C2 that is Azukawa

pointwise hyperbolic but not Sibony pointwise hyperbolic. Define Ω to be

{
(z1, z2) ∈ C2 : |(z1, z2)| < f(z1, z2)

}
,

where f is defined as

(3.20) f(z1, z2) = f(z1/z2) =





(1 + |z1/z2|2)1/2e−v(z1/z2) z2 6= 0

1 z2 = 0

and v(λ) is defined as

v(λ) = max

{
log |λ|,

∞∑

k=2

k−2 log |λ− 1/k|
}
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Proof. Azukawa showed in [2] that Ω is a balanced pseudoconvex domain, so we can

apply equation 3.19 to get that

(3.21) FΩ
A ((0, 0), ξ) = h(ξ),

where h is the Minkowski function defined in equation 3.17.

Complex lines through the origin are of the form (aτ, bτ) with a, b ∈ C constants

and τ ∈ C a complex parameter. So when z2 6= 0, |z1/z2| = a/b is well defined and

finite. We want to check that no complex lines through the origin are contained in

Ω. If Ω contained a complex line through the origin, we would have f(aτ, bτ) = ∞

for some (a, b). In the case z2 6= 0, since a/b is finite we don’t need to worry about

the term (1 + |z1/z2|2)1/2. The exponential term could only cause us trouble if

v(z1/z2) = −∞. Since v is defined as a maximum, both terms in it would have to be

−∞. The first term being −∞ would mean that z1/z2 = 0, i.e. a = 0. Once a = 0,

the second term becomes
∑∞

k=2 k−2 log(1/k), which converges to a finite number.

Thus Ω contains no complex lines through the origin. Then by formula 3.21, Ω is

Azukawa pointwise hyperbolic at the origin.

On the other hand, candidates for the Sibony metric must lie underneath the

Green function. Since Ω is a balanced pseudoconvex domain, we can apply equation

3.18 to get u(0, w) = log h(w). Again considering complex lines through the origin,

(aτ, bτ), we see that if a = 1/k and b = 1 then the second term in v(λ) is −∞. Since

the first term is log |1/k|, we see that a disk of radius k(1+ |1/k|2)1/2 in that direction

is contained in Ω. As k → ∞ we get disks of arbitrarily large radius through the

origin, and the directions of these disks approach the direction z1 = 0. Since Ω

contains arbitrarily large disks near z1 = 0 and since candidates v for the Sibony

metric are C2 near the origin, we must have v|{z1=0} = 0 near the origin. Thus the
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Sibony metric in this direction is zero.

Note that this provides an example of a domain that is Kobayashi pointwise

hyperbolic at the origin but not Kobayashi hyperbolic, since balanced domains are

Kobayashi hyperbolic if and only if they are bounded, [24].

This result contrasts the result for distance hyperbolicity. Kodama showed that

for balanced domains, Carathéodory distance hyperbolicity and Kobayashi distance

hyperbolicity are equivalent, and that these two properties are also equivalent to the

domain being bounded, [24]. For Kobayashi distance hyperbolicity the metric must

be locally uniformly bounded away from zero, which our example is not.

It would be an interesting question to see whether Azukawa and Sibony hyper-

bolicity are equivalent.



CHAPTER IV

A generalized pluricomplex Green function

4.1 Some Simple Cases

In this section we will study the generalized Green function U from Definition

II.2 in Section 2.1 in certain cases that have simple proofs. We will prove three

theorems which compare the generalized Green function to the usual pluricomplex

Green function.

Theorem IV.1. Let Ω be a domain in Cn and let F : Ω → Cm be holomorphic.

Then we can compare the generalized Green function U to the usual pluricomplex

Green functions with poles at the zeros of ||F || as follows:

U(z) ≤ inf
{w:||F (w)||=0}

gΩ(z, w).

Proof. Let F = (f1, ..., fm). Then each fi is totally differentiable since the partial

derivatives exist and are continuous. Assume that w = 0. So we get

44
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lim sup
z→0

|fi(z)|
||z|| ≤ lim sup

z→0

|fi(z)− f ′i(0) · z|+ |f ′i(0) · z|
||z||

≤ lim sup
z→0

|fi(z)− f ′i(0) · z|
||z|| + lim sup

z→0

|f ′i(0) · z|
||z||

= lim sup
z→0

|f ′i(0) · z|
||z||

≤ lim sup
z→0

||f ′i(0)|| · ||z||
||z||

= ||f ′i(0)||.

Thus

lim sup
z→0

||F (z)||2
||z||2 = lim sup

z→0

m∑
i=1

|fi(z)|2
||z||2 ≤

m∑
i=1

||f ′i(0)||2.

So for any competitor u ∈ T (Ω, F ), in a neighborhood of the origin

u(z) ≤ log ||F (z)||+ c(u)

= log ||z||+ log
||F (z)||
||z|| + c(u)

≤ log ||z||+ c′(u),

which shows that u ∈ K(Ω, 0), i.e. u is also a candidate for the usual pluricomplex

Green function, gΩ(z, 0) on Ω. Taking the supremum over u ∈ T (Ω, F ) we get that

U(z) ≤ gΩ(z, 0). We were assuming w = 0 but this argument would work for any

w ∈ Ω.

An easy example in which the generalized Green function is strictly less than

the Green function even when F has a single isolated zero is the unit disk with the
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function F (z) = z2. Then Green function on the disk is log |z|, but log |z| − log |z|2

is unbounded as z → 0.

Theorem IV.2. Let Ω be a domain in Cn and let F : Ω → Cm be holomorphic.

Suppose that the rank of the complex Jacobian is n at each point w with ||F (w)|| = 0.

If there is a function u satisfying u ∈ ∩{w:||F (w)||=0}K(Ω, w) then u ∈ T (Ω, F ). In

particular in the case where ||F || has a single zero, gΩ(z, w) ≤ U(z).

Proof. Again assume that w = 0. We will do something similar to the last proof, ex-

cept now we will consider the reciprocal of ||F (z)||
||z|| . We can use the triangle inequality

and the fact that F is totally differentiable to show that

lim inf
z→0

m∑
i=1

|fi(z)|2
||z||2 ≥ lim inf

z→0

m∑
i=1

(−|fi(z)− f ′i(0) · z|+ |f ′i(0) · z|)2

||z||2

≥ lim inf
z→0

(
m∑

i=1

|f ′i(0) · z|2
||z||2

+
m∑

i=1

|fi(z)− f ′i(0) · z|2 − 2|fi(z)− f ′i(0) · z| · |f ′i(0) · z|
||z||2

)

≥ lim inf
z→0

m∑
i=1

|f ′i(0) · z|2
||z||2

+ lim inf
z→0

m∑
i=1

|fi(z)− f ′i(0) · z|2 − 2|fi(z)− f ′i(0) · z| · |f ′i(0) · z|
||z||2

= lim inf
z→0

m∑
i=1

|f ′i(0) · z|2
||z||2 ,

so that

(4.1) lim sup
z→0

||z||2
||F (z)||2 =

1

lim infz→0

∑m
i=1

|fi|2
||z||2

≤ 1

lim infz→0

∑m
i=1

|f ′i(0)·z|2
||z||2

.

Equation 4.1 will be bounded above if
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m∑
i=1

|f ′i(0) · z|2
||z||2 =

m∑
i=1

∣∣∣∣f ′i(0) · z

||z||

∣∣∣∣
2

is bounded away from zero in a neighborhood of the origin, which occurs if and

only if the kernel of the complex Jacobian is zero.

So for any competitor u ∈ K(Ω, 0), in a neighborhood of the origin

u(z) ≤ log ||z||+ c(u)

= log ||F (z)||+ log
||z||

||F (z)|| + c(u)

≤ log ||F (z)||+ c′(u).

We were assuming that w was the origin, but this argument would work for any

w ∈ Ω. So if we have a function

u ∈ ∩{w:||F (w)||=0}K(Ω, w),

then u ∈ T (Ω, F ), i.e. u is also a candidate for the generalized Green function,

U(z) on Ω.

Another case with a simple proof is the case where F is a homogeneous polynomial.

Theorem IV.3. Let Ω be a domain in Cn that includes the origin, and let F =

(f1, ..., fm) be a polynomial function where fi are all homogeneous polynomials of

the same degree, d, and which have common zero only at the origin. Then U(z) =

d · gΩ(z, 0), where gΩ(z, 0) is the usual pluricomplex Green function with pole at the

origin.
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Proof. We can scale the domain to assume that it contains the unit ball. Let

M = max {||F (z)|| : ||z|| = 1} and let m = min {||F (z)|| : ||z|| = 1}. Note that by

assumption m 6= 0. By homogeneity when z 6= 0

F (z) = ||z||dF (z/||z||),

so that

m||z||d ≤ ||F (z)|| ≤ M ||z||d.

Thus in a neighborhood of the origin any candidadate u ∈ T (Ω, F ) satisfies

u(z) ≤ log ||F (z)||+ c(u)

≤ d log ||z||+ log M + c(u),

so that 1
d
u ∈ K(Ω, 0), i.e. it is a candidate for the usual pluricomplex Green

function. Furthermore, given a candidate u′ ∈ K(Ω, 0) we have that

du′(z) ≤ d log ||z||+ d · c(u′)

≤ d log ||z||+ log m− log m + d · c(u′)

≤ log ||F (z)||+ C ′(u′),

so that du′ ∈ T (Ω, F ).

4.2 A Lelong Type Number

In this section our motivating question to see under what conditions the general-

ized Green function can be compared to a multiple of the usual pluricomplex Green
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function.

The Lelong number is a number associated to a singularity of a plurisubharmonic

function, which measures in some sense the strength of the singularity.

Definition IV.4 (Lelong Number). Let Ω be a domain in Cn and let φ be a plurisub-

harmonic function on Ω. Let w be a singularity of φ, i.e. a point in Ω so that

φ(w) = −∞. The Lelong number of φ at w is given by

νL(φ) = lim
r→0

supB(w,r)φ

log r
.

We will define another number associated to a plurisubharmonic function, moti-

vated by the Lelong number but tailored to our particular situation. We will call

this the Green Lelong number because of Theorem IV.6.

Definition IV.5 (Green Lelong Number). Let Ω be a domain in Cn and let φ be a

plurisubharmonic function on Ω . Let w be a singular point of φ. Then we define

the Green-Lelong number to be

νGL
w (φ) = lim

r→0

inf∂B(0,r) φ

log r
,

if such a limit exists.

If there is no chance of confusion we will drop the index w on the Green Lelong

number and just say νGL(φ).

Theorem IV.6. Let Ω be a domain in Cn and let F : Ω → Cm be holomorphic.

Suppose that the Green-Lelong numbers exist and are finite at each point w where

||F (w)|| = 0, and that for each w there is a number ε(w) > 0 such that there

exists a function u satisfying 1
νGL

w (log ||F ||)+ε(w)
· u(z) ∈ K(Ω, w) for each w, with u
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independent of w. Then u ∈ T (Ω, F ). In particular if ||F || has a single zero, then

νGL(log ||F ||) · gΩ(z, w) ≤ U(z).

Proof. Let us start with the case of a single isolated zero w = 0. Since we are

assuming νGL(log ||F ||) > 0, the limit in the Green Lelong number exists. Given

ε > 0 we can find r∗(ε) so that for all r < r∗(ε), on ∂B(0, r),

inf∂B(0,r) log ||F ||
log r

− ε ≤ νGL(log ||F ||),

so that for ||z|| = r < r∗(ε)

νGL(log ||F ||) · log ||z|| = νGL(log ||F ||) · log r

≤ inf
∂B(0,r)

log ||F || − ε log r,

≤ log ||F (z)|| − ε log r,

= log ||F (z)|| − ε log ||z||,

so that for ||z|| < r∗(ε)

(νGL(log ||F ||) + ε) log ||z|| ≤ log ||F (z)||.

This means that if 1
νGL(log ||F ||)+ε

u ∈ K(Ω, 0) then u ∈ T (Ω, F ). Thus

U(z) = sup
u∈T (Ω,F )

u(z)

≥ sup
1

νGL(log ||F ||)+ε
u∈K(Ω,0)

u(z)

= sup
v∈K(Ω,0)

(νGL(log ||F ||) + ε)v(z)

= (νGL(log ||F ||) + ε)gΩ(z, 0).
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Letting ε → 0 we get the result in the case of a single zero.

In the case of more zeros, at each zero w we can work out the inequality given by

the the Green Lelong number at w. Following an argument analogous to the case of

a signle zero, given ε(w) > 0 we can find a neighborhood N(w) of w where

(νGL
w (log ||F ||) + ε(w)) log ||z − w|| ≤ log ||F (z)||.

The result now follows.

Now we will work out an example where one can calculate the Green Lelong

number explicitly.

Example IV.7. Let F = (z, z + w2) be defined on the unit ball in C2. Then the

only zero of F is at the origin.

First we calculate the Lelong number of log ||F ||, which turns out to be 1. By

picking a particular point, z = r and w = 0, we know that the supremum lies above

that and we get the following inequality.

lim sup
r→0

supB(0,r)
1
2
log(|z|2 + |z + w2|2)

log r

≥ lim sup
r→0

1
2
log(2r2)

log r

= 1

Notice that the same inequalities hold for lim inf. On the other hand using the

fact that |z| and |w| are each necessarily less than r, we can show the other inequality.



52

lim sup
r→0

supB(0,r)
1
2
log(|z|2 + |z + w2|2)

log r

= lim sup
r→0

supB(0,r)
1
2
log(2|z|2 + |w|4 + zw2 + w2z)

log r

= lim sup
r→0

supB(0,r)
1
2
log(2|z|2 + (r2 − |z|2)2 + 2Re(w2z))

log r

= lim sup
r→0

supB(0,r)
1
2
log(2(1− r2)|z|2 + r4 + |z|4 + 2Re(w2z))

log r

≤ lim sup
r→0

1
2
log(2r2 + 2r3)

log r

= lim sup
r→0

log(r2) + log(2 + 2r)

2 log r

= 1

Again, the same inequalities hold for lim inf, so in fact the limit exists and is 1.

Next we will calculate the Green Lelong number of log ||F ||, which turns out to

be two. By picking a particular point: z = 0 and w = r, we know that the infimum

will lie below that and we get the following inequality.

lim sup
r→0

inf∂B(0,r)
1
2
log(|z|2 + |z + w2|2)

log r

≤ lim sup
r→0

1
2
log(r4)

log r

= 2

Again, the same inequality holds with lim inf. On the other hand on the sphere

||(z, w)|| = r, we get the following inequalities. The first inequality below follows

from the fact that 2Re(w2z) ≥ −2(r2−|z|2)|z| and the second inequality follows from

dropping some positive terms.
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lim sup
r→0

inf∂B(0,r)
1
2
log(|z|2 + |z + w2|2)

log r

= lim sup
r→0

inf∂B(0,r)
1
2
log(2|z|2 + |w|4 + zw2 + w2z)

log r

= lim sup
r→0

inf∂B(0,r)
1
2
log(2|z|2 + (r2 − |z|2)2 + 2Re(w2z))

log r

= lim sup
r→0

inf∂B(0,r)
1
2
log(2(1− r2)|z|2 + r4 + |z|4 + 2Re(w2z))

log r

≥ lim sup
r→0

inf∂B(0,r)
1
2
log(2(1− r2)|z|2 + r4 + |z|4 − 2(r2 − |z|2)|z|)

log r

= lim sup
r→0

inf∂B(0,r)
1
2
log(|z|4 + 2|z|3 + 2(1− r2)|z|2 − 2r2|z|+ r4)

log r

≥ lim sup
r→0

inf∂B(0,r)
1
2
log(2(1− r2)|z|2 − 2r2|z|+ r4)

log r

Notice that the equation f(x) = 2(1− r2)x2 − 2r2x has critical point at x∗ when

4(1− r2)x∗ − 2r2 = 0, or

x∗ =
r2

2(1− r2)
,

and f(x∗) takes the value

f(x∗) =
2(1− r2)r4

4(1− r2)2
− 2r4

2(1− r2)
=

r4

2(1− r2)
− 2r4

2(1− r2)
=

−r4

2(1− r2)
,

which is negative for r small enough. We claim that this is a minimum of f(x):

the second derivative is 4(1 − r2) which is positive; and at the endpoints we have

f(0) = 0, and for f(r) we calculate

2(1− r2)r2 − 2r4 = 2r2 − 4r4 = 2r2(1− 2r2),
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which is positive for r small enough. So we get

lim sup
r→0

inf∂B(0,r)
1
2
log(|z|2 + |z + w2|2)

log r

≥ lim sup
r→0

1
2
log

(
−r4

2(1−r2)
+ r4

)

log r

= lim sup
r→0

1
2
log

(
(1−2r2)r4

2(1−r2)

)

log r

= lim sup
r→0

1
2
(log(1− 2r2) + log r4 − log(2− 2r2))

log r

= 2

Again, the same inequalities hold with lim inf, so the limit exists and is 2.

4.3 Behavior under Holomorphic Maps

Let Ω be a domain in Cn and let F : Ω → Cm be holomorphic. Consider a second

domain Ω′ in Cl and a holomorphic function h : Ω′ → Ω. We would like to compare

the generalized Green function on Ω associated to the function F , call this UF
Ω , to

the generalized Green function on Ω′ associated to the function F ◦h, call this UF◦h
Ω′ .

Let u ∈ T (Ω, F ) be a candidate function on Ω. We would like to show that u ◦ h

is a candiate function on Ω′, i.e. u ◦ h ∈ T (Ω′, F ◦ h). It is clear that u ◦ h is

negative and plurisubharmonic on Ω′, so all we need to do is check its behavior near

singular points. Let w ∈ Ω′ be a point where ||F (h(w))|| = 0. We know that in a

neighborhood N of h(w) in Ω

u(z) ≤ log ||F (z)||+ c(u).

Let N ′ = h−1(N). Then N ′ is an open set in Ω′ that contains w. Since for each

z′ ∈ N ′ we know that h(z′) ∈ N , we get that for z′ ∈ N ′
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u(h(z′)) ≤ log ||F (h(z′))||+ c(u)

Thus u ◦ h ∈ T (Ω′, F ◦ h).

Lemma IV.8. Let Ω be a domain in Cn and let F : Ω → Cm be a holomorphic

function on Ω. Let Ω′ in Cl be a second domain and let h : Ω′ → Ω be a holomorphic

function. Then the generalized Green function related to F on Ω is related to the

generalized Green function related to F ◦ h on Ω′ by

UF◦h
Ω′ (z′) ≥ UF

Ω (h(z′)).

for z′ ∈ Ω′.

Proof. In the argument above, we have shown that if u ∈ T (Ω, F ) then u ◦ h ∈

T (Ω, F ◦ h). Thus

UΩ′(z
′) ≥ sup

u∈T (Ω,F )

u ◦ h(z′) = UΩ(h(z′)).

In the case of a biholomorphism, we get equality in the lemma above.

Corollary IV.9. Let Ω and Ω′ be domains in Cn and let B : Ω′ → Ω be a biholo-

morphism. Let F : Ω → Cm be a holomorphic function. Then the generalized Green

functions related to F ◦B on Ω′ and F on Ω are related by

UF◦B
Ω′ (z′) = UF

Ω (B(z′)).

for z′ ∈ Ω′.
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Proof. We immediately get that

UF◦B
Ω′ (z′) ≥ UF

Ω (B(z′)).

Now if we consider B−1 : Ω → Ω′ together with the function F ◦B on Ω′ we get

UF◦B◦B−1

Ω (z) ≥ UF◦B
Ω′ (B−1(z)).

for z ∈ Ω. Setting z = B(z′) we get the desired result.

If we specialize to the case where h = i, the inclusion map, we get the following

result that we will make use of in this thesis.

Corollary IV.10. Let Ω′ ⊂ Ω be domains in Cn and let i : Ω′ → Ω be the inclusion

map. Let F : Ω → Cm be a holomorphic function. Then the generalized Green

functions related to F on Ω′ and Ω are related by

UΩ′(z
′) ≥ UΩ(z′).

for z′ ∈ Ω′.

Using this corollary about the behavior of the generalized Green function under

inclusion, we will now prove the key lemma for our main result in the special case

of one dimension. We will start by defining the domain where we will ultimately be

able to calculate the Taylor Green function in both one and higher dimensions.

Definition IV.11 (The domain BF
ε (w)). Let Ω ⊂ Cn and let F : Ω → Cn be

holomorphic with w ∈ Ω being a point where ||F (w)|| = 0. We use the notation

BF
ε (w) to denote the connected component containing w of the open set

{z ∈ Ω : ||F (z)|| < ε} .
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Now we will work with this domain in one dimension, and in sections 4.4 and 4.5

we will work with this domain in higher dimensions.

Theorem IV.12. Let Ω be a domain in C and let f : Ω → C be holomorphic with

isolated zeros. Then U(z) ≤ log |f |+ c(w) near points w where f(w) = 0.

Proof. We claim that we can pick ε small enough so that Bε(w) ⊂⊂ Ω and so that w

is the only zero of f in Bε(w). Take a Euclidean ball of small radius r around w which

is compactly contained in Ω and whose closure contains no zeros of f other than w.

If for all ε, Bε(w) is not contained in this Euclidean ball then by connectedness of

Bε(w) we can find a point of length equal to r in Bε(w), which we will call zε. The

sequence z1/n will have a convergent subsequence, converging to z of length r, and by

continuity f(z) = 0, which violates our assumption that the closure of the Euclidean

ball had no zeros other than w. Consider now instead the domain B = Bε(w). We

claim that UB = log |f/ε|. Suppose that there exists a candidate function u∗B that is

larger than log |f/ε| at some point. By taking max {u∗B, log |f/ε|}, we may assume

u∗B ≥ log |f/ε|. Then u∗B extends continuously to the boundary and is zero there.

We know that log |f | is harmonic off of w and u∗B − log |f | is bounded above in a

neighborhood of w, so that u∗B − log |f/ε| extends to be subharmonic on B. Then

u∗B − log |f/ε| ≡ 0 by the maximum principle because it is nonnegative and zero on

the boundary, which shows that UB = log |f/ε|. Since UΩ ≤ UB the result follows.

4.4 Plurisubharmonicity with Isolated Zeros using Resolution of Singu-
larities

In this section we will study the generalized Green function U defined in definition

II.2 in a case that is more complicated than the examples from the previous chapter.
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We present our first proof of Theorem II.3, which follows the outline of the proof in

the case of the pluricomplex Green function. In this case however, we must work

with varieties and ultimately use Resolution of Singularities to get the result.

Recall the definition of the domain Bε(w) from definition IV.11.

Lemma IV.13. Let Ω ⊂ Cn and let F : Ω → Cn be holomorphic with isolated zeros,

and let w ∈ Ω be such that ||F (w)|| = 0. For small enough ε we get the following

three properties:

1. BF
ε (w) contains no zeros of F other than w.

2. BF
ε (w) ⊂⊂ Ω.

3. The sets {En}n∈N, defined by

En = {||F (z)|| < ε− 1/n} ∩BF
ε (w),

are open and their closures,
{
En

}
, give a compact exhaustion of BF

ε (w). We

also get the slightly stronger result that En ⊂ En1 as opposed to the usual En

being a subset of the interior of En+1. Also,

∂En ⊂ {||F (z)|| = ε− 1/n} .

and

∂BF
ε (w) ⊂ {||F (z)|| = ε} .
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Proof. (1) Since F has isolated zeros there is some euclidean ball around w of radius

r, Br(w), which contains no zeros of F other than w and so that Br(w) ⊂⊂ Ω.

We claim that for small enough ε, BF
ε (w) ⊂ Br(w). Suppose that for every ε >

0, there is a point p(ε) ∈ BF
ε (w) so that p(ε) /∈ Br(w). Then there is a path

γp(ε) from w to p(ε) so that γp(ε) ⊂ BF
ε (w) since BF

ε (w) is path connected. Since

||γp(ε)(0)|| = 0, ||γp(ε)(1)|| ≥ r, and ||γp(ε)|| is continuous, there is some t∗ ∈ (0, 1)

such that ||γp(ε)(t
∗)|| = r/2. Consider ε = 1/n. Then since Br/2(w) is compact, the

sequence γp(1/n)(t
∗) has a subsequence converging to the point γ∗ ∈ Br/2(w). Since

||F (γp(1/n)(t
∗))|| < 1/n and F is continuous, ||F (γ∗)|| = 0. But we assumed that F

has no zeros in Br(w) other than w, and ||γ∗−w|| = r/2. Thus there exists ε > 0 so

that BF
ε (w) ⊂ Br(w).

(2) Let Br(w) be defined as above. Since Br(w) ⊂⊂ Ω, we get that BF
ε (w) ⊂⊂ Ω

as well.

(3) It is clear from the definition, since ||F || is continuous, that En is open.

By saying that
{
En

}
are a compact exhaustion of BF

ε (w) we mean that

1. En are compact in BF
ε (w)

2. En is contained in the interior of En+1

3. and ∪nEn = BF
ε (w).

To show (1), let us first consider En to be the closure of En in Cn, rather than Ω.

We will later show that both closures are the same. Clearly in this sense En ⊂ BF
ε (w),

which is contained in Ω by (2). Now F is defined on all of Ω, so in particular it is

continuous across the boundary of BF
ε (w). We claim that
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(4.2) ∂BF
ε (w) ⊂ {||F (z)|| = ε} .

If b ∈ ∂BF
ε (w) then there is a sequence bi → b with bi ∈ BF

ε (w). In particular

||F (bi)|| < ε, so ||F (b)|| ≤ ε by continuity of ||F ||. On the other hand, if ||F (b)|| < ε

then write ||F (b)|| = ε − c with c > 0. The set {||F (z)|| < ε− c/2} is open and

contains b, meaning that on some ball Nc centered at b, ||F (z)|| < ε − c/2. Since

b ∈ ∂BF
ε (w), Nc ∩BF

ε (w) is nonempty. But then Nc ⊂ BF
ε (w) since Nc is connected,

intersects BF
ε (w), and ||F || < ε on Nc. This contradicts the assumption that b is in

the boundary of BF
ε (w), so it is impossible for ||F (b)|| to be strictly smaller than ε.

We would like to use equation (4.2) to show that En ⊂ BF
ε (w). For every point

a ∈ ∂En there is a sequence ai → a with ai ∈ En. In particular, ||F (a)|| ≤ ε − 1/n

by continuity of ||F ||. This means that a /∈ ∂BF
ε (w), so that a ∈ BF

ε (w) since

En ⊂ BF
ε (w). Thus En ⊂ BF

ε (w). By part (2) BF
ε (w) ⊂⊂ Ω, so En is bounded, and

thus compact, in Cn.

It follows that En is compact in BF
ε (w) since it is contained in BF

ε (w), and any

cover of open sets in BF
ε (w) is a cover of open sets in Cn as well.

Note that while we initially were using the notation En to be the closure of En

in Cn, now that we showed En ⊂ BF
ε (w) it is equivalent to consider En to be the

closure of En in BF
ε (w).

To show (2), we claim that

(4.3) ∂En ⊂ {||F (z)|| = ε− 1/n} .

Using the same notation as above, we know that ||F (a)|| ≤ ε − 1/n. Since a ∈

BF
ε (w), if ||F (a)|| < ε − 1/n then a ∈ En so (4.3) follows. This means that En ⊂
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En+1, and En+1 is open so it is a subset of the interior of En+1.

For condition (3), clearly ∪nEn = BF
ε (w).

Lemma IV.14. Let K ⊂ BF
ε (w) be compact, and let V ⊂ BF

ε (w) be a complex

analytic variety. Then K ∩ V is compact in V .

Proof. The topology on V is the subspace topology coming from BF
ε (w). Let {Ui}i∈I

be open sets in V whose union covers K ∩ V . Then there are open sets U ′
i ⊂ BF

ε (w)

so that U ′
i ∩ V = Ui. We would like ot add more open sets to form a cover of K. We

know that V is closed in BF
ε (w) since it is the intersection of the zero sets of finitely

many holomorphic functions. For each point x ∈ K \ V pick a neighborhood Ux so

that Ux ⊂ BF
ε (w) \ V . Then

{U ′
i}i∈I ∪ {Ux}x∈K\V

is an open cover of K. Since K is compact there is a finite subcover which after

reindexing includes {U ′
1, ..., U

′
n} and no other U ′

i . Then {U1, ..., Un} covers K ∩ V

since Ux ∩ V = ∅ for all x ∈ K \ V .

For a reference for the following lemma about extending plurisubharmonic func-

tions across closed negative infinity sets of plurisubharmonic functions, see [23][p.

71].

Lemma IV.15. Let Ω ⊂ Cn be an open subset, and let F be a closed subset of Ω

of the form F = {z ∈ Ω : v(z) = −∞}, where v is plurisubharmonic on Ω. If u is

plurisubharmonic on Ω \ F and u is bounded above, then the function ũ defined by
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ũ(z) =





u(z) : z ∈ Ω \ F

lim supy→z,y /∈F u(y) : z ∈ F

is plurisubharmonic on Ω. If Ω is connected, then so is Ω \ F .

We will use the following elementary lemma in the course of proving Theorem

IV.19. A proof can be found in [28][p. 97].

Lemma IV.16. Let A be a subset of a topological space X; let A′ be the set of all

limit points of A, where x ∈ X is a limit point of A if every neighborhood of x

intersects A in some point other than x itself. Then A = A ∪ A′, where A is the

intersection of all closed sets containing A.

We will use the following two easy lemmas in the course of proving Theorem

IV.19.

Lemma IV.17. Let S1 ⊂ S2 ⊂ M , where M is a topological manifold, and let S2

have the subspace topology given by M . Notice if S2 ⊂ Ω where Ω is a domain in

Cn, then S2 having the subspace topology given by Ω is the same as S2 having the

subspace topology given by Cn. Let S1 be the closure of S1 in S2, i.e. the smallest

closed set in S2 containing S1, which is the intersection of all closed sets in S2 which

contain S1. Then if x ∈ S1 there exist xi ∈ S1 so that xi → x.

Proof. If not, there exists an open set U containing x which is disjoint from S1. Let

N = U |S2 , so that N is open in S2 and N c, the complement of N in S2, is closed

in S2. Now S1 ⊂ N c, so we have that S1 ⊂ N ′ := N c ∩ S1. But then N ′ is closed

in S2, contains S1 and is stricly smaller than S1 since it does not contain x. This

contradicts the assumption that S1 is the smallest closed set in S2 containing S1. So

every ball centered at x ∈ S1 must contain a point from S1.
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Lemma IV.18. Let S1 ⊂ S2 ⊂ Cn be sets so that S2 is given the subspace topology

from Cn and S1 is closed in S2. Let xi ⊂ S1 and x ∈ S2 be such that xi → x. Then

x ∈ S1.

Proof. If x /∈ S1, there would be an open set U ⊂ Cn containing x so that U ∩S1 = ∅.

But every such U contains the tail end of the sequence xi.

For an explanation of the domain BF
ε (w), see definition IV.11.

Theorem IV.19. Let Ω ⊂ Cn and let F : Ω → Cn be holomorphic with an isolated

zero at w. Then for ε small enough, UBF
ε (w) = log ||F (z)/ε||.

Proof. Our strategy will be to show that UBF
ε (w) = log ||F (z)/ε|| by restricting to

varieties on which − log ||F || is subharmonic. Along these varieties we will be able to

apply the maximum principle to UBF
ε (w)−log ||F/ε|| to show that UBF

ε (w) ≤ log ||F/ε||.

Since log ||F/ε|| is itself a candidate function for UBF
ε (w), this inequality will be enough

to prove the result.

Pick ε > 0 as in Lemma IV.13. Let p ∈ BF
ε (w) with p 6= w, so that fi(p) 6= 0 for

some 1 ≤ i ≤ n. We can renumber so that f1(p) 6= 0. We define a complex analytic

variety Vp passing through p as follows:

Vp = BF
ε (w) ∩

n⋂
i=2

{
fi(p)

f1(p)
f1 = fi

}
.

Notice that Vp is dimension at least one since F maps into Cn, and is nonempty

because it contains at least p and w. Also, every point in Ω is in such a subvariety

because if p 6= w then p ∈ Vp, whereas w is in every such subvariety.

The purpose of defining Vp in this way is so that on Vp we can write F in terms

of f1. This leads us to the equation



64

(4.4) log ||F/ε|| = log |f1/ε|+ c(Vp) on Vp,

where

c(Vp) = log

√√√√1 +
n∑

i=2

∣∣∣∣
fi(p)

f1(p)

∣∣∣∣
2

.

Actually the variety Vp is not so dependent on the point p in the sense that if

p′ ∈ Vp with p′ 6= w, then Vp = Vp′ . The first point to note is that, according to

the defining equations for Vp, if f1(p
′) = 0 then ||F (p′)|| would be zero, which is

impossible. Plugging p′ into the defining equations for Vp and keeping in mind that

f1(p
′) 6= 0 shows that for each i = 2, ...n we have

fi(p)

f1(p)
=

fi(p
′)

f1(p′)
.

Thus the defining equations for Vp and Vp′ are identical. Also, the constant c(Vp)

only depends on the variety Vp and not the point p used to define it, as the notation

suggests. Finally, notice that it makes no sense to talk about Vw since w ∈ Vp for

every p ∈ BF
ε (w).

We will now work on the desingularization manifold for Vp, see Theorem II.7. Our

notation for the resolution of singularities for Vp will be π : Ṽp → Vp. Let u ∈ T (Ω, F )

be a candidate for UBF
ε (w), as defined in the introduction, and consider the function

h on Ṽp defined by

h :=u ◦ π − log ||F ◦ π/ε||(4.5)

=u ◦ π − log |f1 ◦ π/ε| − c(Vp).(4.6)
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The function u is plurisubharmonic on BF
ε (w) and π is holomorphic on Ṽp, so

u ◦ π is plurisubharmonic on Ṽp. On Ṽp, log |f1/ε| is harmonic or pluriharmonic

away from π−1(w) since f1 maps into C. Thus, h is plurisubharmonic away from

π−1(w). If we show that h is bounded above, since the zero set of a holomorphic

function is closed, we can use Lemma IV.15 locally on Ṽp to show that h extends to

be be subharmonic or plurisubharmonic on Ṽp. Let N(w) be a neighborhood of w in

BF
ε (w) on which u − log ||F || is bounded above. Then Ñ := π−1(N(w)) is open in

Ṽp and contains π−1(w), and h is bounded above on Ñ . Suppose there is a sequence

of points ti ∈ Ṽp \ Ñ so that F (π(ti)) → 0. Since BF
ε (w) is compact, a subsequence

π(tij) converges to a point in BF
ε (w). By Lemma IV.13 parts (1) and (3), w is the

only zero of F in Ω, π(tij) converges to w. However, then tij are arbitrarily close

to the set π−1(w), but this contradicts the assumption that ti ∈ Ṽp \ Ñ . Thus h is

bounded above on Ṽp and so extends to be plurisubharmonic.

Thus the maximum principle holds for h on Ṽp for each p. In order to finish the

proof of Theorem IV.19 we need to construct a compact exhaustion of Ṽp, so that

the values of h on the boundary of these compact sets approach zero. Then we will

be able to apply the maximum principle to get that u ◦ π ≤ − log ||F ◦ π/ε|| on Ṽp.

Since π is surjective onto Vp, and since the Vp’s cover BF
ε (w), this will mean that

u ≤ log ||F/ε|| on BF
ε (w).

By Lemma IV.13 the sets En are open and
{
En

}
n∈N is a compact exhaustion of

BF
ε (w). Let

En
p = En ∩ Vp.

We would like to show that the sets En
p are open in Vp and that

{
En

p

}
n∈N is a

compact exhaustion of Vp. Notice here that En
p is the closure of En

p in Vp. It is clear
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that En
p are open in Vp since Vp has the subspace topology from BF

ε (w) and En is

open in BF
ε (w). To show that a family of sets {Kn}n∈N is a compact exhaustion of

a domain, manifold, or variety X, we need to show

1. Kn are compact in X,

2. Kn are contained in the interior of Kn+1,

3. and ∪nKn = X.

To show (1) for Kn = En
p in X = Vp, we claim that

En
p ⊂ En ∩ Vp.

First, we claim that we can apply Lemma IV.16 with A = En
p and X = Vp to

show that if x ∈ En
p then there exist xi ∈ En

p with xi → x. If x ∈ En
p then this is

clear because we can set xi = x for all i. If x /∈ En
p then by Lemma IV.16, x is a limit

point of En
p in Vp. Thus every neighborhood of x intersects En

p in some point other

than x itself. Since Vp’s topology is the subspace topology from Cn, neighborhoods

are given by euclidean balls intersected with Vp, so that inside each ball of radius

1/i centered at x we can find a point in En
p . These points will be xi. Since xi ∈ En

p ,

xi ∈ En as well. Next we will apply Lemma IV.16 with A = En and X = BF
ε (w) to

show that x ∈ En. Since x ∈ Vp, x ∈ BF
ε (w) as well. Furthermore, x is a limit point

of En since xi ∈ En. It follows that x ∈ En. Finally, we can verify our original claim

because Lemma 2 shows that En
p , being a closed subset of the compact set En ∩ Vp,

is compact in Vp.

To show (2) for Kn = En
p in X = Vp, notice the following:
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Ep
n ⊂ (En ∩ Vp) ⊂ (En+1 ∩ Vp) = En+1

p .

Since En+1
p is open in Vp, it is a subset of the interior of En+1

p = En+1 ∩ Vp, so (2)

follows.

To show (3) for Kn = En
p in X = Vp, let x ∈ Vp. Thus x ∈ BF

ε (w), so x ∈ En for

some n, which is contained in En+1 by Lemma IV.13. This means that x ∈ En+1
p , so

in particular x ∈ ∪nEn
p , which is contained in ∪nEn

p . The result Vp ⊂ ∪nEn
p follows.

Now we want to pull
{
En

p

}
back to a compact exhaustion on Ṽp. Consider the

sets

(4.7) Ẽn
p = π−1(En

p ).

We would like to show that Ẽn
p are open and that

{
Ẽn

p

}
n∈N

is a compact ex-

haustion of Ṽp, where again we need to verify properties (1) - (3) for Kn = Ẽn
p and

X = Ṽp. It is clear that Ẽn
p are open because π : Ṽp → Vp is continuous and En

p are

open in Vp.

To show (1) we claim that

(4.8) Ẽn
p ⊂ π−1(En

p ).

Take x ∈ Ẽn
p . By Lemma IV.17, there exist xi ∈ Ẽn

p so that xi → x. Then

π(xi) ∈ En
p and by continuity of π and π(xi) → π(x). By Lemma IV.18 this means

π(x) ∈ En
p . Now since π is proper by equation (4.8) we see that the sets Ẽn

p are

closed subsets of compacts sets and thus also compact, so (1) holds.

To show (2), we can expand equation (4.8) as follows:
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(4.9) Ẽn
p ⊂ π−1(En

p ) ⊂ π−1(En+1
p ),

which is in turn a subset of the interior of π−1(En+1
p ) = ˜En+1

p .

To show (3), let x ∈ Ṽp. Then π(x) ∈ Vp, so for some n

π(x) ∈ En
p ⊂ En+1

p ,

and thus

x ∈ π−1(En+1
p ) = ˜En+1

p ⊂ ˜En+1
p .

So
{

Ẽn
p

}
is indeed a compact exhaustion of Ṽp.

Next we would like to examine how the function h, which was defined earlier in

this proof, behaves on the boundary of Ẽn
p . Combining equations 4.7 and 4.8 shows

that

π(∂Ẽn
p ) ⊂ ∂(En

p ).

Since En
p ⊂ En, we claim it follows from the above equation that that

π(∂Ẽn
p ) ⊂ ∂(En).

This is because by Lemma IV.17 if b ∈ ∂En
p then there exist bi ∈ En

p so that

bi → b. Since bi ∈ En, we have that b ∈ En by Lemma IV.18. On the other hand if

b ∈ En then since b ∈ Vp by definition, b ∈ En
p .

So by part (3) of Lemma IV.13 we have on ∂Ẽn
p that
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(4.10) h ◦ π ≤ − log

(
1− 1

nε

)
.

We will argue that every connected component C ′ of Ẽn
p has nonempty boundary

in Ṽp. Every such C ′ is an open set inside a connected component C of Ṽp. If C ′ 6= C

and if C ′ has empty boundary, every point in C \C ′ is surrounded by a neighborhood

that does not intersect C ′. The union of these neighborhoods would form an open

set which together with C ′ itself would disconnect C. So if C ′ has empty boundary,

then C ′ = C. This would mean that π(C) ⊂ En, and π(C) is again a variety since

π is proper [30]. This means that π(C) of Vp is compact, which is impossible [30].

Thus, every C ′ has nonempty boundary. Recall as well that the dimension of C ′ is

always greater than or equal to one because F maps into Cn.

We can apply the maximum principle on Ẽn
p to the function h, because Ẽn

p is

an open subset of Ṽp and h is plurisubharmonic on Ṽp. Since Ẽn
p is compact, every

sequence has a convergent subsequence, so that if the maximum doesn’t occur on

the boundary (which exists), we can find a subsequence of points converging to an

interior maximum, which is a contradiction. So equation 4.10 holds on all of Ẽn
p .

Since Ẽn
p is a compact exhaution of Ṽp, we have that h ◦ π ≤ 0 on Ṽp. Since π is

surjective, on Vp we get

(4.11) u ≤ log ||F/ε||.

Since Vp cover BF
ε (w) as we vary p, we have that equaton 4.11 holds on BF

ε (w)

as well. Since log ||F/ε|| is a candidate for UBF
ε (w), we get that

UBF
ε (w) = log ||F/ε||.
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Since log ||F/ε|| is its own upper semicontinuous regularization, we also get that

U∗
BF

ε (w) = log ||F/ε||.

4.5 Plurisubharmonicity with Isolated Zeros using Monge-Ampère Meth-
ods

In this section we will again study the generalized Green function U defined in

definition II.2. We present another proof of Theorem II.3, this time using methods

developed to study the Monge-Ampère operator.

In this section we will again be studying the domain Bε(F ) which we defined

earlier in definition IV.11.

Lemma IV.20. Let Ω be a domain in Cn and let F : Ω → Cn be a holomorphic

function with the following properties: ||F || has finitely many zeros, z1, ..., zn, in Ω;

and ||F || has a nonzero minimum in a neighborhood of ∂Ω. Then for each candidate

u ∈ T (Ω, F ), there is a constant such that u ≤ log ||F ||+ c(u) in Ω.

Proof. Consider a domain G ⊂ Ω\{z1, ..., zn}. Then F has no zeros in G, so that the

Monge-Ampère operator applied to log ||F || is zero there, see for example [4]. This

means that u is maximal in G, see [23, p. 131]. Let Ni be a neighborhood of zi on

which u < log ||F ||+ci and let N0 be a neighborhood of ∂Ω on which u < log ||F ||+c0.

Choose G that ∂G ⊂ ∪n
i=0Ni. Then u ≤ log ||F ||+max {ci : i = 0, ..., n} on ∂G. Since

log ||F || is maximal on G, we get that u ≤ log ||F ||+ c(u) on G. Since the constant

depends only on u and not on G, the inequality holds in all of Ω \ {z1, ...zn}. But

since zi ∈ Ni the inequality holds at each zi as well.
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Recall the following two well known theorems regarding approximations of plurisub-

harmonic functions by smooth functions.

Theorem IV.21 (Fornaess-Narasimhan, [13]). Let ψ : X → R∪{−∞} be a plurisub-

harmonic function on a Stein space X. Then there exists a sequence of C∞ strongly

plurisubharmonic functions ψn : X → R such that ψn ↘ ψ pointwise.

This second theorem can be found in Klimek [23, p. 63].

Theorem IV.22. Let Ω be an open subset of Cn, and let u ∈ PSH(Ω). Define

Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε} and define χε(x) = 1
εm χ(x

ε
). If ε > 0 is such that

Ωε 6= ∅, then u∗χε ∈ C∞∩PSH(Ωε). Moreover, u∗χε monotonically decreases with

decreasing ε, and limε→0 u ∗ χε(z) = u(z) for each z ∈ Ω.

Note the following lemma, which can be found in [23, p. 69].

Lemma IV.23. Let Ω ⊂ Cn, and let ω be a non-empty proper open subset of Ω. If

u ∈ PSH(Ω), v ∈ PSH(ω), and lim supx→y v(x) ≤ u(y) for each y ∈ ∂ω ∩ Ω, then

the formula

w =





max {u, v} : t ∈ ω

u : t ∈ Ω \ ω

defines a plurisubharmonic function in Ω.

Proof. By the assumption lim supx→y v(x) ≤ u(y), w is upper semicontinuous in Ω.

Off of ∂ω, w automatically satisfies the subaveraging property on complex lines. So

take y ∈ ∂ω. Then on any complex line through y with ∆(y, r) the disk of radius r

centered at y in that line,

u(y) ≤
∫

∆(y,r)

u(x)dx ≤
∫

∆(y,r)

w(x),
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and the result follows.

We can also get the following very similar lemma, with the proof being completely

analogous.

Lemma IV.24. Let Ω ⊂ Cn, and let ω be a non-empty proper open subset of Ω. If

u ∈ PSH(Ω), v ∈ PSH(Ω \ ω), and lim supx→y v(x) ≤ u(y) for each y ∈ ∂ω ∩ Ω,

then the formula

w =





u : t ∈ ω

max {u, v} : t ∈ Ω \ ω

defines a plurisubharmonic function in Ω.

Note that if F : Cn → Cn is holomorphic on Ω ⊂ Cn with isolated zeros, there

is always ε such that Bε(w) ⊂⊂ Ω, and such that w is the only zero of F in Bε(w).

The argument is the same in higher dimensions as in one dimension, and the one

dimensional argument can be found in Lemma IV.12.

The proof of the next lemma is complicated, drawing its motivation from work

Demailly did on regularity of the pluricomplex Green function in [10]. I suspect that

there may be a different method which would yield a more streamlined proof.

Lemma IV.25. Let Ω be a domain in Cn and let F : Ω → Cn be holomorphic with

isolated zeros, and let ε be such that Bε(w) ⊂⊂ Ω, and such that w is the only zero

of F in Bε(w). If there exists a negative plurisubharmonic function φ on Bε(w) so

that φ − log ||F || < C in a neighborhood of w and φ(p) > log ||F (p)/ε|| for some

p ∈ Bε(w), then there exists a continuous negative plurisubharmonic function φc on

Bε(w) so that φc − log ||F || < C in a neighborhood of w and φc(p) > log ||F (p)/ε||.
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Proof. We claim that the following inequalities hold for φ for some constant a > 0

and for all z ∈ Bε(w).

(4.12) log ||F (z)/ε|| ≤ φ(z) ≤ log ||F (z)||+ a.

The first inequality follows because we may assume that φ ≥ log ||F/ε|| by consid-

ering instead max {φ, log ||F/ε||}. The second inequality follows from Lemma IV.20.

There is a decreasing sequence of smooth plurisubharmonic functions φj so that

limj→∞ φj = φ. We can justify this claim using Theorem IV.21. To verify the

hypotheses, we will show that BF
ε (w) is hyperconvex (see definition II.15). It is

bounded, and we claim that log ||F/ε|| is a continuous negative plurisubharmonic

exhaustion function. To show that log ||F/ε|| is exhausting, we consider the sets in

Bε(w) where {log ||F/ε|| < c} for c < 0. Suppose zi is a sequence of points in such a

set which is not contained in any compact of Bε(w). Then a subsequence converges

to a point z∗ ∈ ∂Bε(w). By continuity log ||F (z∗)/ε|| ≤ c. Again by continuity,

there will be a ball around z∗ on which log ||F/ε|| < c/2 < 0. But then that ball

is contained in Bε(w), so z∗ could not have been a boundary point. Note that

we could also justify the decreasing sequence of smooth plurisubharmonic functions

using Theorem IV.22.

Let us consider the set {z ∈ Bε(w) : ||F (z)|| = δ}, and choose δ ∈ (0, ε) so that

on this set

(4.13) φj(z) ≥ φ(z) ≥ log(δ/ε) > (1− δ) log(δ2).

Here we are using equation 4.12 and choosing δ small enough so that in the last

inequality the dominating terms are log(δ) and log(δ2).
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Now let us consider the set {z ∈ Bε(w) : ||F (z)|| = η} and choose η ∈ (0, δ) so

that on this set

(4.14) (1− δ) log(δη) > log(η) + a ≥ φ(z).

Here again we are using equation 4.12 and picking η small enough so that in the

last inequality the dominating terms are (1− δ) log(η) and log(η). We claim that we

can use equation 4.14 to choose j large enough so that

φj < (1− δ) log(δη)

on the set {z ∈ Bε(w) : ||F (z)|| = η}; and we claim that we can choose j large

enough so that

φj(z) < 0

on the set
{

z ∈ Bε(w) : ||F (z)|| = εe−δ3
}

. If these inequalities hold at a point,

they hold in a neighborhood of that point since φj is smooth. Since the sets we are

looking at are compact, finitely many such neighborhoods are enough.

We can now use lemmas IV.23 and IV.24 to show that with the above choices

of δ, η and j, the following formula defines a continuous negative plurisubharmonic

function on Bε(w):
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uc =





(1− δ) log(δ||F (z)||)− δ : ||F (z)|| ≤ η

max {(1− δ) log(δ||F (z)||)− δ, φj − δ} : η ≤ ||F (z)|| ≤ δ

φj − δ : δ ≤ ||F (z)|| ≤ εe−δ

max {φj − δ, δ−2 log ||F (z)/ε||} : εe−δ ≤ ||F (z)|| ≤ εe−δ3

δ−2 log ||F (z)/ε|| : εe−δ3 ≤ ||F (z)|| ≤ ε

Let us comment about what happens on the set
{
z ∈ Bε(w) : ||F (z)|| = εe−δ

}
.

On this set

δ−2 log ||F (z)/ε|| = −1/δ.

We also have φj > φ > log ||F/ε|| = −δ, and −2δ > −1/δ for δ small enough.

We will now show that hypotheses of lemmas IV.23 and IV.24 are satisfied. One

can check using the arguments above that the appropriate inequalities hold on each

boundary. We need to check that each of our sets is open and proper within the next

open set. Openness is clear. To show proper containment, we will show that inside

Bε(w)

{||F || < η} ⊂⊂ {||F || < δ} ⊂⊂ {||F || < e−δ
} ⊂⊂

{
||F || < e−δ3

}
⊂⊂ Bε(w).

Since BF
ε (w) ⊂⊂ Ω, we have that ∂BF

ε (w) ⊂ {||F (z)|| = ε}. This is because

for every point b in ∂BF
ε (w), there is a sequence bi ∈ BF

ε (w) converging to b. By

continuity of F , ||F (b)|| ≤ ε. But since b ∈ Ω, if ||F (b)|| < ε we would have

b ∈ BF
ε (w). So for any ε′ < ε the set {||F || < ε′} that is inside Bε(w) is relatively

compact in BF
ε (w). As such the boundary of any such set is contained in Bε(w). The

argument for relative compactness of each set in the next now follows the subsequence
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argument above by showing that the boundary of each of these sets is contained in

the set {||F || = ε′}.

Now we know that uc is plurisubharmonic, and it is clear that uc is continuous

and negative, so we just need to show it has the correct behavior near the singularity.

In fact, what we will need to do instead is consider the function uc/(1− δ), and it is

clear that this function has the correct behavior in a neighborhood of the singularity.

Let 0 < ||F (p)|| = P < ε. Then we can pick δ small enough so that δ < P < εe−δ,

so that

uc(p) = φj(p)− δ.

Let b > 0 be such that

φ(p) = log ||P/ε||+ b.

If we pick

δ < max

{
b

1− log ||P/ε|| , 1
}

,

then we get

uc(p)/(1− δ)− log ||P/ε|| = φj(p)− δ

1− δ
− log ||P/ε||(1− δ)

(1− δ)

≥ φ(p)− log ||P/ε|| − δ + δ log ||P/ε||
1− δ

=
b + δ(log ||P/ε|| − 1)

1− δ

which will be positive if δ < 1 and if

δ(log ||P/ε|| − 1) > −b.
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Since log ||P/ε|| < 0, log ||P/ε|| − 1 < 0 as well. So we get the condition

δ <
−b

(log ||P/ε|| − 1)
,

which was the condition we required of b. Thus φc = uc

1−δ
has the desired proper-

ties.

The following lemma can be found in [23, p. 230], see also [10] and [9].

Lemma IV.26 (Demailly). Let Ω be a bounded domain in Cn, let a ∈ Ω, and let

u, v ∈ PSH ∩ C(Ω, [−∞,∞)) be such that u−1(−∞) = v−1(−∞) = {a}, u < v in

Ω \ {a}, and

lim sup
z→a

u(z)

v(z)
= 1.

Then (ddcu)n({a}) ≤ (ddcv)n({a}).

The following lemma can be found in [10].

Lemma IV.27 (Demailly). Let φ, ψ : Ω → [−∞, 0) be continuous plurisubharmonic

exhaustion functions so that φ ≤ ψ ≤ 0 and
∫

Ω
(ddcφ)n < ∞. Then

∫
Ω
(ddcψ)n <

∫
Ω
(ddcφ)n.

Lemma IV.28. Let Ω be a domain in Cn and let F : Ω → Cn be holomorphic

with isolated zeros, and consider a particular zero w. Let ε be small enough so that

Bε(w) ⊂⊂ Ω and Bε(w) contains no zeros other than w. Then the generalized Green

function UBε(w) = log ||F/ε||.

Proof. Suppose that there exists u which is plurisubharmonic and nonpositive on

Bε(w), with that u ≤ log ||F || + c in a neighborhood of w, so that u ≥ log ||F/ε||
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and u(p) > log ||F (p)/ε|| at some point p ∈ Bε(w). By Lemma IV.25 we can assume

that u is continuous. Let γ be a strictly plurisubharmonic function defined on a

neighborhood of Bε(w) such that γ ≤ −1 in Bε(w). Choose ε′ > 0 small enough that

u(p) + ε′γ(p) > log ||F (p)/ε||

in a neighborhood of p, and define the function

ω(z) = max {u(z) + ε′γ(z), log ||F (z)/ε||} .

Then there are constants C1 and C2 with C1 < C2 so that in a neighborhood of w

log ||F (z)||+ C1 < ω(z) < log ||F (z)||+ C2.

Thus

lim sup
z→w

(
1 +

C1

log ||F (z)||
)
≥ lim sup

z→w

ω(z)

log ||F (z)|| ≥ lim sup
z→w

(
1 +

C2

log ||F (z)||
)

,

so that

lim sup
z→w

ω(z)

log ||F (z)|| = 1.

Similarly,

lim sup
z→w

1

1 + C1

log ||F (z)||
≤ lim sup

z→w

log ||F (z)||
ω(z)

≤ lim sup
z→w

1

1 + C2

log ||F (z)||
.

so that

lim sup
z→w

log ||F (z)||
ω(z)

= 1.
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By applying lemma IV.26 twice we get

(4.15) (ddcω)n({w}) = (ddc log ||F (z)||)n({w}).

Note that ω and log ||F/ε|| are negative continuous plurisubharmonic exhaustion

functions on BF
ε (w) with log ||F/ε|| ≤ ω, so we can use lemma IV.27 to show that

(ddcω)n({w}) ≤
∫

Bε(w)

(ddcω)n

≤
∫

Bε(w)

(ddc log ||F/ε||)n = (ddc log ||F (z)||)n({w}).

This equation, together with 4.15 and Lemma IV.32, imply that

(ddcω)n|BF
ε (w)\{w} ≡ 0.

But this contradicts the fact that ω = u + εγ in a neighborhood of p, since u + εγ

is strictly plurisubharmonic.

Before proving the next lemma, we will need to make a small detour to show that

the Monge-Ampère mass of log ||F || is finite at zeros of ||F ||.

Definition IV.29 (Radon Measure). A Radon measure on Ω is a continuous C-linear

functional on C0(Ω,C).

The Riesz representation theorem says that for every Radon measure µ there is a

corresponding unique complex Borel measure µ on Ω so that

µ(φ) =

∫

Ω

φdµ.
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One can show that for any compact set K ⊂ Ω,

(4.16) µ(K) = inf
{
µ(φ) : φ ∈ C0(Ω, [0, 1)), K ⊂ φ−1(1)

}
.

Let ψ ∈ PSH ∩ L∞loc. Since (ddcψ)n is a positive (n, n) current, it is in fact a

Radon measure so we can define (ddcψ)n({a}) using Equation 4.16 for a point a ∈ Ω.

We can also define the Monge-Ampère operator on wider classes of functions, and in

particular for the class

PSH(Ω; a) = PSH(Ω) ∩ L∞loc(Ω \ {a}).

The following theorem is then used to define the Monge-Ampère operator for

functions in PSH(Ω; a), [23].

Theorem IV.30. Let Ω be a domain in Cn and let u ∈ PSH(Ω; a). Then there

exists a positive Borel measure µ on Ω so that, for any decreasing sequence {uj}j∈N ⊂

PSH∩L∞loc(Ω) convergent to u pointwise in Ω, the sequence {(ddcuj)
n}j∈N is weak*-

convergent to µ.

Thus for ψ ∈ PSH(Ω; a), (ddcψ)n is again a positive Radon measure and we can

define (ddcψ)n({a}) using Equation 4.16 for a point a ∈ Ω. In particular we will use

this for ψ = log ||F ||, where F : Ω → Cm is holomorphic with isolated singularities.

In what follows, we will also need the Chern-Levine-Nirenberg estimate, [23].

Theorem IV.31 (Chern-Levine-Nirenberg estimate). Let Ω be an open neighborhood

of a compact set K ⊂ Cn. Then there exist a constant C > 0 and a compact set

L ⊂ Ω \K, which depend on K and Ω, such that for all u1, ...un ∈ PSH ∩ L∞(Ω)

∫

K

ddcu1 ∧ ... ∧ ddcun ≤ C||u1||L · ... · ||un||L.
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Now we can show that the Monge-Ampère mass of log ||F ||, for F : Ω → Cn a

holomorphic function, is finite at isolated zeros of ||F ||. We will need this lemma in

a later proof.

Lemma IV.32. Let Ω ⊂ Cn and let F : Ω → Cm be such that ||F || has isolated

zeros. Then the Monge-Ampère mass of log ||F (z)|| at each of the zeros of ||F || is

finite.

Proof. Let u = log ||F || and consider the functions uj = max {log ||F ||,−j}. Then

uj → u pointwise and the uj are decreasing. By Theorem IV.30

(ddc log ||F ||)n({w}) = inf
{
µ(φ) : φ ∈ C0(Ω, [0, 1)), w ∈ φ−1(1)

}

= inf

{
lim
j→∞

µj(φ) : φ ∈ C0(Ω, [0, 1)), w ∈ φ−1(1)

}

= inf

{
lim
j→∞

∫

Ω

φdµj : φ ∈ C0(Ω, [0, 1)), w ∈ φ−1(1)

}
.

Suppose that φ ∈ C0(Ω, [0, 1)), w ∈ φ−1(1). Then if we pick Ω = BF
ε (w) and

K = Supp(φ), using IV.31 we get

lim
j→∞

∫

Ω

φ(ddcuj)
n ≤ lim

j→∞
C||uj||nL.

Since ||uj||L is finite for each j and eventually the same for all j, we are done.

Lemma IV.33. Let Ω be a domain in Cn, and let F : Ω → Cn be holomorphic with

isolated zeros. Then the upper semicontinuous regularization U∗ (see definition II.16)

of the generalized Green function U satisfies U∗ < log ||F ||+C(w) in a neighborhood

of each zero w.
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Proof. According to Corollary IV.10 and Lemma IV.28 for each zero w there is a

corresponding neighborhood Bε(w) so that

U∗
Ω|Bε(w) ≤ U∗

Bε(w) = log ||F/ε||.

So pick C(w) = − log(ε).

The following theorem can be found in [27, p. 54].

Theorem IV.34 (Lelong). Let Ω be a domain in Cn. Let (fi)i∈I be a family of

plurisubharmonic function on Ω that are bounded above on all compacts. Define

F(z) = supi∈I fi(z). Then the upper semicontinuous regularization F∗(z) is plurisub-

harmonic on Ω.

Theorem IV.35. Let Ω be a domain in Cn, and let F : Ω → Cn be holomorphic

with isolated zeros. Then the generalized Green function U is plurisubharmonic.

Proof. We will show that the upper semicontinuous regularization U∗ is a candidate

function. Clearly, U∗ ≤ 0. Also, Lemma IV.33 shows that U∗ − log ||F || < C(w)

in a neighborhood of each zero w. By Theorem IV.34, we also know that U∗ is

plurisubharmonic. Thus U∗ = U , so U itself is plurisubharmonic.

Recall the maximal plurisubharmonic functions defined in definition II.13. The

following well known theorem relates maximal plurisubharmonic functions to certain

solutions of a Monge-Ampère equation, see [23, p. 158] and [4].

Theorem IV.36. Let Ω be an open subset onf Cn, and let u be a locally bounded

plurisubharmonic function on Ω. Then u is maximal if and only if it satisfies the

homogeneous Monge-Ampère equation (ddcu)n = 0.
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The following theorem now follows in the same way that it did for the Green

function, see [23, p. 222].

Theorem IV.37. Let Ω be a domain in Cn, and let F : Ω → Cn be holomorphic

with finitely many isolated zeros. Let Z be the zero set of ||F || on Ω. Then U is

maximal in Ω \ Z, or equivalently

(ddcU)n ≡ 0

in Ω \ Z.

Proof. Let G ⊂⊂ Ω \Z, and let v ∈ PSH(G) that is upper semicontinuous on G be

such that v ≤ U on ∂G. Then define

u(z) =





max {v(z), U(z)} : z ∈ G

U : z ∈ Ω \G.

u(z) is plurisubharmonic by Lemma IV.23.

Since v < 0 on ∂G, by the maximum principle v < 0 on G. Thus u is a candidate

for U , which means that that v ≤ U in G. Thus U is maximal. By Theorem IV.36,

its Monge-Ampère mass is zero off Z.

There are now a number of theorems which should follow directly in analogy to

how they were proved for the standard Green function. We give an example of one

such theorem.

Theorem IV.38. Let (Ωj)j∈N be an increasing sequence of domains in Cn and let

F be a holomorphic function defined from Ω = ∪Ωj to Cn such that F has isolated

zeros. Then
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UF
Ω = lim

j→∞
UF

Ωj
.

Proof. If for any Ωj, UF
Ωj
≡ −∞ the result is trivial by Corollary IV.10. If not, then

by Theorem IV.35 we get UF
Ωj
∈ PSH(Ωj). Define

gF
Ω := lim

j→∞
UF

Ωj
.

Since UF
Ωj

is a decreasing sequence of plurisubharmonic functions, gF
Ω is either

identically −∞ or plurisubharmonic. By Corollary IV.10 we have gF
Ω ≥ UF

Ω , so if gF
Ω

is identically −∞ then we are done. If gF
Ω is plurisubharmonic, then g ≤ 0 and by

Lemma IV.28 and Corollary IV.10 gF
Ω ≤ log ||F || + C(w) in a neighborhood of each

zero w of F . Thus gF
Ω ≤ UF

Ω .



CHAPTER V

Other Examples

5.1 Balanced Domains with Holes

In general, it is very hard to calculate the Green function or Azukawa metric of

a given domain. One notable exception is balanced pseudoconvex domains, where

the term balanced indicates that ∆ · Ω = Ω for ∆ the unit disk in C. On balanced

pseudoconvex domains, the Green function and Azukawa metric behave as they do

on disks.

If Ω is a balanced pseudoconvex domain, then u(0, w) = log h(w), where h(w) was

defined in equation 3.17, [19, p. 119]. This means that on balanced pseudoconvex

domains, the Green function with pole at the origin is the same as the Green function

of each circular slice. One inequality is given by inclusion argument, which shows

that the Green function would be smaller than or equal to the behavior on a slice.

One can then show the other inequality by checking that log h(z) ∈ KΩ(0). This

follows because, for a balanced domain, log h(z) is plurisubharmonic if and only if Ω

is pseudoconvex.

We study the Green function on balanced pseudoconvex domains Ω with a com-

pact set K removed. One example of a domain of this type is the ring domain

Ωr ⊂ Cn, where

85
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Ωr =
{
z ∈ Cn : r2 < ||z||2 < 1

}
.

Fornaess and Lee showed that, in directions not touching the inner boundary, the

Sibony metric on the ring domain is the same as the Sibony metric on the ball, [12].

It is reasonable to suspect that in these directions the Green function is the same as

the Green function on the ball. More generally, we will show that the Green function

on Ω \ {K} is the same as the Green function on Ω in directions not cutting through

K. It follows that the Azukawa metric on Ω \ {K} is also the same as the Azukawa

metric on Ω in these directions.

Theorem V.1. Let Ω ⊂ Cn be a balanced pseudoconvex domain and let 0 denote the

origin in Cn. Let K ⊂⊂ Ω so that 0 /∈ K. Let D(z) = Ω ∩ {αz : α ∈ C} be the disk

through z and the origin. If D(z) ∩ K is a closed subset of D(z) which is the −∞

set for some plurisubharmonic function on D(z), then

uΩ\K(0, z) = uΩ(0, z) = log
||z||
r

,

where r is the radius of D(z). Also,

F
Ω\K
A (0, ξ) = FΩ

A (0, ξ) =
||ξ||
r

.

Proof of Theorem V.1. Let S(z) denote the slice through z in ΩK , so that S(z) =

D(z) ∩Kc. Consider the function f(z) defined on S(z) given by

f(z) = u(0, z)− log
||z||
r

,

where u(0, z) is the pluricomplex Green function on Ω \ {K} with pole at the

origin and where r is the radius of D(z). Although the funciton log ||z|| is not
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pluriharmonic on Ω \ {0}, it is harmonic on D(z) \ {0}. So f(z) is subharmonic

on S(z) \ {0}. Furthermore, by the following calculation f(z) is bounded near the

origin, so f(z) extends to be subharmonic on S(z).

f(z) = u(0, z)− log ||z||+ log ||z|| − log
||z||
r

≤ C + log r

Notice that f(z) is bounded above on S(z) = D(z)∩Kc since log ||z|| is bounded

there. So if D(z) ∩K is a closed subset of D(z) which is the −∞ set of a plurisub-

harmonic function, then f(z) extends to a subharmonic function on D(z). We will

call this extended function f̃(z).

Since uΩ is given by the logarithmic Minkowski function, we know that uΩ|∂Ω = 0.

Since ΩK ⊂ Ω we know that uΩK
≥ uΩ. Thus uΩK

|∂ΩK
= 0, so f̃(z)|∂D(z) = 0.

Also, since

log
||z||
r

= uΩ(0, z)|ΩK
,

and since uΩK
≥ uΩ, f̃(z) ≥ 0. Now we can apply the maximum principle on

D(z) to get that f̃(z) = 0.

5.2 Boundary Behavior of the Green Function

The pluricomplex Green function is known to be continuous on hyperconvex do-

mains, [10]. By exhausting a pseudoconvex domain with hyperconvex domains, it di-

rectly follows that on pseudoconvex domains the Green function is upper-semicontinuous.

In fact, the Green function is upper-semicontinuous on all domains as we proved in

Section 3.1. It is known that there are cases in which the Green function is only
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upper-semicontinuous and not not continuous. In this section we construct an ex-

ample of a pseudoconvex domain where the Green function cannot be extended

continuously to the boundary.

Lemma V.2. There is a neighborhood of (0, 0) on which the function

max

{
−

∑
n

εn log
1

n
+

∑
n

εn log

∣∣∣∣
1

n
w − (1− 1

n
)z

∣∣∣∣ ,−1

}

is identically −1.

Proof. We will show that

f(z, w) = −
∑

n

εn log
1

n
+

∑
n

εn log

∣∣∣∣
1

n
w − (1− 1

n
)z

∣∣∣∣

is less than log |(z, w)/2| + C, which is less than −1 in a neighborhood of (0, 0).

One can check that f(z, w) is well defined.

log

∣∣∣∣
1

n
w − (1− 1

n
)z

∣∣∣∣

=
1

2
log

(
1

n2
|w|2 +

2

n

(
1− 1

n

)
Re(wz) +

(
1− 1

n

)2

|z|2
)

If |w| ≥ |z| then Re(wz) ≤ |wz| ≤ |w|2. This gives us

1

2
log

(
1

n2
|w|2 +

2

n

(
1− 1

n

)
Re(wz) +

(
1− 1

n

)2

|z|2
)

≤ 1

2
log

(
2n− 1

n2
|w|2 +

(
1− 1

n

)2

|z|2
)

≤ 1

2
log

(|w|2 + |z|2)



89

If |z| ≥ |w| then Re(wz) ≤ |wz| ≤ |z|2. This gives us

1

2
log

(
1

n2
|w|2 +

2

n

(
1− 1

n

)
Re(wz) +

(
1− 1

n

)2

|z|2
)

≤ 1

2
log

(
1

n2
|w|2 +

(
1− 1

n2

)
|z|2

)

≤ 1

2
log

(|w|2 + |z|2|)

So

f(z) = −
∑

n

εn log
1

n
+

∑
n

εn log

∣∣∣∣
1

n
w − (1− 1

n
)z

∣∣∣∣

≤ C +

(∑
n

εn

)
log |(z, w)|

we can pick

(∑
n

εn

)
= 1

.

Theorem V.3. There exists a domain Ω ⊂⊂ C2 with (0, 0) ∈ Ω so that the pluri-

complex Green’s function with singularity at zero, uΩ,0, is not in C(Ω \ 0). The

domain Ω has the following defining function

(5.1) log |(z, w)|+ max

{
−

∞∑
i=1

εi log
1

i
+

∞∑
i=1

εi log

∣∣∣∣
1

i
w −

(
1− 1

i

)
z

∣∣∣∣ ,−1

}

and εi are chosen so that
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(5.2) −
∞∑
i=1

εi log
1

i

converges to a finite number [14, p.30].

Proof. Let Ω = {(z, w) : ρ(z, w) < 0} where ρ is given by 5.1. The point (0, 0) is in Ω

because log(0) = −∞. Also, ρ(z, w) ≥ log |(z, w)| − 1, so we have for all (z, w) ∈ Ω,

that |(z, w)| < e. Consider the sequence

tn =

(
1

n
, 1− 1

n

)

|tn|2 = 1− 2

n
+

2

n2

We can check that tn ∈ Ω for all n. In fact, we have that Clearly tn → t = (0, 1)

as n →∞. Pick εn so that

∑
n

εn log
1

n
> −∞

Then t = (0, 1) ∈ ∂Ω. Consider Dtn = {ctn : |ctn| < e} for c ∈ C. Since for

(z, w) ∈ Dtn

max

{
−

∑
n

εn log
1

n
+

∑
n

εn log

∣∣∣∣
1

n
w − (1− 1

n
)z

∣∣∣∣ ,−1

}
= −1

we have that Dtn ∈ Ω. This means that uΩ,0(z) ≤ uDn,0(z) for z ∈ Dn. This

follows from noticing that if g < 0 is a plurisubharmonic function on Ω so that

g(z) → log |z| + a as z → 0, then g|Dn < 0 is a subharmonic function on Dn so

that g|Dn → log |z| + a as z → 0. Now consider uDn,0(tn). Since |tn| < 1 and since

uDn,0(z, w) = log |(z, w)/e| it follows that uDn,0(tn) < log(1/e) for all tn. Thus
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lim
n→∞

uΩ,0(tn) ≤ lim
n→∞

uDn,0(tn) ≤ log(1/e)

Now consider the sequence

an =

(
0, 1− 1

n

)

ρ(an) = log

(
1− 1

n

)
+ max

{
−

∑
n

εn log
1

n
+

∑
n

εn log

∣∣∣∣
1

n

(
1− 1

n

)∣∣∣∣ ,−1

}

= log

(
1− 1

n

)
+ max

{∑
n

εn log

∣∣∣∣
(

1− 1

n

)∣∣∣∣ ,−1

}

< 0

So an ∈ Ω. Now we want to show that ρ is in the admissible class. By definition,

ρ < 0 on Ω. In addition, we will show in a calculation below that in a neighborhood

of (0, 0)

max

{
−

∑
n

εn log
1

n
+

∑
n

εn log

∣∣∣∣
1

n
w − (1− 1

n
)z

∣∣∣∣ ,−1

}
= −1

From this fact, is clear that ρ → log |(z, w)| − 1 as (z, w) → (0, 0). Finally,

it is clear from the definition that ρ is plurisubharmonic. The only point worth

mentioning is that

log

∣∣∣∣
1

n
w − (1− 1

n
)z

∣∣∣∣

is negative and plurisubharmonic, so the partial sums of

∑
n

εn log

∣∣∣∣
1

n
w − (1− 1

n
)z

∣∣∣∣
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are a decreasing sequence of plurisubharmonic functions. Since ρ is in the admis-

sible class for Ω we get that

lim
n→∞

uΩ,0(an) ≥ lim
n→∞

ρ(an) = 0



CHAPTER VI

Skwarczyński Metric

6.1 Skwarczyński Completeness and the Bergman Space

An interesting open question that many people are interested in is whether there is

a pseudoconvex domain that has finite dimensional Bergman space, which is the space

of L2 holomorphic functions. Wiegerinck has an example of a non-pseudoconvex

domain with finite dimensional Bergman space in [34], but the example cannot be

easily modified to the pseudoconvex case.

A related question which motivates this section was whether Bergman complete-

ness implies that the Bergman space is infinite dimensional. We prove that statement

for a closely related metric, called the Skwarczyński distance, which was defined in

Section 2.3. We will now define what it means for a domain to be Skwarczyński

complete and prove the result.

Definition VI.1. Let Ω be a domain in Cn. The distance induced by ρ is continuous

and induces a topology on Ω. Ω is said to be ρ-complete if any ρ-Cauchy sequence

{zν}∞ν=1 ⊂ Ω converges to a point z0 ∈ Ω with respect to the usual topology.

Theorem VI.2. If Ω is ρ-complete, then dim(L2
h(Ω)) = ∞.

Proof. Suppose that L2
h(Ω) is finite dimesional. Then its unit ball is compact. Con-

sider the following functions of norm one:
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fz′(·) :=
K(·, z′)√
K(z′, z′)

where z′ ∈ Ω. To check their norm we have

(∫

Ω

fz′fz′

)1/2

=

(∫

Ω

K(·, z′)√
K(z′, z′)

K(·, z′)√
K(z′, z′)

)1/2

=
1√

K(z′, z′)

(∫

Ω

K(·, z′)K(·, z′)
)1/2

=
1√

K(z′, z′)

√
K(z′, z′)

= 1

Take a sequence {zν}∞ν=1 where zν → z0 for some z0 ∈ ∂Ω. Then since the unit

ball is compact, the sequence {fzν}∞ν=1 has a subsequence which converges in the L2

norm to a function f ∈ L2
h(Ω) with ||f ||L2

h
= 1. Let us re-index this convergent

subsequence as {fzj
}∞j=1. We claim that the sequence of points {zj}∞j=1 is a Cauchy

sequence in the norm induced by ρ. Since zj → z0, we have a Cauchy sequence

converging to a boundary point, so Ω will not be ρ-complete. Given ε > 0 we need

to show there exists N ∈ N such that for all j1, j2 > N , ρΩ(zj1 , zj2) < ε. Notice that

| < fz′ , fz′′ > | =
∣∣∣∣
∫

Ω

fz′fz′′

∣∣∣∣

=

∣∣∣∣∣
∫

Ω

K(·, z′)√
K(z′, z′)

K(·, z′′)√
K(z′′, z′′)

∣∣∣∣∣

=
1√

K(z′, z′)
√

K(z′′, z′′)

∣∣∣∣
∫

Ω

K(·, z′)K(·, z′′)
∣∣∣∣

=
|KΩ(z′′, z′)|√

KΩ(z′, z′)
√

KΩ(z′′, z′′)

=
|KΩ(z′, z′′)|√

KΩ(z′, z′)
√

KΩ(z′′, z′′)
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So that

ρΩ(z′, z′′) = (1− | < fz′ , fz′′ > |)1/2

Let fzj
= f + gj. Pick N such that for all j > N , ||gj||L2

h
< ε2/3. This is possible

since gj = fzj
− f converges to zero in the L2 norm. Then if j1, j2 > N

| < fzj1
, fzj2

> | = | < f + gj1 , f + gj2 > |

= | < f, f > + < f, gj2 > + < gj1 , f > + < gj1 , gj2 > |

= |1+ < f, gj2 > + < gj1 , f > + < gj1 , gj2 > |

≥ 1− | < f, gj2 > | − | < gj1 , f > | − | < gj1 , gj2 > |

≥ 1− ||f ||L2
h
||gj2||L2

h
− ||gj1||L2

h
||f ||L2

h
− ||gj1||L2

h
||gj2||L2

h

= 1− ||gj2||L2
h
− ||gj1||L2

h
− ||gj1||L2

h
||gj2||L2

h

> 1− ε2/3− ε2/3− ε4/9

> 1− ε2

Thus for the N chosen, we have that for all j1, j2 > N , ρΩ(zj1 , zj2) < ε, which

proves our claim that the sequence {zj}∞j=1 is ρ-Cauchy.

We note also that the converse of Theorem VI.2 is not true. It is known that

the Skwarczynski metric is smaller than the Bergman metric so Skwarczynski com-

plete domains are Bergman complete [19], and it is known that Bergman complete

domains are pseudoconvex [7]. If domains with infinite dimensional Bergman space

were always Skwarczynski complete, then such domains would always be pseudocon-

vex. But all bounded domains, including non-pseudoconvex domains, have infinite
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dimensional Bergman space because for bounded domains all polynomials are in the

Bergman space.
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